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A B S T R A C T   

An innovative design of Photonic Crystal Fibre (PCF) for enhanced non-linearity applications using simulation 
with the Finite Element Method (FEM) is presented. The PCF is a kind of fibre optic waveguide that has air-holes 
along the entire length of the optical fibre, which exploits its exclusive features of being continuously single- 
moded and having a modifiable spot-size and dispersion properties for various linear and non-linear applica-
tions. This proposed triangular core PCF is made of silica material with a refractive index of 1.445 and features 
three large air-holes placed 120◦ apart in the core, each with a refractive index of 1.00. The air-holes have a pitch 
length of 6.03 μm and a radius of 2.86 μm, and the wavelength of operation is 1.55 μm. The proposed PCF design 
has a large diameter to pitch ratio (d/Λ) of up to 0.95, resulting in a reduced spot-size of just above 1.00 μm2. 
This indicates that the proposed triangular core PCF design could be used to enhance non-linearity applications. 
This study introduces a novel structure that simplifies construction by employing three strategically positioned 
large air-holes in the cladding, thus achieving the necessary properties for guiding light through the core. This 
streamlined approach overcomes complexities associated with previous designs from the literature, hence, of-
fering a practical solution for effective light guidance while minimising construction difficulties. This inventive 
proposed PCF design can be fabricated using the Stack and Draw process or the slurry casting method.   

1. Introduction 

1.1. Non-linearities in photonic crystal fibers (PCFs) 

PCFs are known for their distinctive characteristics, such as cease-
lessly single-moded [1–3] behaviour and modifiable spot-size [4–6] and 
the properties of dispersion [7], which make them suitable for various 
linear and non-linear uses [8]. However, the non-linear properties of 
PCFs are also of great interest, as they can be used for various non-linear 
optical phenomena, such as supercontinuum generation [9], non-linear 
frequency conversion [10], and soliton formation [7] bidirectional ter-
ahertz graphene plasmonic switch [11], plasmonic-based nanosensor 
[12], optical couplers [13], and optical filters [14]. 

One of the key non-linear properties of PCFs is their large non-linear 
coefficient [8], which is quite a few orders of degrees greater than that of 
conventional single-mode fibres [15–18]. This large non-linear coeffi-
cient is due to the great light confinement in the small core of the PCF 
[19–22], as well as the high contrast of the refractive index in-between 
the core and the cladding [23–25]. The high contrast of the refractive 

index leads to also to high confinement of the light in the core of the PCF 
and also leads to a high intensity of the optical field [26–28], which is 
necessary for non-linear optical processes to occur [7]. 

Supercontinuum generation is a famous phenomenon in non-linear 
optics in PCFs [29–33]. It is the process in which a narrowband input 
beam is transformed into a broadband output beam through the inter-
action of light with the non-linearity of the fibre [34,35]. This process is 
extremely reliant on the dispersion properties of the PCF and can be 
tailored by engineering the dispersion properties of the fibre [36]. 
Agrawal et al. [37], have proposed and experimentally demonstrated 
the generation of a supercontinuum using an equiangular spiral PCF. 
Karim et al. [4], were able to produce a parametric study of the super-
continuum generation in a Ge11.5As24Se64.5 nanowire PCF. 

Non-linear frequency conversion [38] is another important 
non-linear process that can be achieved in PCFs. This process is the 
conversion of light from one wavelength to another wavelength through 
the interaction of light with the non-linearity of the fibre [39–41]. The 
efficacy of nonlinear conversion of frequency is highly dependent on the 
phase-matching conditions [42], which can be achieved by engineering 
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the dispersion properties of the PCF [43]. 
Soliton formation [44] is another non-linear optical phenomenon 

that can be observed in PCFs. Solitons are special types of optical pulses 
that maintain their shape and amplitude while propagating through the 
fibre [45–47]. This is a consequence of the balance between the 
non-linearity and dispersion of the fibre. Soliton formation in PCFs has 
been studied in [2], where the authors have proposed and demonstrated 
the formation of solitons in a PCF that possesses a triangular lattice of 
air-holes within the cladding [2]. 

