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ABSTRACT 

The encoding of visual scenes remains an under-explored field due to methodological 

limitations. In this study, we evaluated the relationship between memory accuracy for a visual scene 

and eye movements at encoding. First, we used data-driven methods, a fixation density map (using 

iMap4) and a saliency map (using GBVS), to analyze the visual attention for items. Second, and in a 

more novel way, we conducted scanpath analyses without a priori, using the ScanMatch toolbox. Scene 

memory accuracy was assessed by asking participants to discriminate identical scenes (targets) among 

rearranged scenes sharing some items with targets (distractors) and new scenes. Results showed that 

shorter fixation duration in regions of interest (ROIs) at encoding was associated with a better rejection 

of distractors. However, there was no significant difference in the relative fixation time in ROIs at 

encoding, between subsequent hits and misses at test. Hence, density of eye fixations in data-driven 

ROIs seems to be a marker of subsequent memory discrimination and pattern separation. Interestingly, 

we also identified a negative correlation between average MultiDimensional Scaling (MDS) distance 

scanpaths and the correct rejection of distractors, which supports the idea that scanpath consistency 

significantly affects the ability to discriminate distractors from targets. Taken together, these data 

suggest that visual exploration at encoding participates in discrimination processes at test. Eye-

tracking analyses methods without a priori are particularly relevant to study these processes. Future 

studies could further explore the notion of scanpath consistency to further delineate its characteristics. 

Key words: eye tracking, fixation, scanpath, saliency, memory.  
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INTRODUCTION 1 

The interest in using eye tracking to study memory processes is growing. The majority of 2 

studies analyzed the link between encoding and the subsequent recognition without going further into 3 

the process of discrimination (Schurgin, 2018). Research on visual scenes adds a layer of difficulty, 4 

because of their complexity and diversity. Scenes are consensually defined as a human-scaled view of 5 

an environment, associating items arranged in specific locations with larger surfaces and elements that 6 

constitute the background, which together form a coherent semantic concept (see Williams & 7 

Castelhano, 2019, for a review). During visual exploration, eye movements bring the image of a 8 

stimulus to the fovea, and each eye movement to a position is preceded by a shift of attention to that 9 

position (Hoffman, 1998). Eye-tracking methodology provides the opportunity to capture these eye 10 

movements and therefore to explore overt attention for visual stimuli such as scenes, focusing on 11 

fixations, defined as the stationary states of the eyes during which gaze is held upon a specific location 12 

in the image, and saccades, that correspond to rapid eye movements between fixations, but provides 13 

only limited insights on covert attention (see Vidal et al., 2012, for a review). 14 

Encoding of natural scenes depends on both the visual properties of the scene, i.e., saliency, 15 

semantic integrity (i.e., semantically congruent vs. incongruent objects within a scene context), spatial 16 

associations, and the task set, i.e., search, memorization, or free viewing (see Castelhano & Krzyś, 17 

2020, and Williams & Castelhano, 2019, for reviews). Eye-tracking studies on visual scene encoding 18 

have so far assessed the link between eye movements and subsequent recognition performance (using 19 

old/new paradigms) or awareness (using remember/know paradigms). Some studies identified that 20 

the number of fixation points made during scene encoding is associated with greater subsequent 21 

recognition performance (Choe et al., 2017), or memory awareness (Kafkas & Montaldi, 2012). In 22 

addition, the spatial distribution of clustered eye fixations during encoding has been found to predict 23 

subsequent remembering awareness of visual scenes relative to knowing, due to the recognition of 24 

distinct details (Sharot et al., 2008). With regards to the duration of fixations, shorter fixation durations 25 

during face encoding (considering the whole face as the area of interest) have been found to predict 26 

subsequent hits over misses (Parag & Vakil, 2018). Eye fixation can also be guided by visual saliency, 27 

which encompasses low-level scene features. The bottom‐up saliency map hypothesis (Itti & Koch, 28 

2001) points to the role of salient low-level features in capturing attention during free-viewing or 29 

explicit memory tasks (Underwood & Foulsham, 2006), but not in a search task (Foulsham & 30 

