
              

City, University of London Institutional Repository

Citation: Aden, I., Child, C. H. T. & Reyes-Aldasoro, C. C. (2024). International 

Classification of Diseases Prediction from MIMIIC-III Clinical Text Using Pre-Trained 
ClinicalBERT and NLP Deep Learning Models Achieving State of the Art. Big Data and 
Cognitive Computing, 8(5), 47. doi: 10.3390/bdcc8050047 

This is the published version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/33037/

Link to published version: https://doi.org/10.3390/bdcc8050047

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Citation: Aden, I.; Child, C.H.T;

Reyes-Aldasoro, C.C. International

Classification of Diseases Prediction

from MIMIIC-III Clinical Text Using

Pre-Trained ClinicalBERT and NLP

Deep Learning Models Achieving

State of the Art. Big Data Cogn.

Comput. 2024, 8, 47. https://doi.org/

10.3390/bdcc8050047

Academic Editors: Tim Schlippe and

Matthias Wölfel

Received: 27 March 2024

Revised: 27 April 2024

Accepted: 30 April 2024

Published: 10 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and 
cognitive computing

Article

International Classification of Diseases Prediction from
MIMIIC-III Clinical Text Using Pre-Trained ClinicalBERT
and NLP Deep Learning Models Achieving State of the Art
Ilyas Aden * , Christopher H. T. Child and Constantino Carlos Reyes-Aldasoro

Department of Computer Science, City, University of London, Northampton Square, London EC1V 0HB, UK;
c.child@city.ac.uk (C.H.T.C.); constantino-carlos.reyes-aldasoro@city.ac.uk (C.C.R.-A.)
* Correspondence: ilyas.aden@city.ac.uk

Abstract: The International Classification of Diseases (ICD) serves as a widely employed framework
for assigning diagnosis codes to electronic health records of patients. These codes facilitate the encap-
sulation of diagnoses and procedures conducted during a patient’s hospitalisation. This study aims
to devise a predictive model for ICD codes based on the MIMIC-III clinical text dataset. Leveraging
natural language processing techniques and deep learning architectures, we constructed a pipeline to
distill pertinent information from the MIMIC-III dataset: the Medical Information Mart for Intensive
Care III (MIMIC-III), a sizable, de-identified, and publicly accessible repository of medical records.
Our method entails predicting diagnosis codes from unstructured data, such as discharge summaries
and notes encompassing symptoms. We used state-of-the-art deep learning algorithms, such as
recurrent neural networks (RNNs), long short-term memory (LSTM) networks, bidirectional LSTM
(BiLSTM) and BERT models after tokenizing the clinical test with Bio-ClinicalBERT, a pre-trained
model from Hugging Face. To evaluate the efficacy of our approach, we conducted experiments
utilizing the discharge dataset within MIMIC-III. Employing the BERT model, our methodology
exhibited commendable accuracy in predicting the top 10 and top 50 diagnosis codes within the
MIMIC-III dataset, achieving average accuracies of 88% and 80%, respectively. In comparison to
recent studies by Biseda and Kerang, as well as Gangavarapu, which reported F1 scores of 0.72 in
predicting the top 10 ICD-10 codes, our model demonstrated better performance, with an F1 score of
0.87. Similarly, in predicting the top 50 ICD-10 codes, previous research achieved an F1 score of 0.75,
whereas our method attained an F1 score of 0.81. These results underscore the better performance of
deep learning models over conventional machine learning approaches in this domain, thus validating
our findings. The ability to predict diagnoses early from clinical notes holds promise in assisting doc-
tors or physicians in determining effective treatments, thereby reshaping the conventional paradigm
of diagnosis-then-treatment care. Our code is available online.

