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Abstract. There has been recent interest in novel Clifford geometric in-
variants of linear transformations. This motivates the investigation of
such invariants for a certain type of geometric transformation of interest
in the context of root systems, reflection groups, Lie groups and Lie alge-
bras: the Coxeter transformations. We perform exhaustive calculations
of all Coxeter transformations for A8, D8 and E8 for a choice of basis
of simple roots and compute their invariants, using high-performance
computing. This computational algebra paradigm generates a dataset
that can then be mined using techniques from data science such as su-
pervised and unsupervised machine learning. In this paper we focus on
neural network classification and principal component analysis. Since
the output—the invariants—is fully determined by the choice of sim-
ple roots and the permutation order of the corresponding reflections in
the Coxeter element, we expect huge degeneracy in the mapping. This
provides the perfect setup for machine learning, and indeed we see that
the datasets can be machine learned to very high accuracy. This paper
is a pump-priming study in experimental mathematics using Clifford
algebras, showing that such Clifford algebraic datasets are amenable
to machine learning, and shedding light on relationships between these
novel and other well-known geometric invariants and also giving rise to
analytic results.
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1. Introduction

Great interest in Clifford geometric invariants of linear transformations, orig-
inally proposed in [45], was sparked in recent work from a practical [52,53]
and theoretical [1,33,52,63] point of view. Orthogonal transformations, such
as rotations, and their invariants are important in engineering, e.g. moving
cameras, robots etc. The types of transformations we are looking at in this
work are also rotations, particularly interesting because of their symmetry
structures. Linear transformation invariants are traditionally exemplified by
the determinant and trace, which appear in the highest and lowest coefficients
of the characteristic polynomial. Typically such linear transformations are de-
scribed by matrices; however, in Clifford algebras one has the alternative to
implement orthogonal transformations via versors. In Clifford algebras, al-
gebraic objects have a clearer geometric interpretation than in the standard
matrix approach. There is a systematic way of calculating multivector in-
variants of linear transformations via what are called ‘simplicial derivatives’,
which we will introduce further in the next section. These Clifford geomet-
ric invariants are then systematically related to geometric invariant spaces of
the linear transformation and the coefficients in the characteristic polynomial
and Cayley-Hamilton theorem.1 This serves as motivation to study this type
of new geometric invariant of linear transformations.

From the perspective of some of our other work on root systems and
reflection groups [28,30,31] we are particularly interested in a certain type of
linear transformations that occurs in this root system context: the ‘Coxeter
elements’ or ‘Coxeter transformations’. These are a particular type of orthog-
onal transformation in reflection/Coxeter groups [47]. They are the group
elements of the highest order (called the ‘Coxeter number’, h) and they are
all conjugate to each other. High-dimensional root systems are notoriously
difficult to visualise, and projection into a distinguished plane (called a ‘Cox-
eter plane’) is a common way of visualising the geometry. In these planes, the
Coxeter elements just act by h-fold rotations. Root systems are determined
by a subset called the ‘simple roots’, which act as a basis for the vector space
and each determines a ‘simple reflection’ in the hyperplane to which they
are orthogonal.2 A Coxeter element is then just given by multiplying each of
the simple reflections once in some permutation order, which at the versor
level is just encoded by multiplying together the root vectors in the Clifford
algebra directly, doubly covering the orthogonal transformation. This set of
permutations giving rise to a set of Coxeter versors will be the focus of this
paper, as these allow us to calculate the full set of invariants from them,
which we will refer to as the set of characteristic multivectors (SOCM).

1The decomposition of a linear transformation into orthogonal eigenspaces is also related
to some interesting recent work by [61].
2The existence of the Coxeter plane relies on the simple roots admitting a separation

into two sets that are mutually orthogonal within each set, often visualised as a bipartite

(alternating) colouring of the corresponding Dynkin diagram.
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In previous work, the authors have established a paradigm for experi-
mental mathematics: first, using computational algebra techniques and high-
performance computing (HPC) one can generate a dataset of algebraic data;
this dataset can then be mined by applying the standard data science toolkit,
in order to find patterns that were not obvious from an analytical perspective
[25,32,38,39,41,42]. Mathematicians often calculate examples of interest by
hand to formulate or test hypotheses. Essentially, this computational algebra
approach automates and scales up such an approach, and turns the problem
into a ‘data analysis’ task3. One can either calculate a very large number of
examples and analyse these statistically via ‘data analysis’; or in other cases
of interest, it may be possible to calculate all the cases exhaustively and anal-
yse the patterns that emerge, which can help with hypothesis formulation and
theorem proving.

At the ICCA conference in Hefei in 2020 a talk on this approach sparked
much interest, resulting in the creation of a Topical Collection (TC) on ‘Ma-
chine Learning Mathematical Structures’ in the journal Advances in Applied
Clifford Algebras [3]. This TC sits at the intersection of 3 different topics—
machine learning, mathematical structures, and Clifford algebras—and was
intended to stimulate new research across these interfaces. Whilst there have
been many activities in pairwise combinations (e.g. Machine Learning and
Clifford algebras [7,14,21,34,36,50,51,55,57,58,67,69,70], mathematical struc-
tures and Clifford algebras [4,5,44,60,62,64,71], and of course our examples
for machine learning algebraic structures earlier as well as others in this TC
[15,43]), we are not aware of any research that actually sits at the intersection
of all three.

In the interest of such a first non-trivial intersection we therefore see
our work as sufficiently motivated: to investigate the machine learning of
Clifford invariants of Coxeter elements. We consider the three 8-dimensional
root systems A8, D8 and E8, which are of course of wider interest in terms of
exceptional E8 and ADE patterns [8,23,27]. Eight dimensions allow 8! permu-
tations of the simple roots, which can all be explicitly calculated with HPC.
They give rise to linear transformations (Coxeter transformations) whose sim-
plicial derivatives can be taken in an automated way, and whose characteristic
multivectors are computed as the output. The 40320 input permutations are
a large enough number to make these examples accessible to data science
techniques such as machine learning classification tasks (e.g. distinguishing
between the three ADE types), principal component analysis etc. Of course,
the actual number of Coxeter versors will be lower, firstly because of the
fact that the simple roots can be decomposed into two sets that are mutu-
ally orthogonal within sets (leading to a k! reduction whenever k orthogonal
simple roots are grouped together), but secondly because such roots are also
more widely orthogonal to other roots outside of the sets, as given by the
adjacency in the Dynkin diagram such that two roots are orthogonal if there
exists no edge between them. So in practice, there will be some degeneracy in

3Clifford algebra multivector computations can easily be performed in such a python HPC
setup using the galgebra package [20].
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the mapping from the permutations to the Coxeter versors which will result
in a significantly reduced set of invariants. Such (anti)commutation proper-
ties in the Coxeter element can in principle be understood analytically. But
in the interest of the experimental mathematics approach followed here for
now we prefer to just calculate the permutations exhaustively using computa-
tional algebra and treat the repeats (whose structure is interesting in its own
right, and learning it essentially means learning the root system geometry
and Dynkin diagram) as the data science standard practice of data augmen-
tation. Analytical considerations will largely be presented in a companion
paper though we point out a few instances where exhaustive computation
has led to analytical insights in this paper.

We organise this paper as follows. In Sect. 2, we introduce some of the
detail on the aforementioned Clifford simplicial derivatives and invariants, as
well as root systems and Coxeter transformations. We then discuss in Sect. 3
what datasets we are mining, and how they were generated using compu-
tational algebra. This section also contains some exploratory data analysis
around numbers of distinct invariants as well as the connectivity structure
of the bivector invariants. We then move onto Machine Learning in Sect. 4;
in particular, we discuss predictive performance as well as ternary classifica-
tion tasks, before moving onto gradient saliency sensitivity on the input and
Principal Component Analysis. We conclude in Sect. 5. Our computer code
scripts and data can be found on GitHub.4

2. Background

Thorough introductions to root systems and Clifford algebras are available
elsewhere [28] so here we will be succinct. A root system lives in the arena of a
vector space with a scalar product (which immediately allows one to consider
the corresponding Clifford algebra). It is a collection of vectors (called ‘roots’,
and customarily denoted α) in that vector space which is invariant under all
the reflections in the hyperplanes to which the root vectors are perpendicular.
We will only consider root systems with roots of the same length, which can
be assumed to be normalised.5 Such reflections in the normal hyperplanes
are given by x → x − 2(x · n)n, where x is the vector to be transformed and
n is a unit normal to the hyperplane.