Underwood, 2011). Henderson & Hayes (2018) goes beyond this model by showing that both meaning 31 

and image saliency predicted the distribution of attention during explicit encoding.  32 
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To date, no eye-tracking study on scenes encoding has assessed memory discrimination, which 33 

differs from memory recognition, on methodological, behavioral, and neural levels. Memory 34 

discrimination tasks require participants to recognize previously encoded stimuli among highly similar 35 

lures and new stimuli (i.e., old/lure discrimination), and rely on detailed memory representations of 36 

the old stimuli, while memory recognition tasks (i.e., old/new discrimination) do not need such 37 

detailed representations, and can be achieved at least with gist-based representations of the old 38 

stimuli (Loiotile & Courtney, 2015). Memory discrimination and memory recognition tasks explore 39 

respectively pattern separation at encoding, and pattern completion at retrieval, which are episodic 40 

memory processes involving different hippocampal subfields (Liu et al., 2016). Pattern separation is 41 

based on dentate gyrus activity, and allows to assign different neural codes to events with overlapping 42 

content, which results in distinct representations stored in memory, and supports subsequent old/lure 43 

discrimination (Hainmueller & Bartos, 2020; Rolls, 2016). Pattern completion is based on the activity 44 

of the cornus ammonis (CA3), and triggers from partial cues, the retrieval of the whole representation 45 

of the encoded stimuli (Liu et al., 2016). Only one eye-tracking study has been conducted on memory 46 

discrimination, by Molitor et al. (2014), in which participants at test had to recognize old items (i.e., 47 

pictures of everyday objects) among similar distractors and new different items. Compared to hits, 48 

false alarms were associated with fewer fixations to the target at encoding, suggesting that errors were 49 

driven by diminished encoding (the poor encoding hypothesis). 50 

The methodology of more recent research on eye fixations in relation to recognition rates and 51 

awareness has been based on fixation maps, which correspond to duration-weighted fixation density. 52 

Damiano & Walther (2019) used a paradigm in which observers were asked either to fixate or to 53 

explore scenes. During the study phase, exploration, relative to fixation, led to higher subsequent 54 

recognition rates, while at test exploration, relative to fixation, led to same hit rates but a higher 55 

rejection rate of new scenes. This demonstrates that fixations do not completely reflects visual 56 

attention, and what is encoded/recognized. In contrast to these results, Wynn, Ryan, and Buchsbaum's 57 

(2020) evaluated  the level of similarity between fixation maps at encoding and retrieval (i.e., gaze 58 

reinstatement) during a pattern completion paradigm, and found similar gaze reinstatement for hit 59 

and false alarm responses at test. Other studies have replicated previous findings on spatial 60 

distribution of fixations, finding that a broader exploration during encoding leads to higher recognition 61 

performance (Damiano & Walther ,2019), and stronger familiarity awareness (Ramey, Henderson, & 62 

Yonelinas, 2020). Looking at the inter-observer congruency of fixation maps, Lyu et al., (2019) 63 

identified that scene memory is related to the consistency of fixation maps across viewers at encoding, 64 

which is itself related to the signal-to-noise fixation ratio between preferentially-viewed regions of the 65 

scene and other regions. 66 
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Research focusing on scanpaths, i.e., the spatial distributions of eye gaze, were initially guided 67 

by the scanpath theory, which postulates that scanpath similarity between encoding and retrieval is 68 

predictive of memory performance (Noton & Stark, 1971). Subsequent studies have shown that 69 

scanpaths are idiosyncratic, showing a greater individual consistency between encoding and retrieval, 70 

than between different observers viewing the same image (e.g., Foulsham et al., 2012; French, Glady, 71 

& Thibaut, 2017). Similarly to research using fixation maps, more recent research on scanpaths tends 72 

to identify specific patterns of eye movement associated with memory formation, and distinct roles 73 

for eye movements during encoding and retrieval. Analyzing scanpath rehearsal during study phase, 74 

Meghanathan et al. (2019) described different types of refixations (the repetition in time of fixation 75 

sequences), which supported memory-encoding strategies in free viewing. Comparing scanpath for 76 

novel and repeated scenes during a search task, Wynn et al. (2016) evidenced a scanpath repetition of 77 

initial and final but not middle fixations during repeated scene; early scanpath similarity increased 78 

search efficiency by reducing search time at test. These results have therefore challenged the scanpath 79 

theory. Arizpe et al. (2019) used faces to propose an alternative model, suggesting that an increasing 80 

number of fixations during encoding enables the gradual integration of disparate information into a 81 

coherent representation, that can be activated during recognition within a small number of fixations. 82 

Scanpath analysis allows to distinguish a population with typical development from participants with 83 

neuropsychiatric disorders (see Armstrong & Olatunji, 2012, and Toh, Rossell, & Castle, 2011, for 84 

reviews). Notably, during scene encoding and recognition, Shakespeare et al. (2015) have evidenced a 85 

greater consistency of scanpaths between healthy participants compared to participants with 86 

neurological condition, suggesting that healthy participants looked more appropriately at task-87 

relevant regions of the scene.  88 

 To summarize, both fixation maps and scanpaths eye-tracking studies using scenes suggest 89 

that eye-movements during encoding are predictive of recognition rates and awareness at test, but so 90 

far no study has explored memory discrimination via pattern separation processes. Hence, the present 91 

methodological study aimed to determine what patterns of eye movements during scene encoding are 92 

related to memory discrimination for visual scenes, focusing on fixations and scanpaths that predict 93 

correct recognition and false alarms. We designed an old/rearranged/new paradigm suitable to test 94 

memory accuracy and pattern separation processes, including an incidental encoding phase using 95 

drawings of scenes, followed by a surprise recognition phase in which participants had to recognize 96 

