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A B S T R A C T   

The incompressible Smoothed Particle Hydrodynamics (ISPH) is a popular Lagrangian Particle method. In the 
conventional ISPH method for simulating free-surface flows, the pressure-projection phase, which solves the 
pressure Poisson’s equation (PPE), is the most time-consuming. In this paper, we propose a novel hybrid method 
by combining the graph neural network (GNN) with the ISPH for modelling the free-surface flows. In the new 
hybrid method, the graph neural network (GNN) is employed to replace solving the PPE for pressure in the 
conventional ISPH. To the best of knowledge of the authors, this is the first attempt to combine the GNN with 
ISPH model in a Lagrangian formulation. The performance of the hybrid method will be evaluated by comparing 
its results with experimental data, analytical solution or numerical results from other methods for three 
benchmark test cases: dam breaking, sloshing wave and solitary wave propagation. In addition, the potential of 
generalization of the hybrid method will be studied by applying it with the GNN model trained on data for 
relatively simple cases to simulate more complex cases. It will be demonstrated that the hybrid method does not 
only give satisfactory results, but also shows good potential of generalization. In addition, the new method will 
be demonstrated to require the computation time which can be 80 times less than the conventional ISPH for 
estimating pressure for cases with a large number of particles that is usually needed in the practical free-surface 
flows simulation using ISPH.   

1. Introduction 

The Smoothed Particle Hydrodynamics (SPH) [1,2] is a Lagrangian 
meshless method that discretizes the computational domain by particles 
that carry physical field variables (e.g. the pressure, density and veloc-
ity) and move at their material velocity. The incompressible SPH (ISPH) 
is an important stream of the SPH. It solves the incompressible 
Navier-Stokes (NS) equation and continuity equation using the projec-
tion method, where the pressure is evaluated by solving a pressure 
Poisson Equation (PPE). Recently, ISPH has been widely applied to 
modelling the free-surface flows [3–9], producing stable and accurate 
pressure fields and securing good volume conservation properties [10]. 
Its promising superiority has been demonstrated over the conventional 
mesh-based method for modelling the free-surface flows, especially the 
breaking wave impact on structures. The accuracy and convergence of 
the ISPH are largely affected by the numerical schemes to solve the PPE. 
The reviews about this issue can be found in [8,11]. Despite intensive 
research and a significant progress on developing new numerical 
schemes in order to improve the consistency, convergence and 

adaptivity of the ISPH, solving the PPE remains to be the most 
time-consuming part in the ISPH. 

Recently, the machine learning (ML) techniques have been widely 
used in the fluid dynamics. For example, instead of the conventional 
computational fluid dynamics (CFD) approaches, which solve the gov-
erning equation directly, the data-driven approach using ML is emerging 
in the fluid simulation [12], e.g. learning the pressure and velocity field 
from data [13]. The application of ML in another direction, which is 
more relevant to this paper, is to use the ML techniques to accelerate the 
numerical process through replacing the challenging and/or 
time-consuming execution part in the conventional procedure by 
appropriate ML models. One typical example is the ML accelerated 
turbulence modelling, in which an appropriate ML model is trained 
using the data produced from the large eddy simulation (LES) or the 
direct numerical simulation (DNS) and adopted to replace the tradi-
tional turbulence models for predicting the turbulent production term 
[14] or Reynolds stress anisotropy tensor [15]. According to their 
comparative study with the DNS or LES, the ML supported RANS 
simulation can, not only accelerate computational process significantly, 
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but also largely reproduce the turbulence feature. 
Attempts have also been made to use the artificial neural network to 

predict the fluid pressure to replace solving the PPE in the Navier-Stokes 
[16,17] or Euler equations [18,19] using the projection method. In these 
applications, the most widely used approach is to use the convolutional 
neural networks (CNNs) to replace solving the PPE. In this regard, 
Tompson et al. [18] proposed the CNN architecture to handle the 
pressure projection in Eulerian-based solvers for accelerating Eulerian 
fluid simulation; Xiao et al. [17] developed a CNN-based deep learning 
model, which uses the discretization structure and the intermediate 
velocities as the inputs, to predict the solutions of the large linear 
equations resulted from the discretization of the PPE; Dong et al. [19] 
proposed a CNN-based framework (Smartfluidnet) that automatically 
uses multiple neural network models to accelerate Eulerian fluid 
simulation. 

While CNNs have achieved numerous successes in applications, they 
have inherent limitations and pose challenges in dealing with physical 
problems involving data represented on a set of nodes (particles) which 
are irregularly distributed. That is because the convolutions in CNNs 
have to be performed on a uniform Cartesian grid and, therefore, require 
input (such as the domain geometry, field data) to be expressed in this 
way. Taking the Lagrangian ISPH simulation of water waves as the 
example, particles are moving following their material velocities and 
may be artificially shifted for achieving desired particle distribution [20, 
21]. Therefore, the particle distribution will become irregular even if it 
is regular at the start of the simulation. To deal with such data associated 
with particles which are irregularly distributed, CNN cannot be used 
directly. To use it, the data must be mapped on regular grids before used 
for training CNN models. During the prediction stage using the trained 
CNN modes, all the inputs must be transferred onto regular grids and the 
predicted data by CNN need to be transferred back to the irregular 
distributed particles. For example, Zhang et al. [22] used a structured 
background mesh to convert the field data corresponding to irregularly 
distributed particles in ISPH into the structured data at the node of the 
background mesh by interpolation. These structured data are then uti-
lized for training the CNN. When the trained CNN model is implemented 
for predicting the pressure, the input data, such as velocity fields, from 
ISPH are also needed to be mapped on the background grids; after the 
pressure at all nodes of the background grid are predicted using the 
trained CNN model, the interpolation is employed again to give the 
pressure at the ISPH particles. Although the combination of CNN with 
ISPH method (ISPH_CNN) can be achieved through the above approach, 
two interpolations take additional computational costs and have adverse 
effects on the accuracy of the simulation results. In addition, it is chal-
lenging to implement structured grids and the interpolations for the 
cases with boundaries and/or objects of complex geometries. 

Graph neural networks (GNNs) are based on graphs which are 
formed by information at nodes which can be distributed in any way, 
regularly or irregularly. Therefore, GNNs do not bear the limitations of 
CNNs discussed above. As such, GNNs can offer key advantages for 
particle-based simulation, e.g., Lagrangian ISPH simulation, in which 
the data are usually represented at irregularly-distributed particles. 

