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Abstract
The paper demonstrates the construction of a stock price stochastic process that aligns
with observed option prices, drawing inspiration from a manuscript by Professor Erio
Castagnoli that employs the concept of a non-linear monotonic transformation of a
standard Brownian motion. The paper includes a detailed numerical example that
illustrates the implementation of this straightforward and ingenious idea.
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Black-Scholes model
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1 Preface

For several months, I had been wondering what to write in remembrance of Erio.
Until, during a rainy Sunday afternoon that I was spending cluttering my study, I
came across a folder containing a short manuscript by Erio on g-normal transforma-
tions, see Castagnoli (2001).1 Surprisingly, I had completely forgotten about it, but
now I vividly recall the meeting we had. I remember that Erio had given me these
notes because, at that time, my friends Emanuele Amerio, Antonio Vulcano, and I
were attempting to model the risk-neutral dynamics of the whole volatility surface,
see Amerio et al. (2003). The implied volatility surface is a graphical representation
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1 A copy of the notes is available to those who desire them.
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G. Fusai

depicting implied volatilities across various option strikes and expirations. Implied
volatility serves as a gauge for the market’s anticipation of future price volatility in an
underlying asset, inferred from current option prices. For a given maturity, the implied
volatility curve can exhibit different shapes for distinct strike prices, such as a smile,
smirk, or tilt. A smile occurs when implied volatilities are elevated for both out-of-
the-money (OTM) and in-the-money (ITM) options compared to at-the-money (ATM)
options. Conversely, a smirk or tilt arises when the skew is more pronounced on one
side, either higher for OTMor ITM options. The presence of a non-flat implied volatil-
ity curve signals that the stock price distribution implied in option prices deviates from
the lognormal distribution supporting Black-Scholes option pricing.

During the meeting, which I can approximately date back to 2001, Erio proposed
a novel approach involving the modeling of a hidden factor, potentially using an
Arithmetic Brownian Motion (ABM). The objective was to attain the desired stock
price distribution through a non-linear, monotonic transformation. Erio called it g-
transformation.2

At the conclusion of the meeting, Erio kindly made photocopies of his notes for me.
Only now, upon rediscovering these copies, I am struck by their simplicity yet profound
insights. The core idea is to identify a diffusion process for the stock price that, at
specific optionmaturities, exhibits a distribution in linewith the observedoption prices.
This is achieved bymodeling stock returns as amonotonic generalized transformation,
hence the term g-normal, of an arithmetic Brownianmotion (ABM).With the function
g in place, deriving the dynamics of the log-returns became relatively straightforward
through the application of Ito’s lemma. These precise steps were outlined in Erio’s
handwritten notes.

In fact, if this g were linear, also the log-returns would have a normal distribution
and for example the Black-Scholes formula for option pricing holds. So to obtain
non-normal distributions it is necessary to choose g in a suitable and general way. The
name g-normal therefore also came naturally, although it could also generate some
confusion if one thinks of the log-normal. In fact, here the aim is not to move from
the distribution of returns (assumed to be normal) to that of prices (that therefore have
a log-normal distribution), but rather to try to figure out how to model returns as a
non-linear g-function of a hidden process modelled according to a Brownian motion.

2 The idea of studying monotonic transformation of normal r.v.’s was not new. Indeed, Erio had previously
recommended that I investigate a similar idea between 1990–92. In particular, He suggested exploring the
relationship between mean-variance (MV) and second order stochastic dominance (SSD) in the context
of transforming normal random variables. The specific question he recommended investigating was: What
conclusions can be drawn about the stochastic dominance relationship between two monotonic transfor-
mations of normal random variables, namely, Y1 = g(X1) and Y2 = g(X2)? It is well-known that MV
dominance and SSD produce equivalent orderings for normal random variables. However, this equivalence
is not guaranteed when examining stochastic dominance orderings between non-normal random variables.
Interestingly, it turns out that the quantities involved in establishing an equivalence between MV and SSD,
are not the mean and variance of Y , but rather the mean of Y and the variance of X . This can be easily
demonstrated, for example, by considering the lognormal distribution, where g is the exponential function.
This idea served as inspiration for my first paper, which I presented at the AMASES Conference in Treviso
in 1992, see Fusai (1992). I am still deeply grateful to Francesca Beccacece and Margherita Cigola for their
invaluable assistance in revising my first paper and preparing the presentation I delivered at the AMASES
conference. Modesti (1993) had also studied a similar problem.
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Monotonic transformation and recovering the implied stock...

