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Abstract

Cameras are rapidly becoming the choice for on-board sensors towards space

rendezvous due to their small form factor and inexpensive power, mass, and

volume costs. When it comes to docking, however, they typically serve a sec-

ondary role, whereas the main work is done by active sensors such as lidar. This

paper documents the development of a proposed AI-based (artificial intelligence)

navigation algorithm intending to mature the use of on-board visible wavelength

cameras as a main sensor for docking and on-orbit servicing (OOS), reducing the

dependency on lidar and greatly reducing costs. Specifically, the use of AI enables

the expansion of the relative navigation solution towards multiple classes of sce-

narios, e.g., in terms of targets or illumination conditions, which would otherwise

have to be crafted on a case-by-case manner using classical image processing

methods. Multiple convolutional neural network (CNN) backbone architectures

are benchmarked on synthetically generated data of docking manoeuvres with

the International Space Station (ISS), achieving position and attitude estimates

close to 1 % range-normalised and 1 deg, respectively, an established rule of

thumb for the navigation measurement accuracy during final approach. The
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ofintegration of the solution with a physical prototype of the refuelling mechanism

is validated in laboratory using a robotic arm to simulate a berthing procedure.

Keywords: AI, deep learning, spacecraft, navigation, docking and berthing

List of Acronyms

This document is incomplete. The external file associated with the glossary

‘acronym’ (which should be called aa10385-ftft.acr) hasn’t been created.

Check the contents of the file aa10385-ftft.acn. If it’s empty, that means

you haven’t indexed any of your entries in this glossary (using commands like5

\gls or \glsadd) so this list can’t be generated. If the file isn’t empty, the

document build process hasn’t been completed.

Try one of the following:

• Add automake to your package option list when you load glossaries-extra.sty.

For example:10

\usepackage[automake]{glossaries-extra}

• Run the external (Lua) application:

makeglossaries-lite.lua "aa10385-ftft"

• Run the external (Perl) application:

makeglossaries "aa10385-ftft"15

Then rerun LATEX on this document.

This message will be removed once the problem has been fixed.

1. Introduction

For the majority of the 64-year history of space launches, satellites have been

seen as an expendable medium: once the propellant is depleted, the mission is20

ended. Northrop Grumman’s Mission Extension Vehicle (MEV) programme has

recently challenged this paradigm by achieving the first teleoperated on-orbit
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market segment where the spacecraft’s life cycle can be extended beyond its

original planning, avoiding the costs of launching, manufacturing, and keeping a25

new one. The success of the mission has attracted the attention of the United

States Department of Defence, which has awarded the company a contract to

study the possibility of servicing commercial and government satellites using

robotics technology [7].

Despite its breakthrough, it is incontrovertible that the MEV was built on30

the shoulders of previous demonstrators: for example, the Kepler Automated

Transfer Vehicle’s (ATV) first refuelling operation of the International Space

Station (ISS) to supply the station’s thrusters in 2011 [3], or NASA’s Robotic

Refuelling Mission which demonstrated the technology to refuel satellites in

orbit by robotic means in 2014 [20]. More recently, ESA has also recognised the35

potential for this new market segment by opening up calls for ideas related to

OOS, having previously invested M€50 in support for research and development

of relevant technologies [1]. Overall, OOS and manufacturing alone is projected

to have a cumulative global market size of over B$4.4 by 2030 [2]. Still, existing

satellites were, and still are, built without thinking of their serviceability and,40

more specifically, refuelling, which is a fulcral part of the servicing operations of

these assets and represents a significant cost saving measure.

Paramount to the safe accomplishment of refuelling, and OOS in general,

is the estimation of the relative states between the service vehicle (SV) and

the client or target vehicle (TV) during docking or berthing. At such small45

distances, this entails the estimation of the six degree-of-freedom (DOF) relative

pose, which is typically achieved with two types of optical sensors: lidar and

camera sensors [36]. However, current flight-proven solutions using either sensor

require optical corner-cube reflectors to be mounted on the TV [9]. The viability

of large-scale OOS involves rendezvous and docking or berthing (RVD/B) via50

autonomous navigation with minimal or no human input, and the cost associated

with active sensors can hinder the massification of orbital servicers. Indeed,

cameras are already rapidly becoming the choice for on-board sensors towards

3
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mass, and volume costs. The past three years have witnessed a consolidation of55

AI-based (artificial intelligence) techniques for RV, particularly through deep

learning (DL), using monocular cameras which do not make assumptions about

the level of cooperation of the target [29]. However, this has not yet been

established as a navigation approach for docking.

2. Related Work60

The use of vision-based sensors (VBSs) for RVD/B has traditionally consisted of

establishing geometric relationships derived from the laws of imaging on the focal

plane of a lens [9]: the SV illuminates retro-reflectors on the TV-side, which are

configured according to a known pattern and are then imaged by the on-board

camera. By knowing this configuration (i.e., the relative distances between the65

pattern markers), and the intrinsic parameters of a calibrated VBS (i.e., the

field of view [FOV] and focal length), information on the SV-TV range, line of

sight direction, and relative attitude can be computed by detecting said markers

on each image. In the context of RVD/B, navigation requires the estimation

of said quantities, which make up the 6-DOF relative pose Tbt mapping the70

target vehicle frame of reference
⃗
Ft to the service vehicle frame

⃗
Fb (Fig. 1). This

entails the need for relative navigation sensors which, in the case of a VBS, define

two extra frames: the physical camera frame
⃗
Fc (which can often be assumed

coincident with
⃗
Fb without loss of generality) and the image plane frame

⃗
FΠ

containing the image of the TV and where the image processing (IP) tasks occur.75

In the computer vision literature, this problem is called the perspective-n-

point (PnP [31, 10]) problem. PnP can be used with only four markers to retrieve

the full relative pose, although additional markers can be used to robustify the

solution. Traditionally, cooperative spacecraft markers have been designed with

concentric patterns of varying sizes to cover different operational sub-ranges80

and maintain acceptable resolution. While fiducial marker designs can be small,

for long-range targets, multi-reflector spots are sometimes needed due to the

4
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Figure 1: Frames of reference involved in the relative pose estimation problem for RVD/B [25].

low power density of the return signal [9]. Recently, there has been renewed

interest in cooperative pose estimation literature, driven by the anticipation of

autonomously approached spacecraft in future OOS missions. ArUco markers,85

popular in robot navigation and augmented reality, have been proposed as an

alternative for docking operations [32]. These have the advantage a single marker

being sufficient in providing the number of correspondences needed to retrieve

the relative pose. Despite their simplicity, though, multiple ArUcos of different

sizes are often used for robustness, as a reliable marker detection pipeline is90

crucial for accurate PnP-based pose estimation [34]. Furthermore, cooperative

markers cannot be applied to existing satellites under missions which had not

originally been designed with servicing in mind.

