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Abstract
One of the main challenges in obtaining predictions for collider experiments
from perturbative quantum field theory, is the direct evaluation of the Feynman
integrals it gives rise to. In this chapter, we review an alternative bootstrap
method that instead efficiently constructs physical quantities by exploiting
their analytic structure. We present in detail the setting where this method
has been originally developed, six- and seven-particle amplitudes in the large-
color limit of N = 4 super Yang–Mills theory. We discuss the class of func-
tions these amplitudes belong to, and the strong clues mathematical objects
known as cluster algebras provide for rendering this function space both
finite and of relatively small dimension at each loop order. We then describe
how to construct this function space, as well as how to locate the amplitude
inside of it with the help of kinematic limits, and apply the general proce-
dure to a concrete example: the determination of the two-loop correction to
the first nontrivial six-particle amplitude. We also provide an overview of
other areas where the realm of the bootstrap paradigm is expanding, includ-
ing other scattering amplitudes, form factors and Feynman integrals, and
point out the analytic properties of potentially wider applicability that it has
revealed.
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1. Introduction

The idea that analytic properties could be exploited so as to circumvent difficulties in obtaining
predictions from the traditional perturbative quantum field theory approach is not new [1]. Yet
it is only over the last decade that it has been applied so successfully in order to compute
physical quantities for general values of their kinematic parameters, albeit mostly in the large-
color limit of the simplest interacting four-dimensional gauge theory, known as N = 4 super
Yang–Mills (SYM).

In its modern reincarnation, this perturbative analytic bootstrap has been initiated by Dixon,
Drummond and Henn in order to determine the three-loop correction to the essentially first
nontrivial six-particle scattering amplitude of the theory [2], following a remarkable earlier

2



J. Phys. A: Math. Theor. 55 (2022) 443006 Topical Review

conjecture on the all-loop structure of amplitudes of any multiplicity [3], as well as the explo-
ration of its consequences at strong coupling [4–7] via the gauge/string duality [8]. The cor-
nerstone of the method is the construction of a finite space of functions expected to contain the
physical quantity in question, from which the latter may then be uniquely determined from the
knowledge of its behavior in special kinematic limits. Its upgrade to higher loops [2, 9–15] and
to multiplicity seven [16–19] has been achieved in parallel with the discovery of new analytic
properties [20, 21] that prune the initial space of functions, thereby making the method more
efficient.

Perhaps more importantly, the discovered analytic properties have potential for applicability
to more general gauge theories [22, 23]. And as a proof of concept that the bootstrap may also
work for phenomenologically relevant physical quantities, it has been used to rederive the
three-loop soft anomalous dimension in quantum chromodynamics (QCD), up to an overall
numerical factor [24]. Further areas expanding the realm of the bootstrap paradigm include
amplitudes in simpler kinematics [25–27] and three-particle form factors in N = 4 SYM [28,
29], as well as individual Feynman integrals [9, 20, 30–34], or basis sets thereof [35, 36].

Given that there already exists a six-particle bootstrap review [37], as well as a more recent
amplitude bootstrap review [38] based on a talk by the author, our goal here will be two-fold:
on the one hand, to cover some of the key concepts behind the amplitude bootstrap in more
detail, and to show how it works in a concrete example; and on the other hand, to give an
overview of the new frontiers of its application. In section 2 we briefly introduce the N = 4
SYM amplitudes of interest, and in section 3 we discuss the class of polylogarithmic func-
tions they belong to. We also describe how mathematical objects known as cluster algebras
provide strong clues for the singularities of these amplitudes at multiplicities n = 6, 7, as well
as for how these singularities can appear consecutively. This is the information that renders the
function space finite and of relatively small size, and we explain how to construct it and how
to locate the amplitude inside it in section 4, also working out all the steps explicitly for the
two-loop six-particle case in the simplest helicity configuration. We close with an overview of
the new frontiers in section 5.

2. Planar N = 4 SYM amplitudes in a nutshell

2.1. Planar limit, color-ordering and discrete symmetries

For the most part we will be focusing on N = 4 SYM theory [39, 40], the gauge theory con-
taining the maximal amount of supersymmetry, and whose particle content apart from gluons
also contains their scalar and fermionic partners, all of which are in the adjoint representation.
We will also be restricting to the origin in the moduli space of the theory, where the scalar fields
have zero vacuum expectation value, and all particles are massless. Many of the properties of
the theory and of its amplitudes are discussed in chapter 1 [41] of the SAGEX review [42],
so here we will briefly recall some of their main features that we will need later on. Unless
otherwise noted we will also be considering ’t Hooft’s planar limit [43], where the number
of colors N →∞ while its product g2

YMN with the gauge theory coupling is held fixed. The
latter is the only parameter of the theory that survives in the limit, and in our normalization
conventions we will be denoting the perturbative expansion of any quantity F with respect to
it as

F =

∞∑
L=0

g2LF(L), g2 =
g2

YMN
16π2

. (1)
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A major simplification that occurs in the planar limit, is that only a single color structure
Tr(Ta1 . . . Tan) of the gauge group generators Tai is the leading term in the 1/N expansion of
the n-particle amplitude, as is reviewed in [41] or [44]. We may thus restrict our attention to the
coefficient of this leading color structure, the color-ordered amplitude An. Due to its relation
to the trace, it is evident that it it is invariant under cyclic shifts i → i + 1 of the particle labels.
What is less obvious, is that An is also invariant (up to an overall sign for odd n) under reflections
i → n + 1 − i, where the equivalence n + i ∼ i is understood. At tree level, this holds both for
gluons and quarks in any gauge theory, and is a consequence of the (anti-)symmetry of the
(three-) four-point vertex of the color-ordered Feynman rules, see e.g. [45]. As a consequence
of supersymmetry, in N = 4 SYM this property also persists at loop level and for all types
of external states, after grouping them in a single superfield [46], and similarly combining
all component amplitudes in a single superamplitude [47]. Together cyclic permutations and
reflections form the discrete dihedral group, which is thus a symmetry group of An.

2.2. Helicity dependence

Having factored out the color degrees of freedom from the amplitude in the planar limit, the
remaining physical quantities it will depend on are the momenta and helicities of the external
particles. We recall that helicity, namely the projection of a spin in the direction of momentum
is a good quantum number for massless particles, as it cannot be altered by Lorentz transfor-
mations. With the help of spinor-helicity variables, which as the name suggests are friendly
to the aforementioned quantum number, and which by now have also made their way into
quantum field theory textbooks [45, 48], it is straightforward to show that all gluon amplitudes
where all or all but one helicities are positive (for example in conventions where all momenta
are outgoing) vanish at tree level. While this vanishing is lifted at loop level in generic gauge
theories (see [49] for a relatively recent example in QCD), it does persist in supersymmetric
theories such as N = 4 SYM, since it is a consequence of supersymmetric Ward identities
[47, 50].

Hence the first nontrivial helicity configuration at any loop order corresponds to the so-
called maximally helicity violating (MHV) amplitudes, with all but two gluons having positive
helicity, and similarly amplitudes with all but (k + 2) gluons of positive helicity are denoted as
NkMHV. As reviewed in e.g. [51], different distributions of the negative helicity states are also
simultaneously accounted for in the superamplitude, which has a natural grading with respect to
total helicity, following from the fact that the entire aforementioned superfield it depends on has
well-defined helicity. Also note that helicity degrees k and k̄ = n − 4 − k are related by a par-
ity or spatial reflection transformation, which in spinor-helicity variables simply corresponds
to complex conjugation of spinors. As a result, we may always restrict k � � n−4

2 �, where �x�
denotes the integer part of x. Summarizing what we have discussed so far, the nontrivial physi-
cal quantity encoding scattering in planar N = 4 SYM is the color-ordered n-particle, helicity
degree-k superamplitude

An,k(p1, . . . pn), n � 4, 0 � k � �n − 4
2

�, (2)

where pi denotes the momentum of the ith particle. In other words only An,0 or the MHV super-
amplitude is needed for n = 4, 5, additionally An,1 or the NMHV superamplitude is needed for
n = 6, 7, and so on. Evidently, amplitudes obeying k = (n − 4)/2, such as A4,0 or A6,1, will be
invariant under parity.
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2.3. The kinematic space: dual conformal invariance and momentum twistors

With not only color but also helicity dependence specified as above, we now move on to
describe what is the space of kinematics of the amplitude. Remarkably, planar N = 4 SYM
possesses dual conformal symmetry [4, 52–54], which acts on dual position variables xi related
to the usual momenta by

pi ≡ xi+1 − xi. (3)

This symmetry, which is also reviewed in chapter 1 of this review [41], and combines with the
usual conformal symmetry of the theory so as to form an infinite-dimensional Yangian symme-
try [55], implies that the amplitude (in the appropriate normalization, which we will describe
at the end of this section) depends on 3n − 15 instead of 3n − 10 kinematic variables1 said dif-
ferently, instead of an algebraically independent subset of the n(n − 3)/2 distinct Mandelstam
invariants

si,..., j−1 ≡ (pi + pi+1 + · · ·+ pj−1)2 = (xi − x j)
2 ≡ x2

i j, j � i + 1 mod n, (4)

one must instead pick an algebraically independent subset of their distinct n(n − 5)/2 confor-
mal cross ratios

ui j ≡
x2

i j+1x2
i+1 j

x2
i jx

2
i+1 j+1

, j � i + 2 mod n. (5)

The fact that dual conformal invariance reduces the number of independent kinematic vari-
ables of the amplitude to 3n − 15 has the following important implication: Only normalized
n-particle amplitudes with n � 6 have nontrivial kinematic dependence, and will therefore be
the focus of this article. For the simplest cases with n = 6, 7 the abbreviated notation

ui ≡ ui+8−n,i+11−n (6)

for the cross ratios (5) is also used.
The algebraic relations among different Mandelstam invariants (cross ratios) are known

as (conformal) Gram determinant constraints, and simply encode the fact that the number of
independent vectors is bounded in a given spacetime dimension. In the presence of conformal
symmetry, these constraints were worked out in [56], and while their solution yields an inde-
pendent subset of cross ratios that can be used to parametrize the kinematics, in practice this
parametrization turns out to be quite complicated.

Instead, massless, planar, dual conformal invariant kinematics may be most conveniently
described in terms of momentum twistors [57], which are also very nicely reviewed in e.g.
[58, 59]. Very briefly, one way for obtaining these variables is by representing xμ ∈ R1,3 as
a projective null vector XM ∈ R

2,4, X2 = 0, X ∼ λX. This SO(2, 4) vector XM is also equiva-
lent to an antisymmetric representation XIJ of SU(2, 2), since the two algebras are isomorphic
(in practice one representation can be converted into the other by six-dimensional analogues
of the Pauli matrices, which may similarly be used in order to transform Lorentz vectors to
2 × 2 antisymmetric matrices). The antisymmetric representation can in turn be built out of
two copies of the fundamental representation ZI of SU(2, 2), or, after complexifying, SL(4,C).

1 This counting corresponds to the number of independent components of the lightlike-separated points xi, minus the
dimension of the 4D conformal group or Poincaré group, for planar N = 4 SYM or a generic massless gauge theory,
respectively.
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Momentum twistors precisely correspond to these Z’s, and we see that our original point
xμ ∈ R1,3 is mapped to a pair of points, i.e. a line in momentum twistor space. As is the case
for the vector X they originate from, momentum twistors are also defined up to rescalings
Z ∼ tZ, thus they may be equivalently viewed as homogeneous coordinates on complex pro-
jective space P3. It is then possible to show that the usual Mandelstam invariants (4) can be
expressed in terms of momentum twistors as

x2
i j ∝ 〈i − 1i j − 1 j〉, (7)

up to proportionality factors that drop out from conformally invariant quantities, where

〈i jkl〉 ≡ 〈ZiZ jZkZl〉 = det(ZiZ jZkZl) (8)

is a four-bracket of momentum twistors.
The advantage of momentum twistor variables is that they automatically satisfy both

momentum conservation and the constraint on external lightlike momenta, p2
i = x2

ii+1 = 0:
indeed, from equation (3) it is evident that the former already holds for the dual space coor-
dinates giving rise to them, and the latter follows from equations (7) and (8). Furthermore,
conformal transformations of the dual space coordinates x map to SO(2, 4) rotations of X,
and in turn to SL(4,C) transformations of the momentum twistors. Therefore the space of
dual conformal invariant kinematics can be written as a 4 × n matrix, whose columns are the
cyclically ordered momentum twistors/homogeneous CP3 coordinates defined up to rescal-
ings, and modulo SL(4,C) transformations. Fixing this gauge redundancy, so as to obtain
explicit parametrizations of the kinematics in terms of 3n − 15 independent variables is then
very straightforward; one such example are the web variables, that may be algorithmically
constructed for any n [60], see also [61, 62] for a simplified reformulation.

Let us see how these types of kinematic parametrizations may be used in practice in the
n = 6 case. The matrix of momentum twistors in terms of web variables is

(Z1, . . . , Z6) =

⎛
⎜⎜⎝

1 0 0 0 −1 −1 − x1 − x1x2 − x1x2x3

0 1 0 0 1 1 + x1 + x1x2

0 0 1 0 −1 −1 − x1

0 0 0 1 1 1

⎞
⎟⎟⎠, (9)

from which we can compute any four-bracket by choosing the corresponding 4 × 4 minor
according to equation (8), such that e.g.

〈1346〉 = 1 + x1 + x1x2, (10)

and similarly evaluate any other kinematic variable that depends on them. For example due to
equation (7), the cross ratios (6) become

u1 =
x2x3

(1 + x1 + x1x2)(1 + x2 + x2x3)
, u2 =

x1x2

1 + x1 + x1x2
, u3 =

1
1 + x2 + x2x3

.

It is worth noting that the space of kinematics in momentum twistor variables is also very
closely related to the Graßmannian Gr(m, n), defined as the space of m-dimensional planes
going through the origin in n-dimensional space: from this definition, it follows that Gr(m, n)
may also be realized as an m × n matrix, this time modulo GL(m) transformations. As was
first noted in [63], based on the previously discovered relevance of the Graßmannian for the
amplitude integrand [64], the comparison of their matrix realizations reveals that the space of
external momentum kinematics is in fact equivalent to the quotient Gr(4, n)/(C∗)n−1.