The GNNs [23,24] were developed and applied for network analysis, 
especially on internet data, and were trained not with the 
back-propagation algorithm, but with fixed point iteration in earlier 
stage. The gated graph sequence neural networks in [25] helped inte-
grate more recent deep learning innovations into GNNs. Modern GNN 
models share fundamental properties with CNN models such as spatial 
invariance and locality. In recent years, the application of GNNs has 
grown very rapidly to the fields of science and engineering. For example, 
the data-driven approaches using the GNNs have been increasingly 
applied to the fluid simulation. Belbute-Peres et al. [26] developed a 
hybrid graph neural network that combines a traditional graph con-
volutional network with an embedded differentiable fluid dynamics 
simulator for fluid flow prediction. Pfaff et al. [27] proposed a 
mesh-based GNN to simulate incompressible flow around cylinders and 

compressible flow around airfoils, in which the fluid domain is dis-
cretized into an unstructured mesh using traditional meshing tech-
niques. Chen et al. [28] employed a similar GNN as a surrogate model to 
infer the velocity and pressure fields for a steady incompressible flow 
around a bluff body. Gao and Jaiman [29] presented a quasi-monolithic 
GNN-based framework for data-driven reduced-order modeling of 
fluid-structure interaction, where a multi-layer perceptron was used to 
evolve mesh displacements. A data-driven framework including the 
multi-scale rotation-equivariant graph neural networks for learning the 
inference of unsteady Eulerian fluid dynamics defined on a fluid domain 
discretized using an unstructured set of fixed nodes was proposed in 
[30]. 

It is pointed out that there have been some works that use GNNs to 
model fluid dynamics simulations in Lagrangian particle (meshfree) 
methods. Sanchez-Gonzalez et al. [31] presented a machine learning 
framework with graph neural network for simulating fluids. Kumar and 
Vantassel [32] developed a Graph Network Simulator (GNS) to learn 
physics and predict the flow behavior of particulate and fluid systems, in 
which GNS discretizes the domain with nodes representing a collection 
of particles and the links connecting the nodes representing the local 
interaction between particles. Li and Farimani [33] proposed a 
data-driven model for fluid simulation under Lagrangian particle rep-
resentation based on GNN. They mainly focused on the development of 
the GNN to speed up the simulations of flow of different materials. To 
the best of our knowledge, there is no work that combines the GNN with 
the projection based Lagrangian particle method, ISPH, for modelling 
the free-surface flows. 

In this paper, we adopt the GNN model to replace solving the PPE in 
the conventional ISPH method. To this end, we combine the GNN model 
developed in [33] and built on the open-access library of PyTorch [34] 
with our in-house ISPH solver [7] to form a hybrid method, referred to as 
ISPH_GNN hereafter. To the best of knowledge of the authors, it is the 
first hybrid method combining ISPH with GNN. In this method, the GNN 
model is trained and implemented with appropriate selections of the 
input data that represent the typical features of the ISPH model, such as 
gravitational and viscous effects, boundary conditions and the 
Lagrangian nature of the particle movement, in order to achieve a 
satisfactory accuracy for free-surface flows. We apply the ISPH_GNN to 
three benchmark cases, i.e., the dam breaking, sloshing wave and soli-
tary wave propagation, to demonstrate its accuracy and convergence 
performance by comparing its numerical results with the experimental 
data, analytical solution and results from other SPH simulations. 

Another contribution of this paper is to demonstrate that the 
ISPH_GNN trained on data for relatively simple cases can be imple-
mented for relatively complex cases with satisfactory outputs. To be 
convenient and to follow the convention of machine learning commu-
nity, e.g. [35,36], this is phrased as ‘generalization’ in this paper. Such 
generalization capability is an important aspect of any ML models. There 
are some limited investigations on the generalization performance of 
GNN models based on data-driven approaches. For example, 
Sanchez-Gonzalez et al. [31] conducted the generalization experiments 
to evaluate their model on several conditions different from those for 
training, including different number of particles, different object shapes, 
different number of objects, different initial positions and velocities and 
longer trajectories. Li and Farimani [33] investigate the generalization 
capability of their data-driven model and showed that its performance 
under some cases beyond its training distributions was satisfactory. In 
these studies, only the visualization results for the generalization ex-
amination are demonstrated. In this paper, after the GNN in the hybrid 
method ISPH_GNN is trained on simple cases, the hybrid method will be 
employed to simulate the cases with more complex geometries and 
configurations. The assessments of its generalization performance in 
these cases will be carried out by comparing both the pressure field and 
wave surface profile with the corresponding results from other two ISPH 
models. Such comparison fills the gap of lack of quantitative assessments 
of the generalization performance for GNN methods in the cited studies 
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and will enrich the understanding on the generalization of the GNN. In 
addition, the computational efficiency of ISPH_GNN is also investigated. 

2. Mathematical and numerical formulation of ISPH_GNN 

2.1. Lagrangian ISPH 

In the present ISPH, the fluid is assumed to be incompressible and is 
governed by the Navier-Stokes equation and the continuity equation 
that are respectively given as, 

Du
Dt

= −
1
ρ∇p + g + ν∇2u (1)  

∇⋅u = 0 (2)  

where u, p and ρ are, respectively, the velocity, pressure and density of 
the fluid, g is the gravitational acceleration and ν is the kinematic vis-
cosity of the fluid. Eq. (1) is written in a Lagrangian frame and D/Dt is 
the material derivative following the motion of fluid particles. 

On the solid boundaries, the following Neumann boundary condi-
tions for velocity and pressure, respectively, are imposed, 

u⋅n = U⋅n (3)  

n⋅∇p = ρ(n⋅g − n⋅U̇˙), (4)  

in which n is the unit normal vector of the solid boundary; U and U̇˙ are 
the velocity and acceleration of the solid boundary. 

On the free surface, the following condition is imposed, 

p = 0 (5) 

For completeness, the details of identifying the free-surface particles 
are given in Appendix A. 

A projection method is used to solve the governing equations and 
boundary conditions, which is composed of three main steps:  

(1) Prediction step: an intermediate temporal velocity and position of 
particle are predicted using 

u∗ = ut + Δu∗ (6)  

Δu∗ =
(
g+ ν∇2u

)
Δt (7)  

r∗ = rt + u∗Δt (8)   

where ut and rt are the velocity and position of particle at the time t, 
respectively; Δt is the time step size; u∗ and r∗ denote the intermediate 
velocity and position of particle.  

(2) Pressure projection: By substituting Eqs. (6) and (7) to Eq. (1) and 
(2), it is not difficult to derive the PPE, ∇2pt+Δt =

ρ∇⋅u∗

Δt . Following 
the study in [5,37], the following alternative form [7–9] is 
applied to all internal fluid particles, 

∇2pt+Δt =
ψ
Δt

(9)   

where ψ = α ρ− ρ∗
Δt + (1 − α)ρ∇⋅u∗ and α is the blending coefficient, which 

is taken as a small value such as 0.01. ρ∗ is the particle density at the 
intermediate time step estimated by 

∑N
j=1mjW(r∗ij), where N is the 

number of the particles in the influence domain of the particle i, mj is the 
particle mass of the local particle j and W(r∗ij) is a kernel function. In this 

paper, the cubic B-spline kernel proposed by Monaghan and Lattanzio 
[38] is used for the kernel function. 

