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Abstract

In the study of reasoning in neural networks, recent efforts have sought
to improve consistency and coherence of sequence models, leading to im-
portant developments in the area of neuro-symbolic AI. In symbolic AI, the
concepts of consistency and coherence can be defined and verified formally,
but for neural networks these definitions are lacking. The provision of such
formal definitions is crucial to offer a common basis for the quantitative
evaluation and systematic comparison of connectionist, neuro-symbolic
and transfer learning approaches. In this paper, we introduce formal defi-
nitions of consistency and coherence for neural systems. To illustrate the
usefulness of our definitions, we propose a new dynamic relation-decoder
model built around the principles of consistency and coherence. We com-
pare our results with several existing relation-decoders using a partial
transfer learning task based on a novel data set introduced in this paper.
Our experiments show that relation-decoders that maintain consistency
over unobserved regions of representation space retain coherence across
domains, whilst achieving better transfer learning performance.

∗Funding in direct support of this work: EPSRC Training Grant, project reference
EP/L504786/1.
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1 Introduction
Humans are capable of learning concepts that can be applied to many different
scenarios Inhelder1964-TEG, Piaget2005-TPO, Lake2017-BMT. An important
principle is that human-like concepts remain coherent across contexts Nye2021-
ICA. As an example, consider the concept of ordinality, e.g . “A is larger than B”,
which allows comparisons to be made between ordered sets. Ordinality should
apply equally whether A and B are digits or a tower of blocks. It is said that a
concept may pertain to a multitude of properties: position, volume, reach, etc.
As long as one of these properties can be attributed to an object, a set of objects
can be compared on that basis. All in all, if the concept of ordinality was to be
learned in its most general form, its use should be consistent across objects and
coherent across object properties.

In Nye2021-ICA, empirical results on story generation and instruction-
following have shown that an intuitive use of consistency and coherence can
increase the accuracy of neural networks. Following a neuro-symbolic perspective
Garcez2020-NAT, it is argued in Nye2021-ICA that System 1 approaches, fast
and capable of learning patterns efficiently from data, “are often inconsistent and
incoherent”, and that “adding System 2 -inspired logical reasoning” as a logical
consistency, training-free module allows for an improved selection of candidate
stories generated by System 1. While Nye2021-ICA makes an important contribu-
tion by exploring several variations on the theme, in this paper we offer a formal
definition for consistency and coherence in the context of neural networks, in
particular neuro-symbolic autoencoders. We also apply and evaluate consistency
and coherence in transfer learning tasks, where we believe that the theme will
have its most practical impact.

We argue that for a concept to be useful during transfer learning, the system
of relations that define the concept in the source domain must be coherent with
the target domain, whereby logical consistency achieved in the source is retained
in the target domain. This is to say that the concept-specific relations learned
in the source ought to be consistent with a logical theory that defines their
semantics, and that such consistency must extend beyond the representations
learned in the source domain and, in particular, hold for the embeddings learned
in the target domain.

In this paper, we offer a formal definition for consistency and coherence
of sub-symbolic representation learners, inspired by analogous definitions from
symbolic AI. This is expected to define the conditions that make a learned
concept transfer well across properties and objects. To evaluate the practical
value of these definitions in a real setting, we derive a simple neuro-symbolic
autoencoder architecture consisting of a neural encoder for objects coupled with
consistent modular object relation-decoders. Relations such as isGreater, isEqual,...
are evaluated on a proposed Partial Relation Transfer (PRT) learning task,
between a new CLEVR-style BlockStacks data set and the MNIST handwritten
digits data set, such that the learning of ordinality among the MNIST digits
is evaluated against the learning of the relative position of a red block in a
stack of multi-colored blocks. Our evaluation includes a comparison with several
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existing relation-decoder models and results show that relation-decoders which
maintain consistency over unobserved regions of representation space retain
coherence across domains whilst achieving better transfer learning performance.1
In summary, the contributions of this paper are:

• A formal definition of consistency and coherence for sub-symbolic learners
offering a practical evaluation score for concept coherence;

• A derived model implementation and PRT data set and experimental setup
used to evaluate the interplay between concept coherence and concept
transfer;

• A comprehensive critical evaluation of results and comparison of multiple
relation-decoder models, showing that improvements in concept coherence,
as defined in this paper, correspond with improved concept transfer.

In Section 2 we provide the notation and required logic background. Section
3 formally defines coherence and consistency. Section 4 defines a practical
consistency loss and Section 5 outlines our neuro-symbolic autoencoder. After
detailing the PRT task and introducing the data set in Section 6, comparative
experimental results are discussed in Section 7. We provide an overview of the
related work in Section 8 and Section 9 concludes the paper with a discussion,
including limitations and future work. We expand on the experimental results and
setup, together with data set characteristics, model details and parameterization
in the Appendices.2

2 Preliminaries
Notation: We reserve uppercase calligraphic letters to denote sets, and lowercase
versions of the same letter to denote their elements, e.g. S = {s1, . . . , sn} is
a set S of n elements si. We indicate with |S| = n the cardinality of S. We
use uppercase roman letters to denote a random variable (e.g. S), and use the
uppercase calligraphic version of the same letter (S) to denote the set from which
the random variable takes values according to some corresponding probability
distribution pS, over the elements of the set, such that

∑|S|
i=1 pS(si) = 1 for a

discrete S. For brevity, we may write pS(si) as p(si), where the random variable
is implied by the argument. We use bold font lowercase letters to denote vector
elements, e.g. si ∈ Rd is an d-dimensional vector element from the set S = Rd.

Logic and model-theoretic background: our proposed theory is based
upon logic and model theoretic primitives. To avoid making this paper overly
dense, we defer the details of the logic background to Appendix E and include
here only the most important definitions supported by an illustrative example.

1This paper formalizes the theory and extends the empirical results first reported in
Harald2021-CAC.

2The codebase for this paper can be found at https://github.com/HStromfelt/
neurips22-FCA.
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Definition 2.1 (Signature, Arity, Domain, Interpretation, Structure). The
signature of a language L is a set of relations σ = {r∈L} whose elements have
arity given by ar : σ → N , where N is the set of natural numbers. Given a
signature σ and a non-empty domain S = {s1, s2, . . .}, an interpretation ISσ

of σ over elements of S assigns to each relation r ∈ σ a set ISσ
(r) ⊆ Sar(r). A

structure is a tuple Sσ = (S, ISσ
).

We construct universally quantified first-order logic formulae (called sentences)
using the signature of L. A set of sentences form a theory T and when a sentence
τ is true in a structure Sσ, we say that the structure satisfies τ , denoted as
Sσ |= τ . This allows us to define a model of a theory:

Definition 2.2 (Model of a theory). Let T be a theory written in a language
L and let Sσ = (S, ISσ) be a structure, where σ is the signature of L. Sσ is a
model of T if and only if Sσ |= τ for every sentence τ ∈ T .

Example 1. Let S is a domain of images of handwritten digits and σ the signature
of binary relations σ = {isGreater, isEqual, isLess, isSuccessor, isPredecessor},
or for short σ = {G, E, L, S, P}. Let T be the theory that defines ordinality
including, for instance, the sentence ∀i, j.G(i, j) → ¬E(i, j) (if a digit is greater
than another then they are not equal). Any structure Sσ = (S, ISσ) with
interpretations ISσ

of σ that captures a total order over the elements of S is a
model of T .

3 A Formalization of Consistency and Coherence
In this section, we turn our attention to the challenge of learning a model of
a theory (Def. 2.2) over a real-world domain S given a signature σ. Here, a
learner must determine an appropriate interpretation over real-world data, such
as images or other perceptions. This can be challenging because, firstly, we may
only have a partial description of the interpretation, and secondly data may be
noisy and contain information that is not relevant to the theory. For example,
the handwritten digits in the MNIST data set contain stylistic details such as
line thickness and digit skew that are irrelevant to the notion of ordinality, which
makes learning the structure from Example 1 non-trivial.