6
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2.4. Amplitude normalizations

Let us finally come to address the question of the normalization of the amplitude. In any mass-
less gauge theory, loop amplitudes have infrared divergences, arising from integration regions
where the loop momenta become soft or collinear. It can be shown that these divergences
exponentiate quite universally [65], and that particularly in planar N = 4 SYM they are cap-
tured to all loops by the Bern–Dixon–Smirnov (BDS) ansatz [3]. The latter is essentially the
exponential of the one-loop amplitude times the cusp anomalous dimension Γcusp,

1
4
Γcusp(g2) = g2 − 2ζ2g4 + 22ζ4g6 −

[
219ζ6 + 8(ζ3)2

]
g8 + · · · , (11)

also known to all loops [66] thanks to the integrability of the theory, as reviewed for example
in [67]2. So the BDS ansatz by construction satisfies the exponentiation property of infrared
divergences, but also includes additional one-loop contributions.

From the above discussion, it therefore follows that it is possible to obtain an infrared-finite
normalized amplitude by dividing out An,k by the BDS ansatz. It should also make apparent,
however, that this normalization is not unique: similarly to the difference between renormaliza-
tion schemes in any gauge theory, there is still freedom in the finite, dual conformal invariant
terms that the infrared-divergent factor may be chosen to absorb. While this choice ultimately
leads to just equivalent representations of the amplitude, it proves advantageous to tune it such
that the normalized amplitude inherits certain important physical properties of An,k, and hence
becomes simpler to compute. Indeed, when n is not a multiple of 4, choosing to factor out the
closely related BDS-like ansatz, which naturally appears in the strong-coupling description
of the amplitude [6], ensures that the normalized amplitude respects the Steinmann relations,
whose significance will be discussed in subsection 3.3.

In what follows, whenever possible we will thus focus on BDS-like normalized amplitude,
denoted as

En,k ≡
An,k

A(0)
n,0ABDS–like

n

, n mod 4 = 0, (12)

where for convenience we have also additionally divided by the tree-level MHV superampli-
tude, A(0)

n,0. Since the precise form of the BDS and BDS-like ansätze will not be important for
our purposes, we will refrain from quoting them here, and refer the interested reader to the
original references, or e.g. [69, 70]. The ratio of the two ansätze is however closely related to
the one-loop correction to En,0,

ABDS
n

ABDS–like
n

= exp

[
Γcusp

4
E(1)

n,0

]
, (13)

where for n = 6, 7 we explicitly have,

E(1)
6,0 =

3∑
i=1

Li2

(
1 − 1

ui

)
, (14)

E(1)
7,0 =

7∑
i=1

[
Li2

(
1 − 1

ui

)
+

1
2

log

(
ui+2ui−2

ui+3uiui−3

)
log ui

]
. (15)

2 The integrability of a deformation of N = 4 SYM theory is also described in chapter 9 [68] of the SAGEX review
[42].

7



J. Phys. A: Math. Theor. 55 (2022) 443006 Topical Review

Converting between BDS and BDS-like normalizations also follows immediately from
equation (13). For example, the BDS-normalized MHV amplitude, which in the original liter-
ature was expressed in terms of an exponentiated remainder function Rn, is related to En,0 by

eRn = e−
Γcusp

4 E (1)
n,0 En,0. (16)

To recapitulate the main lesson of this section, infrared-normalized, color-ordered superam-
plitudes in the planar limit of N = 4 SYM only depend on the particle number n, the helicity
degree k, 3n − 15 variables in the space of dual conformally invariant kinematics, and the order
L of loops or perturbative corrections.

3. Cluster polylogarithmic functions

Having reviewed the parameters that normalized amplitudes E (L)
n,k in planar N = 4 SYM theory

depend on, here we will continue to describe the type of functions they evaluate to. As we will
recall in subsection 3.1, the latter fall in the general class of multiple polylogarithms, which
are also relevant for a wide range of standard model processes at the forefront of precision phe-
nomenology, especially when mediated by internal particles that can be considered as massless,
see for example [22, 49, 71–73]. Within this class, however, there still exists an infinite number
of these functions at each loop order, depending on where they are allowed to have singular-
ities. In subsection 3.2 we will then see that beautiful mathematical objects known as cluster
algebras appear to correctly predict these singularities at multiplicity n = 6, 7, thereby making
the function spaces expected to contain E (L)

n,k finite. Furthermore, in subsection 3.3 we will see
that cluster algebras also dictate how these singularities are allowed to appear consecutively,
and how these additional restrictions can be physically interpreted as the (extended) Stein-
mann relations of axiomatic quantum field theory. The finite function spaces that are further
reduced by the latter restrictions will be the starting point for bootstrapping the corresponding
amplitudes in the most efficient manner, to be discussed in the next section.

3.1. Multiple polylogarithms and symbols

All explicit calculations to date, as well as an analysis at the level of the integrand [74] (note
however the subtleties pointed out in [75]), suggest that at least for k = 0, 1, E (L)

n,k can be
expressed in terms of generalized or Goncharov or multiple polylogarithms (MPLs) [76–78] of
weight m = 2L. These functions are also mentioned in chapters 3 [79] and 4 [80] of the SAGEX
review [42], and in addition they are discussed in great detail in the recent textbook [81]. Let
us briefly collect here the definitions and properties that will be useful for our purposes.

A function Fm is defined as an MPL of weight m if its total differential obeys

dFm =
∑
φβ∈Φ

F
φβ
m−1 d log φβ , (17)

such that Fφα
m−1 is an MPL of weight m − 1,

dF
φβ
m−1 =

∑
φα∈Φ

F
φα ,φβ
m−2 d log φα, (18)

8
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and so on, with this recursive definition (17) terminating at m = 1 with the usual logarithms
on the left-hand side, and rational numbers as coefficients of the total differentials on the right-
hand side. The arguments of the dlogs φαi are algebraic functions of the independent variables
of Fm known as the (symbol) letters, and similarly their collection Φ from all steps of the
recursion is called the (symbol) alphabet. Evidently, it encodes the positions of the possible
branch point singularities of Fm, which may appear when φαi = 0,∞.

The iterative structure we have described forms part of the coaction operation Δ [82–85]
(also loosely referred to as the coproduct), which ‘decomposes’ an MPL of weight m into linear
combinations of pairs of MPLs with weight {m − m1, m1} for m1 = 0, 1, . . .m. Concretely, the
total differential (17) is essentially equivalent to the {m − 1, 1} component of Δ,

Δm−1,1Fm =
∑
φβ∈Φ

F
φβ
m−1 ⊗

[
log φβ mod (iπ)

]
. (19)

The coaction may be repeatedly applied to either the first or the second factor of the
{m − m1, m1} pair when m1 > 1, yielding a decomposition of an MPL of weight m into
subspaces of MPLs with weight {m1, . . . , mr},

∑r
i=1mi = m, that is unique thanks to the

coassociativity property of the coaction. Denoting the projection of the coaction on each of
these subspaces by Δm1,...,mr , for example the equations (17) and (18) combine to yield the
{m − 2, 1, 1} coproduct,

Δm−2,1,1Fm =
∑

φα ,φβ∈Φ
F
φα,φβ
m−2 ⊗ log φα ⊗ log φβ , (20)

where from equation (20) onwards, identification of logφ factors up to iπ will be implied.
Furthermore, the maximal iteration of the coaction defines the symbol [86, 87],

S[Fm] = Δ1, . . . , 1︸ ︷︷ ︸
m times

Fm =
∑

φα1 ,...,φαm

F
φα1 ,...,φαn
0

[
log φα1 ⊗ · · · ⊗ log φαm

]
, (21)

where it is also customary to adopt a more compact notation by replacing log φαi → φαi .
To make the above general definitions more tangible, we will also apply them to a concrete
example towards the end of this subsection.

Comparing (17) and (19), we see that derivatives only act on the rightmost factor of the
coaction, and the same carries over to the symbol. Similarly, the discontinuities of MPLs can
be shown to be encoded in the leftmost factor of their coaction. For example, at the level of
the symbol the discontinuity of Fm when going around a potential branch point φβ = 0 with
no other letter vanishing simultaneously is given by

S[Discφβ (Fm)] = 2πi
∑

φα1 ,...,φαm

F
φα1 ,...,φαn
0 δα1β

[
φα2 ⊗ · · · ⊗ φαm

]
, (22)

in other words it is equivalent to clipping off the first entry.
We now move on to present some further definitions that we will only need when we per-

form the sample bootstrap computation of E (2)
6,0 in subsection 4.4. The reader only interested in

conceptual aspects may thus choose to skip to the next subsection. Alternatively to the differ-
ential definition of MPLs presented above, one may also reverse the direction and define them
as iterated integrals. Choosing the integration contour in the simplest possible manner, leads
to the (G-function) definition

G(a1, . . . , am; z) =
∫ z

0

dt
t − a1

G(a2, . . . , am; t), (23)

9
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where the recursion starts with G(; z) = 1, and for the special case where all the ai are zero,
we define

G(0, . . . , 0︸ ︷︷ ︸
m times

; z) =
1

m!
logm z. (24)

Indeed, by differentiating equation (23), applying the identity

∂

∂a
1

t − a
= − ∂

∂t
1

t − a
(25)

and partial fractioning, it can be shown that dG takes the general form of equation (17).
In the integral definition (23), we see that the weight m corresponds to the number of iterated

integrations. The single-variable case with ai ∈ {−1, 0, 1} has also independently appeared
in the physics literature under the name of harmonic polylogarithms (HPLs) [88], up to the
different sign convention,

H(a1, . . . , am; z) = (−1)p G(a1, . . . , am; z), ai ∈ {−1, 0, 1}, (26)

where p counts how many ai are equal to +1. Since HPLs only depend on the outermost inte-
gration bound z in equation (23), their differentiation is trivial, and it is easy to show that the
definitions (17)–(21) specialize to

Δm−1,1H(a1, . . . , am; z) = (−1)sgn(a1) H(a2, . . . , am; z) ⊗ (z − a1), (27)

Δm−2,1,1H(a1, . . . , am; z) = (−1)sgn(a1)+sgn(a2)H(a3, . . . , am; z) ⊗ (z − a2) ⊗ (z − a1),

...

S[H(a1, . . . , am; z)] = (−1)p[(z − am) ⊗ · · · ⊗ (z − a1)]. (28)

For later convenience let us also note that a more compact notation for all ai arguments can
be adopted, whereby a string of subsequent zeros is replaced by

0, 0, . . .0︸ ︷︷ ︸
m−1 times

,±1 →±m, (29)

and the resulting, shorter string of arguments is placed as indices of the function. For example,
classical logarithms, that are contained in HPLs, in this notation correspond to

Lim(z) = Hm(z) = H(0, . . . , 0, 1︸ ︷︷ ︸
m−1 times

; z) (30)

and again for completeness their symbol will be (recalling that dlog(z − 1) = dlog(1 − z))

S[Lim(z)] = −

⎡
⎣(1 − z) ⊗ z ⊗ · · · ⊗ z︸ ︷︷ ︸

m−1 times

⎤
⎦. (31)

Finally, let us mention that products of G-functions with the same rightmost argument, and
thus also HPLs, may be reexpressed as linear combinations thereof. Namely they form a

10
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(shuffle) algebra, as can be simply inferred from the definition (23), by appropriately splitting
the integration range so that all dummy variables have a specific order.

In practice, by now there exist a variety of software tools that allow the evaluation of the
functions presented in this subsection, as well as the application of their transformation prop-
erties, either in free computer algebra systems such as GiNaC [89], or in proprietary ones
such as Mathematica and Maple, by SAGEX industry partners Wolfram Research and
Maplesoft, respectively. These for example include the Mathematica packages HPL [90]
and PolyLogTools [91], as well as the native functionality of GiNaC (Maple [92]) with
respect to the numerical evaluation (and symbolic manipulation) of these functions.

3.2. Cluster algebras and amplitude singularities

Once we have identified MPLs as the general class of functions that contain the amplitude,
the next step is to clarify what the corresponding symbol alphabet is. For n = 6, this came as
a result of an explicit Feynman diagram computation [93, 94] at two loops, and was further
supported by the analysis of closely related integrals [95, 96]. For general n, strong motivation
is provided by the cluster algebra structure [63] of the space of kinematics.

More precisely, in section 2 we mentioned that the space of kinematics in terms of momen-
tum twistors can be realized as the quotient Gr(4, n)/(C∗)n−1 of a Graßmannian. It is the latter
space that is naturally endowed with a cluster algebra structure [97], thus making it sensible to
explore any implications this may have on the symbol alphabet. Before we spell that out, we
will begin with a brief introduction on cluster algebras [98–101], which have become a very
active research area in contemporary mathematics since their inception in early 2000s. It is also
worth noting that they have already found applications in other areas of mathematical physics
in the past, such as the proof of periodicity of Y-systems and associated thermodynamic Bethe
ansätze of certain integrable models [102], or the determination of BPS state spectra in super-
symmetric field theories [103–105]. In the realm of scattering amplitudes, their role was first
appreciated at the level of the integrand, which also exhibits Graßmannian structure [64]. For
more recent work relating cluster algebras and tree-level amplitudes or loop integrands, see
also [106, 107].

3.2.1. Basics of cluster algebras. With many excellent introductory articles on cluster alge-
bras available in the literature, as well as articles with detailed review sections on their con-
nection to scattering amplitudes [108, 109], here will simply aim to highlight some of their
features while mostly following one concrete example that will be relevant later on.

The building blocks of cluster algebras are certain variables ai, known as
(Fomin–Zelevinsky) cluster A-coordinates, that are grouped into overlapping subsets
{a1, . . . , ad} of rank d, the clusters. Starting from an initial cluster, cluster algebras are
constructively defined by a mutation operation on the A-coordinates. They can also be
generalized so as to contain frozen variables or coefficients {ad+1, . . . , ad+m}, whose main
difference from the A-coordinates is that they do not mutate.

In the simplest case, which is also sufficient for N = 4 SYM amplitudes, cluster algebras
can be described by directed graphs or quivers. On the left-hand side of figure 1, the initial clus-
ter of the Gr(4, 6) cluster algebra, relevant for six-particle scattering, is shown. Unboxed and
boxed vertices of the quiver denote the A-coordinates and frozen variables, respectively, and
we observe that they all correspond to the four-brackets (or equivalently Plücker coordinates)
defined in subsection 2.3, namely 4 × 4 minors of the 4 × n matrix realization of Gr(4, n),
here for n = 6. The observant reader may however notice two differences between frozen and

11
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Figure 1. Left: the quiver diagram for the Gr(4, 6) initial cluster. Right: the quiver
that arises by mutating 〈1245〉 of the initial cluster, where the effect of the mutation
is described in equations (32) and (33) for the variable, and below equation (34) for
the arrows of the quiver. Reproduced from [38]. © Copyright owned by the author(s)
under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License (CC BY-NC-ND 4.0).

cluster variables, which turn out to hold more generally: first, that the former always have con-
secutive indices 〈i, i + 1, i + 2, i + 3〉, modulo n + i ∼ i identifications, whereas this is not the
case for the latter. And second, that the former are not allowed to have arrows between them.