Keywords: ICD prediction; NLP; deep learning models (RNN, LSTM, BERT)

1. Introduction
1.1. Background

The MIMIC-III database stands as a significant tool for researchers, clinicians, and stu-
dents keen on delving into critical care medicine to enhance patient outcomes [1]. It offers
access to real-world data, enabling the examination and hypothesis testing concerning the
treatment of critically ill patients. With its application in over 1000 research studies and
citations in more than 3500 scientific papers, its impact on medical research is profound. A
distinct aspect of the MIMIC-III database is its inclusion of detailed clinical notes [2]. These
notes, produced by healthcare providers, offer narrative accounts of patient care, presenting
deep insights into the management of critically ill patients. These narratives are instrumen-
tal in uncovering trends and patterns in patient treatment, enriching the database’s value
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for research purposes. Perhaps the most well-known work on ICD prediction using the
MIMIC-III dataset is the 2018 study by James Mullenbach et al., entitled “Explainable Pre-
diction of Medical Codes from Clinical Text”. This paper is renowned for introducing and
applying the CAML (Convolutional Attention for Multi-Label Classification) model, which
combines convolutional neural networks (CNNs) with an attention mechanism to predict
ICD codes from clinical text. This work was among the first to incorporate explainability
into ICD prediction models—a crucial advancement for fostering trust and understanding
in healthcare applications that depend on AI predictions. Although not the top performer
in terms of raw accuracy metrics—owing to continual improvements in the field—the
CAML model demonstrated competitive results on MIMIC-III at the time. Its explainability
features underscored its significance [3]. This work has spurred further research in the
domain of medical code prediction from clinical texts, influencing methodologies across
both academic and practical healthcare settings. Notably, the study titled “An Empirical
Evaluation of Deep Learning for ICD-9 Code Assignment Using MIMIC-III Clinical Notes”
has become a cornerstone in the field, comparing various deep learning approaches for
ICD-9 code prediction and establishing a benchmark for future research. It underscores the
potential of deep learning to automate ICD coding tasks [4]. Another influential subsequent
work is the 2021 paper “TransICD: Transformer Based Code-wise Attention Model for Ex-
plainable ICD Coding” [5]. This study introduces a transformer-based architecture named
TransICD, which employs a code-wise attention mechanism. This mechanism enables
the model to concentrate on specific segments of the clinical notes that are pertinent to
each ICD code prediction. The paper is notable for its high micro-AUC score of 0.923,
although it does not detail the exact F1 scores for the top 10 and top 50 ICD predictions.
It is also important to acknowledge the foundational work in NLP deep learning models,
particularly the transformer architecture introduced by Vaswani et al. in their landmark
2017 paper, “Attention is All You Need” [6]. While this paper did not focus on clinical
applications, it has significantly influenced NLP through its effectiveness in tasks like
machine translation and text summarization. Understanding transformers is essential for
grasping many clinical NLP studies that utilize this architecture. Subsequently, Google AI’s
development of BERT in 2018, based on the transformer’s encoder mechanism, marked
a pivotal shift in how contextual information is processed in NLP models. Moreover,
recent research has explored further innovations based on the transformer architecture,
such as the Transformer-in-Transformer (TNT) model, which offers a novel approach to
visual recognition tasks. Although the TNT model is primarily designed for visual tasks,
its methodological innovations provide useful parallels for text-based applications like
ICD prediction [7]. Similarly, the Multi-Generator Orthogonal GAN (MGO-GAN) intro-
duces a novel approach utilizing multiple generators to enhance output diversity. This
method could analogously enhance the diversity in ICD code prediction from clinical texts,
potentially capturing a broader array of diagnoses from complex medical narratives [8].

In this context, our current paper utilizes various deep learning models, including
RNN, LSTM, and BERT, to predict ICD codes from clinical text data in the MIMIC-III dataset.
Our focus is on comparing its performance, particularly with the transformer-based BERT
model, which remains a benchmark in many NLP tasks [9].

