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Abstract—In this paper, an intelligent PD (iPD) controller
named Model-Free Controller is proposed. Herein, it is used to
control the position of a Vertical Take-Off and Landing (VTOL)
Unmanned Aerial Vehicle (UAV) Quadrotor. This strategy in-
creases the control performance as well as its robustness level with
respect to the classical PD. This is due to the estimation principle
provided by the ultra-local model that estimate the unknown
disturbances and uncertainties each iteration. The efficiency
of the proposed strategy is shown through various numerical
simulations where a thorough analysis is provided. Moreover, a
comparison study is elaborated between the iPD and the classical
PD.

Keywords—Model-Free Control;Vertical Take-Off and Landing
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I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have recently turned
into an important element in civil and military operational
tasks, scientific and public purposes. Depending on various
user needs, many types of UAVs are under current development
attracting the attention of researchers around the world as for
instance [1]. The quadrotor is the most popular configura-
tions of multi-rotors UAVs. In the last decade, the interest
of Quadrotors has grown even higher and witnessed a very
large number of scientific and technical publications. This is
probably due to some of the promising attributes of Quadrotors
such as mechanical structure simplicity, hovering capability,
high maneuverability, etc.

Several control techniques and algorithms have been for-
mulated for Quadrotors, which are categorized usually into
three families [2]:

• Linear control techniques: numerous linear control
techniques are successfully implemented by many
researchers for attitude stabilization as well as the tra-
jectory tracking issues. The linear-quadratic regulator
(LQR) was accomplished in OS4 by Bouabdallah et
al [3]. Moreover, the LQR based tuning method is
proposed in [4], to improve the capabilities of a PID
controller. Gain scheduling technique in incorporation
with other control algorithms have also been imple-
mented on Quadrotor [5].

• Nonlinear control methods: hundreds of nonlinear
control strategies have been proposed to deal with the

nonlinear dynamics of the quadrotor. Benallegue et al.
presented a simple feedback linearization controller
[6], which is mixed with GH∞ controller in [7].
Bouabdallah & Siegwart introduced a backstepping
control scheme considering the hierarchical form of
the quadrotor. The same authors proposed a sliding
mode based control architecture for the attitude sta-
bilization [8]. Many other techniques are proposed
where a complete review is given in [2].

• Intelligent control strategies: learning and intelligent
flight control algorithms have been applied success-
fully to Quadrotor. Robust adaptive-fuzzy controller
for stabilization of Quadrotor has been introduced by
Coza [9].

We stress that each control algorithm has its advantages
and disadvantages (for more details the reader may refer to [2].
However, it is evident that PID controllers are very popular in
industrial processes, due to their simplicity of implementation,
even though they are sometimes poorly or approximately tuned
especially for nonlinear systems or systems with uncertainties.
However, most of the non-linear controller techniques need
precise knowledge of the system dynamics. For Quadrotor,
the exact knowledge of the kinematics and dynamics is hard
to achieve due to the high coupling, uncertainties and ex-
ternal disturbance. To handle this problem, recently, a new
technique named model-free control have been introduced to
the literature [10], and several researchers have successfully
implemented this technique for a Quadrotor [11],[12], [13].

Paper contributions: The paper proposes a comparison
between a simple PD and iPD. Moreover, a deep study of
the robustness level of the iPD is highlighted even in presence
of disturbances. As another contribution, an implementation of
the controller is achieved using a realistic simulator framework
RotorS Gazebo MAV working under the ROS environment.

The paper is organized as follows: In Section 2 the dynamic
model of the quadrotor is presented. The proposed control
method is described in Section III. Several numerical simu-
lations to demonstrate the efficiency of the proposed strategy
is presented in Section IV. Concluding remarks are give in
Section V.



II. DYNAMIC MODEL OF QUADROTOR

A. Motion of Quadrotor

The quadrotor has two couples of rotors (one, three) and
(two, four) spinning in opposite directions. By varying the
rotors speed, one can change the lift force and create a
movement. Vertical motion can be performed by synchronous
variation in rotors speed. Left and right motion can be accom-
plished by invert change of rotor speed two and four. In a
similar way forward and backward motion can be achieved by
invert change of rotor speed one and three. The yaw motion is
achieved by varying the speeds of a couple of rotors[14]. This
flight principle is summarized in Figure 1.

