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Abstract—The Web has become an integral part of life, and
over the past decade, it has become increasingly centralised,
leading to a number of challenges such as censorship and control,
particularly in search engines. Recently, the paradigm of the
decentralised Web (DWeb), or Web3, has emerged, which aims
to provide decentralised alternatives to current systems with
decentralised control, transparency, and openness.

In this paper we introduce Ditto, a decentralised search mech-
anism for DWeb content, based on similarity search. Ditto uses
locality sensitive hashing (LSH) to extract similarity signatures
and records from content, which are stored on a decentralised
index on top of a distributed hash table (DHT). Ditto uniquely
supports numerous underlying content networks and types,
and supports various use-cases, including keyword-search. Our
evaluation shows that our system is feasible and that our search
quality, delay, and overhead are comparable to those currently
accepted by users of DWeb and search systems.

Index Terms—Decentralised Search Engine, Similarity Search,
Locality Sensitive Hashing, Decentralised Web.

I. INTRODUCTION

The Internet is one of the most fundamental technological
inventions of the last century and an integral part of our lives.
It is used as a main source of knowledge and entertainment,
and to maintain business and human relations.

While originally designed as a decentralised network of
equal peers, the Internet, including Web search, evolved into
an increasingly centralised, profit-oriented system, where a few
tech giants control most of the market. Centralisation allowed
services to scale, provide payment-free services through the
monetisation of targeted advertisements, and deliver excellent
quality services. However, this model consequently suffers
from fundamental problems that are recently becoming in-
creasingly visible.

When a single platform controls the majority of the market,
as is the case with centralisation, an imbalance of power is
created between the controlling entity and its users [1], who
cannot easily migrate between ecosystems. Tech giants are
incentivised to keep the environment, through which they have
a leading position, as static as possible, encouraging abuse
of power [2] and elimination of competition [3]. This profit-
oriented approach creates policies that may influence society
as a whole [4] and may lead to radicalisation [5], depression
or increased suicide rates [6].

Furthermore, gathering enormous amounts of user data
without any control facilitates manipulation. The problem
ranges from making users addicted to the platform, to attempts
to control what the users see, hear and ultimately think [7].
A centralised ecosystem also gives authoritarian regimes a

convenient tool for censorship [8] and propaganda [9]. Finally,
even with highly secure Cloud services, centralisation creates
a serious threat where a single human error, cyber-attack or
natural disaster causes a global network outage [10], [11].

The decentralised Web (i.e. DWeb), also known as Web3,
aims to shift the power balance in favour of users through
openness, equality, self-governance, and transparency. Such
ecosystems are more inclusive and allow populations outside
the criterion of profitability to participate. The DWeb encom-
passes several novel inter-operating decentralised technologies
such as blockchains [12] for building trust and value transfer,
and decentralised storage networks (DSN) [13] for distributed
content storage.

In the current Web model, search engines, such as Google
or Yahoo, are the main entry point for users accessing the
Internet. The two main search categories used are keywords
search and similarity search. In the former, users submit their
keywords to a search engine, which returns content it has
previously crawled and indexed from centrally-managed Web
servers. In the latter (e.g. Google reverse search) users submit
a base item such as an image, upon which the engine returns
previously crawled items that are close to the base item in
terms of a distance metric. Similarity search is also used for
multiple kinds of recommendation systems, where users are
shown items (e.g. entertainment media) that they might like
based on their interaction history.

Despite the significant progress of decentralisation in re-
cent years, one of the main challenges remains unsolved:
realising decentralised search engines. Previous attempts to
create decentralised search engines do not support both key-
word and similarity search [14]–[18], do not provide result
integrity [14]–[16], [18], are not completely decentralised [19],
[20], are bound to a specific underlying technology [14]–[18],
or require a global view of the network making them difficult
to deploy in practice. We analyse existing search systems in
Section VI-A.

In this work, we present Ditto, a decentralised search mech-
anism for DWeb services, which allows for various search
use-cases on a variety of DWeb content —independent of the
underlying DSN or blockchain. Ditto achieves its functionality
by using a similarity search mechanism based on locality-
sensitive hashing (LSH), which extracts short content signa-
tures that maintain similarity features. Consequently, Ditto can
group together content with high similarity. On top of this
various search functionality beyond recommendation can be
implemented (see Section III-C). Furthermore, by extracting



and hashing keywords directly from content in our algorithm,
we provide a truly decentralised keyword-search.