The arrows of the quiver encode how its A-coordinates will transform under mutation.
Concretely, if ak is a cluster A-coordinate, mutating it replaces it by

ak → a′
k =

1
ak

⎛
⎝ ∏

arrows i→k

ai +
∏

arrows k→j

a j

⎞
⎠. (32)

Let us see this in action in the Gr(4, 6) initial cluster, but for reasons that will become apparent
very shortly, let us first switch to shorthand notation where each four-bracket is expressed
in terms of the complement of the twistor labels it contains, for example 〈1235〉 = (46),
〈1345〉 = (26), with the sign convention chosen such that increasing order of labels on the
left is mapped to increasing order of labels on the right (this is an instance of the more gen-
eral Gr(k, n) � Gr(n − k, n) duality exchanging k- and (n − k)-planes). Then, the mutation of
〈1245〉 on the left-hand side of figure 1 yields

〈1245〉 = (36) → (46)(23) + (26)(34)
(36)

= (24), (33)

where the shorthand notation allowed us to arrive at the last equality by using the familiar also
in other contexts three-term Plücker relation or SL(2,C) Schouten identity,

(ik)( jl) = (i j)(kl) + (il)( jk), (34)

for i = 2, j = 3, k = 4 and l = 6.
Except for ak → a′

k, in the new quiver produced by this mutation, all the rest of the A-
coordinates and coefficients remain unchanged. However, the arrows of the new quiver will
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differ, and may be obtained by those of the quiver before the mutation of ak by applying the
following rules3:

• For each path i → k → j add an arrow i → j, except if both i and j are frozen variables.
• Reverse the direction of all arrows pointing to or originating from k.
• Remove any pairs of arrows pointing in opposite directions, �.

Going back to our example, we see that by virtue of these rules the mutation of 〈1245〉 in
the Gr(4, 6) initial cluster leads to the new cluster shown on the right-hand side of figure 1.

We have thus specified all the rules of the game, and obtaining the entire cluster algebra is a
matter of applying them over and over at each vertex of every quiver we encounter. While the
graphical representation and rules we described so far are more accessible for a first exposure
to cluster algebras, to this end it proves more efficient to exploit the fact that every quiver is in
bijection with a skew-symmetric exchange matrix matrix B with elements

bi j = (# arrows i → j) − (# arrows j → i). (35)

In this manner, e.g. the exchange matrices B, B′ associated to the left- and right-hand side
quivers of figure 1, respectively, have nonzero elements with i < j that are equal to

b12 = b15 = b23 = b26 = b37 = b39 = −b14 = −b16 = −b27 = −b38 = 1,

b′
13 = b′

15 = b′
27 = b′

39 = −b′
12 = −b′

14 = −b′
23 = −b′

26 = −b′
38 = −b′

67 = 1,
(36)

when ordering our A-coordinates and frozen variables as {〈1235〉, 〈1245〉, 〈1345〉, 〈1234〉,
〈1236〉, 〈1256〉, 〈1456〉, 〈3456〉, 〈2345〉} for B, and similarly with 〈1245〉→ 〈1356〉 for B′.
With this rearrangement of information, it can be shown that the A-coordinate mutation (32)
becomes

a′
k = a−1

k

(
d+m∏
i=1

a
[bik]+
i +

d+m∏
i=1

a
[−bik]+
i

)
, (37)

with [x]+ = max(0, x). Similarly, the rules we discussed below equation (34) for the trans-
formation of the quiver translate into the following mutation rule for the exchange matrix,

b′
i j =

{−bi j, if i = k or j = k,

bi j + [−bik]+bk j + bik

[
bk j

]
+

otherwise,
(38)

as can be readily verified in the example of equation (36).
Apart from the fact that the alternative definitions (37) and (38) are more amenable to com-

puter implementation, they can be also generalized so as to describe cluster algebras with
skew-symmetrizable instead of skew-symmetric exchange matrices (more precisely, their prin-
cipal part with indices i, j � d)4. In this more general setting, it is possible to prove that finite
cluster algebras are classified by Dynkin diagrams, and that a skew-symmetric cluster alge-
bra is finite if and only if one of its clusters takes the form of the associated Dynkin diagram

3 It is very interesting to note that essentially the same quiver (but not cluster variable) mutation rules were indepen-
dently proposed in the context of N = 1 quiver gauge theories so as to describe their Seiberg duality [110], which
generalizes the usual electric-magnetic duality of abelian gauge theory.
4 Alternatively, skew-symmetrizable cluster algebras may be defined by generalizing quivers to so-called valued
quivers [111].
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Figure 2. Left: geometric interpretation of the Gr(4, 6) � Gr(2, 6) cluster shown in the
left of figure 1, where 〈1234〉 corresponds to the edge (56) etc, as a triangulation of a
hexagon by non-crossing diagonals. Right: mutations of this cluster algebra may be sim-
ilarly geometrically interpreted as flips (ik) ↔ ( jl) of the diagonals of any quadrilateral
subdiagram, see also equation (34).

Figure 3. The cluster polytope of the Gr(4, 6) � A3 cluster algebra, with clusters repre-
senting the different triangulations of a hexagon, as discussed in the text and in figure 2,
where also the vertex labels may be found. The initial and mutated cluster in the left-
and right-hand side of figure 1 are color-coded in red and blue, respectively. The parity
invariant plane is also drawn in pink. Reproduced from [109]. CC BY 4.0.

when dropping arrow orientations as well as frozen variables and arrows from/to them [99].
Inspecting figure 1, we can thereby infer that the Gr(4, 6) cluster algebra is of finite A3 type.

Despite the relative simplicity of the definitions and properties of cluster algebras, the reader
may perhaps be left wondering where they come from, if there is any physical or mathemat-
ical intuition behind them. To address this, drawing from [98] let us return to our Gr(4, 6)
example, and note that the labels of the dual two-component brackets (i j) can be interpreted
as the vertices of a hexagon, such that the frozen variables correspond to its edges, whereas
the A coordinates of the clusters we have encountered so far to non-crossing diagonals. This
observation in fact extends to the entire cluster algebra, since it can be shown that all muta-
tions have the form of the three-term identity (34) with 1 � i < j < k < l � 6, and hence they
are geometrically equivalent to flipping the diagonal of a quadrilateral inside the hexagon, see
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figure 2. Therefore the Gr(4, 6) cluster algebra is in natural bijection with all triangulations of
the hexagon with non-crossing diagonals. Note that this bijection also includes the exchange
matrix B in equation (35), or in other words the arrows of the quivers as seen e.g. in figure 1,
which become arrows between adjacent sides of any triangle of the triangulation (not allowing
arrows between two edges of the hexagon), with the orientation chosen in the anti-clockwise
direction. This geometric picture of cluster algebras as triangulations is in fact a very pro-
found and universal one, as up to 18 exceptional cases, it has been shown to hold for all cluster
algebras with a finite number of exchange matrices, even if they have an infinite number of
clusters/variables [112].

Before concluding this introduction on cluster algebras, let us mention one further connec-
tion they have with geometry, that will be useful for us in what follows: representing each
cluster with a vertex, and each mutation with an edge yields the exchange graph of a finite
rank-d cluster algebra, which in fact defines a simple polytope [102], namely a geometric object
with flat faces generalizing the polygon to higher dimensions, whose vertices are in addition
adjacent to exactly d edges. As an example, the cluster polytope of the Gr(4, 6) � A3 cluster
algebra is shown in figure 3. The bijection with triangulations discussed in the previous para-
graph allows one to easily work this out, and infer that it has a total of nine diagonals/cluster
variables spread into 14 vertices/clusters, as well as 21 edges and nine faces. In addition to its
topological and combinatorial nature, this polytope also geometrically describes the compact-
ification of the positive region of Gr(4, n)/(C∗)n−1, defined as the region where 〈i j kl〉 > 0 for
i < j < k < l. In particular, each edge of the polytope can be assigned a (Fock–Goncharov)
X -coordinate, related to the A-coordinates by [113]

xi ≡
d+m∏
l=1

abli
l , i = 1, . . . d, (39)

such that each cluster provides a local coordinate chart describing this compactification, with
the interior of the positive region corresponding to all ∞ > xi > 0. The significance of the
positive region will also be highlighted in chapter 7 [114] of the SAGEX review [42].

3.2.2. Symbol letters from cluster variables. With this background knowledge on cluster alge-
bras, we can now state their role inN = 4 SYM amplitudes: in [63] the remarkable observation
was made, based on the then-known explicit computations, that

Gr(4, n) cluster A–coordinates appear as symbol letters of the n–particle amplitude.

That is, for the examples considered, the amplitude could be expressed in terms of polylog-
arithmic functions as defined in equation (17), with φαi coinciding with A-coordinates (more
precisely multiplicative combinations thereof, also including the frozen variables, that respect
the scale and hence the dual conformal invariance of the theory).

For the six-particle amplitude, as we have seen the associated Gr(4, 6) cluster algebra con-
sists of nine A-coordinates, and these precisely coincide with the symbol alphabet of the two-
loop correction to the amplitude [87, 93, 94]. The six-particle or hexagon bootstrap was initi-
ated in [2] based on the assumption that this alphabet also remains stable at higher loops, and in
this case its cluster algebraic structure may be considered as evidence backing this assumption.
Explicitly, in the usual four-bracket notation a convenient choice for the six-particle alphabet
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reads [21]5,

a1 =
〈1245〉2〈3456〉2〈6123〉2

〈1234〉〈2345〉 · · · 〈6123〉 , m1 =
〈1356〉〈2346〉
〈1236〉〈3456〉 , y1 =

〈1345〉〈2456〉〈1236〉
〈1235〉〈1246〉〈3456〉 ,

(40)

together with two more cyclic transformations l1 → l1+i with l ∈ {a, m, y} induced by shifting
Zm → Zm−2i on the right-hand side. The discrete parity and flip transformations of the letters
may be inferred from the cluster polytope of figure 3, where they correspond to up-down
and left-right reflection, respectively. For example, parity is equivalent to a i → i + 3 shift of
momentum twistor labels, and thus transforms yi → 1/yi, while leaving ai, mi invariant.

The initial quiver for generic Gr(4, n), from which the next nontrivial n = 7 case may be
studied with the same set of rules we spelled out, is depicted in figure 4. While for the latter case
the initial quiver does not have the topology of a Dynkin diagram, mutating 〈1256〉, 〈1456〉 and
〈1345〉 does lead to an E6-shaped cluster, and hence Gr(4, 7) is also a finite cluster algebra. In
particular, one finds 42 different A-coordinates distributed in 833 distinct clusters (the order
of the variables in each cluster does not matter). Again, these A-coordinates exactly match
the symbol alphabet of the two-loop correction to the seven-particle amplitude [115], and this
observation was of central importance for generalizing the bootstrap program to higher multi-
plicity n = 7 in [16]. The choice for the corresponding symbol alphabet adopted in the latter
reference is

a11 =
〈1234〉〈1567〉〈2367〉
〈1237〉〈1267〉〈3456〉 , a41 =

〈2457〉〈3456〉
〈2345〉〈4567〉 ,

a21 =
〈1234〉〈2567〉
〈1267〉〈2345〉 , a51 =

〈1(23)(45)(67)〉
〈1234〉〈1567〉 , (41)

a31 =
〈1567〉〈2347〉
〈1237〉〈4567〉 , a61 =

〈1(34)(56)(72)〉
〈1234〉〈1567〉 ,

where we have defined

〈a(bc)(de)( f g)〉 ≡ 〈abde〉〈ac f g〉 − 〈ab f g〉〈acde〉, (42)

together with the letters ai j obtained from ai1 by cyclically relabeling the momentum twistors
Zm → Zm+ j−1. It is interesting to note that for n = 7, and more generally when n is odd, any
individual cluster A-coordinate can be rendered invariant under rescalings Zi → tZi by suitable
products of powers of frozen variables. Here it is slightly more nontrivial to show that parity
transformations map a2i ↔ a3,i−1 and a4i ↔ a5i.

The appearance of not only Plücker variables but also homogeneous polynomials thereof
(42) as A-coordinates is a qualitatively new feature that persists for Gr(4, n) cluster alge-
bras with n � 8. However the relation of these cluster algebras with n-particle alphabets is
a significantly more subtle issue which we will address in subsection 5.1.

While not of direct relevance for this article, before closing let us briefly mention two more
connections that have been established between cluster algebras and scattering amplitudes. The

5 Note that any set of equal size, consisting of multiplicatively independent combinations of these letters, would make
an equally valid choice. Indeed, in the original literature [2, 9–12] the letters ui and 1 − ui were used. The relation
with the presently used alphabet is ai = ui/(ui−1ui+1) and mi = 1 − 1/ui.
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Figure 4. Quiver diagram for the initial Gr(4, n) cluster. Reproduced with permission
from [38]. © Copyright owned by the author(s) under the terms of the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
(CC BY-NC-ND 4.0).

first one also pertains to planar n-particle amplitudes in N = 4 SYM, and focuses on identi-
fying appropriate cluster X -coordinates as arguments of the MPLs needed to describe them
[116–119], based on their Poisson structure [120]. This approach has been used very success-
fully in promoting symbols of two-loop MHV amplitudes [115] to functions [121–123], yet
there is evidence that this is no longer possible at different MHV degree [124], and furthermore
it is unclear how to generalize to higher loops. Finally, cluster algebras may also be used in
order to define natural generalizations of string amplitudes [125–127].

3.3. Cluster adjacency and extended Steinmann relations

So far we have seen that cluster variables dictate the singularities of N = 4 SYM amplitudes.
However cluster algebras have more structure than just the variables, for instance the clusters.
It is thus natural to ask, do they also play a role in this context? Very interestingly, there is
evidence that they do, in the form of [20]

Cluster adjacency : in a symbol whose alphabet contains Gr(4, n) cluster A–coordinates,

two of them can appear consecutively only if there exists a cluster where they both appear.

Let us distill the implications of cluster adjacency6 in our familiar Gr(4, 6) cluster algebra
example. From our discussion of the geometric interpretation of the clusters as triangulations
of a hexagon with non-crossing diagonals, it is evident that pairs of A-coordinates not found
in a cluster together will in turn correspond to crossing diagonals, and are thus forbidden from
appearing next to each other in the symbol of the six-particle amplitude, as shown in figure 5.