1.2. Data Exploratory and Analysis

The MIMIC-III dataset showcases a broad spectrum of patient demographics, notably
featuring a predominance of older adults and males. It encompasses a wide array of clinical
notes, diagnostic codes, and possibly additional pertinent details. The below images explain
and summarize the details of the exploratory data analysis:

Figure 1 illustrates the age distribution of patients through a histogram, with a pro-
nounced peak in the 60–70 age bracket. This suggests a predominant grouping of patients
within this age interval. The data lean towards the right, indicating a larger share of older
patients over younger ones.
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Figure 1. MIMIIC-III patient age distribution.

Figure 2 showcases a bar chart detailing the gender distribution within the dataset,
comparing male (M) and female (F) patients. The male patient count is noticeably higher,
as seen in the taller bar for males, highlighting a gender disparity in the dataset.

Figure 2. Gender of patients.

Figure 3 offers a deeper dive into the dataset’s notes categories, displaying a bar chart
of the variety of note types, where “Nursing/other” is the most frequent category.

Figure 3. MIMIIC-III clinical note categories.

Figure 4 features a bar chart displaying the top 10 diseases or ten most common ICD-9
diagnosis codes as an example. The chart, with the y-axis for occurrence counts and the
x-axis for the codes, shows a clear standout with the code 401.9 marking a significantly
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higher occurrence than its counterparts. These visualizations and statistics can help us
and any researchers or analysts better understand the characteristics and structure of the
MIMIIC III dataset before conducting further analyses.

Figure 4. Example of top 10 diseases.

For our study, two relevant tables will be considered: note events and ICD-9 diagnosis.
The note events table has more than 2 million rows and columns for patient ID, admission
ID, and discharge note text. The notes contain details like medical history, including
symptoms, medications, lab tests, hospital course, and final diagnosis, including the ICD-9
code given by doctors. The ICD diagnosis table has 651,000 rows and columns for patient
ID, admission ID, and ICD-9 diagnosis codes. There are 6984 unique codes. Each time a
patient is admitted, they may receive between 1 and 38 diagnosis codes, which indicate the
order of importance of their conditions and reasons for their visit. In summary, the two
key tables contain patient admission records with unstructured discharge note text and
structured ICD-9 diagnosis codes for analysis and mapping between text and codes. Table 1
describes the size of the dataset and their respective unique values in the initial dataset.

Table 1. MIMIC-III descriptive statistics.

Category Number of Rows Unique Values

Note events 2,083,180 2,023,185
Diagnosis 651,047 6984

1.3. Data Processing

The first step was to examine the list of ICD-9 diagnosis codes present in the MIMIC-III
dataset. Subsequently, these codes were matched with their respective ICD-10 counterparts,
and the accuracy of this mapping was validated using a Python script. After that, the notes
and diagnosis tables from MIMIC-III were merged based on unique patient and hospital
admission IDs. This created a unified dataset with each patient’s admission ID, ICD-10
codes, and discharge summary text. The data were then filtered to create multiple datasets:
one with the top 10 ICD-10 codes by frequency, one with the top 50, and one with all codes.
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The distributions across these datasets were compared. To mitigate potential out-of-memory
issues when processing the full dataset, smaller randomized samples of the data were taken
such as 30%, 70%, and 100% of the full dataset. This allows initial testing on smaller
sizes before scaling up. The results of these steps were processed and sampled datasets
containing patients’ admission IDs, ICD-10 codes, and textual discharge summaries, ready
for the application of natural language processing and machine learning models to predict
diagnosis codes from the text. The multiple sampled datasets allow model performance to
be tested at different data volumes. Below Table 2 describe diagnosis statistics.

Table 2. Statistics for diagnosis tables with top 10 and top 50 prevalent codes.

Category Number of Rows Unique Values Note Events (%)

Top 10 Diagnosis 677,738 10 32.5
Top 50 Diagnosis 1,058,988 50 52.8

2. Methodology

Our methodology consists of the following steps: data pre-processing and building
the language model and classifier model. Specifically, we use Python 3.10 for data pre-
processing and Python, NumPy, Pandas, and Sklearn for feature extraction. PyTorch is the
main framework for training and testing models. We used Jupyter Notebooks to run our
experiments on a private cloud platform called Runpod.io. Figure 5 below describes the
methodology used:

Figure 5. Methodology pipeline overview.