Ditto does not require centralised components or a global
view of the stored content, and security is guaranteed by
the verifiability of LSH computations. When adding DWeb
content, providers are incentivised to compute similarity signa-
tures. Mappings from signature to content identifiers (CID) are
stored using a modified distributed hash table (DHT), allowing
for quick and reliable lookup. A user or application can
leverage search functionality by supplying a query consisting
of a signature, content type, and similarity range. Through our
initial evaluation, we verify the feasibility of our system. We
find that the delays in terms of signature generation and lookup
of LSH are acceptable for our decentralised setting (sub-
second as expected by current Web users), the overhead of
participation does not greatly increase beyond current systems,
and that the quality of similarity search and keyword-search is
acceptable and comparable to our baseline (recall up to 57%).

To summarise, in this work we have proposed Ditto, which
uniquely achieves the following:

• A general decentralised search mechanism with interop-
erability for various DWeb content sources and types.

• Similarity search for a broad number of use-cases such
as recommendation, malware detection, and moderation.

• A decentralised way of achieving keyword-search, allow-
ing for semantic search on the DWeb without any single
root of trust.

The rest of this paper is structured as follows. Section II
provides background on the building blocks used in this work.
Section III presents our system assumptions and goals, and
Section IV describes the architecture design of Ditto. Section
V presents an experimental evaluation and verification of our
system feasibility, after which we review and analyse related
work in Section VI. Finally, we conclude our work in Sections
VII and discuss future work.

II. PRELIMINARIES

In this section we provide a background on the key concepts
used in Ditto. Specifically, we give an overview of DHTs and
the DWeb, and give a primer on similarity search using LSH.

A. Peer-to-Peer (P2P) and Distributed Hash Tables

Peer-to-peer (P2P) networks are distributed systems that
partition tasks or workloads between equally privileged peers.
These peers share resources such as storage, bandwidth, or
computation with the rest of the network, alleviating the
need for centrally managed Web servers and services. Most
DWeb initiatives leverage decentralised networks based on
P2P, which are generally implemented using virtual overlays
on top of the physical network topology, which can be either
unstructured or structured.

While unstructured overlays are formed by random connec-
tions to peers and query techniques like flooding —without
a global knowledge [21]— structured overlays organise peers
in a specific network topology. While this adds overhead, it
improves performance, especially for the recall of rare content.

Most structured overlay networks use a distributed hash table
(DHT) [22]–[24], where a variant of consistent hashing is used
to map content or resources to peers. Peers can then easily
search the network using a hash table, allowing for efficient
retrieval of content (usually in O(log(n))).

For example, in Kademlia [22], the most popular DHT im-
plementation, peers randomly create a public/private key pair
when joining the network on a 160-bit keyspace envisioned
as a binary tree. To assign responsibility for a {key:value}
pair to the closest node, the XOR distance metric is used,
due to its triangular inequality, symmetry, and unidirectionality
properties.

B. Search on the Decentralised Web

The decentralised Web, also known as DWeb or Web3, aims
to create decentralised alternatives to current Web services,
alleviating some of the issues of the current infrastructure.
Throughout this paper, when mentioning the centralisation of
the current Web, we refer to the concentration of power, with
a few parties controlling the majority of Web services in terms
of management, governance, and ownership.

In the current Web, most users access and discover Web
content using a keyword-search based workflow (although
alternative workflows exist). A user generally opens a search
engine and submits a number of keywords, specifying the
content they are looking for. The search engine then queries
its index which it has crawled proactively and ranked, and
returns the results pointing to the content location. Content
is generally stored at distant server infrastructures (e.g. the
Cloud).

In the DWeb, each step of content discovery and interaction
is envisioned to be decentralised and performed collaboratively
by peers in the network. DWeb content is mainly stored on
DSNs —P2P networks for collaborative storage. The ideas
behind these networks were first developed in early P2P works
two decades ago, but have recently regained interest and have
improved in terms of robustness, security, and stability, leading
to numerous novel storage networks emerging [13]. One key
differentiating factor of these networks is that they leverage
content-addressing in order to allow for efficient and scalable
retrieval, and distributed control and storage of data. Instead
of referring to content by its location, a self-certifying hash of
the content is used as its identifier (CID), allowing retrieval
of content from anywhere in the network, rather than being
restricted to retrieve from only one of the content providers’
locations. In order to reward honest peers for participating and
collaborating by sharing their resources used for performing
tasks such as search and storage, blockchains and smart
contracts can be used as an additional incentive layer [25].

