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Abstract—Convolutional Neural Networks (CNNs) have been
widely used for complex image recognition tasks. Due to the
highly entangled correlations learned by the latent features in the
convolutional kernels of CNNs, deriving human-comprehensible
knowledge from CNNs has been proven difficult. As such, reason-
ing from relationships between kernels has been limited, resulting
in little knowledge transfer from one task to another related
task learned by CNNs. This paper introduces a neural-symbolic
approach for providing semantically meaningful explanations to
CNNs using logical rules and a shared conceptual representation
space to capture the meaning of the knowledge learned. The
validity of the proposed approach is demonstrated using bench-
mark chest x-rays of two respiratory conditions: pleural effusion
and COVID-19. Our results show empirically that symbolic rules
can be associated with semantically meaningful explanations
obtained from different but related CNN models, even in domains
requiring specialised knowledge such as medical imaging. This
work is expected to aid the analysis of black-box CNNs by
associating the predictions obtained from the CNNs with clinical
research findings.

Index Terms—Neural-Symbolic Integration, Convolutional
Neural Networks, Concept Representation, Knowledge Sharing,
Medical Imaging.

I. INTRODUCTION

Convolutional Neural Networks (CNN) are highly effective
at image recognition tasks. They have achieved cutting-edge
performance in specialised applications such as clinical di-
agnosis [1], [2]. Interpretability of individual image predic-
tions is typically carried out by visualising activated regions
within a trained CNN (e.g. [3], [4]). Such interpretation can
be very subjective and it is often insufficient to produce
semantically-rich reasoning from the image’s features and their
relationships. However, semantically-rich reasoning is needed
if we are to gain a deeper understanding of the working
processes of a trained CNN model. This reasoning process
is typically symbolic, requiring relationships between features
to be defined explicitly via rules that use symbols to represent
abstract concepts. In this paper, our motivation is to extract
symbolic knowledge from CNNs in the form of logical rules
denoting semantically-rich concepts to help us understand
the underlying decision process. This is demonstrated with

benchmark face recognition examples and confirmed using
medical image data.

Extraction of relevant knowledge from trained CNNs has
always been challenging. Approaches for explaining entire
networks have encountered computational complexity issues.
Deriving very large rule sets from CNNs can result in limited
comprehensibility [5]. Similarly, approaches to explaining
individual images failed to produce semantically-rich relation-
ships [6]. A novel knowledge extraction approach is introduced
in this paper based on the ERIC (Extracting Relations In-
ferred from Convolutions) method [7]. Symbolic descriptions
are extracted from the CNN’s feature extraction layer and
aggregated to enable reasoning about the CNN’s decision
process. We demonstrate how the approach can be applied to
different related classification tasks, e.g. detection of pleural
effusion and classifying COVID-19 from chest X-rays. By
analysing related tasks, we are capable of identifying relevant
concepts used by the CNN to produce high-accuracy results
that, nevertheless, may not be medically justified. We conclude
that extracting meaningful knowledge from such tasks can
improve our understanding through comparative evaluations
of the prediction outcomes produced by CNNs in related
domains.

ERIC constructs a compact set of sentence-like explanations
for CNNs by extracting logical rules from the feature detectors.
It offers a post-hoc decompositional explanation for image
classifications. ERIC has been proven to generate logical rules
that closely approximate the original CNN model, as measured
empirically by high fidelity scores, i.e. the rules’ accuracy
relative to the CNN [7]. Each logical rule takes the form
L1 ∧ L2 ∧ ... ∧ Ln → A denoting a conjunction of literals
Li, 1 ≤ i ≤ n, each of which is either a propositional
atom or its negation, implying atom A. Each atom can be
associated with semantic concepts relating to the input image.
However, these semantic concepts are manually assigned in
ERIC through visual interpretation of the individual images.
This paper introduces an approach for aggregating kernel
activation outputs to enable a systematic assignment of se-



mantic concepts to the extracted rules. This approach of
intuitively interpreting the atoms and their negation will be
shown to improve explainability and reasoning about a CNN’s
classification task, as well as enable a comparative evaluation
between CNNs trained for pleural effusion and COVID-19
classification. The results will be the extraction of a highly
compact set of interpretable logical rules from CNNs with high
fidelity scores trained on both pleural effusion and COVID-19.

In summary, this paper presents four key contributions.
Firstly, a novel method is implemented and evaluated to
assign appropriate concepts to logical rules derived by the
ERIC explainability system. Using the CNN’s kernel norms
and activation aggregation, one can visualize concepts and
seek to interpret the effect of key features and their negation
on a target prediction task. With an adequate assignment
of concepts to logical rules, it is then possible to identify
instances where a CNN can achieve high accuracy for the
wrong reasons, prompting the need for changes in model
training or data collection. Finally, the extraction of compact,
high-fidelity, semantically-relevant explanations from CNNs
trained on pleural effusion and COVID-19 data should allow
domain experts to comparatively analyze the outcomes of
CNNs trained on related radiology tasks.

The paper is organised as follows. The required preliminar-
ies, including a summary of ERIC, and immediate related work
are presented in Sections II and III, respectively. Section IV
describes the knowledge extraction method and defines the em-
pirical investigations that follow using an illustrative example
of benchmark facial image classification. Experimental results
on medical image data are presented in Section V. Section VI
concludes the paper and discusses directions for future work.

II. PRELIMINARIES

Let x denote a set of input images and t denote a set of
target outputs, each indexed by the subscript i, 1 ≤ i ≤ n.
A convolutional neural network, M , is trained on examples
{xi, ti} and is made of two components: g(·) mapping xi to
the output of a feature extraction layer, call it g(xi), and h(·)
mapping g(xi) to the CNN’s output, h(g(xi)). Let Al

i,k denote
a matrix of activation values g(xi) at feature extraction layer
l, where 1 ≤ k ≤ kl denotes a kernel of the CNN, represented
by a square matrix of real numbers that gets vectorized. Let
bli,k denote a set of truth-values (true or false) assigned to
each kernel (see Eq.1) by a function Q (see Eq.2) mapping
the activation matrix to {−1, 1}, where −1 denotes false and
1 denotes true. bli,k can be expressed symbolically as either a
positive literal Ll

i,k when bli,k = 1, or a negative literal ¬Ll
i,k

when bli,k = −1. In Eq.2, ali,k is the result of calculating the
L1-norm of the kernels in Al

i,k (see Eq.3), and θlk is a threshold
value calculated for each kernel as the mean L1-norm value
for the entire training set (see Eq.4).

bli,k = Q(Al
i,k, θ

l
k) (1)

Q(Al
i,k, θ

l
k) =

{
1, if ali,k > θlk
−1, otherwise

(2)

ali,k = ∥Al
i,k∥ (3)

θlk =

n∑
i=1

(ali,k)/n (4)