A subset called ‘simple roots’ is sufficient to write all roots as (in our
case) integer linear combinations of this basis of simple roots, whilst their cor-
responding reflections, the ‘simple reflections’, generate the reflection group.
Taking these simple reflections all exactly once leads to interesting types
of group elements called ‘Coxeter elements’. They are of the same order h
(the ‘Coxeter number’), and have invariant planes, called ‘Coxeter planes’,
which are useful for visualising root systems in any dimension (via projection
into these planes). These reflection groups have interesting integer—in fact
prime—invariants, that are characteristic of the geometry, called ‘exponents’

4https://github.com/DimaDroid/ML Clifford Invariants.git.
5Note this is different from the normalisation convention used in Lie theory.

https://github.com/DimaDroid/ML_Clifford_Invariants.git
https://github.com/DimaDroid/ML_Clifford_Invariants.git
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Figure 1. The diagrams of the 8-dimensional simply-laced
root systems A8, D8 and E8 (vertically downwards respec-
tively), along with our labelling for the simple roots and a
bipartite colouring

m. This name derives from the fact that Coxeter elements act on different
invariant planes by h-fold rotations by m times 2π/h, which is usually inter-
preted as a complex eigenvalue of the Coxeter element (even though we are
by assumption in a real vector space). The root system geometry can also
be encoded in diagrammatic form (called ‘Coxeter-Dynkin diagram’), where
each simple root corresponds to a node and orthogonal nodes are not linked,
whilst roots at 2π/3 angles are connected with a link (we will only be con-
sidering such ‘simply-laced’ examples, see Fig. 1). Likewise, our simply-laced
examples are tree-like and admit an alternate colouring (or ‘bipartite’, e.g.
black and white). This effectively means that all black roots are orthogonal
to each other, and likewise for the white roots. This colouring means that
there are distinguished types of Coxeter elements where first all the black re-
flections are taken, and then all the white (or the other way round). We will
call these ‘bipartite’ Coxeter elements. This bipartite colouring also implies
the existence of the Coxeter plane via a more complex argument, the details
of which we will omit here, but which relies on the adjacency matrix of the
Dynkin diagram having a distinguished largest eigenvalue and corresponding
eigenvector, the Perron-Frobenius eigenvector (which will make an appear-
ance below). In our labelling of the 8 simple roots for A8, D8 and E8, α1 to
α7 make one long string. The different diagrams arise depending on where
the 8th root α8 attaches: at the terminal node α7 for A8 (leading to bilat-
eral symmetry), at the penultimate node α6 for D8 (leading to permutation
symmetry of the terminal nodes), or α5 for E8.6

6Note that attaching to other roots is symmetry-equivalent to the options just mentioned
with the exception of attaching to α4, which leads to something called affine E7, or Ẽ7.
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As mentioned above, Clifford algebras can be constructed when one is
working in an n-dimensional vector space with an inner product, giving rise to
a 2n-dimensional algebra of ‘multivectors’. The scalar product is given as the
symmetric part of the geometric product, i.e. a ·b = 1

2 (ab+ba).7 Substituting
this in the reflection formula above results in a cancellation which leads to
the uniquely simple ‘sandwiching’ reflection formula in Clifford algebras

x → x − 2(x · n)n = −nxn. (2.1)

Both n and −n doubly cover the same reflection. Via the Cartan-Dieudonné
theorem orthogonal transformations are just products of such reflections so
that one can build up

x → ±nk · · · n1xn1 · · · nk = ±ÃxA (2.2)

such transformations via defining multivectors that are the products of nor-
mal vectors which encode the reflection hyperplanes, A = n1 · · · nk (called
‘versors’), and a tilde denotes reversing the order of these vectors in the
product. These versors again doubly cover the transformation.

We discuss here for a moment how this applies when the orthogonal
transformation is a Coxeter element. In traditional root system notation,
the simple reflections are denoted si such that a Coxeter element is denoted
w = s1 · · · sn. In the above versor framework, the reflections are encoded by
the root vectors themselves (as a double cover), whilst the multivectors W
that one gets from multiplying the simple roots together α1 · · · αn doubly
cover w

wx → ±αk · · · α1xα1 · · · αk = ±W̃xW. (2.3)

We return now to the setting of linear transformations in Clifford alge-
bras more generally again. Let us denote this linear transformation by f(x).
In order to calculate the desired invariants of this linear transformation (the
SOCM), we define the concept of ‘simplicial derivatives’.

First, let {ak}, k = 1, . . . , n denote a frame, i.e. a basis. Often we use
either a Euclidean basis ei or the basis of simple roots, αi. We denote by
{ak} its reciprocal frame such that ai · aj = δij . In a Euclidean basis this is
effectively the basis itself; for a basis of simple roots the reciprocals are more
commonly known as co-roots (up to a different conventional normalisation
factor). We also define bk = f(ak) as the transformation acting on the basis
frame vectors. The rth simplicial derivative is then essentially defined as a
combinatorial object

∂(r)f(r) =
∑

(ajr ∧ · · · ∧ aj1)(bj1 ∧ · · · ∧ bjr ) (2.4)

with sum over 0 < j1 < · · · < jr ≤ n.8 These simplicial derivatives are
invariants of the linear transformation and are therefore ‘characteristic mul-
tivectors’ with geometric significance.

7The outer product a∧b = 1
2
(ab−ba) is the antisymmetric part, is a bivector and determines

the plane that two vectors generically span.
8This is due to the original notion of a multivector derivative essentially being equivalent
to a projection.
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Now [45] showed that it is the scalar parts of these geometric invariants
(denoted by ∂(s)∗f(s)) that constitute the coefficients in the Cayley-Hamilton
theorem

Cf (λ) =
m∑

s=0

(−λ)m−s∂(s) ∗ f(s)

(where ∂(0) ∗ f(0) is interpreted as 1) and the characteristic polynomial

m∑

s=0

(−1)m−s∂(s) ∗ f(s)f
m−s(a) = 0

for any vector a (where f0(a) is interpreted as a).
One can explicitly verify this for our examples. Using the galgebra

package, one can perform calculations in the 256-dimensional multivector
algebra, calculating Coxeter versors from permutations of the simple roots,
and from that simplicial derivatives and geometric invariants. We will refer
to the simplicial derivatives ∂(r)f(r) as the invariant of order r or Invr (and
to the full set as SOCM).

Since we are considering an even orthogonal transformation in an 8-
dimensional space we get some interesting structure in these invariants (see
Table 1): firstly, we note that only even multivectors occur (in principle,
this allows us to reduce the length of the 256-dimensional multivectors by
half). Secondly, the lowest order invariant only has a scalar part (trivially),
the next picks up a bivector term, the next one a quadrivector term, the
next a sextivector, till finally Inv4 (generically) has a pseudoscalar term.
Then it decreases again. In fact, thirdly, in our case we have a certain ‘mirror
symmetry’, where the top half in the Table is equal to the bottom half, though
this is not generally the case. In fact, all these pieces, which we could denote
by Invk

r are separately invariant under the Coxeter versor: W̃ Invk
r W = Invk

r .
So these Invk

r are eigenmultivectors of the Coxeter element of grade k, but
they do not have to be k-blades (i.e. be able to be written as the outer product
of k vectors9).

So amongst other multivector components, e.g. for E8 we in particular
have 4 invariant bivectors from the invariants. It turns out that these are
orthogonal. The Coxeter element also acts on 4 invariant orthogonal bivectors
(giving planes, and they are blades by construction) via the Coxeter plane
construction, so there is an immediate question of how our characteristic
multivectors relate to exponents and degrees. In fact, we will say here already
that for E8 one can show that the two sets of 4 orthogonal eigenvectors (from
the SOCM and the Coxeter construction) span the same 4d-subspace of the
28d bivector space. Reflection groups can also have other interesting invariant
subspaces such as two H4-invariant subspaces in E8 [29,31]. We are exploring
these more analytical questions more fully in the companion paper.