Blockchains and smart contracts are themselves another
data source on the DWeb, particularly for financial data. They
use similar hash-based names derived from Merkle trees [26]
pointing to transactions. CIDs and transaction hashes are not
human-readable by default, meaning that small changes to the
content modify its identifier entirety. This is one of the key
reasons that it is vital to have a search mechanism on top of



this storage layer. However, implementing a truly decentralised
search mechanism is non-trivial, as generally there remains a
root of trust like the DNS, Public-Key Infrastructure (PKI), or
centralised crawling/verification servers.

C. Similarity Search

Similarity search aims to provide a mechanism for identify-
ing content with high similarity. When a query is submitted,
the goal of the algorithm is to return a number of items
with high similarity of content. This has been applied in a
variety of use cases [27], and implemented either using space
partitioning methods such as tree-based mechanisms [28], or
using hash-based approaches like Locality Sensitive Hashing
(LSH) [29]. As the latter has higher performance guarantees
at lower overhead, we use this method in Ditto.

The goal of LSH is to extract a short signature from content
based on hashing, where the hashing algorithm maximises
hash collisions for similar items. As signatures retain informa-
tion about similarity, they can be used to perform comparisons
and find similar items, rather than having to use the raw file,
greatly improving performance.

Popular LSH mechanisms include random hyper-planes
[30], multi-probe [31], and LSH forest [32]. In this paper,
we use a minhashing [33] approach, which reduces a high
dimensional content vector into a short signature using N ran-
dom hash functions. First, a binary feature vector is extracted
from the content, after which a large number of randomly
permuted hash functions are generated, where the signature
length determines the number of hash functions used. The
values in the signature are then given by the position of the
first row with a 1 entry following each hash function.

The minhashing approach maximises the probability that
contents that are similar are mapped to the same bucket in the
signature. In the general minhashing LSH algorithm, signa-
tures are further split into buckets, creating a large number of
hash-tables that capture part of the signature. When looking for
similar content, a requestor checks all hash-tables to generate
a candidate set, on which a similarity metric is applied to get
the closest items. While a number of similarity metrics can
be used [34] such as cosine similarity and Hamming distance,
the minhashing approach estimates the Jaccard similarity [35],
which is defined as the intersection over the union between two
sets A and B:

J(A,B) =
|A ∩B|
|A ∪B|

.

III. SYSTEM PROPERTIES

In this section, we discuss the assumptions made in our
design of a decentralised similarity search system. We then
present our desired properties and possible use-cases of Ditto
beyond similarity search.

A. Assumptions

We first note that in this work, we focus on the networking
aspects and feasibility of implementing decentralised simi-
larity search for the DWeb, and while we discuss and use

data pre-processing and LSH tools, these are not our main
contributions. To achieve Ditto, we have based the design of
our similarity search mechanism on a number of assumptions.

• A search is defined in our system as nodes submitting a
large number of queries to the network, consisting of a
number of parameters specifying the search, and in return
they receive all relevant content in the network.

• The network in Ditto is defined as a collective of nodes
in a P2P network who collaborate to provide search
functionality. A node can simultaneously be a search node
as well as a network node, but is not required to be both.

• When discussing content, we refer to data of various
mime types, and stored on a number of different under-
lying P2P storage networks (i.e. multiple decentralised
data sources). These collectively store a set of files and
data, where each item is identified by a content identifier
(CID). We remain agnostic to the storage network imple-
mentations and CID conventions. However, in the rest of
the paper, for simplicity we focus on a network where the
CID convention uses self-certifying names —this mirrors
IPFS [36], the largest active DSN [13].

• We assume a random distribution of files to nodes that
store them (i.e., each participant decides independently
which files to store without following any specific rules),
although a DHT is used to store pointers to content
providers (nodes who can provide the content).

• We assume that nodes in storage networks are incen-
tivised to make their content available on a search system,
and would participate in a collaborative search system.
We assume the presence of arbitrarily malicious nodes
in the P2P network that may not follow the protocol
for individual gain. No single node is trusted entirely
by its peers. However, at least one neighbouring node is
assumed to be honest (i.e. nodes are not entirely eclipsed).

