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From the String Landscape to the
Mathematical Landscape:
a Machine-Learning Outlook

Yang-Hui He

Abstract We review the recent programme of using machine-learning to
explore the landscape of mathematical problems. With this paradigm as a
model for human intuition - complementary to and in contrast with the more
formalistic approach of automated theorem proving - we highlight some ex-
periments on how AI helps with conjecture formulation, pattern recognition
and computation.

1 The String Landscape

Perhaps the greatest theoretical challenge to string theory as a theory of ev-
erything is the vast proliferation of possible vacuum solutions, each of which
is a possible 4-dimensional “universe” that descends from the 10 spacetime
dimensions of the superstring. This is the so-called “vacuum degeneracy prob-
lem”, or the “string landscape problem”. The reason for this multitude is the
vast number of possible geometries for the missing 6 dimensions. Whether we
consider compactification, where the a Calabi-Yau manifold constitutes the
missing dimensions, or configurations of branes whose world-volumes com-
plement these dimensions, we are inevitably confronted with the heart of the
problem: geometrical structures, often due to an underlying combinatorial
problem, tend to grow exponentially with dimension.

We can see this from estimates of possible vacua, which engender such
astronomical numbers as 10500 to 10105

[1–3]. These estimates come from
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2 Yang-Hui He

tallying “typical” number of topologies of “typical” manifolds, as governed
by the number of holes (or more strictly, algebraic cycles) of various di-
mensions within the manifolds. Such topological quantities are immanently
combinatorial in nature.

Lacking a fundamental “selection principle” [4] - which would find our
universe among the myriad - the traditional approaches have been statistical
valuations [5], or brute-force searching for the Standard Model [6–11] as a
needle in the haystack. Whilst these approaches have met some success, the
overwhelming complexity (especially in the computational sense [12]) of, and
the want of a canonical measure [19] on, the string landscape, beckon for a
paradigmatically different method of attack.

As the Zeitgeist of Artificial Intelligence (AI) breathes over all disciplines
of science [13] in recent times, and as we firmly enter the era of Big Data and
Machine-Learning (ML), it is only natural that such a perspective be under-
taken to explore the string landscape. This was indeed done in 2017 when ML
was introduced into string theory [14–18]. In particular, the proposal of [14]
was to see whether ML could be used to study the databases in algebraic
geometry, which have been compiled over the last few decades for the sake
of studying string theory in physics and concepts such as mirror symmetry
in mathematics. To some details of this programme let us now turn.

1.1 Calabi-Yau Manifolds: from Geometry to Physics

Fig. 1 The trichotomy
of (smooth, compact,
boundary-less) surfaces,
organized according to
toplogical type and re-
lated curvature.

The classification of (compact, smooth, boudary-less) surfaces Σ goes back
to at least Euler, who realized that a single integer, called genus, completely
characterizes the topological type of Σ. Roughly, the genus g counts the
number of “holes”: a sphere S2 has genus 0, a torus T 2 = S1 × S1 has genus
1, etc. The Theorema Egregium of Gauss then relates topology to metric
geometry:

2− 2g =
1

2π

∫
Σ

R . (1)

In the above, the combination χ = 2 − 2g is the Euler number and R is
the (Gaussian) curvature. We therefore see a natural trichotomy of surfaces,
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as summarized in Fig. 1: negative, zero and positive curvature, with the
boundary case of R = 0, or Ricci-flatness, being the torus T 2.

With Riemann enters complex geometry: Σ is not merely a real dimen-
sion 2 manifold, but a complex dimension 1 manifold. The trichotomy in this
context manifests as Riemann Uniformization. Complexification allows us to
employ the powers of algebraic geometry over C and Σ can thus be realized
as a complex algebraic curve. For instance, it can be the vanishing locus of
a complex polynomial in the three projective variables [x : y : z] of CP2.
The torus, in particular, can be realized as the famous cubic elliptic curve.
In modern parlance, the Gaussian integral is thought of as the intersection
theory between homology (the class [Σ]) with cohomology (the first Chern
class c1(Σ)). Likewise, χ, by the index theorem, is the alternating sum of di-
mensions of appropriate (co-)homology groups. We summarize this beautiful
story, spanning the two centuries from Euler to Chern, Atiyah, Singer et al.,
in Fig. 2.

Fig. 2 The index the-
orem relating differen-
tial/algebraic geome-
try/toplogy for surfaces as
complex algebraic curves.

