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A B S T R A C T

Cameras are rapidly becoming the choice for on-board sensors towards space rendezvous due to their small
form factor and inexpensive power, mass, and volume costs. When it comes to docking, however, they
typically serve a secondary role, whereas the main work is done by active sensors such as lidar. This paper
documents the development of a proposed AI-based (artificial intelligence) navigation algorithm intending to
mature the use of on-board visible wavelength cameras as a main sensor for docking and on-orbit servicing
(OOS), reducing the dependency on lidar and greatly reducing costs. Specifically, the use of AI enables
the expansion of the relative navigation solution towards multiple classes of scenarios, e.g., in terms of
targets or illumination conditions, which would otherwise have to be crafted on a case-by-case manner using
classical image processing methods. Multiple convolutional neural network (CNN) backbone architectures are
benchmarked on synthetically generated data of docking manoeuvres with the International Space Station (ISS),
achieving position and attitude estimates close to 1 % range-normalised and 1 deg, respectively, an established
rule of thumb for the navigation measurement accuracy during final approach. The integration of the solution
with a physical prototype of the refuelling mechanism is validated in laboratory using a robotic arm to simulate
a berthing procedure.
1. Introduction

For the majority of the 64-year history of space launches, satellites
have been seen as an expendable medium: once the propellant is
depleted, the mission is ended. Northrop Grumman’s Mission Extension
Vehicle (MEV) programme has recently challenged this paradigm by
achieving the first teleoperated on-orbit servicing (OOS) to reposition
existing spacecraft. This has opened up a new market segment where
the spacecraft’s life cycle can be extended beyond its original planning,
avoiding the costs of launching, manufacturing, and keeping a new one.
The success of the mission has attracted the attention of the United
States Department of Defence, which has awarded the company a con-
tract to study the possibility of servicing commercial and government
satellites using robotics technology [1].

Despite its breakthrough, it is incontrovertible that the MEV was
built on the shoulders of previous demonstrators: for example, the
Kepler Automated Transfer Vehicle’s (ATV) first refuelling operation of
the International Space Station (ISS) to supply the station’s thrusters in
2011 [2], or NASA’s Robotic Refuelling Mission which demonstrated
the technology to refuel satellites in orbit by robotic means in 2014 [3].
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More recently, ESA has also recognised the potential for this new
market segment by opening up calls for ideas related to OOS, having
previously invested Me50 in support for research and development
of relevant technologies [4]. Overall, OOS and manufacturing alone
is projected to have a cumulative global market size of over B$4.4
by 2030 [5]. Still, existing satellites were, and still are, built without
thinking of their serviceability and, more specifically, refuelling, which
is a fulcral part of the servicing operations of these assets and represents
a significant cost saving measure.

Paramount to the safe accomplishment of refuelling, and OOS in
general, is the estimation of the relative states between the service
vehicle (SV) and the client or target vehicle (TV) during docking or
berthing. At such small distances, this entails the estimation of the
six degree-of-freedom (DOF) relative pose, which is typically achieved
with two types of optical sensors: lidar and camera sensors [6]. How-
ever, current flight-proven solutions using either sensor require optical
corner-cube reflectors to be mounted on the TV [7]. The viability of
large-scale OOS involves rendezvous and docking or berthing (RVD/B)
via autonomous navigation with minimal or no human input, and the
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List of Acronyms

AI artificial intelligence
ASMIL Autonomous Systems and Machine Intelligence

Laboratory
ATV Automated Transfer Vehicle
BiLSTM bi-directional long-short-term memory
CAD computer aided design
CLAHE contrast limited adaptive histogram equalisation
CNN convolutional neural network
DL deep learning
DNN deep neural network
DOF degree-of-freedom
DRCNN deep recurrent convolutional neural network
FC fully connected
FOV field of view
GAP global average pooling
GPU graphics processing unit
IP image processing
ISS International Space Station
LSTM long-short-term memory
MEV Mission Extension Vehicle
ML machine learning
OIBAR Orbital AI-based Autonomous Refuelling
OOS on-orbit servicing
P𝑛P perspective-𝑛-point
PI proportional integral
RGB red-green-blue
RNN recurrent neural network
RV rendezvous
RVD/B rendezvous and docking or berthing
SPEC Spacecraft Pose Estimation Challenge
SV service vehicle
TLE two-line element
TV target vehicle
VBS vision-based sensor

cost associated with active sensors can hinder the massification of
orbital servicers. Indeed, cameras are already rapidly becoming the
choice for on-board sensors towards spacecraft rendezvous (RV) due to
their small form factor and inexpensive power, mass, and volume costs.
The past three years have witnessed a consolidation of AI-based (artifi-
cial intelligence) techniques for RV, particularly through deep learning
(DL), using monocular cameras which do not make assumptions about
the level of cooperation of the target [8]. However, this has not yet
been established as a navigation approach for docking.

2. Related work

The use of vision-based sensors (VBSs) for RVD/B has traditionally
consisted of establishing geometric relationships derived from the laws
of imaging on the focal plane of a lens [7]: the SV illuminates retro-
reflectors on the TV-side, which are configured according to a known
pattern and are then imaged by the on-board camera. By knowing this
configuration (i.e., the relative distances between the pattern markers),
and the intrinsic parameters of a calibrated VBS (i.e., the field of view
[FOV] and focal length), information on the SV-TV range, line of sight
direction, and relative attitude can be computed by detecting said
markers on each image. In the context of RVD/B, navigation requires
the estimation of said quantities, which make up the 6-DOF relative
127

pose 𝑻 𝑏𝑡 mapping the target vehicle frame of reference
⃗
F𝑡 to the service f
ehicle frame
⃗
F𝑏 (Fig. 1). This entails the need for relative navigation

ensors which, in the case of a VBS, define two extra frames: the
hysical camera frame