Following the convention from the autoencoder disentanglement literature
Bengio2013-RLR, Kingma2014-AEV, Higgins2017-BVL, Higgins2018-TDD, we
make the assumption that real-world observations S are drawn from some
conditional distribution pS|Z, where Z is a latent random variable, itself drawn
from prior pZ. It is therefore useful to define a domain encoding of the form:

ψS : S → Z, (1)

tasked with approximating the conditional expectation of the posterior, i.e.
ψS(s) = EpZ|S [Z|s]. Since obtaining an interpretation from domain encodings for
a given signature may require dealing with noise, we express the interpretation of
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relations over real-world data by belief functions Paris1994-TUR, Paris2015-PIL
over the space Z, and refer to these as relation-decoders:

ϕr : Zar(r) → (0, 1) (2)

with ϕ = {ϕr : r ∈ σ}. Concretely, for a binary relation r and ordered pair
(si, sj) ∈ S2, ϕr(ψS(si), ψS(sj)) describes the belief that (si, sj) ∈ ISσ(r). A
belief ϕr(ψS(si), ψS(sj))≈ 1 signifies a strong belief that (si, sj) ∈ ISσ(r) and
ϕr(ψS(si), ψS(sj))≈0 signifies a strong belief that (si, sj) /∈ ISσ

(r). Together,
ψS and ϕ allow us to define a belief-based analogue to a structure.

Definition 3.1 (Soft-Structure/Soft-Substructure). Given a signature σ, a
(possibly infinite) set Z and relation-decoders ϕ, a soft-structure is a tuple Z̃σ =
(Z, ϕ). For a finite domain S and encoding ψS : S → Z, S̃σ = (ψS(S), ϕ) is called
a finite soft-substructure of Z̃σ, with sub-domain ψS(S) = {ψS(s)|s ∈ S} ⊆ Z.

A soft-structure can be used to learn a logic structure over a real-world
domain through learning ψS and ϕ. Clearly, a finite soft-substructure is a
soft-structure. In a real-world domain, there may be only partial information
about the values of an interpretation, and there may be errors in that partial
interpretation. To determine the degree to which a soft-structure supports any
given structure, we introduce the following measure:

p(Sσ|S̃σ) =
∏
r∈σ

∏
O∈Sar(r)

f(ϕr, ψS , O, γ
r
O,Sσ

) (3)

with

f(ϕr, ψS , O, γ
r
O,Sσ

) = (ϕr(ψS(O)))γ
r
O,Sσ · (1− ϕr(ψS(O)))1−γr

O,Sσ , (4)

where γrO,Sσ
= 1 if O ∈ ISσ

(r), and 0 otherwise; we use ϕr(ψS(O)) as shorthand
for ϕr(ψS(s1), . . . , ψS(sn)) for n = ar(r). Eqn. 3 expresses the assumption that,
given a finite soft-structure, the beliefs in what constitutes the interpretations
of different relations are independent of one another. It is straightforward to
show that

∑
Sσ
p(Sσ|S̃σ) = 1 (summed over all possible structures with domain

S and signature σ) and so Eqn. 3 can be treated as a probability measure, where
p(Sσ|S̃σ) ≈ 1 means that there is a high probability that the interpretation
sampled from S̃σ will be ISσ . If we have a theory T over σ then it is natural to
ask with what weight S̃σ supports any given structure that is a model of T . In
the following, we use model weight, ΓS̃σ

T , to describe the support given by S̃σ to
models of T :

ΓS̃σ

T =
∑

Sσ∈MT
S

p(Sσ|S̃σ) (5)

where MT
S is the set of all structures with domain S that are models of T . This

lets us compare soft-structures, wherein a good soft-structure will be one that
has a high model weight.
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Definition 3.2 (ϵ-Consistency of soft-structures). Given a finite soft-structure
S̃σ and an arbitrarily small number ϵ, if 1 − ΓS̃σ

T ≤ ϵ then we say that S̃σ is
ϵ-consistent with theory T .

We propose ϵ-consistency as an appropriate measure of the notion of consis-
tency presented in Nye2021-ICA. A consistent soft-structure S̃σ ensures that ϕ
gives high belief only to interpretations that satisfy, and therefore are logically
consistent with, theory T . As expected, consistency pertains to the domain
encodings of S̃σ, i.e. ψS(S). For a concept to be learned in a manner comparable
to how a human might learn, we would expect consistency to carry over to new
domains with their corresponding soft-structures, which motivates our definition
of coherence between soft-structures, as follows. Consider a situation where a
deep network has already learned from the MNIST data set a soft-structure that
has high model weight, given the relations {G, E, L, S, P} from Example 1. Now,
consider a new domain of images, Y, showing single block stacks of different
heights, and we wish to re-use the signature of ordinal relations and T from
Example 1. Let IYσ be an interpretation in the new domain that orders images
according to block stack height and that is a model of T . We can summarise
this with the following two structures:

Xσ = (X , IXσ
) ∈ MT

X and Yσ = (Y, IYσ
) ∈ MT

Y , (6)

where Xσ is the structure from Example 1 with a domain of handwritten digits
and Yσ is our new structure, with a domain of block stack images. These can be
learned by soft-structures:

X̃σ = (ψX (X ), ϕ) and Ỹσ = (ψY(Y), ϕ), (7)

which use domain-specific encoders, ψX and ψY , but share the same relation-
decoders. As we know that X̃σ has a high model weight and since ϕ is shared with
Ỹσ, a natural question to ask is: under what conditions will a ϕ that is consistent
over domain-encodings ψX (X ) also be consistent over ψY(Y)? Concretely, we
are interested in specifying when the following coherence condition holds.

Definition 3.3 (ϵ-Coherence across soft-structures). Two soft-structures, X̃σ

and Ỹσ that share relation-decoders ϕ, are said to be ϵ-coherent with respect
to a theory T , if X̃σ is ϵ1-consistent with T , Ỹσ is ϵ2-consistent with T , ϵ1 ≤ ϵ,
and ϵ2 ≤ ϵ.

Coherence between X̃σ and Ỹσ as defined above means that the concept of
ordinality that applies to digit ordering can also be applied to block stack height
ordering. It is desirable that learning ordinality on the domain of digits produces
a coherent concept of ordinality with respect to other ordinal properties, such as
height. Since it is possible that ψS(X ) and ψS(Y) produce unique encodings,
coherence relies on ϕ’s ability to generalize over possibly disjoint subsets of Z.3

3If soft-structure Z̃σ defined over the full space Z is consistent then coherence is guaranteed
between all possible soft-substructures.
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4 Measuring Consistency and Coherence
Calculating Eqn. 5 can be computationally too expensive for larger domains.
An efficient approach to measuring the consistency of soft-structures is therefore
required. In this section, we introduce a proxy measure for a soft-structure’s
ϵ-consistency and ϵ-coherence with a given theory when access to every logical
model is not available or is computationally intractable.

Suppose that there is a fixed domain S and theory T whose sentences use
relations from a signature σ. Let k ∈ {1, ...,K0} denote the index associated with
each unique ground instance of the sentences in T . Take BT to be a Boolean
random variable. For the k-th grounding in T , the probability of the theory being
satisfied under soft-structure S̃σ is expressed as p(bT = 1|S̃σ, k). Conversely,
the probability of non-satisfaction is given by p(bT = 0|S̃σ, k). For a model of
(universally-quantified) theory T , Sσ ∈ MT

S , any grounding k of the T is always
satisfied (by definition), and thus p(bT = 1|Sσ, k) = 1. When S̃σ is consistent
with T then we should also find that p(bT = 1|S̃σ, k) ≈ 1 for all k. Hence, we
define a consistency loss function as the expectation over a randomly-chosen
grounding k of the binary cross-entropy between p(BT |Sσ, k) and p(BT |S̃σ, k)
for any Sσ ∈ MT

S . This in turn simplifies to produce the expected negative
log-likelihood of satisfying a random grounding of T , as follows:

L(T , S̃σ) = Ek∼p(k)[− ln p(bT = 1|S̃σ, k)]. (8)

where p(k) = 1
K0

is the uniform distribution over the set of unique groundings.
A measure based on this loss is required to enable a practical evaluation of
consistency, acting as an approximation for consistency. More precisely, we
define Γ̄S̃σ