This above diagram illustrate an overview of our methodology pipeline for processing
and classifying medical text notes, likely from electronic health records, using machine
learning models. Here is a brief explanation of all stages presented in our pipeline:

MIMIC-III Database: This is a publicly available dataset that contains de-identified
health-related data associated with over forty thousand patients who stayed in critical care
units. The pipeline uses two main tables from this database:

- NOTEEVENTS: This table includes admission text notes, which are free-text descriptions
of patient encounters.

- DIAGNOSIS-ICD: This table lists the ICD-9 diagnosis codes for the conditions diag-
nosed during the hospital stay.

Data Pre-Processing: Relevant data from the NOTEEVENTS and DIAGNOSIS-ICD
tables are merged to create a new dataset. Stop words (commonly used words that usually
do not contain important meaning, like “the”, “is”, etc.) are removed from the text to
reduce noise and focus on significant words. The most common ICD-9 codes (top 10/50)
are extracted and then mapped to ICD-10, which is a more current and detailed classification
system for medical diagnoses. The text from the notes is tokenized, which means it is
split into meaningful pieces (tokens) such as words or terms, and then these tokens are
associated with the corresponding diagnostic labels (this process is called label encoding).

Data Modeling: Bio-ClinicalBERT [10] is utilized as the primary tokenizer for the text
notes. This is a version of the BERT model that has been pre-trained on biomedical and
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clinical text, making it more effective for understanding medical language. Classifier mod-
els are built, and their hyperparameters are fine-tuned. Hyperparameters are the settings
for the algorithm that guide the training process and are set before the training starts.

Classifier: Tokens generated from the text are used for classification purposes. The
main classifier models mentioned are recurrent neural networks (RNNs), long short-term
memory (LSTM) networks, bidirectional LSTM (BiLSTM) [11], and BERT (Bidirectional
Encoder Representations from Transformers). These are different neural network archi-
tectures commonly used in natural language processing tasks. The performance of these
models is analyzed using metrics like the F1 score (a harmonic mean of precision and
recall that balances the two), precision (the number of true positive results divided by
the number of all positive results), and recall (the number of true positive results divided
by the number of positives that should have been retrieved). Overall, this pipeline is a
structured approach to converting free-text medical notes into structured data that can
be analyzed and used for various purposes, such as predicting diagnoses, by leveraging
advanced machine learning techniques.

3. Experimental Setup

Data Splitting: The dataset was split into 80% training data and 20% test data using
the scikit-learn library in Python. This ensured that we had sufficient data to train the
models while retaining a subset to evaluate performance. The train–test split allows for an
unbiased assessment of the models.

Input Encoding: The text data were then encoded into numeric vectors suitable for
machine learning using a pre-trained Bio-ClinicalBERT tokenizer from the Hugging Face
company. This state-of-the-art language representation model is designed specifically for
the biomedical domain, allowing it to better handle medical terminology. The texts were
tokenized and encoded into input vectors for the training and test sets.

Model Selection: Based on initial experiments, several model architectures were
selected for comparison: recurrent neural networks (RNNs), long short-term memory
(LSTM), bi-directional LSTM, and BERT fine-tuning. These represent both traditional and
cutting-edge deep learning approaches for NLP text classification tasks.

Evaluation Metric: The weighted average F1 score was chosen as the single metric
to track during experiments. F1 score balances both precision and recall while weighting
accounts for class imbalance. This offers a comprehensive assessment of performance.
Additionally, various performance metrics such as precision, recall, and accuracy values are
utilized to assess disparities in performance across different datasets and classifier models.