“target” scenes (same items and background), among “distractor” scenes (same items but new 97 

background) and new scenes (items and background were new). Incidental encoding of scenes benefits 98 

more to memory for visual features than for the whole scene, with images containing many features 99 

being richly encoded when compared to other kind of images (Evans & Baddeley, 2018). Drawings and 100 
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photographs of scenes share large similarities; however, drawings allow a better handling of the 101 

content including many details and are more attractive compared to photographs (Park et al., 2019). 102 

First, we used data-driven methods, a fixation density map (using iMap4), to evaluate the visual 103 

attention for items. We proposed to extend the Molitor et al's. (2014) results to fixation durations and 104 

predicted an association between increased false alarm rate and longer fixation durations on details 105 

shared between targets and distractors. Such an association would support the presence of an 106 

attentional bias at encoding, that would increase interference during the recognition phase. We also 107 

generated a saliency map (using GBVS) to ensure that our data-driven fixation maps were not related 108 

to low-level features, mainly saliency. Second, and in a more novel way, we conducted scanpath 109 

analyses without semantic a priori expectations in the definition of ROIs. As memory discrimination 110 

relies on detailed memory representations, and presumably on extensive exploration of visual scenes 111 

at encoding, without a priori analyses, which are based on a high number of similar ROIs, each 112 

containing a variable amount of semantic information, seem more suitable than a priori analyses which 113 

focus on specific items, for assessing participants' exploration of the whole visual scene.  We 114 

considered that inter-observer scanpath consistency would be a valuable marker of the quality of the 115 

memory trace and predicted greater scanpath consistency at encoding would be associated with 116 

higher discrimination at test. 117 

 118 

METHOD 119 

1. Participants 120 

Forty-nine healthy young adults were recruited for this study (26 males, mean age 21.3 ±2.41 121 

years, mean level education 13.81 ±1.86 years). Of these 49 participants, 42 were right-handed 122 

(assessed by the De Agostini & Dellatolas checklist, 1988), and 41 had right ocular dominance. All 123 

participants had normal or corrected-to-normal vision. None reported recent use of alcohol or illicit 124 

drugs, current or past mental disorder, neurological disorder (including history of head trauma with 125 

loss of consciousness, or seizures), or current medical condition. An intellectual impairment was ruled 126 

out, using the Wechsler Adult Intelligence Scale-IV (Verbal Comprehension Index= 111.60 ±17, 127 

Perceptual Reasoning Index= 101.62 ±12.60). Fourty-two participants were retained for analysis (1 128 

participant was excluded because he did not look sufficiently at some pictures, i.e., total visit duration 129 

< 3 % of total scene duration for one picture, and < 43 % for two pictures) and 6 participants were 130 

excluded due to eye tracker dysfunction including calibration. When using Molitor’s results as criteria, 131 

the required sample size was about 35 participants for Alpha= 0.05 (power goal= 0.90). We decided to 132 
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increase the number of inclusions to have a minimum of 35 participants for analyses: 42 participants 133 

were retained for analyses, we aimed for this large number of participants to compensate for the small 134 

number of stimuli. 135 

 This study was conducted in accordance with the Code of Ethics of the World Medical 136 

Association (Declaration of Helsinki 2008), and was approved by the local ethics committee before it 137 

started (CPP Nord Ouest III, N° ID RCB : 2013-A01800-45); all participants signed for consent. 138 

2. Material  139 

A total of 43 colored pictures (1024 x 717 pixels) created by a professional cartoonist were 140 

used (figure 1): 7 were used for the training phase before study phase, 6 were used to avoid primacy 141 

and recency effects at study phase, and the remaining 30 were used in the data analyses. These 30 142 

item-background pictures belonged to one of 10 different semantic categories (rural, farm, forest, 143 

garden, mountain, snow, car park, swimming pool, beach, and city). Three pictures were created for 144 

each semantic category: a “target” picture identical at study and at test phase, a “distractor” picture, 145 

and a “new” picture. The “distractor” picture contained the same items in the foreground as the 146 

“target” picture combined with a new background from the same semantic category. The foreground 147 

items, common to both the target and distractor, were two or three per picture (3 for “forest” and 148 