⃗
F𝑐 (which can often be assumed coincident with

⃗
𝑏 without loss of generality) and the image plane frame

⃗
F𝛱 containing

he image of the TV and where the image processing (IP) tasks occur.
In the computer vision literature, this problem is called the

erspective-𝑛-point (P𝑛P [10,11]) problem. P𝑛P can be used with only
our markers to retrieve the full relative pose, although additional
arkers can be used to robustify the solution. Traditionally, cooper-

tive spacecraft markers have been designed with concentric patterns
f varying sizes to cover different operational sub-ranges and maintain
cceptable resolution. While fiducial marker designs can be small, for
ong-range targets, multi-reflector spots are sometimes needed due
o the low power density of the return signal [7]. Recently, there
as been renewed interest in cooperative pose estimation literature,
riven by the anticipation of autonomously approached spacecraft
n future OOS missions. ArUco markers, popular in robot navigation
nd augmented reality, have been proposed as an alternative for
ocking operations [12]. These have the advantage a single marker
eing sufficient in providing the number of correspondences needed
o retrieve the relative pose. Despite their simplicity, though, multiple
rUcos of different sizes are often used for robustness, as a reliable
arker detection pipeline is crucial for accurate P𝑛P-based pose es-

imation [13]. Furthermore, cooperative markers cannot be applied
o existing satellites under missions which had not originally been
esigned with servicing in mind.

In contrast, modern AI techniques, namely through the advent of
L and deep neural networks (DNNs), have gained resurgence in the

ield of computer vision from the beginning of the previous decade
nward, due to advances in commercial-off-the-shelf graphics pro-
essing units (GPUs) and accessibility to large-scale datasets such as
mageNet [14]. The eruption in popularity of DL arguably occurred in
012 with AlexNet [15], a convolutional neural network (CNN) which
on the ImageNet Large Scale Visual Recognition Challenge with a

op-5 classification error more than almost 11 percent points lower
han the runner-up; the novel use of GPU-based training massively
ccelerated the process, enabling deep learning to be competitive.
NNs, i.e., DNNs tailored to process image inputs through efficient con-
olution kernels, later became the norm, as new designs have competed
n the challenge each year, resulting in exponential classification score
mprovements. Two notable examples are GoogLeNet [16], marked not
nly by a very deep architecture, but also by the implementation of
arallel layers to extract multi-scale features; and ResNet [17], which
ntroduced residual connections allowing the breakthrough to even
eeper architectures. Most of these state-of-the-art CNNs have been
pen-sourced and model weights made available from pre-training on
mage classification tasks using the ImageNet dataset, which has since
ontributed to the swift evolution of DL in general and in the adoption
f such models as CNN front-ends.

It took more than five years for the popularity of CNNs to migrate
nto the domain of spacecraft relative pose estimation for RV. In
019, ESA Kelvins’ Spacecraft Pose Estimation Challenge (SPEC) bench-
arked estimation errors obtained on assorted image inputs taken with

n-board VBS from a simulated RV with the Tango spacecraft under
andom poses [18]. Although it did not tackle docking or berthing,
t did demonstrate the good performance of AI-based approaches in
ision-based navigation for space. The proposed techniques are model-
ased since they operate under the assumption that a priori knowledge
f the target’s aspect and structure is available in the form of training
mages. Since the target does not feature any physical fiducial or retro-
eflective markers, only ‘‘natural’’ features derived from shape and
exture, they become appropriate for uncooperative scenarios.

The relative pose can be estimated in an end-to-end fashion by
ollowing a direct approach (Fig. 2, top). This involves designing a DNN
hich generates a pose directly from image inputs, and has been tested
or close-range rendezvous on SPEC [19]. It has the advantage of not
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Fig. 1. Frames of reference involved in the relative pose estimation problem for RVD/B [9].
Fig. 2. Direct versus indirect methods for DL-based pose estimation [8].
elying on additional machine learning (ML) pipelines to generate the
esired solution. Moreover, it entails a natural framework for the im-
lementation of DL-based temporal modelling, which has been shown
o improve the solution for time-series where there is a correlation
etween successive relative poses [20].

Interestingly, most of the highest scoring SPEC competitors [21] fol-
owed a so-called indirect approach towards DL-based pose estimation
Fig. 2, bottom): this entails relaying the use of a CNN entirely to the
ask of extracting features (usually 2D keypoints), and then using a
𝑛P solver, or optimiser techniques such as Levenberg–Marquardt, to
etrieve the solution from their correspondences to 3D control points.
hese are defined by the user at the pre-training stage and can be
elected from the surface of a computer aided design (CAD) model
f the target. As outlined by Kisantal et al. [18], the optimisation
tep applied to the 2D–3D correspondences output by these networks
nables a refinement of the solution leading in turn to a more accurate
ose estimate, explaining their increased performance on the SPEC
ataset. As such, indirect methods have since become the preferred
hoice for DL-based pose estimation in RV. The potential of cameras
s cost-effective navigation sensors for uncooperative RV has actually
een demonstrated previously through this prism using traditional IP
128
techniques under both model-based [22] and model-free [23] assump-
tions, as well as in combination with other economical hardware such
as range finders [24]. However, DNNs in general benefit from repre-
sentation learning, thus eliminating the need for manually selecting
the most appropriate type of feature, the optimality of which would
potentially be linked to each specific scenario or dataset.

To the best of our knowledge, neither technique has been evaluated
on docking scenarios, thus making the Orbital AI-based Autonomous
Refuelling (OIBAR) project the first to demonstrate the viability of
deep neural networks using vision-only inputs for pose estimation of
a docking structure. When designing the proposed navigation pipeline,
a direct approach was chosen over an indirect one for two main
reasons. Firstly, as the docking phase requires continuous estimation of
relative states, there is motivation to explore the influence of temporal
modelling using a direct framework. While a similar argument could
be made for the rendezvous stage, the incentive for single-image pose
estimation — often studied with indirect methods in the literature — is
greater in this context than in the docking stage. Secondly, it can also
be argued that this avenue can lead to a stronger decoupling from
the camera intrinsics. Indirect methods may experience difficulties re-
gressing on precise keypoint locations at larger distances if the camera
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Fig. 3. Refuelling operations between TV and SV using the designed docking mechanism for OIBAR [25].
resolution is not sufficiently high, and at shorter distances a subset of
these may fall outside the FOV. On the other hand, direct methods are
end-to-end and can thus rely on different elements of the input image
in such situations.