Model Optimization: To improve results, various optimization techniques were employed:

· Hyperparameter tuning to find optimal model configurations.
· Error analysis to identify prediction pain points.
· More aggressive data sampling strategies
· Feature engineering such as text pre-processing
· Regularization methods like dropout to prevent over-fitting.
· Early stopping to halt training when the result does not improve.
· Learning curves to determine whether more training data are required.

Model Selection: Finally, the best-performing model architecture was selected based on
the experiments. The top model was retrained on the full 80% training corpus and saved for fu-
ture use. The pre-processed encodings were also retained for reuse in subsequent experiments.

4. Results and Discussions

Table 3 illustrates the performance of each model concerning their respective datasets,
focusing on the top 10 and top 50 ICD-10 codes for diagnosis. The performance of the top
10 ICD-10 prediction using BERT is better, with accuracy above 87% and 81% when using a
single LSTM model. However, performance decreased slightly when we tried predicting
top 50 ICD-10 as we obtained an accuracy of 81% for the BERT model and 67% for a single
LSTM model. The precision and recall scores for the top 10 are also better than those for



Big Data Cogn. Comput. 2024, 8, 47 7 of 13

the top 50 data. In assessing these three metrics, our approach involves the calculation of
average values rather than the examination of micro- or macro-level data points.

Table 3. Summary of results of our experiments.

Model Diagnosis Precision (%) Recall/Accuracy (%) F1 Score (%)

RNN Top 10 24 26 25
LSTM 81 81 81
BiLSTM 78 78 78
BERT 87 87 87

RNN Top 50 8 8 5
LSTM 68 68 66
BiLSTM 65 65 65
BERT 81 81 80

The best results were achieved using the hyperparameters below after model-tuning.
Table 4 provides a summary of the best hyperparameters for different models, including
RNN, LSTM, BiLSTM, and BERT, with both top 10 and top 50 diagnoses. The hyperparam-
eters include the batch size, number of epochs, embedding dimension, hidden dimension,
optimizer, activation function, dropout rate, and learning rate.

Table 4. Summary of best hyperparameter values.

Model Diagnosis Hyperparameters

RNN Top 10 Batch_size=16, epochs=10, embedding_dim=128, hidden_dim=256,
optimizer=‘AdamW’, activation=‘relu’, dropout=0.4, lr=0.00002

LSTM Batch_size=16, epochs=10, embedding_dim=128, hidden_dim=256,
optimizer=‘AdamW’, activation=‘relu’, dropout=0.2,lr=0.00

BiLSTM Batch_size=16, epochs=10, embedding_dim=128, hidden_dim=256,
optimizer=‘AdamW’, activation=‘relu’, dropout=0.2, lr=0.001

BERT Batch_size=16, epochs=10, embedding_dim=128, hidden_dim=256,
optimizer=‘AdamW’, activation=‘relu’, dropout=0.4, lr=0.001

RNN Top 50 Batch_size=16, epochs=10, embedding_dim=128, hidden_dim=256,
optimizer=‘AdamW’, activation=relu’, dropout=0.4, lr=0.00002

LSTM Batch_size=16, epochs=10, embedding_dim=128, hidden_dim=256,
optimizer=‘AdamW’, activation=‘relu’,dropout=0.2, lr=0.001

BiLSTM Batch_size=16, epochs=10, embedding_dim=128, hidden_dim=256,
optimizer=‘AdamW’, activation=‘relu’, dropout=0.2, lr=0.001

BERT Batch_size=16, epochs=10, embedding_dim=128, hidden_dim=256,
optimizer=‘AdamW’, activation=‘relu’, dropout=0.4, lr=0.001

Table 5 below presents a comparison between the main findings of previous studies
and the results we obtained.

Table 5. Comparative evaluation of different studies from the literature review.