9Something also noticed in the example in [53].
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Table 1. Structure of the characteristic multivectors: non-
zero grades are indicated by an X

Subinvariant
Invariants by Order scalar bivector quadrivector sextivector pseudoscalar

Inv0 X
Inv1 X X
Inv2 X X X
Inv3 X X X X
Inv4 X X X X X
Inv5 X X X X
Inv6 X X X
Inv7 X X
Inv8 X

3. Datasets

We choose dimension 8 because of the following compromise: 8! = 40320 gives
us something resembling ‘big data’ which is accessible to data science tech-
niques, whilst being computationally tractable10. It is also the last dimension
in which there are three simply-laced root systems, with the exceptional E8

adding some variety to the An and Dn families that exist in arbitrary di-
mensions. So we select A8, D8 and E8, as this gives us scope for three-way
(ternary) classification tasks and ADE patterns are of course of wider interest.

The input vectors are the set of permutations in 8 elements, e.g. (0, 1,
2, 3, 4, 5, 6, 7), labelling the simple roots α1 through to α8 and encoding in
which order the simple roots are taken in for computing the Coxeter versor.
The outputs are the 9 invariants {Inv0, . . . , Inv8} as multivectors.

input = (0, 1, 2, 3, 4, 5, 6, 7) = α1 . . . α8 → {Inv
0

, . . . , Inv
8

} = SOCM = output

(3.1)
In 8-dimensions the multivector invariants have 256 components (some of
which are trivial11).

3.1. Data Generation

The computational algebra approach followed here used python with the
galgebra package for multivector computations [20]. Exploratory analysis for
single permutations was performed in Jupyter notebooks but once parallelised
the computations were run on clusters at Queen Mary, University of London,
City, University of London, and University of Leeds. Data and Code can be
found on https://github.com/DimaDroid/ML Clifford Invariants.gitGitHub.

10With the caveat that there is degeneracy in the permutations leading to the same or
similar Coxeter elements and thus invariants, reducing the true number of different output
vectors. Although it was not obvious from the beginning, especially for E9 and D8.
11Since the odd components are typically 0 one could reduce this if needed, but for com-
pleteness and generalisability we haven’t.

https://github.com/DimaDroid/ML_Clifford_Invariants.git
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We performed computations both in an Euclidean basis12, which is a bit more
straightforward, and the basis of simple roots via the multivector basis that
it induces, which is more meaningful geometrically and less dependent on the
choice of simple roots in the Euclidean basis. According to our earlier discus-
sion around Table 1 we can also extract different grades of these invariants
(e.g. scalar, bivector etc), which we refer to as ‘subinvariants’ Invk

r , from the
full set (SOCM).

3.2. Frequency Analysis

As was mentioned previously, for each of the A8, D8 and E8 root systems
there are 8! = 40320 permutations of 8 root vectors from which we can
construct the corresponding Coxeter elements and the 9 geometric invariants.

Each invariant is a sum of 8 subinvariants written in terms of the wedge
product of the different number of basis vectors for the 8-dimensional vector
space. These 8 subinvariants are scalar, vector, bivector, trivector, quadrivec-
tor, and so on up to 8-vector pseudoscalar. The components for each of the
subinvariants can be written down in a chosen basis, e.g. in terms of simple
roots. This allows us to compare SOCMs corresponding to different Coxeter
elements, or invariants of a chosen order, or focus on subinvariants within
the invariant of a chosen order.

These exhaustive computational algebra calculations already show in-
teresting results. On the highest level, we compare components of SOCMs
and find that, although there are 40,320 SOCMs we can construct, only 128
are distinct, and this is the same number for each of the algebras. We can
think of these as ‘classes’ of SOCMs with the same components. Each class
has a certain number of representatives13 in it which we call frequency. The
frequency of classes, which come in groups of 2, 4 or 8 and all have the same
value, we call Doublets, Quadruplets and Octuplets, respectively. Although
the number of classes for each of the algebras is the same, frequencies of
individual classes differ, see Fig. 2.
In the following, we will be using two types of operations on permutations:

• Inversion—we say that two permutations are related by inversion if the
order of simple roots for these permutations is reversed relative to each
other, e.g. (0,1,2,3,4,5,6,7) and (7,6,5,4,3,2,1,0).

• B ↔ W—following the bipartite colouring of black roots and white
roots, we can reduce (with some degeneracy) a permutation to a black
and white ‘barcode’. For example, (2,4,6,8,1,3,5,7) becomes ‘••••◦◦◦ ◦’.
We say that two permutations are related by B ↔ W if we replace black
roots by white roots and vice versa.

There are some common features among all three algebras:

12Roots in the root system are often defined as columns of components in the Euclidean
orthonormal basis in some higher dimensional space. However, since the set of simple
roots can generate the root system via addition, we can also take simple roots as a basis,
although not orthonormal. While this may seem more complicated, it is more meaningful
geometrically because everything we compute in geometric algebra using simple roots can
be eventually expressed in the basis of simple roots.
13They have different order of roots in a permutation encoding Coxeter versor.
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Figure 2. Sorted multiplicities of the 128 unique SOCMs,
for each root system considered: A8, D8, E8 respectively.
A8 is mostly quadruplets, E8 mostly doublets and D8 half
and half. See https://github.com/DimaDroid/ML Clifford
Invariants.gitGitHub for the full list of values

• All the frequency values come in Doublets, Quadruplets and Octuplets;
• The highest frequencies appear in Doublets;
• For Doublets, permutations of the class elements in one class are related

by inversion to permutations of the class elements in another class.
Quadruplets are essentially two Doublets with the same frequency and
Octuplets are two Quadruplets with the same frequency.

Some other features which are different:
• For A8:

– Frequencies of all classes are odd numbers;
– There is a Doublet with the lowest frequency equal to 1 (i,e, two

unique invariants). Classes in this doublet are represented by per-
mutations (0, 1, 2, 3, 4, 5, 6, 7) and (7, 6, 5, 4, 3, 2, 1, 0)14;

– There is a Doublet with the highest frequency equal to 1385. This
Doublet consists of two invariants which are given by bipartite
Coxeter elements: one of them is given by a Coxeter element with
first 4 black roots with increased root number and then 4 white

14One might call them ‘maximally non-commuting permutations’, where none of the roots
adjacent in the permutation are orthogonal.

https://github.com/DimaDroid/ML_Clifford_Invariants.git
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ones with increased root number as well; the second one is very
similar and has first 4 white roots and then 4 black ones with
increased root number in both subsets;

– For Quadruplets, there are pairs of classes that are related by in-
version. In addition, these pairs within the Quadruplet are related
to each other by B ↔ W . Presumably, having inverse barcodes
signifies similar combinatorial properties that result in the same
frequency.

– As was mentioned before, in Doublets, two classes within it are
related by inversion. In addition, the two classes are related to each
other by B ↔ W symmetry: if we assign a black or white colour
to every simple root according to Fig. 1, we get a black and white
‘barcode’ for a permutation encoding a Coxeter element. One can
check that the barcode for the first class is the inversion (change
black to white and vice versa) of the barcode for the other class
within the Doublet, i.e. the Doublets are self-dual under B ↔ W .

– In some Quadruplets, there is even more B ↔ W inversion sym-
metry: B ↔ W symmetry between the pairs of classes that are
related by inversion is enriched by the B ↔ W symmetry within
the pairs. This is because the barcode mapping is degenerate, i.e.
non-equivalent permutations can give rise to the same barcode;

– An Octuplet appears as two Quadruplets with the same frequency;
– There are 8 Doublets, 26 Quadruplets and 1 Octuplet in total.

• For D8:
– All frequencies are even numbers;
– There are no unique invariants, a Doublet with a frequency equal

to 2, and a Doublet with the highest frequency equal to 1582;
– No signs of B ↔ W symmetry;
– There are 20 Doublets and 22 Quadruplets.

• For E8:
– All frequencies are odd numbers;
– There are no unique invariants, a Doublet with the lowest fre-

quency equal to 3 and a Doublet with the highest frequency equal
to 1511;

– No signs of B ↔ W symmetry;
– There are 58 Doublets and 3 Quadruplets.

On the level of subinvariants within the invariants, one can perform
the same analysis and find frequencies given in Tables 2 and 3. The tables
for A8 and E8 are identical; all three groups have the same frequencies for
bivector and quadrivector subinvariants. Empty cells denote the fact that
all subinvariants for this order of invariants are trivially zero (some are also
less-trivially zero).