In this study, we introduce a novel structural design that offers 
distinct advantages over previously explored configurations from the 
literature. This innovative structure represents a significant departure 
from conventional approaches by addressing some of the limitations 
associated with prior designs. Our proposed configuration simplifies the 
construction process by utilising only three large air-holes within the 
cladding, strategically positioned 120◦ apart. This deliberate arrange-
ment achieves the necessary diameter to pitch ratio required for the core 
to have non-linear properties, thus enabling effective light guidance. 
Therefore, unlike the more intricate and complex array of air-holes 
utilised in prior studies to achieve a similar effect, our approach mini-
mises construction complexities by streamlining the structural elements, 
thereby overcoming the challenges associated with intricate designs and 
ensuring a more feasible and straightforward fabrication process. This 
simplified yet efficient configuration not only resolves the drawbacks of 
previous structures but also offers a practical and accessible solution for 
achieving desired non-linear properties in guiding light through the 
core. 

2. Methods 

The proposed PCF design was simulated using the Finite Element 
Method (FEM) [23]. The results of the simulation were analyzed for the 
effective index, the loss and the spot-size. The effective index and the 
loss were calculated for the TM (transverse magnetic) mode, while the 
spot-size was calculated for the TE (transverse electric) mode. The PCF 
was made of silica having a refractive index of 1.445 and featured three 
large air-holes placed 120◦ apart in the core, each with a refractive index 
of 1.00. The air-holes had a pitch length of 6.03 μm and a radius of 2.86 
μm, and the wavelength of operation was set to 1.55 μm. 

The simulation was performed under TM (transverse magnetic) and 
TE (transverse electric) modes of operation. The simulations were run to 
obtain the effective index, the loss and the spot-size of the proposed PCF 
design. The diameter to pitch (d/Λ) ratio was varied to see its effect on 
the effective index and the loss and the spot-size. 

Using this approach to obtain a modal solution that is established 
through the Finite Element Method (FEM), implies the complex cross- 
section of the PCF and the microstructured core of the PCF can then 
be signified employing many different triangles that are of varying 
shapes and varying dimensions [48]. Hence, making this tractability of 
the FEM to be a more desirable method to employ when likened to other 
techniques such as the Finite Difference Method (FDM). FDM has diffi-
culty representing dielectric interfaces that are slanted or curved if these 
were present in the structure and it also uses inefficient regularly spaced 
meshing [49]. Thus, the waveguide optical modes with index contrast 
that is high, such as with the PCF having a 2 Dimensional confinement as 
well as being hybrid in nature, at the same time with all the 6 compo-
nents representing the E and H fields existing would be preferable with 
the FEM [50]. This hybridness of the mode is also boosted by the 
manifestation of a slanted interface and interfaces of the dielectric ma-
terial that tend to be curved in the PCF. This suggests that what is needed 
is the vector type of formulation which is required for the accurate 
calculation of the solutions in the modal type and to properly represent 
the dielectric interfaces in the PCF as a waveguide. Therefore, a H-field 
centred laborious complete vectorial FEM has been used for the analysis 
of the procedure of PCFs that have air-holes organized in the triangular 
framework in the silica cladding of the PCF [48]. This H-field design was 

formerly used for the microwave frequencies and also for the optical 
frequencies for wave devices up to the intermediate Terahertz frequency 
region. Below is the H-field formula including the penalty function for 
augmentation: 

ω2 =

(∫ (
∇ × H→

)
∗ ⋅ε̂− 1

(
∇ × H→

)
dΩ) + (

∫
(α/εo)

(
∇⋅H→

)
∗
(
∇⋅H→

)
dΩ

∫
H→∗ ⋅μ̂ H→dΩ

(1) 