B. Desired Properties & System Goals

In designing a decentralised search mechanism for the
DWeb (specifically one based on similarity search) we have
identified the following desired goals:

1) Search Flexibility: Since the DWeb is comprised of
a large number of complementary protocols and content
sources (e.g. many different DSNs and blockchains), a search
mechanism should be flexible in supporting a wide range
of content types (e.g. text and videos), as well as various
storage networks. The naming convention of identifiers (i.e.
signatures) should also be compatible with current DSNs.

Furthermore, keyword-search should be supported as this is
currently the most popular workflow, but a number of other
search use-cases should be implemented, which we describe
in Section III-C. It is further desired that users have control
over system parameters to allow for personalised search and
recommendation services. For example, the query similarity
threshold and ranking policies should be user-defined.

2) Decentralisation: There should be no central or trusted
entity involved in our mechanism, and global knowledge about
all the files stored in the network should not be required to



Fig. 1: Overview of Ditto, where users submit queries and are able to query from various underlying content sources.

query or participate in system upkeep. Each participant should
be able to calculate signatures of files and securely verify each
step of retrieval.

In order to achieve decentralisation and realise an open
system, participation or resource-constraint nodes should be
enabled, and therefore the system should have low-resource
usage, and should not require costly global synchronization.

3) Security: Our mechanism should be secure against
malicious peers and attacks. Specifically, each step of the
search process should be verifiable. Without verifiability, any
malicious nodes could return fraudulent results forcing the
requesting node to accept irrelevant files.

The calculation of signatures and the distance between
them is deterministic and verifiable by requesting nodes. This
property is required to ensure the correctness of the returned
results, and each peer should be able to independently produce
signatures. Finally, the integrity of the content itself should
ideally also be verifiable, for example using self-certifying
naming conventions, but this is dependent on the underlying
content network.

4) High Performance Guarantees: For a decentralised
search mechanism to be useful, it needs to have compara-
ble performance compared to centralised alternatives. Here,
performance refers to a number of properties. First of all,
user queries need to be returned quickly without a high delay
(users expect sub-second delays in current systems). Second,
the results returned need to be of high quality (i.e. a high recall
of the theoretical most relevant results globally), comparable
to centralised search engines.

Finally, the overhead of calculating the signatures and
storing them should be low, in order to limit the bandwidth,
storage, and computational power that peers have to dedicate
to the network. If the overhead becomes too large, peers may
require extra incentivisation for participation in the network,
adding a layer of complexity.

Specifically, any network tasks should have sub-second
delays on average user machines, and storage overhead should

at most be comparable to other P2P network storage (e.g.
storage networks).

C. Use-Cases

Our proposed similarity search system can be applied in a
number of DWeb use-cases, which we will now describe.

1) Decentralised Search Engine: One of the main use-
cases for Ditto is to facilitate decentralised search and replace
current search engine based workflows. Users can submit
content queries and retrieve all network content that is similar
to it. This is extended to traditional keyword-search by hashing
keywords directly and producing signatures from extracted
keywords alone. We further discuss this in Section IV.

2) Recommendation Engine: Ditto can be used to create a
decentralised recommendation engine for services and appli-
cations (DApps), which gives content providers and users rec-
ommendations for similar content on the DWeb. For example,
music or video services can use similarity search to propose
relevant items for users based on content they enjoy, without
running centralised machine learning or data collection. This
may also be applied to achieve decentralised and privacy-
preserving personalised advertisements.

3) Malware and Illegal Content Detection: DSNs can be
used to store and distribute copyrighted and illegal content
without control from centralised parties, flying under the
radar of law enforcement. Distributors or this content may
slightly change files from the original so they cannot be
found using known image hash databases of illegal content. To
combat this, similarity search can be used to do an extensive
search of potentially illegal files comparing to these databases.
Conversely, copyright owners can apply the same techniques to
find copyright-infringing content, which they can report to law
enforcement. We note that while we can detect this content,
we cannot remove them from the network, and hence local
moderation techniques may be implemented.

A similar technique can be used to check files for malware,
which involves submitting signatures of content before open-



Fig. 2: Overview of inserting a similarity record. Fig. 3: Overview of a user query for a specified SID.

ing them and checking for high similarity of known databases
of malware and illegal content, allowing one to asses whether
the file is potentially hazardous.