Generalizing Figs. 1 and 2 to complex dimension higher than 1 is, under-
standably, difficult. However, at least for a class of complex manifolds, called
Kähler, whose (Hermitian) metric gµ̄ν comes from a single scalar potential K
as gµ̄ν = ∂µ̄∂νK, the story does extend nicely: the Chern class governs the
curvature. This is roughly the content and significance of the Calabi conjec-
ture [21], which Yau proved some 20 years later in his Fields-Medal-winning
work [22].

It is serendipitous that when string theorists worked out the conditions
for compactification in the incipience of string phenomenology [23], one of
the solutions (and today still standard) for the extra 6-dimensions is a com-
plex, Kähler, Ricci-flat 3-fold. Furthermore, Strominger, one of the authors,
was Yau’s visitor at the IAS. And thus the world of high-energy theoretical
physics intermingled with the world of complex algebraic geometry. In fact,
the physicists named such manifolds “Calabi-Yau” (CY), and the rest, was
history. The torus T 2, is thus a premium example of a Calabi-Yau 1-fold, of
complex dimension 1. The reader interested in further details of the Calabi-
Yau landscape as a confluence between physics, mathematics and modern
data science, is referred to the pedagogical book [24].

Over the decades since the mid-1980s, a host of activity ensued in cre-
ating large data-bases of CY manifolds for the intention of sifting through
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to find the Standard Model. Perhaps it was unexpected that the number 1

of CY 3-folds reached billions by the turn of the century (and still grow-
ing!) [25]. Furthermore, the sophisticated machinery of modern geometry,
much of which was inherited from the Bourbaki School, was used to compute
the various quantities (q.v. the classic [26] and for physicists, [27]), partic-
ularly the topological ones such as Euler, Betti and Hodge numbers, which
have precise interpretation as Standard Model particles.

1.2 Machine-Learning Algebraic Geometry

The point d’appui of [14] was that these large sets of CY manifolds consti-
tuted labelled datasets ripe for machine-learning. In fact, the situation is
even more general and any mathematical computation can be thought of this
way. We shall not delve into the details of CY topological invariants or string
phenomenology, but the idea can be construed as follows. The purpose of
algebraic geometry is to realize a manifold as the vanishing loci of a system
of multi-variate polynomials where the variables are the coordinates of some
appropriate ambient space such as projective space. We can thus represent
a manifold as a list (tensor) of coefficients 2. Traditional methods such as
exact sequences and Gröbner bases (q.v. [20] for ML on selecting S-pairs)
then computes desired geometrical quantities such as Hilbert series or Betti
numbers. In the special case of extracting topological quantities, the coeffi-
cients are irrelevant (topology does not depend on shape) and we have even
simpler representations. For instance, one could record just the degrees of the
various defining polynomials.

But a tensor can naturally be interpreted as a pixelated image (up to
some normalization and padding if necessary), and thus the general statement
of [14,15] is that

OBSERVATION 1 Computation in algebraic geometry is an image-recognition
problem.

To make this observation concrete, let us give an example. Suppose we are
given a CY 3-fold 3, defined by the intersection of 8 polynomials in a product
(CP1)6 × (CP2)2 of projective spaces given by the configuration below 4.

1 By contrast, a CY 1-fold can only be T 2, a CY 2-fold can only be T 4 and K3. We
therefore see the aforementioned exponential growth of possibilities as we increase
in dimension. Nevertheless, it is a standing conjecture of Yau that the number of
possible topological types of CY in every dimension is finite.
2 These coefficients determine the “shape” of the manifold. In Mathematica, there is
a convenient command for this, viz., CoefficientList[ ].
3 Strictly, this is a family of manifolds since we are not specifying the coefficient
which dictate complex structure (shape).
4 This is an example of a complete intersection CY in product of project spaces
(CICY), which was possibly the first database in algebraic geometry [28]. To read it,
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The topological quantity, a so-called Hodge number h2,1 was computed (see
[27]) to be 22 using long exact sequence in cohomology induced by an Euler
sequence (quite a difficult and expensive computation!). However, we could
associate 0 to, say, purple, green to 1 and red to 2. After padding with 0
(to normalize over the full CY dataset of which this is one case), and the
computation of h2,1 becomes an image-processing problem no different than
hand-writing recognition:

h2,1(

( 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 0 2 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 0 0 1 1 0 0 1

)
) = 22 becomes −→ 22 . (2)