3. Methodology and design

This section details the approach followed for the execution of the
OIBAR project. The design of the docking mechanism has originally
been detailed by He et al. [25]; a rundown of the refuelling operations
is reiterated below for context. Then, the AI-based navigator introduced
in this paper is described.

3.1. Refuelling operations

The refuelling procedure in OIBAR can be broken down into the
following sequence of operations, which are also illustrated in Fig. 3.

Initially, the AI-guided SV approaches the TV, adjusting velocity and
aligning docking interfaces (Fig. 3(a)). The reception phase then begins
with the end-effector probe entering the drogue, utilising a spring–
damper to absorb shock and provide retraction force. Soft-docking is
facilitated by two spring-loaded latches, preventing accidental detach-
ment during probe entry into the drogue’s varying diameter cavity
(Fig. 3(b)). After soft-docking, the end-effector becomes restricted for
hard-docking, which in turn ensures precise alignment for fluidic plane
connection via two alignment pins engaged in the guide cavities on
the berthing fixture side. (Fig. 3(c)). Fuel transfer is initiated, and
after reaching the target pressure, valves are closed. Electrical connec-
tors transmit control commands and pressure data. Post-refuelling, the
end-effector is released, retracting the fluidic plane and automatically
extracting the probe (Fig. 3(d)). The latch stepper motor resets the latch
for the next refuelling process (Fig. 3(e)).
129
3.2. Software development

3.2.1. Architecture
Fig. 4 illustrates the base architecture of the AI-based navigation

algorithm for OIBAR, termed OibarNet.
The proposed network is a direct (i.e., end-to-end) DNN taking red-

green-blue (RGB) images of the TV’s berthing fixture at time-step 𝜏 = 𝑘
and outputting the corresponding 6-DOF pose relative to the SV. The
front-end and backbone of OibarNet is the CNN that processes the
image inputs (Fig. 4, in orange). Multiple CNN model candidates are
considered and evaluated within the project (see Section 4); however,
two architectural aspects are kept constant. The first is a dropout layer
(Fig. 4, in green) added after the last convolutional layer to prevent
overfitting [26]. The second is a global average pooling (GAP) layer
(Fig. 4, in pink). GAP converts the CNN output to a fixed-dimension
vector dependent only on the number of output channels, regardless of
the image inputs spatial dimensions. This allows OibarNet to work with
large input resolutions without needing to increase the network depth,
and to potentially train it on different datasets without needing to alter
the architecture. The CNN-processed features are then subject to a fully
connected (FC) layer back-end which estimates the pose via regression.

As part of the project, the temporal modelling of the CNN features
is also considered. This is investigated via the inclusion of a recurrent
neural network (RNN) between the GAP output and the FC input.

3.2.2. Relative pose representation
The first FC block head maps the CNN output to a 3-vector estimate

of the position, whereas the second head maps it to the 6-dimensional
estimate of the attitude formulated by Zhou et al. [27]. This represen-
tation, denoted by 𝒓, is obtained from the direction cosine matrix 𝑹
through the mapping:

SO(3) → R6

𝑹 ↦
[

— 𝑹⊤ —, — 𝑹⊤ —
]

= 𝒓⊤,
(1)
∶,1 ∶,2



Acta Astronautica 220 (2024) 126–140D. Rondao et al.
Fig. 4. OibarNet base DNN architecture for AI-based docking navigation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
i.e., discarding the third column of 𝑹 and stacking the result. The
transformation 𝒓 ↦ 𝑹 involves in turn reshaping 𝒓 into a 3 × 2 matrix
followed by a Gram–Schmidt orthogonalisation. The attitude represen-
tation warrants special attention, as the 4-dimensional quaternion, 𝒒,
is normally used to represent the attitude of a spacecraft due to its
low dimensionality and lack of singularities. However, its antipodal
ambiguity-induced discontinuities (i.e., 𝒒 = −𝒒) have been shown to
yield sub-optimal results in a deep learning environment compared to
the 6D representation — further details are given in Ref. [27]. For post-
processing or error quantification, 𝒒 can then be obtained from 𝑹 using
well-known isomorphisms [28].

3.2.3. Loss function
The combination of predicted position and attitude quantities in

a single loss function requires the incorporation of a scaling factor
since these two quantities normally deal in different magnitudes [19].
Typically, this scaling factor has been considered a hyperparameter part
of the DNN’s tuning process, which is sub-optimal.

In contrast, OibarNet follows the approach of Cipolla et al. [29]
and attributes one weight each to the position and attitude, 𝜎t and
𝜎r, respectively, which become learnables and converge during the
training process. The weights represent the task-specific variances of
two Gaussian distributions, yielding a combined 𝐿2 norm loss:

L = Lr exp
(

−2�̂�r
)

+ Lt exp
(

−2�̂�t
)

+ 2
(

�̂�r + �̂�t
)

, (2)

where

Lr =
𝐵
∑

𝑖=1
‖�̂�(𝑖) − 𝒓(𝑖)‖, Lt =

𝐵
∑

𝑖=1
‖�̂�(𝑖) − 𝒕(𝑖)‖. (3)

Here, �̂�, �̂� are the 6D attitude and 3D position estimated by the network,
respectively; 𝒓, 𝒕 are the corresponding ground truths; ‖ ⋅ ‖ denotes the
𝐿2 norm; and 𝐵 is the batch size.

4. Demonstration and testing

In this section, the methodology adopted for demonstrating the
reliability of the developed AI-based solution for space docking and re-
fuelling under OIBAR. The validation tests are divided into three fronts:
hardware validation, software validation, and integration validation.
The former has been reported by He et al. [25], the latter two are
introduced herein.

4.1. Software validation

Supervised ML algorithms require labelled and well-structured
datasets not only for evaluation, but also for training. This is especially
true, and even more relevant, for DL-based methods, which require
large and diverse batches of data to learn how to generalise towards
unseen scenarios due to the very large number of parameters at play.