T = exp(−L(T , S̃σ)) as a proxy measure of ΓS̃σ

T , and say that soft-
structure S̃σ is ϵ̄-proxy consistent with T if

ln
1

1− ϵ̄
≥ L(T , S̃σ) (9)

where ϵ̄ ≥ 1 − Γ̄S̃σ

T . Due to the relationship between ϵ̄ and L(T , S̃σ), we take
the proxy measure of coherence to be the smallest satisfiable value of L(T , S̃σ)
between domains.4

Although our treatment of consistency has thus far focused on a particular
theory T , notice that a subset of the sentences of T form a partial theory,
which is itself a theory. This means that consistency can be evaluated given a
partial (even single sentence) theory, allowing us to examine consistency losses
for any partial specifications of a given domain of interest. In this paper, we
evaluate the proposed consistency loss against two partial specifications within
the theory of ordinality. These are named Consistency-Across (Con-A) and
Consistency-Individual (Con-I) in the experiments that will follow.5 Con-A
includes the sentences that determine inter-relation behavior, for instance the

4The complete derivation of loss function and bounds is presented in Appendix G.
5Truth-tables for each consistency formula are given in Appendix F.
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Figure 1: Network architecture used for PRT tasks. In our experiments si/j
are either MNIST (domain X ) or BlockStacks (domain Y) images. Relational
learning is performed on the source (S = X ) MNIST domain (to learn e.g. that
digit 5 is greater than 3). Moving to the target (S = Y) domain (stacks of
blocks) involves training a new image autoencoder together with a subset of the
relation-decoders from MNIST with fixed parameters. The remaining relations
are held-out to evaluate zero-shot transfer learning performance. γrO,Sσ

provides
the ground truth for the given structure, which ϕr predicts as γ̂rO,Sσ

. As in
Section 3, O is used to abbreviate (ψenc

S (si), ψ
enc
S (sj)).

sentence ∀i, j. (isGreater(i, j) → ¬isEqual(i, j) ∧ ¬isLess(i, j)), stating that if i
is greater than j then i must not be equal to or less than j. Con-I includes
the sentences that are about a single relation, describing any property of an
individual relation over objects (or images in the case of our experiments). Each
relation may satisfy a number of properties, for example ∀i, j, k. (isGreater(i, j)∧
isGreater(j, k) → isGreater(i, k)) represents transitivity of the isGreater relation.
Transitivity is true for isGreater, but is false for other relations investigated in
this paper, e.g. isSuccessor. We will evaluate consistency loss of transitivity
(Con-I-T), asymmetry (Con-I-A) and reflexivity (Con-I-R) for the relations in
Example 1. The evaluation of consistency loss for any available partial theory
will be shown to provide a more nuanced perspective on model performance than
accuracy results and disentanglement pressure alone during transfer learning.

5 A Consistent and Coherent Neuro-symbolic Au-
toencoder

In order to ground our definitions of consistency (Def. 3.2) and coherence (Def.
3.3) into a real system and evaluate their practical value, in this section we
derive a simple neuro-symbolic autoencoder architecture which offers one of many
possible implementations of the theory defined in Section 3. Figure 1 outlines
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the main components of our autoencoder: a domain-encoder ψS and modular
relation-decoders ϕ form an autoencoding architecture that, given a domain
of images S ⊂ RC×W×H (C color channels, width W and height H) and a d-
dimensional latent space Z = Rd, converts sub-symbolic encodings from ψS into
a modular relational representation via decoding for each ϕr, r ∈ σ. Additionally,
to retain information in Z pertaining to S which is beyond the requirements of ϕ,
a domain-decoder produces domain reconstructions Ŝ. In Figure 1, we use ψenc

S

to refer to the domain-encoder and ψdec
S to the domain-decoder. Although in this

paper we opt for an autoencoding architecture, our definitions of consistency and
coherence are applicable to a wider range of neural architectures. For instance, a
multi-layer perception network can be viewed as a set of encoding and decoding
layers Shwartz2017-OTB. As long as the architecture offers explicit soft relation
decodings, provided we can define a partial theory over them, we can define a
consistency loss over the outputs.

To train the model, ground-truth interpretations ISσ
are provided, allowing

us to maximize directly Eqn. 3 via the negative log-likelihood loss:

LS̃σ = − log p(Sσ|S̃σ), (10)

To obtain informative latent representations for S, we use a Variational Au-
toencoder (VAE), specifically the β-VAE Burgess2017-UDI, Higgins2017-BVL,
Kingma2014-AEV due to its simplicity and demonstrated ability to separate
distinct factors in the latent representation (known as disentanglement, although
disentanglement is not a requirement for consistency and coherence). We there-
fore take the Evidence Lower Bound (ELBO) objective with an additional β
scalar hyperparameter from Higgins2017-BVL, that seeks to achieve disentan-
glement (LELBO

β-VAE), and combine it with LS̃σ to obtain the following aggregate
objective:6

Ljoint = LELBO
β-VAE − λLS̃σ (11)

where λ is a scalar weighting parameter.
Together with the LELBO

β-VAE, the choice of relation-decoder can shape the
domain encodings Gutierrez-Basulto2018-FKG. In our evaluation, the following
choices are made. We propose a Dynamic Comparator (DC) composed of two
modes, a distance-based measure, ϕ†r, to measure the distance between two
inputs relative to a reference point, and a step-function, ϕ‡r, that determines the
sign of the difference between two points, optionally with an offset. Although
any function could be used that has the required characteristics for ϕ† and ϕ‡,
in this paper we use the following implementation:

ϕDC
r (zi, zj) = ar,0 · ϕ†r + ar,1 · ϕ‡r (12)

where,

ϕ†r = f0
(
−ηr,0 · ∥ur ⊙ (zi − zj + b†r)∥2

)
(13)

ϕ‡r = f1
(
ηr,1 · u⊤

r (zi − zj + b‡r)
)
. (14)

6a more detailed derivation of LELBO
β-VAE is included in the Appendix C
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Here, ar = Softmax(Ar) ∈ (0, 1)2 is an attention weighting between the two
modes, ϕ†r and ϕ‡r; f0 and f1 are an exponential and sigmoid function, respectively;
ur = Softmax(Ur) ∈ (0, 1)m is an attention mask which is applied to m-
dimensional embeddings; b†r, b‡r ∈ Rm are learnable bias terms that enable an
offset to each mode; ηr,0 ∈ R+ are non-negative and ηr,1 ∈ R are any-valued
scalar terms, respectively. Lastly, ⊙ denotes the Hadamard product and ∥ · ∥2
is the Euclidean norm. The key innovation behind DC is its ability to model
each of the ordinality relations whilst encouraging generalized consistency across
the full latent subspace, as defined by each ur. This is achieved without explicit
weight sharing, wherein relation-decoders discover parametric relationships from
the data. Further details are provided in Appendix D.1.

6 Experiment Design: Partial Relation Transfer
We now describe an experimental design to compare coherence of different
relation-decoders.

Partial Relation Transfer (PRT): We evaluate a novel PRT task across
two soft-structures X̃σ and Ỹσ. The soft-structures share a common signature
σ and relation-decoders ϕ, but have disjoint domains X and Y, respectively.
The experimental design involves first learning ϕ on source domain X , together
with its domain-specific autoencoder. Then, a new domain-specific autoencoder
is trained on the target domain Y, alongside a selection of the now learned ϕ
relation-decoders with fixed-parameters. The selection of relation-decoders is
expected to help guide training of ψenc

Y (see Fig.1). Held-out relation-decoders
are then evaluated in Y, i.e. a zero-shot transfer learning task. For domain X
we use the MNIST handwritten digits data set mnist, and for domain Y we use
the proposed BlockStacks data set, consisting of a single stack of multi-colored
cubes of differing heights, each containing one randomly-positioned red cube (see
Appendix B for details and examples). The shared signature includes the ordinal
relations σ ={G, E, L, S, P}, and it is applied to digit ordering in MNIST and to
red cube position ordering in BlockStacks. We provide results with respect to
a theory of ordinality, as explored in Example 1. A formal specification of the
theory is provided in Appendix F. When transferring relations from ψenc

X to ψenc
Y ,

one could use the full set ϕ of relation-decoders. However, this is not necessary
from a logical standpoint because the entire system of relations can be expressed
in terms of the isSuccessor relation S (e.g. the successor of a number is larger
than that number). We therefore only employ the isSuccessor relation-decoder
as the fixed-parameter selection to guide the learning of ψenc

Y . If coherence, as
defined in this paper, is carried across domains, we would expect the transferring
of isSuccessor to produce an improved performance on the remaining relations
in the target domain.