4) Decentralised Moderation: As mentioned above, mal-
ware, illegal, and copyrighted content can be detected using
similarity search. However, there are more types of content
which may not be desired by a user based on their individual
preference. For example, hate speech or extremist views may
want to be avoided. As complete censorship in the network is
not possible (similar to illegal/copyrighted content), users may
implement local decentralised moderation strategies, which
may avoid or assign a low ranking to results which are similar
to content that the user has flagged to be unwanted. This
method allows for transparency and control of censorship and
result ranking.

IV. ARCHITECTURE DESIGN

In this section, we describe the architecture design of Ditto,
which captures the desired goals outlined in Section III-B.
Our system is agnostic to content data type and underlying
DWeb network, but to illustrate its functionality we focus on
terminology from the IPFS DSN for simplicity. We first give
an overview of our system functionality, before describing
individual components.

A. Overview

As described in Section III-A, Ditto takes inputs from
different decentralised data sources. When a content owner
uploads content to the network they simultaneously extract a
similarity identifier (SID) based on an LSH signature. These
content owners are incentivised to produce these identifiers
for public content, as otherwise their content will not be
searchable in the network. This assumption only applies to
content for public consumption (e.g. Web pages), and not to
private data. Signature generation is verifiable by the network,
as nodes can easily recompute SIDs. The SID is structured
such that it supports different data types and content networks.

To store the decentralised index, we use an overlay network
based on the Kademlia ID space, but using the Jaccard
similarity as the default distance metric. Nodes in the network
store content records close to them in the ID space in the form

of {SID:Metadata/CID}, where metadata specifies the content
source and type, and CID is the identifier to query the content
itself. When searching for content, a user sends a query to
the overlay network consisting of a SID and a parameter r,
specifying a similarity range. The SID can be in the form of
the signature of content for which users want similar items
or recommendations for example, or keywords to implement
semantic search, depending on the use-case. The network then
returns all results which are within the similarity range, and
the user can filter these based on local ranking policies (e.g.
based on content type or size) and then fetch them on the
underlying data source. Figure 1 gives an overview of our
system.

B. SID Generation
To generate a decentralised search index on the DHT, we

first need to extract SIDs. We first extract an LSH signature
and then arrange it into a SID record format.

1) Signature Generation: In order to generate an LSH
signature, we need separate pipelines for different content
types, as the pre-processing and hash extraction should be
optimised per type. For each content type, we first need to
reduce and standardise the dimensionality of our data, after
which the reduced data is used to generate a feature vector,
capturing the uniqueness of the content. Feature vectors are
then parsed into our LSH algorithm, where parameters are
tuned per mime type, which (in the text case) is based on
Minhash. Our evaluation focuses on text files, as this is the
base for most Web searches (HTML is text). Describing the
pre-processing for each specific type is out of our scope.

In order to provide deterministic outcomes, the same LSH
parameters should be available to the whole network. This
could be done for example using blockchain solutions or a
decentralised autonomous organisation (DAO) [37], allowing
flexibility in changing the parameters. Alternatively, this can
be hard-coded in the protocol, although this is not desirable.

2) Addressing: One of the main benefits of our approach
is that it allows for a general DWeb search, rather than
focusing on a single content source. We achieve this by
formatting our SID record to include metadata. In the hash-
table entry the SID is the key, and the value is given by the



path: content type/content source/CID. For example, an IPFS
image would have the entry {SID:Image/IPFS/CID}. Using
this addressing, we keep the security properties of the CID
naming convention, and could add additional useful metadata
such as content title, which adds human-readability.

C. Network Implementation

After generating the SID for a content item, the content
owner stores the corresponding record on the DHT overlay
network. Nodes close in the hash space to the content store
the record, and respond to queries if their records show any
content within range r.

ID Space: In order to structure the network peers, we use
the Kademlia ID space which can be visualised as a binary
tree. A node has more knowledge of close nodes in the ID
space which speeds up look-ups. When nodes join the network,
they randomly generate an ID in the space and start building
their routing table buckets.

Insert: Inserting and querying the DHT follow slightly
different algorithms, because insert is not as time sensitive
compared to serving user queries. In our protocol, another key
parameter is the DHT threshold, which specifies the closeness
of a node to a record for it to store it. This is because the
Jaccard metric has the symmetry and triangular properties like
the XOR metric, but is not unidirectional (i.e. the distance
between a node and any two other nodes may be the same),
which means there may not be a closest node, but a number
of closest nodes. We can adjust the DHT threshold to tweak
the amount of caching in the network.