However, labelled datasets for spacecraft pose estimation are scarce
and expensive to obtain due to the intricate environmental conditions
that must be emulated. As such, the first step in the software validation
130
campaign for OIBAR is to create a framework that allows for the gen-
eration of synthetic data: in contrast to real world sets, synthetic data
is generally inexpensive and allows the possibility of having virtually
unlimited samples.

Once this simulation environment is defined, the next step entails
using it to produce synthetic docking trajectories. Lastly, an architec-
ture selection round is performed based on the estimation performance
on the data.

4.1.1. Simulation environment
The simulation environment for OIBAR is composed of two main

components: a simulator designed in MATLAB/Simulink to replicate
the orbital motion of the SV and TV under the influence of Earth; and
an interface with the open-source 3D modelling software Blender.4 for
the purpose of generating synthetic but realistic imagery of the TV as
viewed from the SV on-board VBS based on the states computed by the
simulator.

The MATLAB/Simulink orbital simulator propagates 6-DOF pose
of a body orbiting Earth based on an initial state at a given date,
which is obtained from two-line element (TLE) sets. The effects of
aerodynamic drag and the nonspherical mass distribution of Earth
(𝐽2 zonal coefficient) are implemented as acting force perturbations.
Aerodynamic and gravity gradient torques are implemented as acting
torque perturbations. Using the planetary ephemerides blocks available
in Simulink, the relative states of Earth and the Sun are also computed.

Fig. 5 illustrates the developed orbital trajectory simulator envi-
ronment. The approach to building the simulator followed a modular
design (Fig. 5(a)) which aimed to create basic blocks with fundamental
functions, such as linear algebra, attitude manipulation and kinematics,
and orbital mechanics, in order to facilitate any needed changes or
customisation to the environment. The front-end (Fig. 5(b)) allows for
a simple configuration of initial states, including the date and TV pose,
permitting configurations for different scenarios.

The propagated states are then saved and interfaced with Blender,
allowing the recreation of realistic images of the RVD/B dynamics of
an Earth-orbiting SV and TV to be used for algorithm testing. Fig. 6
illustrates an example of a simulated scene within Blender. Besides the
TV and SV, the Sun and Earth states have both been imported as well,
ensuring a correct correspondence to the simulated time of day and
solar phase angles.

4.1.2. Synthetic dataset generation
Using the simulator presented in Section 4.1.1, a synthetic VBS

docking dataset was generated to validate the AI-based navigation sys-
tem. The simulated scenario was chosen to be a refuelling of the ISS by
the Kepler ATV. The CAD model of the OIBAR docking mechanism was
imported into the Blender environment and attached to the vehicles:
the end-effector replaced the ATV’s existing RVD/B system, and the
berthing fixture replaced the docking ports on the ISS. Due to a size
mismatch, the original OIBAR CADs were scaled up to accommodate

4 https://www.blender.org

https://www.blender.org
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Fig. 5. MATLAB/Simulink orbital trajectory simulator environment..
Fig. 6. Blender 3D rendering environment.
the vehicles within the simulation. In total, six different docking port
locations on the ISS were considered; the inclusion of several docking
ports was deemed beneficial as it grants diversity in terms of back-
grounds, approach vectors (i.e., R-bar and V-bar) and illumination
conditions.

The MATLAB/Simulink simulator is used to propagate the trajectory
of the ISS from an initial TLE set, as well as the Earth and Sun states.
The ATV SV guidance trajectories are generated directly relative to the
TV frame; in particular, relative to the docking port considered for
docking. Each SV trajectory begins at a relative shaft-plane-berthing-
plane distance of 10 m and consists of three parts:

(1) Acquisition. This stage is characterised by a large cross-track
motion (𝑥–𝑦 plane) whereby the VBS is acquiring the target,
prior to the end-effector and berthing fixture axes coinciding, but
keeping the relative attitudes aligned. The SV translates between
two randomly generated waypoints at radial distances between
1–2 m from the alignment axis, before reducing this distance to
zero. The linear velocity in this stage varies from 0.09–0.12 m/s.

(2) Forced translation. Once the previous stage is concluded, the
SV end-effector and RV berthing fixture are aligned in terms of
a common along-track axis (𝑧-axis), still at a relative distance
of 10 m. The SV then translates along this axis at a nominal
velocity of 0.03 m/s to close the distance until 3 m. To add
variations amongst sequences, small perturbations are randomly
generated and added to the translational and rotational motions;
this is achieved by modelling a simple proportional integral
(PI) controller and generating the next pose state from the
feedback error. The magnitudes of the allowed perturbations
vary from ±0.002 m/s for the along-track velocity, ±0.01 m for
the cross-track position, and ±0.1 deg for the attitude; all with a
probability of occurrence of 10 %.

(3) Alignment and soft-docking. This final stage begins with the
position- and attitude-wise alignment of the fluidic and berthing
planes from whatever misalignment state the previous stage may
have ended in. The SV then translates towards the TV, while
131
keeping an aligned attitude, until the spring protruding pin en-
ters the central cavity, the latches are engaged, and soft-docking
is achieved.

The average sequence duration is ∼ 5 min, and the synthetic dataset
comprises 12 sequences in total. Furthermore, the synthetic dataset is
composed of two subsets. The first one, synthetic/iss, consists of
nominal scenario conditions where the docking mechanism is mounted
on one of the docking ports of the ISS. The second subset, syn-
thetic/perlin, models similar relative trajectories, but removes all
meshes except for the docking mechanism, replacing the background
with randomised Perlin noise. The objective of synthetic/perlin
is to complement the synthetic/iss subset to provide additional
training data and to help OibarNet focus on extracting features of
the target and ignore the background and environment, such as the
appearance of Earth behind the target. Table 1 summarises the char-
acteristics of the generated dataset. The Sun elevation angle, i.e., the
angle between the Sun direction vector and the orbital velocity vector,
was selected to ensure daylight conditions for each specific docking
port, whereby variance on the visual docking conditions was introduced
by selecting values close to sunrise or sunset periods. Fig. 7 illustrates
a few sample frames from the dataset.

The synthetic dataset emulates the VBS used in the integration
testing (see Section 4.4, Table 3); images are generated at a resolution
of 744 × 480 px and a framerate of 10 Hz.