(3) Correction step: After the pressure pt+Δt at time t + Δt is pre-
dicted, the velocity change during the correction step is estimated 
by 

u∗∗ = −
Δt
ρ ∇pt+Δt (10)   

The velocity and position of particle at t + Δt are then corrected 
using, 

ut+Δt = u∗ + u∗∗ (11)  

rt+Δt = rt +
ut + ut+Δt

2
Δt (12) 

Further details of the numerical implementations including the nu-
merical discretisation of the PPE, the numerical schemes to deal with the 
boundary conditions, the gradient and the divergence operator in the 
conventional ISPH can be found in [8]. 

2.2. GNN model 

According to the comprehensive survey on graph neural networks in 
[39], the graph neural network developed by Li and Farimani [33] and 
used in this paper can be classified as the Spatial Convolutional Graph 
Neural Networks (ConvGNNs). Analogous to the convolutional opera-
tion of CNN on an image defined on structured grids, the ConvGNNs 
perform convolutions on graphs defined by nodes and their spatial re-
lations, which may be irregularly distributed spatially. In the following 
sections, we use GNN to refer to the graph neural network used in this 
paper for simplicity. 

The GNN (Fig. 1) used in this paper includes three blocks: encoder, 
message-passing, and decoder, as described in [29–31]. In the GNN, 
graph convolutions can be considered as a message passing process in 
which information is passed from one node to another along edges 
directly. 

The encoder is to convert the inputs (such as the velocity, pressure 
and the term ψ in PPE in this paper) into the node embeddings. These 
node embeddings can be used for graph convolutions in the next mes-
sage passing step. Specifically, considering a particle i in Fig. 1, the input 
f0
i is encoded into h0

i via a learnable encoder en() based on the multi- 
layer perceptron (MLP) with n layers. The MLP is the non-trivial neu-
ral network. Mathematically, the encoder en() and the corresponding 
node embedding can be expressed as: 

en
(
f l

i

)
= σ
(
wlfl− 1

i + bl
)

with l = 1, 2, 3...., n (13a)  

h0
i = en

(
fn

i

)
(13b)  

where σ() is a non-linear activation function, wl and bl are the learn-
able weight vector and bias term of the l-th layer in MLP; fl

i is the node 

Fig. 1. Diagram of the GNN network architecture.  
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feature at the l-th layer in MLP. The node embedding, h0
i , is equal to the 

output of MLP as given in Eq. (13b), i.e., fn
i , which will be used as the 

input of graph convolution described below. 
In the message passing block, the resulted node embedding is 

updated by using a recursive scheme. In this stage, the influence of a 
neighbouring node j on the node i, mj→i, is firstly evaluated. Considering 
that the neighbouring influence mj→i depends on the relative location 
between the nodes in reality, a weight is applied. Following Li and 
Farimani [33], the neighbouring influence in the l-th layer convolution 
is given by 

ml
j→i = hl− 1

j W
(
rij, r0

)
(14)  

where hl− 1
j denotes the node embedding of neighbor node j in the l-th 

layer of convolution, and the weight is given by W(rij, r0)=

{
r0/rij − 1 0 < rij ≤ r0

0 rij > r0
. r0 is the radius of the influence domain, which 

is taken as a value of 1.7dx and dx is the initial particle spacing. The 
influence from all the neighbouring nodes is aggregated and given by 

Ml
i =

∑N
j=1ml

j→i
∑N

j=1W
(
rij, r0

) (15) 

In the l-th layer of message passing, the node embedding of the node i 
is calculated by 

hl
i = σ

(
w′

lM
l
i + b′

lh
l− 1
i

)
with l = 1, 2, ....,L (16)  

where w′
l and b

′
l are the learnable weight vector and bias term in the l-th 

Fig. 2. Flowchart of ISPH incorporating the GNN (flowcharts of the conventional ISPH (solid arrows) and the ISPH_GNN (dashed arrows)).  
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layer of message passing. 
The decoder aims to establish the relation between the node em-

beddings at the final layer of message passing and the output. More 
specifically, after L layers of recursive message passing, the output qi 
(the pressure in this work) is generated by decoding the node embedding 
hL

i of the final layer of message passing via a learnable decoder em(). The 
decoder is also based on the multi-layer perceptron (MLP) similar to that 
(Eq. (13) a) used in encoder but with different learnable weights and 
bias: 

qi = em
(
hL

i

)
(17)  

where qi represents the relation between the inputs and the pressure of 
each particle, which will be denoted by fGNN below. 

In this work, three layers in all the encoder/decoder MLP are used 
while the number of recursive message passing layers is chosen to be 2 
based on the study of Li and Farimani [33] and our numerical tests to be 
shown in Section 3 and 4. We adopt Gaussian Error Linear UnitS (GeLUs) 
[40] as the non-linear activation function for all the layers. 

2.3. Incorporating GNN with ISPH 

As indicated above, in the ISPH_GNN, it is proposed to use the trained 
GNN model to replace the PPE for solving the pressure in the conven-
tional ISPH. The flowchart of ISPH_GNN is demonstrated in Fig. 2. Some 
important issues related to combing ISPH with the GNN as well as 
training and implementing the GNN will be discussed in this section. 

2.3.1. Input parameters 
In order to achieve a satisfactory prediction accuracy, the inputs of 

the GNN model need to include the variables, which reflect the hydro-
dynamic characteristics. In this paper, a blended form (Eq. (9)) including 
the right hand side ψ

Δt is used in the PPE of the ISPH model. Therefore, the 
ψ is adopted as one of the input parameters. In addition, the interme-
diate velocity, u∗ can reflect the gravity and the viscous effects on the 
water wave. According to the study of combining ISPH with CNN model 
(ISPH_CNN) for free-surface flows modelling in [22], the better predic-
tion performance can be obtained by including u∗ as one of input pa-
rameters than without considering it. Therefore, we also use u∗ as an 
input parameter for the GNN model here. 

In addition, the study of Zhang et al. [22] has demonstrated that 
adoption of the pressure at the previous time step in the inputs can 
improve the prediction accuracy for the pressure at current step. 
Therefore, we also consider the pressure at the previous time step in the 
input parameters. However, it should be noted that in both the training 
and predictions of GNN, the total pressure p is split into two parts: the 
reference pressure, ps, and the rest part of pressure, pd, i.e., p = pd + ps. 
The reference pressure ps can be directly calculated by ρgz̃, where ̃z is the 
vertical distance from the fluid particle to its nearest free-surface par-
ticle, as explained in Appendix A. Based on the splitting, the GNN is 
trained using the data for pd and also predicts the corresponding part of 
pressure p̂d after training. Based on our numerical tests, the overall re-
sults with the pressure predicted by the GNN trained in this way are 
significantly better than those obtained by using GNN to directly handle 
total pressure. 