The full vectorial complex magnetic field is H̅→. The symbols ε and μ 
represent permittivity and the permeability of the PCF. The symbol ε0 is 
used to denote the permittivity of the free space in a waveguide whereas 
ω2 denotes the eigenvalue. The symbol ω is used to denote the wave’s 
angular frequency. This α is a factor that has no dimension that is used to 
enforce a condition in the magnetic field to make it free of divergence in 
the sense of least squares. Therefore, the symbol ε̂ as well as the symbol 
μ̂ are factors that can be random complex tensors in this formulation 
with off-diagonal coefficients, thus making it suitable for the charac-
terization of electro-optic devices and also acousto-optic devices and as 
well as elasto-optic devices. For the calculation of the bending and 
leakage losses in a PCF, the Perfectly Matched Layers (PMLs) would be 
integrated into the computation frame thus making this into a complex 
eigenvalue equation [48]. 

3. Results and discussion 

The simulation results for the proposed triangular core PCF design 
were analysed in terms of the effective index, the loss and the spot-size. 
Diameter to pitch ratio (d/Λ) was varied between 0.5 and 0.95 to 
evaluate the performance of the PCF. 

As can be seen above, the cross-sectional area of the triangular-core 
PCF design is shown in Fig. 1. It illustrates the three air-holes and the 
triangular core, with a pitch of 6.03 μm, wavelength of 1.55 μm, and 
silica refractive index of 1.445. 

The full structure field contour of the triangular core PCF in the TM 
mode for three air-holes and the triangular core PCF is shown in Fig. 2, 
with a pitch of 6.03 μm, a wavelength of 1.55 μm, and a silica refractive 
index of 1.445. It can be seen that the field contour matches the physical 
structure of the triangular core PCF under consideration. This structure 
enhances non-linearity in the PCF for applications such as sensing and 
supercontinuum generation. It should be noted that the field profile 
indicates a strong optical confinement in the core. 

The half structure field contour of the triangular core PCF in the TM 
mode for three air-holes and the triangular core PCF is shown in Fig. 3, 
with a pitch of 6.03 μm, a wavelength of 1.55 μm, and a silica refractive 

Fig. 1. Cross-section of triangular-core PCF showing the 3 air-holes and the 
triangular core Λ = 6.03μm, λ= 1.55μm, silica of n = 1.445. 
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index of 1.445. It can also be seen here that the field contour matches the 
physical half structure of the triangular core PCF under consideration. 

The half structure field contour of the triangular core PCF in the TE 
mode for three air-holes and the triangular core PCF is shown in Fig. 4, 
with a pitch of 6.03 μm, a wavelength of 1.55 μm, and a silica refractive 
index of 1.445. It can also be seen here that the field contour matches the 

physical half structure of the triangular core PCF under consideration. 
Similar strong optical confinement is observed for both the TM and the 
TE modes. 

Fig. 5 shows how the effective index varies with the diameter to pitch 
ratio of the triangular core PCF in the TM mode. It can be seen from the 
figure that the effective index decreases as the d/Λ ratio increases. This 

Fig. 2. The full structure field profile of the triangular core PCF (Magnified) in the TM mode for 3 air-holes and the triangular core PCF, pitch = 6.03 μm, λ = 1.55 
μm, silica of n = 1.445. 

Fig. 3. The half structure field contour of the triangular core PCF in the TM mode for 3 air-holes and the triangular core PCF, pitch = 6.03 μm, λ = 1.55 μm, silica of n 
= 1.445. 
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indicates that the proposed PCF design has a large diameter to pitch 
ratio, which is beneficial for enhanced non-linearity applications. 

Fig. 6 shows how the loss varies with the diameter to pitch ratio of 
the triangular core PCF in the TM mode. It can be seen from the figure 
that the loss decreases as the diameter to pitch ratio increases. This 
suggests that the proposed PCF design has low loss, which is also 
beneficial for enhanced non-linearity applications, as this is one of the 
challenges in the trade-off between non-linearity and confinement loss. 