In contrast, modern AI techniques, namely through the advent of DL and

deep neural networks (DNNs), have gained resurgence in the field of computer95

vision from the beginning of the previous decade onward, due to advances in
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large-scale datasets such as ImageNet [8]. The eruption in popularity of DL

arguably occurred in 2012 with AlexNet [18], a convolutional neural network

(CNN) which won the ImageNet Large Scale Visual Recognition Challenge with100

a top-5 classification error more than almost 11 percent points lower than the

runner-up; the novel use of GPU-based training massively accelerated the process,

enabling deep learning to be competitive. CNNs, i.e., DNNs tailored to process

image inputs through efficient convolution kernels, later became the norm, as

new designs have competed in the challenge each year, resulting in exponential105

classification score improvements. Two notable examples are GoogLeNet [30],

marked not only by a very deep architecture, but also by the implementation of

parallel layers to extract multi-scale features; and ResNet [12], which introduced

residual connections allowing the breakthrough to even deeper architectures.

Most of these state-of-the-art CNNs have been open-sourced and model weights110

made available from pre-training on image classification tasks using the ImageNet

dataset, which has since contributed to the swift evolution of DL in general and

in the adoption of such models as CNN front-ends.

It took more than five years for the popularity of CNNs to migrate onto the

domain of spacecraft relative pose estimation for RV. In 2019, ESA Kelvins’115

Spacecraft Pose Estimation Challenge (SPEC) benchmarked estimation errors

obtained on assorted image inputs taken with on-board VBS from a simulated

RV with the Tango spacecraft under random poses [17]. Although it did not

tackle docking or berthing, it did demonstrate the good performance of AI-based

approaches in vision-based navigation for space. The proposed techniques are120

model-based since they operate under the assumption that a priori knowledge

of the target’s aspect and structure is available in the form of training images.

Since the target does not feature any physical fiducial or retro-reflective markers,

only “natural” features derived from shape and texture, they become appropriate

for uncooperative scenarios.125

The relative pose can be estimated in an end-to-end fashion by following a

direct approach (Fig. 2, top). This involves designing a DNN which generates a

6
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Figure 2: Direct versus indirect methods for DL-based pose estimation [29].

pose directly from image inputs, and has been tested for close-range rendezvous

on SPEC [22]. It has the advantage of not relying on additional machine learning

(ML) pipelines to generate the desired solution. Moreover, it entails a natural130

framework for the implementation of DL-based temporal modelling, which has

been shown to improve the solution for time-series where there is a correlation

between successive relative poses [27].

Interestingly, most of the highest scoring SPEC competitors [5] followed a

so-called indirect approach towards DL-based pose estimation (Fig. 2, bottom):135

this entails relaying the use of a CNN entirely to the task of extracting features

(usually 2D keypoints), and then using a PnP solver, or optimizer techniques

such as Levenberg-Marquardt, to retrieve the solution from their correspondences

to 3D control points. These are defined by the user at the pre-training stage

and can be selected from the surface of a computer aided design (CAD) model140

of the target. As outlined by Kisantal et al. [17], the optimization step applied

to the 2D-3D correspondences output by these networks enables a refinement

of the solution leading in turn to a more accurate pose estimate, explaining

their increased performance on the SPEC dataset. As such, indirect methods

have since become the preferred choice for DL-based pose estimation in RV. The145

potential of cameras as cost-effective navigation sensors for uncooperative RV

7
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IP techniques under both model-based [26] and model-free [4] assumptions, as

well as in combination with other economical hardware such as range finders

[35]. However, DNNs in general benefit from representation learning, thus150

eliminating the need for manually selecting the most appropriate type of feature,

the optimality of which would potentially be linked to each specific scenario or

dataset.

To the best of our knowledge, neither technique has been evaluated on

docking scenarios, thus making the Orbital AI-based Autonomous Refuelling155

(OIBAR) project the first to demonstrate the viability of deep neural networks

using vision-only inputs for pose estimation of a docking structure. When

designing the proposed navigation pipeline, a direct approach was chosen over

an indirect one for two main reasons. Firstly, as the docking phase requires

continuous estimation of relative states, there is motivation to explore the160

influence of temporal modelling using a direct framework. While a similar

argument could be made for the rendezvous stage, the incentive for single-image

pose estimation — often studied with indirect methods in the literature — is

greater in this context than in the docking stage. Secondly, it can also be

argued that this avenue can lead to a stronger decoupling from the camera165

intrinsics. Indirect methods may experience difficulties regressing on precise

keypoint locations at larger distances if the camera resolution is not sufficiently

high, and at shorter distances a subset of these may fall outside the FOV. On

the other hand, direct methods are end-to-end and can thus rely on different

elements of the input image in such situations.170

3. Methodology and Design

This section details the approach followed for the execution of the OIBAR project.

The design of the docking mechanism has originally been detailed by He et al.

[13]; a rundown of the refuelling operations is reiterated below for context. Then,

the AI-based navigator introduced in this paper is described.175

8
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(a) Approach (b) Reception and soft-docking

(c) Hard-docking (d) Fluidic plane disengagement

(e) Separation

Figure 3: Refuelling operations between TV and SV using the designed docking mechanism

for OIBAR [13].