In ERIC, a set of symbolic rules R is generated as an
approximation M∗ of M using a decision tree-based rule
extraction algorithm similar to the C4.5 algorithm [8] trained
on instances {bli,k, h(g(xi))}. Each rule Rr takes the form of
a conjunction of literals L1 ∧L2 ∧ ...∧Lkl

, obtained from the
feature extraction layer, which implies a target output ti denot-
ing a classification of the CNN, that is, L1∧L2∧...∧Lkl

→ ti.
A rule defines a path in the extracted decision tree from the
root node to a leaf node in the tree. Tree pruning is applied
to avoid overfitting. Tree node branching is calculated using
the Gini index. If a leaf node has multiple outcomes after
pruning, a class is chosen based on the majority class. The
accuracy of the CNN is measured in the usual way as the
percentage of input images that are classified correctly w.r.t.
ti. The accuracy of the extracted rules is determined by the
percentage of input images classified correctly by the rules also
w.r.t. ti, i.e. the number of times that R(M∗, xi) = ti divided
by the number of examples, where R denotes the extracted
set of rules. The fidelity of the rules to the network is defined
as the percentage of rule-based classifications that match the
CNN’s classification as measured by R(M∗, xi) = h(g(xi)).
Qualitative evaluations of the rules are also performed through
up-sampling and inspection of literals in the rules against the
input images, as illustrated later.

III. RELATED WORK

Convolutional neural networks learn image features via their
convolutional and pooling layers using gradient-based param-
eter searching on a large volume of image data. While the
learned features enable trained CNNs to perform well across
a range of predictive tasks, the relationships between the
features are hidden within the model’s large number of training
parameters. Numerous techniques have been proposed for in-
terpreting the internal feature representations of CNNs, either
by visualising the highest activation of the hidden units at a
layer [9], [10] or by up-sampling to the input image to identify
the salient features [3], [4], [11]. These feature visualisations
have enhanced understanding of relevant pixels in a CNN
classification. However, the conceptual interpretations of such
visualisations tend to be subjective and may vary between
different but related images.

The work in [12]–[14] examined the interpretation of a
CNN’s hidden units at a global level. Highly activated regions
in a network layer were associated with interpretable concepts
using a data set compiled to relate images with different
concepts at various levels of abstraction (the Broden dataset).
This approach showed that a level of feature disentanglement
can be achieved w.r.t. objects, object parts, texture and colour.
Certain features remained uninterpretable. The evaluation was



confined to the vocabulary of the Broden dataset, with con-
cepts beyond the vocabulary rendered uninterpretable. While
this bolsters the case for semantic meaning in CNNs, a manual
compilation of such concept dataset is laborious. It may also
not be possible to specify the relevant concepts a-priori in a
specialised field, such as radiology. Furthermore, understand-
ing concepts in isolation may not be sufficient to explain how
they relate to one another and the target output. Our purpose
in this paper of having logical rules L1 ∧ L2 ∧ ... ∧ Lk → ti
is to specify that the combination of concepts L1, L2,..., and
Lk imply a specific outcome, ti.

Representation learning is a sub-field of machine learning
that focuses on techniques for transforming raw data (e.g.
image pixels) into the appropriate representation required by
a learning model [15]. This data transformation automates
the process of encapsulating the input data and other con-
textual information into a tabular form [16]. This tabular form
can be regarded as a knowledge-base that retains semantic
information about the given data. In [17], three levels of
cognitive representations are introduced that bridge the gap
between stored numerical representations for deep learning
and symbolic representations for logic. At the neural network
level, representations are embedded within the activation pat-
terns of a densely connected network. The symbolic level
encodes knowledge in logical rules through symbols and
their relationships. A third (spatial) level, referred to as a
conceptual space, represents data in geometrical, topological
or ordinal dimensions. Concepts are learned at this level
by comparing data similarities to neighbouring data points
within the conceptual space [17]. This general idea will be
applied here in the context of our proposed clustering of kernel
activation aggregations.

Efforts have also been made over the years to convert
knowledge encoded in a neural network into interpretable
rules, which can be summarised in three broad classes of
knowledge extraction methods [18]: (1) pedagogical methods
explain the output in terms of the input without evaluating the
network’s internal mechanisms; (2) decompositional methods
divide the network to extract knowledge from its internal
mechanisms (e.g. groups of neurons and weights); (3) eclectic
methods are those that combine elements of (1) and (2). In this
paper, a decompositional method is applied that is suitable for
CNNs to achieve efficiency in the rule extraction process given
the natural decomposition of functions within CNNs into g(·)
and h(·), as mentioned in our problem setting.

As an example of a closely-related pedagogical approach,
[19] sought to mimic the input-output function of a neural net-
work by building a soft decision tree based on the hierarchical
probability distribution of a class. The decision tree did not
rely on the hierarchical features within the network. While [19]
reported high accuracy, their evaluation used soft targets from
network predictions as training patterns. As a result, obtaining
meaningful fidelity measurements is not possible in the case
of [19].

ERIC yielded global explanations for one or more convolu-
tional layers as a decompositional rule extraction method. A

quantisation process was used to binarize kernels into logical
literals. The literals were then used to generate symbolic rules
via a logic program that approximates the behaviour of that
convolutional layer w.r.t. the CNN’s output. High classification
accuracy and high fidelity of the approximation M∗ of the
original CNN were reported in [7]. The results were also
evaluated w.r.t. the sizes of extracted rule sets, with smaller
sets considered to be more comprehensible by humans. The
work in [20] investigated a global layer-wise extraction of rules
from CNNs. Kernel outputs were translated into literals for the
extraction of M-of-N rules, where a rule is interpreted as being
true if and only if any combination of M literals is true out of
a set of N literals. Kernels were represented by the outputs of
neurons that yielded the maximum information gain. The rule
extraction process was accomplished using a heuristic search
that prioritised literals according to the weights associated with
the respective neurons leading to the target output. Although
theoretically sound, this approach can become inefficient for
large networks.

The work in [21] described a post-hoc approach in which
representations were part disentangled from the trained CNN
and rearranged into a hierarchical AND-OR graph. Inter-
pretability was illustrated qualitatively and quantitatively, but
the explanations were not converted into a separate, simpler
classifier. As a result, no fidelity evaluation could be con-
ducted. In [22], the work was extended to include extraction
of decision trees, with kernels specifically trained using a loss
function proposed in [23]. We regard the ability to measure
fidelity and to apply to any CNN irrespective of the training
protocol as key requirements of any knowledge extraction. For
this reason, the work presented in this paper has been chosen
to build upon ERIC, taking also into consideration ERIC’s
efficiency at extracting global rules from CNNs.