4.1.3. Training
From Table 1, sequences 1 and 8 were selected exclusively for

testing, whereas the remaining sequences were used for training.
Further, the latter were divided according to a 80 %/20 % split to

include validation data as well and allow the benchmarking of different
models. Due to the data consisting of long temporal sequences, these
were partitioned into smaller ones to guarantee the proportions of the
intended split in an unbiased way. To achieve this, each sub-sequence
𝑖’s length in seconds defined by randomly sampling a power of two, 𝑛𝑖,
according to the following formula:

len(𝑖) = 2𝑛𝑖 . (4)
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Fig. 7. Sample frames from OIBAR’s synthetic dataset.
Table 1
Synthetic dataset characteristics used for training, validation, and testing of OibarNet.

Sequence Docking port Approach axis Sun elevation angle (deg) Background Duration (s)
V-bar R-bar iss perlin

1 1 + 37 × 332
2 1 + 75 × 319
3 2 – 56 × 358
4 2 – 146 × 336
5 3 – 127 × 348
6 3 – 165 × 327
7 4 – 56 × 333
8 4 – 146 × 329
9 5 + 56 × 333

10 5 + 146 × 342
11 6 + 56 × 323
12 6 + 146 × 355
The values for 𝑛𝑖 were sampled from the set of integers {6,… ,10},
resulting in sub-sequence lengths belonging to the set of {64,… ,
1024} seconds.

Image augmentation was performed online on the training data to
prevent overfitting (i.e., to boost generalisation performance during
inference with new, unseen data). This was applied in two fronts.
The first one is related to transform operations in the IP domain:
randomised changes in terms of brightness, contrast, colour, Gaussian
noise and blur, for example, are generated to robustify the network
against potentially unpredicted imaging conditions during deployment.
The second one is related to operations in the pose domain, whereby
randomly generated perspective transforms are applied to images in the
sequence to simulate deviations in the trajectory (i.e., translation shifts,
in-plane rotations, homography-induced off-plane rotations). The latter
is of particular importance since, despite the sequence partitioning for
training, the forced translation phase dominates each sequence, gener-
ating an imbalance on the distribution of position states. The reader
is directed towards Rondao [9] for illustrations of the implemented
augmentation techniques. Table 2 compiles the quantitative parameters
of the randomised transformations used during training.

OibarNet is implemented in MATLAB R2021b using a custom-
developed library. Models are trained for 100 epochs with a cyclical
learning rate decay of 5 cycles [30]. The Adam optimiser [31] is used.
A dropout probability of 0.2 is used. Training is performed on City,
University of London’s high performance computing facility Hyperion
using one NVIDIA® Quadro RTX™ 8000 GPU with 48 GB VRAM.

4.1.4. Testing
The test results are presented in terms of the position and attitude

error metrics, respectively:

𝛿𝑡 ∶= ‖�̂� − 𝒕‖, (5)
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𝛿𝑞 ∶= 2 arccos
(

�̂�−1 ⊗ 𝒒
)

4 , (6)

where the subscript ‘‘4’’ denotes the scalar element of the resulting
quaternion. Additionally, the position error is also assessed in terms
of the relative range:

𝛿𝑡r ∶=
𝛿𝑡
‖𝒕‖

. (7)

It is noted that the pose estimation accuracy requirements for OIBAR
have been defined by He et al. [25] as 5 % of range for the position and
5 deg for attitude. This is driven by the fact that the functional testing
setup is configured to use a robotic arm, i.e., more closely simulating
a berthing operation. In such cases, pose estimation accuracy becomes
less critical, and the ‘‘1 %–1 deg’’ rule of thumb normally applied for
the final approach can be relaxed by a factor of 5 [7].

4.1.5. CNN architecture selection
From the relative pose estimation point of view, a few differences

may be expected between an RV manoeuvre and a docking sequence.
Firstly, a reduced variation in the attitude is expected during docking
since the SV is expected to be inside the cone-shaped approach corri-
dor of the TV [7]; in opposition, the target may be tumbling during
RV. Secondly, an increased apparent variation in the position can be
expected during docking, as due to the reduced relative distance any
small shift will result in a large displacement of the TV berthing fixture
in the FOV.

To better assess the influence of these factors, multiple CNN archi-
tectures are benchmarked. The baseline is Darknet-19 [32], which has
successfully been applied in the past to the problem of pose estimation
in RV [20]. To analyse the effect of increasing the capacity of the
model, Darknet-53 [33] and ResNet-101 [17] are included. Lastly, it
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Table 2
Image augmentation randomisation parameters used in the training process of OibarNet..

Transform Parameter Unit Description
Minimum Maximum

Channel shift −20 20 – Pixel intensity shift value
Gaussian blur 7 13 px Kernel size
Gaussian noise 3 × 10−3 1 × 10−2 – Variance
JPEG compression 2 8 – Intensity
Median blur 7 13 px Kernel size

Patch dropout 10 10 % Mean image area covered
3 5 % Patch size relative to smallest image dimension

Brightness −0.2 0.2 – Intensity
Contrast 0.8 1.2 – Intensity

CLAHE 2 6 – Pixel intensity clip range
8 8 – Number of tiles

Gamma 0.35 1.50 – Factor
Camera rotation (3 DOF) −5 5 deg Magnitude per axis
Image rotation (in-plane) −5 5 deg Magnitude
Image translation −150 150 px Magnitude
Fig. 8. Characteristics of the four different benchmarked CNN models.
is also important to verify the change in performance when reducing
the capacity, and SqueezeNet [34] is thus included in the benchmark
as well.

Fig. 8 summarises the number of parameters, in millions, and num-
ber of layers of the four different CNN models considered for bench-
marking.

4.2. Integration validation methodology

The goal of the integration testing is to validate the combination
of the hardware and software blocks outlined above. In this setup,
the navigation VBS is incorporated into the hardware setup [25] to
acquire a stream of images to be processed by the navigation algorithm
(Section 4.1) during the docking manoeuvre emulated by the robotic
setup.