Low speed High speed

Fig. 1. Quadrotor flight principle

B. Dynamic model

By using Euler-Lagrange formulation, the dynamic model
of the quadrotor is derived, where some assumption should be
made:

• The body of the vehicle is rigid and symmetrical;

• The center of gravity of the vehicle coincides with the
origin of the body frame.

Let I = {xi, yi, zi} denotes the inertial frame, and B =
{xB , yB , zB} denotes the body fixed frame (see Figure 2). The
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Fig. 2. Forces and Moments on the quadrotor and relative coordinate systems

position of the quadrotor r = [x y z]T can be described using
the distance between the inertial frame and center of masse of
the vehicle, and the orientation will be obtained by utilizing
the rotational matrix Rot from the body frame to the inertial

frame. The order of rotation used is yaw (ψ) followed by pitch
(θ) followed by roll (φ) around the z, y and x axes respectively.

Rot =

[
cψcθ sφsθ − cφsψ sφsψ + cφcψsθ
cθsψ cφcψ + sφsψsθ cφsψsθ − cψsφ
−sθ cθsφ cφcθ

]
(1)

where: c = cos() and s = sin()

The dynamics model consists of the rotational and transla-
tional motions. The translational dynamics are underactuated
and written as follows:

mr̈ = [ 0 0 −mg ]T +Rot · FB (2)

Where m and g = 9.81m/m2 are respectively the mass of
Quadrotor and gravitational acceleration. FB non gravitational
forces acting on the quadrotor in the body frame and given
by:

FB =

[
0
0
Γ

]
(3)

Where Γ denotes the global thrust.

The rotational dynamics are fully actuated, it can be
described by equation (4),

Jω̇ + ω × Jω + ω × [ 0 0 JrΩr ]T = MB (4)

where J is the diagonal inertia matrix, w is the angular body
rates, Jr is the inertia of the rotors and Ωr their relative speed.
The moments MB acting on the quadrotor in the body frame
are given by:

MB =

[
Mφ

Mθ

Mψ

]
(5)

Near to the equilibrium state, small angles assumption is
made where cosφ ≈ 1, cos θ ≈ 1 and sinφ ≈ sin θ ≈ 0. The
relation between the Euler rates in inertial frame η̇ = [φ̇ θ̇ ψ̇]
and the angular body rates ω = [p q r] is:

[
p
q
r

]
=




φ̇− sθψ̇
cφθ̇ + sφcθψ̇

−sφθ̇ + cφcθψ̇


 ≈



φ̇

θ̇

ψ̇


 (6)

Therefore, the control input vector is defined as:

U = [ U1 U2 U3 U4 ]
T (7)

Where : 



U1 = Γ

U2 = Mφ

U3 = Mθ

U4 = Mψ

(8)

This selection of the input’s control U decouples the
rotational system, where U1 will generate the desired altitude,
U2 will produce the desired roll, U3 will produce the desired
pitch, and U4 will produce the desired yaw.



Rewriting the complete mathematical model of the quadro-
tor to have the accelerations in terms of the other variables,
results in:





ẍ = U1

m (cφsθcψ + sφsψ)

ÿ = U1

m (cφsθsψ − sφcψ)

z̈ = U1

m (cφcθ)− g

φ̈ =
Jy−Jz
Jx

θ̇ψ̇ + U2

Jx
− Jr

Jx
θ̇Ωr

θ̈ = Jz−Jx
Jy

φ̇ψ̇ + U3

Jy
− Jr

Jy
φ̇Ωr

ψ̈ =
Jx−Jy
Jz

φ̇θ̇ + U4

Jz

(9)

The quadrotor’s parameters are given in Table I.

TABLE I. QUADROTOR PARAMETERS

Parameter Symbol Value Unit

Inertia on x-axis Jx 0.007 kg m2

Inertia on y-axis Jy 0.007 kg m2

Inertia on z-axis Jz 0.012 kg m2

Mass of Quadrotor m 0.716 kg
Arm length ` 0.17 m
Thrust coefficient kf 8.54858 × 10−6 N kg s2

Drag coefficient kM 0.016 Nm kg s2

III. CONTROL DESIGN

In this section, two control techniques are presented for
the position controller of the quadrotor. The first one is
the classical Proportional-Derivative (PD) controller while the
second one is the Model-Free Control MFC (iPD).