3.1. Refuelling Operations

The refuelling procedure in OIBAR can be broken down into the following

sequence of operations, which are also illustrated in Figure 3.

Initially, the AI-guided SV approaches the TV, adjusting velocity and aligning

docking interfaces (Fig. 3a). The reception phase then begins with the end-180

effector probe entering the drogue, utilising a spring-damper to absorb shock and

provide retraction force. Soft-docking is facilitated by two spring-loaded latches,

preventing accidental detachment during probe entry into the drogue’s varying

diameter cavity (Fig. 3b). After soft-docking, the end-effector becomes restricted

for hard-docking, which in turn ensures precise alignment for fluidic plane185

connection via two alignment pins engaged in the guide cavities on the berthing

fixture side. (Fig. 3c). Fuel transfer is initiated, and after reaching the target

9
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Figure 4: OibarNet base DNN architecture for AI-based docking navigation.

pressure, valves are closed. Electrical connectors transmit control commands

and pressure data. Post-refuelling, the end-effector is released, retracting the

fluidic plane and automatically extracting the probe (Fig. 3d). The latch stepper190

motor resets the latch for the next refuelling process (Fig. 3e).

3.2. Software Development

3.2.1. Architecture

Figure 4 illustrates the base architecture of the AI-based navigation algorithm

for OIBAR, termed OibarNet.195

The proposed network is a direct (i.e., end-to-end) DNN taking red-green-blue

(RGB) images of the TV’s berthing fixture at time-step τ = k and outputting

the corresponding 6-DOF pose relative to the SV. The front-end and backbone

of OibarNet is the CNN that processes the image inputs (Fig. 4, in orange).

Multiple CNN model candidates are considered and evaluated within the project200

(see Section 4); however, two architectural aspects are kept constant. The first

is a dropout layer (Fig. 4, in green) added after the last convolutional layer to

prevent overfitting [14]. The second is a global average pooling (GAP) layer

(Fig. 4, in pink). GAP converts the CNN output to a fixed-dimension vector

dependant only on the number of output channels, regardless of the image inputs205

spatial dimensions. This allows OibarNet to work with large input resolutions

without needing to increase the network depth, and to potentially train it on

different datasets without needing to alter the architecture. The CNN-processed

features are then subject to a fully connected (FC) layer back-end which estimates

10
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As part of the project, the temporal modelling of the CNN features is also

considered. This is investigated via the inclusion of a recurrent neural network

(RNN) between the GAP output and the FC input.

3.2.2. Relative Pose Representation

The first FC block head maps the CNN output to a 3-vector estimate of the215

position, whereas the second head maps it to the 6-dimensional estimate of the

attitude formulated by Zhou et al. [37]. This representation, denoted by r, is

obtained from the direction cosine matrix R through the mapping:

SO(3) → R6

R 7→
[
— R⊤

:,1 —, — R⊤
:,2 —

]
= r⊤,

(1)

i.e., discarding the third column of R and stacking the result. The transfor-

mation r 7→ R involves in turn reshaping r into a 3 × 2 matrix followed by a220

Gram-Schmidt orthogonalisation. The attitude representation warrants special

attention, as the 4-dimensional quaternion, q, is normally used to represent the

attitude of a spacecraft due to its low dimensionality and lack of singularities.

However, its antipodal ambiguity-induced discontinuities (i.e., q = −q) have

been shown to yield sub-optimal results in a deep learning environment com-225

pared to the 6D representation — further details are given in Ref. [37]. For

post-processing or error quantification, q can then be obtained from R using

well-known isomorphisms [19].

3.2.3. Loss Function

The combination of predicted position and attitude quantities in a single loss230

function requires the incorporation of a scaling factor since these two quantities

normally deal in different magnitudes [22]. Typically, this scaling factor has

been considered a hyperparameter part of the DNN’s tuning process, which is

sub-optimal.

11
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one weight each to the position and attitude, σt and σr, respectively, which

become learnables and converge during the training process. The weights

represent the task-specific variances of two Gaussian distributions, yielding a

combined L2 norm loss:

L = Lr exp (−2σ̂r) + Lt exp (−2σ̂t) + 2 (σ̂r + σ̂t) , (2)

where240

Lr =

B∑

i=1

∥r̂(i) − r(i)∥, Lt =

B∑

i=1

∥t̂(i) − t(i)∥. (3)

Here, r̂, t̂ are the 6D attitude and 3D position estimated by the network, respec-

tively; r, t are the corresponding ground truths; ∥·∥ denotes the L2 norm; and

B is the batch size.

4. Demonstration and Testing

In this section, the methodology adopted for demonstrating the reliability of245

the developed AI-based solution for space docking and refuelling under OIBAR.

The validation tests are divided into three fronts: hardware validation, software

validation, and integration validation. The former has been reported by He et al.

[13], the latter two are introduced herein.

4.1. Software Validation250

Supervised ML algorithms require labelled and well-structured datasets not only

for evaluation, but also for training. This is especially true, and even more

relevant, for DL-based methods, which require large and diverse batches of data

to learn how to generalise towards unseen scenarios due to the very large number

of parameters at play.255

However, labelled datasets for spacecraft pose estimation are scarce and

expensive to obtain due to the intricate environmental conditions that must be

12
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is to create a framework that allows for the generation of synthetic data: in

contrast to real world sets, synthetic data is generally inexpensive and allows260

the possibility of having virtually unlimited samples.

Once this simulation environment is defined, the next step entails using it to

produce synthetic docking trajectories. Lastly, an architecture selection round is

performed based on the estimation performance on the data.

4.1.1. Simulation Environment265

The simulation environment for OIBAR is composed of two main components: a

simulator designed in MATLAB/Simulink to replicate the orbital motion of the

SV and TV under the influence of Earth; and an interface with the open-source

3D modelling software Blender4 for the purpose of generating synthetic but

realistic imagery of the TV as viewed from the SV on-board VBS based on the270

states computed by the simulator.