According to the above discussions, the field data of ψ , u∗ and pd,t =

pt − ps are adopted as the input parameters to train the GNN model for 
predicting the pressure ̂pd,t+Δt. The function fGNN from input to output by 
the GNN model can be expressed as: 

p̂d,t+Δt = fGNN,IC
(
ψ ,u∗, pd,t, cp

)
(18a)  

where cp are the network coefficients, i.e., the weights and bias involved 
in Eqs. (13), (16) and (17), which are optimized during the training 
process as discussed in Section 2.2. In Eq. (18), IC is just used as the label 
representing the specific class of physical problems, such as IC = ‘dam’ 

denoting dam breaking cases, and is not a parameter to be determined 
by the training. 

In general, after the model is trained, the pressure p̂d,t+Δt can be 
predicted based on the input data of ψ , u∗ and pd,t by the GNN model 
fGNN,IC with the optimized network coefficients cp. After the prediction 
by the GNN model fGNN,IC, the total pressure of fluid particles used in Eq. 
(1) for updating the velocity field can be obtained by 

pt+Δt = p̂d,t+Δt + ps (18b) 

It is noted that as the reference pressure is subtracted before training 
the GNN model and added back after prediction by the GNN model. The 
overall results should not be very sensitive to how it or z̃ is estimated. 
Other methods would be studied in future work. 

2.3.2. Training data 
The overall accuracy of fGNN is also affected by the trained database. 

Similar to the study in ISPH_CNN [22] and inspired by the turbulence 
modelling [14,15] that use the higher-fidelity modelling solutions to 
build a model used by lower-fidelity RANS simulation, we also use the 
consistent second order ISPH (ISPH_CQ) [9] developed by the authors of 
this paper to produce the training database with higher accuracy than 
that from the conventional ISPH [7]. In the ISPH_CQ, the governing 
equations and boundary conditions are the same as the conventional 
ISPH, but the derivatives for Laplacian operator, velocity divergence and 
corresponding Neumann boundary condition and the pressure gradient 
are numerically approximated by the quadric semi-analytical finite 
difference interpolation scheme (QSFDI) [41]. More details about the 
ISPH_CQ can be found in [9,41]. 

For each numerical case used for generating the training database, a 
random selection of the initial test conditions will be used. For example, 
in the dam breaking problem, different values of the water column 
height and width will be selected randomly in a practical range to form a 
series of cases for the database. Each case will be run by using the 
ISPH_CQ and the required variables, such as velocity and pressure, will 
be calculated and recorded for the database. 

2.3.3. Training and implementing the GNN 
The GNN is trained on the training datasets described in above sec-

tion to minimize the loss function. The loss function fobj used in this work 
is the sum of squared L-2 norm of the error between the prediction and 
actual values of the pressure, which can be expressed as: 

fobj =
∑N

i
si
(

p̂d,i − pd,i
)2 (19)  

where ̂pd,i and pd,i are the predicted and actual pressure from the training 
data at particle i, respectively. 

In Eq. (19), si is a weight for considering the effects of boundaries. 
The problems dealt with in this paper usually have two kinds of 
boundary conditions: i.e. the free-surface and solid boundary conditions. 
The difference between the predicted and actual pressure on the free 
surface is not taken into account during the training process. When 
implementing the pressure prediction by GNN model, the pressure of the 
free-surface particle is enforced to be zero, ensuring the satisfaction of 
the free-surface boundary condition Eq. (5). 

When considering the solid boundary condition which involves the 
normal derivative of pressure, i.e., Eq. (4), we found that the larger error 
would be introduced by directly imposing the conditions in the training 
and testing stages. To avoid this, we adopt the following strategy. During 
the training and testing stages of the GNN, only inner fluid particles are 
considered, ignoring the particles representing solid boundaries. The 
trained GNN model in such a way is only applied to the prediction of the 
pressures of the fluid particles, excluding the boundary particles. The 
pressure pb of the boundary particle is obtained directly from the 
neighbouring fluid particles by [42], 
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pb =

∑M
f∈fluidpf Wbf + (g − U̇˙)⋅

∑M
f∈fluidρf

(
rf − rb

)
Wbf

∑M
f∈fluidWbf

(20)  

where pf is the pressure of the fluid particle, ρf is the density of fluid, Wbf 
is a kernel weight function, M is the total number of fluid particles in the 
neighbourhood of the boundary particle, rf and rb are the position vector 
of fluid and boundary particles. However, the pressure near the 
boundaries may not be consistent because the different methods are 
employed for estimating the pressure on solid boundaries and on the 
fluid particles near the boundaries. In order to overcome this problem, 
more weight is applied to the fluid particles near the solid boundaries in 
Eq. (19). The weight term considering this and the free surface is pro-
posed as 

si =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

3 db ≤ 3.0⋅dx

2 3.0⋅dx < db ≤ 6.0⋅dx

1 db > 6.0⋅dx

0 free surface

(21)  

which db is the distance from a particle to a boundary. 
The treatment on the boundary conditions may not be perfect. 

However, it is quite effective as the results demonstrate below in Section 
3 and 4. Other alternatives for dealing with the boundary conditions 
may be explored in our future work. After the model is trained, it will be 
implemented in the numerical practice of the ISPH_GNN as illustrated in 
Fig. 2. 

3. Validation and convergence 

In this section, three benchmark tests are used to evaluate the per-
formance of the new method in terms of the prediction accuracy, 
convergence and mass (volume) and energy conservation. For the pur-
pose of comparison, the conventional ISPH [7] and the ISPH_CQ [9] are 
also employed. 

3.1. Dam-break flow 

As a classical validation case for Lagrangian fluid simulations, the 
dam breaking is first considered, in which a rectangular column of water 
with the width l and the height h is confined in a water tank with a 
horizontal length of L, as shown in Fig. 3. A pressure sensor P1 with a 
vertical distance h1 from the bottom is located on the right wall of the 
tank. 

A series of ISPH_CQ simulations for the dam breaking cases as shown 
in Fig. 3 have been carried out to generate the training/testing data 
including a training set of 50 cases and a test set of 30 cases to train the 
GNN model fGNN,dam(ψ,u∗,pd,t ,cp). In these cases, the lengths and heights 
of the water column are randomly chosen in the ranges of h/L = 0.2~0.5 
and l/L = 0.2~0.5 with L = 2.0 m. In the ISPH_CQ simulations, the 
initial particle size of 0.01 m and a time step size of 0.001 s are adopted. 

For each case/scene, the total 128 frames with 0.006 s apart, which can 
cover the entire process from the initial condition to the impact of dam 
breaking flow on the right side of the tank, are produced for the training 
data. 