As I turned to the second page of the manuscript, Erio’s note presented a straight-
forward formula to determine the desired function g, as detailed in Eq. (1) in the next
section. Notably, a one-to-one monotonic transformation can always be identified
between the specified distribution, such as the one derived from option prices, and the
normal distribution. The function g precisely embodies this transformation, facilitat-
ing the conversion between the hidden process and the risk-neutral stock price process.
Furthermore, employing a standard Brownian motion (SBM) process offers distinct
advantages. By combining the g-transformation with SBM dynamics, it becomes
feasible, through a simple application of Ito’s lemma, to generate and then simu-
late log-return process dynamics that align seamlessly with the specified distribution
extracted from option prices.3

In conclusion, the intuition in Erio’s note is that, the knowledge of the function g
facilitates the development of a stochastic dynamics model for the stock return: I just
need to simulate a BM and then apply to it, at any point in time, the function g. The
additional contribution of this paper is to build on the Erio’s intuition and to put it in
practice in the context of recovering the stock price process implied in option prices.

The paper is structured as follows. Section 2 formalizes the idea. Section 3 presents
the construction of the cumulative distribution fromoption prices. Section4 presents an
empirical application. Section5 illustrates possible application and extensions. Then
I conclude.

2 The g-normal process

Let {Xt }t≥0 be a SBM process so that at time t

X(t)|F0 ∼ N (0, t) ,

where Ft is the filtration generated by the Brownian motion.
Following Erio’s notes, I assume that there exists some (non-linear) mapping

between X(t) and the stock log-return

r(0, t) = ln(S(t)/S(0)) = g(X(t), t).

Equivalently,

S(t) = S(0)eg(X(t),t).

3 The idea is clearly not new. For example, an important article by Mark Rubinstein on Implied Trees, see
Rubinstein (1994), presents amethod for constructing a binomial tree that is consistent with observed option
prices. The implied binomial tree can be used to price a wide range of options, including ones with early
exercise features. The method is based on the principle of no-arbitrage and involves iteratively adjusting
the binomial tree until the option prices implied by the tree match the observed option prices. The implied
binomial tree has become a widely used tool in option pricing and has been extended and adapted in many
subsequent papers.
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Table 1 Moving from a SBM to the log-return with CDF F

Random variable X(t) Z(t) = X(t)√
t

U (t) = �
(
X(t)√

t

)
r(0, t) = F−1

(
�

(
X(t)√

t

)
; t

)

Distribution N (0, t) N (0, 1) U (0, 1) F(r; t)

In addition, let F be the cumulative distribution function (CDF) of log-return

F(x; t) = P0(r(0, t) ≤ x).

If the function g is linear, then the returns have a normal distribution, the stock price
is lognormal and the Black-Scholes model for option pricing holds. Far from g being
linear, far the distribution of r from being normal, the stock price from having a
lognormal distribution, and the Black-Scholes formula for options to hold.

The first remark concerns the determination function g. The result is located on
page 3 of the manuscript.4 It can be written in terms of the standard normal cumulative
distribution and the inverse cumulative distribution of F

g(X(t), t) = F−1
(

�

(
X(t)√

t

)
; t

)
(1)

where F−1 is the inverse of the stock return distribution. Formula (1) has a straightfor-

ward interpretation. Indeed, the r.v. U = �
(

X√
t

)
has a uniform distribution and then

F−1 (U ; t) has the assigned CDF F . The transformation described above is indeed
one of the well-known approaches for simulating a random variable given its distri-
bution function. For example, Monte Carlo simulations of a normal random variable,
starting from a pseudo-uniform distribution, benefit from these steps. Notice that the
equivalence between the r.v. having the distribution implied by option prices and
the transformed SBM is valid only in law and cannot hold almost surely. Indeed, in

principle I can replace in (1) the r.v. �
(
X(t)√

t

)
with 1− �

(
X(t)√

t

)
without altering the

argumentation. This is for example, the idea used in antitheticMonte Carlo simulation.
Table 1 illustrates the procedure that allows tomap the process X into the log-return

process. Given the last step of the procedure in Table 1, the function g is then recovered
via (1).

