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We study the two-channel Kondo problem in the context of two interacting helical liquids coupled
to a spin- 1

2
magnetic impurity. We show that the interactions between the two helical liquids signif-

icantly affect the phase diagram and other observable properties. Using a multichannel Luttinger
liquid formalism, we analyze both the Toulouse limit, where an exact solution is available, and the
weak coupling limit, which can be studied via a perturbative renormalization group (RG) approach.
We recover the results for the ‘decoupled’ limit (interactions between the helical liquids switched
off) and point out deviations from the known results due to this coupling. The model under study
is mapped to a model of two effectively decoupled helical liquids coupled to an impurity. The per-
turbative RG study shows that each of these channels can flow to either a Ferromagnetic (FM) or
an Anti-Ferromagnetic (AFM) fixed point. We obtain the phase diagram of the coupled system as
a function of the system parameters. The observable consequences of the interaction between the
two channels are captured using linear response theory. We compute the negative correction to the
conductance due to the Kondo scattering processes and show how it scales with the temperature as
a function of inter-channel interaction.

I. INTRODUCTION

Topological systems have been at the center of research
in condensed matter physics due to their exotic prop-
erties, one of them being the existence of topologically
protected boundary modes [1–3]. In the case of two-
dimensional topological systems, these modes are robust
one-dimensional channels. The quantum spin Hall insu-
lators, for example, host helical channels at the edge of
the sample by virtue of time-reversal symmetry (TRS) of
the bulk Hamiltonian [4–6]. For the purpose of our study,
we specifically focus on one-dimensional helical channels
present in two-dimensional topological systems. We em-
phasize that the low energy regime of these systems is
spanned by the states representing helical channels of
one-dimensional nature.

A peculiarity of one dimension is that, in spite of the
presence of Coulomb interaction, the system remains ex-
actly solvable, under certain conditions. It is well under-
stood that the interacting physics of these edge modes
is described by the Luttinger liquid (LL) theory [7–9].
The applicability of the LL formalism can be attributed
to the linear dispersion of the edge states at low energies
and to the topological protection against various back-
scattering processes. However, such systems may not be
exactly solvable in the presence of impurities. Here, we
are interested to study the effect of a single magnetic
impurity on the one-dimensional helical channels formed
at the boundary of two-dimensional topological systems,
taking Coulomb interaction into account. The LL formed
by the helical channel in the presence of Coulomb inter-
action is termed helical liquid (HL).

It is well known that the Kondo effect describes the
interaction between conduction electrons and a localized
magnetic moment [10–15]. This phenomenon can also

be investigated when Coulomb interaction is present in
the conduction channel [16, 17]. So far, there have been
studies addressing the problem of a spin- 12 magnetic im-
purity coupled to a single helical liquid [18–21], as well
as to two helical liquids [22–25]. In particular, Posske
et al. [22] have studied the problem of two helical liquids
decoupled from each other and coupled to a magnetic im-
purity. They have considered the Toulouse limit, where
the model is exactly solvable, and have analyzed the be-
havior of the Kondo screening cloud.

Here, we study a model of two interacting helical liq-
uids coupled to a spin- 12 magnetic impurity, allowing for
forward scattering processes between the two helical liq-
uids which preserve the symmetries of the bare Hamil-
tonian. We show that the inclusion of all forward scat-
tering processes allowed by symmetry modifies the prop-
erties of the system and has observable consequences.
The model can be mapped to a model of two decoupled
channels interacting with the impurity. For a specific
set of parameters values (the so-called Toulouse point)
the mapping is essentially an Emery-Kivelson [26] map-
ping, which reduces the interacting system to an exactly
solvable two-channel resonant-level model [26–28]. Away
from the Toulouse point, the mapping still works, but
the model is no longer solvable. We then use perturba-
tive renormalization group techniques to study the effects
of the Kondo interaction. Perturbative RG techniques
have been very instrumental in the study of Kondo ef-
fects [7, 10, 11]. One can use this technique to study
the fixed points of the model, even though the model
is not exactly solvable. One can further look into how
these fixed points are modified as a function of system
parameters. We note that previously the effect of scalar
disorder has been studied in the context of a two channel
Luttinger liquid set-up [29, 30] using the multichannel
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FIG. 1. Schematic picture of the system under study. Two he-
lical liquids, labeled by the index j = 1, 2, propagate along the
translational invariant direction x̂. The right-moving fermions
carry a spin up (↑) index and the left-moving fermions a spin
down (↓) index. The two helical liquids are in close proximity
to each other and are coupled to a spin- 1

2
impurity, located

at x = 0.

Luttinger liquid (MLL) formalism. Our analysis extends
the study of impurities in a multichannel Luttinger liquid
set-up to magnetic impurities as well.

The plan for the rest of the paper is as follows. In
Sec. II, we introduce the model of two interacting he-
lical liquids coupled to a spin- 12 impurity. We diago-
nalize the interaction terms (without the impurity) and,
by using unitary transformations, recast the coupling to
the Kondo impurity into a simpler form. In Sec. III,
we focus on the Toulouse point, where the model can
be reduced to an exactly solvable one, and compute the
impurity spectral function. In Sec. IV, we move away
from the exactly solvable point and use the perturba-
tive renormalization group (RG) method to obtain the
Kondo temperatures for both channels and to study the
fixed points as function of the system parameters. In
Sec. V, we present the explicit form of the correlation to
the conductance as a function of the temperature. Fi-
nally, in Sec. VI, we present our conclusions and provide
an outlook. Throughout this paper, we set ℏ = 1.

II. MODEL

We consider a system of two interacting helical liquids
coupled to a magnetic impurity expressed by the model
Hamiltonian H = HLL + HK, where HLL describes the
bulk of the HLs and HK represents a magnetic impurity
coupled to the HLs. The bulk Hamiltonian takes the well-
known form HLL = H0+Hint, where H0 is the bare part
and Hint accounts for the Coulomb interaction present in
the HLs. We begin by writing the bare part of the model
as [4, 5, 7–9]

H0 = −i
∑
j,s

svj

∫
dxΨ†

j,s∂xΨj,s, (1)

where Ψjs are the field operators for the jth channel, with
j ∈ {1, 2}, and vj are the Fermi velocities. We assume
that the right-moving modes, denoted by s = +, carry
spin up and the left-moving modes, denoted by s = −,
carry spin down.

Next, we write down the interacting part of the model
arising from the (screened) Coulomb interaction. We al-

low forward scattering processes between the two chan-
nels, which we write as

Hint =

∫
dx
[
g
(1)
4 (ρ21R + ρ21L) + 2g

(1)
2 ρ1Rρ1L + g

(2)
4 (ρ22R

+ ρ22L) + 2g
(2)
2 ρ2Rρ2L + 2g

(12)
4 (ρ1Rρ2R + ρ1Lρ2L)

+ 2g
(12)
2 (ρ1Rρ2L + ρ1Lρ2R)

]
, (2)

where ρj,s = Ψ†
j,sΨj,s is the fermionic density operator.