Another interesting thing to look at is the frequencies of invariants and
subinvariants with the identification of objects that differ up to an overall
minus sign. We find that this modification does not alter the frequencies of
the full invariants, however, it does change the frequencies of subinvariants,
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Table 2. Frequencies of subinvariants for A8/E8 group.
Empty cells denote the fact that all subinvariants for this
order of invariants are trivially zero

Subinvariant
Invariant Order scalar bivector quadrivector sextivector pseudoscalar

Inv0 1
Inv1 1 128
Inv2 1 128 64
Inv3 1 128 64 128
Inv4 1 128 64 128 2
Inv5 1 128 64 128
Inv6 1 128 64
Inv7 1 128
Inv8 1

Table 3. Frequencies of subinvariants for D8 group. Empty
cells denote the fact that all subinvariants for this order of in-
variants are trivially zero. But there are also some non-trivial
zeroes to do with the D8 geometry, in which the factorisation
of the Coxeter element into orthogonal eigenspaces contains
two true reflections, also signalled by having two exponents
of h/2

Subinvariant
Invariant Order scalar bivector quadrivector sextivector pseudoscalar

Inv0 1
Inv1 1 128
Inv2 0 128 64
Inv3 0 128 64 32
Inv4 0 128 64 32 0
Inv5 0 128 64 32
Inv6 0 128 64
Inv7 1 128
Inv8 1

see Tables 4, 5, 6. We see that frequencies for bivector and sextivector (and
pseudoscalar for A8) subinvariants for A8 and D8 are halved, meaning that
half of these subinvariants differ from the other half by a minus sign. At the
same time, scalar and quadrivector subinvariants are unchanged. The picture
is different for E8, where bivector, quadrivector and sextivector frequencies
change non-trivially under sign identification.

The idea behind these observations is to understand the symmetries
of the root system. The frequency of multiplicities for the three algebras
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Table 4. Frequencies of subinvariants for A8 group up to
an overall minus sign. Empty cells denote the fact that all
subinvariants for this order of invariants are trivially zero

Subinvariant
Invariant Order scalar bivector quadrivector sextivector pseudoscalar

Inv0 1
Inv1 1 64
Inv2 1 64 64
Inv3 1 64 64 64
Inv4 1 64 64 64 1
Inv5 1 64 64 64
Inv6 1 64 64
Inv7 1 64
Inv8 1

Table 5. Frequencies of subinvariants for E8 group up to
an overall minus sign. Empty cells denote the fact that all
subinvariants for this order of invariants are trivially zero

Subinvariant
Invariant Order scalar bivector quadrivector sextivector pseudoscalar

Inv0 1
Inv1 1 40
Inv2 1 40 64
Inv3 1 52 48 36
Inv4 1 64 64 64 1
Inv5 1 52 48 36
Inv6 1 40 64
Inv7 1 40
Inv8 1

should be determined by the permutation of these symmetries. It is rather
simple to determine the number of unique invariants and explain the existence
of Doublets and Quadruplets for the A8 algebra due to its simple Dynkin
diagram, but much harder for the D8 and E8 algebras.

3.3. Bivector Subinvariants

Now we are restricting our focus to the bivector parts of the invariants, which
as subinvariants are of particular interest since bivectors generate planes for
rotation (such as the Coxeter plane central to the study of these root systems).
Each of the bivector subinvariants has 28 entries, corresponding to the

(
8
2

)

combinations that form a basis for the bivector subspace, whether this is in
a Euclidean basis or in the basis of simple roots. Here, we will be working in
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Table 6. Frequencies of subinvariants for D8 group up to
an overall minus sign. Empty cells denote the fact that all
subinvariants for this order of invariants are trivially zero.
But there are also some non-trivial zeroes to do with the
D8 geometry, in which the factorisation of the Coxeter el-
ement into orthogonal eigenspaces contains two true reflec-
tions, also signalled by having two exponents of h/2

Subinvariant
Invariant Order scalar bivector quadrivector sextivector pseudoscalar

Inv0 1
Inv1 1 64
Inv2 0 64 64
Inv3 0 64 64 16
Inv4 0 64 64 16 0
Inv5 0 64 64 16
Inv6 0 64 64
Inv7 1 64
Inv8 1

the basis of simple roots. Each bivector subinvariant hence takes the form:∑8
i,j=1|i<j cij(αi ∧ αj), for the 8 simple root basis vectors αi, and general

coefficients cij , which turn out to be even integers. This is motivated by the
observation that rather intriguingly, the bivector part of the bipartite E8

Coxeter element gives precisely rise to the E8 diagram etc.

3.3.1. Interpretation as Graphs. From each bivector subinvariant, one can
construct a graph. This is done by associating a vertex to each simple root,
and including the edge between vertices i and j if cij �= 0. This construction
method manifestly creates undirected unweighted simple graphs (with no
loops as cii = 0 ∀i, and at most one edge between any pair of vertices). The
generated graph is practically constructed via a symmetric adjacency matrix,
with binary entries, such that cij is taken as the upper triangle of a symmetric
matrix with any non-zero entries converted to 1. Since the adjacency matrices
are symmetric their eigenvalues are all real, and one can begin to analyse their
eigenspectra.15

The Perron-Frobenius theorem [35,59] asserts that square matrices with
positive integer coefficients have a unique largest real eigenvalue. In particu-
lar, for undirected graph adjacency matrices this maximum eigenvalue takes
value in the range (0, n − 1], for graphs with n vertices.16 Furthermore, it
turns out that the A, D, & E Dynkin diagrams are particularly special in
the space of undirected graphs, in that they are the only connected graphs

15Note that one may also create a directed weighted graph by setting the adjacency matrix

upper triangle to be cij ; however as the matrix is anti-symmetric, eigenvalues are complex,

and hence cannot be sorted sensibly for analysis.
16The upper bound is saturated by the complete graph on n vertices.
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whose maximum eigenvalue < 2 by Smith’s theorem [66]. In fact, the Coxeter
elements of bipartite form were observed to just give the Coxeter-Dynkin di-
agram of the A8, D8 and E8 root systems. Since bivector graphs can be more
generally induced by all forms of Coxeter elements, this motivates the study
of the maximum eigenvalues for all the respective undirected graphs.

Returning to our databases, except for the trivial zero invariant formed
from the bivector subinvariant of Inv0 and Inv8, an initial unanticipated
observation is that each of the graphs constructed from each of the bivector
subinvariants across the 3 databases are all connected. In addition to this,
there is no overlap of bivector subinvariants between algebras (excluding
the trivial zero invariant). Also there is no overlap of bivector subinvariants
between the orders of invariants they come from, within each of the algebras.
However, there is small repetition of adjacency matrices (i.e. after reducing
non-zero entries to 1), and also graphs. Specifically, there are A8: (0, 38,
12), D8: (0, 1, 6), E8: (0, 0, 25) repeated (subinvariants, adjacencies, graphs)
between orders 1 to 4, for each algebra respectively.

Analysing the multiplicities of the bivector subinvariants, for (A8, D8,
E8) there are (513, 513, 513) distinct subinvariants across all orders for each
algebra respectively. When considering the undirected adjacency matrices
constructed from these (out of 228 ∼ 2.7 × 109 possible undirected adja-
cency matrices), these bivector subinvariants reduce to (219, 256, 251) dis-
tinct adjacency matrices respectively. These matrices then further reduce to
respectively (88, 144, 137) non-isomorphic graphs (out of 11117 possible non-
isomorphic graphs [65]).17

Now in examining the distribution of the maximum eigenvalues, we
first note that the trivial zero invariant, which is equivalent to the empty
graph, has all eigenvalues zero, so is omitted in the following analysis. To set
a baseline for comparison we sample as many random connected adjacency
matrices as non-zero bivector subinvariants occur in each dataset (282,240),
compute their maximum eigenvalues, and plot the respective histogram of
multiplicities in Fig. 3. The maximum eigenvalues for the adjacency matrices
constructed from each bivector subinvariant were then computed for each
algebra’s dataset, and histograms of their distributions for each algebra are
shown in Fig. 4, coloured according to the invariant order that they came
from. In each class corresponding to invariant orders 1 to 4 (i.e. Inv1 to
Inv4), there are A8: [36, 34, 18, 11], D8: [43, 41, 24, 36], E8: [54, 49, 18,
30] distinct eigenvalues respectively with multiplicities as shown in the plots.
Note that all these multiplicities reduce to 1 when considering the unique
non-isomorphic graphs at each order.