“beach” categories, and 2 for other categories). The “new” picture combined new foreground items 149 

and a new background from the same semantic category as the “target”. 150 

3. Procedure 151 

E-Prime software (PST, Pittsburgh, PA) was used to control stimulus presentation and to record 152 

participants’ responses. Participants were sitting comfortably 79 cm from the screen in a dimly lit room 153 

during the whole experiment. Eye positions and gaze durations were measured at 60 Hz with a remote 154 

eye tracker (Tobii X120 A, Tobii Technology AB). A box with infrared sources and a camera were set 155 

below a 22-inch TFT flat-screen monitor (HP, x22LED). Stimuli were presented in full screen at a 156 

resolution of 1024 x 768 pixels. The size of the projection screen was 47.75 x 26.92 cm2, subtended 157 

33.6° x 19.4° in visual angle. Before each recording, a 9-points eye-tracker calibration and validation 158 

procedure was performed. 159 

The incidental memory task included a study phase followed by a surprise recognition phase 160 

(figure 2). At study phase, a trial started with a dynamic fixation central white cross presented on a 161 

black background for 1280ms. A picture then appeared on the screen for 5000ms, followed by a black 162 
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screen for 500ms. The 10 “target” pictures were presented in pseudo-random order. Participants were 163 

asked to freely and carefully explore each picture for the full duration of the presentation. The test 164 

phase was provided after a 20-minute break during which participants performed unrelated tests (i.e., 165 

Rey's Figure test, and a verbal fluency test, not affecting participants' ability to complete the test 166 

phase; no fatigue was observed). The test phase started with four familiarization trials comprising of 4 167 

pictures (not presented in the study phase), followed by the 30 pictures of interest presented in 168 

pseudo-random (10 “target”, 10 “distractor”, and 10 “new” pictures). Participants were instructed to 169 

identify “target” pictures and reject other kinds of pictures, i.e., “distractor” and “new” pictures. In 170 

both cases, participants responded by pressing one of two keys on a computer mouse. There was no 171 

time limit to respond. A trial started by means of a fixation cross, then pictures were presented on the 172 

screen until the participant responded, followed by a 500ms black screen as in the study phase. 173 

4. Eye-tracking analyses 174 

Eye tracking recording and analyses were carried out separately for each picture, using data 175 

from the study phase only (figure 3). 176 

4.1. Data preprocessing  177 

An I-VT filter (Velocity-Threshold Identification filter: classifier: 30°/s; velocity calculator 178 

window length: 20 ms) was applied to the eye-tracking data prior to exporting as recommended by the 179 

eye tracker manufacturer. The output was based on the average of both eyes. The data was then 180 

exported (Identifier, Scene Name, Gaze Event Duration, Fixation Point X, Fixation Point Y) into Matlab. 181 

All data processing and analyses were performed using Matlab (R2015a) software. The data was 182 

preprocessed before statistical analyses. 183 

As the picture sizes were smaller than the screen size, fixations on the screen but outside of 184 

the pictures were removed from all analyses. For the same reason, the gaze point coordinates were 185 

recalculated to reflect this shift. 186 

For each trial, the first fixation was discarded if it was central, as it was likely  to be a reflection 187 

(or remanence) of the fixation cross presented just before the scene, and therefore was not 188 

informative (Hayes & Henderson, 2017; Ramey, Yonelinas, & Henderson, 2020; Wang et al., 2015). As 189 

a result, 37 first fixations (8.8 % of all first fixations) which were not to the picture center and thus 190 

were informative, were kept for analyses. All the remaining fixations were used for the analyses (see 191 

Table 1).  192 
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4.2. Fixation analysis  193 

Gaze fixation location data were analyzed using iMap4 (Caldara & Miellet, 2011; Lao et al., 194 

2017; and see also Nicholls et al., 2019, with visual scenes), a freely available MATLAB open source 195 

toolbox for the statistical fixation mapping of eye movement data. iMap4 requires a two-step process: 196 

first, iMap4 generates fixation duration maps for each participant and every picture, creating individual 197 

fixation maps which are smoothed by convoluting them with a two-dimensional Gaussian Kernel 198 

function. These individual maps can be averaged to produce a group fixation map (heatmap). Second, 199 

these 3D fixation maps (dimensions are x, y, and fixation duration) are compared to produce 200 

statistically significant duration-weighted difference maps. The main advantage of this method is that 201 

it is data-driven, inspired by methods used in functional Magnetic Resonance Imaging, and no prior 202 

segmentation of pictures into ROIs is required. 203 

Toolbox parameters were adapted for the scene stimuli. In order to clearly identify the items 204 

embedded in the scenes, the smoothing parameter was set to a 2.5-degree visual angle. To reduce 205 

memory usage and computational time, picture size was rescaled. We used the default scaler 206 

parameter of 0.24 (updated X size = 246 pixels, updated Y size = 173). An average “duration map” was 207 

computed for each picture. A one-tailed t-test was then performed against the “baseline activation” 208 