Here gζ2 , g
ζ
4 follow the standard g-ology convention with

gζ2 denoting forward scattering processes involving den-

sity operators of movers in opposite directions and gζ4 de-
noting processes with movers in the same direction. The
superscript ζ = 1, 2 denotes scattering within individ-
ual channels j = 1, 2, whereas ζ = 12 denotes scattering
involving both channels. We note that the bare Hamilto-
nianH0 is topologically protected and the terms included
in Eq. (2) are allowed by TRS. In addition, these inter-
acting liquids are coupled to a spin- 12 impurity, with the
Kondo Hamiltonian given by

HK =
∑
j,s

Jz,jsΨ
†
j,s(0)Ψj,s(0)σ

z

+
∑
j=1,2

J⊥,j

(
Ψ†

j,+(0)Ψj,−(0)σ
− + h.c.

)
, (3)

where Jz,j and J⊥,j are the Kondo couplings for the jth

channel, and σz, σ± = σx ± iσy are the spin- 12 operators
for the impurity located at x = 0.
To proceed further, we employ the bosonization tech-

nique [31–33]. Since an HL has the same number of de-
grees of freedom as a spinless LL [18], two bosonic fields
ϕj , θj are sufficient to bosonize the Hamiltonian H. We
bosonize the fermion operator using the identity [31–33]

Ψj,s = (2πξj)
−1/2e−i

√
π(θj−sϕj), (4)

where ξj is a microscopic cut-off length for channel j.
The Klein factors have been neglected since they always
appear in pairs in the quantities of interest we compute.
We note that ρj,s =

1
2
√
π
∂x(ϕj − sθj) and Πj = ∂xθj . By

combining the bosonized H0 and Hint, we arrive at the
multichannel Luttinger liquid (MLL) Hamiltonian

HLL = H0 +Hint

=
1

2

∫
dx
(
∂xΦ

TMϕ∂xΦ+ ∂xΘ
TMθ∂xΘ

)
, (5)

where we have used the notation Φ = (ϕ1 ϕ2)
T , Θ =

(θ1 θ2)
T and

M ij
ϕ = (vi +

g
(i)
4 + g

(i)
2

π
)δij +

g
(12)
4 + g

(12)
2

π
(1− δij), (6)

M ij
θ = (vi +

g
(i)
4 − g

(i)
2

π
)δij +

g
(12)
4 − g

(12)
2

π
(1− δij). (7)
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We can now diagonalize HLL using standard methods
(see, e.g., [34, 35]). We assume that HLL is diagonal in

Θ̃ and Φ̃ fields, where Φ̃ = (ϕ̃1 ϕ̃2)
T , Θ̃ = (θ̃1 θ̃2)

T and

Π̃j = ∂xθ̃j . These fields are related to the Φ and Θ fields

via linear transformations Φ = VϕΦ̃ and Θ = VθΘ̃ such

that Θ̃T Φ̃ = ΘTΦ. The explicit forms of Vϕ and Vθ are
found to be

Vϕ = UT
ϕ D

− 1
2

ϕ UTD 1
4 , (8)

Vθ = UT
ϕ D

1
2

ϕU
TD− 1

4 , (9)

where Uϕ is a matrix that diagonalizes Mϕ of Eq. (6),
Dϕ is a diagonal matrix with the eigenvalues of Mϕ as its
diagonal entries. The orthogonal matrix U and the diag-
onal matrix D are obtained from the product of matrices

D
1
2

ϕUϕMθU
T
ϕ D

1
2

ϕ by diagonalizing as D
1
2

ϕUϕMθU
T
ϕ D

1
2

ϕ =

UTDU . This procedure enables us to write the two-
channel Luttinger liquid Hamiltonian HLL = H0 + Hint

as

HLL =
∑
j=1,2

uj

2

∫
dx
[
(∂xθ̃j)

2 + (∂xϕ̃j)
2
]
, (10)

where the renormalized velocities uj are the diagonal en-

tries of D 1
2 . The Kondo Hamiltonian, in terms of the

new fields, takes the form

HK =
∑
j=1,2

[
− J̃z,j√

π
Π̃j(0)σ

z

+
J⊥,j

2πξj

(
ei2

√
π[V j1

ϕ ϕ̃1(0)+V j2
ϕ ϕ̃2(0)]σ+ + h.c.

)]
, (11)

where

J̃z,j =
∑
k=1,2

Jz,kV
kj
θ . (12)

At this point, we make a short digression to understand
the decoupled limit from the calculations done so far. We
notice that if we neglect the inter-channel interactions,

g
(12)
2,4 = 0, then Mϕ,θ are diagonal. Hence Vϕ and Vθ are

also diagonal and given by V ij
ϕ =

√
Kjδij and V ij

θ =

δij/
√
Kj , where

Kj =

√
1 +

g
(j)
4 − g

(j)
2

πvj

/√
1 +

g
(j)
4 + g

(j)
2

πvj

is the usual Luttinger liquid parameter for channel j.
Therefore, ϕ̃j = ϕj/

√
Kj , Π̃j =

√
KjΠj , uj = vj/Kj ,

and J̃z,j = Jz,j/
√
Kj , and we recover the Hamiltonian

considered in [22, 24].
The Hamiltonian (10) describes two effectively decou-

pled HLs obtained by the diagonalization procedure when

g
(12)
2,4 ̸= 0. The new decoupled fields ϕ̃j have been used
to rewrite the Kondo Hamiltonian. We observe from

Eq. (11) that both fields ϕ̃1 and ϕ̃2 appear in each of
the exponential terms of HK. This is a manifestation of

the finite inter-channel scattering processes g
(12)
2,4 . Hence,

even if HLL can be cast into a diagonal form, the Kondo
Hamiltonian still couples the two fields. We proceed fur-
ther to reduce the full Hamiltonian H to a Hamiltonian
describing two decoupled interacting channels coupled to
a single Kondo impurity, by devising a unitary transfor-

mation Ud = ei2
√
π(λ1ϕ̃1(0)+λ2ϕ̃2(0))σ

z

and choosing λ1,2

appropriately to arrive at H̃ ≡ UdHU†
d given by

H̃ =
∑
j=1,2

[
uj

2

∫
dx
[
Π̃2

j + (∂xϕ̃j)
2
]

−
J̃ ′
z,j√
π
Π̃j(0)σ

z +
J⊥,j

2πξj

(
ei2

√
πκj ϕ̃j(0)σ+ + h.c.