The MATLAB/Simulink orbital simulator propagates 6-DOF pose of a body

orbiting Earth based on an initial state at a given date, which is obtained

from two-line element (TLE) sets. The effects of aerodynamic drag and the

nonspherical mass distribution of Earth (J2 zonal coefficient) are implemented275

as acting force perturbations. Aerodynamic and gravity gradient torques are

implemented as acting torque perturbations. Using the planetary ephemerides

blocks available in Simulink, the relative states of Earth and the Sun are also

computed.

Figure 5 illustrates the developed orbital trajectory simulator environment.280

The approach to building the simulator followed a modular design (Fig. 5a)

which aimed to create basic blocks with fundamental functions, such as linear

algebra, attitude manipulation and kinematics, and orbital mechanics, in order

to facilitate any needed changes or customisation to the environment. The

front-end (Fig. 5b) allows for a simple configuration of initial states, including285

4https://www.blender.org.
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(a) libOrbSim modular library (b) High-level view of orbital simulator

Figure 5: MATLAB/Simulink orbital trajectory simulator environment.

(a) Zoomed out view (b) Detailed view

Figure 6: Blender 3D rendering environment.

the date and TV pose, permitting configurations for different scenarios.

The propagated states are then saved and interfaced with Blender, allowing

the recreation of realistic images of the RVD/B dynamics of an Earth-orbiting

SV and TV to be used for algorithm testing. Figure 6 illustrates an example of

a simulated scene within Blender. Besides the TV and SV, the Sun and Earth290

states have both been imported as well, ensuring a correct correspondence to

the simulated time of day and solar phase angles.

4.1.2. Synthetic Dataset Generation

Using the simulator presented in Subsection 4.1.1, a synthetic VBS docking

dataset was generated to validate the AI-based navigation system. The simulated295

scenario was chosen to be a refuelling of the ISS by the Kepler ATV. The

CAD model of the OIBAR docking mechanism was imported into the Blender

14
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existing RVD/B system, and the berthing fixture replaced the docking ports on

the ISS. Due to a size mismatch, the original OIBAR CADs were scaled up to300

accommodate the vehicles within the simulation. In total, six different docking

port locations on the ISS were considered; the inclusion of several docking ports

was deemed beneficial as it grants diversity in terms of backgrounds, approach

vectors (i.e., R-bar and V-bar) and illumination conditions.

The MATLAB/Simulink simulator is used to propagate the trajectory of305

the ISS from an initial TLE set, as well as the Earth and Sun states. The

ATV SV guidance trajectories are generated directly relative to the TV frame;

in particular, relative to the docking port considered for docking. Each SV

trajectory begins at a relative shaft-plane-berthing-plane distance of 10 m and

consists of three parts:310

1) Acquisition. This stage is characterised by a large cross-track motion

(x− y plane) whereby the VBS is acquiring the target, prior to the end-

effector and berthing fixture axes coinciding, but keeping the relative

attitudes aligned. The SV translates between two randomly generated

waypoints at radial distances between 1–2 m from the alignment axis, before315

reducing this distance to zero. The linear velocity in this stage varies from

0.09–0.12 m s−1.

2) Forced translation. Once the previous stage is concluded, the SV

end-effector and RV berthing fixture are aligned in terms of a common

along-track axis (z-axis), still at a relative distance of 10 m. The SV320

then translates along this axis at a nominal velocity of 0.03 m s−1 to

close the distance until 3 m. To add variations amongst sequences, small

perturbations are randomly generated and added to the translational and

rotational motions; this is achieved by modelling a simple proportional

integral (PI) controller and generating the next pose state from the feedback325

error. The magnitudes of the allowed perturbations vary from ±0.002 m s−1

for the along-track velocity, ±0.01 m for the cross-track position, and

15
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3) Alignment and soft-docking. This final stage begins with the position-

and attitude-wise alignment of the fluidic and berthing planes from what-330

ever misalignment state the previous stage may have ended in. The SV

then translates towards the TV, while keeping an aligned attitude, until

the spring protruding pin enters the central cavity, the latches are engaged,

and soft-docking is achieved.

The average sequence duration is ∼5 min, and the synthetic dataset comprises335

12 sequences in total. Furthermore, the synthetic dataset is composed of two

subsets. The first one, synthetic/iss, consists of nominal scenario conditions

where the docking mechanism is mounted on one of the docking ports of the ISS.

The second subset, synthetic/perlin, models similar relative trajectories, but

removes all meshes except for the docking mechanism, replacing the background340

with randomised Perlin noise. The objective of synthetic/perlin is to comple-

ment the synthetic/iss subset to provide additional training data and to help

OibarNet focus on extracting features of the target and ignore the background

and environment, such as the appearance of Earth behind the target. Table

1 summarises the characteristics of the generated dataset. The Sun elevation345

angle, i.e., the angle between the Sun direction vector and the orbital velocity

vector, was selected to ensure daylight conditions for each specific docking port,

whereby variance on the visual docking conditions was introduced by selecting

values close to sunrise or sunset periods. Figure 7 illustrates a few sample frames

from the dataset.350

The synthetic dataset emulates the VBS used in the integration testing (see

Section 4.4, Table 3); images are generated at a resolution of 744 × 480 px and a

framerate of 10 Hz.

4.1.3. Training

From Table 1, sequences 1 and 8 were selected exclusively for testing, whereas355

the remaining sequences were used for training.
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(a) synthetic/iss samples

(b) synthetic/perlin samples

Figure 7: Sample frames from OIBAR’s synthetic dataset.

Further, the latter were divided according to a 80 %/20 % split to include

validation data as well and allow the benchmarking of different models. Due

to the data consisting of long temporal sequences, these were partitioned into

smaller ones to guarantee the proportions of the intended split in an unbiased360

way. To achieve this, each sub-sequence i’s length in seconds defined by randomly

sampling a power of two, ni, according to the following formula:

len(i) = 2ni . (4)

The values for ni were sampled from the set of integers {6, . . . , 10}, resulting in

sub-sequence lengths belonging to the set of {64, . . . , 1024} seconds.