If log-return have a Gaussian distribution with mean μ(0, t) and variance σ 2(0, t),

then F(x; t) = �
(
x−μ(0,t)
σ (0,t)

)
, and the function g turns out to be linear

g(X(t), t) = σ(0, t)√
t

X(t) + μ(0, t).

4 There is a slight difference in notation between the Erio’s note and the present paper because the random
variable g(X) in the note is assumed to be normal, whereas in this paper, X is assumed to be normal.
However, this difference can be easily reconciled, and the two formulas can be made consistent.
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Monotonic transformation and recovering the implied stock...

Therefore the idea behind the above construction is that the more non-linear the func-
tion g is, the further the distribution of r deviates from normality. It is worth noting
that assuming a standard Brownian motion for X is not strictly necessary. In the case
that the exact distribution of r is used for X , this will always result in a linear function
for g.

The construction of the function g requires the knowledge of the cumulative dis-
tribution function F . In this regard, the seminal work by Breeden and Litzenberger
(1978) is particularly relevant. They demonstrate how to derive the risk-neutral dis-
tribution of the stock price at a given horizon T using option prices,5 through the
following formula

Pr (ST ≤ x) = FS (x; T ) = 1

P(0, T )

∂c (K , T )

∂K

∣∣∣∣
K=x

. (2)

where c (K , T ) is the call option price with strike K and time to maturity T , and
P(0, T ) = e−r f (0,T )T is the discount factor relative to the option maturity T and
r f (0, T ) is the continuously compounded spot rate term structure. Therefore, the
desired log-return CDF is

F(x; T ) = FS
(
S0e

x ; T )
.

The cumulative distribution function has been derived from option prices but is
currently only available on specific dates ti , i = 1, . . . , n when option prices are
observable, rather than on arbitrary dates. For practical considerations, it is essential
to extend this function to any time t , where 0 < t ≤ tn . In practice, a straightforward
and effectivemethod involves employing simple linear interpolation across maturities.

Other methods, such as kriging, spline interpolation, or local polynomial regres-
sion, are also available for interpolating the value of a function at a specific point by
calculating a weighted average of known function values in the neighborhood of the
point. Future research may explore the adoption of these methods, as well as more
advanced techniques, such as shape-constrained kernel regression, as proposed in Yagi
et al. (2020).

Let G(X , t) denotes the linear interpolation of the function g across the maturity
dimensions. Note that interpolation for times shorter (or longer) than the shortest
(longest) available maturity is not implemented.

The mapping g between the standard Brownian motion (SBM) and the log-return
guarantees that the martingale condition is automatically fulfilled on the specific dates
ti , i = 1, . . . , n forwhich option prices are available, rather than on arbitrary dates. By
replacing g(X , t) with the interpolating function G(X , t), a function can be obtained
that allows for the generation of the distribution of returns at any date, but the mar-
tingale restriction is not guaranteed at interpolated maturities. For this reason, the

5 A completely ignored paper by Gilat (1971) had already illustrated back in 1971 the fact that the distri-
bution of a r.v. Y is completely determined by the truncated moments E(Y − u)+ for u ranging over all real
numbers.
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log-return process needs to be redefined as

r(0, t) = m(0, t) + G(X(t), t), (3)

instead of r(0, t) = g(X(t), t) and m : R+ → R is a deterministic function of time.
The role of the deterministic functionm(0, t) is to guarantee that the usual martingale
restriction holds, i.e.

E0 (S(t)) = S(0)e(r f (0,t)−q(0,t))t ,∀t ≥ 0,

where q(0, t) is the dividend yield term structure (in general assumed flat at the level
q). This condition can be guaranteed by imposing

m(0, t) = (r f (0, t) − q(0, t))t − lnE0

(
eG(X(t),t)

)
, (4)

assuming that the expectation exists and is finite. Notice in particular, that if the
function G is linear in X , due to the fact that the functions g are also linear and time
independent, i.e. g(X , ti ) = σ X , ∀i = 1, . . . , n, then, using the moment generating
function of the normal distribution, I obtain the usual drift restriction

m(0, t) =
(
r f (0, t) − q(0, t) − σ 2

2

)
t .