From the plots, it can be seen that the distributions do appear to roughly
follow a partition according to the order of the invariant they come from. This
is perhaps hinting at how these different order subinvariants span different
subspaces of the full space of subinvariants, as dictated by their eigendecom-
positions. Additionally, the actual A8, D8, and E8 graphs occur as bivector

17Noting that the trivial zero invariant (all 28 coefficients cij = 0) contributes a subinvari-

ant, an adjacency matrix, and an empty graph to the counts for each algebra.
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Figure 3. Distributions of the maximum eigenvalues for
282,240 random connected matrices (of which 282,086 are
unique matrices, overall having 9741 unique eigenvalues)

Figure 4. Distributions of the maximum eigenvalues for
each of the bivector subinvariants for each of the consid-
ered algebras: A8, D8, E8 respectively. Data includes all
282,240 non-empty bivector subinvariants, coloured accord-
ing to which order invariant they correspond to

subinvariant graphs for a large number of the Inv1’s only in each respective
root system’s dataset (the point with maximum eigenvalue below 2 in the
A8 plot is the A8 graph of Fig. 1, etc). Presumably, these are due to Coxeter
elements in bipartite form, and are in accordance with Smith’s theorem.

3.3.2. Eigenvector Centrality. The maximum eigenvalue of a non-negative
matrix has a corresponding eigenvector with exclusively non-negative entries,
as also dictated by the Perron-Frobenius theorem. One can then associate
each of these normalised non-negative entries to a centrality score for the
graph node with corresponding index. This is known as eigenvector centrality
[19].

For these bivector subinvariant graphs, there are 8 nodes (correspond-
ing to the simple roots) and hence 8 respective centrality scores which can
be computed for each graph for each invariant order across each root system.
Since the centrality scores are normalised, when examining the distribution
of measures across the nodes, it is most interesting to consider: (1) the most
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Figure 5. The multiplicities that each of the 8 graph nodes
(ie. simple roots αi) exists as the most central node in a
bivector subinvariant graph, for all graphs across all invari-
ant orders for each of the considered root systems: A8, D8,
E8 respectively

Figure 6. The multiplicities of the variances across the dis-
tribution of eigenvector centrality scores for each bivector
subinvariant graph. These variances were computed for each
graph across all invariant orders for each of the considered
root systems: A8,D8, E8 respectively

central node with the highest score; as well as (2) the score distribution vari-
ance. Respectively, these then indicate which parts of the graph are most
important to the connectivity (and hence the most significant bivector con-
tribution to its graph structure); and the extent to which this significance
is polarised towards the requirement on this most central node to ensure
connectivity. For instance, for the D8 and E8 Dynkin diagrams, the triply
connected simple root is 6 and 5 respectively, so we would expect these to
have highest centrality. Likewise, the middle roots 4 and 5 in A8 should be
the most central. But these Dynkin diagrams are in some way minimal, and
other bivector diagrams will be ‘more fully connected’, so we expect centrality
of different roots to change for more general Coxeter elements.

To examine this behaviour in the root systems considered, the eigenvec-
tor corresponding to the previously studied largest eigenvalue was computed
for each bivector subinvariant across all invariant orders for each root sys-
tem. The node index of the most central node was then identified, and the
variance of the centrality measure distribution calculated. The multiplicity
distributions of these centrality distribution measures are shown in Fig. 5
for the node index of the most central node, and Fig. 6 for the variance in
centrality scores across each bivector subinvariant.
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The results in Fig. 5 show some consistency of which nodes are the
most central between the root systems. In all cases the order 1 invariants
(Inv1) have the most skewed distributions, with the first 2 nodes never being
the most central, whilst the last nodes are the most central infrequently.18

From this one can deduce that the basis invariants {a4, a5, a6} are most
significant to the Inv1’s graph’s connectivity, as in our labelling of the simple
roots {a1, a2, a3} are the start of a long string, and are thus somewhat less
central. But the relative multiplicities between the nodes can be used to
differentiate the root systems. Within the set of each root systems’s Inv1

invariants, the Dynkin diagrams themselves are included as graphs. It is hence
not surprising to see the D8 and E8 most central nodes have indeed maximum
multiplicity as the most central node for a6 and a5 respectively, where the
Dynkin diagram nodes have degree 3. Equivalently the A8 Inv1 invariants
have a more symmetric distribution of most central node, with the highest
multiplicity for a4 (and with some numerical differences, a5) matching the
A8 Dynkin diagram. These results corroborate nicely the similarity of the
graphs within each order and our earlier assertion that the graphs for higher
order invariants ‘become more connected’.

Considering the higher order bivector subinvariant graphs, the range of
multiplicities is noticeably lower. However, range does not strictly decrease
as order increases. Order 2 graphs have a similarly noticeable skew towards
more nodes closer to the middle of the basis order being more central, which
either does not occur or is not significant enough to conclude for orders 3
and 4. For A8 and E8 the order 3 and 4 graphs have a somewhat consistent
distribution of which node is the most central.

In a similar manner, the variances of the centrality measures shown in
Fig. 6 are larger for the order 1 bivector subinvariants Inv2

1, extending the
analysis of Fig. 5 to the consideration of all the nodes’ centrality scores (not
just the most central one). The overlap in variance values for the higher
orders indicates that their respective graphs have similar connectivity prop-
erties, although there are potential bounds which could separate some order
2 invariants (Inv2), particularly for the A8 and E8 algebras.

Overall the analysis of the bivector subinvariant graphs’ eigenvector
centralities indicates that the order 1 graphs are distinctly different to those
coming from higher order invariants. The Inv1 invariants tend to be more
consistently structured (with the same basis elements creating the most cen-
tral node) and more skewed in centrality with central nodes more dominantly
central. Generally, going to higher-order invariants increases the connectivity,
at least for A8 and E8, with some reasonably-well separated clustering of the
orders. For D8, the Inv3 invariants seem the most connected; this is likely
due to the unique geometry of D8, manifested e.g. also by the non-trivially
zero scalar and pseudoscalar terms in Table 3.

18We note here that graph nodes have no intrinsic order; the one chosen here matches the
basis order.
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4. Machine Learning

Statistical methods have always held a strong footing in the realm of ex-
ploratory mathematical analysis. They are particularly useful for identifying
patterns, which in turn lead to uncovering true mathematical structures, and
guiding conjectures into proven theorems.

Only in the last few decades have computational resources seen such ex-
plosionary growth that many resource-heavy statistical methods have become
feasible to implement. This has allowed the development and application of
large-scale computational statistical methods, a range of techniques known
commonly as machine learning (ML).

ML methods have been used broadly across a diverse range of fields,
with outstanding and surprising success. Within our area of mathematics
and mathematical physics research, the plethora of ML techniques have been
largely unutilised, presenting many opportunities for new application and
insight. A selection of example successes of ML methods on mathematical
data include: cluster algebras [9,25,32], dessins d’enfants [40], tropical geom-
etry [11,24], knots [37], and various string theory-inspired algebraic geometry
datasets [2,10,12,13,16–18,22,26,56].

ML as a field is subdivided into three core categories,: supervised, un-
supervised and reinforcement learning. The focus of this study is on the first
two. In supervised learning, many-parameter functions are fitted to large
datasets of (input, output) pairs. In unsupervised learning there is no respec-
tive output data, and traditional data analysis methods for feature extraction
and clustering are applied directly to the datasets.

4.1. Supervised: Neural Networks

Supervised ML concerns itself with learning functions which map inputs to
outputs. The most common supervised architectures for this, largely due
to their versatility as universal approximators [46,54], are neural networks
(NNs). NNs are built from layers of neurons, where the action at each neuron
starts with an input vector x, which is acted upon linearly by weights W
and biases b, whose resulting number is then passed to a non-linear ‘activa-
tion’ function a, producing the neuron output. Overall this action looks like
neuron : x �−→ a(W · x + b). These neurons are arranged in layers such that
the input is passed to each neuron in the first layer; their outputs are then
compounded into a vector to pass to the next layer etc, which cumulatively
build up to a non-linear function.19

In order to approximate a given or implied non-linear function relating
the input to the output, the weights of a neural network can be adjusted, or
‘trained’, using data and an optimisation algorithm (with respect to a ‘loss
function’), in order to provide an in some sense ‘optimal’ approximation to
the original potentially highly complex non-linear function relating input and
output [6]. Given a dataset to learn with NNs, the data is first partitioned

19Note this architecture is the most general in form, known as fully-connected or dense.