IV. METHOD AND EXPERIMENTAL SETUP

We start by describing the data sets used in this paper in
Section IV-A. The training of the CNN models is described
in Section IV-B. Symbolic rules are extracted from the trained
CNN in Section IV-C. Once symbolic rules are obtained, the
processes of kernel activation aggregation (Section IV-D) and
concept assignment (Section IV-E) are applied, as described.
Depending on the use case, a deeper analysis of the literals
used by the rules is required. As an example, an evaluation of
the significance of the concept clusters created for the Chest
X-ray use case is presented in Section IV-F.
A. Datasets
Three data sets were used in this work to (1) identify gender
from facial images, (2) detect pleural effusion, and (3) detect
COVID-19. CelebA-HQ [24] was used in (1) to illustrate
the proposed knowledge extraction method. The training set
included 2,000 images of male and female faces in equal
proportions, as well as 200 images for validation. Only front-
facing images were used to simplify image feature interpreta-
tion. Fig. A.1 shows sample images from this dataset.

The CheXpert dataset [25] was used in task (2). Frontal X-
rays with the classification pleural effusion versus no finding



were chosen. Images with the class no finding were considered
to be healthy. Images with artefacts or severely obstructed by
supporting devices were removed. Additionally, images with
nearly square aspect ratio were chosen to minimise scaling
distortion as input to the CNNs. 400 images were used for
training and 80 for validation, evenly distributed between the
two target classes.

Finally, images of COVID-19 were collected from the
IEEE8023 dataset [26] for task (3). A similar image filtering
as done in task (2) was performed. 200 images classified
as COVID-19 were combined with healthy images from the
CheXpert dataset for training; 40 additional COVID-19 images
were used for validation. This established a common baseline
of healthy X-rays for our comparative work1. All X-ray images
were pre-processed with contrast-limited adaptive histogram
equalisation (CLAHE) [27] to improve image contrast. Fig.B.1
shows example frontal chest X-rays from each dataset.
B. CNN Model Training
A CNN model (M ) based on the VGG-16 architecture was
trained using the Adam optimiser and a learning rate of 10−6.
The model was trained in batches of 32 images. Elite back-
propagation (EBP) was also implemented to improve class-
wise activation sparsity [28]. This was accomplished when
each class was associated with a small number of kernels that
activated rarely but strongly for related images, by assigning
these as top kernels using a ranking and penalty function
for the kernels’ activation probabilities during training. EBP
was shown to produce a clearer separation of kernel concepts
and thus arguably more interpretable representations. When
seeking to attach semantic meaning to kernels, the above sep-
aration of concepts via EBP can become very useful. As part
of our evaluation, CNN models were trained multiple times
by shuffling the input images for training and validation using
the same proportions but different random seeds. Following the
experiments conducted in this paper using VGG-16, the plan
is to consider different models and other datasets in future.
C. Symbolic Rule Extraction
Based on ERIC [7], the last convolutional layer, l, of the
trained VGG16, M , was quantised and binarized to produce
literals and generate rules as a measurable approximation M∗

of M . We found that rules with a maximum of 3 literals in the
body were sufficient to produce a good approximation, i.e. a
high-fidelity score of the rules w.r.t. the original CNN model.
D. Kernel Activation Aggregation
As the first innovation of this paper w.r.t. ERIC, we sought
to gain a better understanding of the representation of CNN
kernels as logical literals (atoms and negated atoms). To
do so, we chose a selection of training images with the
highest L1-norm values and we normalised an aggregation of
activation values per kernel at the feature extraction layer l.
We called this method of aggregating kernel activations kernel
fingerprint. In this work, the number of images aggregated

1We are aware of the risk of spurious features based on image quality
discrepancy when combining datasets. Our work will show that analysis of
the generated rules will allow identification of features for further attention.

was set at 10, which appeared to be adequate to provide an
initial indication of key locations in the up-sampled images.
This value may be adjusted as a hyper-parameter in future. It
should be noted that this aggregation was only useful because
the images were front-facing, with each anatomical feature
(e.g. right eye, left lung, etc.) located in reasonably similar
regions within the images. As illustrated in Fig. 1, kernel
fingerprints will provide an initial guide to the most relevant
regions in a set of images (as opposed to an individual image).
When considered in the context of an extracted rule, kernel
fingerprints can be seen as a global heat-map of each kernel’s
contribution to an output class. These kernel fingerprints taken
together with the corresponding plots of L1-norm values (e.g.
Fig. 2) will provide useful visualisations of atoms, Li, and
their negation, ¬Li, towards offering a contrastive explanation
for the meaning of Li.

For our illustrative CelebA-HQ data set with target classes
male and female, the CNN model achieved an accuracy of
93.0%. In comparison, rules extracted from the CNN obtained
an accuracy of 87.3% and fidelity to the CNN of 91.1%.
The fingerprints in Fig. 1 represent literals QE, DD, LC and
MR, which, without their associated fingerprints, are only
meaningless symbol assignments. These fingerprints therefore
provide a first indication of the locations of facial features used
by the extracted rules in the classification task. The following
is an example of an extracted rule relating QE, DD and LC
with the female class: ¬QE ∧ ¬DD ∧ LC → female.

Fig. 1: Kernel fingerprints (showing the intensity of red above
0.5 on a normalised scale) on a sketch processed from a sample
image in the CelebA-HQ data set [24]. This provides an initial
indication of the location of facial features used by the model
explanation for a CNN trained on this dataset. Each fingerprint
is associated with a logical literal via a random assignment of
symbols: QE, DD, LC and MR from left to right. Our goal is
to assign meaning to such symbols.

Taken together with plots of L1-norm values showing the
changes in each facial feature (Fig. 2), kernel fingerprints can
help domain experts assign meaning to the logic literals. Fig.
2 shows the images associated with the highest and lowest
L1-norms in the training set for literal QE. The red threshold
line denotes the mean value of the L1-norms for the kernel
associated with QE (θlk).2 To facilitate visualisation, the 1000
examples of images labelled as female are plotted on the left,
and the 1000 examples labelled as male are plotted on the right
of the image (blue dots). Examples above the threshold line are

2Following ERIC, the average L1-norm was used in this paper, although it is
possible to use (or even learn) different custom threshold values to determine
the positive and negative literals.



Fig. 2: An example plot of the L1-norm values obtained from
the kernel of a CNN associated with literal QE. The first 1000
data points are labelled as female and the next 1000 as male. A
threshold value (red line) separates positive literals QE (above
the line) and negative literals ¬QE. The images shown are
examples with the highest and lowest L1-norms in the training
set. Taken alongside the kernel fingerprint for QE (Fig. 1) and
inspecting the most extreme (contrastive) images shown here,
this plot reveals the angularity of the lower jawbone changing
from angular (QE) to round (¬QE) towards the lower end.

considered to be QE, while those on or below the threshold line
are considered to be ¬QE. It can be seen that the majority of
female images are associated with ¬QE, whereas the majority
of male images are associated with QE. Upon inspection of
the images with the highest and lowest L1-norms, with a focus
provided by the QE kernel fingerprint, it is observed that the
positive literal (QE) tends to be associated with faces having
angular jawbones, as opposed to faces that are oval-shaped
with less defined jawbones (¬QE). Visualisations such as
shown in Figs.1 and 2 provide a rough definition for literal QE
(changes at the jawbone); similarly for DD (changes around
the cheekbones just below the eyes), LC (the right brow and
eye lid), and MR (the shape of the jaw and chin). Additional
contrastive examples of kernel plots are provided in Appendix
A.