The same information may be alternatively described by a neighbor set [109] of an A-
coordinate, that is the union of all clusters containing it, which in other words contains all the
other variables (including the frozen ones), that can appear next to it in the symbol. For the
n = 6 case, reverting to the usual four-bracket notation these are

〈1245〉 = {〈1245〉, 〈2456〉, 〈1345〉, 〈1246〉, 〈1235〉, & frozen variables}, (43)

6 Note that in the mathematics literature there exists a related notion of simultaneous inclusion in a cluster, which is
known as ‘compatibility’ [102].
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Figure 5. Pairs of Gr(4, 6) A-coordinates not found in a cluster together, and hence not
allowed to appear consecutively in the symbol of the six-particle amplitude, up to cyclic
permutations and order reversal.

〈1235〉 = {〈1235〉, 〈2456〉, 〈2356〉, 〈1356〉, 〈1345〉, 〈1245〉, & frozen variables}, (44)

as well as their cyclic permutations, two for the first line and five for the second. Then, as a con-
straint on a polylogarithmic function F, and in the notation of equation (20), cluster adjacency
may be formulated as

Fφβ ,φβ = 0, (45)

where φβ does not belong to the neighbor set of φβ , with the same condition also holding
recursively for all left factors in the coproduct of F.

As we have discussed, actual symbol letters are dual conformal invariant, namely products
of the cluster and frozen variables that are invariant under rescalings of the twistors, i.e. homo-
geneous. It is thus more convenient to take this information into account on the right-hand side
of equations (43) and (44), by defining the corresponding homogeneous neighbor sets,

hns[〈1245〉] = hns[a1] = {a1, m2, m3, y1, y2y3}, (46)

hns[〈1235〉] =
{

a1, a2,
m1

y2
,

m2

y2y3
, m3, y1y2y3

}
, (47)

again plus cyclic permutations. In the first line we could also promote the left-hand side to the
conformally invariant letter a1, since 〈1245〉 is the only cluster variable it depends on. This is
not possible for the second line, relevant for the remaining letters mi, yi.

Moving on to the case n = 7, all letters (42) depend on a single A-coordinate, so we can
directly focus on the homogeneous neighbor sets. These are generated by

hns[a11] = {a11, a14, a15, a21, a22, a24, a25, a26, a31, a33, a34, a35, a37, a41,

a43, a46, a51, a53, a56, a62, a67} (48)

hns[a21] = {a11, a13, a14, a15, a17, a21, a23, a24, a25, a26, a31, a33, a34, a36, a37,

a41, a43, a45, a46, a52, a53, a55, a57, a62, a64, a66} (49)

hns[a41] = {a11, a13, a16, a21, a23, a24, a26, a31, a33, a35, a36, a41,

a43, a46, a51, a62, a67} (50)

hns[a61] = {a12, a17, a23, a25, a27, a32, a34, a36, a42, a47, a52, a57, a61}, (51)
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Figure 6. Channels s345 ∝ 〈2356〉 = (14) and s234 ∝ 〈1245〉 = (36) for 3 → 3 kinemat-
ics. The Steinmann relations state that the discontinuity in one channel should not know
about the discontinuity in the other channel, and this yields the same constraint as the
non-cluster adjacent pair on the right of figure 5. Reprinted (figure) with permission from
[14], Copyright (2016) by the American Physical Society.

together with images under parity transformations and cyclic permutations. We will also
comment on higher-multiplicity generalizations towards the end of this subsection.

What about the physical interpretation of cluster adjacency? It turns out that some of its
restrictions can be understood as the extended Steinmann relations [21, 31], as we will now
explain. These are generalizations of the usual Steinmann relations [128–130], which demand
that the double discontinuities of any Feynman diagram (and thus of the amplitude they con-
tribute to) vanish when taken in overlapping channels. In section 3.1 we have seen that a
discontinuity may be labeled by a Mandelstam invariant si,..., j−1 which is analytically con-
tinued around its branch point. At the same time, by virtue of the Cutkosky rules [131] this
discontinuity may be obtained by placing on-shell the internal particles whose total energy
equals si,..., j−1, that is by replacing their propagators with delta functions. This is the notion of
a cut, which splits the Feynman diagram into two parts, as seen in figure 6.

By the same logic, overlapping channels correspond to cut lines that intersect, in other words
they divide the external particles of the Feynman diagram into four non-empty sets. In the
example of the figure, these sets are {2}, {3, 4}, {5}, and {6, 1}. Focusing on three-particle
Mandelstam invariants, but allowing the number of external particles n to be arbitrary, the
Steinmann relations at the level of the amplitude then imply

Discs j, j+1, j+2

(
Discsi,i+1,i+2

(
An,k

))
= 0, for j = i ± 1, i ± 2, (52)

with an obvious generalization to higher-particle Mandelstam invariants. Note that we refrain
from considering two-particle invariants, since it is necessary for an invariant to be independent
for the sake of analytic continuation. That is, no other Mandelstam invariant is allowed to
change sign but the one we analytically continue, and this is generically not the case with
two-particle invariants.

As equation (22) reveals, at the level of the symbol a discontinuity around φβ = 0 amounts
to clipping off this particular letter from its first entry, with iterated discontinuities obtained by
applying this procedure repeatedly. That is, if no other letter vanishes simultaneously, which
can be ensured for rational alphabets such as the n = 6, 7 ones, due to the multiplicative inde-
pendence of the letters. In this case, the Steinmann relations are therefore statements about
which letters can appear next to each other in the first two entries of the symbol, and in the
past they have been exploited in the amplitude bootstrap so as to simplify the construction of
the function spaces containing the amplitude [14, 17]. Particularly for n = 6, we then notice
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that the unique, up to cyclic permutations, double discontinuity shown in figure 6 precicely
coincides with the non-cluster adjacent pair restriction shown on the right of figure 5.

Then, the analysis of a wealth of data obtained by the amplitude bootstrap, independently
revealed that these restrictions on consecutive pairs of symbol letters apply not only in the
first two slots, but to all depths in the symbol, and they were thereby coined the extended
Steinmann relations7 [21, 31]. Given that in the n = 6, 7 alphabets (40) and (41) only ai and
a1i are proportional to three-particle invariants, letting F denote the appropriately normalized
amplitudes, or any of their coproducts, or any finite integral within the space of MPLs with
these alphabets, in this case they may thus concretely be expressed as8

extended steinmann relations:

⎧⎨
⎩

Fai,ai+1 = 0, 1 � i � 3, for n = 6

Fa1i,a1i+δ = 0, δ = 1, 2, 1 � i � 7, for n = 7.
(53)

As physical quantities in perturbative quantum field theory are multivalued functions, whose
different branches represent different kinematic regions, it is plausible that the extended Stein-
mann relations follow from the validity of the usual Steinmann relations in all branches. That
is, since moving from one branch to another involves shifting functions by their discontinu-
ities, and since this operation at the level of the symbol amounts to removing first entries, a
condition between any pair of adjacent entries could be converted to the same one between the
first two entries. In this manner, the bootstrap may point, for the first time, to a more general
property of quantum field theory, at least in the planar limit. Indeed, the extended Steinmann
relations have been confirmed to hold also for all planar two-loop five-point master integrals
[22], though not for a family of non-planar integrals with the same external kinematics [73].

Also in the form (53), it is clear that the extended Steinmann relations are contained in
the cluster adjacency constraints (45), (46) and (48). What is less obvious but also true, is
that for well-defined functions with physical branch cuts built out of the n = 6, 7 alphabets
(40) and (41), the extended Steinmann relations also automatically imply all remaining clus-
ter adjacency restrictions. In other words there exists a quite nontrivial equivalence between
the former and the latter with respect to the transcendental part of amplitudes. On the other
hand, cluster adjacency also has important implications for the rational parts of amplitudes
[109, 133–136], as well as how these correlate with the transcendental parts, and this additional
information has been very useful for bootstrapping A(4)

7,1 [18]. Note that the relation between
symbol letters and rational parts of amplitudes is not only confined to N = 4 SYM, as is has
also been observed in five-gluon amplitudes in QCD [137].

Apart from a mathematical curiosity or a formal physical property, it is also reasonable
to ask what the practical significance of cluster adjacency/extended Steinmann relations is.
The answer to this is that they drastically reduce the size of the function space containing the
amplitude, thus making it far simpler to construct the former, and uniquely identify the latter.
By now they have thus been incorporated in the construction of this function space, which we
will detail in the next section, but just to illustrate their power, in tables 1 and 2, we provide
the function space dimension as the weight increases, in comparison with the dimensions of
the more redundant spaces used at earlier stages of the bootstrap.

7 These results for n = 6 were initially reported at Amplitudes 2017, in a talk by the author [132].
8 Imposing these equations in combination with the integrability conditions, to be discussed in the next section,
automatically implies that they hold also with the order of letters reversed.
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Table 1. Dimensions of spaces of integrable symbols containing the six-particle ampli-
tude, refined as one moves from top to bottom by successively imposing the ana-
lytic properties indicated on the left-hand side. Reproduced with permission from
[38]. © Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND
4.0).

Weight n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
First entry 1 3 9 26 75 218 643 1929 5897 ? ? ? ? ?
Steinmann 1 3 6 13 29 63 134 277 562 1117 2192 4263 8240 ?
Ext. Stein. 1 3 6 13 26 51 98 184 340 613 1085 1887 3224 5431

Table 2. Dimensions of spaces of integrable symbols containing the seven-particle
amplitude, refined as one moves from top to bottom by successively imposing the
analytic properties indicated on the left-hand side. Reproduced with permission from
[38]. © Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND
4.0).

Weight n 0 1 2 3 4 5 6 7
First entry 1 7 42 237 1288 6763 ? ?
Steinmann 1 7 28 97 322 1030 3192 9570
Ext. Stein. 1 7 28 97 308 911 2555 6826

Finally, let us comment on the status of cluster adjacency and extended Steinmann relations
at multiplicity n � 8. While cluster adjacency has been confirmed for all MHV amplitudes at
L = 1, 2 with the help of the Sklyanin bracket [138], as we will see in subsection 5.1 in general
the symbol letters do not quite coincide with the cluster variables for n � 8, and this creates
several subtleties. For example a naive application of cluster adjacency appears to be violated in
certain integrals [139]. As understood also in the latter reference, on this front it is the extended
Steinmann relations that are on a firmer footing when expressed as a statement about multiple
discontinuities generalizing equation (52), however in this case this does not simply translate
into a statement about adjacent pairs in the symbol, analogous to equation (53).

4. The Steinmann cluster bootstrap for N = 4 SYM amplitudes

In the previous section, we described the essential characteristics of the cluster polylogarithmic
function spaces containing six- and seven-particle amplitudes in N = 4 SYM theory. Here, we
will start subsection 4.1 by presenting certain additional analytic properties these spaces are
endowed with, and in subsection 4.2 we will explain how to construct them iteratively in the
weight. Subsection 4.3 will then focus on how the amplitude may be singled out from this space
with the help of independent information on its behavior in certain kinematic limits. Finally in
subsection 4.4 we will apply all this knowledge in order to bootstrap the two-loop six-particle
MHV amplitude E (2

6,0 ). While the bootstrap has currently been applied to multiplicity n = 6, 7,
whenever possible we will keep n general in the presentation.

4.1. Restrictions on the first and last symbol entries

In local perturbative quantum field theories, amplitudes can only have singularities when inter-
mediate particles go on shell, corresponding to vanishing propagator denominators in con-
tributing Feynman diagrams (vertices can either be constant or polynomial in the momenta).
In massless theories, this is possible only when a Mandelstam invariant vanishes, and in the
planar limit this is further restricted to the subset of Mandelstam invariants of cyclically
adjacent momenta si,..., j−1 = x2

i j defined in equation (4). Given that the singularities of
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multiple polylogarithms are encoded in the first entry of their symbols, this implies that only
the subset of letters formed exclusively out of products and ratios of the aforementioned Man-
delstam variables is allowed to appear in the latter [140]. In N = 4 SYM this subset precisely
corresponds to the n(n − 5)/2 conformal cross ratios defined in equation (5), so concretely the
first entry condition becomes

first symbol entry of An,k ∈ ui j. (54)

As a consequence of equation (7), in momentum twistor language the equivalent statement is
that the first symbol entries are restricted to multiplicative dual conformal invariant combina-
tions of the 〈i − 1i j − 1 j〉 Plücker variables, and of no other Plücker variable or algebraic func-
tion thereof. In this manner, one can for example immediately identify that for the particular
choices (40) and (41) of n = 6, 7 alphabets we have made, (54) specializes to

first symbol entry of An,k ∈
{

ai, i = 1, . . . , 3, for n = 6,

a1i, i = 1, . . . , 7, for n = 7.
(55)

Similarly to the first entry, the last entry of the symbol of N = 4 amplitudes is also con-
strained, this time by the Q̄-equation [141], which encodes how their Yangian symmetry is
broken at loop level by infrared divergences. The precise form of the constraint depends on
the helicity k, in line with the fact that beyond the k = 0 or MHV case the transcendental
functions associated to loop corrections to the amplitude are also multiplied by rational func-
tions of helicities and momenta with tree-level origin (recall that in our normalized amplitude
definition (12) we have divided out by the corresponding MHV rational factors). Hence, every
linearly independent rational factor in the superamplitude, whose number for the first few
helicity configurations has been found to be [47]9,

# linearly independent components of An,k for

k = 0: 1,

k = 1:

(
n − 1

4

)
,

k = 2:
(n − 5)(n − 4)2(n − 3)2(n − 2)2(n − 1)

4!5!
,

(56)

will also come with a nontrivial transcendental function multiplying it. In general, it will be
the final entries of these functions times the rational factors that are related to each other by
the Q̄-equation.

For simplicity, here we will thus only quote the MHV final entry condition,

final symbol entry of An,0 ∈ 〈i j − 1 j j + 1〉, (57)

which we can again specialize to

final symbol entry of An,0 ∈
{

mi, yi, i = 1, . . . , 3, for n = 6,

a2i, a3i, i = 1, . . . , 7, for n = 7.
(58)

9 Just to get a sense of these numbers, the NMHV amplitude has 5, 15, 35 and 70 NMHV components for n = 6, 7, 8, 9
and the N2MHV one 105 and 490 components for n = 8, 9, respectively. The complete classification of these Yangian
invariant rational functions, according to n, k and cyclic class, has been carried out in [64].
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in our choices of dual conformal invariant alphabets (40) and (41). The NMHV final entries
entries may be found in [13, 17] for n = 6, 7, and in [142] for arbitrary n.