After the GNN model is trained, the ISPH_GNN is applied to the dam 
breaking case in [43], where h = 0.37L, l = 0.37L and L = 1.61 m, which 
is different from any cases used for training. The initial particle spacing 
dx is taken as 0.01 m, i.e. h/dx = 60. The radius of the influence domain 
is taken as r0 =1.5dx. For this case and all other cases studied in this 
paper, the time step size dt is determined by (dt/dx) = 0.1, which has 
been tested to be appropriate in the conventional ISPH and ISPH_CQ. It 
is also worth noting that the trained fGNN,dam(ψ ,u∗,pd,t ,cp)may not work 
well at the initial stage due to involvement of u∗ and the pressure at the 
previous time steps. Therefore, the PPE solver is run during a short 

period from the beginning of the dam breaking until ̃t = 0.8 (̃t = t
̅̅
g
h

√

) 

and the GNN model is switched on for predicting pressure in the rest of 
the simulation. The particle distributions with the pressure contour by 
using different ISPH methods at two instants are given in Fig. 4. One can 
see that the pressure distribution predicted by the ISPH_GNN is very 
similar to that from ISPH_CQ. The free-surface profile and the formation 
of the breaking jet in the ISPH_GNN simulation are close to the corre-
sponding results from the ISPH and ISPH_CQ. The comparisons of the 
pressure at P1 with the height h1 = 0.05L from different ISPH methods 
and the experimental data of Lobovský et al. [43] are illustrated in 
Fig. 5. The result of the ISPH_GNN is very close to the result of the ISPH. 
Taking the experimental peak pressure as reference, the relative error of 
peak pressure defined by Errm= |pe − pn|)/pe where pn is the peak pres-
sure from numerical result and pe is the experimental peak pressure, is 
about 4.9% for ISPH_GNN, 4.7% for ISPH and 4.1% for ISPH_CQ. 

3.2. Sloshing waves in a moving tank 

The next cases considered are about liquid sloshing in an oscillating 
tank. The schematic diagram of the tank is illustrated in Fig. 6, where L is 
the tank length, D is its height, and d is the mean water depth. The tank is 
subjected to a periodic sway motion with its displacement being speci-
fied by Xs = asin(ωt), where a and ω are the amplitude and the fre-
quency of the motion, respectively. 

For these cases, the ISPH_CQ is also used to generate a training set of 
40 cases and a test set of 20 cases for training the GNN model fGNN,slo(ψ ,
u∗,pd,t ,cp). In these cases, d = 0.5L, D = 1.0L and L = 1.0 m are selected. 
The amplitude a are randomly selected ranging from 0.3L to 0.7L, 
whereas different values of ω = 0.6ω1, ω = 0.8ω1 and ω = 0.9ω1 are 
assigned forωwith ω1being the first resonant frequency of the sloshing. 
These conditions fall into the valid range of the analytical solution given 
by Faltinsen [44] and Wu et, al. [45]: 

ζ =
a
g

(

xω2 +
∑∞

n=0
Cnωsinknx

)

sinωt −
a
g

∑∞

n=0
ωn

(

Cn +
Hn

ω2

)

sinknxsinωt

(22)  

where ζ is the free-surface elevation measured from the mean water 
surface, kn = 2n+1

L π,ωn =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
gkntanhknd

√
,Hn = ω31

L
4(− 1)n

k2
n

andCn = Hn

ω2
n − ω2. 

The initial particle size of 0.01 m and a time step size of 0.001 s are 
adopted in the ISPH_CQ simulations for generating the training datasets. 
For each case/scene, the total 700 frames of data with the time interval 
of 0.01 s are used in training and testing. 

The ISPH_GNN with the trained model fGNN,slo(ψ , u∗, pd,t , cp) is used to 
study the case, where L = 1.0 m, a = 0.01L and ω = 0.8ω1. The particle 
spacing dx = 0.01 m, with the time step determined in the same way as 
mentioned above, i.e., dt/dx = 0.1. Fig. 7 illustrates the particle distri-
bution and the pressure contour from different ISPH methods at two 

different instants t̃ (̃t = t
̅̅
g
L

√

) corresponding to the occurrences of the 
highest water surface elevations on the right and left sides of the tank, Fig. 3. Schematic sketch of dam break flow.  
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Fig. 4. Particle distributions with pressure contours at ̃t = 1.62 (left column) and ̃t = 2.02 (right column) obtained from different ISPH methods (h = 0.37L, l = 0.37L 
and L = 1.61 m). 

Fig. 5. Time histories of the pressure at P1 from different ISPH models (h =
0.37L, l = 0.37L and L = 1.61 m; h1 = 0.05L). 

Fig. 6. Sketch of the sloshing tank.  
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respectively in this case. As can be seen that the ISPH_GNN can produce 
a smooth pressure field similar to that from ISPH_CQ. 

Fig. 8 compares the time histories of the surface elevations recorded 
at the left wall of the sloshing tank in the case corresponding to Fig. 7. 
The result predicted by ISPH_GNN shows good agreement with that from 
the ISPH_CQ and the analytical solution, although some differences are 
visible from the analytical solution, particularly during ̃t= 16 to 22 and 

33 to 37. In order to investigate the convergence behaviours of the 
ISPH_GNN model, Fig. 9 gives the corresponding surface elevations 
obtained by ISPH_GNN model with different initial particle spacings 
ranging from 0.01 m to 0.02 m, i.e. L/dx = 100 to 50. It can be seen that 
the numerical results become closer to the analytical solution with 
reducing the initial particle spacing. The errors of numerical results are 
shown in Fig. 10, in which the error is computed by 

Fig. 7. The particle distributions and pressure contour from different ISPH models at different time instants: ̃t= 25.06 (left column) and ̃t= 26.62 (right column).  
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Erra =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
ηi,n − ηi,f

)2
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N
i=1ηi,f

2
√ (23)  

where ηi,n is the surface elevation at different time steps from the 
ISPH_GNN and the ηi,f is the corresponding result from the analytical 
solution, N denotes the total number of time steps in the duration of 
simulation from t̃ = 0.0 to 39.2. For convenience, two dashed lines 
representing first-order (k = 1) and second-order (k = 2) convergence 
rates are included in the figure. It can be seen in Fig. 10 that the error of 
the ISPH_GNN reduces linearly as the particle size decreases, which 
demonstrates the linear convergence similar to that in the conventional 
ISPH. One may also observe from Fig. 10 that the error of the ISPH_GNN 
is lower than the conventional ISPH, implying that the present 
ISPH_GNN is slightly more accurate than the conventional ISPH if the 

same particle spacing is used. 
It should be noted that the GNN model fGNN,slo(ψ, u∗, pd,t, cp) is trained 

only on data for small amplitude sloshing cases. Correspondingly, a 
small amplitude sloshing example is used for the verification of 
ISPH_GNN. The capacity of ISPH_GNN with the trained model for 
simulating violent sloshing problems need to be confirmed using more 
complex violent cases. In future work, more violent sloshing cases, 
including broken sloshing waves may be used to generate training data 
to be added to the current training datasets for training the GNN model, 
which may improve the generalization and accuracy of the trained 
model for simulating different violent sloshing problems. 

3.3. Solitary wave propagation 

Further attention is paid to the solitary wave propagation as sketched 
in Fig. 11, where h, d and L are the solitary wave height, the mean water 
depth and the length of the tank, respectively. The solitary wave is 
generated by the wavemaker using the approach in Ma and Zhou [37]. 