Image augmentation was performed online on the training data to prevent365

overfitting (i.e., to boost generalisation performance during inference with new,

unseen data). This was applied in two fronts. The first one is related to transform

operations in the IP domain: randomised changes in terms of brightness, contrast,

colour, Gaussian noise and blur, for example, are generated to robustify the

network against potentially unpredicted imaging conditions during deployment.370

The second one is related to operations in the pose domain, whereby randomly

generated perspective transforms are applied to images in the sequence to
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Sequence Docking port
Approach axis

Sun elevation angle (deg)
Background

Duration (s)
V-bar R-bar iss perlin

1 1 + 37 × 332

2 1 + 75 × 319

3 2 − 56 × 358

4 2 − 146 × 336

5 3 − 127 × 348

6 3 − 165 × 327

7 4 − 56 × 333

8 4 − 146 × 329

9 5 + 56 × 333

10 5 + 146 × 342

11 6 + 56 × 323

12 6 + 146 × 355

simulate deviations in the trajectory (i.e., translation shifts, in-plane rotations,

homography-induced off-plane rotations). The latter is of particular importance

since, despite the sequence partitioning for training, the forced translation375

phase dominates each sequence, generating an imbalance on the distribution of

position states. The reader is directed towards Rondao [25] for illustrations of

the implemented augmentation techniques. Table 2 compiles the quantitative

parameters of the randomised transformations used during training.

OibarNet is implemented in MATLAB R2021b using a custom-developed380

library. Models are trained for 100 epochs with a cyclical learning rate decay of

5 cycles [28]. The Adam optimiser [16] is used. A dropout probability of 0.2 is

used. Training is performed on City, University of London’s high performance

computing facility Hyperion using one NVIDIA® Quadro RTX™ 8000 GPU

with 48 GB VRAM.385

4.1.4. Testing

The test results are presented in terms of the position and attitude error

metrics, respectively:
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OibarNet.

Transform
Parameter

Unit Description
Minimum Maximum

Channel shift −20 20 - Pixel intensity shift value

Gaussian blur 7 13 px Kernel size

Gaussian noise 3 × 10−3 1 × 10−2 - Variance

JPEG compression 2 8 - Intensity

Median blur 7 13 px Kernel size

Patch dropout
10 10 % Mean image area covered

3 5 % Patch size relative to smallest image

dimension

Brightness −0.2 0.2 - Intensity

Contrast 0.8 1.2 - Intensity

CLAHE
2 6 - Pixel intensity clip range

8 8 - Number of tiles

Gamma 0.35 1.50 - Factor

Camera rotation (3 DOF) −5 5 deg Magnitude per axis

Image rotation (in-plane) −5 5 deg Magnitude

Image translation −150 150 px Magnitude

δt̃ := ∥t̂− t∥, (5)

δq̃ := 2 arccos
(
q̂−1 ⊗ q

)
4
, (6)

where the subscript “4” denotes the scalar element of the resulting quaternion.

Additionally, the position error is also assessed in terms of the relative range:390

δt̃r :=
δt̃

∥t∥ . (7)

It is noted that the pose estimation accuracy requirements for OIBAR have

been defined by He et al. [13] as 5 % of range for the position and 5 deg for

attitude. This is driven by the fact that the functional testing setup is configured

to use a robotic arm, i.e., more closely simulating a berthing operation. In such

cases, pose estimation accuracy becomes less critical, and the “1 %–1 deg” rule395
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Figure 8: Characteristics of the four different benchmarked CNN models.

of thumb normally applied for the final approach can be relaxed by a factor of 5

[9].

4.1.5. CNN Architecture Selection

From the relative pose estimation point of view, a few differences may be

expected between an RV manoeuvre and a docking sequence. Firstly, a reduced400

variation in the attitude is expected during docking since the SV is expected to

be inside the cone-shaped approach corridor of the TV [9]; in opposition, the

target may be tumbling during RV. Secondly, an increased apparent variation

in the position can be expected during docking, as due to the reduced relative

distance any small shift will result in a large displacement of the TV berthing405

fixture in the FOV.

To better assess the influence of these factors, multiple CNN architectures

are benchmarked. The baseline is Darknet-19 [23], which has successfully been

applied in the past to the problem of pose estimation in RV [27]. To analyse the

effect of increasing the capacity of the model, Darknet-53 [24] and ResNet-101 [12]410

are included. Lastly, it is also important to verify the change in performance when

reducing the capacity, and SqueezeNet [15] is thus included in the benchmark as

well.

Figure 8 summarises the number of parameters, in millions, and number of

layers of the four different CNN models considered for benchmarking.415
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The goal of the integration testing is to validate the combination of the hardware

and software blocks outlined above. In this setup, the navigation VBS is

incorporated into the hardware setup [13] to acquire a stream of images to be

processed by the navigation algorithm (Sec. 4.1) during the docking manoeuvre420

emulated by the robotic setup.

Figure 9 illustrates the integration validation setup. A blackout backdrop is

placed behind the target berthing fixture to simulate the imaging conditions of

a featureless deep space background. The target itself is illuminated by a single

400 W halogen directional floodlight. The distance at which this illumination425

source was placed from the target was adjusted to simulate an irradiance of

approximately 1361 W m−2, typical for low Earth orbit, under the following

rationale. The light is modelled as a point source illuminating a cone with an

apex angle θ and generatrix r. These represent, respectively, the beam spread

and the distance between the apex (or origin) and the target being illuminated.430

Let θ = 60 deg, which is a typical beam spread for wide flood halogen lamps,

such as the one used herein. Given θ, the corresponding solid angle Ω can be

calculated as:

Ω = 2π

(
1 − cos

(
θ

2

))
= 0.8418 sr. (8)

The solid angle Ω, the irradiance E, the power P , and the distance r are related

by the formula:435

E =
P

Ω · r2 . (9)

Solving the above for r and plugging in the remaining values yields a distance

of approximately 0.6 m at which the lamp should be positioned relative to the

berthing fixture in the experiment. This distance also allows for the floodlight

to be conveniently positioned outside of the imaging sensor’s FOV mounted on

the robotic arm manipulator.440
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(a) Laboratory setup (b) DFK 22BUC03 VBS

Figure 9: Integration validation setup at City, University of London’s ASMIL.