Finally, it is worth noting that the Q̄-equation in fact contains significantly more information
than these final entry conditions, as it provides alternative representations for amplitudes, as
integrals over a collinear limit of amplitudes with higher multiplicity and MHV degree, and
lower loop order. In this manner, not only does it predict similar constraints deeper inside the
symbol, such as MHV next-to-final-entry conditions [139], but it also offers an alternative route
for the direct computation of amplitudes, as was successfully carried out in [142–144].

4.2. Constructing the function space containing the n-particle amplitude

In the previous subsection we discussed the special restrictions holding at the two endpoints
of the symbol, how about its remaining entries? One may be tempted to think that all possi-
ble combinations of letters or ‘words’ of a given alphabet give rise to well-defined functions
(so that for an alphabet of size |Φ| at weight k we would obtain |Φ|k such functions). How-
ever this is not true, since any well-defined function F must satisfy the property that double
derivatives with respect to two different independent variables xi, x j commute,

∂2F
∂xi∂x j

− ∂2F
∂x j∂xi

= 0, i = j. (59)

When F is an MPL, due to equations (17) and (18) this requirement implies the existence of
linear relations between its double coproducts Fφα,φβ ,

|Φ|∑
α,β=1

DiαβFφα ,φβ = 0, i = 1, 2, . . . , l, (60)

where D is a tensor with purely numeric entries, and l counts the number of independent
equations, which generally depends on the choice of alphabet. These equations are known
as the integrability conditions, and from equation (20) we see that they are also equivalent to
the fact that of all |Φ|2 combinations of letters, only a subset of weight-two symbols can appear
at the last two coproduct slots.

Further focusing on the MPL function spaces containing An,k, in subsection 2.3 we have
already mentioned that the variables xi in equation (59) can be chosen to be an algebraic
independent subset of cross ratios, or more conveniently to coincide with the variables of any
momentum twistor parametrization of the kinematics, such as the Gr(4, n) X -coordinates of a
given cluster. For the known six- and seven-particle alphabets, in this manner it can be shown
that there exist l = 26 equations for the 92 = 81 double coproducts and l = 729 equations for
the 422 = 1764 double coproducts, respectively [17]. Their explicit form may be found in the
ancillary file accompanying the arXiv submission of [38], together with the extended Stein-
mann relations (53), which also assume the general form (60) and thus may be described by
an enlarged matrix D.

With the knowledge of the n-particle alphabet as a starting point, the above properties allow
us to recursively construct the space of (extended Steinmann/cluster adjacent) n-gon functions
containing the L-loop amplitude amplitude at weight m = 2L, which we shall denote Hn,m,
as follows: given that a basis of functions on Hn,m−1 is known, we consider their {m − 2, 1}
coproduct representation (19), and attach another letter to them to the right in all possible ways.
From this {m − 2, 1, 1} tensor product space that resembles equation (20), we then obtain
Hn,m by imposing the integrability and extended Steinmann relations (60) on its elements. The
procedure starts at m = 1 with the functions dictated by the first entry condition (54), and
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terminates at the desired weight m = 2L, where also the final entry condition (57) (for k = 0)
or its generalization (for k > 0) may be imposed if one is interested in a particular helicity
configuration.

Hence the bootstrap method simplifies amplitude computations by transforming them into
linear algebra, and has so far successfully been applied to determine An,k for n = 6, 7 to
unprecedented loop orders, that would have been completely out of reach with traditional
Feynman diagram methods [2, 9–19, 21]. The construction of Hn,m is computationally the
most challenging part of the bootstrap program as m increases, but still the resulting systems
of linear equations are many orders of magnitude smaller than, e.g. the integration-by-parts
identities needed to determine the basis of master integrals at the same loop order. As first
proposed and applied in [16], they can be most efficiently solved by finite field methods that
avoid intermediate expression swell, implemented for example in software such as IML [145],
SageMath [146] orSpaSM [147] has been used the past. More recently, the SymBuild [148]
package and the FiniteFlow framework [149], with dedicated capabilities for constructing
integrable symbols, have also been made available.

The procedure we have described works equally well for functions or for their symbols, and
ensures that if Hn,m−1 has physical branch cuts, so will Hn,m, with the following exception for
the case of functions: the space of solutions of the integrability conditions (60) also contains
functions such as

ζm−1 logφα, (61)

where ζm−1 is the Riemann zeta function and φα is a letter that is not an allowed first entry
(54), which do not have physical branch cuts.

It is therefore necessary to eliminate such functions from our space, and one way to do so
is by noting that the branch point at φα = 0 also manifests itself as a pole in the derivative of
the function. So ensuring that the function is analytic at φα = 0 can be achieved by requiring
that the corresponding residue of its derivative, or by virtue of equation (17) its left coproduct
factor, vanishes as φα → 0.

In practice, it is simpler to impose such branch cut conditions on kinematic limits where
more letters vanish simultaneously. For the purposes of this review, it will be sufficient to
mention one such limit that has been used in the literature for n = 6, the soft limit. In the
choice (40) for the six-particle alphabet and in the ith orientation it amounts to10

softi :

ai →∞, ai−1 →
1

ai+1
,

mi+1 →
√

ai√
ai+1

, mi−1 →
√

ai
√

ai+1, yi → 1,

with ai+1, yi+1, yi−1, mi
√

ai fixed, i = 1, 2, 3,

(62)

with each of the soft limits corresponding to one square face, that also intersect the parity-even
surface, of the Gr(4, 6) cluster polytope shown in figure 3. In these limits, functions in H6,m

should additionally satisfy the following branch cut conditions [10, 13]

Fmi |softi
= Fyi−1 |softi

= Fyi+1 |softi
= 0, i = 1, 2, 3. (63)

Analogous conditions for n = 7 have been obtained in [19].

10 This limit may also be expressed in terms of the more conventional cross ratios (6) as ui → 1, ui−1, ui+1 → 0 with
uj/(1 − ui) held fixed for j = i.
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4.3. Singling out the amplitude: special kinematic limits

Once the space of n-gon functions Hn,m containing the n-particle amplitude has been con-
structed, the final step of the bootstrap method it to uniquely identify the latter from within
this space, using information from kinematic limits where the behavior of the amplitude is
already known. The simplest of these special kinematic configurations is the limit where the
momenta of two consecutive external particles become collinear: indeed, the BDS ansatz cor-
rectly captures not just the infrared singularity structure of the amplitude, but also its behavior
under collinear factorization. As a consequence, in this limit the BDS-normalized amplitude
smoothly reduces to the same amplitude with one leg less, for example for the MHV case this
immediately carries over directly for the remainder function (16),

lim
i+1‖i

R(L)
n = R(L)

n−1, (64)

with the cascade terminating at R(L)
5 = 0. As an example that will also be useful to us in the

next subsection, let us quote here how the symbol alphabet behaves in the case of the n = 6
collinear limit,

collineari :

mi →∞, mi−1 →
1

mi+1
,

ai →
(1 + mi+1)2

mimi+1
, ai−1 → mimi+1, ai+1 →

mi

mi+1
,

yi−1 → 1, yi+1 → 1, with mi+1, yi fixed, i = 1, 2, 3.

(65)

The three collinear limits correspond to the three edges of the Gr(4, 6) cluster polytope shown
in figure 3, that lie on the parity-even surface.

Beyond the strict collinear limit, Mellin–Barnes-like integral representations for every term
in the series expansion around an (n − 5)-fold collinear limit may be predicted with the help of
the integrability-based Wilson loop or pentagon operator product expansion (OPE) [150–160],
to all loops. These integral representations can then be systematically evaluated in closed form
[15, 161, 162], thus providing direct input for the amplitude bootstrap, and in some cases the
entire series expansion or certain well-defined subsector thereof may even be resummed so as
to access more general kinematic configurations [163–169].

Last but not least, an excellent source of boundary kinematic data for the bootstrap is offered
by the high energy or multi-Regge kinematics (MRKs), a very rich subject in its own right,
which will be the focus of chapter 15 [170] of this review [42]. This owes to the development
of an effective description of the latter by Balitsky, Fadin, Lipatov and Kuraev originally in
QCD, that was later extended also to planar N = 4 SYM [12, 25, 163, 171–177]. Interest-
ingly, the dual conformal invariance of the theory renders it equivalent to the soft limit, so in
order for the normalized amplitude to have nontrivial kinematic dependence there, it is nec-
essary to first analytically continue away from the Euclidean region. At multiplicity n = 6 we
have already seen the soft/multi-Regge limit in equation (62), from where it becomes apparent
that is natural to organize the weak coupling expansion of the amplitude also with respect to
the order of the divergent logarithm, logL−p−1 a1, denoted as the (next-to)p-leading-logarithmic
(NpLL) approximation. Remarkably, this double expansion can be computed at any loop order
and logarithmic approximation, not only for n = 6 [178], but also at arbitrary multiplicity
[179], thanks to an analytic continuation connecting the multi-Regge with the near-collinear
limit mentioned above. For n = 7, these all-loop results have been recently checked against all
available bootstrap data [180].
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4.4. A simple example: bootstrapping the two-loop six-particle MHV amplitude

With all the bootstrap technology in place, let us now see it at work in a concrete example,
the computation of the first nontrivial correction at L = 2 loops (since the L = 1 correction
is by construction part of the BDS ansatz) to the six-particle amplitude in the MHV helicity
configuration. This subsection is thus intended for the reader who is interested in learning how
to perform actual bootstrap computations, and may otherwise be skipped.

In the first instance, we will construct the space of hexagon functions H6,m containing the
amplitude and its derivatives, for 1 � m � 2L = 4. At m = 1, the first entry condition (55)
requires this space to be

H6,1 : log ai, i = 1, 2, 3. (66)

To go to higher weight, we first need to determine the integrability conditions in our choice
(40) for the six-particle alphabet. To this end, for a generic function F ∈ H6,m we compute
the commutator of double derivatives with the help of the definitions (17) and (18), which
generically takes the form

∑
φα ,φβ∈Φ

Fφα,φβ

[
∂ log φα

∂xi

∂ log φβ

∂x j
− ∂ log φα

∂x j

∂ log φβ

∂xi

]
, (67)

since terms with both derivatives acting on the letters φ automatically commute and cancel
out. Next, we express the letters in terms of the three independent variables of any momentum
twistor parametrization, such as the Gr(4, 6) X -coordinates of the initial cluster, which we
quoted in equation (9), from which the term in brackets in the above equation is trivial to
compute. This gives three equations for each 1 � i < j � 3, which should hold for any value
of the xi. We can therefore convert them into equations for the double coproducts Fφα,φβ with
purely numeric coefficients, either by collecting all terms under a common denominator and
demanding that they hold separately for each coefficient of the polynomials in the numerator,
or by evaluating them for sufficiently many values of the xi. Explicitly, and in the shorthand
notation F[x,y] = Fx,y − Fy,x the thus derived linear equations read

F[a1,a2] = F[a1,m1] = F[a1,y1] = F[a1,y2] − F[a1,y3] = F[m1,y2] − F[m1,y3] = 0, i = 1, 2, 3,

F[m1,m2] + F[m1,m3] = F[m3,a1] + F[a2,m3] + F[m1,m3] + F[y1,y2] = 0, i = 1, 2,

F[a2,y1] + F[a3,y1] + F[m1,y1] = F[a1,y2] + F[a3,y1] + F[m2,y2] = 0,

F[a1,y2] + F[a2,y1] + F[m3,y3] = F[a2,y1] − F[a3,y1] − F[m2,y1] + F[m3,y1] = 0,

F[a1,y2] − F[a3,y1] − F[m1,y2] + F[m3,y1] = F[m2,a1] + F[a3,m2] + F[m1,m2] + F[y1,y3] = 0,

F[m1,m2] − F[y1,y2] + F[y1,y3] − F[y2,y3] = 0.

(68)

With the six-particle integrability conditions (68) at hand, constructing the weight-2 space
of functions is now simply a matter of building an ansatz for the most general form of their Δ1,1

coproduct, obtained by adding another hexagon letter to H6,1 in all possible ways (in compact
symbol notation logφ→ φ),

3∑
i=1

9∑
j=1

ci jai ⊗ φ j, (69)
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and imposing the integrability conditions simultaneously with the extended Steinmann rela-
tions (53) on this ansatz11. In total these are 29 homogeneous linear equations, but when applied
to the above ansatz only 21 of them are linearly independent, and fix an equal number of the
27 unknowns ci j. Thus the coefficients of the remaining six unknowns will span the allowed
weight-two space, and explicitly we find these to be

H6,2 :

⎧⎪⎨
⎪⎩
−
[
(ai+1ai−1) ⊗ mi

]
= −

[
(1 + mi)2 ⊗ mi

]
→−2H−2(mi),

ai ⊗ ai →
1
2

log2 ai,
i = 1, 2, 3. (70)

In the first line we chose to express the letters using their subset mi as the independent variables,

ai =
(1 + mi+1)(1 + mi−1)

1 + mi
. (71)

The simple form of the Δ1,1 coproducts also allows us to immediately identify the correspond-
ing functions, see in particular equation (27) for the first line, indicated with arrows in the
above equation. More precisely, the Δ1,1 coproduct is equivalent to the total differential of a
function and thus specifies it up to a constant, which we are free to choose for example so as to
simplify the functional expression, as is done here. This choice is tantamount to the choice of
base point for the integration of the total differential, which is usually chosen as a potentially
singular point of the functions. So if we wish our basis to be independent of this choice of sin-
gular base point, it is natural to also include the transcendental constants the above functions
evaluate to at these points, in this case ζ2 = H2(1).

Moving on to weight three, to find a basis of functions we similarly form an ansatz of the
six functions of equation (70) tensored with the nine hexagon letters, giving rise to a total of 54
unknowns. We do not need to include ζ2 logφ j in our ansatz since these functions have identi-
cally vanishing double coproducts, and hence correspond to trivial solutions of the integrability
conditions and extended Steinmann relations, which we know beforehand. We then apply the
aforementioned constraints on the right two slots of the Δ1,1,1 coproduct of the ansatz, in the
first instance obtaining 29 × 3 = 87 equations, since these should hold separately for each of
the leftmost coproduct slots, which are algebraically independent. However these reduce to 41
linearly independent equations, whose solution space is then found to be12,

H6,3 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2H−2(mi) ⊗ mi → 2H−3(mi),

−2H−2(mi) ⊗ (1 + mi)
2 →−4H−1,−2(mi),

1
2

log2 ai ⊗ ai →
1
6

log3 ai,

−H−2(mi) ⊗
ai−1

ai+1
− 1

2
(log2 ai−1 − log2 ai+1) ⊗ mi →−H−2(mi) log

ai−1

ai+1
,

F̃ ≡
3∑

i=1

[
1
2

(log2 ai−1 + log2 ai+1) − 2H−2(m1) − 2H−2(m2) − 2H−2(m3)

]
⊗ yi,

. (72)

11 Note that cluster adjacency may be exploited so as to reduce the number of initial unknowns and equations, by
attaching a letter φ j only to those functions whose final entries belong to the neighbor set (46) and (47) of φ j [18, 109].
While this increases the efficiency of the method, for the sake of simplicity we will refrain from applying it here.
12 From this point on, we will employ the compact symbol notation only to the right factor of the Δm−1,1 coproduct,
and otherwise retain the complete functional form of the left factor.
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with i = 1, 2, 3. Notice that unlike all functions encountered thus far, F̃ is parity odd, owing to
the appearance of the parity-odd letters yi for the first time. Of the remaining even functions,
only the last one is not immediately identifiable with the help of the usual HPL definitions,
and requires expressing the difference of the squares of logarithms as a product thereof, using
the mi as the independent variables, and applying the shuffle algebra relations mentioned in
subsection 3.1.