A surprising result of [14] is that such labeled data, consisting of typ-
ically around 105 ∼ 106 points, when fed into a standard ML algorithm,
such as a fairly shallow feed-forward neural network (otherwise known as an
MLP) with sigmoid activation functions, or a support vector machine (SVP),
achieves over 90% accuracy in a standard 80-20 cross-validation 5 in a matter
of seconds on an ordinary laptop. Since then, more sophisticated neural net-
works (NNs) have achieved over 99.9% accuracy [29–32] (q.v. recognition of
elliptic fibration within the data using ML [33]). How could a relatively simple
ML algorithm guess at a cohomology computation, without any knowledge
of the underlying mathematics? At some level, this is the Universal Approx-
imation Theorem of NNs at work [34], which states that at sufficiently large
depth/width, a NN can approximate almost any map, much like the way a
Taylor series can approximate any analytic function. Yet, the relative sim-
plicity of the architecture of the NN is highly suggestive of a method which
bypasses the sophistication and computational complexity of the standard
algorithms of algebraic geometry. To this point let us now turn.

2 The Landscape of Mathematics

The great utility of our paradigm to the string landscape, and indeed to
problems in theoretical physics, is obvious. Even when not reaching 100% ac-
curacy, a rapid and highly accurate NN estimate could reduce practical com-
putations, say, of searching the exact Standard Model within string string,
many orders of magnitude faster. Utility aside, the unexpected success of ma-
chine learning of algebraic geometry beckons a deeper question: can one ma-
chine learn mathematics [24,35]? By this we mean several levels: can ML/AI

each column is a defining polynomial. For example, the first column corresponds to
a polynomial which is multi-linear in the first and second CP1 factors and also linear
in the first CP2 factor.
5 In machine-learning, this means we take the full labelled data, train on 80% ran-
domly selected, and validate - meaning we check what the output is as predicted by
the NN versus the actual value - on the unseen 20%.
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(1) extract patterns from mathematical data, supervised and unsupervised,
patterns which have not been noted by the human eye? (2) help formulate
new conjectures and find easier formulae (q.v. recent collaboration on how
AI can help with mathematical intuition [36])? (3) help with new pathways
in a proof? (4) help understand the structure of mathematics across the dis-
ciplines?

It is expedient to digress momentarily on some speculations upon the na-
ture of mathematics whilst we are planning to explore Her landscape. The
turn of the 20th century witnessed a tension between two Schools of thought:
(i) the logicism-formalism of Hilbert and (ii) the intuitionism-constructivism
of Poincaré. The first, rested in the tradition of Leibniz, Frege, Peano, Russell-
Whitehead, Wittgenstein, et al., and attempted to logically build all of math-
ematics, without contradiction, symbol by symbol. The second, propelled by
Brouwer, Heyting, Poincaré et al., sought for a more “human” and experien-
tial element to mathematics.

The advent of computers in mathematics has dawned a new era. More
importantly, they are becoming more than a mere aid to computation. There
is a growing number of major results - championed by e.g., the 4-colour
theorem, or the classification of finite simple groups - which could not have
been possible without computer work. The reason is simple: the rate of growth
of mathematical knowledge and the requisite length of many a proof have
perhaps already exceeded the capacity of the human mind. The full details
of the proof of Fermat is hundreds of pages of highly technical mathematics
understandable by a small community, that of the classification of simple
groups, thousands. It is entirely conceivable that the proof of the Riemann
Hypothesis will take longer than several human lifetimes to construct or
digest, even if we take into account the cumulative nature of research.

Consequently, Buzzard, Davenport et al. [37, 38] have been emphasising
how essential the Automated Theorem Proving programme (ATP) is to the
future of mathematics. Software such as Lean is currently constructing all
statements and proofs of mathematics, symbol by symbol, line by line. Their
optimistic estimate is that within 10 years, all of undergraduate level math-
ematics will be built from scratch automatically. More strikingly, some at
Google Deepmind suspect that as computers defeated humans at chess in the
1990s and Go in the 2010s, they will beat us at producing new mathematics
by 2030.

The ATP programme can be thought of as being along the formalistic
skein of Hilbert, and, to borrow terminology from physics, one could call
this “bottom-up mathematics” [35]. Our foregoing discussion of using ML
which attempts to extract patterns from data or extrapolate methods from
heuristics, on the other hand, is much more along the intuitionistic line of
Poincaré. Again, to borrow from physics, one could call this “top-down math-
ematics” [35]. These two threads should indeed be pursued in parallel and
here, we shall summarize some recent experiments in the latter.
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2.1 Methodology

For concreteness, let us focus on calculations of the form of (2), which should
be ubiquitous in mathematics. We shall let D := {Ti → pi} be a set of input
tensors Ti with output property pi, typically obtained from some exhaustive
and intensive computation. We then split D := T tV into training set T and
validation set V where T is a random sample of, say, 80%. Such data, repre-
senting “experience and intuition” of the practitioner, could then be passed
to standard machine-learning algorithms such as neural classifiers/regressors,
MLPs, SVMs, decisions trees, etc. Importantly, these algorithms have no
prior knowledge of the mathematics 6. Once validation reaches high preci-
sion (especially 100%), one could start formulating conjectures. On the other
hand, if one could not reach any good results exhausting a multitude of al-
gorithms, it would indicate an inherent difficulty in the problem whence the
data came.