It is worth noting that since the function G is a convex combination of monotone
increasing functions, it is itself monotone increasing. Therefore, it always ensures
the recovery of a valid distribution function for the log-return. This fact rules out
the existence of arbitrage opportunities across strikes. However, the investigation if
the interpolating function G allows to generate option prices that exclude arbitrage
opportunities across maturities is something that need to be better verified but beyond
the scope of the present paper. To this regard the results in Carr and Madan (2005)
are relevant. They show that the absence of call spread, butterfly spread and calendar
spread arbitrages is sufficient to exclude all static arbitrages from a set of option
price quotes across strikes and maturities on a single underlying. A check that can
be conducted to offer initial assurance in the current construction is to ensure that
the variance of the log-returns is a monotonically increasing function of time. If it
were not the case, it would indicate the existence of a sub-period (ti , ti+1) in which
the log-return r(ti , ti+1) has negative variance, which would clearly be unacceptable.
Given that the variance of returns is related to the variance of the function G, I can
compute for different horizons t

Var0 (G(X , t)) =
∫ ∞

−∞
(G(x, t) − μ(0, t))2φ(x, 0,

√
t)dx,

where

μ(0, t) =
∫ ∞

−∞
G(x, t)φ(x, 0,

√
t)dx,
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Monotonic transformation and recovering the implied stock...

and φ(x, 0,
√
t) is the normal density function with zero mean and variance t . In

this way, I can check that Var0 (G(X , t)) is increasing in time. The calculation of
the term structure of higher order moments, such as skewness and kurtosis, is also
straightforward. Indeed, the moment of order j is

E0

(
r j (t)

)
= E

(
ln j (Ss/S0)

)
=

∫ +∞

−∞
(m(0, t) + G(x, t)) jφ(x, 0,

√
t)dx . (5)

In the context of the risk-neutral specification, the function G is also helpful to
define the payoff implicit in option prices. Instead of asking what is the implied risk-
neutral distribution implicit in option prices, I can ask what is the payoff implicit
in observed market option prices given that the Black–Scholes model holds. If the
Black–Scholes model holds, I receive as payoff the amount

(
S(0)eσ X(t)+(r f (0,t)−q(0,t)−σ 2/2)t − K

)+
,

and the price I pay for it is givenby theBlack–Scholes formula.However,market option
prices are in general not consistent with the Black–Scholes formula. The payoff that
I have to receive in order to justify the observed option price, assuming the normality
of returns, is

(
S(0)eG(X(t),t)+m(0,t) − K

)+

Therefore, the function G allows us to re-interpret deviation from Black–Scholes not
in terms of a non-flat implied volatility surface as typically done, but by looking at the
distance between implied and true payoff

�(X(t), k, t) =
(
S(0)eG(X(t),t)+m(0,t) − ek

)+

−
(
S(0)eσ X+(r f (0,t)−q(0,t)−σ 2/2)t − ek

)+
.

The function �(X(t), k, t) is the increase/reduction in the payoff I receive at maturity
t depending on the log-return and log-strike, given the observed option prices.

The manuscript by Erio also says that the Ito’s lemma allows to obtain the (risk-
neutral) stock price dynamics. Indeed, I have

dS(t) = (r f (0, t) − q(0, t))S(t)dt + σS(S, t)S(t)dX(t),

and the local volatility function σS(S, t) is given by

σS(S, t) = ∂G(X , t)

∂X

∣∣∣∣
X=G−1(ln(S)−m(0,t),t)

. (6)
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By resorting to the derivative of the inverse function, I obtain

∂G(X , t)

∂X
=

φ
(
X(t)√

t

)

f
(
�

(
X(t)√

t

)
; t

) √
t
.