(“the mean fixation intensity within the iMap mask”). We used an alpha level of .01 Bonferroni-209 

corrected for multiple comparisons. The output provided, for each scene, a map showing the 210 

significant above-chance fixation duration regions. From these maps, we extracted statistical iMap 211 

Regions of Interest (data-driven ROIs), where each data-driven ROI corresponded to statistically 212 

significant cluster of voxels. These data-driven ROIs were binarized. To simulate the central foveal 213 

vision, binary ROIs were dilated by 25 pixels, which corresponded to the size, on the image, of half of 214 

a viewing angle of 1.5°.  215 

Using these parameters, we calculated the relative fixation duration spent in data-driven ROIs 216 

at study phase for 4 subsequent response categories at test: hits (correctly recognized “targets”), 217 

misses (unrecognized “targets”), correct rejections (correctly rejected “distractors”), and false alarms 218 

(“distractors” incorrectly identified as “targets”). The relative fixation duration in ROIs was equal to 219 

the sum of fixation durations spent in ROI divided by the sum of all fixation durations spent in the 220 

picture. A Mann Whitney test was used to compare relative time spent in ROIs at study phase for each 221 

category.  222 

4.3. Visual saliency analysis 223 
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Visual saliency map 224 

For each picture, a saliency map was created using the GBVS Matlab toolbox (Graph-Based 225 

Visual Saliency, Harel, Koch, & Perona, 2007). GBVS was selected over other saliency toolboxes because 226 

it offers the highest prediction level for saliency-based ocular fixations, especially for scenes (Borji, 227 

Sihite, & Itti, 2013). The GBVS process is divided into two stages: activation maps are first created using 228 

specific feature channels, which are then normalizing in a way that highlights conspicuity and admits 229 

combination with other maps, to generate a final saliency map. We used the default parameters of 230 

GBVS.  231 

Fixation duration map 232 

For each participant and for each image, an individual fixation duration map was constructed, 233 

by taking the set of locations where the eyes were fixated and the duration of the gaze point. A fixation 234 

duration map was computed for each image by adding up the fixation durations of all participants 235 

(O’Connell & Walther, 2015). To simulate the central foveal vision, the result was then convolved with 236 

a Gaussian kernel. The full width at half maximum of the Gaussian kernel was set to 1.5° of visual angle.   237 

Correlation between saliency map and fixation duration map 238 

For each picture, a Spearman’s rank correlation was used to measure the similarity between 239 

saliency map and fixation duration map (Riche et al., 2013). 240 

Correlation between visual saliency and fixation ROI 241 

A Spearman’s rank correlation was used to test the relation between saliency and data-driven 242 

ROI fixation duration found using iMap. In the saliency interaction analysis, pixel-level saliency for each 243 

ROI was selected as the maximum value of the object region in order to minimize the object size effect. 244 

This was because big objects tend to include uniform texture regions and thus have much smaller 245 

average pixel-level saliency, while fixations were normally attracted to the most salient region of an 246 

object. Thus, maximum saliency rather than average saliency was more representative of pixel-level 247 

saliency of an object (Wang et al., 2015). 248 

4.4. Scanpath analysis  249 

The similarity between participants’ sequences of eye movements was analyzed using the 250 

ScanMatch open source Matlab toolbox (Cristino et al., 2010). This choice was guided by Anderson et 251 
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al. (2015) study which compared scanpaths methods and concluded that ScanMatch is the most 252 

adapted tool for analyzing fixation sequences, since it can take into account spatial location, temporal 253 

duration, and sequential similarity between scanpaths. 254 

For the spatial binning, each picture was divided with a grid composed of 96 (12 × 8) 255 

rectangular ROIs of 85 x 89 pixels. This grid size was determined without a priori: we used the same 256 

size bin as Cristino et al. (2010). Each rectangular ROI was labeled by a combination of two letters. Each 257 

fixation within the ROI was tagged with its name in the string sequence: a sequence contains a list of 258 

visited ROIs, respecting the order of fixations for a specific picture. For the temporal binning, the letters 259 

corresponding to a ROI were repeated in the sequence proportionally to the fixation duration: string 260 

sequences were divided into 100ms bins.  261 

Then, the ScanMatch string-edit distance methodology was used to find the best alignment 262 

over the whole string of two sequences by maximizing its score. This methodology was based on the 263 