In these cases, another training set of 40 cases and a test set of 20 
cases generated by the ISPH_CQ are used to train the GNN mod-
el fGNN,sol(ψ ,u∗, pd,t, cp). The cases are randomly selected with the wave 
height h ranging from 0.2d to 0.4d, whereas water depth d is adopted to 
be 0.25 m, 0.275 m and 0.3 m, respectively. The length of the tank L =
40d is used in these cases. For each case/scene, the total 256 frames with 
the time interval of 0.0125 s are generated. The initial particle size of 
0.0125 m and the time step size of 0.00125 s are used in ISPH_CQ to 
produce the training dataset. 

To validate the prediction accuracy, we use the ISPH_GNN model 
incorporating with the trained fGNN,sol(ψ, u∗, pd,t, cp) to model the solitary 
wave propagation with h = 0.28d. For comparison, the corresponding 

free-surface profiles at t̃ = 20 (̃t = t
̅̅
g
d

√

) from different ISPH results 

including the ISPH_CNN [22] with initial particle spacing 0.01 m, i.e. dx 
= d/25, are shown in Fig. 12. It is noted that the ISPH_CQ result agrees 
well with the Boussinesq solution [46] as confirmed by Zhang et al. [9]. 
This figure also confirms a good agreement between the ISPH_GNN 
result and the Boussinesq solution and the ISPH_CQ result. In contrast, 
the ISPH_CNN result exhibits larger difference from the Boussinesq and 
ISPH_CQ result, which is also reflected in the following error analysis in 
Fig. 14. 

To further show the convergence behaviours of the ISPH_GNN 
model, Fig. 13 gives the wave profiles at ̃t = 20 obtained by ISPH_GNN 
model with different initial particle spacings ranging from 0.01 m to 
0.025 m i.e. dx = d/25 to d/10. As can be found in Fig. 13 again that the 
numerical results become closer to the analytical solution with reducing 
the initial particle spacing. The corresponding errors of results from all 
the methods mentioned in the paper for this case with different particle 
spacing are plotted in Fig. 14. The error is computed in the same way as 
that used in Eq. (23) but ηi,n and ηi,f are replaced by the wave elevation at 
i-th particle obtained from the ISPH_GNN simulation and the analytical 
solution for this case; N is the total number of particles in the sub- 
domain from x/d = 8.8 to x/d = 20.0 in Fig. 12. Overall, the 
ISPH_GNN has a similar convergence property to the conventional ISPH 
and ISPH_CNN, but it has a slightly higher accuracy than the conven-
tional ISPH and ISPH_CNN, and its accuracy is closer to that of ISPH_CQ. 

To further assess the performance of the numerical method, the 

Fig. 8. The comparison of time histories of the surface elevations recorded at 
the left wall of the sloshing tank (L = 1.0 m, a = 0.01L and ω = 0.8ω1). 

Fig. 9. The comparison of time histories of the surface elevations recorded at 
the left wall of the sloshing tank with different particle resolutions (L = 1.0 m, a 
= 0.01L and ω = 0.8ω1). 

Fig. 10. Errors of numerical results in the sloshing case with different particle 
resolutions. 

Fig. 11. Schematic wave tank for solitary wave.  
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mass/volume and energy conservation are also studied. Fig. 15 gives the 
time histories of the fluid volume in the case corresponding to Fig. 12. It 
can be seen that the ISPH_GNN result agrees well with the theoretical 
value. Compared with the theoretical value from ̃t = 0.0 to ̃t = 31.3, the 
errors of the fluid volume are about 0.2% for ISPH_GNN, 0.16% for ISPH 

and 0.14% for ISPH_CQ in Fig 15. In addition, Fig. 16 depicts the time 
histories of the total energy in the ISPH_GNN simulation for the same 
case, in which the good reservation of the total energy of fluid after the 
wavemaker stops can be observed. Compared with the ISPH_CQ result 
from t̃ = 12.5 to t̃ = 31.3 in Fig 16, the errors of the total energy are 
about 0.048% for ISPH_GNN and 0.046% for ISPH, respectively. 

4. Demonstration of generalization and computational 
efficiency of ISPH_GNN 

4.1. Generalization 

The generalization capability is a notable issue in assessing the 
performance of the machine learning model. After the validation for the 
ISPH_GNN, we further investigate the potential of generalization of the 
model by using the trained model to study more complex scenarios, 
beyond the scenarios of training and testing data. The results from 
ISPH_CNN [22] will be employed for comparison in some cases. 

Firstly, to demonstrate the generalization performance of the nu-
merical model ISPH_GNN with fGNN,dam(ψ ,u∗, pd,t , cp), the case with the 
configuration similar to Fig. 3 but with a semicircle located in the middle 
of bottom is considered. In this case, the distance from the center of 
semicircle to the left wall is L = 2.0 m while the water column hgiht h =
0.5L and its length l = 0.25L are used. The initial particle size dx is taken 
as h/dx = 100, and the time step is still determined by dt/dx=0.1. Fig. 17 
shows the spatial distribution of pressure obtained from different ISPH 
models at two instants, corresponding to the occurrences of the violent 
wave impacts on the semicircle. It can be clearly seen that there is un-
reasonable pressure distribution before the semicircle in ISPH_CNN re-
sults. In contrast, the pressure distribution from the ISPH_GNN is very 

Fig. 12. Comparisons of solitary wave profiles between analytical solution and 
different numerical results at ̃t= 20 in the case with h = 0.28d. 

Fig. 13. Comparisons of wave profiles at ̃t= 20 between analytical solution and 
ISPH_GNN results corresponding to different initial particle spacings in the case 
with h = 0.28d. 

Fig. 14. Averaged errors Erra of numerical results corresponding to different 
particle spacing in the solitary wave propagation (h = 0.28d). 

Fig. 15. Time histories of the volume of the fluid in the case of solitary wave (h 
= 0.28d and dx = 0.0125 m, i.e. dx = d/20). 

Fig. 16. Time histories of the total energy in the case with solitary wave 
propagation (h = 0.28d). 
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close to these of ISPH and ISPH_CQ results. This comparison implies that 
the ISPH_GNN has better potential of generalization than the ISPH_CNN. 
One of the possible reasons is that the CNN model needs structural 
background mesh, which could not conform to the semicircle surface. 
Fig. 18 displays the comparison of the wave front and water column 
height of dam breaking flow computed by different ISPH methods, in 
which the wave front is represented by the coordinate value in the x- 

direction of the particle at the forefront of the water flow and the water 
column height is represented by the coordinate value in the y-direction 
of the particle at the highest position of the water flow. It is observed 
that the ISPH_GNN results are almost identical to the corresponding 
ISPH_CQ results. Taking the ISPH_CQ result from ̃t= 0.0 to ̃t = 1.3 in Fig 
18 as the reference, the errors of the wave front in Fig. 18(a) are about 
0.77%, 0.59% and 0.58% for ISPH_CNN, ISPH_GNN and ISPH, 

Fig. 17. Particle distributions with pressure contours at ̃t= 1.0 (left column) and ̃t = 1.1 (right column) obtained by using different ISPH models in the case of dam 
breaking over a semicircle. 
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respectively, while the errors of the water column height are 2.3% for 
ISPH_CNN, 0.41% for ISPH_GNN, and 0.43% for ISPH in Fig. 18(b). It 
can be seen that the error of ISPH_CNN are larger than that of ISPH_GNN, 
especially for the water column height in Fig. 18(b). 