Here, φ(z) is the standard normal probability density function, and f (x, t) is the
density probability function implied in option prices, i.e. the derivative of the return
CDF F(x, t). Therefore, the model is able to recover from option prices also the so-
called local volatility function. It is interesting to compare the present approach to the
Dupire formula, Dupire (1994), that is widely used in quantitative finance for its ability
to recover the local volatility function from quoted put and call options, as follows:

σS(S, t) =
√√√√

∂C(K ,t)
∂t + (r f − q)K ∂C(K ,t)

∂K + 1
22K

2 ∂2C(K ,t)
∂K 2

1
2K

2 ∂2C(K ,t)
∂K 2

∣∣∣∣∣∣
K=S

. (7)

An advantage of the approach in the present paper is that the local volatility can be
extracted using solely the first derivative of the function G with respect to x , whereas
the Dupire formula necessitates the computation of the first partial derivative with
respect to time and the first and second derivativewith respect to the strike of the option
price surface. Therefore, the Dupire formula requires an interpolation (and sometimes
extrapolation) method for the option surface (or the implied volatility surface) to
extend it to a continuous set of strikes and maturities and then the computation of the
required derivatives. Thereafter, the risk-neutral price process can be simulated using
the computed local volatility function. In general, the simulation needs some care,
because the resulting transition law is not known and therefore the Euler scheme with
a very small time step must be used. In our approach, this issue does not occur: the
log-return is Markovian in the SBM X , so I can simulate the SBM in an exact way
and then I recover the stock return via the mapping G. In practice, this approach fully
avoids the need to estimate the local volatility function in (7).

However, the two approaches are not contradictory. In fact, the Dupire formula
(7) can be used in conjunction with the framework presented here. Indeed, the model
presented here can generate an option surface via the calculation of option prices using

c(K , t) = E0

(
(S0e

m(0,t)+G(z
√
t,t) − K )+

)
P(0, t), (8)

where z is a standard normal r.v.. Then the local volatility function can be computed
applying to (8) the Dupire formula. It is clear that, from a practical point of view, the
application of (6) appears more direct with respect to the application of (7): only the
derivative wrt X of the function G is required.

Finally, I can also rewrite the dynamics of the log-return as the solution of an
autonomous stochastic differential equation. Given that the function G is continuous
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and monotone increasing, it admits an inverse function, so that

X(t) = G−1 (r(0, t) − m(0, t), t) . (9)

Similarly, at time t + �t ,

X(t + �t) = G−1 (r(0, t + �t) − m(0, t + �t), t + �t) . (10)

Given that X(t + �t) = X(t) + z
√

�t, where z ∼ N (0, 1), I have the following
exact dynamics for the stock return

r(0, t + �t) = m(0, t + �t) + G
(
G−1 (r(0, t) − m(0, t), t) + z

√
�t, t + �t

)
,

that establishes a relationship between r(0, t) and r(0, t + �t). Therefore, even if the
driving process X has independent and identically distributed (iid) increments, the
return r(t, t + �) covering the period [t, t + �t] depends in a non linear way on the
return up to time t , i.e. r(0, t). Indeed, given the additivity property of log-returns, i.e.
r(0, t + �t) = r(0, t) + r(t, t + �t), I have

r(t, t + �t) = m(0, t + �t) − r(0, t)

+G
(
G−1 (r(0, t) − m(0, t), t) + z

√
�t, t + �t

)
.

Therefore, in general, the return process will show some path-dependence, i.e. the
return r(t, t + �) has some memory because it depends in a non-linear way on the
return up to time t , i.e. r(0, t), as well as on the Gaussian increment z

√
�t . An

evident exception is the case where the function G is linear: in this case returns over
not-overlapping periods are iid.

As final remark it is worth mentioning the relationship of the present approach with
Goldenberg (1991). This author illustrates an invariance principle for pricing options
on diffusion processes related by time and scale changes. He transforms non-Gaussian
asset price data in order tomake themGaussian.He also presents a proposition showing
that reducibility generates analytical option pricing formulas for complex underlying
diffusion processes. The approach in Goldenberg (1991) is further investigated in Carr
and Madan (2001) with the aim of fitting the volatility surface. The approach adopted
in the present paper is different, because no preliminary assumption is made on the
dynamics of the return process but it is simply recovered by imposing the link G with
the SBM.

3 Recovering the distribution function at available maturities

This section illustrates a possible procedure for implementing the methodology out-
lined in the previous section. Given that it is a crucial input for constructing the
function g, a method for extracting the distribution of returns from option prices is at
first presented.
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The process of constructing a risk-neutral density from option prices requires sat-
isfying fundamental constraints, such as ensuring that the density is non-negative,
integrates to one, and accurately prices all available calls and puts. However, construct-
ing such a density requires option prices for a broad range of strikes and maturities,
which may not be feasible in practical situations. Consequently, an infinite number of
density functions could correspond to a given set of option prices over a finite range
of strikes.