Work Data Method Target Variable Performance Measures

Hsu et al. [12] Discharge summary Deep learning
(I) 19 distinct ICD-9 chapter
codes, (II) top 50 ICD-9 codes,
(III) top 100 ICD-9 codes

(I) micro-F1 score of 0.76, (II)
micro-F1 score of 0.57, (III)
micro-F1 score of 0.51

Gangavarapu et al. [13] Nursing notes Deep learning 19 distinct ICD-9 chapter
codes Accuracy of 0.833

Samonte et al. [14] Discharge summary Deep learning 10 distinct ICD-9 codes Precision of 0.780, Recall of
0.620, F1 score of 0.678
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Table 5. Cont.

Work Data Method Target Variable Performance Measures

Obeid et al. [15] Clinical notes Deep learning ICD-9 code from E950-E959
Area under the ROC curve
score of 0.882, F1 score of
0.769

Hsu et al. [16] subjective component Deep learning
(I) 17 distinct ICD-9 chapter
codes, (II) 2017 distinct
ICD-9 codes

(I) Accuracy of 0.580, (II)
Accuracy of 0.409

Xie et al. [17] Diagnosis description Deep learning 2833 ICD-9 codes Sensitivity score of 0.29,
specificity score of 0.33

Singaravelan et al. [18] Subjective component Deep learning 1871 ICD-9 codes

Recall score for chapter code
is 0.57, recall score for block
is 0.49, recall score for
three-digit code is 0.43, recall
score for full code is 0.45

Zeng et al. [19] Discharge summary Deep learning 6984 ICD-9 codes F1 score of 0.42

Huang et al. Discharge summary Deep learning (I) 10 ICD-9 codes, (II) 10
blocks 1131 ICD-10 codes

(I) F1 score of 0.69, (II) F1
score of 0.72

Current study Discharge summary Deep learning (I) top 10 ICD-10 codes, (II)
top 50 ICD-10 codes

(I) Precision of 0.88, recall of
0.88, F1 score of 0.88, (II)
Precision of 0.81, recall of
0.81, F1 score of 0.80

Indeed, our research indicates that models previously considered as having lower
performance exhibited suboptimal results primarily because of inadequately chosen hy-
perparameters and the absence of a fine-tuned decision boundary. Through our updated
comparison, we illustrated that when we trained our models using our configuration, it
led to a reduction in the gap between the highest and lowest F1 scores. This confirms the
results collected in the latest ICD-10 prediction research [20]. Additionally, Figures A1–A4
in Appendix A illustrate the precision, recall, and F-1 score for the LSTM/BERT classifiers
built. Overall, the classifier with the top 10 diagnoses has higher scores when compared to
the classifier with the top 50 diagnoses.

Previous studies have explored the feasibility of deep learning models for predicting
ICD-10 codes. However, it is important to note that these deep learning models did not
demonstrate high performance when applied to the MIMIC-III database.

To summarize, this experimentation utilizes a diverse array of deep learning mod-
els, including RNN, LSTM, BiLSTM, and BERT, with a specific emphasis on the Bio-
ClinicalBERT model, which is pre-trained for biomedical texts. The study takes advantage
of various neural network architectures, particularly focusing on a specialized version of
BERT pre-trained for biomedical contexts. This approach enhances the model’s ability
to interpret clinical language effectively. Furthermore, these results showcase significant
advancements in the automation of ICD coding and present the most comprehensive F1
score metrics available to date. These scores are internationally recognized for evaluating
the balance between precision and recall in classification tasks.

5. Limitation and Future Work

One of the main challenges we faced during our work was a lack of computational
resources to execute high-end operations necessary for training and optimizing complex
models like RNN, LSTM, and BERT. Indeed, handling the extraction of 7 GB from the
MIMIC-III dataset, which has an initial total size of 3 TB and consists of 26 tables, demands
significant computational resources and time. Using a private cloud server such as the
RTX A6000 GPU helped us overcome environments limited by resources, enabling more
efficient data processing and model training.