Neural model components and hyperparameters: Together with DC,
existing relation-decoder models evaluated here are: TransR Lin2015-LEA, HolE
Nickel2016-HEO, NTN Socher2013-RWN. We additionally include a basic feed-
forward neural network (NN). To produce domain-encodings, all experiments use
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a β-VAE Higgins2017-BVL. We provide further details for all models, including
training regimen, parameterization and implementation in Appendix D. In the
source domain, we explore β values in {1, 4, 8, 12} and set λ = 103. In the
target domain, we first normalise losses and set β = 10−4 and λ = 10−2, as these
produced good image reconstructions while optimising LỸσ . In all experiments
we fix Z = R10.

7 Experimental Results and Discussion
In this section, experimental results show that transfer learning performance is
positively correlated with our measures for consistency and coherence. This holds
particularly true for embeddings that are different but near in space to source
domain embeddings. As we have argued, for a neural model to perform well on
concept transfer, its representations must maintain high probability of consistency
with a theory that provides a semantics for the concept. The most robust way of
doing this is to maintain consistency across regions of embedding space, rather
than relying exclusively on the specific data-points observed at training time
in the source domain. In our analysis, consistency losses are evaluated when
sampling from different regions of latent space Z. We evaluate: data-embeddings,
where all inputs are encodings of a domain’s test data; interpolation, when we
derive an empirical mean and variance for the domain’s data-embeddings and
sample from a corresponding Gaussian distribution; and extrapolation, when we
sample from regions strictly outside the smallest, axis-aligned, hyper-rectangle
that encloses all data-points.

Figure 2-top provides relation-decoder prediction accuracies in both the
source (MNIST, left) and target (BlockStacks, right) domains.7 The relations are
S, P, E, G, L and relation S is transferred to the target domain. Key observations
are that DC produces excellent PRT performance, whilst NN, NTN and HolE
all see some degradation from their source-domain accuracies for relations other
than isSuccessor (S). TransR maintains target-domain accuracies similar to its
performance in the source domain, but this is significantly below the performance
of other models in the source domain. We include the impact of adjusting β
(disentanglement pressure) in Figure 2-bottom. Barring DC which has little
discernible change in either source or target domains, PRT performance is
significantly impacted by β for all models in the target domain, but has little
effect in the source domain. TransR shows a strong positive correlation between
target domain accuracy and β values, whereas the remaining models produce
their best PRT performance with medium disentanglement pressure.

To investigate the broad trends that run across all β values and relation-
decoder models, we ran a Spearman rank correlation analysis between consistency
losses and PRT performance. Separate coefficients are produced for each com-
bination of consistency loss: Con-A and Con-I further divided into Con-I-T
(transitivity), Con-I-A (asymmetry) and Con-I-R (reflexivity), and regions of

7We take ϕr inferences of 0.5 or above to signify true, and otherwise false. An alternative,
left as future work, would be to sample the space of ϕ values to produce a confidence measure.
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Figure 2: [Top] Relation-decoder prediction accuracy per model (DC, NN, NTN,
HoIE, TransR) and relation (abbreviated on the x-axis as in Example 1), in
the source domain (MNIST, left) and target domain (BlockStack, right). A
red highlighted S and dotted line (top right) indicates that relation isSuccessor
is included in training the target domain autoencoder, but none of the other
relations are. Both DC and NN retain a good performance while all other models
show a decrease of accuracy in the target domain for one or more of the relations
not included in training. [Bottom] Impact of different values of β ∈ {1, 4, 8, 12}
for each relation-decoder averaged across all relations in the source domain (left)
and held-out relations {P,E,G, L} in the target domain (right). It can be seen
that DC is not impacted by changes in β and it maintains performance in the
target domain. All other models show a decrease of accuracy for the held-out
relations in the target domain.
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Figure 3: Consistency-Across (Con-A) losses (lower values are better) for
the models (DC, NN, NTN, HolE, TransR) using the MNIST data set (source
domain X ) [left] and BlockStacks (target domain Y) [right]. The blue bars show
the consistency loss of the data embeddings, with darker shades corresponding to
models trained with higher β (disentanglement pressure). The green bars show
the results for interpolation. The red bars show the results for extrapolation.

latent space: data-embedding, interpolation and extrapolation (see Appendix
H for the full table). Lower consistency losses are expected to produce higher
PRT performance as indicated by a negative Spearman rank coefficient. The
coefficients show that the consistency losses of data-embeddings in the source
domain are weakly rank correlated with PRT. The consistency losses in the
case of interpolation are, in most cases, strongly rank correlated with PRT. The
consistency losses in the case of extrapolation lie in between and are generally
moderately rank correlated with PRT. This supports our thesis that consistency
can facilitate reliable transfer. Furthermore, consistency of certain partial theo-
ries may matter more. Here, Con-A, Con-I-T and Con-I-A on interpolation are
the most relevant partial theories for transfer learning performance. As we shall
see, DC outperforms all other models on these losses and this result is mirrored
by its PRT performance.

To gain a deeper insight as to which underlying characteristics can explain
the observed PRT accuracy profiles, Figure 3 and Figure 4 present Con-A and
Con-I loss profiles, respectively, for varied β and regions of latent space (for data-
embeddings in blue, interpolation in green and extrapolation in red). Results
refer to both source (left) and target domain embeddings (right). Firstly, we
note that DC retains excellent Con-A for all regions of latent space. TransR
retains consistency from data-embeddings to the interpolated regions, but not to
the extrapolated regions. The remaining models show degradation of consistency
between data-embeddings and interpolation and extrapolation regions, with
extrapolation often being worse than interpolation. Looking at β trends, aside
from DC, increasing β appears to have a positive but limited effect on interpo-
lation and extrapolation performance. Considering the Con-A performance of
data-embeddings in the target domain, DC shows the best performance. The
Con-A performance in the target domain is in agreement with the PRT accuracies.
For all the models, Con-A performance in the target domain appears to match
the interpolation or extrapolation Con-A performance in the source domain.
This points to the possibility of anticipating transfer learning performance by
evaluating the consistency of partial theories.

Many of the same trends can be seen in the results for Con-I (Con-I-T, Con-
I-A and Con-I-R) in Figure 4. Results are averaged over individual relations. As
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Figure 4: Consistency-Individual (Con-I) losses (lower values are better) for
the models (DC, NN, NTN, HolE, TransR) using the MNIST data set (source
domain X ) [left] and BlockStacks (target domain Y) [right]. From top to bottom
(following the same colour schematic as Figure 3): Con-I-T (Transitivity), Con-
I-A (Asymmetry) and Con-I-R (Reflexivity).

Table 1: Coherence comparison with respect to source and target data-
embeddings. Results are reported with the corresponding β = β∗ value
(in parenthesis). The consistency loss abbreviations refer to: (A)cross,
T(ransitivity), A(symmetry), R(eflexivity) and Aggr(egate), which gives the
best obtained aggregate consistencies. DC outperforms all other approaches
across most coherence scores.