A. Classical PD controller

PD controller is very effective and practical for industrial
purpose, due to its simplicity in term of tuning parameters and
implementation, where the gains are easy to adjust. The PD
controller has the following equations form:

u(t) = kpe(t) + kd
d

dt
e(t) (10)

Where e(t) = r(t) − y(t) denotes the tracking error between
the reference trajectory r(t) and the output y(t) and u(t)
denotes the control input. kp and kd are the proportional and
derivative gains respectively.

• Altitude controller: The altitude control input of the
quadrotor has the following equations:

Γ = (g + u1)
m

cφcθ
(11)

Where the derived control law is as follows

u1 = kpz(zdes − z) + kdz(żdes − ż) (12)

• Translational x and y controller: The outputs of PD
controller are defined by:

{
ux = kpx(xdes − x) + kdx(ẋdes − ẋ)
uy = kpy(ydes − y) + kdy(ẏdes − ẏ)

(13)

Herein, the desired roll φd and pitch θd angles can be
generated from the equation:

{
φd = 1

g × (ux cos(ψ)− uy sin(ψ))

θd = 1
g × (ux sin(ψ) + uy cos(ψ))

(14)

The global control architecture of the quadrotor multi-rotor
system is presented in Figure 3

B. Model-Free Controller

In general a nonlinear system vth order single input single
output variable can be represented in the following form:

x(v) = f(x, ẋ, . . . , x(v)) + au (15)

Where, f(·) is the model dynamics of the system, u is the
input’s system, and a is input factor wich is unkonwn.

Generally, the idea of model-free control is to locally
approximate the above system by using a simple local model

x(v) = F + λu (16)

The ultra-local model F also compensate the unknown and
neglected dynamics of the model and uncertainties at time t,
and it can be estimated by the following equation:

F̂ = x(v) − λu (17)

where:

x the last measured output;

x(v) is the derivative of order v ≥ 1 of x. The integer
v is selected by the operator. The most examples show
that v ∈ N should always be chosen lower at possible,
in example v equal to 1, or, rarely equal to 2. See [10]
for more details;

λ ∈ R is a constant to estimate of the unknown
factor a. It is chosen by the operator to achieve certain
control performance;

u is last applied control input;

The estimation F̂ of the ultra-local model should be updated
online during the control process for each iteration of the
closed-loop system. Otherwise, the model-free control use one
of the feedback controllers, herein the classical Proportional-
Derivative (PD) controller has been chosen due to their sim-
plicity and effectiveness in the control algorithm, and it has
the following form:

uc = kpe+ kdė (18)

Where e = x − xd denotes the tracking error between the
reference xd and the output x.
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Fig. 3. Quadrotor control architecture

Lastly, the global control input u for model-free controller
shown in Figure 4 is given by:

u = − F̂ − x
(v)
d + uc
λ

(19)

e
−
+

uxd Desired Output x
PD controller

d(v)

dt(v)

+−−
1
λ

Ultra Local
Model

F

uc
Plant (SISO)

x(v)
d

x

Fig. 4. Model-Free Control scheme

The value of v, chosen according to the system stability and
the type of feedback controller used in the system. For instant,
iPD would use a second-order system with v = 2 [10]. Which
is yield to:

F = ẍ+ λu (20)

Finally, the control input for iPD is:

u = − F̂ − ẍd + kpe+ kdė

λ
(21)

Stability of the model-free control: Combining equa-
tions, (20) and (21), we obtain the following relation:

ẍ = ẍd + F − F̂ + kpe+ kdė (22)

We define eest the error of estimation:

ë+ kpe+ kdė+ eest = 0 (23)

Where eest ∈ R is time-varying. In each short time interval h:

eest = |ẍ− ̂̈x−λ(u(t)−u(t− ε))| 6 |dŷ
(v)

dt
h|+ |dû

dt
h| (24)

In a physical system, dŷ(v)

dt and dû
dt are usually bounded

and 6= ∞,dŷ
(v)

dt 6 εx(v) , dû
dt 6 εu where the measure

x̂(v) is supposed noise free or filtred, if a rather small time
interval h whith respect to system dynamic selected,eest will

be bounded in small limit|eest| ≤ ε, ε ≥ 0. Therefore, by
choosing convenient gain kp and kd, the error in equation (24)
will converge towrd this small limit ε. Thus, the system is
practically stable.