The relationships between the concepts (QE, DD, etc.)
implying a given CNN’s output class are defined by the set
of rules extracted from the decision tree produced by ERIC.
Fig. 3 shows one such tree explaining the CelebA-HQ dataset.
The figure shows an image being classified as female given
that QE = false, DD = false, and LC = true. The features
identified appear to relate closely with some relevant findings
from cosmetic surgery research on gender identification (see
Appendix A for details). Interestingly, the features identified
do not relate closely with available metadata purported to
explain the CNN’s classification w.r.t. the wearing of makeup
or accessories (e.g. lipsticks or earrings).

E. Concept Assignment

The second innovation of this paper is the use of unsupervised
learning to translate kernel fingerprints into clinically-relevant
concepts. While facial features can be interpreted in principle

Fig. 3: An example set of symbolic rules extracted from a
CNN in the form of a decision tree (max. depth of 3) relating
literals QE, DD, LC and MR from Fig. 1 with a male or
female classification. The pie charts shown near the tree leaves
indicate the gender composition of the training data given the
rule (male in violet and female in red), defining the majority
class. The gender of the inset image is predicted correctly
as female with the associated semantic explanation: round
jawbone (¬QE), shallow cheeks (¬DD) and prominent brow
ridge (LC).

without specialist knowledge, inspecting the many fingerprints
in the medical X-ray use cases discussed later in this paper can
be challenging without prior medical knowledge. A conceptual
representation space was therefore needed to cluster these
kernel fingerprints.

First, the fingerprints were resized to a common resolution
of 12x12.3 This resolution was determined empirically to
be appropriate for capturing the pixel intensity and spatial
information in the fingerprints for the data sets used: a lower
resolution was insufficient to capture the necessary information
to generate the interpretable clusters; increasing the resolution
made no noticeable changes to clustering results. These re-
scaled fingerprints were then converted to a three-dimensional
space via Principal Component Analysis (PCA) and clustered
using K-Means4. Fig. 5 shows a clustering of kernel finger-
prints.
F. Significance of Concept Clusters
The third innovation of this paper is the analysis of concept
clusters in medical diagnosis to (1) enable the identification of
wrong reasons for high-classification accuracy and (2) promote
a better understanding of the reasons for a CNN’s classification
of COVID-19 images based on a CNN’s classification of
images of pleural effusion. Three sets of investigations were
carried out to determine the significance of the concept clus-
ters. The contributions of selected kernels to the CNN’s output
were evaluated by muting, replacing those kernel’s outputs in
the CNN with zero values.

1) First, an increasing group of kernels was selected ran-
domly at 10% intervals to be muted. This aimed to

3Future work using more complex CNN architectures with fingerprints will
investigate various resolutions being adapted to this common resolution.

4Other more complex approaches were tested but did not produce the
desired clustering of interpretable anatomical concepts.



determine a minimum set of kernels required to achieve
the accuracy of the trained CNN model.

2) Then, kernels belonging to a specific anatomical clus-
ter or a specific combination of clusters were muted.
This evaluated the dependence of other kernels on the
selected cluster(s) to maintaining the trained CNN’s
accuracy.

3) Finally, all kernels were muted except for a cluster or
combination of clusters being evaluated. This aimed to
establish if the cluster(s) being evaluated were sufficient
to achieve the accuracy of the original CNN.

The experiments that follow, evaluating CNNs trained for
pleural effusion and COVID-19 classifications, will show that
the illustrated knowledge extraction of meaningful concepts
and rules is capable of identifying concepts responsible for
high-accuracy results that are not medically justified. This
should prompt a revised learning of such CNN models. Addi-
tionally, this method is also shown to be capable of identifying
meaningful clusters from the analysis of pleural effusion to aid
in the analysis of COVID-19, as discussed next.

V. EXPERIMENTAL RESULTS

The previous illustrative example, using CelebA-HQ, has
shown that the proposed approach can assign relevant meaning
to logical model explanations derived from a CNN. However,
applying the same approach to images in a specialised domain,
such as radiology, will pose a challenge as the interpretation
of activations alone becomes difficult without domain-specific
(medical) knowledge. In this section, we report the results on
two chest X-ray data sets to demonstrate how kernel fingerprint
clustering can improve the explanatory power of the rules for
these complex applications (while clustering was previously
not necessary for the case of CelebA-HQ).
A. Model Explanation for Pleural Effusion
Representative kernel fingerprints from multiple VGG16 mod-
els are shown in Fig. 4 (see Section IV-A for details of
the pleural effusion dataset and task). While the fingerprint
generated by a particular kernel might differ for each VGG16
model, the types of anatomical regions identified by each
model were roughly the same. A large number of fingerprints,
with minor variations, were generated and clustered with the
objective of defining an appropriate conceptual space.

These fingerprints were mapped onto a three-dimensional
space using PCA and K-means clustering (Fig. 5(a)). The gen-
erated clusters were identified to associate with the anatomical
regions of Fig. 4 plus a cluster of unspecified fingerprints
(labelled as ‘redundant’ in Fig. 5), where the fingerprints
did not have a clear associated region. This cluster might
contain fingerprints highlighting irrelevant regions of X-rays
(e.g. image borders) or non-interpretable, incoherent group of
regions. This cluster accounted for 66% of all fingerprints. We
shall analyse the contribution of this cluster to the model’s
accuracy by performing a kind of ablation study, the muting
of the kernels associated with the fingerprints in the cluster.

The proportions of anatomically-relevant fingerprints, ex-
cluding those in the redundant cluster, compared between

Fig. 4: Kernel fingerprints (showing the intensity of red above
0.5 on a normalised scale) providing an initial indication of re-
gions used in the explaination of pleural effusion classification.
These fingerprints corresponded to the following anatomical
regions (from left): Mediastinum (M), Cardiophrenic (A),
Central & Peripheral (P), and Diaphragm & Subphrenic (D).

Fig. 5: (a) K-means clustering of kernel fingerprints generated
from VGG16 models trained on pleural effusion data. Cluster
labels were assigned by the proximity of fingerprints in the
clusters to the anatomical regions shown in Fig. 4. (b) Cluster
assignment of kernel fingerprints generated from VGG16 mod-
els trained on COVID-19 data. Cluster labels were inferred to
be the same anatomical regions used for pleural effusion.

pleural effusion and COVID-19 models are shown in Fig. 6.
Repeated runs revealed a consistent distribution of fingerprints
associated with specific anatomical regions. A significant num-
ber of fingerprints were assigned to the central & peripheral
(P) regions in the case of pleural effusion (in blue). These
regions extended in the periphery from the shoulders (top of
image) to the costophrenic angles (bottom left and right of
image), as well as the inner lung space on both sides of the
spine. The mediastinum (M) (including the heart) formed the
second most frequent cluster. These regions are recognised
as critical anatomical landmarks for chest X-ray interpretation
[29]. Additionally, it is noted that pleural effusion is frequently
associated with the blunting of the costophrenic angles [30],
[31] and heart failure [30], [32], [33].