Needleman-Wunsch algorithm which has been implemented to compare DNA sequence. To this end, 264 

the sequences were aligned based on a substitution matrix which provides a score for every alignment, 265 

based on the spatial relationship between ROIs. A similarity score of 1 corresponds to sequences being 266 

identical, while a similarity score of 0 indicates that there is no similarity.  267 

We used a gap penalty of 0 which means that adding gaps decreased similarity scores (Frame, 268 

Warren, & Maresca, 2019). The “threshold value” was equal to 2 standard deviations of all the saccade 269 

amplitudes. This means that the alignment algorithm only aimed to align regions which were within 270 

the variability of the saccade amplitudes (Cristino et al., 2010).  271 

The Scanmatch algorithm was used to calculate the similarity score between participant pairs, 272 

resulting in between-participant ScanMatch score matrix (matrix size: 42 x 42 participants). 273 

ScanMatch statistical analysis 274 

This matrix was transformed with Matlab function “mdscale”, allowing to perform 275 

MultiDimensional Scaling (MDS) (Kruskal, 1964) and to project each participant in a n-dimensional 276 

space. MDS then computed the participant coordinates in this n-dimensional space.  277 

Beforehand, it was necessary to determine the number of dimensions of this space. The 278 

goodness-of-fit of such space was quantified using a residual sum of squares called the stress of the 279 

map. Stress values are positive and small values are better, e.g., a stress value of 10 % indicates a fair 280 

fit (Kruskal, 1964). The stress value depends on the space dimension: the greater the n-dimensional 281 
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space, the smaller the stress value. We chose the size of the n-dimensional space so that the stress 282 

value of all the scenes was strictly less than 7.5 %, which guaranteed a correct fit. 283 

At the end of this procedure, MDS provided relative locations for all participants. Participants 284 

with similar temporo-spatial gaze patterns were plotted close together near the center of the space 285 

while those with atypical gaze patterns were plotted towards the periphery. The median location of 286 

the group, i.e., the MDS median point, was defined as the center of the participants’ group and 287 

represented the standard temporo-spatial gaze pattern. The relative location of participants was then 288 

computed by calculating the Euclidean distance (i.e., L2-norm) between the respective MDS 289 

coordinates participants and MDS median point. The mean MDS-distance of the 42 participants was 290 

calculated for each picture based on eye gaze patterns at study phase; higher MDS-distance values 291 

reflected dissimilar temporo-spatial gaze patterns. 292 

To test the relation between dissimilarity at study phase and the subsequent recognition 293 

performance at test, we conducted Spearman correlations between the mean MDS-distance of 42 294 

participants and accuracy scores, i.e., the number of targets correctly recognized and distractors 295 

correctly rejected. 296 

 297 

RESULTS 298 

1. Behavioral performance 299 

During the test phase, participants correctly recognized 79.52 ±13.96 % of target scenes, 300 

correctly rejected 70.24 ±15.85 % of distractor scenes and correctly rejected 97.86 ±4.15 % of new 301 

scenes (figure 4). A Friedman’s test (3 conditions: target, distractor, new) revealed a main effect of 302 

condition (χ2
F(2) = 64.78, p< 0.001). A Wilcoxon signed-rank test indicated that all of these results were 303 

significantly different from each other: Target (Mdn= 80%) vs Distractor (Mdn= 70%): T= 129, z= 2.71,  304 

p< 0.01; Target vs New (Mdn= 100%): T= 5.5, z= 5.07, p< 0.001; Distractor vs New: T= 0, z= 5.65, p< 305 

0.001.  306 

2. Fixation duration in iMap data-driven ROIs 307 

A total of 20 data-driven ROIs were identified, at study phase, in the 10 target scenes (table 2, 308 

figure 5).  309 
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There was no significant difference in the relative fixation time in data-driven ROIs at study 310 

phase, between subsequent correctly recognized targets (Hits) (Mdn= 30.22%) and missed targets 311 

(Misses) at test (Mdn= 31.55%), (U(NHits= 334, NMisses= 86)= 14099, z= 0.40, p= 0.80, Mann Whitney) (figure 312 

6). By contrast, we found a significant difference in the relative fixation time in data-driven ROIs at 313 

study phase, between false recognitions (false alarms) and correct rejection of distractors, with longer 314 

fixation durations for the former (Mdn= 38.46%) compared to correct rejections (Mdn= 29.98%), 315 

(U(NCorrect Rejections= 295, NFalse Alarms= 125)= 14191, z= 3.73, p< 0.001, Mann Whitney) (figure 6). This means that 316 

the more time participants spent looking in data-driven ROIs in the study phase, the less successful 317 

they were at rejecting “distractor” pictures in the test phase. 318 

3. Visual saliency 319 

We found a significant positive correlation between visual saliency and fixation duration for 320 

whole pictures at study phase (Spearman rho range: [0.526; 0.773], p< 0.001, N= 1024 x 717 pixels) 321 