Secondly, the case of sloshing with a vertical baffle in the middle of 
the tank shown in Fig. 6 is used here to demonstrate the generalization 
performance of the ISPH_GNN with fGNN,slo(ψ ,u∗, pd,t, cp). The flow con-
dition is same to that in Fig. 10 with a = 0.01L and ω = 0.8ω1. The 
height and width of the baffle are 0.2L and 0.04L, respectively. Fig 19 
denotes the snapshots of the liquid motion including the particle dis-
tribution and the pressure contour at different instants, where the par-
ticle spacing is L/dx = 100 with the time step determined in the same 
above. From Fig. 19, the ISPH_GNN method can provide quite smooth 
and consistent pressure fields particularly near the baffle with those of 
ISPH and ISPH_CQ. Correspondingly, the free surface of the whole 
sloshing tank at different instants calculated by different ISPH methods 
in this case are given in Fig. 20. Based on the reference data from the 
ISPH_CQ result in Fig 20, the errors of the free surface are about 4.6% for 
ISPH_GNN and 6.7% for ISPH in Fig. 20(a), while the errors are about 
4.4% for ISPH_GNN, and 6.9% for ISPH in Fig. 20(b). 

Further, the ISPH_GNN with fGNN,sol(ψ ,u∗,pd,t ,cp) is used to simulate 
the solitary wave propagation on a slope with angle of 150◦. For this 
purpose, a solitary wave with wave amplitude h = 0.24d and the water 
depth d = 0.25 m is studied. The initial particle spacing is taken as 0.01 
m, i.e. dx = d/25. Fig. 21 illustrates the process of solitary wave running 
up and down the slope at different times computed by ISPH_GNN. The 
wave profiles predicted using the ISPH_CQ are also plotted together 
(orange line on the free surface). It can be seen from Fig. 21(a) that the 
wave front reaches its maximum climbing point. Then the run-down 
process starts and the main flow retreats from the slope as shown in 
Fig. 21(c). Generally, the agreement of free surfaces between ISPH_GNN 
and ISPH_CQ is satisfactory. Fig. 22 gives the comparisons of wave 
profiles at t̃= 32.6 from different ISPH models. Taking the ISPH_CQ 

result from x/d = 0 to x/d = 26 in Fig. 22 as the reference, the errors are 
about 2.9% for ISPH_GNN and 2.6% for ISPH. 

To further explore the generalization performance of the train-
ed fGNN,sol(ψ,u∗,pd,t , cp), a case of solitary wave propagation over a ver-
tical baffle is also studied by ISPH_GNN with fGNN,sol(ψ , u∗, pd,t , cp) here. 
The same conditions as in Fig. 21 are considered here. The snapshots for 
the pressure field during the wave propagation over the vertical baffle 
computed by ISPH_GNN are given in Fig. 23. It can be seen that the 
ISPH_GNN with fGNN,sol(ψ, u∗, pd,t, cp) can provide quite smooth and 
consistent pressure fields near the baffle. In addition, the comparisons of 
wave profiles from different ISPH models are also shown in Fig. 24 and 
the agreement is generally acceptable. Compared with the correspond-
ing ISPH_CQ result from x/d = 8 to x/d = 18 in Fig 24, the errors of the 
wave profile for ISPH_GNN and ISPH are about 3.5% and 2.4% 
respectively. 

Overall, the above investigations show that the ISPH_GNN with the 
GNN model trained on the data for simply configurations can be applied 
to simulate the cases with more complex configurations and produce 
satisfactory results. Although the more extensive studies are needed, this 
paper shed some light on the good potential of generalization of the 
present ISPH_GNN. 

4.2. Computational efficiency 

In addition to the accuracy and generalization potential demon-
strated above, it may be worth to show the potential computational 
efficiency of ISPH_GNN. The dominated computational time used by 
ISPH is that taken by finding the solution of pressure. Therefore, in this 
section, the computational efficiency is demonstrated by comparing the 
computational time of ISPH_GNN with that of ISPH for finding the so-
lution of pressure. Fig. 25(a) plots the averaged computational time 
taken for pressure prediction per time step by the ISPH_GNN with that in 
the ISPH model for the case of solitary wave with different computa-
tional parameters given in Table 1. The speedup ratio, which is obtained 
by dividing the corresponding averaged computational time per step 
required for solving PPE in the conventional ISPH by the averaged 
computational time of the GNN model for predicting the pressure, is 
given in Fig. 25(b). All these cases are run on a workstation with the 
main specification as follows: Intel Xeon Platinum 8268 CPU at 2.9 GHz, 
256 GB RAM and NVIDIA GeForce RTX 3090 with 24 GB RAM. As can be 
seen, the pressure prediction in the ISPH can be significantly speeded up 
if using the trained GNN model to replace the solution of the PPE. With 
the growth of particle numbers, the time savings or speed up ratio in-
crease strikingly. For example, at 800k particles, the ISPH_GNN can 
achieve about 85 times faster for the pressure prediction than the con-
ventional ISPH. This indicates that the ISPH_GNN method has potential 
to be much more efficient than the traditional ISPH. For the purpose of 
comparison, the corresponding speedup ratio for the ISPH_CNN, taken 
from [22], is also plotted together in Fig. 25(b), for which all the cases 
for solving PPE and implementing ISPH_CNN used for the calculation of 
speedup ratio were run on an older machine with the specification of 
Intel Xeon E5–2667 CPU at 3.3 GHz, 16.0 GB RAM and NVIDIA GeForce 
GTX 1070 with 8 GB RAM. The ISPH_CNN can also be much faster than 
the conventional ISPH, but the speedup ratio is just at about 8 times at 
800k particles. Although these two models are run on different work-
stations, it is reasonable to conclude that the ISPH_GNN method perform 
better in computational efficiency than the ISPH_CNN. That is because 
the ISPH_CNN method requires two interpolation operations which are 
necessary to achieve the conversion between particle data in ISPH and 
grid-based data in CNN. 