The average accuracy and fidelity of the extracted rules
for pleural effusion were 93.6% and 97.9%, respectively,
compared to the average accuracy of 95.4% from the original
CNN classification. Fig. 7 shows one extracted set of symbolic
rules. Interpreted alongside the kernel norm plots5 and kernels
(e.g. DH, IB and N) for the anatomical regions (e.g. M, A,
P and D) via the trained K-Mean clusters, the input image
shown in Fig.7 is classified as healthy because it shows
a clear peripheral region with no evidence of costophrenic

5Please refer to the kernel norm plots in Appendix B-C for a contrastive
explanation for kernels DH, IB and N.



Fig. 6: Proportions of anatomically relevant kernel fingerprints
identified in five trained VGG16 models for pleural effusion
(in blue) and COVID-19 classification (in orange). Comparing
to fingerprint proportions for pleural effusion, the proportion
in the mediastinum region (M) decreases significantly, while
that of the cardiophrenic region (A) increases for COVID-19.

Fig. 7: A decision path for classifying the inset chest X-ray
as normal using the symbolic rule DH∧¬IB∧¬N → healthy,
through the decision tree extracted from a VGG16 pleural
effusion classification model. Literal DH is associated with
the central & peripheral anatomical region. Literals IB and N
are associated with the mediastinum. A contrastive analysis of
the kernel norm plots allows associating DH with the concept
of costophrenic angle blunting, IB with a clear pear-shaped
heart, and N with fluid accumulation around the diaphragm.

angle blunting (DH), a clear pear-shaped heart (IB), and no
opacity/haziness (i.e. fluid accumulation) around the heart and
diaphragm (N).
B. Model Explanation Extended to COVID-19
Given the relevance of anatomical knowledge in chest X-
ray interpretation, as illustrated earlier, it is reasonable to
assume that COVID-19 X-rays classification will require sim-
ilar knowledge about anatomical regions and the use of these
features. Fig. 5(b) shows the clustering of the fingerprints
obtained from five CNN models trained on the COVID-19
data set (see Section IV-A for details about this dataset and
task) inferred from the same anatomical regions for pleural
effusion. A significant increase in fingerprint counts belonging
to cluster A (cardiophrenic region) can be seen compared with
Fig. 5(a). This is also shown in Fig. 6 where the proportion
of fingerprints (in orange) for cluster A is similar to those
in cluster P for COVID-19, with cluster M becoming less
prominent.

Five runs on COVID-19 data generated rule sets with an
average accuracy of 98.6% and fidelity of 99.7%, compared
to the 98.6% accuracy of the original CNN model. Fig. 8
illustrates one of the model’s explanations for a correctly
classified image for COVID-19. The classification made use
of kernels NY and ET in the central & peripheral regions (P).

Fig. 8: A decision path for classifying the inset chest x-ray
as COVID-19 using symbolic rule ¬MC ∧ NY ∧ ¬ET →
COVID-19, through the decision tree extracted from a VGG16
COVID-19 classification model. Literals NY and ET are
associated with the central & peripheral region, but literal MC
is associated with the image greyness according to the kernel
norm plot shown in Fig. B.9. The identification of MC as a
spurious concept should prompt an intervention to eliminate
the reliance on MC in the classification task.

Based on the analysis of the kernel norm plots in Appendix
B-D, NY indicates haziness around the lower spine in both
lung lobes, while ¬ET indicates haziness primarily at the
outer periphery of the lung air space. Additionally, kernel
MC was extracted as a literal from the non-interpretable
‘redundant’ cluster, which was found to detect image greyness.
Image greyness is not a medically justifiable concept but was
incorrectly used by the trained CNN, perhaps as a shortcut
to achieving high accuracy from the given data. Spurious
features are common in trained CNNs [34]. Whether to prompt
model re-training or to intervene directly on the rule sets, a
meaningful knowledge extraction allows one to identify and
quantify the effect of such errors in the system.

C. Cluster Significance on Model Accuracy

In order to measure the importance of a cluster of kernels
on a model’s outcome, we have systematically evaluated the
results of replacing the outputs of kernels with zero values.
We started by muting random kernel selections in 20 repeated
runs on trained models for both pleural effusion and COVID-
19. Figs. 9 and B.16 show the average results of muting an
increasing fraction of kernels in the case of pleural effusion
and COVID-19, respectively. The results indicate that model
accuracy can be maintained with up to 60-70% of kernels
muted.

Fig. 9: Evaluation of model accuracy degradation by muting
a random selection of kernels at 10% intervals when applied
to trained CNN models on pleural effusion classification.



Recall that approximately 60% of kernels were found to be
semantically non-interpretable (redundant). Significant change
in model accuracy resulted from muting/unmuting kernels of
selected anatomical cluster or combinations thereof would
indicate these kernels as essential features to the model pre-
diction. Fig. 10(a) shows the drop in accuracy when muting
all the kernels in a cluster (e.g. M, A, etc.) and in a combi-
nation of clusters (e.g. M and A together (MA)) for pleural
effusion. Fig.10(b) shows the model accuracy when muting
every kernel other than the kernels in a specified cluster. A
similar evaluation for COVID-19 is shown in Fig.B.17.

(a)

(b)

Fig. 10: Evaluation of average model accuracy by (a) muting
and (b) unmuting kernels in anatomically relevant clusters (e.g.
M, A) and its combintations (e.g. MA, MP) over five trained
CNN models for pleural effusion.

Fig.10(a) shows that only the muting of combinations of
clusters (MA, MAP, MAD and MAPD) can reduce model
accuracy to the level of random guessing. These clusters
represent regions that encompass the entire lung periphery.
It is conjectured that the combination of clusters M and A
contain necessary information about heart failure and fluid
accumulation (which other kernels cannot compensate), but
insufficient information to provide on their own an accurate

prediction of pleural effusion. Conversely, the combination
on its own, e.g. of clusters M and P (MP), produced very
high accuracy, indicating that the original CNN model can
be approximated well by a drastically pruned version of the
model. As expected, the contribution from anatomically non-
interpretable kernels of the redundant cluster alone was found
to be insignificant, despite their removal still resulting in a
noticeable reduction in accuracy. In the case of the models
trained on the COVID-19 data (Fig.B.17(a)), MA and MAP
were the cluster combinations producing the largest loss of
accuracy when muted, while APD was found to be a cluster
combination capable of maintaining high model accuracy on
its own (Fig.B.17(b)). Differently from the pleural effusion
case, muting the redundant cluster (R) for COVID-19 had
a negligible effect on model accuracy. Muting of cluster A
alone caused a considerable drop in accuracy in comparison
with cluster M. It is conjectured that the COVID-19 X-rays
consisted of more cases with significant fluid accumulation
at the lower lobes resulting in substantial opacity at the
cardiophrenic region.