(figure 7). By contrast, there was no significant correlation between the visual saliency of data-driven 322 

ROIs and the relative fixation duration time in these ROIs (Spearman rho= 0.332, N= 840), which 323 

confirmed that fixations were not driven by low-level scene features, i.e., saliency. 324 

4. ScanMatch results 325 

We chose a size of 8 for the n-dimensional space, for which all the stress values of images were 326 

strictly less than 7.5% (figure 8). The stress values, found and used to determine the goodness of fit of 327 

an MDS solution, are in accordance with the literature. For instance, in an eye-tracking study consisting 328 

of sentence analysis in 44 students (von der Malsburg & Vasishth, 2011), the stress value was found to 329 

be 22 % for a 2-dimensional space and decreased to 8.1 % in a 7-dimensional space. 330 

Using an 8-dimensional space, we determined the mean MDS-distance of 42 subjects for each 331 

picture seen during the study phase (L2-norm mean, table 3), and calculated the Spearman correlation 332 

coefficients between recognition performances (Hits for “targets” and Correct Rejection of 333 

“distractors”) and this average distance.  334 

There was no significant correlation between the proportion of correctly recognized targets 335 

and average MDS-distance (Spearman rho= -0.092, p= 0.80, N= 10) (figure 9). By contrast, we identified 336 

a significant negative correlation between the proportion of correctly rejected distractors and average 337 

MDS-distance (Spearman rho= -0.659, p= 0.04, N= 10) (figure 9). This result indicates that the more 338 
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similar the picture exploration was between subjects in the study phase, the more correctly they 339 

rejected “distractor” pictures at test.  340 

 341 

DISCUSSION 342 

This study aimed to provide a better understanding of how scene exploration strategies during 343 

free viewing at study phase, is associated with subsequent memory discrimination between targets, 344 

distractors, and new scenes, at test phase. Eye movement data were analyzed at study phase using 345 

two data-driven methods, namely a fixation density map (using iMap4) associated with a saliency map 346 

(using GBVS), and scanpath analyses without a priori (using the ScanMatch toolbox). First, we identified 347 

longer fixation durations in data-driven ROIs for subsequent false alarms over rejection of distractors, 348 

while there was no significant difference in the relative fixation time in data-driven ROIs between 349 

subsequent hits and misses, indicating that fixation maps were more an indicator of memory 350 

discrimination accuracy than of recognition performance. Second, we identified a negative correlation 351 

between average MDS-distance scanpaths and the correct rejection of distractors, and no significant 352 

correlation between average MDS-distance and target recognition performance, which suggests that 353 

scanpath consistency (or inter-observers congruency of scanpaths) at study phase was a factor of 354 

subsequent memory discrimination abilities, rather than of memory performance. Taken together, 355 

eye-tracking can provide insights into the pattern separation process, suggesting that a broad and 356 

consistent exploration during encoding increases subsequent memory discrimination.  357 

First, longer fixation durations in data-driven ROIs (using iMap4) were associated with 358 

subsequent false alarms over rejection of distractors. As fixation locations are a marker of visual 359 

attention (Vidal et al., 2012), this result implies that the more the participants focused their attention 360 

on these ROIs at encoding, the less they explored the rest of the visual scene, to be able subsequently 361 

to reject distractors. Using single items, Molitor et al.'s (2014) have previously suggested that low 362 

abilities in memory discrimination – i.e., false alarms – results from insufficient number of fixations at 363 

study – i.e., the poor encoding hypothesis. The current results go further, by showing that the relative 364 

fixation duration in data-driven ROIs is a marker of subsequent memory discrimination. A high relative 365 

fixation duration in some ROIs implies a low relative fixation duration outside these ROIs that accounts 366 

for a reduced global exploration and is predictive of false alarms. Memory discrimination requires high-367 

resolution mnemonic representations of studied items supported by the pattern separation process, 368 

and the intra-hippocampal binding of features that constitute an event (Hunsaker & Kesner, 2013). 369 

This suggests that encoding details with high specificity to be subsequently discriminated from other 370 
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similar lures requires a broad exploration of scenes during encoding. Interestingly, the relative fixation 371 

time in data-driven ROIs at study phase did not differ for subsequent hits and misses, indicating that 372 

fixation time is not coupled with recognition performance. In line with this finding, several studies have 373 

shown that recognition performance is better when fixation times are shorter (see Choe et al., 2017, 374 

in a search task, and Parag & Vakil, 2018, with faces), or that they are independent parameters 375 