At this stage all functions are defined modulo ζ2 logφ j, the trivial solution we chose not to
include in our ansatz. This ambiguity may be fixed by further imposing the branch cut condi-
tions (63), which were automatically satisfied at lower weight since no analogous ambiguity
existed. While it is easy to check that all even H6,3 functions in equation (72) satisfy them, for
F̃ we find that in the soft limits (62)

F̃yi−1
∣∣
softi

= F̃yi+1
∣∣
softi

= −4ζ2. (73)

The only slightly nontrivial step needed to show this, and more generally to evaluate all kine-
matic limits we will consider later in this subsection, are HPL x → 1/x argument inversion
identities, which for example can be obtained with the package HPL [90]. From the above
equation, it is clear that in order to ensure that F̃ has good branch cuts, we need to redefine it
as

F̃ ≡
3∑

i=1

[
1
2

(log2 ai−1 + log2 ai+1) − 2H−2(m1) − 2H−2(m2) − 2H−2(m3) + 4ζ2

]
⊗ yi, (74)

and now the only ambiguity remaining in its definition is its value at a point. This may then
be fixed by picking this point anywhere on the parity-invariant surface, where by definition
any parity-odd function vanishes. In our choice of basis, F̃ is in fact equal to twice the tran-
scendental part of the six-dimensional hexagon integral studied in [96], where also an explicit
expression of the latter in terms of classical polylogarithms may be found. Finally, in H6,3

we may additionally include the part of the trivial solution which obviously also satisfies the
branch cut conditions, ζ2 log ai, as well as ζ3, by the same reasoning that led to the inclusion
of ζ2 at one weight lower.

Arriving at weight 4, since our goal here is MHV amplitude, which is parity even and obeys
the final entry condition (58), we may simplify the calculation by incorporating these con-
straints directly in our initial ansatz. Namely we tensor the even H6,2 functions with mi, and F̃
with yi. For this subspace of H6,4, which we shall denote H+,MHV

6,4 , we find the basis

H+,MHV
6,4 :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−2H−3(mi) ⊗ mi →−2H−4(mi),

4H−1,−2(mi) ⊗ mi → 4H−2,−2(mi),

Ω̂(2)
i ,

−2ζ2H−2(mi),

i = 1, 2, 3, (75)

where
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Δ3,1Ω̂
(2)
i = Ω̂(2),mi

i ⊗ mi + Ω̂
(2),mi+1
i ⊗ mi+1 − F̃ ⊗ (yiyi+1), (76)

Ω̂(2),mi
i ≡ −4H−3(mi) + 2

[
H−1,−2(mi) + H−1,−2

(
mi+1

)
− H−1,−2(mi−1)

]
+

1
3

log3 ai+1 − H−2(mi−1) log
ai+1

ai
+ H−2(mi) log

ai−1

ai+1

− H−2
(
mi+1

)
log

ai

ai−1
+ 4ζ2 log ai+1 (77)

Ω̂
(2),mi+1
i = Ω(2),mi

i

∣∣∣m j↔mi+1
ai↔ai+1

. (78)

Clearly, Ω̂(2)
i is symmetric under exchange of letters with indices i ↔ (i + 1). Recalling that

F̃ vanishes in the parity-invariant surface containing (intersecting) the collinear (soft) limit, and
using HPL argument inversion identities as before, it is a straightforward exercise to show that
the above functions already satisfy the branch cut conditions (63), and thus require no further
modification. As with lower weights, we also include the constant ζ4 in H+,MHV

6,4 .
Therefore the only task remaining in order to fully specify our H+,MHV

6,4 basis is the value

of Ω̂(2)
i at a point. We can do this by noting that its Δ3,1 coproduct vanishes in the mi−1 →∞

orientation of the collinear limit (65), therefore it reduces to a constant which is natural to also
set to zero. This choice in fact renders Ω̂(2)

i four times the double pentagon integral Ω(2), which
we will encounter again in section 5.2, in its three possible orientations.

Having fully specified Ω̂(2)
i in this manner, it is not difficult to similarly obtain its other two

nontrivial collinear limits, which we will need later on, from the coproduct representation (76).
In the mi →∞ orientation in particular we find,

Δ3,1Ω̂
(2)
i → 4

[(
H−3

(
mi+1

)
+ H−2,0

(
mi+1

)
− 2H−2,−1

(
mi+1

)
+ log miH−2

(
mi+1

))
⊗ mi +

(
H−2,0

(
mi+1

)
− 2H−2,−1

(
mi+1

)
− H−1,−2

(
mi+1

)
+ 4H−1,−1,−1

(
mi+1

)
− 2H−1,−1,0

(
mi+1

)
− 2 log mi(H−1,−1

(
mi+1

)
+ H−1,0

(
mi+1

)
+ H−2

(
mi+1

))
+

(
1
2

log2 mi + ζ2

)
H−1

(
mi+1

))
⊗ mi+1

]
. (79)

This expression can be trivially integrated to yield Ω̂(2)
i up to a constant, since it is equivalent

to an ordinary differential equation for the function with respect to the only surviving finite
variable mi+1. That is, focusing on the coproduct component in question, equation (27) allows
us to replace

H
l (mi+1) ⊗ mi+1 → H0,
l (mi+1) + c. (80)

The integration constant is then fixed by the fact that Ω̂(2)
i should vanish at the mi+1 → 0 end-

point of the mi →∞ collinear line: indeed, this point is an overlap with the mi−1, mi →∞,
mi+1 → 0 soft limit, and the latter in turn also overlaps with the mi−1 →∞ collinear limit,
where as we have seen the function vanishes. In this manner, we finally obtain
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Ω̂(2)
i

4
coll.−−−−→

mi−→∞
H−3,0

(
mi+1

)
− 2H−3,−1

(
mi+1

)
− H−2,−2

(
mi+1

)
+ 4H−2,−1,−1

(
mi+1

)
− 2H−2,−1,0

(
mi+1

)
− 2 log mi

[
H−2,−1

(
mi+1

)
+ H−2,0

(
mi+1

)
+ H−3

(
mi+1

)]
+

(
1
2

log2 mi + ζ2

)
H−2

(
mi+1

)
, (81)

whereas the third collinear limit orientation follows for free by exploiting the flip symmetry of
the function so as to replace mi ↔ mi+1 in the above formula.

Now that the hard part of constructing the function space containing the amplitude is over,
all that is left to determine the latter is to form an ansatz from all the basis functions, and deter-
mine the coefficients by comparing it to special kinematic limits where we have independent
information on the behavior of the amplitude. Taking into account the dihedral symmetry of the
BDS-like normalized six-particle amplitude, our initial ansatz contains merely five unknowns,

E (2)
6,0 = c1

3∑
i=1

[−2H−4(mi)] + c2

3∑
i=1

4H−2,−2(mi)

+ c3

3∑
i=1

Ω̂(2)
i + c4

3∑
i=1

[−2ζ2H−2(mi)] + c5ζ4, (82)

where we remind the reader that the function Ω̂(2)
i is defined by its Δ3,1 coproduct (76) and the

fact that it vanishes in the wi−1 →∞ collinear limit (65).
In order to fix the coefficients of the ansatz we will also consider the collinear limit, where

equations (11), (16) and (64) imply that at this loop order the amplitude has the simple behavior

E (2)
6,0

collinear−−−−−→ 1
2

(
E (1)

6,0

)2
. (83)

More precisely, given that our ansatz has already taken dihedral symmetry into account, we
may focus on a single orientation, say m3 →∞, where the one-loop correction (14) reduces to

E (1)
6,0

collinear−−−−−→
m3−→∞

− 1
2

log2 m1 −
1
2

log2 m3 − 2ζ2. (84)

The final step is to also evaluate our ansatz in the limit. For Ω̂(2)
i this has already been done

in equation (81), and for the other functions we proceed similarly. Recalling also the MPL
identity (24), after the dust settles the difference of the right-hand sides of equations (83) and
(82), evaluated on the m3 →∞ collinear limit will be a sum of functions

logi(m3) ζ jH−l1,−l2,...−lk (m1), (85)

of total weight four, with coefficients depending on the unknowns ci. Since each of these func-
tions is algebraically independent, their coefficients should vanish separately, and solving this
set of equations yields the unique solution

c1 = −2, c2 = −1
4

, c3 =
1
4

, c4 = 1, c5 = 8. (86)
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Table 3. Remaining parameters in the ansätze for the (MHV, NMHV) amplitude after
each constraint is applied, at each loop order. The superscript “∗” (“∗n”) denotes an
additional ambiguity (n ambiguities) which arises only due to lack of knowledge of the
cosmic normalization constant ρ at the given stage. The ‘?’ indicates an ambiguity about
the number of weight 12 odd functions that are ‘dropouts’; they are allowed at symbol
level but not function level. Reproduced from [15]. CC BY 4.0.

Constraint L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

1. H6 6 27 105 372 1214 3692?
2. Symmetry (2, 4) (7, 16) (22, 56) (66, 190) (197, 602) (567, 1795?)
3. Final-entry (1, 1) (4, 3) (11, 6) (30, 16) (85, 39) (236, 102)
4. Collinear (0, 0) (0, 0) (0∗, 0∗) (0∗, 2∗) (1∗3, 5∗3) (6∗2, 17∗2)
5. LL MRK (0, 0) (0, 0) (0, 0) (0, 0) (0∗, 0∗) (1∗2, 2∗2)
6. NLL MRK (0, 0) (0, 0) (0, 0) (0, 0) (0∗, 0∗) (1∗, 0∗2)
7. NNLL MRK (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (1, 0∗)
8. N3LL MRK (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (1, 0)
9. Full MRK (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (1, 0)
10. T1 OPE (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (1, 0)
11. T2 OPE (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

Congratulations, you have just bootstrapped the two-loop correction to the planar six-particle
amplitude, or equivalently lightlike hexagon Wilson loop in planarN = 4 SYM theory! Its ini-
tial computation in terms of Feynman diagrams required a rather nontrivial effort, and resulted
in a 17-page long sum of multiple polylogarithms, that is equivalent to the expressions (82)
and (86).

Let us close this section with a few remarks on how the bootstrap ideas we have presented
in this example apply more generally.

• For the hexagon bootstrap we have considered here, it is possible to further reduce the size
of H6,m, and thus to facilitate the identification of the amplitude, by only including the
constants ζ2n with n � 2 as independent functions. This requires a further modification of
the amplitude normalization by a coupling-dependent constant, dictated by what is known
as a (cosmic Galois) coaction principle [21], see also the review [38], initially carried
out order by order in perturbation theory, and later conjectured to all loops in [169]. The
number of functions remaining after applying consecutive constraints, so as to uniquely
determine the amplitude together with this ‘cosmic’ normalization through six loops, is
summarized in table 3. The difference between our count of five unknowns in our ansatz
(82) and the four unknowns quoted for the MHV case in the L = 2 column and final-entry
row, is precisely due to our redundant inclusion of ζ2 as an independent constant. Though
it does not appear in the table, E (7)

6,0 has also been determined in [15], and E (7)
6,1 is also known

[181].
• Similarly to what we did for the more complicated functions encountered in our example,

in general it proves more economical to recursively represent each weight-m MPL in terms
of its differential or Δm−1,1 coproduct, together with its value at a point [10]. As is dis-
cussed in chapter 3 [79] of the SAGEX review [42], this is not a restriction however,
since explicit G-function representations may be found algorithmically when there exists
a choice of variables such that the symbol letters are rational functions thereof. This is
even simpler when these functions are further restricted to be linear, where algorithmic
integration via fibration bases [182, 183], see also [184, 185], has been implemented in
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the software packages HyperInt [186], MPL [187] and PolyLogTools [91] (with the
first of the three in fact based on a further refinement of this algorithm).

• Building on the aforementioned coproduct representation, a significant efficiency upgrade
that becomes necessary at higher loops is to encode all the information on integrable sym-
bols and functions, as well as of the equations needed to construct them, in terms of tensors
with purely numeric entries [17], see also [21]. The latter tensor has already appeared when
expressing the integrability and Steinmann relations as we did in equation (60), and the
former tensor simply relates a function basis element at weight m to a basis element at
weight m − 1 as well as to the position of a letter of an ordered alphabet. The advantage
of this approach is that it not only provides the most compact way of storing all function
data, but most importantly that it reduces the iterative construction of the function space
exclusively to matrix operations. At the level of the symbol, it has been implemented in
the package SymBuild [148].

5. New frontiers

5.1. n > 7 singularities from tropical Graßmannians

In the previous sections, we have seen the spectacular success of the bootstrap program in
determining scattering amplitudes in planar N = 4 SYM theory at multiplicity n = 6, 7. A
key idea is that given a finite set of singularities, or more precisely symbol letters, the space of
polylogarithmic functions containing the amplitude is also finite at each loop order, and thus
one can efficiently construct it and single out the actual amplitude. For the aforementioned mul-
tiplicities, this set of symbol letters exactly matches the variables of a Gr(4, n) cluster algebra,
thus lending support to the expectation that it should remain stable as the loop order increases.

However even in the ideal setting of the simplest interacting gauge theory, the following
significant conceptual and practical challenges prevented the application of the bootstrap in
order to efficiently compute amplitudes at higher multiplicity n in general kinematics:

(a) Gr(4, n) cluster algebras with n � 8 become infinite [97], and thus provide no predictabil-
ity on what the symbol alphabet should be.

(b) By construction, cluster A-coordinates are rational functions of the Plücker coordinates
〈i jkl〉13. Yet for n � 8, symbol letters that also contain square roots thereof are known to
appear, and can hence not be captured by cluster algebras.