One may restrict which neurons receive which outputs from the previous layer in a variety

of systematic ways to design more specific architectures.
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into training and test subsets. The train data is fed into the NN in batches,
and an optimiser then updates the NN parameters of weights and biases
to minimise the specified loss function over this batch. This process is then
iterated for each batch over the training dataset, then repeated for as many
epochs as specified. The unseen test dataset inputs are then passed into the
trained NN to predict outputs, which are compared to the true outputs with
various learning measures to assess performance. The entire process may be
repeated k times in k-fold cross-validation, with k different partitions into
train and test datasets to provide k output performance measures, which can
be averaged to provide statistical confidence.

4.1.1. Binary Classification of Invariants: Real vs Fake Data.
It is expected that geometric invariants can be constructed, via some formula,
from Coxeter elements that carry information about the root system. So one
might hope to find specific features of invariants that depend on the root
system/Lie algebra.

The dataset used consists of 3 subsets, one for each of the algebras
A8/E8/D8, with 40,320 entries and 2304 components in each subset. To fur-
ther enlarge the amount of data, we generated a ‘fake’ dataset for each of
the A8/E8/D8 algebra. In the first iteration, ‘fake’ datasets were generated
by constructing empirical distributions for each of the 2304 components from
all available invariants for the corresponding algebra and then sampling from
this distribution to create 40,000 unique elements in new datasets. One can
notice that in the ‘real’ data, the number of zeros in each entry is constant and
specific for different algebras.20 We implemented this feature in fake datasets
we used by eliminating fake data entries which do not satisfy this condition.

We started with one of the simplest supervised learning approaches,
binary classification by a dense neural network with an idea to train 3 NNs
to distinguish invariants for one of the algebras from other algebras and ‘fake’
invariants. Overall, we have 6 datasets of geometric invariant components for
A8, D8, and E8 algebras, as well as ‘fake’ datasets for each. From these, three
final training/test datasets were constructed, one for each algebra, where we
labelled ‘real’ A8 or D8 or E8 algebra invariant components with 1, two
remaining ‘real’ algebras invariant components with 0, and 3 ‘fake’ datasets
labelled as 0 as well. This is what we will imply when we say that we create
training/test datasets to distinguish one of the A8, D8, and E8 invariants
from other ‘real’ invariants and the ‘fake’ ones.

One should notice however that training NNs to distinguish one of the
A8/D8/E8 invariants from others and fake invariants using all datasets is
invalid. For all three of them, the prediction on test datasets would be 100%
accurate because, as described in Sect. 3.2, there are only 128 unique in-
variants for each of the ADE datasets, leading to a large repetition of them
(although with unequal frequencies). Hence, there is a high chance that in
a randomly chosen training subset, we would find all 128 unique invariants.
This would make the test stage biased, as it likely contains repetitions of the

201942 for E8, 2083 for D8 and 1805 for A8.
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training data. Effectively, these NNs are learning to reproduce this dataset
of invariants perfectly, but would not be able to generalise beyond it.

A more meaningful problem is to remove degeneracy in datasets for ‘real’
A8/D8/E8 invariants, leaving just 128 elements in each. Then, we can mix
original and fake invariants, which ensures that we have some real invariants
in the training set and others in the test set only. The proportion of data
in training and test datasets was again set to 80% and 20%. However, this
makes the whole dataset skewed as there are around 40,000 fake invariants
and only 3×128 real invariants. We kept data unbalanced in the training set,
but in the test set, to make it easier to interpret results, we cut the number
of fake invariants to be the same as the number of real invariants, meaning
we had 3 × {128/k real and 128/k fake} invariants.

In this setup, we tried NN with architectures varying from 1 hidden
layer with 32 units to 2 hidden layers with 256 units in each. In all of them,
the ReLU activation function was used. During training, we used the Adam
optimizer (with a learning rate of 0.001) to optimize the log-loss function. The
train and test datasets represented an 80% / 20% split of the total data. The
best performance was demonstrated by 1 hidden layer 64, 128 and 256 units
NNs with accuracies in the range of 0.90−0.92. From this one might speculate
that there should be some relatively simple invariant quantity (similar to the
genus of a surface) that was learned by the NNs to distinguish real invariants
coming from different algebras and fake invariants.

4.1.2. Regressing Invariants from Permutations. As introduced in Sect. 2,
Clifford algebras and the simplicial derivatives/characteristic multivectors
provide us with a systematic way of computing the geometric invariants
(SOCM) occurring e.g. in the Cayley-Hamilton theorem. In particular, this
depends on the permutation order of the simple reflections in a Coxeter el-
ement. It is, therefore, expected that there is an analytical formula that
directly predicts the corresponding geometric invariant from the order of the
permutation of the simple reflections. Since making conjectures or deriva-
tions from scratch is challenging in this task, in the spirit of experimental
mathematics, we hope that the use of supervised learning algorithms, which
train on labelled datasets to make predictions, can shed some light on this
expected relation.

In this paper, we used dense NNs coded in python where the input
is the (one-hot encoded [6]) permutation and the output is the coefficients
of the invariants. For clearer results, we first partitioned each dataset for
A8,D8, E8 into 9 subdatasets for each of the 9 invariant orders, and then
look at the coefficients of both the full invariant and each subinvariant for
each order subdataset, i.e., the scalar, bivector, quadrivector, sextivector,
and pseudoscalar for each invariant order Inv0-Inv8 (SOCM). The NN model
includes four dense layers of 256 units with ReLU activation function. In
training, we used the Adam optimizer (with learning rate 0.001) to minimise
a mean-squared error loss. 5-fold cross validation was also used, with test
data subset being 20% of the full dataset. To calculate accuracy, predictions
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Table 7. Summary of the final test accuracy (Acc) for the
full invariants and each subinvariant of the 9 invariants for
A8 simple root data

Acc(Invi) Acc(Inv0
i ) Acc(Inv2

i ) Acc(Inv4
i ) Acc(Inv6

i ) Acc(Inv8
i )

Inv0 1.0000 1.0000

Inv1 1.0000 1.0000 0.9996

Inv2 0.9996 1.0000 0.9999 0.9999

Inv3 0.9980 1.0000 0.9973 0.9480 0.9999

Inv4 0.9958 1.0000 0.9999 0.9999 0.9117 0.9596

Inv5 0.9986 1.0000 0.9995 0.9999 1.0000

Inv6 1.0000 1.0000 0.9948 0.9999

Inv7 0.9999 1.0000 1.0000

Inv8 1.0000 1.0000

Table 8. Summary of the final test accuracy (Acc) for the
full invariants and each subinvariant of the 9 invariants for
D8 simple root data

Acc(Invi) Acc(Inv0
i ) Acc(Inv2

i ) Acc(Inv4
i ) Acc(Inv6

i ) Acc(Inv8
i )

Inv0 1.0000 1.0000

Inv1 1.0000 1.0000 0.9955

Inv2 1.0000 1.0000 0.9912 0.9999

Inv3 0.9993 1.0000 0.9995 0.9999 1.0000

Inv4 0.9995 1.0000 0.9988 0.9891 0.9998 1.0000

Inv5 0.9995 1.0000 0.9986 1.0000 1.0000

Inv6 1.0000 1.0000 1.0000 1.0000

Inv7 1.0000 1.0000 0.9999

Inv8 1.0000 1.0000

were rounded to the nearest integer, and a prediction was considered correct
if all of its coefficients were predicted correctly after rounding.

Our ML results are summarised in Tables 7 to 9 for the A8,D8, E8

data in the simple root basis. The results show near-perfect prediction of all
invariants and subinvariants across all algebras. The trivial scalar invariants
are unsurprisingly all learnt perfectly, but in many other cases there is perfect
learning also. The lowest performance occurs for the sextivectors, where there
is less data to learn from. These results indicate that the NNs are capable of
well approximating the complicated algorithm carried out to compute these
invariants, as well as accommodating for the basis permutations.