To address the challenges stemming from the discreteness of observed option prices,
I utilize the StochasticVolatility Inspired (SVI) parameterization of the implied volatil-
ity smile, as proposed by Gatheral and Jacquier (2014). The SVI parameterization is
intended to capture the essential characteristics of the implied volatility smile, such as
its curvature, skewness, and kurtosis. It is a versatile model that can be employed to
fit the implied volatility smile for a broad range of underlying assets and maturities.
One advantage of the SVI parameterization is that it is relatively simple and computa-
tionally efficient, making it a popular choice for practitioners in the financial industry.
This approach involves a mathematical formula that characterizes the shape of the
implied volatility curve for a given underlying asset as a function of log-moneyness
κ = ln(K/S(0)). For a given maturity T , the total variance T V (k, T ) relative to the
log-moneyness k is given by

T V (κ, T ) = a + b
(
ρ(κ − m) +

√
(κ − m)2 + σ 2

)
(11)

The implied volatility I V (k, T ) is related to the total variance via

I V (κ, T ) =
√

I V 2(κ, T )

T
.

The SVI parametrization represents the implied volatility as a function of moneyness
and time to expiration, using five parameters. The five parameters are:

• The at-the-money variance level a (a ∈ R): increasing this parameter implies a
vertical translation of the smile;

• The slope b of the wings, (b ∈ R
+): increasing b increases the slope of both the

put and call wings, tightening the smile.
• The curvature m of the wings (m ∈ R);
• The skewness ρ of the smile (|ρ| ∈ (0, 1)): increasing ρ decreases (increases) the
slope of the left (right) wing, a counter-clockwise rotation of the smile;

• The horizontal shift σ of the smile (σ ∈ R
+): increasing σ reduces the ATM

curvature of the smile. The case σ = 0 corresponds to a linear smile.

Let c(K , T ) denotes the Black–Scholes formula as function of the moneyness κ

and the total variance T V (κ, T )

c(κ, T ) = (0)
(
e−qT N (d1) − eκ P(0, T )N (d2)

)
(12)
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where

d1,2 =
ln

(
e−qT

P(0,T )

)
− κ ± 1

2T V (κ, T )
√
T V (κ, T )

.

and where the remaining parameters are: stock price S0, the dividend yield q and the
discount factor P(0, T ). I proceed as follows.

1. For a given maturity T having NT option quotes, with NT ≥ 10, the SVI
parametrization can be fitted to the observed volatility smile by solving a non-linear
least square problem, i.e.

min
a,b,m,ρ

NT∑
i=1

(I V (κi , T ) − I Vmkt (κi , T ))2. (13)

2. The interpolated volatilities are converted back into the appropriate call and put
prices by using the Black–Scholes formula (12).

3. Using the result from Breeden and Litzenberger (1978),the stock price CDF
computed at s = K is

FS(K ; T ) = P(0, T )
∂c

(
ln

(
K
S0

)
, T

)

∂K
(14)

= 1 − N (d2) + P(0, T )Kn(d2)
√
T

∂T V (ln
( K
S

)
, T )

∂K

∣∣∣∣∣
K=s

, (15)

where

∂T V (ln
( K
S

)
, T )

∂K
= b

K

(
ρ + κ − m√

(σ 2 + (κ − m)2)

)

|κ=ln
(
K
S

)

4. The CDF F(x; T ) of return is related to the stock price CDF FS(S0ex ; T ) via

F(x; T ) = FS(S0e
x ; T ). (16)

5. The desired monotonic transformation g can be recovered via

g(X , T ) = F−1
(

�

(
X√
T

)
; T

)
,

where the inverse of the CDF is computed by using a look-up table with 4,000
equally spaced points in the interval [−6, 6]

√
T .

6. Steps 1–5 are repeated for all liquid maturities T = t1, . . . , tn having at least 10
options satisfying the constraints mentioned in the next section.
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7. The interpolation procedure is applied to generate the surfaceG(X , t) and to obtain
the drift adjustment m(0, t).

8. As additional output of the proposed procedure I can recover the local volatility
function by (6) that can be computed via finite differences or by using (2) that
requires the probability density function PDF fS(s; T ) that can be computed by
taking the derivative of the CDF FS in (15).