A prototypical example of an integral yielding square-root letters is the one-loop four-mass
box depicted in figure 7, which in particular contains

√
Δi jkl with

Δi jkl ≡ ( f i j fkl − f ik f jl + f il f jk)2 − 4 f i j f jk fkl f il, f i j ≡ 〈i i + 1 j j + 1〉, (87)

see for example [188]. While one could hope that individual Feynman diagram contributions
would cancel out so as to yield a simpler result for the amplitude, it can be shown that this is
the only diagram contributing to a particular component of A(1)

8,2 [32].
Very similar natural resolutions of these longstanding problems were simultaneously pro-

posed in [61, 189, 190] based on the relation of cluster algebras with geometric objects known
as positive tropical Graßmannians [60, 191], or equivalently their duals as constructed by

13 This is a direct consequence of the mutation rule (32) or (37), although in fact all denominators cancel, and in the
end A-coordinates simplify to homogeneous polynomials of the four-brackets or Plücker coordinates, as seen e.g. in
equation (42).
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Figure 7. The one-loop four-mass box formed by n � 8 cyclically ordered momentum
twistors, distributed in the four corners as indicated by four of their labels.

‘stringy canonical form’ integrals [125]. In the first instance, this resolution, which we will
describe in more detail in the next subsections, may be pictorially represented as in figure 8. It
boils down to explicit predictions for the n = 8 alphabet, and more recently it has been general-
ized in principle to any n, and in practice to n = 9 [62]. These predictions are in agreement with
all currently known data for amplitudes at these multiplicities [142–144] and for n = 8 they are
also backed by a related but distinct approach based on scattering diagrams and wall-crossing
[192]14. They thus pave the way for bootstrapping new results.

5.1.1. The positive tropical Graßmannian. Let us begin by defining this object, before explain-
ing how it leads to finite alphabet predictions. The simplest way to define the positive part [60]
of the tropical Graßmannian [191] Tr+(k, n), is by first expressing all Gr(k, n) Plücker variables
in terms of the X -coordinates of the initial cluster of the corresponding cluster algebra, which
can be constructed with the web algorithm presented in the former paper. Then, one tropicalizes
this parametrization of the Plücker variables, which practically means one replaces

tropicalization :

addition −→ minimum

multiplication −→ addition

C
∗ constants −→ 0

0 −→ ∞

. (88)

14 It has been observed that an alternative means for reproducing the square-root letters found in the known data,
is by solving polynomial equations associated to certain plabic graphs [193–195]. As soon as one attempts to also
incorporate rational letters in this approach, however, non-plabic graphs are required as well [196]. In this case the
solution space includes all cluster variables of G(4, n), that is the alphabet becomes infinite again.
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Figure 8. Rough sketch of how a finite subset of variables of Gr(k, n) cluster algebras
may be selected with the help of their associated positive tropical Graßmannians.

We have already seen the Gr(4, 6) X -coordinate parametrization in equation (9), so to be
concrete let us tropicalize the Plücker variable shown in equation (10),

〈1346〉 = 1 + x1 + x1x2 → min(0, x1, x1 + x2). (89)

The tropical hypersurface for any such tropicalized polynomial is the (d − 1)-dimensional
surface in R

d where the minimum is attained twice simultaneously15, see the left-hand side
of figure 9 for the case of 〈1346〉. Since the (in)equalities enforcing these are invariant under
rescaling, we may equivalently describe the hypersurface with integer-valued vectors

g = (−1, 0, 0) g′ = (0, 1, 0), g′′ = (1,−1, 0). (90)

The positive tropical Graßmannian Tr+(4, n) is then defined as the union of tropical
hypersurfaces for all 〈i jkl〉. Being a solution of linear (in)equalities, it is inherently finite-
dimensional. Its building blocks are one-dimensional intersections of tropical hypersurfaces
emanating from the origin, known as rays. A positive span of certain sets of rays then yields
the regions in Rd bounded by the tropical hypersurfaces, where all tropicalized 〈i jkl〉 are con-
tinuous. These are the cones, and the set of all cones then forms a (tropical) fan. The full
Tr+(4, 6) fan is illustrated on the right-hand side of figure 9.

One may also consider further generalizations of Tr+(4, n) where any subset of 〈i jkl〉
(or in fact any A-coordinate of the corresponding cluster algebra) is tropicalized, lead-
ing to different fans but with similar properties with what we have described above. Since
Tr+(4, n) is not invariant under parity, which is a symmetry of the MHV amplitudes, a partic-
ularly natural choice is to tropicalize the maximal parity-invariant subset of Plücker variables
〈i − 1i j − 1 j〉, 〈i j − 1 j j + 1〉. It is therefore this choice of partial tropicalization of the posi-
tive Graßmannian that we will adopt from now on, and we will denote it as pTr+(4, n). Further
choices and their implications are discussed in [197].

15 For Gr(k, n), d = (k − 1)(n − k − 1), but from this point onwards we will specialize to k = 4.
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Figure 9. Left: the 〈1346〉 tropical hypersurface, given by the half-planes (in the
transverse x3 direction) (x1 = 0, x2 > 0), (x1 = −x2, x2 < 0), (x2 = 0, x1 < 0) where
min(0, x1, x1 + x2) is attained twice simultaneously. From reference [190]. Right: the
Tr+(4, 6) fan. Reproduced from [190]. CC BY 4.0.

5.1.2. A tropical sieve for rational letters. Now that we have defined (p)Tr+(4, n), we can
describe their relation to cluster algebras. Starting with the pTr+(4, 6) = Tr+(4, 6) fan to the
right of figure 9, careful observation reveals that it is dual to the Gr(4, 6) cluster polytope
shown in figure 3! This can be seen by drawing a vertex inside each cone, and connecting them
with lines if they are separated by a plane. More rigorously, it can be proven that any cluster
A-coordinate a may be uniquely written as [101]

a =

d∏
i=1

agi
i · F(x1, . . . , xd)

FT(y1, . . . , yd)
, (91)

where ai, xi are the A-coordinates and X -coordinates of the initial cluster, and the precise
definition of the so called coefficients yi and (tropical) F(T)-polynomial will not be important
for our purposes. What matters in the above formula is that each A-coordinate is in one-to-one
correspondence with an integer vector (g1, . . . , gd) that defines a ray similarly to equation (90),
each cluster then defines a cone spanned by the rays of its A-coordinates, and finally the entire
cluster algebra defines a cluster fan.

So in the Gr(4, 6) example the cluster fan coincides with the tropical fan, and more generally
the former triangulates the latter16 [60]. This fact has already been used to compute tree-level
amplitudes of generalized biadjoint scalar theory [199], defined as a natural extension of the
Cachazo–He–Yuan formulation [200, 201] for the corresponding amplitudes in ordinary biad-
joint scalar theory, which are essentially given by the volume of the tropical Graßmannian
[202]. There, it was also pointed out that the fan of finite cluster algebras may contain not only

16 More precisely, due to different choice of conventions it is the fan of the dual cluster algebra, obtained by trans-
posing its exchange matrices or inverting the arrow direction in its quivers [198], that triangulates the tropical fan.
Combinatorially, the cluster fan and its dual are equivalent.
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Figure 10. Illustrative examples of the (redundant) triangulation of a tropical fan by a
(a) finite and (b) infinite cluster algebra. Each of the figures depicts two cones of a three-
dimensional fan intersected with the unit sphere S2 in black. The cones and the redundant
rays from the redundant triangulation are drawn in red, those from the non-redundant
triangulation in blue. Reproduced from [190]. CC BY 4.0.

Figure 11. The A(1)
1 cluster algebra, where up to orientation each quiver is mapped back

to itself after one mutation. Reproduced from [62]. CC BY 4.0.

additional boundaries compared to the tropical fan, but also additional or redundant rays, as
shown on the left of figure 10.

A key insight behind the works [61, 189, 190] is to turn this logic around in the case of
infinite cluster algebras, where it is natural to expect that their infinities are due to infinitely
redundant triangulations, as shown on the right of figure 10. Therefore we may prevent this
from happening by selecting the finite subset of cluster variables whose rays coincide with the
tropical rays! Concretely, starting from the initial cluster of the Gr(4, n) cluster algebra, where
all cluster variables have non-redundant rays, after every mutation we compare the ray of the
resulting cluster variable to the set of all pTr(4, n) rays, which may be computed independently
e.g. with the program polymake [203]. We then stop mutating whenever a redundant ray is
reached. It is in this sense that pTr(4, n) acts as a sieve as shown in figure 8.

5.1.3. Square-root letters from infinite mutation sequences. At this point, we have resolved
the first challenge we have discussed at the beginning of this section. How about the second
challenge, associated to the appearance of square-root letters in the alphabet of the amplitude?
To this end, an important observation comes from existing studies in the mathematical liter-
ature, of sequences of cluster mutations that map a quiver back to itself, and thereby lead to
recursion relations between the A-coordinates. In figure 11 we present the simplest example
of an infinite cluster algebra where this occurs, of affine rank-2, or A(1)

1 in the extended Dynkin
diagram classification, type. Very interestingly, the limit of consecutive A-coordinates along
this infinite mutation sequence becomes [204],

lim
i→∞

ai

ai−1
=

a2

2a1

(
1 + x1 + x1x2 +

√
(1 + x1 + x1x2)2 − 4x1x2

)
(92)

with x1 = 1/a2
2, x1 = a2

1.
The second main idea of references [61, 189, 190] was to thus also consider infinite muta-

tion sequences, so as to obtain generalized cluster variables of the form (92), which should
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Figure 12. Quiver of a Gr(4, 8) cluster containing an A(1)
1 subalgebra highlighted by

the blue nodes. The xi labels denote the X -coordinates of the cluster. Reproduced from
[190]. CC BY 4.0.

correspond to square-root symbol letters of amplitudes! Indeed, Gr(4, n) cluster algebras with
n � 8 do contain A(1)

1 subalgebras17, as shown in figure 12. The fine print is that the analogous
to equation (92) limit value also depends on all the cluster variables held frozen in the infinite
mutation sequence, hence in the language of frozen variables one would have to separately
analyze these for every cluster of Gr(4, n) containing an A(1)

1 subalgebra.
Nevertheless there exists a framework for simultaneously describing any choice of frozen

variables [101]: it involves grouping them into coefficients,

(93)

associated to the unfrozen variable they connect to, and defining mutation rules for them analo-
gous to those of the A- orX coordinates, independently of their constituent frozen coordinates.
The simplest case of principal coefficients amounts to yi = ad+i, i = 1, . . . , d, namely one
frozen variable attached to every unfrozen one.

In [190], infinite A(1)
1 mutation sequences with principal coefficients were analyzed as a

proof of concept, see also [205]. References [61, 189] additionally found the generating func-
tional of the mutation sequences for the particular case of frozen variables needed to embed
them inside the Gr(4, 8) cluster algebra. In [61] it was furthermore noticed that when embed-
ding A(1)

1 in a larger cluster algebra, it is possible to also take the direction of approach to the
limit ray into account, so as to associate many square-root letters to each limit ray18. It was also
proposed how to do this in a particular fashion, that was subsequently supported by a comple-
mentary approach based on scattering diagrams [192]. In this manner, one obtains a candidate
eight-particle alphabet consisting of 272 rational and 18 square-root dual conformal invariant
letters, which as a highly nontrivial check contains all those found in explicit computations of
A(2)

8,1 [143] and more recently A(3)
8,0 [144].

Finally, infinite higher-rank A(m)
1 mutation sequences with general coefficients were worked

out in [62], and this provides the missing link for predicting finite symbol alphabets in prin-
ciple at any multiplicity n. In the latter reference these general results were also specialized

17 A subalgebra of a cluster algebra is obtained by freezing, i.e. not mutating certain variables in one of its clusters.
For the A(1)

1 subalgebra of figure 12, this would be all variables but x1, x9.
18 As with the selection of cluster variables/rational letters, also the limit ray must coincide with a pTr(4, n) ray so as
not to discard the associated square-root letters.
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to the n = 9 case, yielding 3078 rational and 2349 square-root letters expected to appear in
the amplitude. Support for the correctness of this proposal comes again from the fact that it
contains the alphabet appearing in the independent determination of A(2)

9,1 [142], as well as from
the agreement of the entire rational part with an alternative proposal based on tensor diagrams
[206]. The n = 8 and n = 9 alphabets are too length too quote here, but they may be found in
the ancillary files of [62].

While resolving the longstanding issues we presented at the beginning of this subsection, the
line of research we have described has also led to very interesting open questions that deserve
further inquiry. For example, at n = 9 we have for the first time the appearance of square-
root letters whose radicand does not correspond to that of the one-loop box (87), and it would
thus be worthwhile to identify specific Feynman integrals giving rise to them. Perhaps more
importantly, a new qualitative feature starting at this multiplicity is the existence of pTr(4, n)
rays which are inaccessible from the Gr(4, n) cluster algebra even when enlarging the latter so
as to also include limits of infinite mutation sequences. It is currently unclear if the missing
rays are associated to more intricate algebraic letters beyond square roots, or point towards the
need for more complicated, elliptic generalizations of MPLs starting to contribute at n = 9.
Indeed, while it is known that such functions certainly appear at n = 10 [207], the possibility
that these also appear at lower multiplicity cannot be excluded at the moment.

Even in the latter case, as we have stressed the key prerequisite for the bootstrap approach
is the finiteness of the expected space of functions at each loop order, which is not necessarily
restricted to MPLs. For example, the symbol calculus has been developed also for elliptic
generalizations of MPLs [208], and its application on the elliptic double box in fact reveals
that it is more similar to the non-elliptic case than previously expected [209]. The coaction and
hence also the symbol contained in it has in fact been defined for even more general classes of
periods and Feynman integrals [210, 211], see additionally the recent review [212] on Feynman
integrals involving special functions beyond MPLs. Hence, also for quantities expressible in
terms of these types of functions, what is needed to render them amenable to the bootstrap is
a principle dictating a finite set of integration kernels contributing to them. In light of this, it
would be very exciting to find a means to associate this kind of generalized symbol letters to
the pTr(4, n) missing rays, and explore their relevance for scattering amplitudes and Feynman
integrals.

5.2. Bootstrapping Feynman integrals

While the analytic bootstrap approach to perturbative quantum field theory has been initiated
and more extensively developed in the context of N = 4 SYM amplitudes, that we have pre-
sented so far, the same methodology is applicable in many other situations as well. This in
particular includes individual Feynman integrals that belong to the class of multiple polyloga-
rithms defined in section 3.1, especially if the are pure, meaning that they have uniform weight,
and their rational coefficients do not depend on the kinematics. Identifying such integrals is
possible at the level of the integrand by examining their leading singularities [214], and if nec-
essary modifying the integrals by taking out any overall factors, or by choosing the numerators
appropriately, such that these leading singularities are constant [58].