Fig. 9 illustrates the integration validation setup. A blackout back-
drop is placed behind the target berthing fixture to simulate the imag-
ing conditions of a featureless deep space background. The target itself
is illuminated by a single 400 W halogen directional floodlight. The
distance at which this illumination source was placed from the target
was adjusted to simulate an irradiance of approximately 1361 W/m2,
typical for low Earth orbit, under the following rationale. The light is
modelled as a point source illuminating a cone with an apex angle 𝜃
and generatrix 𝑟. These represent, respectively, the beam spread and the
distance between the apex (or origin) and the target being illuminated.
Let 𝜃 = 60 deg, which is a typical beam spread for wide flood halogen
lamps, such as the one used herein. Given 𝜃, the corresponding solid
angle 𝛺 can be calculated as:

𝛺 = 2𝜋
(

1 − cos
( 𝜃
2

))

= 0.8418 sr. (8)

The solid angle 𝛺, the irradiance 𝐸, the power 𝑃 , and the distance 𝑟
are related by the formula:

𝐸 = 𝑃 . (9)
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𝛺 ⋅ 𝑟2
Table 3
Technical data — DFK 22BUC03.

Parameter Units Value

Resolution px 744 × 480
Maximum frame rate Hz 76
Focal length mm 3.5
Horizontal FOV deg 65.6
Vertical FOV deg 44.7

Solving the above for 𝑟 and plugging in the remaining values yields a
distance of approximately 0.6 m at which the lamp should be positioned
relative to the berthing fixture in the experiment. This distance also
allows for the floodlight to be conveniently positioned outside of the
imaging sensor’s FOV mounted on the robotic arm manipulator.

The SV and TV are placed inside the capture volume of an Opti-
Track.5 motion capture system for recording the ground truth measur-
ing approximately 5 × 5 × 3 m. OptiTrack can record 6-DOF pose data
of rigid and flexible bodies by detecting, tracking, and triangulating
passive near infrared markers placed on targets. The data can be saved
or stream over a local network in real-time.

The OptiTrack setup at City consists in six PrimeX 13 cameras
with a resolution of 1280 × 1024 px running at a native framerate of
240 Hz, capable of achieving positional errors less than ±0.20 mm and
rotational errors less than 0.5 deg.

The used VBS is the Imaging Source DFK 22BUC03 colour camera
with a 1

3 inch format CMOS sensor (Onsemi MT9V024) and a native
resolution of 744 × 480 px, fitted with a Kowa LM4NCL 3.5 mm focal
length lens. Table 3 summarises the technical characteristics of the
VBS.

5 https://optitrack.com

https://optitrack.com
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Fig. 9. Integration validation setup at City, University of London’s ASMIL.
The workstation consists of an Intel® NUC 9 Pro with an NVIDIA®
RTX™ 3060 Ti Mini GPU with 8 GB VRAM. The workstation is used
for both experimental data offline validation of OibarNet and real-time
online testing of the network, at a framerate of 10 Hz.

4.2.1. Experimental dataset generation
The docking imaging sequences acquired with the experimental

setup follow the same structure as the synthetic dataset (Section 4.1.2)
albeit with two key differences. The first one is that all experimental
sequences feature the same type of background (black, deep space). The
second is that, rather than implementing PIinduced pose perturbations
during the forced translation (Phase 2), a static misalignment of the
pose is randomly introduced in each sequence at the beginning of the
phase, which is then corrected at the beginning of the final one.

In total, 12 experimental trajectories are collected, whereby the an-
gle of illumination alternates between port and starboard. The average
sequence duration is ∼3.15 min. The first 10 sequences are used for
training and validation of the model according to the methodology
of Section 4.1.3. Sequences experimental/11 and experimen-
tal/12 are used exclusively for testing.

4.2.2. Ground truth calibration toolbox
The OptiTrack system used to record the ground truth measures the

poses of rigid bodies equipped with infrared markers. However, it does
not directly output the relative pose between the VBS and the TV (as
illustrated in Fig. 1, Section 2), which is required by the navigation
algorithm.

To this end, a toolbox was developed in MATLAB to calibrate the
output OptiTrack data and generate the required relative pose, based
on the work of Valmorbida et al. [35] and Pasqualetto Cassinis et al.
[36]. The output of the calibration toolbox are the static transforms 𝑻 𝑖𝑐 ,
mapping the camera frame

⃗
F𝑐 to the frame of reference

⃗
F𝑖 defined by

the physical markers placed on its housing and tracked by OptiTrack,
and 𝑻 𝑠𝑏, mapping the target’s body frame

⃗
F𝑏 to the frame of reference

⃗
F𝑠 defined by the markers placed on it. These transforms then make
possible to map the OptiTrack marker-defined rigid bodies’ poses,
which are measured relative to

⃗
F𝑜, the system’s arbitrary global frame

of reference, into a useable ground truth 𝑻 𝑏𝑐 defined in terms of the
VBS frame of reference. The overall uncertainty of the framework can
be quantified in terms of the total reprojection error between model
and image corners and is estimated to be below 20 px for ranges above
2 m [36]. However, this upper bound is expected to be lower for
the present application due to the shorter relative ranges considered.
Fig. 10 illustrates the output of the calibration procedure on select
samples of the dataset.
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5. Results

5.1. Software testing

5.1.1. CNN model benchmarking
Fig. 11 illustrates the results of the different models trained on the

synthetic dataset, presented in terms of mean position and attitude
errors averaged per trajectory. It can be seen that the performance
of SqueezeNet is considerably worse than the baseline Darknet-19,
yielding errors twice as large for both position and attitude. Both
networks have a very similar number of layers, but Darknet-19 has
substantially more learnable parameters (as indicated in Fig. 8); the
reduced attitude variance in the docking manoeuvres is thus shown not
to justify a decrease in parameters.

Interestingly, the error for Darknet-53 actually increases with re-
spect to the baseline. Once the capacity of the CNN is further increased
with ResNet-101, though, the error decreases again, making the net-
work the best performing model (except on position validation error,
which is slightly larger than Darknet-19’s).