VI. DISCUSSION & CONCLUSION

We proposed a novel method for analyzing symbolic rules
extracted from CNNs trained on medical images. By using
feature aggregation, clustering and kernel norm plots, we
demonstrated that meaningful concepts can be assigned to
symbolic rules extracted from black-box CNNs with high
fidelity. This method was capable of identifying (medically
unjustified) spurious concepts as part of the learned features
in CNNs when evaluating with X-rays for pleural effusion and
COVID-19 classifications. It was also found that the identified
anatomical concepts via clustering could provide meaningful
explanations to different but related classification tasks. This
method is expected to benefit the use of CNNs in radiology by
analysing new diseases in comparison with better understood
diseases. While this work is not intended for clinical diagnosis,
the findings highlight the value of providing domain-specific,
meaningful, logical sentence-like and contrastive explanations
that clinicians can act on. In practice, these explanations are
more measurable and useful than subjective interpretations of
saliency maps or other popular representations.

In our experiments, the conceptual space provides a com-
mon ground for knowledge sharing between CNN kernels.
This facilitates the comparison of different CNNs using a
common set of concepts. In addition, this work will also aid in
continual improvement for explaining domain-specific related
tasks by comparing kernel norm values with clinical metrics.
These findings suggested the following potential research
directions: (i) collaboration with clinicians to analyze intra-
cluster variance among kernels; (ii) enhancement of cluster
labelling to improve concept assignment in the conceptual
space; (iii) extending this approach to explain other network
models and data sets, with experiments on transfer learning
and out-of-distribution learning aided by symbolic knowledge.
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APPENDIX A
SUPPLEMENTARY MATERIALS FOR

GENDER IDENTIFICATION

A. Representative Images from CelebA-HQ dataset
The CelebA-HQ dataset [24], a high-resolution facial image
dataset, was used to determine the gender of celebrities
through frontal facial images. Images were manually screened
for mislabeling. These images were used for both model
training and evaluation of the performance of the explainable
approximation.

(a)

(b)

Fig. A.1: Representative examples from the CelebA-HQ
dataset of (a) female and (b) male celebrities. It consists of
frontal images of people of various origins, ethnic groups, and
facial features.

B. Relevant work on Gender Identification from Facial Images

Human faces carry valuable information needed for social
interaction. When a face is encountered, a quick determination
of the gender can be established based on visual features.
Numerous studies across various disciplines have identified
gender-relevant features [35]–[37]. These features have now
been used as reference landmarks from figurine drawing [36]
to the definition of facial feature changes in gender confirma-
tion clinical management [37].

Fig. A.2 presents the research work [35] on gender
perception in which a selected panel of individuals were
asked to rate their perception of gender after one (or more)
facial parts from a prototype face of either gender were
substituted. The study concluded that grafting the jaw, brows
with eyes, chin, and brows (in descending order) onto a
prototype face of the opposite gender would result in a
significant shift in the perceived gender.

Fig. A.2: Research on gender perception using a mix-n-match
method on different facial parts. It was discovered grafting
the jaw, brows with eyes, chin and brows (in descending
order) onto a prototype face of the opposite gender would
significantly alter the perceived gender. (Source: [35])



Fig. A.3 presents facial traits in figurine drawing for a mas-
culine face with numerous angular shapes caused by prominent
bones and muscles. It is also characterised by straighter and
thicker brows, as well as square jaw and chin. Feminine faces
are typically more oval-shaped with curved features. The chin
is more pointed, and the jaw less angular. The brows are
also more arched. Fig. A.4 further illustrates the most critical
facial features (highlighted) in the perception of gender that
contribute to the success of facial gender confirmation surgery.
[38] also summarised the characteristics of ideal masculine
and feminine faces in their study, which corroborate the other
referenced findings indicating the significance of the brow, jaw
and chin in gender identification.

Fig. A.3: Facial traits associated with gender in figurine
drawing . (Source: [36]).

Fig. A.4: Significant facial features (highlighted) that would
alter the perception of gender following a facial gender con-
firmation surgery. (Source: [37])

C. Additional Experimental Results on Gender Identification
To benchmark with the CNN model illustrated in the main
text, Fig. A.5 shows a decision tree generated entirely using
metadata from the CelebA-HQ dataset [24]. It classified gender
based on the choice of makeup and accessories as features and
achieved a prediction accuracy of 94.1% compared to 93.0%

by the CNN model. The symbolic rules extracted from CNN
in this work achieved an accuracy of 87.3% and a fidelity of
91.1%. Despite the slightly lower accuracy, it is argued that
the symbolic rules used more anatomically relevant features
for the classifications. The following kernel norm plots and
additional examples of explainable rules will supplement our
novel knowledge extraction approach using symbolic rules
presented in the main text.

Fig. A.5: An example of decision tree generated using meta-
data from the CelebA-HQ dataset. It used the choice of
makeup and accessories as part of the feature set for gender
identification and achieved a prediction accuracy of 94.1%.

Additional kernel norm plots associated with the set of
explainable rules generated in the illustrative examples of
gender identification are shown in Figs. A.6, A.7 and A.8.
These plots provided a quantified representation of the image
variations identified in the frequently activated regions of
the corresponding kernel fingerprints. Kernel ’DD’ recognised
the appearance of sunken eyes (e.g. eye bags) and/or the
prominence of the cheeks. Higher values indicated fewer traits
of sunken eyes but fuller cheeks. Kernel ’LC’ determined the
archness of the brow and the prominence of the brow ridge,
with higher values showing a more arched brow and protruding
brow ridge. Finally, kernel ’MR’ defined the squareness of
the face with higher values indicating a squarer face and
wider chin. These findings in appearance for gender perception
matched those from domain research in Appendix A-B.

Fig. A.6: The corresponding kernel norm plot (L1-norm
values) for kernel ’DD’. This plot presented the appearance
variations of sunken eyes and/or shallow cheeks. Higher values
indicated fewer traits of sunken eyes but fuller cheeks, whereas
lower values revealed signs of sunken eyes and/or shallower
cheeks. Images for the top 5 and bottom 5 kernel norm values
are shown above and below the kernel norm plot respectively.



Fig. A.7: The corresponding kernel norm plot (L1-norm val-
ues) for kernel ’LC’. This plot demonstrated the appearance
variations around the brow ridge. Higher values indicated an
arched brow or protruding brow ridge, whereas lower values
indicated with straighter brow or less pronounced brow ridge.
Images for the top 5 and bottom 5 kernel norm values are
shown above and below the kernel norm plot respectively.