The SV and TV are placed inside the capture volume of an OptiTrack5

motion capture system for recording the ground truth measuring approximately

5 × 5 × 3 m. OptiTrack can record 6-DOF pose data of rigid and flexible bodies

by detecting, tracking, and triangulating passive near infrared markers placed

on targets. The data can be saved or stream over a local network in real-time.445

The OptiTrack setup at City consists in six PrimeX 13 cameras with a

resolution of 1280 × 1024 px running at a native framerate of 240 Hz, capable of

achieving positional errors less than ±0.20 mm and rotational errors less than

0.5 deg.

The used VBS is the Imaging Source DFK 22BUC03 colour camera with450

a 1/3 inch format CMOS sensor (Onsemi MT9V024) and a native resolution of

744 × 480 px, fitted with a Kowa LM4NCL 3.5 mm focal length lens. Table 3

summarises the technical characteristics of the VBS.

The workstation consists of an Intel® NUC 9 Pro with an NVIDIA®

RTX™ 3060 Ti Mini GPU with 8 GB VRAM. The workstation is used for both455

experimental data offline validation of OibarNet and real-time online testing of

the network, at a framerate of 10 Hz.

5https://optitrack.com.
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Parameter Units Value

Resolution px 744 × 480

Maximum frame rate Hz 76

Focal length mm 3.5

Horizontal FOV deg 65.6

Vertical FOV deg 44.7

4.2.1. Experimental Dataset Generation

The docking imaging sequences acquired with the experimental setup follow

the same structure as the synthetic dataset (Sec. 4.1.2) albeit with two key460

differences. The first one is that all experimental sequences feature the same

type of background (black, deep space). The second is that, rather than imple-

menting PIinduced pose perturbations during the forced translation (Phase 2), a

static misalignment of the pose is randomly introduced in each sequence at the

beginning of the phase, which is then corrected at the beginning of the final one.465

In total, 12 experimental trajectories are collected, whereby the angle of

illumination alternates between port and starboard. The average sequence

duration is ∼3.15 min. The first 10 sequences are used for training and valida-

tion of the model according to the methodology of Section 4.1.3. Sequences

experimental/11 and experimental/12 are used exclusively for testing.470

4.2.2. Ground Truth Calibration Toolbox

The OptiTrack system used to record the ground truth measures the poses

of rigid bodies equipped with infrared markers. However, it does not directly

output the relative pose between the VBS and the TV (as illustrated in Fig. 1,

Sec. 2), which is required by the navigation algorithm.475

To this end, a toolbox was developed in MATLAB to calibrate the output

OptiTrack data and generate the required relative pose, based on the work of
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Figure 10: Ground truth calibration toolbox output, visualised on some frames of the experi-

mental dataset by reprojecting the target’s CAD model (in red) according to the measured

pose.

Valmorbida et al. [33] and Pasqualetto Cassinis et al. [21]. The output of the

calibration toolbox are the static transforms Tic, mapping the camera frame
⃗
Fc

to the frame of reference
⃗
Fi defined by the physical markers placed on its housing480

and tracked by OptiTrack, and Tsb, mapping the target’s body frame
⃗
Fb to the

frame of reference
⃗
Fs defined by the markers placed on it. These transforms then

make possible to map the OptiTrack marker-defined rigid bodies’ poses, which

are measured relative to
⃗
Fo, the system’s arbitrary global frame of reference,

into a usable ground truth Tbc defined in terms of the VBS frame of reference.485

The overall uncertainty of the framework can be quantified in terms of the total

reprojection error between model and image corners and is estimated to be below

20 px for ranges above 2 m [21]. However, this upper bound is expected to be

lower for the present application due to the shorter relative ranges considered.

Figure 10 illustrates the output of the calibration procedure on select samples of490

the dataset.
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Figure 11: Average training and validation pose estimation errors for different CNN architec-

tures trained on the synthetic dataset.

5. Results

5.1. Software Testing

5.1.1. CNN Model Benchmarking

Figure 11 illustrates the results of the different models trained on the495

synthetic dataset, presented in terms of mean position and attitude errors

averaged per trajectory. It can be seen that the performance of SqueezeNet is

considerably worse than the baseline Darknet-19, yielding errors twice as large

for both position and attitude. Both networks have a very similar number of

layers, but Darknet-19 has substantially more learnable parameters (as indicated500

in Fig. 8); the reduced attitude variance in the docking manoeuvres is thus

shown not to justify a decrease in parameters.

Interestingly, the error for Darknet-53 actually increases with respect to the

baseline. Once the capacity of the CNN is further increased with ResNet-101,

though, the error decreases again, making the network the best performing model505

(except on position validation error, which is slightly larger than Darknet-19’s).

The results of Figure 11 are presented with the caveat that they represent

average errors per trajectory, but where the data is not composed of random

images but time sequences. As such, while a histogram visualisation is useful

for a first analysis of each model’s performance, it is also important to look510

at how these perform in specific, individual situations. For example, Figure
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(a) SqueezeNet (b) Darknet-19

(c) Darknet-53 (d) ResNet-101

Figure 12: Qualitative pose estimation performance on a validation sequence of the synthetic

dataset for different CNN models.

12 represents the qualitative performance of each model on a single frame of

one of the synthetic validation sequences; the rectangular boundary of the

berthing fixture is reprojected in green using the predicted pose, and the axes

of the estimated frame
⃗
Ft are also shown. The results show that SqueezeNet515

is overfitting at least on the position state, as it expects the berthing fixture

to be located in the centre of the FOV, when in reality the SV end-effector is

still misaligned. The other three models with increased capacity demonstrate no

issues in estimating the correct relative position.