)]
,

(13)

where

κj = V jj
ϕ − V j̄j

ϕ and J̃ ′
z,j = J̃z,j − 2πujV

j̄j
ϕ . (14)

Here, j̄ = 2, 1 for j = 1, 2. We refer to App. A for the
details of the derivation. We use this Hamiltonian in
Sec. IV to derive the RG flow of the Kondo couplings.
Alternatively, we can use the unitary transformation

to cancel the J̃z,j-terms. This is accomplished by setting

λj = − J̃z,j

2πuj
, as shown in App. A. We then arrive at

H̃ =
∑
j=1,2

[
uj

2

∫
dx
[
Π̃2

j + (∂xϕ̃j)
2
]

+
J⊥,j

2πξj

(
ei2

√
π
∑

k κjkϕ̃k(0)σ+ + h.c.
)]

, (15)

where we have defined

κjk = V jk
ϕ − J̃z,k

2πuk
. (16)

This Hamiltonian is the starting point for the calculation
of observables. In the next section, we study a particular
limit in which H = HLL +HK is exactly solvable, and in
Sec. IV we use the perturbative RG approach to study
the weak coupling limit beyond the solvable point.
Before moving on, we briefly comment on the nonlinear

terms that have been omitted in the interacting Hamil-
tonian. In general, the inclusion of interaction-induced
backscattering operators can open a gap and render the
gapless Luttinger liquid physics invalid. However, a heli-
cal liquid is topologically protected against intra-channel
backscattering terms. We consider here a regime in which
also the inter-channel backscattering terms are negligi-
ble [9]. Furthermore, we assume that the system is away
from half-filling and neglect all Umklapp processes [9], as
further discussed in App. B. In the same appendix, we
also show that the Kondo spin-flip scattering involving
two different channels becomes irrelevant under certain
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conditions imposed on the system parameters. We only
take into account the Kondo spin-flip scatterings within
the same channel, assuming that the aforementioned ir-
relevance is satisfied.

III. EXACTLY SOLVABLE POINT

In this section, we show that for special values of
the system parameters the model admits an exact solu-
tion [26, 38]. In fact, for the Hamiltonian (15), there are
two possible sets of conditions under which the mapping
can be achieved. The first set of conditions is

κ11 = κ22 = 0, κ2
12 = κ2

21 =
1

2
. (17)

The first condition ensures that the two channels de-
couple, i.e., only one field appears in each exponential
operator in the Kondo interaction. The second ensures
that the Kondo interaction has the scaling dimension of
a fermionic field. Using Eq. (16), this set of conditions

can be written in terms of Vϕ and J̃z,j as

J̃z,1 = 2πu1V
11
ϕ , J̃z,2 = 2πu2V

22
ϕ , (18)

(V 11
ϕ − V 21

ϕ )2 = (V 22
ϕ − V 12

ϕ )2 =
1

2
. (19)

These conditions can only be satisfied when Vϕ is a non-
diagonal matrix. When these conditions hold, the two-
channel Kondo problem can be mapped to a resonant-
level problem [26–28]. We can find out the solution in
terms of the system parameters, using the definition of
Vϕ.
Note that the alternative choice

κ12 = κ21 = 0, κ2
11 = κ2

22 =
1

2
(20)

becomes

J̃z,1 = 2πu1V
21
ϕ , J̃z,2 = 2πu2V

12
ϕ , (21)

(V 11
ϕ − V 21

ϕ )2 = (V 22
ϕ − V 12

ϕ )2 =
1

2
. (22)

We see that Eq. (22) is precisely the same as Eq. (19).
Both choices lead to the reduction of Eq. (15) to a
resonant-level model with two non-interacting channels
coupled to a single magnetic impurity. Since the exact
solution depends on relationships between different pa-
rameters of the model, it is clear that as the parameter
values change, it is only for certain values that we will get
an exact solution. In Fig. 2 we plot the two conditions
(V 11

ϕ − V 21
ϕ )2 − 1

2 ≡ V 1
sol = 0 and (V 22

ϕ − V 12
ϕ )2 − 1

2 ≡
V 2
sol = 0 as a function of two parameters at a time (the

other parameters have been fixed at the values given in
Table I). Then, the intersections of the curves V 1

sol = 0
and V 2

sol = 0 give the points where an exact solution is
possible. As discussed in the previous section, one has to

choose the parameters in a way such that Eq. (15) is suf-
ficient to describe all possible scattering processes. Fol-
lowing the analysis done in App. B, we make the choice
of the parameters in a way such that

1

4

∑
j=1,2

(
V 1j
θ − V 2j

θ

)2
+

1

4

∑
j=1,2

(
V 1j
ϕ ∓ V 2j

ϕ

)2
> 1. (23)

FIG. 2. Two lines given by V 1
sol = 0 and V 2

sol = 0 are plotted
as a function of system parameters. The intersection of these
two lines denotes an exactly solvable point, where the model
can be transformed into a model of two non-interacting chan-
nels coupled to a single impurity. These intersections are de-
noted by separate symbols Aj and Bj . Changing the system
parameters shifts the exact solution. In (a) we have varied

g
(12)
2 and g

(12)
4 . The origin corresponds to the decoupled limit

of the problem. In (b), v2 and g
(12)
4 are varied. All the pa-

rameters are scaled by v1. The other parameters which are
required to generate this plot are listed in Table. I.
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v2/v1 g
(1)
2 /v1 g

(2)
2 /v1 g

(1)
4 /v1 g

(2)
4 /v1 g

(12)
2 /v1 g

(12)
4 /v1

A1 1.5 2.0 π 2.4 π 2.2π 2.5π . . . . . .

A2 0.5 1.25π 1.4π 1.4π 1.5π . . . . . .

A3 0.4 1.2π 1.4π 1.6π 1.5π . . . . . .

B1 . . . 1.45π 1.475π 1.6π 1.6π 0.35 . . .

B2 . . . 1.45π 1.475π 1.5π 1.5π 0.5 . . .

B3 . . . 1.45π 1.65π 1.6π 1.75π 0.75 . . .

TABLE I. Values of the system parameters used in Fig. 2.
The blank boxes with dots stand for the parameters which
are varied in the plots.

The choice of the parameters for the mapping to the
resonant level model has been made in a way such that

the vertex operator, ei2
√
π
∑

k κjkϕ̃k(0) can be refermion-
ized using the same bosonization identity that we used
earlier so that the model reduces to that of free fermions.
We can write the non-chiral boson fields used for describ-
ing the HL as ϕ̃j = (ϕ̃j,L + ϕ̃j,R) and θ̃j = (ϕ̃j,L − ϕ̃j,R)
where R and L denote the right and left movers. In or-
der to cast the Hamiltonian as an exactly solvable non-
interacting fermion model, we first focus on the Luttinger
liquid defined on the positive and negative x-axis, sepa-
rately. The system on the right and left half-lines is “un-
folded” [26, 31, 39] so that the Hamiltonian is presented
in a chiral form. We follow the convention of writing
ϕ̃j,R(x) and ϕ̃j,L(x) fields defined on the positive x-axis

in terms of ϕ̃e
j,R(x) and ϕ̃e

j,R(−x) fields defined on the full

x-axis. This is done as follows: ϕ̃e
j,R(x) = ϕ̃j,R(x) and

ϕ̃e
j,R(−x) = ϕ̃j,L(x). One can obtain two chiral liquids in

the bulk of the channel using these identities. Then, one
must identify the chiral boson fields to be equal at x = 0
i.e. ϕ̃e

j,L(0) = ϕ̃e
j,R(0). We notice that the Kondo scatter-

ing term is defined only at x = 0. We choose one chiral
field out of ϕ̃e

j,R(0) and ϕ̃e
j,L(0), to write the vertex oper-

ator of the Kondo interaction term. After doing so, the
Hamiltonian can again be written on the full line in terms
of chiral fields only. However, depending on the choice of
the chiral field used to write down the vertex operator in
the Kondo scattering term, one chiral field remains de-
coupled from the impurity and can be discarded from the
resonant level model. In what follows, we use the right-
moving bosonic field to write down the exact solution.