During the training of RNNs, LSTM, and particularly BERT models using the MIMIC-
III dataset, we encountered several additional challenges. Firstly, the complexity and
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heterogeneity of healthcare data present in MIMIC-III can lead to issues such as imbalanced
classes and missing values, which significantly affect the performance of predictive models.
Addressing these data quality issues required sophisticated preprocessing steps, which
themselves are resource-intensive.

Moreover, the temporal dependencies and high dimensionality of the data make
RNNs and LSTMs computationally expensive to train. These models also suffer from issues
like vanishing and exploding gradients, making it challenging to train deep networks
effectively without careful tuning of hyperparameters and the adoption of techniques like
gradient clipping and batch normalization. BERT and other transformer-based models,
while powerful in capturing contextual information from clinical notes, demand even more
computational resources due to their attention mechanisms and large number of parame-
ters. Training these models from scratch on a dataset like MIMIC-III can be prohibitively
expensive, often necessitating the use of pre-trained models followed by fine-tuning on
specific tasks. However, the adaptation of these models to domain-specific medical lan-
guage and tasks requires careful calibration and validation to ensure that the models do
not perpetuate biases or errors inherent in the training data.

Future work will focus on enhancing prediction models for ICD codes or diagnoses by
using an ensemble approach rather than relying on single models. Such an approach may
leverage the strengths of various model architectures to improve accuracy and robustness.
Additionally, refinements are necessary to boost the performance and accuracy of models
when predicting a larger number of diagnoses, such as the top 20, top 50, or even more
than 100 diagnoses.

Furthermore, adopting more advanced validation techniques, such as k-fold cross-
validation, will be explored to ensure the robustness and generalizability of the models.
Unlike the traditional approach of splitting the dataset into a fixed training and test set,
k-fold cross-validation provides a more comprehensive evaluation of model performance
by partitioning the data into multiple subsets for training and validation. This helps in
assessing the model’s performance across different subsets of the data and provides a more
accurate estimate of its true performance on unseen data.

Lastly, addressing the limitations in explainability and transparency of these complex
models is crucial, especially in a high-stakes field like healthcare. Developing methods
to interpret model decisions and ensure they align with clinical reasoning will be critical
in future work, enabling clinicians to trust and effectively use AI-driven tools in their
decision-making processes.

6. Conclusions

In conclusion, this research examines the efficacy of deep learning models such as
LSTM and BERT architectures, specifically the BERT model, for automated extraction of
medical concepts from clinical notes in the MIMIC-III database. Empirical results demon-
strate that deep learning natural language processing techniques can effectively encode
clinical texts and assign appropriate ICD codes without manual supervision. The proposed
methodology establishes a competitive baseline for concept extraction, achieving strong
diagnostic code prediction from discharge summaries. Compared to the top 10 ICD code
prediction with an F1 score of 0.72 [21], we achieved a better F1 score of 0.87. Furthermore,
similar to the top 50 ICD code prediction with an F1 score of 0.75 [22,23], we achieved a final
F1 score of 0.81. Moreover, the generalizability of the current LSTM/BERT models creates
promise for holistic, unified systems that can extract multiple data types such as diagnosis
codes, simultaneously from unstructured electronic health records. This research thereby
underscores the capability of artificial intelligence methods to unlock clinical knowledge
from textual data sources and meaningfully impact healthcare delivery. Furthermore,
large language models (LLMs) have shown the potential to accelerate clinical curation
via few-shot in-context learning. Indeed, in the latest paper of Zelalem et al. [24], self-
verification represents a crucial milestone in harnessing the capabilities of large language
models (LLMs) within healthcare contexts. As LLMs consistently enhance their overall
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performance, the use of LLMs in clinical data extraction combined with self-verification
(LLMs + SV) is poised to see notable improvements.
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Appendix A

Figure A1. Top 10 ICD predictions using LSTM model.

Figure A2. Top 10 ICD predictions using BERT model.
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Figure A3. Top 50 ICD predictions using LSTM model.
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Figure A4. Top 50 ICD predictions using BERT model.
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