ϕ Aggr. (β∗) Con-A (β∗) Con-I-T (β∗) Con-I-A (β∗) Con-I-R (β∗)

HolE 12.12 (1) 6.61 (8) 4.30 (1) 0.52 (12) 0.08 (8)
NTN 4.11 (8) 1.92 (8) 1.50 (12) 0.22 (12) 0.09 (12)
TransR 2.51 (8) 1.02 (12) 0.71 (12) 0.18 (4) 0.55 (8)
NN 1.71 (8) 0.82 (8) 0.44 (12) 0.18 (4) 0.05 (4)

DC 0.53 (1) 0.29 (1) 0.11 (1) 0.04 (1) 0.09 (1)

in Figure 3, results are presented with respect to source domain (left) and target
domain (right).We firstly observe that DC and NN share the best overall Con-I
performance profiles, with TransR following closely. DC and TransR again show
comparable data-embedding versus interpolation/extrapolation performance,
whereas NN, NTN and HolE suffer from degradation. With regards to β’s
impact, DC is not affected by β, while NN and NTN show a negative correlation
between β and Con-I losses with comparable results for each underlying partial
theory.

Finally, Table 1 provides a comparison between optimal coherences achieved
for each relation-decoder model, as defined in Section 4. Results are partitioned
according to each consistency type and aggregate value. DC clearly outperforms
all other models on coherence. NN achieves strong aggregate coherence, followed
by TransR and NTN, with HolE performing generally worse. Looking at β∗
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profiles, we see that most models achieve optimum aggregate coherence at β = 8,
apart from DC and HolE which perform better at β = 1. Overall, this is in
broad agreement with the β profiles given by Figure 2-bottom (right). However,
we can see that β∗ profiles for Con-A coherence are in more direct agreement
as TransR achieves its best at β = 12 and HolE at β = 8. This suggests that
Con-A is more indicative of PRT performance, which is to be expected since
PRT relies on inductive transfer across relations.

All in all, these results paint a picture where source domain accuracy alone
is not a strong enough indicator of concept transfer. Instead, it may be possible
to anticipate transfer performance by evaluating consistency in regions beyond
the source domain’s data-embeddings. Depending on the task at hand, certain
partial theories may be more relevant than others in this analysis.

8 Related Work
Relational representations play a prominent role in Knowledge Graph Embed-
ding (KGE), wherein sets of relation-decoders are jointly learned to obtain
a semantic latent representation from data Socher2013-RWN, Trouillon2016-
CEF, Trouillon2019-OIA, Bordes2013-TEM, Nickel2016-ARO, Wang2017-KGE,
Dai2020-ASO, Kazemi2018-SEL, Abboud2020-BAE, Serafini2016-LTN, Donadello2017-
LTN, Badreddine2022-LTN. Although KGE approaches typically do not use a
shared autoencoder as done in this paper, in Schlichtkrull2018-MRD an autoen-
coding framework is adopted, where a graph neural network is used as the encoder.
However, Schlichtkrull2018-MRD did not work with visual data and the model
was only applied to single data sets rather than transfer learning. Similarly, disen-
tanglement is concerned with semantic representation learning Bengio2013-RLR,
and it has been explored using a variety of methods including both Generative
Adversarial Networks Chen2016-IIR and VAEs Burgess2017-UDI, Higgins2017-
BVL, Chen2018-ISD, Ridgeway2018-LDD, Eastwood2018-FQE, Kumar2018-VID,
Locatello2019-CCA. Disentangled representations have been evaluated on their
transferability Steenkiste2019-ADR, Steenbrugge2018-IGA, Locatello2020-WSD.
A bridge between these two fields, with relation-decoders employed in the semi-
supervision of VAEs, can be found in Karaletsos2016-WCH, Chen2019-WSD,
Chen2019-ROV. In Karaletsos2016-WCH, multiple relation-decoders are used,
but to compute a triplet comparison-based query. In Chen2019-WSD, Chen2019-
ROV, only a single binary relation is studied using functional forms that are not
sufficient to model the full set of relations considered in this paper. Lastly, we
note that our experimental setup is most remnant of domain adaptation, e.g.
Redko2019-AID. To the best of our knowledge, this paper is the first to present a
comprehensive analysis of the resulting concept coherence. No previous work has
compared relation-decoders on their ability to learn consistently and coherently,
as measured in this paper.
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9 Conclusion and Future Work
This paper introduced formal definitions of consistency and coherence for repre-
sentation learning. As a result, a sub-symbolic model can have its consistency
and coherence measured with respect to a logical theory. The paper speci-
fied a neuro-symbolic model based on domain-encoders coupled with modular
relation-decoders, and an experimental procedure that, together, allowed for the
investigation of how concept coherence differs for various implementations of
relation-decoders applied to transfer learning. Finally, consistency and coherence
results showed that the models that can retain consistency (i.e. be coherent)
across regions of latent space beyond the source data-embeddings are more likely
to perform better at PRT learning tasks. The empirical evaluations in this
paper only considered binary relations and a fixed signature which is learned
“all at once” in a source domain. In practical applications, however, it should be
possible to discover concepts gradually, e.g. as part of a curriculum and through
gradual refinement of pre-learned relations after exposure to different contexts.
This necessitates an adaptation of the approach presented here and further
evaluations, as part of future work. Further evaluations of the formalization
introduced here should consider the use of different models, theories (such as
specifying periodic, e.g . rotation, and unordered categorical, e.g . shape, proper-
ties) and scenarios/data sets in the evaluation of consistency and coherence of
neural models.
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A Societal Impact Statement
This work does not have a negative societal impact, specifically it does not
include any of the following: involvement of human subjects, sensitive data,
harmful insights, methodologies and applications. The results, data sets and
methodologies are objectively non-discriminatory, unbiased and fair. This work
does not breach any privacy or security guidelines or laws, nor any other legal
restrictions.

The proposed definition of coherent concepts and corresponding analysis
provides more depth in the assessment of deep learning methods, which are
typically otherwise opaque, and this can have a positive societal impact. Cur-
rently, we cannot provide interpretable descriptions regarding how a standard
deep learning method produces its inferences, making it difficult to fully trust a
model in critical applications. An important failure case is that biases are not
easy to uncover from a trained deep learning model. The benefit of learning
a coherent concept is that inferences uphold logical consistency, which can be
formally expressed and tested. This can provide more trust in the model as
practitioners can have confidence that the model should not obtain inputs that
lead to incoherent inferences, wherein errors are certain. Further, if the logic
does not include biases, the inferences of a coherent set of relation-decoders
should not be biased. A caveat to these points is that unless the relation-decoder
functional form allows us to analytically make comments/assertions about the
model’s performances for arbitrary regions of latent space, as with DC (see
D.1), it is intractable to fully examine model coherence, as it requires a full
extrapolation/interpolation evaluation. Nonetheless, a practical evaluation of
coherence is an important step forward.

B BlockStacks dataset description
The BlockStacks data set consists of 12,000 RGB images (3×200×200 pixels but
resized in code to 3 × 128 × 128) of individual block stacks, of varying height
(between 1-10 blocks), block colors (uniformly sampled from options: {gray, blue,
green, brown, purple, cyan, yellow}) and position (uniformly sampled from x, y
range (-3,-3) to (3,3)), but with the requirement that each instance consists
of a single red block at a random height (see Figure 5 for example images).
These were rendered using the CLEVR rendering agent with the help of code
from CLEVRRendererASAI. The dataset is divided into 9000:1500:1500 train,
validation and test splits.

C Explanation of the β-VAE
The VAE is derived by introducing an approximate posterior qα(Z|X), from
which a lower bound (commonly referred to as the Evidence LOwer Bound
(ELBO)) on the true marginal log pθ(X) can be obtained by using Jensen’s
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Figure 5: Example of two BlockStacks data set images. Each instance consists
of a single red block varying in position within the block stack. On the left the
red block is at height 3 (using a zero index) and on the right it is at height 1.

inequality Kingma2014-AEV. The VAE maximises the log-probability by max-
imising this lower bound, given by:

LELBO
β-VAE = Eqα(Z|X)[log pθ(X|Z)]− βDKL(qα(Z|X)∥pθ(Z)), (15)

where qα(Z|X) is typically modelled as a neural-network encoder with parame-
ters α. Similarly pθ(X|Z) is often modelled as a neural-network decoder with
parameters θ and is calculated as a Monte Carlo estimation. A reparameteriza-
tion trick is used to enable differentiation through an otherwise undifferentiable
sampling from qα(Z|X) (see Kingma2014-AEV). In the β-VAE Higgins2017-
BVL, Burgess2017-UDI, an additional β scalar hyperparameter was added as it
was found to influence disentanglement through stronger distribution matching
pressure with respect to the prior pθ(Z), where this prior is typically set to an
isotropic zero-mean Gaussian N (0, I)). When β = 1 we obtain the standard
VAE objective Kingma2014-AEV.