Consider now, however, the performance on one training sequence, as il-520

lustrated in Figure 13: SqueezeNet (a) is shown to be underfitting, but so is

Darknet-19 (b). This suggests that increasing the capacity would benefit Oibar-

Net, as confirmed by the frame output by Darknet-53 (c) showing a better fit,

despite the summary metrics in Figure 12. The performance with ResNet-101
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(a) SqueezeNet (b) Darknet-19

(c) Darknet-53 (d) ResNet-101

Figure 13: Qualitative pose estimation performance on a training sequence of the synthetic

dataset for different CNN models.

(d) is slightly better even, confirming it as the choice for the final CNN model in525

OibarNet.

5.1.2. Performance Evaluation on Synthetic Dataset

In this subsection, the performance of the navigation algorithm is evaluated

on the test sequences synthetic/01 and synthetic/08, as outlined in Section 4,

and according to the selected ResNet-101 CNN architecture for OibarNet.530

Figure 14 showcases the attained pose estimation errors for each sequence

using the final OibarNet model; the position errors are normalised as a percentage

of range. Table 4 summarises these statistics.

The figures demonstrate that, for synthetic/01, OibarNet fulfils the 5 %

maximum range-normalised position error requirement (defined in Ref. [13]) for535

most of the trajectory. The exception is a segment corresponding to phase 1

(acquisition) whereby the SV moves to a waypoint representing a large displace-

27



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

(a) synthetic/01 (b) synthetic/08

Figure 14: Estimated position and attitude errors over time on the two test sequences of the

synthetic dataset.

Table 4: Summary performance statistics on the two test sequences of the synthetic dataset.

Position errors are range-normalised. “Std.” denotes standard deviation.

Sequence
Position Error (%) Attitude Error (deg) Requirement Compliance (%)

Mean Median Std. Mean Median Std. Position Attitude

synthetic/01 1.81 1.39 1.53 0.29 0.26 0.20 96.33 100

synthetic/08 0.56 0.43 0.50 0.28 0.26 0.17 99.91 100

ment relative to the alignment axis, representing about 3.7 % of the sequence’s

duration. After this period, the error converges to values below 2.5 % of range,

further decreasing as the SV closes in on the TV, until the beginning of phase 3540

(alignment and soft-docking), where the very short range causes the error to rise,

but not above the requirement threshold. The attitude estimation performance

is shown to fully comply with the 5 deg maximum error requirement.

The position estimation performance of the navigation algorithm on synthetic/08

is observed to be better than the previous sequence, as an improvement of 1.25545

percent points on the mean value and 0.96 percent points on the median value

are achieved. Furthermore, the position estimate is virtually fully compliant

with the defined requirement, save for a singular spike (less than 0.1 % of the
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(a) τ = 20 s (b) τ = 160 s (c) τ = 305 s

Figure 15: Qualitative pose estimation performance on the synthetic/01 test sequence.

(a) τ = 20 s (b) τ = 155 s (c) τ = 289 s

Figure 16: Qualitative pose estimation performance on the synthetic/08 test sequence.

trajectory). The attitude estimation is again entirely compliant and practically

does not surpass 1 deg in error.550

Figure 15 and Figure 16 exhibit some frames from each sequence with

the respective qualitative pose estimation fit overlaid. On synthetic/01 the

TV structure surrounding the berthing fixture is quite complex, which from

the IP point of view represents a more challenging background than the case

of synthetic/08, despite it being an R-bar trajectory which includes Earth.555

Additionally, the illumination conditions on the former appear to make the

berthing fixture harder to distinguish from the ISS structure relative to the

latter. Both aspects could provide an explanation to the increased position error

seen in the beginning of synthetic/01.

5.1.3. Effect of Temporal Modelling560

The designed OibarNet pipeline uses a CNN front-end to process incoming

images and extract features. However, these images are processed individually,
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manoeuvre, which implies that each sample is time correlated. Modifications

to CNN architectures have been proposed in the past to account for this corre-565

lation and shown to improve the relative pose estimation error for rendezvous.

Specifically, deep recurrent convolutional neural networks (DRCNNs) include a

recurrent sub-network as the back-end of the pipeline that models the features

extracted by the CNN [27].

This test investigates the effect of applying a DRCNN to the problem of570

relative pose estimation for docking. To this end, the trained CNN model was

appended with a recurrent model, further trained on the output of the CNN for

the same dataset, consisting of bi-directional long-short-term memory (BiLSTM)

cells [11]. Contrary to regular long-short-term memories (LSTMs), BiLSTMs

run sequence inputs in two directions: one from past to future, and the other575

from future to past, thus preserving information from both past and future. This

feature can be beneficial for RVD/B pose estimation problems since trajectories

are continuous, meaning that not only do the previous states influence the

present, but states in the future provide context to the preceding ones.

The results of the benchmark are illustrated in Figure 17. It can be seen that580

the addition of a recurrent layer degrades not only the validation performance,

but also the training performance; this is witnessed both in terms of position

and attitude estimation. Adding more recurrent layers lowers the error on the

attitude estimate, but even with three layers this is still higher than that obtained

for the CNN alone. Furthermore, the position error is shown not to decrease.585

This study represents an interesting result since it is seemingly counter-

intuitive and diverges from the findings reported by Rondao et al. [27]. However,

whereas the apparent relative motion during an RV is typically smooth and

predictable (e.g., SV at a hold point observing the TV tumbling), the docking

trajectories modelled within the scope of OIBAR are actually more dynamic590

and include higher stochasticity due to the random perturbations added during

the approach phase. As such, one explanation towards the poor performance of

the DRCNN in this case could be the failure in modelling these high-frequency,
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Figure 17: Effect of adding recurrent neural layers on the training and validation performance

of the synthetic dataset. The numbers in parenthesis denote the number of recurrent layers.

random changes in motion, in which the CNN indeed an advantage as it is

processing each time-step individually.595

Further avenues of research could still be pursued, however. For example, the

inclusion of attention-based mechanisms remains to be investigated for RVD/B,

where the network would be capable of self-learning weights to be attributed

to each time-step in the sequence, thus becoming able to let certain segments

influence the estimate more than others (e.g., placing less attention on the600

immediate perturbations and more on the overall along-track motion).