4 An empirical illustration

In this section, I provide a step-by-step demonstration of the practical implementation
of the proposed model.

4.1 Dataset

I considered American options for Apple Inc. on the closing date of April 20th, 2023,
with maturities ranging from 9 to 331 days.6 To ensure data quality, I filtered the total
of 1034 options by only considering OTM calls and puts with a minimum volume of
4, a minimum open interest of 1, and a minimum price of 0.8. After applying these
filters, I was left with a dataset of 201 options, consisting of 91 calls and 110 puts.
The key characteristics of the dataset are summarized in Table 2, which also reports
the risk-free rate derived from the term structure of SOFR rates. The underlying stock
price was 167.62, and the dividend yield was 0.54%.7

4.2 Calibrating the SVI model

Using available option quotes, a binomial tree with 250 steps per year was employed,
based on the Cox-Ross parametrization and the Snell envelope, to extract the implied
volatility. Subsequently, the extracted implied volatilities were used to calibrate the
SVI model. To guarantee a minimal statistical validity to the calibration procedure,
maturities with less than 10 available options were excluded, resulting in a final set of
maturities consisting of 23, 93, 121, 149, 184, 212, 240 and 275 days. It should be noted
that longer maturities typically have a larger set of available strikes, which facilitates
a better calibration of the SVI parametric model. For example, the 11 available strikes
for options expiring in 93 days cover the range of 135 to 190, whereas for options
expiring in 275 days, the range widens to 95–235.

The results of the calibration of the SVI model are presented in Table 3, where the
mean square root error (MSRE) is reported in the last column. The fitting accuracy was
generally high, as evidenced by the good agreement between the extracted implied
volatilities and those obtained via the SVI model, with the exception of the 275-day
maturity due to the presence of an outlier. Positive values of b indicated the non-flat

6 Option prices were recovered on April 20th, 2023 via a python web scraper code from the Yahoo Finance
web page https://finance.yahoo.com/quote/AAPL/options?fr=sycsrp_catchall.
7 These quantities were recovered from the Yahoo Finance web page containing the summary information
about Apple Inc. at https://finance.yahoo.com/quote/AAPL?p=AAPL.
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Table 3 Calibrated parameters of the SVI parametrization across maturities

Days a b m ρ σ Rate RMSE

23 −0.00212 0.02303 0.17177 0.00263 0.09208 0.05019 0.00521

93 −0.01369 0.07124 0.17454 0.01387 0.19221 0.05067 0.00158

121 −0.02169 0.09135 0.21146 0.01384 0.23742 0.05101 0.00108

149 −0.02841 0.08411 0.17632 −0.32778 0.35751 0.05097 0.00109

184 −0.04072 0.09488 0.16536 −0.42422 0.47398 0.05072 0.00072

212 −0.02879 0.11237 0.21982 −0.23674 0.40243 0.04964 0.00077

240 −0.03298 0.12122 0.21167 −0.28145 0.45053 0.04875 0.00071

275 −0.04322 0.13462 0.13128 −0.40119 0.55390 0.04795 0.00770

nature of the implied volatility curve for all maturities. Moreover, non-zero values of
ρ, which are positive for short maturities and negative for long maturities, imply that
the slope of the volatility curve may vary across different maturities becoming more
flat for long horizons, see Fig. 1.

4.3 Construction of the functions g(x, ti) and G(x, t)

Following calibration of the SVI model, the implied distribution function for the
liquid maturities was extracted using formulae (15)–(16). Subsequently, formula (1)
was applied to obtain the functions g(x, ti ), which are depicted in Fig. 2.

The curvature of the functions is highly significant, indicating a departure from
the normal benchmark. The steepness of the curves increases for longer maturities,
reflecting a wider range of potential returns. The benchmark, which is only shown
for the longest maturity of 275 days, is a straight line. The benchmark in practice
allows to capture exactly the mean and standard deviation of the implied distribution
of log-returns. The function G(X , t) is then obtained through linear interpolation over
time to maturity and is presented in Fig. 3.
Imposing the martingale restriction
Next, the function m is determined using formula (4), and it is displayed in Fig. 4.
Additionally, Fig. 5 shows the standard deviation (volatility) of cumulative returns
(blue curve). For sake of comparison, I also provide the standard deviation assuming
that returns follow a process with independent and identically distributed increments
(red curve), which follows the square root rule and scales with

√
t . Since the recov-

ered volatility function remains above the one consistent with the assumption of i.i.d.
returns, it indicates that the recovered risk-neutral process exhibits some positive
autocorrelation.