It should be noted that the computational time used by solving the 
PPE depends on which solver for linear systems is used. In this paper, the 
biconjugate gradient stabilized (BCGSTAB) method [47], one of popular 
linear solvers for linear systems, is employed. The speedup ratios pre-
sented in Fig. 25 can be different if other solvers would be employed. It is 

Fig. 18. Comparisons of dam breaking flow (a) water front; and (b) water 
column height. 
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also noted that the computational time of the GNN model for predicting 
the pressure does not include the time for data generation and training. 
The main reason for doing so is that the GNN model does not need to be 
trained for each specific case and can become mature after being 
cumulatively trained by a sufficiently large number of cases. As a result, 

including the time for data generation and training for each specific case 
may not reflect the real efficiency of ISPH_GNN. 

Fig. 19. The particle distribution and the pressure contour in the case of sloshing with a vertical baffle at different instants: ̃t= 17.23 (left column) and ̃t = 18.79 
(right column). 
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5. Conclusion 

The present study proposes a new hybrid method (ISPH_GNN) for 
simulating free-surface flows by combing the Graph Neural Network 
(GNN) with the Lagrangian ISPH method. In this method, the trained 
GNN model is used to replace solving the PPE in the conventional ISPH. 
Some important issues related to the method, including the selection of 
the input parameters, the satisfaction of the boundary conditions and the 
formulation of the objective functions, have been addressed by consid-
ering the underlying features dominating the free-surface flows, such as 
the physical quantities involved in the PPE (velocity divergence and 
particle density at the intermedia step), viscous and gravitational effects, 
particle movement in the Lagrangian frame etc. The ISPH_GNN is then 
applied to three benchmark tests, i.e. the dam breaking, sloshing wave 
and the solitary wave propagation. The performance including the 
convergence, accuracy and the computational efficiency of the present 
ISPH_GNN are investigated in detail. It has been observed that:  

(1) The present ISPH_GNN can produce reasonable results which are 
visually very similar to the corresponding results obtained by the 
conventional ISPH and ISPH_CQ.  

(2) The ISPH_GNN is shown to be linearly convergent, the same as 
the conventional ISPH but the error of ISPH_GNN is visibly 
smaller than that of the conventional ISPH if their particle 
spacing is the same.  

(3) The ISPH_GNN can be potentially much more efficient than the 
conventional ISPH at similar level of accuracy when the number 
of particles used is large. 

The paper also investigates the potential of generalization of the 
ISPH_GNN by applying the method with a GNN model trained on the 
data for relatively simple cases to simulating the cases with more com-
plex geometries and configurations. It is shown that the ISPH_GNN 
method can yield satisfactory results for the more complex cases beyond 
the cases used for generating the training data. This sheds some light on 
the potential of the method. 

It should be noted that this is the first paper proposing the method, 
which has some limitations and needs to be improved. Our future work 
will address the limitations, such as adopting a wider range of training 
data for the training, exploring better way to implement the solid 
boundary conditions, and/or testing alternative objective functions, e. 
g., including the satisfaction of the physical law. In the future work, we 
may also attempt to train one generalized GNN model by using the 
mixed training dataset generated from different physical problems and 

Fig. 20. The comparison of the surface elevations between different ISPH re-
sults in the case of sloshing with a vertical baffle at two different instants:(a) ̃t=
15 and (b) ̃t= 36. 

Fig. 21. Snapshots illustrating distribution of particles along with pressure 
field from the ISPH_GNN in the case of solitary wave propagation on a slope 
with h = 0.24d at (a) ̃t= 31.32; (b) ̃t= 34.45 and (c) ̃t= 34.45 (the orange line 
denotes the wave profile from the ISPH_CQ). (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 22. Comparisons of wave profiles between different ISPH results in the 
case of solitary wave propagation on a slope (h = 0.24d). 
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then apply the ISPH_GNN with this generalized model to simulate 
different class of physical problems. 

In addition, only single-phase flows have been simulated by the 
ISPH_GNN in this paper. The application of the ISPH_GNN in multi- 
phase flows simulation is worth to be investigated in future work. The 
investigation can be conducted from two aspects. One is the application 
of the ISPH_GNN trained on data generated from single-phase flows to 
the simulation of multi-phase flows. The other is the attempt to train the 
ISPH_GNN using training data generated from a certain type of multi- 
phase flow physics problem, e.g., the gas–liquid two-phase flow, and 
then extend the trained ISPH_GNN to study other types of multi-phase 
flow problems. Furthermore, only two-dimensional problems have 
been considered in this paper. The capacity of ISPH_GNN for simulating 

three-dimensional problems needs to be investigated in future work. 
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Fig. 23. Snapshots illustrating distribution of particles along with pressure 
field from the ISPH_GNN in the case of solitary wave over a vertical baffle with 
h = 0.24d at (a) ̃t= 18.79; (b) ̃t= 21.3 and (c) ̃t= 23.8 (the orange line denotes 
the wave profile from the ISPH_CQ). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 24. Comparisons of wave profiles at t̃= 20 obtained by different ISPH 
models in the case of solitary wave over a vertical baffle with h = 0.24d. 

Fig. 25. Comparison of the computational efficiency for the case of solitary 
wave propagation: (a) averaged computational time used for pressure predic-
tion per step and (b) the speedup ratio for the averaged computational time 
used for pressure prediction per step. 

Table 1 
Case configurations for the solitary wave propagation.  

Case D (m) L (m) dx (m) N 

1 0.25 10 0.01 25,000 
2 0.25 40 0.01 100,000 
3 0.25 80 0.01 200,000 
4 0.5 80 0.01 400,000 
5 0.5 160 0.01 800,000  
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the work reported in this paper. 
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Appendix A. Identifying of the free-surface particles and determining the vertical distance between the inner particle to free surface 

For modelling the free-surface flows, it is critical to identify the free-surface particles. In this paper, an effective approach based on the particle 
density ratio and the particle distribution developed in Zheng et al. [5] is used to identify the free-surface particles. In this approach, three auxiliary 
functions relevant to the particle distribution are defined. The first one fspa = 1 if there are more than one free-surface particle in the influence domain 
of the particle i, and zero otherwise. The 2nd one fspb = 1 if particles are detected in all quadrants of the particle i defined using the local xi and yi axis 
(see Fig. A.1(a)), and fspb = 0 otherwise. The third one fspc = 1 if particles are detected in all quadrants of the particle i divided by yi = xi and yi = -xi (see 
Fig. A.1(b)), and fspc = 0 otherwise. The particle i can be identified as a free-surface particle if (1) no inner particles are observed in its influence 
domain; or (2) if the particle density ratio is not higher than 0.9, either fspa = 1 or particles are observed in no more than 2 quadrants of the particle i 
defined for both fspb and fspc; or (3) if the particle density ratio is higher than 0.9 and fspa = 1, either fspb or fspc = 0.

Fig. A.1. Illustration of definitions of auxiliary functions for the free-surface particle identification.  

Based on the free-surface particles identified in this way, the reference pressure related to Eq. (18) is estimated by ps = ρgz̃ with ̃z being the vertical 
distance from the inner fluid particle i to its nearest free-surface particle j, as shown in Fig. A.2.
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Fig. A.2. The free-surface and inner fluid particles.  
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