The model-free control for position x, y and z is given by
the following set of equations:

Γ = − 1
λz

(F̂z − z̈d + kpzez + kdz ėz)

ux = − 1
λx

(F̂x − ẍd + kpxex + kdxėx)

uy = − 1
λy

(F̂y − ÿd + kpyey + kdy ėy)

(25)

Where : 



F̂x = ̂̈x− λxux
F̂y = ̂̈y − λyuy
F̂z = ̂̈z − λzu1

(26)

IV. RESULTS AND DISCUSSION

In this section, we present the results of the techniques
presented in Section III. Further, for ROS integration, we use
the framework RotorS Gazebo MAV Simulator [15], which
allows the use of the same controller including their parameters
in the simulation world as with the real system. The MFC was
implemented using C++ to interface the controller to ROS,
the PID attitude controller node should receive the roll and
pitch desired angle in addition to the thrust, and calculate the
speed of each rotor, herein the attitude PID controller node
used in this work was previously implemented by Kamal [16].
The control gains are given in Table II

TABLE II. CONTROLLER GAINS (P: PARAMETER)

P PD iPD P PD iPD P iPD
kpx 1.5 6.7 kdx 4 11.5 λx 10
kpy 1.5 6.7 kdy 4 11.5 λx 10
kpz 3 8.3 kdz 2.4 4.6 λx 5

A. Hovering test and disturbance rejection

In the first simulation, the quadrotor is commanded to sta-
bilize itself at altitude zdes = 1m. After the quadrotor reaches
the reference, we apply an external force Fext = 100N along
z-axis as can be seen in Figure 5(b), The results of the two
techniques are shown in Figure 5(a). We can observe that the
model-free control has the capability of disturbance rejection
better than classical PD. (see https://youtu.be/cUQBeEglCYU)

https://youtu.be/cUQBeEglCYU
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Fig. 5. (a) Altitude response, (b) Screenshot taken from Gazebo

B. Set point in presence of an extra payload

In the second simulation, we gave as a reference a coor-
dinate points (xdes = −1, ydes = 1, zdes = 2). The curves
shown in Figure 6, demonstrate the MFC exhibit satisfactory
results with respect to classical PD.
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Figure 7 shows the response of two control techniques in
presence of an extra payload +0.2 kg, It can be seen that the
performance of the MFC is significantly better when compared
with the PD.
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Fig. 7. Set point position response in presence of an extra payload

C. Trajectory tracking

The third simulation was performed considering a square
trajectory (2 m× 2 m) showed in Figure 8.

Furthermore, we plot the 2D trajectory response in Figure
9, where it is clear that the Model-Free Control iPD ensures
the good following of the desired reference.
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Fig. 9. 2D trajectory response

Figure 10 demonstrate that the MFC produce a more stable
desired roll and pitch angle to the attitude controller.
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Figure 11 represent the estimation error eest, where the
curves illustrate the efficiency of online estimation of the ultra-
local model F, and it is obvious that the estimation error
converges toward a small (ε). Consequently, the system is
practically stable.
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Moreover, we present a more thorough comparison in
Figure 12, which indicate clearly that the proposed MFC
control can ensure the best track of the desired trajectory, with
small error compared with classical PD.
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Fig. 12. Deep comparison for trajectory tracking response

V. CONCLUSION

In this paper, an intelligent PD (iPD) controller (MFC)
is presented. In the first step, we use a simple PD to con-
trol the position of Quadrotor, where the PD gains were
adjusted manually. As a second step, the Model-Free Control
was introduced. Different simulations were performed using
the robotic operating system ROS environment under the
framework RotorS Gazebo MAV Simulator, in presence of
an external disturbance and extra payload in order to test
and compare these two control techniques. The performances
of Model-Free controller were better than the classical PD
controller as you can see in the result section. In our future
studies, we will implement and test our proposed strategy on a
real Quadrotor. We aim also to develop other control methods
and by comparing them, we will select the best one in terms of
performance and power consumption, robustness, among other
aspects.
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