4.1.3. Gradient Saliency Analysis. To better interpret the decision-making
of our NN models—which are black-box models—we also performed gradient
saliency analysis [68]. In general, the magnitude of the elements in a weight
vector in the model tells us the importance of the corresponding input element
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Table 9. Summary of the final test accuracy (Acc) for the
full invariants and each subinvariant of the 9 invariants for
E8 simple root data

Acc(Invi) Acc(Inv0
i ) Acc(Inv2

i ) Acc(Inv4
i ) Acc(Inv6

i ) Acc(Inv8
i )

Inv0 1.0000 1.0000

Inv1 1.0000 1.0000 1.0000

Inv2 0.9999 1.0000 1.0000 1.0000

Inv3 0.9994 1.0000 0.9906 0.9999 0.9891

Inv4 0.9969 1.0000 1.0000 0.9963 0.9793 0.9223

Inv5 0.9994 1.0000 0.9996 0.9999 0.9990

Inv6 1.0000 1.0000 1.0000 1.0000

Inv7 1.0000 1.0000 0.9998

Inv8 1.0000 1.0000

for a particular output. We can extend this to consider the sensitivity of
the entire NN function to the inputs by computing the gradient of a given
output with respect to the input via backpropagation. The magnitude of
the gradient indicates how sensitive the output is to a change in the input
variable. The results for the average gradient magnitudes across the test sets
(and 100 cross-validation runs) are shown in Fig. 7 for the multiclassification
investigation equivalent to Sect. 4.1.1 but without considering the fake data
(performance was equivalently perfect), and Tables 10, 11, 12 in appendix A
for the subinvariant regression in Sect. 4.1.2.

The Fig. 7 gradient saliency barcode maps show the relative impor-
tance of the subinvariant inputs for algebra classification; hence the bivector(
8
2

)
= 28 (=

(
8
6

)
for the sextivector also) coefficients are represented by 28

vertical lines, whilst the quadrivector
(
8
4

)
= 70 coefficients are represented by

70 vertical lines. Note the trivial scalar as well as the pseudoscalar subinvari-
ants are omitted, and the remaining plots approximately satisfy the observed
mirror symmetry between invariant orders (i.e. Inv2

1 ∼ Inv2
7, Inv4

3 ∼ Inv4
5,

etc.).
For Inv2

1 and Inv2
7, the NNs rely almost exclusively on the final com-

ponents of the coefficient vector, with a similar skewed behaviour for Inv2
2

and Inv2
6 towards the final coefficients implying the span of these final coeffi-

cient values is most disparate between the algebras and thus can be used for
classification. The Inv2

3, Inv2
4, Inv2

5 and Inv6
3, Inv6

4, Inv6
5 barcodes have less dis-

cernible patterns, but in each case do appear to prioritise specific coefficient
entries, emphasising that the entries in the subinvariant coefficients vectors
are not equally important as one may naively assume. The Inv2 (and Inv5)
quadrivector maintains the Inv2 bivector bias towards reliance on the final
coefficient entries, however the other quadrivector barcodes have a smoother
spread of importance and more complicated (NN-approximate) function dif-
ferentiable structure.
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Figure 7. Gradient saliency maps (barcodes) for ternary
classification NN model. The NN function takes as input the
coefficients of the subinvariant and outputs one-hot encoded:
A8, D8, or E8. The saliency hence represents the relative im-
portance of each input coefficient (i.e. combination of sim-
ple roots) to determining the classification output. Lighter
colours indicate larger gradients and greater importance

These results provide insight into the relative importance of each coef-
ficient to uniquely identifying the respective algebra, and continues to guide
our analytical study of these subinvariants in our companion paper by indi-
cating which subinvariants have the most clear coefficient dependence (Inv1

and Inv7 bivector, and Inv2 quadrivector) for us to focus on, in revealing the
underlying behaviour of these invariants.

In Tables 10, 11, 12, the saliency barcodes probe the NN learning of the
subinvariants explicitly from the Coxeter element root permutation (i.e. the
order of the 8 roots in the Coxeter element)—hence having 8 bars in each
barcode. Satisfyingly, the mirror symmetry between opposite order invariants
is again approximately obeyed for each of the 3 algebras considered.

The trivial order 0 and 8 full invariants (with only scalar part such that
they start with a single 1 followed by 255 0 s), as well as all the scalar invari-
ants, are as expected perfectly learned and have random saliency behaviour
since the learning of a constant function is trivial and independent of the
inputs. One may expect perfectly equal barcodes, but the rounding of the
outputs allows the final neuron output to vary, so the stochastic search of
the optimiser has a large range of functions which give perfect results that it
will be random walking in the function space throughout the training. This
makes the final function fairly arbitrary in this class of suitable functions and
hence the barcodes random, providing some measure of the level of noise in
the learning.
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Conversely the pseudoscalar for the order 4 invariants has different
saliency properties between the algebras, with focus on different parts of
the permutation vector; where the A8, D8, E8 order 4 invariant pseudoscalars
respectively are computed primarily from the end, middle, start of the permu-
tation vector. Note that the pseudoscalar component is 0 for D8 and therefore
that barcode is essentially noise, alike the scalar barcodes.

The remaining barcodes all have similar behaviour across the algebras.
This is for the bivector, quadrivector and sextivector subinvariants, which
dominate the full invariant coefficient vector and thus unsurprisingly lead to
similar behaviour for the full invariant. This behaviour put focus on both ends
of the permutation barcodes, indicating the information about which roots
are positioned at the ends of the Coxeter element is the most important for
determining the structure of each of these respective subinvariants (as well
as the full invariant).

Intuition one may extract from this is that at the ends of the permuta-
tion vectors the roots have only one direction they can be permuted, and thus
the root they are adjacent to is paramount to determining whether that root
can commute further into the permutation vector without changing the Cox-
eter element; as dictated by whether the roots are connected in the Dynkin
diagram. How the 40,320 permutation orders split into the 128 Coxeter el-
ements for each algebra may then be well correlated with the end roots of
the permutation, providing the NNs with important primary information in
directing the first steps of their functional algorithm for information flow
through their architecture, leading to correct calculations of the invariants.
Further analytic analysis with focus on permutation partitions grouped by
their end roots should hope to reveal the dominant factors for the distribu-
tions of these invariants.

4.2. Unsupervised: PCA

Principal component analysis (PCA) is a widely used machine learning tech-
nique for dimensionality reduction and exploratory data analysis [48]. In
short, one computes the principal components, which are linear combina-
tions of the initial variables, and performs a change of basis on the data. One
then projects the data onto only the first few principal components to obtain
a lower-dimensional data representation.

The first principal component is the normalised linear combination of
initial variables that explains the largest variance in the data. The second
principal component is uncorrelated with (i.e. perpendicular to) the first prin-
cipal component and explains the next highest variance, and so on. The com-
putation of the principal components can be broken down into the following
steps:

1. The covariance matrix is computed. This is a symmetric matrix whose
entries are the covariances associated with all possible pairs of variables.

2. The next step is to compute the eigenvectors and eigenvalues of the
covariance matrix. These eigenvectors are the principal components,
and the eigenvalues describe the amount of variance carried in each
principal component.
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Note that often in general data science an extra step 0 is included whereby
one standardises the variables so that each contributes equally, which is espe-
cially important when different input features have different units of measure-
ment. However since all variables are unit-less and take values in a similar
range, we don’t standardise here. By ranking the eigenvectors in order of
their eigenvalues, highest to lowest, one gets the principal components in or-
der of significance. Finally, to transform the data into the new representation
one performs a change of basis on the standardised data using the principal
components, followed by projection.

Using the Coxeter element invariant data in the simple root basis as
described in Sect. 3.1, we perform PCA on the 9 order invariants both indi-
vidually and combined, for A8,D8 and E8. With this we plot the data in the
first two principal components. The results for the 9 individual invariants of
A8,D8 and E8 are shown in Figs. 11, 12 and 13 respectively and the PCA
results on the combined invariant data are shown in Fig. 8. We can see clearly
from Figs. 11-13, that Inv0 and Inv8 just give the trivial invariant, and fur-
thermore Inv1 matches Inv7, Inv2 matches Inv6 and Inv3 matches Inv5. This
aligns with the connection we made earlier in Sect. 2. Comparing the indi-
vidual plots for A8,D8 and E8 we see that the plots for D8 and E8 roughly
align, while the plots for A8 are different. In D8, E8, for example, the plots
for Inv3, Inv4 and Inv5 share a gap in the middle and all the data points are
roughly scattered on either side. On the other hand, the Inv4 plot for A8

presents a circular pattern around the center, and whilst separated down the
middle, the data points in the Inv3 and Inv5 plots of A8 are tightly clustered.
For the A8 plots, there appears to be a 2-fold reflection symmetry in the
Inv1 − Inv7 plots, with the Inv1 and Inv7 plots having a second orthogonal
2-fold reflection symmetry. For D8 and E8, there is instead an approximate
2-fold rotational symmetry.