The results of Fig. 11 are presented with the caveat that they
represent average errors per trajectory, but where the data is not
composed of random images but time sequences. As such, while a
histogram visualisation is useful for a first analysis of each model’s
performance, it is also important to look at how these perform in
specific, individual situations. For example, Fig. 12 represents the
qualitative performance of each model on a single frame of one of
the synthetic validation sequences; the rectangular boundary of the
berthing fixture is reprojected in green using the predicted pose, and
the axes of the estimated frame

⃗
F𝑡 are also shown. The results show

that SqueezeNet is overfitting at least on the position state, as it expects
the berthing fixture to be located in the centre of the FOV, when in
reality the SV end-effector is still misaligned. The other three models
with increased capacity demonstrate no issues in estimating the correct
relative position.

Consider now, however, the performance on one training sequence,
as illustrated in Fig. 13: SqueezeNet (a) is shown to be underfitting,
but so is Darknet-19 (b). This suggests that increasing the capacity
would benefit OibarNet, as confirmed by the frame output by Darknet-
53 (c) showing a better fit, despite the summary metrics in Fig. 12. The
performance with ResNet-101 (d) is slightly better even, confirming it
as the choice for the final CNN model in OibarNet.

5.1.2. Performance evaluation on synthetic dataset
In this subsection, the performance of the navigation algorithm is

evaluated on the test sequences synthetic/01 and synthetic/08,
as outlined in Section 4, and according to the selected ResNet-101 CNN

architecture for OibarNet.
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Fig. 10. Ground truth calibration toolbox output, visualised on some frames of the experimental dataset by reprojecting the target’s CAD model (in red) according to the measured
pose. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Average training and validation pose estimation errors for different CNN architectures trained on the synthetic dataset.
Table 4
Summary performance statistics on the two test sequences of the synthetic dataset. Position errors are range-normalised. ‘‘Std.’’ denotes standard
deviation.

Sequence Position error (%) Attitude error (deg) Requirement compliance (%)

Mean Median Std. Mean Median Std. Position Attitude

synthetic/01 1.81 1.39 1.53 0.29 0.26 0.20 96.33 100
synthetic/08 0.56 0.43 0.50 0.28 0.26 0.17 99.91 100
Fig. 14 showcases the attained pose estimation errors for each
sequence using the final OibarNet model; the position errors are nor-
malised as a percentage of range. Table 4 summarises these stati-
stics.

The figures demonstrate that, for synthetic/01, OibarNet ful-
fils the 5 % maximum range-normalised position error requirement
(defined in Ref. [25]) for most of the trajectory. The exception is
a segment corresponding to phase 1 (acquisition) whereby the SV
moves to a waypoint representing a large displacement relative to the
alignment axis, representing about 3.7 % of the sequence’s duration.
After this period, the error converges to values below 2.5 % of range,
further decreasing as the SV closes in on the TV, until the beginning
of phase 3 (alignment and soft-docking), where the very short range
causes the error to rise, but not above the requirement threshold. The
attitude estimation performance is shown to fully comply with the 5 deg
maximum error requirement.
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The position estimation performance of the navigation algorithm on
synthetic/08 is observed to be better than the previous sequence,
as an improvement of 1.25 percent points on the mean value and
0.96 percent points on the median value are achieved. Furthermore,
the position estimate is virtually fully compliant with the defined
requirement, save for a singular spike (less than 0.1 % of the trajectory).
The attitude estimation is again entirely compliant and practically does
not surpass 1 deg in error.

Figs. 15 and 16 exhibit some frames from each sequence with the
respective qualitative pose estimation fit overlaid. On synthetic/01
the TV structure surrounding the berthing fixture is quite complex,
which from the IP point of view represents a more challenging back-
ground than the case of synthetic/08, despite it being an R-bar
trajectory which includes Earth. Additionally, the illumination condi-
tions on the former appear to make the berthing fixture harder to
distinguish from the ISS structure relative to the latter. Both aspects
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Fig. 12. Qualitative pose estimation performance on a validation sequence of the synthetic dataset for different CNN models.
Fig. 13. Qualitative pose estimation performance on a training sequence of the synthetic dataset for different CNN models.
could provide an explanation to the increased position error seen in
the beginning of synthetic/01.

5.1.3. Effect of temporal modelling
The designed OibarNet pipeline uses a CNN front-end to process

incoming images and extract features. However, these images are pro-
cessed individually, whereby the data as a whole represents a time
sequence depicting a docking manoeuvre, which implies that each
sample is time correlated. Modifications to CNN architectures have
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been proposed in the past to account for this correlation and shown to
improve the relative pose estimation error for rendezvous. Specifically,
deep recurrent convolutional neural networks (DRCNNs) include a
recurrent sub-network as the back-end of the pipeline that models the
features extracted by the CNN [20].

This test investigates the effect of applying a DRCNN to the problem
of relative pose estimation for docking. To this end, the trained CNN
model was appended with a recurrent model, further trained on the
output of the CNN for the same dataset, consisting of bi-directional



Acta Astronautica 220 (2024) 126–140D. Rondao et al.
Fig. 14. Estimated position and attitude errors over time on the two test sequences of the synthetic dataset.
Fig. 15. Qualitative pose estimation performance on the synthetic/01 test sequence.
Fig. 16. Qualitative pose estimation performance on the synthetic/08 test sequence.
long-short-term memory (BiLSTM) cells [37]. Contrary to regular long-
short-term memories (LSTMs), BiLSTMs run sequence inputs in two
directions: one from past to future, and the other from future to past,
thus preserving information from both past and future. This feature can
be beneficial for RVD/B pose estimation problems since trajectories are
continuous, meaning that not only do the previous states influence the
present, but states in the future provide context to the preceding ones.

The results of the benchmark are illustrated in Fig. 17. It can be seen
that the addition of a recurrent layer degrades not only the validation
performance, but also the training performance; this is witnessed both
in terms of position and attitude estimation. Adding more recurrent lay-
ers lowers the error on the attitude estimate, but even with three layers
this is still higher than that obtained for the CNN alone. Furthermore,
the position error is shown not to decrease.