D Model Descriptions
In this section we firstly present an in-depth analysis of the key innovations
presented by DC which provides insight into how it can learn a coherent notion
of ordinality. We then provide model details for each of the compared relation-
decoders in the main results and the backbone β-VAE architecture that we
employ for each data set.
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Figure 6: Depiction of a set of DC relation-decoders for binary relations isGreater,
isLess, isEqual, isSuccessor and isPredecessor. Each DC relation-decoder (for each
relation) shown here has a one-hot mask, ur, that is in this example the same
across relations, which ensures only the zeroth dimensions of the embedding
arguments are compared, giving zi,0 and zj,0.

D.1 Dynamic Comparator Analysis
Figure 6 depicts how DC is able to learn the isGreater, isLess, isEqual, isSuccessor
and isPredecessor family of binary ordinal relations, assuming each corresponding
relation-decoder has learned a common one-hot mask on the zeroth dimension
i.e. uG = uE = . . . = uP = [1, 0, . . . , 0], such that activations only depend on the
zi,0 − zi,1 difference. An important capability of DC is its ability to dynamically
select via ar an appropriate functional mode, either ϕ†r or ϕ‡r, depending on the
type of relation it needs to model. As shown by Figure 6, this allows isEqual to
exhibit its reflexive, symmetric and transitive characteristics, whilst isGreater and
isLess both carry transitivity but are asymmetric and irreflexive. Furthermore,
the use of a subtraction between zi and zj (which, via mask u, ends up only being
a subtraction between their zeroth dimensions) leads to a relative comparison,
not an absolute comparison, which generalises to arbitrary zi and zj sampled
from anywhere in Z.

Note that there is no built in parameter sharing, meaning each relation-
decoder (for each individual relation r) is trained independently and has its own
set of ar,ur, ηr,0, ηr,1, b

†
r and b‡r parameters. However, our experiments show

that DC reliably obtains settings such that e.g . uG = uE, or aG = aL = [0, 1], or
b‡G = −b‡L and so on. DC is thus able to discover the interdependencies between
families of relations. By learning to loosely ‘tie’ together parameters in this
way, whilst still being expressive enough to model each type of relation, DC
can facilitate a data-driven binding between relation-decoder outputs. This
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helps ensure consistent generalisation across a latent subspace, as defined by the
common/overlapped ur masks.

D.2 Relation-Decoder implementations
TransR Lin2015-LEA:

ϕTransR
r (zi, zj) = ∥hr + r − tr∥22

with,
hr = Mrzi and tr = Mrzj .

where for zi, zj ∈ Rdz vectors, Mr ∈ Rdz×dz and r ∈ Rdz . As we want to obtain
a (0, 1) output, we modify TransR through ϕTransR+

r = σ(c− ϕTransR
r ), where σ

is a sigmoid function and c is a scalar that ensures that at ϕTransR
r (zi, zj) = 0,

then ϕTransR+

r (zi, zj) ≈ 1. In all experiments we set c = 10.
NTN (modified version of Socher2013-RWN from Donadello2017-LTN, Serafini2016-

LTN):

ϕr(z1, . . . ,zn) = σ
(
u⊤
r [tanh(z

c⊤Mrz
c + Vrz

c + br)]
)

(16)

where ur ∈ Rk,Mr ∈ Rn·dz×n·dz×k,Vr ∈ Rk×n·dz) and br ∈ Rk. The only
hyperparameter to consider is k, which controls the NTN’s capacity - in all
experiments, we set this to 1. If k > 1, zc⊤Mrz

c produces a k-dimension vector
by applying the bilinear operation to each of the k Mr slices. Here zc ∈ Rn·dz is
a concatenation of the inputs z1, . . . ,zn, which was introduced in Donadello2017-
LTN, Serafini2016-LTN. In contrast, the original NTN (see Socher2013-RWN) is
only applicable to binary relations and does not include the outer sigmoid.

HolE Nickel2016-HEO:

ϕHolE
r (zi, zj) = σ(r⊤(zi ⋆ zj))

where r ∈ Rdz and ⋆ : Rdz ×Rdz → Rdz denotes the circular correlation operator
and is given by,

[zi ⋆ zj ]k =

d−1∑
m=0

zi,mzj,(k+m) mod d

NN: a simple four-layer neural-network with layer sizes lin = 2dz, l1 = 2dz
and l2 = dz, with ReLU activations Nair2010-RLU. The final output layer, lout,
is a single value passed through a sigmoid function, to bound the output within
(0, 1).

D.3 β-VAE configuration
The model configurations used for both MNIST and BlockStacks data sets are
given in Table 2.
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D.4 Ljoint configuration
In the source domain, we vary β values between {1, 4, 8, 12} and fix λ = 103. In
the target domain, we fix β to 10−4 and λ = 10−2 and normalise the LELBO

β-VAE
reconstruction term by dividing by a factor 1√

H·W ·C , for height H, width W and
color channels C, and normalize the distribution matching term by a factor 1

dz
,

for latent representation size dz (set to 10 across all experiments).
To train relation-decoders over a given domain S, it is necessary to supervise

estimates of ϕr(ψenc
S (O)), O ∈ S2, against corresponding ground-truth labels,

γrO,Sσ
. However, doing so for every O ∈ S2 can easily become intractable and

we instead only sample a subset of possible S2 tuples. Our sampling strategy
involves first selecting a ratio R = |B|

|S| where B ⊂ S2 is a set of O tuples. We

then sample relation-decoder specific subsets Br where |Br| = |B|
|σ| , to ensure

a balanced distribution of tuples between relation-decoders. Furthermore, we
ensure that each Br contains a balanced ratio of γrO,Sσ

= 1 versus γrO,Sσ
= 0

instances. We found that each |Br| set can be small without jeopardising the
final relation-decoder performance level, allowing us to use R = 1 for MNIST
experiments and R = 3 for BlockStacks experiments.

Finally, in all experiments we use a β-VAE trained for up to 300,000 steps,
following accepted practice from Locatello2019-CCA, Steenbrugge2018-IGA,
together with any included relation-decoders. However, to ensure computation
efficiency across experiments, we employ an early stopping procedure, where
if the validation score does not increase over 30 and 120 training epochs for
MNIST and Blockstacks experiments, respectively, we end the training early.

E Preliminaries in further detail
Logic and model-theoretic background: to support Section 2 we provide
additional logic and model theoretic background. In this paper, we assume
a formal language L composed of variables, predicates (i.e. relations), logical
connectives ¬ (negation), ∨ (disjunction), ∧ (conjunction), → (implication), and
universal quantification ∀ (for all) with their conventional meaning (see [1]). The
set of relations in L form the signature, σ, of the language. Relations have an
associated arity, denoted as ar(·), that defines the number of arguments they
take. For example, a binary relation r has arity ar(r) = 2. Relations are used to
express knowledge over the elements of a domain S, where S is a non-empty set.
For instance, r(s1, s2) states that elements s1 and s2 are related through the
binary relation r. The meaning of a relation is defined by an interpretation ISσ

which captures the {T, F} (true or false) values of the relation over elements of
S. Together, a domain S and an interpretation ISσ

of a given signature σ form
a structure Sσ = (S, ISσ ).