To insert a record into the distributed index a node checks
the Jaccard similarity to itself and their direct peers. They then
place the record with any node within the threshold, and send
it to the N closest nodes (who also forward it to their closest
nodes) in terms of Jaccard similarity. Along with the record,
the node sends a parameter H to indicate after how many hops
a receiving node can discard a request, so it does not stay live
in the network. Nodes receiving records verify the correctness
of the {SID:CID} mapping before adding it.

After a time period, the node makes sure the record has been
added to the network, and if it cannot find it, the above steps
are repeated. Parameters H and N are again set on a protocol
level, similar to the DHT threshold and LSH parameters.

Query: In order to query the network a node first needs a
SID in which it is interested, for example based on similar
content it has (as a recommendation engine). It sends the SID
and a similarity range to its peers.

Each node that receives the query checks its local index for
any entries which fall in the range, which they return to the
sender. They also send it to their top N closest nodes until
the termination condition H is met. In order to ensure security
the node may recompute the distance of results to ensure it is
correct. Alternatively, this system could easily be extended to
return the top K closest results to a SID.

Ditto also implements decentralised ranking, as the query-
ing node is responsible for compiling the results and ranking
them based on a local policy. This can be based on similarity

TABLE I: Delay of similarity calculation with different dis-
tance metrics (in 10−5 s).

Mean Standard Deviation

XOR 0.518 0.42
Jaccard 0.942 5.94

Euclidian 2.011 1.21
Hamming 2.029 2.38

Cosine 5.450 7.11

Fig. 4: Delay (s) of signature generation for full signatures
and different top keyword sizes.

to the query, size, file type, or content network for example.
However, our system can be extended to include metadata in
the index files such as keywords, and content producer names,
which allow for more fine-grained ranking mechanisms.

Keyword-search: Ditto, as described above, can be mod-
ified in order to allow for keyword-search. Rather than sup-
plying SIDs of known content, a node can compute the SID
directly based on the keywords it is interested in only. We
desire a system where a user provides a number of keywords,
which are then hashed into a signature, and which can then
be queried in the network to receive relevant SIDs. However,
if we implement this on the system described above directly
(with signatures in the SID based on the content shingles), we
may have extremely small similarity scores to compare. This
is because the keywords are not weighted in the shingles and
therefore their importance in the signature is not captured.

Instead, we can extract the most important keywords from
the content and solely use these to produce a signature and
SID, allowing for a better comparison of Jaccard similarity.
This could be achieved using natural language processing
tools. A drawback of this approach is that it requires a stronger
mechanism to ensure the SID record mapping to content is
correctly calculated (e.g. ensure that the keywords used in
the signature are correct). This could be done using zero-
knowledge proofs, and we discuss this further in Section V-D.
We assess the feasibility of keyword-search in Ditto further in
our evaluation.

V. EVALUATION

In this section, we evaluate the feasibility of Ditto and verify
that our design goals outlined in Section III-B are achieved.



Fig. 5: Jaccard similarity difference and
signature delay for varying numbers of
shingle size.

Fig. 6: Query delay (s) of search mech-
anisms for varying numbers of top re-
sults.

Fig. 7: Query recall (%) of search
mechanisms for varying numbers of top
results.

Fig. 8: Jaccard similarity difference and
signature delay for varying numbers of
permutation functions.

Fig. 9: Query delay (s) of search mech-
anisms for varying numbers of content
in the network.

Fig. 10: Query recall (%) of search
mechanisms for varying numbers of
content in the network.

As our work is the first to explore LSH as a general search
mechanism including keyword-search for DWeb settings, we
focus mainly on its application and feasibility, leaving further
evaluation of network and DHT aspects for our future work.

Setup: For our evaluation1 we use a Wikipedia mirror which
is a large dataset of content which can be found on the IPFS
network. We have taken a subset of the Wikipedia articles in
Dutch from the archive2 to use as a dataset in the rest of this
evaluation. Our LSH implementation can be seen as a lower
bound, as we do not propose any optimisations, and therefore
its main use is to establish that there is value in using LSH as
a DWeb search mechanisms.

To calculate LSH signatures we use a Minhash implemen-
tation in Python3. We first extract the text from a page and
produce shingles with length k, where k is set based on the
length of the text (generally k=6 for our data). The algorithm
then calculates the signature based on the specified number of
permutation functions.