Fig. A.8: The corresponding kernel norm plot (L1-norm val-
ues) for kernel ’MR’. This plot demonstrated the appearance
variations on the squareness of the lower face. Higher values
correlated with wider chins, while lower values correlated with
narrower V-shaped chins. Images for the top 5 and bottom 5
kernel norm values are shown above and below the kernel
norm plot respectively.

As shown in Figs. A.9, A.10 and A.11, the identified facial
features can be used to provide the appropriate descriptive
explanations for the prediction of the illustrated images
defined by each of the symbolic rules. For example, Fig. A.9
categorised faces with rounder jawbone, sunken eyes and/or
shallow cheeks, and arched eyebrow/prominent brow ridge.
The rule in Fig. A.10 provides an alternative definition of the
female gender where faces have fuller cheeks and fewer traits
of sunken eyes. This is supplemented with the appearance of
V-shaped lower faces and narrower chins. In the case of male
appearance, Fig. A.11 illustrated an alternative decision route
to using only kernel ’QE’. This rule generates a decision that
differed from the rule in Fig. A.9 due to the straighter brows
and less pronounced brow ridge in the representative images.

(a)

(b)

Fig. A.9: The decision path for one of the symbolic rules ex-
tracted from a tree-based method within ERIC [7]. Representa-
tive images in (b) indicate that the prediction is based on facial
features - (1) rounded jawbone (¬QE), (2) sunken eyes and/or
shallow cheeks (¬DD), and (3) arched eyebrow/prominent
brow ridge (LC).

(a)

(b)

Fig. A.10: The decision path for one of the symbolic rules
extracted from a tree-based method within ERIC [7]. Repre-
sentative images in (b) indicate that the prediction is based on
facial features - (1) rounded jawbone (¬QE), (2) no sunken
eyes and/or fuller cheeks (DD), and (3) sharper chin (¬MR).



(a)

(b)

Fig. A.11: The decision path for one of the symbolic rules ex-
tracted from a tree-based method within ERIC [7]. Representa-
tive images in (b) indicate that the prediction is based on facial
features - (1) rounded jawbone (¬QE), (2) sunken eyes and/or
shallow cheeks (¬DD), and (3) straight eyebrow/shallow brow
ridge (¬LC).



APPENDIX B
SUPPLEMENTARY MATERIALS FOR

PLEURAL EFFUSION AND COVID-19 DETECTION

A. Representative Images from CheXpert and IEEE8023
datasets

Fig. B.1 presents some of the representative images of frontal
chest X-rays used in this work to detect pleural effusion
and COVID-19 respectively. Images were pre-processed as
described in Section IV.

(a)

(b)

(c)

Fig. B.1: Representative frontal chest X-ray images of patients
defined as (a) healthy, (b) having pleural effusion from the
CheXpert [25] dataset, and (c) having COVID-19 from the
IEEE8023 [26] dataset.

B. Relevant work on Pleural Effusion Detection from Chest
X-Ray

Pleural effusion is defined as the abnormal accumulation
of fluid in the pleural space, which is typically caused by
an imbalance in fluid formation and absorption. Pneumonia,
congestive heart failure and malignancy account for being the
cause in the majority of cases [33]. Chest X-ray is generally
taken during an initial diagnosis as standard practice. Typi-
cally, pleural effusion can be characterised by homogeneous
opacity, obliteration of the costophrenic angle, and a curved
lower boundary commonly referred to as the Ellis S-shaped
curve [33].

As a matter of good practice, anatomical locations of ab-
normalities should always be specified in a radiological report
[39]. Fig. B.2 shows a normal chest X-ray with annotations
of anatomical regions identified through concept clustering
in this work. A normal chest should appear like this figure
with clear lung air space and a normal-sized heart (e.g. as
defined by a cardiothoracic ratio), and no fluid accumulation
at both costophrenic angles. Labels of anatomical regions will
provide valuable references for describing abnormalities and
correlating relevant medical concepts with the findings from
activated kernels in a CNN model reported in this work.

Fig. B.2: An annotated approximation of the anatomical re-
gions identified from clustering. It shows four key regions:
(1) Central & Peripheral (yellow), (2) Mediastinum (red), (3)
Cardiophrenic (blue), and Diaphragm & Subprenic (purple).

C. Additional Experimental Results on Pleural Effusion De-
tection

As with the illustrative case for gender identification in Ap-
pendix A, the semantic meaningful concepts for the relevant
kernels used in the generated rule set for model explanation
were evaluated through the kernel norm plots and concept
assignment via clustering. Fig. B.3 presents the plot of kernel
norm values for kernel ’DH’. It was associated with the
central & peripheral region (P) of the chest. The plot indicated
variations in this region where high values appeared in images
with a clear periphery around both lung air spaces or haziness
around the same region otherwise. Fig. B.4 presents the plot of



kernel norm values for kernel ’IB’. Kernel ’IB’ was related to
the mediastinum (M) region, including the heart. High kernel
norm values were found in images with significant opacity
near the left side of the heart and/or visible heart enlargement.
Fig. B.5 presents the plot of kernel norm values for kernel
’N’. Kernel ’N’ was likewise related to the mediastinum (M)
region. The representative examples further demonstrated the
effect of changing the kernel norm value on the appearance
of images. At a high value, significant fluid accumulation(i.e.
shown in whiteness) could be observed in the lower-left lobe
(near the left side of the heart and the left hemidiaphragm).

Fig. B.3: The corresponding kernel norm plot (L1-norm val-
ues) for kernel ’DH’. This plot demonstrated the variation in
clarity around the central & peripheral of the lung air space.
Higher values show images with clear peripheries around the
lung air spaces, while lower values show haziness in the same
regions. Images for the top 5 and bottom 5 kernel norm values
are shown above and below the kernel norm plot respectively.

Fig. B.4: The corresponding kernel norm plot (L1-norm
values) for kernel ’IB’. This plot presented the appearance
variations at the mediastinum (including the heart). Higher
values indicate significant opacity near to the left side of the
heart with possible left ventricle enlargement. Images for the
top 5 and bottom 5 kernel norm values are shown above and
below the kernel norm plot respectively.

Fig. B.5: The corresponding kernel norm plot (L1-norm
values) for kernel ’N’. This plot presents the appearance
variations in the lower-left lobe, where the left ventricle lo-
cated. High values show images with significant consolidation
(i.e. shown in whiteness) near the left ventricle and the left
hemidiagphragm. Images for the top 5 and bottom 5 kernel
norm values are shown above and below the kernel norm plot
respectively.