Fig. 7 shows how the spot-size varies with the d/Λ ratio of the 

triangular core PCF in the TE mode. It can be seen from the figure that 
the spot-size decreases as the d/Λ ratio increases. This indicates that the 
proposed PCF design has a small spot-size, which is beneficial for 
enhanced non-linearity applications. It is also noteworthy that the spot- 
size reduces from around 100 μm2 to about 1 μm2 as the diameter to 
pitch ratio increases from 0.70 to 0.95. 

The simulation outcomes show that the envisaged triangular core 
PCF design has a large d/Λ ratio of up to 0.95, resulting in a reduced 
spot-size of just above 1.00 μm2. This suggests that the proposed PCF 

Fig. 4. The half structure field contour of the triangular core PCF in the TE mode for 3 air-holes and the triangular core PCF, pitch = 6.03 μm, λ = 1.55 μm, silica of n 
= 1.445. 

Fig. 5. Graph of the effective index varied with the d/Λ of the triangular core PCF in the TM mode for 3 air-holes and the triangular core PCF, Λ = 6.03 μm, λ = 1.55 
μm, silica of n = 1.445. 
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design could offer the tight optical confinement required for enhanced 
non-linearity applications. 

We believe that this triangular core PCF designed for enhanced non- 
linearity applications fabrication process can be achieved by utilizing 
the traditional Stack and Draw technique [31,51–54] or the slurry 
casting method [1,55–58]. Other fabrication techniques may be used in 
the fabrication of this design because of the simplistic nature of the 
structure, having just three large air-holes in the cladding. 

4. Conclusion 

A novel design of PCF for enhanced non-linearity applications is 

presented. Our study introduces a ground-breaking structural innova-
tion that surmounts the limitations of conventional designs prevalent in 
the literature. The proposed triangular core PCF can be achieved in silica 
with a refractive index of 1.445 and also features three large air-holes 
positioned 120◦ apart in the core, each with a refractive index of 1.00. 
The air-holes have a pitch length of 6.03 μm and a radius of 2.86 μm, and 
the wavelength of operation is 1.55 μm. The design is simulated using 
the Finite Element Method (FEM) to evaluate its performance in terms of 
the effective index, the loss, and the spot-size. The promising results 
from the simulation show that the proposed PCF design has a large d/Λ 
ratio of up to 0.95, resulting in a reduced spot-size of just above 1.00 
μm2. This indicates that the proposed triangular core PCF design could 

Fig. 6. The graph of loss with the variation of d/Λ of the triangular core PCF in the TM mode for 3 air-holes and the triangular core PCF, pitch = 6.03 μm, λ = 1.55 
μm, silica of n = 1.445. 

Fig. 7. Graph of spot-size being varied with the d/pitch of the triangular core PCF in the TM mode for 3 air-holes and the triangular core PCF, Λ = 6.03 μm, λ = 1.55 
μm, silica of n = 1.445. 
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be used to enhance non-linearity applications. The non-linear properties 
of PCFs are of great interest for various non-linear optical phenomena, 
such as supercontinuum generation, non-linear frequency conversion, 
and soliton formation. These phenomena can be tailored by engineering 
the dispersion properties of the fibre. Due to the simplistic nature of the 
structure, having just three large air-holes in the cladding of the PCF 
design achieves the crucial diameter to pitch ratio required for endow-
ing the core with non-linear properties and facilitating effective light 
guidance. This streamlined approach not only mitigates complexities 
inherent in prior intricate designs from the literature but also presents a 
practical and feasible solution, thus addressing the shortcomings of 
previous structures and offering a straightforward avenue to attain 
desired non-linear light-guiding properties within the core. This design 
can be achieved using the traditional Stack and Draw techniques as well 
as other well-known fabrication methods for PCFs. 
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