A. Similarity Metric

Our proposed system relies heavily on the calculations of
Jaccard similarity for querying and inserting content into the
decentralised index. To verify that this does not deteriorate

1https://github.com/navinkeizer/ditto
2https://wiki.kiwix.org/wiki/Content in all languages
3github.com/ekzhu/datasketch

performance significantly, we first compare the performance
of this metric against other known similarity metrics.

We have taken a random subset of our dataset and computed
signatures, on which we measure the delay in computing a
similarity score. As shown in Table I, Jaccard similarity is
relatively fast and comes close to XOR performance. We note
that XOR is not applicable in our system as it uses the longest
prefix match, instead of comparing sets within the signature.
XOR is not suitable as this may result in a low distance in
signatures, even though there is a lot of overlap in the content
(but in different positions), particularly for keyword-search.
For this reason, we focus our evaluation on the LSH specifics,
rather than performing a comparative analysis with an XOR-
based DHT. We plan on investigating our DHT properties
separately in future work.

B. Minhashing Performance

Next, we assess the performance of the minhashing algo-
rithm in terms of the delay and the accuracy in translating
the information in the original document to a short signature.
We take two subsets of our dataset, generate the signature,
and store this along the raw shingles. We then randomly pick
content pairs and compute the Jaccard similarity of the raw
shingles and compare this to the signature, and we store the
percentage difference between the two similarity scores. We
also measure the delay of generating signatures.



Figure 5 shows how both the delay and the difference go
up with higher values of k, suggesting that for our use-case a
smaller k-value is appropriate. Figure 8 shows that the delay
and accuracy are inversely correlated with higher numbers
of permutation functions. However, in either case the delays
are reasonable (sub-second) in our system, meeting our high
performance goal. We note that this delay is not often incurred,
as it is only calculated when adding or verifying content.

C. Search Performance

Finally, we evaluate the performance of search using LSH.
We take our dataset and take subsets of different sizes in
order to analyse scalability. We measure the overhead, query
delay, and the recall, which we define as the percentage
overlap of items returned compared to our baseline (i.e. on raw
shingles). We implement a search system based on comparing
the similarity of raw shingles as the baseline, and compare this
against an implementation of traditional Minhash LSH using
bands, and our signature comparisons.

After taking a randomised subset, we feed the shingles and
signatures into our various search mechanisms. We then take a
smaller subset and query for results on each mechanism, com-
paring the results. We have not optimised the sorting/searching
algorithm on the stored LSH data, so we can view this as a
lower bound on performance.

Furthermore, we implement keyword-search by extracting
the top keywords from the text file using Automatic Keyword
Extraction4 and hashing these directly. We are then able to
perform queries of keywords only (extracting the top keywords
from the query subset), which we compare to our other
implementations.

In terms of overhead, storing signatures instead of raw
shingles reduces the size in memory by about 103 times.
Figures 6 and 7 show respectively the delay and recall for
varying the number of results returned by our search. We can
observe that while the delay is very low for lsh bands, the
recall is extremely poor. Comparatively our signature lsh ap-
proach performs much better, and keyword-search also works
well, especially when setting the number of top keywords
extracted for the signature at 35. We also observe that using
raw shingles is not a feasible option as there are large delays
that grow linearly.

We observe the same when sweeping across the number
of content in the system in Figures 9 and 10, where delays
grow linearly, but remain manageable for signature lsh, and
are very low for keyword-search. In terms of recall, signa-
ture lsh performs best, while keyword-search also achieves
reasonable quality. In terms of generation delays, Figure 4
shows that using full signatures generally achieves delays of
under 0.1s, while the keyword signature delays grow with
larger numbers of keywords extracted due to our extraction
algorithm overhead.

To summarise, we have shown that keyword-search is a
feasible option with comparable delay, recall, and overhead

4github.com/LIAAD/yake

compared to native similarity search, capturing our first design
goal of search flexibility. We also show that our proposed
system achieves the goal of high performance, as delays are
sub-second, and recall is between 30-50% of baseline. Our
system is also lightweight enough with low-resource usage
to be deployed in a decentralised setting. In Section V-D we
discuss how the security property can be met in more detail.

D. Security Analysis

As mentioned in Section III-B, one of our desired properties
is security, both in terms of SID record mapping, as well
as protection against malicious peers, who may not respond
or return incorrect content records, or may not participate
in network tasks like computing SIDs. Our system mitigates
against these threats in a number of ways.