The bosonization identity Ψj = (2πξj)
−1/2ei2

√
πϕ̃e

j,R can
be used to write the model in terms of fermions. In this
limit, Eq. (15) can be expressed in terms of chiral spinless
fermions Ψj(x) [19] as

HT =
∑
j

[
−iuj

∫
dxΨ†

j(x)∂xΨj(x) + ϵdd
†d

+
J⊥,j√
2πξj

(
d†Ψj(0) + Ψ†

j(0)d
)]

, (24)

where the impurity spin residing at x = 0 has been mod-
eled by a discrete level, such that σz = d†d − 1/2. The

operator d† creates a spinless fermion in the discrete level
and ϵd is the chemical potential at the site of the dis-
crete level. We refer to App. C for the details of the
exact solution. At the exactly solvable point, one can
self-consistently compute the energy spectrum and the
impurity spectral function [40]. In our case, the spectral
function turns out to be a Lorentzian with a level width

Γ =
∑

j

J2
⊥,j

4πξjuj
. We see that the two contributions com-

ing from the two independent channels add up directly.
In the decoupled limit (which can be obtained by

switching off the interchannel forward scattering pro-

cesses g
(12)
2,4 ), our result matches with one of the ex-

actly solvable points derived in [22]. In this limit, Mϕ,θ

are diagonal and Kj = κ2
j = (V jj

ϕ )2. We have chosen

κj = 1/
√
2 and as a resultK1+K2 = 1. We note that our

exact solution does not require the channels to have equal
velocities. In fact, due to the presence of off-diagonal
terms in Mϕ,θ, the renormalized velocities of the diago-
nalized Hamiltonian are not equal in our case. At the
exactly solvable point choosing Kj = 1 leads to an effec-
tively non-interacting fermionic model coupled to mag-
netic impurity, if inter-channel processes are switched off.
This particular limit is not of our interest. However we
note, this would lead to another exactly solvable limit
derived in [22].

IV. BEYOND THE EXACTLY SOLVABLE
LIMIT

In this section, we use the perturbative renormaliza-
tion group technique to analyze the flow of the Kondo
couplings [41, 42]. By using the effectively decoupled
Hamiltonian in Eq. (13), we find that for each channel j
the RG equations (up to second order in the couplings)
are given by

dJ̃ ′
z,j

dl
= νjκ

3
jJ

2
⊥,j , (25)

dJ⊥,j

dl
= (1− κ2

j )J⊥,j + νjκj J̃
′
z,jJ⊥,j , (26)

where νj ≡ 1
πuj

[? ]. We emphasize that the MLL for-

malism is instrumental in mapping the results to a form
similar to the known one-channel counterpart [7, 18, 41].
The details of the derivation are provided in the App. D.
The equations (25) and (26) can be put in a more com-

pact form by defining νj J̄z,j = νjκj J̃
′
z,j + 1− κ2

j as

dJ̄z,j
dl

= νjκ
4
jJ

2
⊥,j , (27)

dJ⊥,j

dl
= νj J̄z,jJ⊥,j . (28)

The trajectories of the flow equations are given by
(κ2

jJ⊥,j)
2−(J̄z,j)

2 = c, where c is a constant. It is known
that a single channel either flows to an anti-ferromagnetic
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FIG. 3. Schematic representation of the RG flow in Eqs. (27)
and (28). In panel (a) and (b) we show two sets of flow tra-
jectories pertaining to the two different channels. The symbol
O denotes the point (J⊥,j , J̃

′
z,j) = (0, 0). The position of the

starting point of the trajectory relative to Cj (rather than to
O) determines whether the system flows to a FM or an AFM
fixed point.

(AFM) or a ferromagnetic (FM) fixed point (FP) [10, 18].
Earlier works have shown how the RG flow in such a sys-
tem depends on the Luttinger parameter [7, 18]. In our
case, each of the effectively decoupled channels behaves
like a single Luttinger liquid wire and can flow to either
FM- or AFM-FP separately. However, the inclusion of
inter-channel interactions in Eq. (2) modifies the range
of parameters of the system for which the couplings flow
either to the FM or the AFM fixed point.

We plot a schematic flow diagram pertaining to the
above RG equations in Fig. 3. If the Kondo couplings of
channel j of Eq. (13) flow to infinity, then the impurity is
strongly coupled to channel j. On the other hand, if J⊥,j

renormalizes to zero, then the impurity is weakly coupled
with channel j. The transition point Cj separates the J̃

′
z,j

axis into two portions having opposite flows. To study
different FPs, we choose J⊥,j = 0 of Fig. 3 as the initial
condition. On this line, whether the system flows to FM
or AFM fixed point is decided by the position of Cj .

In Fig. 3, the position of the transition point Cj on J̃ ′
z,j

axis depends on the solution of νjκj J̃
′
z,j+1−κ2

j = 0. We

know from Eq. (14) that κj = V jj
ϕ − V j̄j

ϕ . Hence, we
see that inter-channel interactions shift the position of

FIG. 4. The above diagrams show the different FPs to which
the two channels flow, as a function of the system parameters.
We refer to these diagrams of the parameter space as phase
diagrams. Each of the effectively decoupled channels can flow
to either the A or the F fixed point, starting from J⊥,j = 0,
(see the discussion in the main text). In panel (a) we set

v2/v1 = 0.75, g
(1)
2 /v1 = 0.65π, g

(2)
2 /v1 = 0.7π, g

(1)
4 /v1 =

1.275π, g
(2)
4 /v1 = 1.5π. In panel (b) we set g

(1)
2 /v1 = 0.5π,

g
(2)
2 /v1 = 0.6π, g

(1)
4 /v1 = 1.2π, g

(2)
4 /v1 = 1.4π, g

(12)
2 /v1 =

0.175.

the transition point on J̃ ′
z,j axis. As long as κj ̸= 1 the

transition point does not lie at J̃ ′
z,j = 0 which we denote

by O.

Next, we look into the RG flow of each of the effectively
decoupled channels of Eq. (13). It is easy to identify, from
Fig. 3(b), that for κ2 > κ−1

2 there is a region on the posi-

tive J̃ ′
z,2 axis between C2 and O, where even if the Kondo

coupling is positive i.e. AFM like, the system flows to an
FM fixed point. We denote these fixed points by F. By
the same token, a channel can flow to an AFM FP de-
spite being expected to flow to an FM FP. Such FPs are
denoted by A. For example in Fig. 3(a), the transition
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point C1 lies to the left of O and FPs of type A are ob-
tained for the choice κ1 < κ−1

1 . We can combine these
FPs of both channels and name them ‘PjPj′ ’, where Pj

denotes the FP of channel j and can be either A or, F.
Once we have identified the fixed points we can study
their dependence on different parameters, as shown in
Fig. 4. The phase diagrams in Fig. 4 are representations
of the parameter space of the Hamiltonian, where differ-
ent fixed points are reached in different segments of the
parameter space. These parameters have to be chosen
in a way such that conditions written down in Eq. (23)
are satisfied. We note that a similar analysis can also be
done for different choices of J⊥,j , as an initial condition.