These identified conceptual descriptions were applied to
the symbolic rules to make the associated explanations more
human-comprehensible. For example, the rule generated in
Fig. B.6a can be used to represent the healthy cases. All of the
images show clear peripheries of the lung air spaces, normal-
shaped heart and clear lower left lobes. On the other hand, the
rule at B.7a defines images of pleural effusion as a result of
haziness and/or enlargement at the left ventricle (i.e. positive
kernel ’IB’). Lastly, the rule in Fig. B.8 shows that haziness
around the periphery of the lung air spaces is sufficient for the
model to detect pleural effusion in the example images.

(a)

(b)

Fig. B.6: The decision path for one of the symbolic rules
extracted from a tree-based method within ERIC [7]. Rep-
resentative images in (b) indicate that the prediction is based
on anatomical features - (1) clear lung periphery (DH), (2)
normal-sized heart (¬IB), and (3) clear lower left lobe around
the left side of the heart (¬N).



(a)

(b)

Fig. B.7: The decision path for one of the symbolic rules
extracted from a tree-based method within ERIC [7]. Rep-
resentative images in (b) indicate that the prediction is based
on anatomical features - (1) clear lung periphery (DH), and (2)
haziness near the heart with possible left ventricle enlargement
(IB)

(a)

(b)

Fig. B.8: The decision path for one of the symbolic rules
extracted from a tree-based method within ERIC [7]. Rep-
resentative images in (b) indicate that the prediction is based
on one anatomical feature - (1) haziness at the lung periphery
(¬DH).

D. Additional Experimental Results on COVID-19 Detection

This section includes further examples of using the conceptual
clusters to adopt the conceptual descriptions on the symbolic
rules for COVID-19 detection. While these examples are not
intended for clinical diagnosis, the descriptive explanation will
aid current clinical research addressing the present pandemic.

The first literal in the rule is based on kernel ’MC’. It is as-
sociated with the semantically non-meaningful ‘redundant (R)’
cluster. Fig. B.9 presents the plot of kernel norm values for
this kernel. As observed, this kernel made a critical separation
between healthy images (first 200) and those with COVID-19
(remaining 200). Based on the representative images at both
extremes, it was observed that high kernel norm values ap-
peared in sharper images with higher contrast with the blacker

background. On the other hand, low values appeared in images
that are more grey. Despite the manual pre-training screening
of images, this variation in image appearance remained. This
revealed that the original CNN model had retained this ap-
pearance feature as a sign of ’healthy’ during training. This
needs to be rectified for better model performance.

Kernel ’NY’ and ’ET’ were both related to the central &
peripheral regions. Kernel ’NY’ identified haziness around the
lower spine (see Fig. B.10), whereas kernel ’ET’ identified
clarity across the lung peripheral with high kernel norm values
(see Fig. B.12). Kernel ’E’ was associated with the opacity at
the cardiophrenic region.

Fig. B.9: The corresponding kernel norm plot (L1-norm val-
ues) for kernel ’MC’. This plot presents the variations in
image appearance. High values show up as sharper chest X-ray
images with good contrast against the black background, while
images at lower values typically appear more grey. Images for
the top 5 and bottom 5 kernel norm values are shown above
and below the kernel norm plot respectively.

Fig. B.10: The corresponding kernel norm plot (L1-norm
values) for kernel ’NY’. This plot differentiates images based
on haziness around the lower spine. Higher values appear on
images with haziness at the lower spine, while lower values
indicate with clear lower spine. Images for the top 5 and
bottom 5 kernel norm values are shown above and below the
kernel norm plot respectively.



Fig. B.11: The corresponding kernel norm plot (L1-norm
values) for kernel ’E’. This plot identifies the opacity at the
cardiophrenic region (A). Higher values indicate with opacity
around the cardiophrenic region and clear region at lower
values. Images for the top 5 and bottom 5 kernel norm values
are shown above and below the kernel norm plot respectively.

Fig. B.12: The corresponding kernel norm plot (L1-norm
values) for kernel ’ET’. This plot differentiates images with
clear peripheral regions. High values appear in images with
clear peripheries of the lungs, while haziness observed in lower
values. Images for the top 5 and bottom 5 kernel norm values
are shown above and below the kernel norm plot respectively.

Besides determining healthy images solely on image grey-
ness (Kernel ’MC’), the rule from Fig. B.13 identified a subset
of false negatives predicted by the CNN model against the
labelled ground truth as having COVID-19. The representative
examples indicate that the lower spine appears relatively clear
with mild haziness at the cardiophrenic region. The healthy
traits in the anatomical regions were identified to cause the
false prediction. This conceptual explanation will enable clin-
icians to re-evaluate these images for more accurate diagnosis.

(a)

(b)

Fig. B.13: The decision path for one of the symbolic rules
extracted from a tree-based method within ERIC [7]. Repre-
sentative images in (b) indicate that the prediction is based
on anatomical features - (1) image greyness (¬MC), (2) clear
lower spine (¬NY), and (3) clear cardiophrenic region (¬E).

Figs. B.14 and B.15 shows rules for determining images
with COVID-19 with varying degrees of ’severity’ (i.e. based
on haziness at anatomical regions). Fig. B.14 presents cases
where haziness was only observed at the cardiophrenic region.
In contrast, haziness was observed around the lung periphery
for cases governed by the rule in Fig. B.15. These examples
demonstrated clear evidence of enhancement in model expla-
nation power using symbolic rules and concept assignment via
clustering, as described in the main text.

Finally, a comparable study on cluster significance for
COVID-19 is presented in Figs. B.16 and B.17. Fig. B.16
shows a similar finding that model accuracy could be main-
tained when up to approximately 60-70% of the kernels were
muted. Cluster combinations, MA and MAP, were found in
Fig. B.17a to produce the largest loss in accuracy when
muted, further supporting the evidence that these clusters
contain relevant information for the classification from these
anatomical regions that other cluster kernels could not com-
pensate. Notably, APD was found in Fig. B.17b to be a cluster
combination capable of maintaining high model accuracy on
its own, possibly because COVID-19 X-rays consisted of more
cases with significant fluid accumulation at the lower lobes.



(a)

(b)

Fig. B.14: The decision path for one of the symbolic rules
extracted from a tree-based method within ERIC [7]. Repre-
sentative images in (b) indicate that the prediction is based
on anatomical features - (1) image greyness (¬MC), (2)
clear lower spine (¬NY), but (3) haziness is observed at the
cardiophrenic region (E).

(a)

(b)

Fig. B.15: The decision path for one of the symbolic rules
extracted from a tree-based method within ERIC [7]. Repre-
sentative images in (b) indicate that the prediction is based on
anatomical features - (1) image greyness (¬MC), (2) haziness
at the lower spine (NY) as well as (3) other peripheral regions
of the lungs (¬ET).

Fig. B.16: Evaluation of model accuracy degradation through
muting a random selection of kernels at 10% intervals when
applied to trained CNN models for COVID-19.

(a)

(b)

Fig. B.17: Evaluation of average model accuracy through (a)
muting and (b) preserving activations of a subset of anatomical
relevant clusters or their combination in five repeated CNN
models for COVID-19.