Due to the attained results, the OibarNet architecture was not altered for

the integration tests.

5.2. Integration Testing

5.2.1. Performance Evaluation on Experimental Dataset605

This section is analogous to Subsection 5.1.2 with the difference that the

selected OibarNet CNN architecture is evaluated and tested on experimental

data collected in laboratory. As outlined in Section 4, the performance of the

navigation algorithm is evaluated on the test sequences experimental/11 and

experimental/12.610

Figure 18 displays the attained pose estimation errors for both trajecto-

ries. Table 5 summarises the performance metric statistics. Lastly, Figure

19 and Figure 20 illustrate qualitative estimation results for a few frames of
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(a) experimental/11 (b) experimental/12

Figure 18: Estimated position and attitude errors over time on the two test sequences of the

experimental dataset.

Table 5: Summary performance statistics on the two test sequences of the experimental dataset.

Position errors are range-normalised. “Std.” denotes standard deviation.

Sequence
Position Error (%) Attitude Error (deg) Requirement Compliance (%)

Mean Median Std. Mean Median Std. Position Attitude

experimental/11 1.02 0.84 0.80 1.65 0.91 1.85 99.71 91.20

experimental/12 1.17 1.08 0.67 0.86 0.87 0.52 99.72 100.00

the experimental/11 and experimental/12 sequences, respectively. The rel-

ative position estimation error follows a similar trend to the synthetic dataset615

case: lower during the approach phase and increasing in the final alignment

and soft-docking phase. Overall, the curves oscillate more in amplitude for

both trajectories; this is a possible by-product of using real-data which can

be contaminated with random errors (e.g., sensor noise) and systematic errors

(e.g., errors in the motion capture system calibration), which are not seen in620

the ideal development conditions of synthetic datasets. The reduced number of

training samples relative to the synthetic case also affects the solution (i.e., the

experimental trajectories are shorter). Nevertheless, the requirement compliance

is virtually 100 % for both trajectories.
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(a) τ = 20 s (b) τ = 160 s (c) τ = 305 s

Figure 19: Qualitative pose estimation performance on the experimental/11 test sequence.

(a) τ = 20 s (b) τ = 160 s (c) τ = 305 s

Figure 20: Qualitative pose estimation performance on the experimental/12 test sequence.

The experimental evaluation demonstrates, on average, a higher attitude625

error than the synthetic evaluation case. In particular, for experimental/11,

a spike in the initial 35 seconds of the sequence cause the error to surpass

7.5 deg which brings down the requirement compliance to 91.2 %. This is due

to the SV travelling to a waypoint during the acquisition phase that is quite

distinctive from the others present in the training data, making the berthing630

fixture appear in the top right corner of the FOV close to the image edge

(Figure 27 a). However, the proposed training scheme which includes image

augmentation prevents the error from diverging, and the estimate begins to

recover after τ = 35 s, reaching minimum values during and immediately before

the final phase. In experimental/12, the attitude estimation error is bounded635

at 2.5 deg.

6. Conclusions

OOS is now becoming increasingly important and represents a significant

cost saving measure, opening up a new global market. Whereas the latest
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opportunities, such as life extension and end-of-life, longer-term OOS segments

expected to emerge this decade such as refuelling are set to unravel novel and

wider business opportunities, and have the potential to unlock new orbital

ecosystems.

On this basis, City, University of London have developed OIBAR, a novel645

AI-based solution for space docking and refuelling applications consisting of the

combination of two major components: a vision-based orbital relative navigation

algorithm to safely approach and dock to the target vehicle; and an intelligent

hardware mechanism achieving the mechanical docking and refuelling operation

of the target. The present document reported the development and achievements650

of the OIBAR project, namely the design procedure of its key features adopted

to tackle the problem, the modelling of the mechanism and software architecture,

and the validation of the combined solution. Functional testing of the prototype

was performed in laboratory using a 7-DOF robotic manipulator to simulate

docking/berthing trajectories and a state-of-the-art Optitrack ground truth655

measurement system to assess the quality of the navigation solution.

A CNN-based direct VBS navigation algorithm was proposed to estimate the

relative states between SV and TV to achieve docking. A MATLAB/Simulink

simulator was developed to generate synthetic data intended to train and evaluate

the solution. A benchmarking campaign was performed to assess the best660

architecture candidate. The final model reported average errors per trajectory of

1.19 % and 0.29 deg for range-normalised position and for attitude, respectively,

with accompanying average standard deviations of 1.14 % and 0.19 deg. The

performance requirements were satisfied for nearly the whole length of the test

sequences. The inclusion of BiLSTM-based recurrent layers was analysed but665

found not to improve the base CNN model.

Lastly, the combined solution was assessed through an integration testing

campaign. The navigator was trained and tested on experimental data collected

in laboratory using the mechanical docking prototype. Similarly to the synthetic

dataset results, these have achieved near-complete compliance with the proposed670
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the two sets have been observed, however, namely in terms of an overall increase

in the mean attitude error which can be attributed to an increased variation

in the possible attitude states induced by the waypoint programming on the

robotic manipulator. An enlargement of the training dataset poses is expected675

to further reduce the error.
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● A novel artificial intelligence-based solution for spacecraft docking and refuelling 
applications is presented.

● The viability of deep neural networks using vision-only inputs for pose estimation of a
docking structure is demonstrated for the first time.

● Multiple convolutional neural network backbones are benchmarked on a 
photorealistic dataset of a refuelling scenario with the Internation Space Station.

● A ResNet-101 architecture reports average errors per trajectory of 1.19% for range-
normalised position and 0.29 degrees for attitude.

● The end-effector and berthing fixture prototypes are manufactured and validated in 
the laboratory with a 7 degree-of-freedom robotic manipulator.
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