The characteristic feature of an FM FP is the renor-
malization of J⊥,j to zero. We note that the spin-flip
scattering processes are governed by this coupling and as
a result, in an FM FP no strongly coupled bound state
formation takes place between the conduction electron
and the impurity spin. Another way to understand this
is that, if J⊥,j flows to zero then the conduction electrons
of channel j do not take part in spin-flip Kondo scatter-
ing processes. However, if J⊥,j flows to infinity, then the
electrons of the effectively decoupled channel (j) partic-
ipate in spin-flip scattering processes leading to the for-
mation of a bound state between the electron of channel
j and the impurity spin. This is a feature of AFM FP.
Thus, in either AF or FA phase, there is only one channel
that contributes to bound state formation. This bound
state is a spin singlet and in these two phases, the impu-
rity is screened. In the FF phase, none of the channels
are strongly coupled with the impurity and hence there
is no screening. In the AA phase, both channels try to
couple anti-ferromagnetically and as a consequence over-
screening of the impurity can take place. One should
keep in mind that the phenomenon of overscreening is
extremely sensitive to the anisotropy of the Kondo cou-
pling and is only expected to be observed for isotropic
coupling [12]. For an anisotropic case, the channel with
the larger value of Kondo coupling would win over the
other channel and form a singlet.

From Eqs. (25) and (26), we can calculate the Kondo

temperature for the two channels. We define αj =√
(J̃ ′

z,j,0)
2/(J⊥,j,0)2 − 1, where J̃ ′

z,j,0, J⊥,j,0 are the bare

values of the J̃ ′
z,j , J⊥,j couplings. With Λ being the band-

width of the original system, the Kondo temperature T j
K

for channel j is given by

T j
K = Λexp

(
− sinh−1(αj)

αjνjJ⊥,j,0

)
. (29)

We note that T j
K is the characteristic energy scale of the

Kondo effect pertaining to each of these channels.

V. OBSERVABLE CONSEQUENCE

The Kondo effect gives rise to a negative correction,
δG(ω), to the conductance of the HLs, originating from
spin-flip scattering processes mediated by the magnetic
impurity. This correction vanishes for HLs as temper-
ature T → 0 and also in the DC limit when frequency
ω → 0 [18, 19]. However, the signature of Kondo scat-
tering can still be captured by computing the correction
at non-zero T and ω. In order to study the scaling of the
correction to the conductance, one can compute δG(ω)
by incorporating a difference of chemical potential be-
tween the right and left movers, respectively. This is
equivalent to computing δG(ω) from the spin-flip cur-
rent obtained by introducing an effective magnetic field
which creates an energy difference between the spin up
and the spin down components of the impurity [19, 21].
We assume weak backscattering by the impurity such
that δG(ω) ≪ e2 where e is the electron charge.
Following [19], we attach HV = −eVσz to the Hamil-

tonian of Eq. (15) and compute transport properties in
response to the spin-flip current using HV . One can use
the Kubo formula [19, 21, 40] to compute this correction.
The details of the calculation, including the general form
of the correction, are given in App. E. One can write
down the exact expressions for the conductance correc-
tion in the limit J2

⊥,j ≪ ω ≪ T . The temperature scaling
of δG is given by

δG = L1T
2(κ2

11+κ2
12)−2 + L2T

2(κ2
21+κ2

22)−2 + L3T
2(κ11κ12+κ22κ21)−2, (30)

where

L1 = −e2

4

(
J⊥,1

2πξ1

)2(
2π

Λ

)2κ2
11
(
2π

Λ

)2κ2
12 ( 1

π

)2 πΓ(κ2
11 + κ2

12)
2

Γ(2(κ2
11 + κ2

12))
, (31)

L2 = −e2

4

(
J⊥,2

2πξ2

)2(
2π

Λ

)2κ2
21
(
2π

Λ

)2κ2
22 ( 1

π

)2 πΓ(κ2
21 + κ2

22)
2

Γ(2(κ2
21 + κ2

22))
, (32)

L3 = −e2

2

J⊥,1J⊥,2

(2π)2ξ1ξ2

(
2π

Λ

)2(κ11κ12)(2π

Λ

)2κ22κ21 ( 1
π

)2 πΓ(κ11κ12 + κ22κ21)
2

Γ(2(κ11κ12 + κ22κ21))
. (33)

The result takes a form similar to the known case of one HL coupled to a Kondo impurity [18, 19]. We notice that,
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at the exactly solvable point, the integral from which L3

is obtained, goes to zero, as discussed in App. E and
one is left with L1 and L2. The assumed limit for the
above expression is important, as we see that at high
temperature (i.e. T ≫ ω ≫ J2

⊥,j) the Kondo scattering
gives rise to a negative correction, implying deviation
from standard scaling of the conductance in HLs in the
absence of Kondo impurity. We also see that in this limit
the correction is independent of ω.

VI. CONCLUSION

In this paper, we have presented a general framework
for studying two interacting helical liquids coupled to a
Kondo impurity, including both intra-channel as well as
inter-channel interactions.

We have derived the conditions under which an exact
solution of the model can be obtained with the addi-
tional restriction of κj = 1/

√
2, where κj is defined in

Eq. (14). This solvable point has been calculated us-
ing an Emery-Kivelson type of transformation. We have
included inter-channel forward scattering processes yield-
ing exact solutions to the problem examined beyond the
scenarios captured by Refs. [22, 26, 38]. In Sec. III we
have shown how the exact solutions of the decoupled limit
(obtained by switching off g122,4) can be derived from our
calculation. At the solvable point, we have calculated the
spectral function. We have shown that the level width is
the sum of contributions coming from each channel. The
spectral function has experimental significance in many
systems; for example, quantum dots show the Kondo ef-
fect where the hallmark of Kondo physics is the differ-
ential conductance which is proportional to the spectral
function [43–46].

We have studied the model away from the exactly solv-
able point, by mapping it to a pair of effectively decou-
pled HLs interacting with a single magnetic impurity,

as derived in Eq. (13). By using a perturbative RG ap-
proach, we have shown that these two renormalized chan-
nels can separately flow to either the FM or the AFM
fixed point. Here, the AFM fixed point indicates the for-
mation of a bound state between the conduction electron
and impurity spin, whereas the FM fixed point means
the absence of the same, although a finite residual cou-
pling can be present in the FM case. In Fig. 3 we show
a schematic flow diagram pertaining to the RG equa-
tions derived in Sec. IV. The phase diagrams obtained
from our RG analysis are shown in Fig. 4. As noted ear-
lier, these phase diagrams represent the parameter space
of the Hamiltonian where the effectively decoupled HLs
reach different FPs in different segments of the diagram.
In Sec. IV, we also have discussed the nature of the impu-
rity screening at different fixed points. In the FF phase,
there is no singlet formation due to the absence of screen-
ing. In the FA and AF phases, the impurity is screened
and in the AA phase, the impurity is either screened
or overscreened depending on anisotropy in Kondo cou-
plings. In Sec. V, we have presented a study of the linear
response of the system in the weak coupling limit. We
have shown that the Kondo effect gives rise to a negative
correction to the conductance of the HLs. The temper-
ature scaling of this correction as a function of system
parameters has been shown explicitly.
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Appendix A: Unitary transformations

Under the action of the unitary transformation

U = ei2
√
π(λ1ϕ̃1(0)+λ2ϕ̃2(0))σ

z

, (A1)

the Luttinger liquid Hamiltonian HLL transforms as

HLL → H̃LL = UHLLU
† =

∑
j=1,2

[
uj

2

∫
dx
[
Π̃2

j + (∂xϕ̃j)
2
]
− 2

√
πλjujΠ̃j(0)σ

z

]
, (A2)

while the Kondo Hamiltonian HK transforms as

HK → H̃K = UHKU
† =

∑
j=1,2

[
− J̃z,j√

π
Π̃j(0)σ

z +
J⊥,j

2πξj

(
ei2

√
π[(V j1

ϕ +λ1)ϕ̃1(0)+(V j2
ϕ +λ2)ϕ̃2(0)]σ+ + h.c.