2.2 Across Disciplines

With this method of attack it is natural to scan through the available data of
mathematics, as a reconnaissance onto the topography of Her territory. We
saw in the above that algebraic geometry over C responds well to ML and
speculate that the reason for this is that all computations inherent thereto
reduce to finding (co-)kernels of matrices. Over the past 5 years, there have
been various excursions into a variety of disciplines and we shall highlight
some representative cases, and refer the reader to the citations as well as the
summary in [35].

Algebra: In [46], the question was posed as to whether one could “see”
a finite group being simple or not, by direct inspection of its Cayley mul-
tiplication table. Surprisingly, an SVM could do so to more than 0.98 pre-
cision, instigating the curious conjecture that simple and non-simple groups
could be separable when plotting their flattened Cayley tables. For contin-
uous groups, the tensor decomposition into irreps for simple Lie algebras of
type ABCDG2 is computationally exponential as one goes up in weight. Yet,
numerical quantities such as the number of terms in the decomposition can
be quickly machine-learnt by an MLP with only a few layers to 0.96 pre-
cision [47]. In [48], MLPs, decision trees and graph NNs could distinguish

6 Of course, building activation functions which know some of the underlying theory
is effective and computationally helpful, as was done in, e.g., [39–45], but the true
surprises lie in blind tests. This was performed in the initial experiments of [14] and
the ones we shall shortly report, could lead to conjectures unfathomed by human
thought.
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table/non-table ideals to 100% accuracy, whereby suggesting the existence of
a yet-unknown formula.
Graphs & Combinatorics: Various properties of finite graphs, such as
cyclicity, genus, existence of Euler or Hamilton cycles, etc., were explored
by “looking” at the the adjacency matrix with MLPs and SVMs [49]. The
algorithms determining some of these quantities are quite involved indeed.
For instance, Hamilton cycle detection is that of the traveling salesman prob-
lem, which is NP-hard. Typically, for these problems, one could reach 80-90%
accuracies, which could be related to the fact that detecting matrix permuta-
tions - and hence graph isomorphism - is currently a challenge to ML. How-
ever, when more structures are put in, such as quiver representations [50], or
tropical geometry [51], accuracies in the high 90s can once more be attained.
Explorations in lattice polytopes [52,53] and knot invariants [54,55] also yield
good results.
Analytic Number Theory: As one might imagine, uncovering patterns
in arithmetic functions, such as prime characteristic, or the likes of Mobius
µ and Liouville λ, would be very hard. And it turns out to be so not only for
the human eye, but also for any standard ML algorithm [14,24,35]. Likewise,
one would imagine finding new patterns in the Riemann zeta function [56,57]
to be a formidable challenge.
Arithmetic Geometry: Yet, with a mixture of initial astonishment and
a posteriori reassurance, problems in arithmetic geometry are very much
amenable to ML. Properties such as the arithmetic of L-functions [58, 59],
degree of Galois extensions for dessins d’enfants [62], or even the quantities
pertaining to the strong Birch-Swinnerton-Dyer conjecture [60,61] (interest-
ingly, the most difficult Tate-Shafaverich group is the least responsive) can
all be learnt to high accuracies. Indeed, as exemplified by countless histor-
ical cases, translating Diophantine problems to geometry, especially that of
(hyper-)elliptic curves, renders them much more tractable. In this sense, our
ML methodology and results on the data are consistent with this notion that
arithmetic geometry is closer to geometry than to arithmetic.

With these experiments, we conclude with the remark and speculation
that there is a “hierarchy” of mathematical problems, perhaps in tune with
our expectations:

OBSERVATION 2 Across the disciplines of mathematics,

[numerical analysis] < [algebraic geometry over C ∼ arithmetic geometry] <

[algebra/representation theory] < [combinatorics] < [analytic number theory]

where a < b means patterns from problem from a are more easily extractable
than those from b, or indeed that problems in a are more easily solvable.

Above all, we encourage the readers to take their favourite problems and
data and see how well ML performs on them.

BC
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