In Table 4 I perform two additional checks, by comparing themean and the standard
deviation of the function G with the ones obtained by numerical integration of the
implied density. This check is performed for the different maturities and the agreement
is very good if the range of the r.v. X is taken to be [−6, 6]

√
T . If the considered

range is narrower, for instance, [−4, 4]
√
T , the accuracy is good but not entirely

satisfactory.
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Fig. 2 Functions g(X , ti ) for the considered maturities and varying X

Fig. 3 Interpolating function G(X , t) for different times (in years) and values of X

Local volatility function
Fig. 6 illustrates the local volatility function σS(S, t), computed using formula (6)
across various option maturities. The local volatility function is plotted within the
quoted strike range specified in Table 2 for eachmaturity. Notably, the Figure confirms
the characteristic inverse relationship between volatility and stock price. The inverse
relationship seems more pronounced for shorter option maturities in general.
Simulating the stock price
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Fig. 4 Function m(0, t)

Fig. 5 Volatility of cumulative log-returns for different horizons and comparison with the square-root rule
arising assuming log-returns are iid and the at-the-money implied volatility (scaled by the squared root of
the time to maturity)

Once I have calibrated the model, it becomes straightforward to simulate the price
process, by applying

S(t) = S(0)eG(X(t),t)+m(0,t) = S(0)e(r−q)t eG(X(t),t)

E0
(
eG(X(t),t)

) ,
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Table 4 Comparing the standard deviation of the implied risk-neutral distribution and the reconstructed G
transformation for different option expires (in days)

SDev0(G(X(T ), T )]
Days SDev0(r(0, T )) (%) X ∈ [−4, 4]√T (%) X ∈ [−6, 6]√T (%)

23 5.47 5.47 5.47

93 9.63 9.60 9.63

121 12.15 12.11 12.14

149 14.34 14.29 14.34

184 16.58 16.52 16.58

212 22.05 22.00 22.05

240 24.25 24.19 24.25

275 26.55 26.47 26.55

Fig. 6 Local volatility function

where the process X(t) is simulated according to

X(t + �t) = X(t) + z(t)
√

�,

with z(t) ∼ N (0, 1) and starting value X(0) = 0.
Figure7 displays 10,000 simulated stock price paths over a period of 22–275 days,

with a daily time step. The simulated paths begin at the shortest available maturity (22
days) and end at the longest available maturity (275 days).

5 Final remarks

Anatural question that arises iswhether assuming standardBrownianmotiondynamics
for X is the only possible choice. However, it is clear by now that this is not the case.
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Fig. 7 Simulated trajectories of the stock price consistent with the observed market option prices

If a flat smile is observed in the market, the implied distribution is precisely normal,
and the function g is linear. The more pronounced the smile, the more non-linear g
becomes. Nevertheless, even if the smile is not flat, g can still be linear if I correctly
guess the correct dynamics of X that generated the observed smile, such as a one-
dimensional jump-diffusion process. In this case, the adopted distribution coincides
with F , and g becomes linear. In other words, the extent to which g deviates from a
linear function serves as a signal of how far the assumedmodel is from being accurate.
However, adopting non-Gaussian dynamics for the latent factor would require fixing
free parameters that appear in the dynamics of the more general model. Alternatively,
I can assign arbitrary but sensible values to these parameters and obtain an acceptable
fit to the volatility smile. I could then use the methodology presented here to exactly
recover market option prices. In this case, the function g should not deviate too much
from being linear.

A further possible investigation would be to replace the SBM continuous time
process for X by a discrete time one. This extensions would represent an alternative
approach to the implied tree approach in Rubinstein (1994) and in Derman and Kani
(1998) and could represent a valid tool to deal with the early exercise feature.

Finally, several other applications that deserve attention for future research include
pricing exotic derivatives, the potential for a latent variable with stochastic volatility to
act as the driving factor, and extending the model to capture the dependence between
multiple assets.

In conclusion, I hope that this short paper has been able to capture, at least in part,
the intuition presented in Erio’s note.
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