)]
. (A3)
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(We have omitted an unimportant constant.) We then arrive at a decoupled-channel Hamiltonian with either of the
two following choices:

λj = −V jj
ϕ or λj = −V j̄j

ϕ . (A4)

(We use the notation j̄ = 2, 1 for j = 1, 2). We select the second option, and collecting H̃LL and H̃K, we arrive at the
Hamiltonian

H̃ =
∑
j=1,2

[
uj

2

∫
dx
[
Π̃2

j + (∂xϕ̃j)
2
]
−

J̃ ′
z,j√
π
Π̃j(0)σ

z +
J⊥,j

2πξj

(
ei2

√
πκj ϕ̃j(0)σ+ + h.c.

)]
, (A5)

where we have defined

J̃ ′
z,j = J̃z,j − 2πujV

j̄j
ϕ , κj = V jj

ϕ − V j̄j
ϕ . (A6)

We use this Hamiltonian for the calculation of the RG flow of the Kondo couplings in Sec. IV and App. D.

Alternatively, in the unitary transformation (A1) we can set λj = − J̃z,j

2πuj
and we obtain

H̃ =
∑
j=1,2

[
uj

2

∫
dx
[
Π̃2

j + (∂xϕ̃j)
2
]
+

J⊥,j

2πξj

(
ei2

√
π
∑

k κjkϕ̃k(0)σ+ + h.c.
)]

, (A7)

where we have defined

κjk = V jk
ϕ − J̃z,k

2πuk
. (A8)

We employ this form of the Hamiltonian in the discussion of the solvable point in Sec. III and for the perturbative
calculation of the correction to the conductance in Sec. V.

Appendix B: Interaction Hamiltonian

In this appendix we establish the conditions under which it is justified to retain only the interaction terms included
in Eq. (2). Following [9], the interaction Hamiltonian for a two-channel HL in general comprises terms that lead to
nonlinearities in the bosonized theory. These terms include the Umklapp scattering processes

Ψ†
j↑(x)Ψ

†
j↑(x+ a)Ψj↓(x+ a)Ψj↓(x)e

−i4kF x + h.c., j = 1, 2. (B1)

We omit these processes on account of the fact that we consider the generic incommensurate situation, i.e., 4kF
different from a reciprocal lattice vector.

Next, let us consider Kondo scatterings between different channels. They are described by the following operators:

Ψ†
1,↑Ψ2,↑ −Ψ†

1,↓Ψ2,↓ ∼ ei
√
π((V 11

θ −V 21
θ )θ̃1+(V 12

θ −V 22
θ )θ̃2) sin(

√
π((V 11

ϕ − V 21
ϕ )ϕ̃1 + (V 12

ϕ − V 22
ϕ )ϕ̃2)), (B2)

Ψ†
1,↑Ψ2,↓ ∼ ei

√
π((V 11

θ −V 21
θ )θ̃1+(V 12

θ −V 22
θ )θ̃2)e−i

√
π((V 11

ϕ +V 21
ϕ )ϕ̃1+(V 12

ϕ +V 22
ϕ )ϕ̃2). (B3)

Calculating their scaling dimensions, we find that these terms are irrelevant (and can thus be omitted) if the following
two conditions hold:

1

4

∑
j=1,2

(
V 1j
θ − V 2j

θ

)2
+

1

4

∑
j=1,2

(
V 1j
ϕ ∓ V 2j

ϕ

)2
> 1. (B4)

Appendix C: Two-channel resonant-level model

In this section, we briefly discuss the solution of Eq. (24). We Fourier transform the Hamiltonian in this equation
to cast it into a resonant-level model consisting of two non-interacting channels coupled to a discrete level modeled
by d operators. The Hamiltonian becomes

HT =
∑
k,j

ϵk,jc
†
k,jck,j + ϵdd

†d+
∑
k,J

tj

[
c†k,jd+ ck,jd

†
]
. (C1)
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Here, tj =
J⊥,j√
4π2ξj

and ϵk,j = ujk. We look for new fermionic operators f†
n =

∑
k,j M

j
n,kc

†
k,j + Lnd

† such that

HT =
∑

n Enf
†
nfn + const. We then have [HT, f

†
n] = Enf

†
n, and from Eq. (C1)[

HT, f
†
n

]
=
∑
k,j

[M j
n,kϵk,jc

†
k,j + tjM

j
n,kd

† + tjLnc
†
k,j ] + ϵdLnd

†. (C2)

We have used [ab, c] = a{b, c} − {a, c}b. Hence

Enf
†
n =

∑
k,j

[M j
n,kϵk,jc

†
k,j + tjM

j
n,kd

† + tjLnc
†
k,j ] + ϵdLnd

†,

En

[∑
k,j

M j
n,kc

†
k,j + Lnd

†
]
=
∑
k,j

[M j
n,kϵk,jc

†
k,j + tjLnc

†
k,j ] + [

∑
k,j

tjM
j
n,kd

† + ϵdLnd
†].

(C3)

If we introduce a resonant level coupled to a two independent channel set-up, then

EnM
j
n,k = M j

n,kϵk,j + tjLn,

EnLn =
∑
j

tj
∑
k

M j
n,k + ϵdLn.

(C4)

One would get

En =
∑
j

t2j
∑
k

1

En − ϵk,j
+ ϵd. (C5)

The above equation can be graphically solved for finite system [40]. We use the following relation [40] to evaluate the
sum over k

∞∑
n=−∞

1

En − πn
= cot(En). (C6)

For ϵd = 0

En =
∑
j

πt2j
uj

cot(
Enπ

uj
). (C7)

One can solve the above equation numerically to obtain the energy En. We can further derive the spectral function
from the impurity Green’s function. We note that in path integral formalism

Z =

∫
D[d, cj ]e

−S =

∫
D[d]e−Sd

∫
D[c]e−Sc ,

Sd =

∫ β

0

dτ
[
d̄(∂τ + ϵd)d

]
,

Sc =
∑
j

∫ β

0

dτ
[∑

k

c̄k,j(∂τ + ϵk,j)ck,j +
∑
k

(tj c̄k,jd+ ck,j d̄)
]
.