Note that for a fixed domain S and signature σ, different interpretations
yield different structures. As stated in the main text, we construct universally
quantified first-order formulae (called sentences) using the signature σ of L,
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whose truth-value is defined with respect to a given structure Sσ. To do so, we
first consider ground instances of a formula. These are given by replacing all the
variables in the formula with elements from the domain S. For example, r(s1, s2),
where s1 and s2 are elements of S, is a ground instance of an atomic formula
r(i, j) where i and j are variables in L. Given a structure Sσ = (S, ISσ

), a
relation r, and a tuple (s1, . . . , sar(r)) ∈ Sar(r), a ground instance r(s1, . . . , sar(r))
is true in the structure Sσ if and only if (s1, . . . , sar(r)) ∈ ISσ (r). The truth value
of a sentence in a given structure Sσ depends on the truth value of its respective
ground instances. Specifically, a sentence is true in a structure Sσ if and only if
all of its ground instances are true in Sσ. For example, ∀i. r(i, i) is true in Sσ if
and only if all of its ground instances r(sh, sh) are true in Sσ, for every sh ∈ S.
When a sentence, τ , is true in a structure, Sσ, we say that the structure satisfies
τ , denoted as Sσ |= τ . A set of sentences form a theory, T and any subset of the
sentences in T form a partial theory with respect to T . A theory can be seen as
a way of constraining the type of interpretations that we want to “accept" for
our signature. Finally, a model of T is a structure that satisfies every sentence
in T .

F Specification for theory of ordinality
To support our claim that we can use only the isSuccessor relation as the target
encoder guide due to its logical relationship with the remaining relations, we
include here the logical clauses:

∀i, j, k. (isSuccessor(i, j) ∧ isSuccessor(k, j) → isEqual(i, k))
∀i, j. (isSuccessor(i, j) → isGreater(i, j))

∀i, j, k. (isSuccessor(i, j) ∧ isGreater(j, k) → isGreater(i, k))
∀i, j. (isSuccessor(i, j) ↔ isPredecessor(j, i))

∀i, j. (isPredecessor(i, j) → isLess(i, j))
∀i, j, k. (isPredecessor(i, j) ∧ isLess(j, k) → isLess(i, k)).

Therefore, by knowing all of the successor relations between data instances, it
should be possible to infer the remaining relationships that they share.

For completeness, we provide the truth tables for each of the sub-theories
that our consistency losses evaluate against. We only include configurations
that are valid under the constraints, indicated by ⊂ T = T , where this notation
highlights the fact each incomplete set of constraints form a subset of the overall
theory T .

Firstly, the truth-table that describes constraints shared between relation
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truth-values is given by the following, ∀i, j:

G(i, j) E(i, j) L(i, j) S(i, j) P(i, j) ⊂ T
T F F F F T
T F F T F T
F T F F F T
F F T F F T
F F T F T T

where we use the same relation abbreviations as in the main text results.
Next, we provide each of the three consistency individual (Con-I) truth-tables.

These are referred to as being “individual” due to the fact that they describe
constraints applied to the truth-state of a single relation. For transitivity, given
by the rule e.g . G(i, j) ∧ G(j, k) → G(i, k), we have that ∀i, j:

G(i, j) G(j, k) G(i, k) ⊂ T
F F F T
F F T T
T F F T
T F T T
F T F T
F T T T
T T T T

(17)

For asymmetry, where S(i, j) → ¬S(j, i), we have ∀i, j:

S(i, j) S(j, i) ⊂ T
F F T
T F T
F T T

(18)

.
Finally, for reflexivity, given by E(i, i) → ⊤ (in this case describing that an

object is always equal to itself) we have ∀i:

E(i, i) ⊂ T
T T

(19)

Truth-table matrices for each of the above truth-tables can be obtained by
replacing T with 1 and F with 0. The full set of individual constraints that are
applicable to each relation covered in this paper are given by Table 3.

G Expanded consistency loss derivation
In this section, we present the expanded justification for reporting − ln 1 − ϵ̄
consistency and coherence as a proxy for ϵ-consistency/coherence as defined
in Section 3. For notational clarity, in the following we omit ψS , such that
ϕr(ψS(O)) is abbreviated to ϕr(O).
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In the following, we make no assumptions about the sizes of domain S,
signature σ and arities of each r ∈ σ. Further, we take T to be an arbitrary
theory over σ consisting of universally quantified formula, and the validity of
each ground instances of atomic formula with respect to T , can be expressed
by a single ground truth-table matrix, T ∈ {0, 1}K0×K1×K2 , wherein each slice,
Tk,:,: gives a unique grounding of domain objects to the variables, v, required
by T . For each grounding of the K0 = |S||v| possible groundings, there are
K1 = 2l unique truth-assignments to the l atomic formulae that constitute T ,
giving K2 = l + 1 assignments per Tk,t,: row - one per atomic formulae and
an additional value that denote whether the particular row satisfies T . T can
be obtained by taking any truth-table from the previous section and switching
true (T) for 1 and false (F) for 0, and producing K0 copies for each assignment
of domain elements to the variables. Given this truth-table matrix, notice
that a structure Sσ can be composed by selecting a single row of T for each
grounding (kth slice), giving a vector ckt = Tk,t,1:l. If the structure is a model
of T , i.e. Sσ ∈ MT

S , then only rows with Tk,t,K2
= 1 are allowed. Taking t+

to be the set of rows such that Tk,t,K2
= 1 (which is identical for each k) i.e.

t+ = { t |Tk,t,K2
= 1 ∧ t ∈ {1, . . . ,K1}}, we can then rewrite ΓS̃σ

T in terms of
samples from T :

ΓS̃σ

T =
∑

Sσ∈MT
S

∏
r∈σ

∏
O∈Sar(r)

ϕr(O)γ
r
O,Sσ (1− ϕr(O))1−γr

O,Sσ (Eqn. 3)

=
∑

Sσ∈MT
S

K0∏
k=1

∑
t∈t+

1tSσ
k

(t)

l∏
m=1

f(ϕrm , Okm, cktm)N(ϕrm ,Okm,cktm,Sσ)
−1

(20)

with

f(ϕrm , Okm, cktm) = ϕrm(Okm)cktm (1− ϕrm(Okm))
1−cktm . (21)

In the above, 1tSσ
k
(t) is an indicator function which equals 1 if t = tSσ

k and 0

otherwise, for active row tSσ

k under structure Sσ and grounding k. 1tSσ
k
(t) has

the role of only including the single summand where t corresponds with tSσ

k .
N(ϕrm , Okm, cktm,Sσ) is a function that counts the number of repeat products
of term f(ϕrm , Okm, cktm), such that the appropriate root can be applied. We
use rm to denote the relation for atomic formula at column m and Okm its
corresponding arguments under grounding k; and we use cktm to denote the
truth-assignment of the atomic formula for column m, as designated by row t.

At this point, we are left with an expression for ΓS̃σ

T in terms of truth-table
matrix T entries, which is more reminiscent of L(T , S̃σ) as defined in Section
4. However, we must go further to expose the relationship between ΓS̃σ

T and
L(T , S̃σ) for arbitrary T expressed by T . We will now show that the consistency
loss L(T , S̃σ) gives the negative log-likelihood of satisfying T given a grounding
k ∈ {1, . . . ,K0}, which can be further seen as a relaxation of ΓS̃σ

T to sum over all
rows t ∈ t+ and without normalising via the N(ϕrm , Okm, cktm,Sσ)

−1 exponent.
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With Boolean random variable BT denoting whether T is (bT = 1) or is not
(bT = 0) satisfied, the consistency loss for a soft-structure S̃σ against theory T
is given by,

L(T , S̃σ) = Ek∼U [{1,...,K0}][H(p(BT |Sσ, k), p(BT |S̃σ, k))] Eqn. 8 base

which can be expanded to,

L(T , S̃σ) = −
K0∑
k=1

1

K0
p(bT = 1|Sσ, k) ln p(bT = 1|S̃σ, k) (22)

+ (1− p(bT = 1|Sσ, k)) ln(1− p(bT = 1|S̃σ, k)).

where Sσ ∈ MT
S . Given Sσ ∈ MT

S , then p(bT = 1|Sσ, k) = 1 always holds.
This means the negative case in Eqn. 22 can be ignored, yielding the following
simplified form:

L(T , S̃σ) = −
K0∑
k=1

1

K0
ln p(bT = 1|S̃σ, k)

= −Ek∼U [1,...,K0][ln p(bT = 1|S̃σ, k)]. Eqn. 8

and so L(T , S̃σ) is simply the negative log-likelihood of sampling a satisfied
theory (bT = 1) from soft-structure S̃σ, for randomly sampled grounding k. Next,
we show the similarities between L(T , S̃σ) and ΓS̃σ