Figure 8 shows the 2-dimensional PCA projections when fitting the prin-
cipal components for all the invariant orders considered together. The orders
form distinct clusters and the two 2-fold reflection symmetry of A8 and 2-fold
rotation symmetries of D8 and E8 are approximately preserved. Figure 10a
also shows the elbow plot of the PCA ratios against the number of principal
components for PCA performed on the combined dataset of all orders. The
explained variance ratio is a measure of the proportion of the total variance
in the original dataset that is explained by each principal component. This
is equal to the ratio of its eigenvalue to the sum of the eigenvalues of all the
principal components. The x-axis in Fig. 10a is the order number of the first
principal components and the y-axis is log of the explained variance ratio.
For A8 and E8 we see a characteristic sharp drop in the ratio at around the
100th principal component and for D8 at around the 75th principal com-
ponent. This means that in all cases the 256-dimensional vectors describing
the invariants (of which of course only 128 are not trivially zero) in fact can
be reduced whilst preserving the majority of information. Furthermore, it is
interesting that D8 requires fewer principal components than the other two,
which may be related to the vanishing pseudoscalar as well as some scalar
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Figure 8. PCA plots of all 9 order invariants (SOCM) si-
multaneously for A8,D8 and E8. Note that labels 5–8 don’t
appear, as these invariants are mirror symmetric. This plot
and analysis are a good check of this fact

Figure 9. PCA plots of reduced datasets (with duplicates
deleted) of all 9 order invariants (SOCM) simultaneously for
A8,D8 and E8

parts in this case, and a quarter as many unique sextivector parts also as
shown in Table 3.

As we saw in Sect. 3.2 the 40,320 permutations give rise to only 128
unique Coxeter elements for A8, D8 and E8 and the frequency of these 128
vary greatly. The frequency of invariants will have a significant effect on the
PCA results and therefore, for comparison, we repeat the PCA but on the
reduced dataset of 128 invariants. Again we perform the analysis on the 9
orders of invariant individually, and combined. The individual PCA plots are
shown in Figs. 14-16 and the combined plots are given in Fig. 9. Figure 10b
also shows the elbow plot of the explained variance ratios for the combined
PCA.

The discussed reflection and rotation symmetries of Figs. 11-13 become
clearer to see in Figs. 14-16, as presumably uneven multiplicities no longer
weight the projections asymmetrically. Also for the A8 and D8 algebras,
the Inv4 invariant projections become very nearly identical to the respective
Inv3 / Inv5 projections, emphasising a negligible impact of the inclusion of
the pseudoscalar between these invariant orders on the first two principal
components (which turns out to be 0 for D8 but not A8, see Tables 2 and
3). This, surprisingly, does not happen for E8, indicating the pseudoscalar
contribution to the principal components is more significant here.
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Figure 10. Elbow plot of explained variance ratio against
principal component number for a full A8, D8 and E8

datasets and b the reduced A8, D8 and E8 datasets with
duplicates removed

Whereas we saw distinct clustering of the different orders in the com-
bined PCA plots in Fig. 8, we do not see this in the equivalent plots in Fig. 9
from PCA on the combined datasets with duplicates deleted. Comparing the
combined plots to the unique plots for the reduced datasets we see the pat-
terns from the unique order plots in Figs. 14-16 emerging in the combined
plots in 9. It appears as if all the unique plots have simply been overlaid on
top of one another. This suggests that principal components for all of the
9 orders are the same and also match the principal components from the
combined PCA.

The elbow plot in Fig. 10b match almost identically that in Fig. 10a and
the same conclusions hold.

5. Conclusions

This work is a pump-priming study in experimental mathematics within the
field of Clifford algebras. This new paradigm combines an HPC computational
algebra approach generating a significant amount of algebraic data with a
data science analysis of the resulting dataset. Performing exhaustive calcula-
tions opens up a new angle to conjecture formulation and theorem proving,
and sheds light on the new geometric invariants for the important class of
examples of Coxeter transformations. This detailed example can be used as
a foundation to explore the behaviour of invariants in other dimensions or
with different types of linear transformations. It was expected that there is
a large degeneracy in the mapping between input permutations, resulting in
a smaller number of unique elements in the dataset. This assumption was
verified through the application of data analysis techniques. Moreover, many
unexpected features were discovered, such as the equality of the number of
unique invariants among all three algebras. The relatively small size of unique
output invariants dataset in this example made it perfectly suited to machine
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learning tasks, which perform very impressively. One can of course go to arbi-
trary dimension to get larger data sets for An and Dn, but at the expense of
missing out on the E-type. The patterns observed in the reduced set of Cox-
eter elements, the invariant bivectors, as well as the approach of ‘explainable
AI’ using gradient saliency, have certainly pointed in the direction of ana-
lytical results that generalise these computational observations here, some of
which we have mentioned above and some we will present in the companion
paper.

The conjectural style of writing in this paper implies that there is still
work to be done in the future. Currently, many of the statements are prelimi-
nary and have not been checked rigorously. The companion paper would aim
to theoretically explain (at least some of) the features observed in this work.
Some of the most interesting questions it could answer are why the number
of unique invariants among three algebras is the same, how the symmetry
determines the distribution of Doublets, Quadruplets and Octuplets among
the invariants, what the reason for variations in clustering of the different
orders in the combined PCA is, what causes the difference in the choice of
important parts of the permutation vector by NN for the classification task
(which was revealed by the gradient saliency analysis), and so on. Ultimately,
the hope is to understand better the structure of the symmetry structures,
the geometric invariants and their geometrical meaning.
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Appendix A. NN Gradient Saliency Results

The gradient saliency results, showing the relative importance of the input
parts of the Coxeter element permutation for predicting the subinvariants at
each order, are presented in the subsequent Tables 10, 11, 12.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Table 10. Summary of gradient saliency analysis for each
invariant and subinvariant for A8 simple root data. The NN
function takes as input the permutation performed on the
original Coxeter element and outputs the coefficients of the
respective subinvariant. The saliency barcodes hence repre-
sent the relative importance of each root in the permutation
for computing the subinvariant coefficients. Lighter colours
indicate larger gradients and greater importance
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Table 11. Summary of gradient saliency analysis for each
invariant and subinvariant for D8 simple root data. The NN
function takes as input the permutation performed on the
original Coxeter element and outputs the coefficients of the
respective subinvariant. The saliency barcodes hence repre-
sent the relative importance of each root in the permutation
for computing the subinvariant coefficients. Lighter colours
indicate larger gradients and greater importance
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Table 12. Summary of gradient saliency analysis for each
invariant and subinvariant for E8 simple root data. The NN
function takes as input the permutation performed on the
original Coxeter element and outputs the coefficients of the
respective subinvariant. The saliency barcodes hence repre-
sent the relative importance of each root in the permutation
for computing the subinvariant coefficients. Lighter colours
indicate larger gradients and greater importance

Appendix B. PCA Results

The 2-dimensional PCA projections for each dataset of invariants at each
order for each root system A8, D8, E8 are shown in Figs. 11, 12, 13 respec-
tively, whilst the 2-dimensional PCA projections for the same partitioning
of invariants into orders and types—however now reducing the datasets to
unique invariants—are shown in Figs. 14, 15, 16 respectively.
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Figure 11. PCA plots of the 9 orders of invariant (SOCM)
for A8. The observed mirror symmetry is a good consistency
check
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Figure 12. PCA plots of the 9 orders of invariant for D8
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Figure 13. PCA plots of the 9 orders of invariant for E8
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Figure 14. PCA plots of reduced datasets (with duplicates
deleted) of the 9 orders of invariant for A8
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Figure 15. PCA plots of reduced datasets (with duplicates
deleted) of the 9 orders of invariant for D8
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Figure 16. PCA plots of reduced datasets (with duplicates
deleted) of the 9 orders of invariant for E8
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