(C8)

From the above expressions we can write

Z =

∫
Dde

−
∫ β
0

dτ

[
d̄(∂τ+ϵd)d

] ∫
D[c1]e

−
∫ β
0

dτ

[∑
k c̄k,1(∂τ+ϵk,1)ck,1+

∑
k(tαc̄k,1d+ck,1d̄)

]
∫

D[c2]e
−

∫ β
0

dτ

[∑
k c̄k,2(∂τ+ϵk,2)ck,2+

∑
k(tαc̄k,2d+ck,2d̄)

]
.

(C9)

One can integrate out ck,j ’s to obtain

Z ∼
∫

Dd exp
[
−
∫ β

0

dτ d̄(∂τ + ϵd −
∑
j

t2j
∂τ + ϵk,j

)d
]
. (C10)
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Here we are showing the relevant term which depends on d operators. We next perform Fourier transformation
d(τ) = β−1/2

∑
n dne

−iωnτ , where ωn is nth Matsubara frequency and β is inverse temperature. This enables us to
replace ∂τ by −iωn.

Z ∼
∫

Dd exp
[
−
∑
iωn

d̄n(−iωn + ϵd −
∑
j

t2j
−iωn + ϵk,j

)dn

]
. (C11)

Hence the impurity green’s function can be written as

Gd(iωn) =
1

iωn − ϵd + iΓsgn(ωn)
. (C12)

and the spectral function, defined as − 1
π Im(Gd), becomes a Lorentzian with width

Γ =
∑
j

Γj =
∑
j

π
t2j
uj

. (C13)

Appendix D: RG analysis

For completeness, in this appendix we provide the derivation of the flow equations for the Kondo couplings in the
model (13) using the perturbative RG approach. (See, e.g., [41]). The (euclidean) action for the Kondo problem
corresponding to the Hamiltonian (13) is S = S0 + SK, where

S0 =
∑
j=1,2

∫
dω

2π
|ω||φj(ω)|2, (D1)

SK =
∑
j=1,2

∫
dτ

[
−iJ̃ ′

z,j√
πuj

∂τφj σ
z +

J⊥,j

2πξj

(
ei2

√
πκjφjσ+ + e−i2

√
πκjφjσ−

)]
. (D2)

Here we use the notation φj(τ) ≡ ϕ̃j(0, τ), and τ denotes imaginary time. Following [41] S0 is obtained by integrating
out φj(x ̸= 0, τ). The action S contains a large frequency cutoff Λ, i.e., |ω| < Λ in all frequency integrations, where
we identify Λ =

uj

ξj
.

The RG approach proceeds as follows [41, 42]. We introduce a rescaled cutoff Λ′ = Λ/b, where b = el > 1 is a
scaling factor, with ℓ ≪ 1. We separate the field into slow and fast components, φj = φ<

j + φ>
j , where the first

contains only frequency components smaller than Λ′, and the latter contains frequency components between Λ′ and
Λ. We perform the same separation on σ⃗ as we do for the φj fields. We are using time-ordered bosonic correlation,
hence for consistency of the calculation one has to use the time-ordered product of impurity spin as well. This is
given by T [σ±

<(τ)σ
∓
<(τ

′)] = 1
2 +σz

<sgn (τ −τ ′) [41]. We then integrate over the fast component and obtain an effective
action for the slow component, which has the same form as the original action, but with renormalized coefficients,
from which we can read the RG equations.

After integrating out the fast modes, the effective action for the slow modes up to second order in the Kondo
couplings takes the following expression:

Seff [φ
<] = S0[φ

<] + ⟨SK[φ]⟩> − 1

2

(
⟨S2

K[φ]⟩> − ⟨SK[φ]⟩2>
)
, (D3)

where ⟨. . . ⟩> denotes the integration over the fast modes, i.e., using the action S0[φ
>]. Let us begin with the

calculation of the first-order correction. Here, we have used ⟨∂τφj⟩> = ∂τφ
<
j and ⟨(φ>

j )
2⟩> = 1

2π log b. We now need
to restore the cutoff to its original value Λ, which can be accomplished by rescaling the time τ → bτ and redefining
the field φ<

j (τ) → φ<
j (bτ) ≡ φ̄(τ). Then we get

⟨SK[φ]⟩> =
∑
j

∫
dτ

[
−iJ̃ ′

z,j√
πuj

∂τ φ̄j σ
z +

J⊥,jb
1−κ2

j

2πξj

(
ei2

√
πκj φ̄jσ+ + e−i2

√
πκj φ̄jσ−

)]
. (D4)

This results implies that J̃ ′
z,j is not renormalized at first order, while for J⊥,j we find

dJ⊥,j

dℓ
= (1− κ2

j )J⊥,j .
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At the second order we find

⟨S2
K[φ]⟩> =

∑
j1,j2

∫
dτ dτ ′

〈[−iJ̃ ′
z,j1√

πuj1

∂τφj1(τ)σ
z +

J⊥,j1

2πξj1

(
ei2

√
πκj1

φj1
(τ)σ+ + e−i2

√
πκj1

φj1
(τ)σ−

)]
×

×

[
−iJ̃ ′

z,j2√
πuj2

∂τ ′φj1(τ
′)σz +

J⊥,j2

2πξj2

(
ei2

√
πκj2

φj2
(τ ′)σ+ + e−i2

√
πκj2

φj2
(τ ′)σ−

)]〉
>
. (D5)

We calculate only the quantity of interest:〈
ei2s

√
πκjφj(τ)∂τ ′φ>

j (τ
′)
〉
>
= −2s

√
π

ibκj
ei2s

√
πκjφ

<
j (τ)κj∂τ ′⟨φ>

j (τ)φ
>
j (τ

′)⟩>. (D6)

Next, we make the change of variables t = τ − τ ′ and T = τ+τ ′

2 , and Taylor-expand the fields around t = 0, so that
they are only functions of the center of mass coordinate T . The t-integral is performed using a cut-off 1/Λ. Collecting
together the dominant terms, we obtain

⟨SK⟩> =

∫
dT

[
−iJ̃ ′

z,j√
πuj

∂T φ̄j(T )σ
z +

J⊥,j

2πξ

(
1 + (κ2

j − 1)
δΛ

Λ

)(
ei2

√
πκj φ̄j(T )σ+ + e−i2

√
πκj φ̄j(T )σ−

)]
,

−1

2
(⟨S2

K⟩> − ⟨SK⟩2>) =
2∑

j=1

κj

∫
dT

J⊥,j J̃
′
z,j

2π2ξjuj
log b

[
ei2

√
πκjφ

<
j (T )σ+ + e−i2

√
πκjφ

<
j (T )σ−

]

−
2∑

j=1

(J⊥,j)
2

(2π)2ξ2j
4
√
πκ3

j iσ
z

∫
dT∂Tφ

<
j (T )

1

Λ2
dl. (D7)

We then arrive at the effective action with rescaled couplings

Seff [φ̄] = S0[φ̄] +

∫
dT

[
−iJ̃ ′

z,j(l)√
πuj

∂T φ̄j(T )σ
z +

J⊥,j(l)