First of all, peers who upload content as public files are
incentivised to calculate the SID mapping, as their content
otherwise will not be discoverable. Second, using Jaccard
similarity for inserting along with the similarity threshold
parameter means that there will be redundancy in the network
in the form of caching, as multiple close nodes store SID
records, meaning that even if one or more nodes are malicious,
there is still a high probability of finding the file from an
honest peer.

In the querying process, nodes can verify that returned
results are actually within the similarity range wanted with
a lightweight Jaccard check. Furthermore, the mapping from
CID to signature is verifiable as the algorithm and its param-
eters are set on a protocol level and can be computed by any
peer. When using keywords directly, this mapping can also be
verified if the keyword extraction is standardised. However,
we may also use additional mechanisms like zero-knowledge
proofs, avoiding the need to re-verify integrity at all nodes that
come across the file. We aim to explore this solution further
in future work.

VI. RELATED WORK

In this section, we provide an overview of related work.
We focus on decentralised search for DWeb content, as well
as decentralised similarity search.

A. Decentralised Search on the DWeb

A number of works have proposed decentralised keyword-
search mechanisms, similar to current search engine workflows
based on crawling and indexing. Li et al. [19] proposed
DeSearch, which decouples state from computation by us-
ing a centralised Cloud solution to store the index, while
maintenance of the index uses decentralised workers executing
verifiable tasks.

A number of works present improved decentralisation by
storing the index on a P2P network. For example, SIVA [14]
and Wang and Wu [15] propose to store a decentralised index
for the IPFS [36] DSN directly on the IPFS DHT. Other
initiatives [16], [18] have attempted to translate the centralised
search engine workflow to a decentralised setting.



However, these search engines fail to capture the needs of a
truly open and decentralised network, as they are not entirely
decentralised in their index storage, or require a single root-
of-trust for naming consistency and provenance. Furthermore,
these approaches require lots of network participation for tasks
like indexing and crawling, requiring additional incentives,
which have not been implemented and it is unclear who will
pay for it (monetary inflow source).

In contrast, Ditto hardly requires additional work for net-
work peers who already actively store content. This is due
to the fact that we do not copy the crawling/indexing model
directly, but instead use similarity search. Further, for content
producers, it is an extra incentive to participate in the system
for their content to be found.

B. Decentralised Similarity Search

There has been lots of work on similarity search architec-
tures in terms of implementations and optimisation techniques,
and specifically in locality-sensitive hashing. A number of
works [38], [39] have focused on implementing generic dis-
tributed versions of LSH, proposing a number of performance
improvements. However, they either rely on centralised com-
ponents, or they do not specify the networking implementation
and solely focus on the algorithm details.

Some works have proposed to use a DHT to store the
mapping of similarity signatures to content [40], [41]. Haghani
et al. [42] leverage a cyclic DHT space based on Chord [23] to
provide nearest neighbour search and queries within a range.
While peers are organised in local DHTs, their system does
leverage gateway peers.

Other works include Bahmani et al. [43], who improve
network cost of LSH by proposing a layered LSH method on
two distributed frameworks. Hamming DHT [44] implements
a DHT where identifiers are generated based on LSH and
the hamming distance metric is used in maintaining a Chord
based ring structure. The works mentioned generally focus on
increasing performance of LSH frameworks in a decentralised
setting, but are not tailored towards the DWeb like Ditto,
meaning that they lack details on specific security and privacy
considerations.

Within the DWeb setting, Fujita [45] argues for implement-
ing similarity search on IPFS using a DHT, but lacks details in
areas like signature generation and network implementation.
Yuan et al. [46] implement a LSH-based image retrieval
scheme using blockchain smart contracts and distributed stor-
age on IPFS.

Ditto differentiates itself in a number of ways from prior
works. We provide interoperability and support for different
content networks and types, which is required in a DWeb
environment. Furthermore, the wide range of DWeb use-cases
we described, and specifically keyword-search using LSH has
not been explored prior.

VII. CONCLUSION AND FUTURE WORK

In this work we have presented Ditto, a decentralised search
mechanism for the DWeb based on similarity search. Ditto
supports numerous decentralised content networks and types,
and uniquely implements decentralised keyword-search. Our
evaluation verifies the feasibility and shows that our system
goals of flexibility, decentralisation, security, and performance
are met.

While this paper focuses on the feasibility of decentralised
search, we aim to explore the networking specifics in future
work. Particularly, we aim to explore design specifics and
evaluation of our proposed DHT, as well as unstructured and
hybrid approaches for implementing decentralised search, in
order to improve performance.
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