T by looking at the likelihood
p(bT = 1|S̃σ, k). First, we define Γ̄S̃σ

T by isolating the likelihood:

exp(−L(T , S̃σ)) =

K0∏
k=1

p(bT = 1|S̃σ, k)
1

K0

.
= Γ̄S̃σ

T (23)

We then expand p(bT = 1|S̃σ, k) to:

p(bT = 1|S̃σ, k) =

K1∑
t=1

p(bT = 1|ckt)p(ckt|S̃σ, k)

=
∑
t∈t+

p(ckt|S̃σ, k) (24)

where t+ is defined as before. For all other t ̸= t+, p(bT = 1|ckt) = 0 and so this
acts as a filter, yielding:

Γ̄S̃σ

T =

K0∏
k=1

∑
t∈t+

p(ckt|S̃σ, k)
1

K0 . (25)
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p(ckt|S̃σ, k) is calculated by evaluating the belief of each relation-decoder against
the expected truth-assignment as defined by truth-table row ckt:

p(ckt|S̃σ, k) =

l∏
m=1

ϕrm(Okm)cktm(1− ϕrm(Okm))1−cktm

= f(ϕrm , Okm, cktm)

where rm is the relation for atomic formula associated with column m (which is
the same for each k slice and t row) and Okm is the grounding of this entry for
slice k (which is the same across rows). Putting it all back together, we finally
have that:

Γ̄S̃σ

T =

K0∏
k=1

∑
t∈t+

l∏
m=1

f(ϕrm , Okm, cktm)
1

K0 , (26)

which makes the similarities between ΓS̃σ

T and Γ̄S̃σ

T clear and exposes their
relationship. In particular, for the special case where |MT

S | = 1, the outer sum
for ΓS̃σ

T can be removed, and the remaining differences between ΓS̃σ

T and Γ̄S̃σ

T are
the sum over t+ rows and difference in exponent over f(ϕrm , Okm, cktm). For
ΓS̃σ

T to be maximised, through p(Sσ|S̃σ) ≈ 1, we would find that S̃σ maximally
supports only the rows associated with Sσ for each k grounding. Notice that
Γ̄S̃σ

T is again bound to (0, 1) and achieves Γ̄S̃σ

T ≈ 1 when ΓS̃σ

T ≈ 1. We use the
correspondence between ΓS̃σ

T and Γ̄S̃σ

T to define a practical ϵ-proxy consistency
measure as follows. We firstly re-express ϵ-consistency/coherence but for Γ̄S̃σ

T
and a different ϵ̄. We then trace this back to L(T , S̃σ) so a bound in terms of
the consistency loss can be reported as the overall ϵ-proxy. Together this yields
the following:

ϵ̄ ≥ 1− Γ̄S̃σ

T

ln
1

1− ϵ̄
≥ − ln(Γ̄S̃σ

T )

≥ L(T , S̃σ) (27)

and, via the relationship between ϵ̄ and L(T , S̃σ), we can use the consistency
loss L(T , S̃σ) as a proxy measure for ϵ-consistency/coherence.

H Spearman’s Rank Correlation Analysis
A Spearman rank correlation analysis was performed between each consistency
loss (Con-A, Con-I-T, Con-I-A, Con-I-R) and PRT performance. Coefficients
are reported for each combination of consistency loss and region of latent space
(data-embedding, interpolation and extrapolation). Note that coefficients are
not separated between β and relation-decoder choice. Overall, each coefficients
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aims to characterize the PRT performance change when a relation-decoder is
more or less consistent with a given partial theory, over a particular region of
latent space. The key findings are reported in the main text and we tabulate
the values in Table 4.

Unlike the popular Pearson correlation, the Spearman rank correlation can
describe monotonic curvilinear relationships between variables. A Spearman
rank coefficient varies between −1 and +1, where a coefficient ±1 indicate a
perfect rank correlation. If the coefficient is negative (positive) this means a
reduction (increase) in one variable corresponds with an increase in the other.
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Table 2: Specification of our β-VAE encoder and decoder model parameters, for
both 28×28 (top) and 128×128 (bottom) size input data. I: Input channels, O:
Output channels, K: Kernel size, S: Stride, P: Padding, A: Activation

Encoder
Input: 28× 28×NC = 1

Layer_ID ; I ; O ; K ; S ; P ; A
Conv2d_1 ; NC ; 32 ; 4× 4 ; 2 ; 1 ; ReLU
Conv2d_2 ; 32 ; 32 ; 4× 4 ; 2 ; 1 ; ReLU
Conv2d_3 ; 32 ; 64 ; 3× 3 ; 2 ; 1 ; ReLU
Conv2d_4 ; 64 ; 64 ; 2× 2 ; 2 ; 1 ; ReLU

Layer_ID ; Num Nodes : In - Out ; A
FC_z ; 576 - 144 ; ReLU
FC_z_mu ; 144 - 10 ; None
FC_z_logvar ; 144 - 10 ; None

Decoder
Input: R10

Layer_ID ; Num Nodes : In - Out ; A
FC_z ; 10 - 144 ; ReLU
FC_z_mu ; 144 - 576 ; ReLU

Layer_ID ; I ; O ; K ; S ; P ; A
UpConv2d_1 ; 64 ; 64 ; 2× 2 ; 2 ; 1 ; ReLU
UpConv2d_2 ; 64 ; 32 ; 3× 3 ; 2 ; 1 ; ReLU
UpConv2d_3 ; 32 ; 32 ; 4× 4 ; 2 ; 1 ; ReLU
UpConv2d_4 ; 32 ; NC ; 4× 4 ; 2 ; 1 ; Sigmoid

Encoder
Input: 128× 128×NC = 3

Layer_ID ; I ; O ; K ; S ; P ; A
Conv2d_1 ; NC ; 32 ; 4× 4 ; 2 ; 1 ; ReLU
Conv2d_2 ; 32 ; 32 ; 4× 4 ; 2 ; 1 ; ReLU
Conv2d_3 ; 32 ; 64 ; 4× 4 ; 2 ; 1 ; ReLU
Conv2d_4 ; 32 ; 64 ; 4× 4 ; 2 ; 1 ; ReLU
Conv2d_5 ; 64 ; 64 ; 4× 4 ; 2 ; 1 ; ReLU

Layer_ID ; Num Nodes : In - Out ; A
FC_z ; 1024 - 256 ; ReLU
FC_z_mu ; 256 - 10 ; None
FC_z_logvar ; 256 - 10 ; None

Decoder
Input: R10

Layer_ID ; Num Nodes : In - Out ; A
FC_z ; 10 - 256 ; ReLU
FC_z_mu ; 256 - 1024 ; ReLU

Layer_ID ; I ; O ; K ; S ; P ; A
UpConv2d_1 ; 64 ; 64 ; 4× 4 ; 2 ; 1 ; ReLU
UpConv2d_2 ; 64 ; 32 ; 4× 4 ; 2 ; 1 ; ReLU
UpConv2d_3 ; 32 ; 32 ; 4× 4 ; 2 ; 1 ; ReLU
UpConv2d_4 ; 32 ; 32 ; 4× 4 ; 2 ; 1 ; ReLU
UpConv2d_5 ; 32 ; NC ; 4× 4 ; 2 ; 1 ; Sigmoid
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Table 3: Characteristic properties of ordinal relations.
Relation asymmetric transitive reflexive

G Y Y N
E N Y Y
L Y Y N
S Y N N
P Y N N

Table 4: Spearman rank coefficients between consistency loss and PRT accuracy.
Coefficients are calculated for each consistency loss reported in the main text,
across all models, β settings and regions of latent space. Results show a strong
inverse rank correlation between interpolation Con-A/Con-I-T/Con-I-A and
PRT performance.

Spearman Rank Coefficient

Z region Con-A Con-I-T Con-I-A Con-I-R

Data-Embeddings 0.2530 -0.4451 -0.4655 0.2307
Interpolation -0.7655 -0.7479 -0.7120 -0.4233
Extrapolation -0.6005 -0.6586 -0.6140 -0.4895
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