2πξj

(
ei2

√
πκj φ̄j(T )σ+ + e−i2

√
πκj φ̄j(T )σ−

)]
. (D8)

where the couplings satisfy the following RG equations:

dJ̃ ′
z,j

dl
=

κ3
j

πuj
(J⊥,j)

2, (D9)

dJ⊥,j

dl
= (1− κ2

j )J⊥,j +
κj

πuj
J̃ ′
z,jJ⊥,j . (D10)

In terms of the unshifted couplings J̃z,j , we find

dJ̃z,j
dl

=
κ3
j

πuj
(J⊥,j)

2, (D11)

dJ⊥,j

dl
= (1− κ2

j − 2κjV
j̄j
ϕ )J⊥,j +

κj

πuj
J̃z,jJ⊥,j ,

= (1− (V jj
ϕ )2 − (V j̄j

ϕ )2)J⊥,j +
κj

πuj
J̃z,jJ⊥,j . (D12)

The first term in the last line can be easily understood: it is the scaling dimension of the J⊥ operator in Eq. (11),
after the diagonalization of the bulk Hamiltonian, but before any unitary transformation. In the limit of decoupled
channels,

V ij
ϕ =

√
Kjδij , V ij

θ = δij/
√

Kj , J̃ ′
z,j = Jz,j/

√
Kj , κj =

√
Kj ,

and we find

dJz,j
dl

=
K2

j

πuj
(J⊥,j)

2, (D13)

dJ⊥,j

dl
= (1−Kj)J⊥,j +

1

πuj
Jz,jJ⊥,j . (D14)
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The equations differ from those in [18], which read

dJz,j
dl

=
1

πuj
(J⊥,j)

2, (D15)

dJ⊥,j

dl
= (1−Kj)J⊥,j +

1

πuj
Jz,jJ⊥,j . (D16)

This can be understood as being due to the fact that the equations in [18] are only meant to be valid for weak e-e
interactions, i.e., Kj ≈ 1 (see comment in [41]).

We notice that the equation for J⊥,j can be easily obtained by using the Hamiltonian (15). Indeed, in this case we
just need the scaling dimension of the J⊥ operator:

dJ⊥,j

dℓ
= (1−

∑
k

κ2
jk)J⊥,j . (D17)

We observe that

∑
k

κ2
jk =

∑
k

(
V jk
ϕ − J̃z,k

2πuk

)2

=
∑
k

(
V jk
ϕ −

J̃ ′
z,k

2πuk
− V k̄k

ϕ

)2

, (D18)

≈
(
V jj
ϕ − V j̄j

ϕ

)2
−
(
V jj
ϕ − V j̄j

ϕ

)2 J̃ ′
z,j

πuj
= κ2

j −
κj

πuj
J̃ ′
z,j . (D19)

In the last line we used the definition of J̃ ′
z,j in Eq. (14) and we omitted terms of order J̃ ′2

z . Inserting this expression
in Eq. (D17) we recover Eq. (D10).

Appendix E: Conductance for weak coupling

In this section we give some details of the calculation of the correction to the conductance at finite temperature
and frequency. We start with the Hamiltonian H̃ in Eq. (15), which we rewrite here for convenience:

H̃ =
∑
j=1,2

[
uj

2

∫
dx
[
Π̃2

j + (∂xϕ̃j)
2
]
+

J⊥,j

2πξj

(
ei2

√
π
∑

k κjkϕ̃k(0)σ+ + h.c.
)]

. (E1)

The spin flip current is given by δI = −e∂tσ
z [19]. In our case this expression turns out to be

δI = ie
∑
j=1,2

J⊥,j

2πξj

[
ei2

√
π
∑

k κjkϕ̃kσ+ − e−i2
√
π
∑

k κjkϕ̃kσ−
]
. (E2)

The correction to the conductance δG(ω) can be computed using the Kubo formula [21, 40], which amounts to
calculating the current-current correlator from Eq. (E2) [19, 21]. For these calculations one needs to use the finite
temperature bosonic correlators defined as [31, 32]

⟨T
[
ϕ̃j(τ)− ϕ̃j(0)

]2
⟩ = 1

2π
log

[(
βuj

πξj

)2

sin2
(
π

β
τ

) ]
, (E3)

where τ is imaginary time, β = 1/T , and ξj = uj/Λ. We then obtain δG(ω) = I1 + I2 + I3, where

I1 = −2e2
(
J⊥,1

2πξ1

)2(
πξ1
βu1

)2κ2
11
(
πξ2
βu2

)2κ2
12

sin
(
π(κ2

11 + κ2
12)
) ∫ ∞

0

dt
(eiωt − 1)/iω

| sinh(πβ t)|2(κ
2
11+κ2

12)
,

I2 = −2e2
(
J⊥,2

2πξ2

)2(
πξ1
βu1

)2κ2
21
(
πξ2
βu2

)2κ2
22

sin
(
π(κ2

21 + κ2
22)
) ∫ ∞

0

dt
(eiωt − 1)/iω

| sinh
(

π
β t
)
|2(κ2

21+κ2
22)

,

I3 = −4e2
J⊥,1J⊥,2

(2π)2ξ1ξ2

(
πξ1
βu1

)2(κ11κ12)( πξ2
βu2

)2κ22κ21

sin (π(κ11κ12 + κ22κ21))

∫ ∞

0

dt
(eiωt − 1)/iω

| sinh
(

π
β t
)
|2(κ11κ12+κ22κ21)

.

(E4)
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In the limit J2
⊥,j ≪ ω ≪ T we can simplify the above expressions as follows:

I1 = −e2

4

(
J⊥,1

2πξ1

)2(
2πT

Λ

)2κ2
11
(
2πT

Λ

)2κ2
12 ( 1

πT

)2 πΓ(κ2
11 + κ2

12)
2

Γ(2(κ2
11 + κ2

12))
,

I2 = −e2

4

(
J⊥,2

2πξ2

)2(
2πT

Λ

)2κ2
21
(
2πT

Λ

)2κ2
22 ( 1

πT

)2 πΓ(κ2
21 + κ2

22)
2

Γ(2(κ2
21 + κ2

22))
,

I3 = −e2

2

J⊥,1J⊥,2

(2π)2ξ1ξ2

(
2πT

Λ

)2(κ11κ12)(2πT

Λ

)2κ22κ21 ( 1

πT

)2 πΓ(κ11κ12 + κ22κ21)
2

Γ(2(κ11κ12 + κ22κ21))
.

(E5)

The reduction of each of the integrals in Eq. (E4) to the three corresponding expressions in Eq. (E5) also depends on
the fact that the terms κ2

11 + κ2
12, κ

2
21 + κ2

22, κ11κ12 + κ22κ21 are non-zero. One can observe from Eq. (E4) that these
three terms correspond to I1, I2 and I3 respectively. If any of these three quantities becomes zero, the corresponding
integral goes to zero. We extend this argument to see from Eq. (E4) that I3 vanishes in the exactly solvable limit.
This shows that in this limit the correction takes the form of a sum of two contributions coming from two effectively
independent channels, as in the case of the level width of the spectral function in Sec. III.
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