This study represents an interesting result since it is seemingly
counter-intuitive and diverges from the findings reported by Rondao
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et al. [20]. However, whereas the apparent relative motion during
an RV is typically smooth and predictable (e.g., SV at a hold point
observing the TV tumbling), the docking trajectories modelled within
the scope of OIBAR are actually more dynamic and include higher
stochasticity due to the random perturbations added during the ap-
proach phase. As such, one explanation towards the poor performance
of the DRCNN in this case could be the failure in modelling these high-
frequency, random changes in motion, in which the CNN indeed an
advantage as it is processing each time-step individually.

Further avenues of research could still be pursued, however. For
example, the inclusion of attention-based mechanisms remains to be
investigated for RVD/B, where the network would be capable of self-
learning weights to be attributed to each time-step in the sequence, thus
becoming able to let certain segments influence the estimate more than
others (e.g., placing less attention on the immediate perturbations and
more on the overall along-track motion).
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Fig. 17. Effect of adding recurrent neural layers on the training and validation performance of the synthetic dataset. The numbers in parenthesis denote the number of recurrent
layers.
Fig. 18. Estimated position and attitude errors over time on the two test sequences of the experimental dataset.
Due to the attained results, the OibarNet architecture was not
altered for the integration tests.

5.2. Integration testing

5.2.1. Performance evaluation on experimental dataset
This section is analogous to Section 5.1.2 with the difference that

the selected OibarNet CNN architecture is evaluated and tested on
experimental data collected in laboratory. As outlined in Section 4,
the performance of the navigation algorithm is evaluated on the test
sequences experimental/11 and experimental/12.

Fig. 18 displays the attained pose estimation errors for both tra-
jectories. Table 5 summarises the performance metric statistics. Lastly,
Figs. 19 and 20 illustrate qualitative estimation results for a few frames
of the experimental/11 and experimental/12 sequences, re-
spectively. The relative position estimation error follows a similar
trend to the synthetic dataset case: lower during the approach phase
and increasing in the final alignment and soft-docking phase. Overall,
the curves oscillate more in amplitude for both trajectories; this is a
possible by-product of using real-data which can be contaminated with
random errors (e.g., sensor noise) and systematic errors (e.g., errors
in the motion capture system calibration), which are not seen in the
ideal development conditions of synthetic datasets. The reduced num-
ber of training samples relative to the synthetic case also affects the
solution (i.e., the experimental trajectories are shorter). Nevertheless,
the requirement compliance is virtually 100 % for both trajectories.

The experimental evaluation demonstrates, on average, a higher
attitude error than the synthetic evaluation case. In particular, for
experimental/11, a spike in the initial 35 seconds of the sequence
cause the error to surpass 7.5 deg which brings down the requirement
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compliance to 91.2 %. This is due to the SV travelling to a waypoint
during the acquisition phase that is quite distinctive from the others
present in the training data, making the berthing fixture appear in the
top right corner of the FOV close to the image edge (Figure 27 a). How-
ever, the proposed training scheme which includes image augmentation
prevents the error from diverging, and the estimate begins to recover
after 𝜏 = 35 s, reaching minimum values during and immediately before
the final phase. In experimental/12, the attitude estimation error
is bounded at 2.5 deg.

6. Conclusions

OOS is now becoming increasingly important and represents a sig-
nificant cost saving measure, opening up a new global market. Whereas
the latest OOS initiatives and demonstrators have focused on clear near-
term commercial opportunities, such as life extension and end-of-life,
longer-term OOS segments expected to emerge this decade such as
refuelling are set to unravel novel and wider business opportunities,
and have the potential to unlock new orbital ecosystems.

On this basis, City, University of London has developed OIBAR, a
novel AI-based solution for space docking and refuelling applications
consisting of the combination of two major components: a vision-based
orbital relative navigation algorithm to safely approach and dock to
the target vehicle; and an intelligent hardware mechanism achieving
the mechanical docking and refuelling operation of the target. The
present document reported the development and achievements of the
OIBAR project, namely the design procedure of its key features adopted
to tackle the problem, the modelling of the mechanism and software
architecture, and the validation of the combined solution. Functional
testing of the prototype was performed in laboratory using a 7-DOF
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Table 5
Summary performance statistics on the two test sequences of the experimental dataset. Position errors are range-normalised. ‘‘Std.’’ denotes
standard deviation.

Sequence Position error (%) Attitude error (deg) Requirement compliance (%)

Mean Median Std. Mean Median Std. Position Attitude

experimental/11 1.02 0.84 0.80 1.65 0.91 1.85 99.71 91.20
experimental/12 1.17 1.08 0.67 0.86 0.87 0.52 99.72 100.00
Fig. 19. Qualitative pose estimation performance on the experimental/11 test sequence.
Fig. 20. Qualitative pose estimation performance on the experimental/12 test sequence.
robotic manipulator to simulate docking/berthing trajectories and a
state-of-the-art Optitrack ground truth measurement system to assess
the quality of the navigation solution.

A CNN-based direct VBS navigation algorithm was proposed to
estimate the relative states between SV and TV to achieve docking. A
MATLAB/Simulink simulator was developed to generate synthetic data
intended to train and evaluate the solution. A benchmarking campaign
was performed to assess the best architecture candidate. The final
model reported average errors per trajectory of 1.19 % and 0.29 deg
for range-normalised position and for attitude, respectively, with ac-
companying average standard deviations of 1.14 % and 0.19 deg. The
performance requirements were satisfied for nearly the whole length of
the test sequences. The inclusion of BiLSTM-based recurrent layers was
analysed but found not to improve the base CNN model.

Lastly, the combined solution was assessed through an integration
testing campaign. The navigator was trained and tested on experimen-
tal data collected in laboratory using the mechanical docking prototype.
Similarly to the synthetic dataset results, these have achieved near-
complete compliance with the proposed accuracy requirements, thus
validating the findings. Some differences between the two sets have
been observed, however, namely in terms of an overall increase in the
mean attitude error which can be attributed to an increased variation in
the possible attitude states induced by the waypoint programming on
the robotic manipulator. An enlargement of the training dataset poses
is expected to further reduce the error.
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