5.2.1. Survey of explicit results. The constant leading singularity criterion was originally
understood in the realm of N = 4 SYM as well, and so the first pure weight integrals that
were thus identified, and later on bootstrapped, were planar, finite and dual conformal in strictly
four dimensions. These most notably contain the six-point double pentagon integral Ω(2), that
has already appeared in the construction of our hexagon function space in subsection 4.4, as
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Figure 13. Examples of planar, four-dimensional finite dual conformal integrals that
have been bootstrapped. Top left: six-point double pentagon ladder Ω(L) [9, 31] (see
also [33] for its generalization to massive left- and right-most legs through L = 4). Bot-
tom: seven-point double pentagons [20]((B) and (C), the latter also at L = 3), [32] ((A)
and (C)). Top right: eight-point L = 3 wheel [34]. Reproduced from [213]. CC BY 4.0.

well as its generalizations to higher loops or legs, some of which are depicted in figure 1319.
The wavy lines denote numerators carefully chosen so as to render the integrals pure, see also
chapter 7 [114] of the SAGEX review [42] for a concrete one-loop example. The fact that at
consecutive loop orders these integrals are related by differential equations [216] or equiv-
alently recursive integral representations [217], allows one to easily locate them inside the
expected function space. Combined with integrability, bootstrap methods have also led to a
closed form expression for a doubly infinite class of four-point fishnet integrals [218].

As with many computational tools first developed in the laboratory of the simplest gauge
theory, the leading singularity analysis for finding pure weight integrals is generally applica-
ble, and for integrands only having simple poles in the integration variables [219], it has in fact
been automated in the DlogBasis package [220]. With the help of this analysis, the Feynman
integral bootstrap has also been applied to the nonplanar cases relevant for massless five-point
scattering shown in figure 14 [30], under the additional assumption that the corresponding sym-
bol alphabet may be obtained from permutations of the known planar two-loop alphabet [49].
In order to fix an ansatz for the integral, additional information may be generically obtained by
taking limits where it reduces to other simpler integrals that are already known or can be com-
puted simply, either exactly or as series expansions, or by taking discontinuities that decrease
the weight and hence also the complexity.

Finally, it is worth mentioning another type of bootstrap that is closely related to the dif-
ferential equations obeyed by a basis of master integrals contributing to a particular process,
and represented by the vector f, with respect to the independent kinematic variables 
x. If the
integrals in question are expressible in terms of MPLs, then finding the transformation that
brings the differential equations to canonical form [221]20,

19 Many of these integrals may be also computed by direct methods, see for example [215] forΩ(L) through L = 10, and
[213] for the type A, B seven-point double pentagon ladders through L = 4, as well as their eight-point generalizations
through L = 3 and L = 2, respectively.
20 The notion of master integrals and the (canonical) differential equations they obey are discussed in more detail in
chapter 3 [79] of the SAGEX review [42]. Different strategies for transforming differential equations to canonical
form have been implemented in publicly available software such as epsilon [222], Fuchsia [223], Canonica
[224], Initial [225] and Libra [226].
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Figure 14. Nonplanar two-loop five-point massless integrals that have been
bootstrapped up to O(ε0) in dimensional regularization. Reproduced from [30].
CC BY 4.0.

df(
x; ε) = ε
[∑

i
Ai d log φi(
x)

]
f(
x; ε), (94)

where d =
∑

jdx j∂x j , φi are the letters and Ai are constant matrices, is a very powerful method
for algorithmically evaluating them in closed form to arbitrary order in the dimensional regu-
lator ε = (4 − D)/2. That is, when supplemented with boundary conditions, and provided that
the letters are rational functions of the kinematic variables. If algebraic letters such as the square
roots we saw in the previous section appear, under certain conditions variable transformations
that rationalize them may also be found algorithmically [227], and have been implemented in
the package RationalizeRoots [228]. Given that this however does not always work, an
alternative presented in [35, 36], as also reviewed in the textbook [81], is to match f and its
derivatives to an ansatz built out of MPLs with the known alphabet, constructed by searching
for admissible arguments of these MPLs. In particular, this search is guided by the requirement
that the letters of the candidate MPLs should factorize over the known alphabet, and builds on
analogous methods previously developed for rational alphabets [229].

5.2.2. The role of cluster algebras. It is important to note that a prior knowledge (or edu-
cated guess) of the symbol alphabet is either strictly necessary for the amplitude or integral
bootstrap, or tremendously helpful for bringing the differential equations of master integrals
to canonical form, as the remaining dependence of (94) on the purely numeric matrices Ai can
be determined much more easily. We have seen in subsections 3.3 and 5.1 that cluster alge-
bras and their generalizations may give strong clues about the right alphabet, however until
recently their appearance was confined to the realm of N = 4 SYM theory. Excitingly, this
changed with a recent publication [23], where it was discovered that cluster algebras underlie
the analytic structure of a host of Feynman integrals in dimensional regularization. This most
notably includes all known four-point integrals with one off-shell (or equivalently massive)
leg, two-loop planar and nonplanar [230, 231], L-loop ladders [232, 233], and more recently
the three-loop tennis court [234, 235], see also figure 15 for some examples. Specifically, the
alphabet of this entire class of integrals is described by a C2 cluster algebra.

In the remainder of this subsection, let us discuss how the latter connection was established,
and what it implies. The C2 cluster algebra is the first non-simply laced case we encounter,
so given that it has no standard quiver representation, we will define it directly in terms of
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Figure 15. Left: the exchange graph of the C2 cluster algebra, with cluster coordinates
ordered as ai, ai+1. Right: examples of four-point one-mass integrals whose alphabet is
given by the C2 cluster coordinates. Reproduced from [23]. CC BY 4.0.

the exchange matrix B of its initial cluster. The elements bi j of (the principal part of) B are
essentially given by those of the associated Cartan matrix C by [99]

bi j = (−1)sign(i− j)
(
ci j − δi jcii

)
, (95)

therefore for the C2 case without frozen variables we have,

C =

(
2 −1
−2 2

)
⇒ B =

(
0 1
−2 0

)
. (96)

Mutating the initial A-coordinates {a1, a2} according to the rules (37) and (38), then yields
in total six A-coordinates, arranged in six clusters as depicted in the corresponding exchange
graph on the left of figure 15.

One the other hand, the aforementioned integrals are expressible in terms of the well-
studied class of two-dimensional harmonic polylogarithms (2dHPLs) [85, 230], which have
the alphabet, in the dimensionless variables z1 = 2(p1 · p2)/P2 and z2 = 2(p2 · p3)/P2 where
the momentum labels as shown in the above figure,

Φ2dHPL = {z1, z2, z3, 1 − z1, 1 − z2, 1 − z3}, (97)

with z1 + z2 + z3 = 1. Remarkably, the 2dHPL alphabet (97) is equivalent to the C2 alphabet
given in the left of figure 15, as can be readily verified by applying the variable transformation

z1 = − a2
2

1 + a1
, z2 = −1 + a1 + a2

2

a1(1 + a1)
. (98)

Transformations of this type between equivalent alphabets may be searched for systematically
in a fashion analogous to the search for admissible MPL arguments, discussed a few para-
graphs above. For example, the fact that z1, z2 are both variables and symbol letters implies
that their logarithm should be a linear combination of logarithms of the A-coordinate alphabet
of figure 15, and that 1 − zi should factorize over this alphabet.

It is very interesting to note that this cluster algebra connection also extends to a variety of
processes in quantum chromodynamics, where the aforementioned integrals contribute as mas-
ter integrals at two loops. These include for example three-jet production in electron–positron
annihilation [236], as well as vector boson plus jet [237], or perhaps more importantly, Higgs
boson plus jet production [238] in proton–proton collisions (in the massless and the heavy-
top limit, respectively). As is also reviewed in chapter 1 [41] of the SAGEX review [42], the
latter amplitude is in fact a three-particle form factor. These quantities are defined as vacuum
expectation values of local operators between the vacuum and an n-particle external state, so
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they are between the fully on-shell amplitudes and the fully off-shell correlators21. In the case
at hand, the operator H Tr F2, where H is the Higgs boson and F the gauge field strength, is
the leading effective vertex in the effective field theory that arises when integrating out the top
mass. The analogous quantity in N = 4 SYM, which will be the focus of the next subsection,
replaces this operator with any component of the stress-tensor multiplet of the theory, can also
be expressed in terms of the same set of master integrals, and was first computed in [28].

Finally, we turn to the implications of the C2 cluster algebra for the 2dHPL master integrals
and the physical quantities they compute. We have seen in subsection 3.3 that in N = 4 SYM
theory cluster algebras additionally restrict which symbol letters can appear next to each other,
could we hope for something similar here as well? Surprisingly, it turns out that the following
subset of cluster adjacency restrictions hold,

(99)

to all orders in ε! The same restrictions were also independently observed when bootstrap-
ping the N = 4 SYM three-particle form factor [29], and as in the case of amplitudes they
considerably reduce the size of the corresponding function space.

Can we understand why only this subset and not all of the adjacencies occur? To this end,
it is very suggestive that C2 is the parity-invariant surface of the A3 cluster algebra, relevant
for six-particle scattering: this readily follows by inspecting their cluster polytopes, shown in
figures 3 and 1522. In more detail, with the help of X -coordinates it can be shown that the six
nonvanishing A3 letters of equation (40) (to avoid clash of notation, in the latter equation we
switch a1 → a, a2 → b, a3 → c), are related to the C2 cluster variables as

a1 =
√

a, a3 =
√

c, a5 =
√

b, a2i =
√

m3−i, i = 1, 2, 3. (100)

With this identification, we observe that the adjacency restrictions (99) precisely become the
extended Steinmann relations for six-particle massless scattering (53)! This observation may
point towards the right formulation of the (extended) Steinmann relations at lower multiplicity
n < 6, which is currently not well understood23. Further aspects of cluster-algebraic structures
and their generalizations to Feynman integrals have been discussed in [27, 33, 34, 139, 240],
and providing a first-principle derivation of their presence would be a very interesting goal for
the future.

5.3. Bootstrapping a three-particle form factor

In the previous subsection, we saw that two-loop three-particle form factors are expressible
in terms of the 2dHPL alphabet (97), whose equivalent description in terms of a C2 cluster
algebra makes plausible that the same holds true also at higher loops. In N = 4 SYM theory,
while the computation of the two-loop form factor of the stress tensor multiplet was carried out
by unitarity methods, at the same time it was also shown that its symbol may also be uniquely

21 Protected correlators, their connection to scattering amplitudes in N = 4 SYM, and related bootstrap approaches
for computing them are also discussed in chapter 8 [239] of the SAGEX review [42].
22 This is an instance of a more general folding procedure, which carries over from Dynkin diagrams to cluster algebras,
and allows one to embed Bn, Cn, F4 and G2 inside A2n−1, Dn+1, E6 and D4, respectively [102].
23 We emphasize however that the adjacency conditions (99) do not correspond to discontinuities with respect to
two-particle Mandelstam invariants.
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determined by a bootstrap approach very much alike the one we have described for scattering
amplitudes [28]. However what prevented the application of this approach at higher loops was
the absence of enough independent information on the behavior of the form factor in kinematics
limits, in order to uniquely identify it inside the expected space of functions. This limitation
has been recently overcome, with the extension of the integrability-based pentagon OPE for
predicting the near-collinear limit expansion of amplitudes and Wilson loops, mentioned in
subsection 4.3, also to form factors [241–243]. As a result, the form factor in question has
been computed through five loops in [29], and results through eight loops also appeared very
recently [244].

While a detailed exposition of the three-particle form factor bootstrap would be out of the
scope of this review, let us present some of the main features, to also illustrate the close sim-
ilarity to the amplitudes case. The quantity of interest is the infrared-finite part of the form
factor, which was originally obtained by factoring out the exponentiated one-loop form factor
[28], in other words the corresponding BDS ansatz,

F3 = FBDS
3 exp[R]. (101)

In this normalization, by convention the finite part was chosen to be represented by its loga-
rithm, or remainder function R. However it turns out to be advantageous to pull out the finite
kinematic-dependent part of the one-loop form factor, so as to define the BDS-like normalized
form-factor E [29]24,

E = e
1
4ΓcuspE(1)+R, (102)

where its one-loop contribution is given by

E(1) = −
3∑

i=1

[
2Li2(1 − zi) + ln zi ln zi+1

]
+ 4ζ2, (103)

in terms of the kinematic variables we have defined above equation (97). Then, at weight 1 the
space of functions F1 containing E and its derivatives is dictated by the first entry condition,

F1 = {log zi}, i = 1, 2, 3, (104)

and at higher weight it is constructed from the alphabet (97), ensuring that it obeys the inte-
grability condition (59) or (60), the adjacency condition (99), which may be equivalently
formulated as

F1−zl,1−zm = 0, l = m, (105)

as well a branch cut condition analogous to equation (62),

F1−zi

∣∣∣∣∣ zi→1
zi+1→0

= 0, i = 1, 2, 3. (106)

An important difference between amplitudes and form factors, however, is that in the latter
case the branch cut condition also removes symbol-level functions.

24 Further refinement of the normalization so as to reduce the number of independent constants is possible, but we will
not describe this here.
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Once the function space at the desired weight has been constructed, then an ansatz for E is
uniquely fixed by imposing its full zi → z j permutation symmetry, the restriction on the

final symbol entry of E ∈ 1 − zi

zi
, (107)

the fact that in the strict collinear limit in one orientation, e.g.

lim
z2→0

R = 0, (108)

and finally constraints coming from the aforementioned near-collinear OPE.
A few final remarks are in order: first, in [28] the surprising observation was made, that

when normalized in the same fashion, the maximal transcendental part of the leading-color
term of the two-loop Higgs amplitude [238] discussed in the previous subsection, coincides
with R(2) at symbol level (but not quite at function level [85]). It would be very interesting to
find out if this agreement persists also at higher loops. Second, in the previous subsection we
saw that the alphabet of the six-particle amplitude reduces to the alphabet of the form factor in
the parity invariant surface. Quite remarkably, this kinematic relation also extends to the level
of dynamics: from the existing data on both sides, it was observed that the MHV six-particle
amplitude on the parity-even surface coincides with the form factor, up to certain variable
substitution and the reversal of the order of letters in its symbol [245]! More precisely, the
latter symbol-level order reversal also extends to functions up to factors of π, and is captured
by the antipode operation on the Hopf algebra structure of MPLs, as is reviewed e.g. in [85]. It
would be very interesting to understand the physical origin of this correspondence, and explore
whether it persists for amplitudes and form factors with more legs or different MHV degree.
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