(Schomaker & Wittmann, 2017).  376 

Second, the positive correlation between the visual saliency and fixation duration for the full 377 

picture highlights the role of visual saliency on full scene exploration, as previously demonstrated in 378 

landscape photographs (Dupont et al., 2016). Interestingly, the absence of significant correlations 379 

between the visual saliency of data-driven ROIs and the fixation duration time in these ROIs confirmed 380 

that data-driven fixation maps were not related to low-level scene features, i.e., saliency. 381 

Third, scanpath analyses revealed no significant correlation between the average MDS-382 

distance and target recognition performance which appeared to be independent factors. This result is 383 

consistent with other studies focusing on scanpaths and scene recognition, which showed that 384 

performance is related to scanpath idiosyncrasy (i.e., greater within- than between-participants 385 

similarity when compared at encoding and at retrieval, Foulsham et al., 2012), or that recognition 386 

performance is relatively dissociable from scanpath analyses (Foulsham & Kingstone, 2013). By 387 

contrast, we identified a negative correlation between the average MDS-distance and the correct 388 

rejection of distractors, which implies that scanpath consistency across observers during scene 389 

exploration at study phase is a significant factor in the ability to discriminate distractors from targets 390 

at test. This hypothesis is congruent with Lyu et al.'s (2019) study which identified that the consistency 391 

of fixation maps across viewers was predictive of scene memory. Few studies have highlighted 392 

scanpath consistency, using various paradigms. Shakespeare et al. (2015) observed higher scanpath 393 

consistency between healthy participants compared to neurological patients in search and memory 394 

tasks with scenes, although not considering the order or duration of fixations in their analyses, and 395 

suggested a disorganized approach when patients viewed scenes. Using a Deep Neural Networks, Wei 396 

et al. (2017) developed a method to predict which features will capture the most attention in a visual 397 

scene (i.e., gaze agreement), and the most consistent scanpath across viewers (i.e., scanpath 398 

agreement). More recently, Frame, Warren, & Maresca (2019), using dynamic surveillance videos and 399 

a guided search task, showed that an effective search strategy was associated with consistent 400 

scanpaths across observers. Together, our results suggest that there may be an optimal scene 401 

exploration strategy during free viewing at study phase to encode foreground and background scene 402 

features with high specificity, leading to a better memory discrimination at test phase. 403 
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Although this study provides interesting results, there are some limitations that open up 404 

opportunities for further research. First, to further study visual exploration strategies during scene 405 

encoding, we need to evaluate how the visualization of items of different sizes may influence fixation 406 

density maps and behavioral performance. Because participants viewed large items at different points 407 

in space, iMap4 did not detect their fixations which led us to use a 2.5° smoothing. In addition, 408 

statistical data-driven ROIs comparisons are more difficult to realize, and their interpretation is mainly 409 

visual. Second, we used a small number of images, which may limit the statistical power to assess 410 

memory discrimination. In addition, using same items in both target and distractor supported a certain 411 

degree of visual similarity necessary to assess memory discrimination, but did not allow to control 412 

whether the proportion of eye movements in these items versus the background influenced the 413 

rejection of the distractors. Third, we suggested that the consistency of scanpath at scene encoding 414 

affects the subsequent identification of “distractors” at test. The next step would be to identify scene 415 

characteristics that may facilitate scanpath consistency and increase memorization. This would open 416 

up new possibilities in terms of care and support for people with memory difficulties.  417 

  418 

CONCLUSIONS 419 

To conclude, eye-tracking analyses methods without a priori are particularly suitable to study encoding 420 

in memory for visual scenes, given their size and the amount of information they contain. In particular, 421 

we showed that iMap4 and ScanMatch toolboxes are valuable methods to study gaze movements 422 

associated with scene memory discrimination. The current study contributes to our growing 423 

understanding of memory strategies at encoding. Most importantly, we identified that scene memory 424 

discrimination is associated with a wide gaze exploration at study phase, and a consistent scanpath. 425 

Future studies may further explore the inter-observer scanpath consistency and their relationship to 426 

memory and cognitive parameters.   427 
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Tables 599 

 600 

 

 N° Picture 
Total 

 1 2 3 4 5 6 7 8 9 10 

Total nb of 

fixations 

retained 

652 708 670 644 626 656 680 658 653 664 6611 

Nb of 1st 

fixation 

retained 

4 3 3 4 4 2 4 5 2 6 37 

Table 1 Total number of fixations and number of first fixations retained for analysis for each target 601 

picture. 602 

 603 

 604 

 

 N° picture 
Total 

 1 2 3 4 5 6 7 8 9 10 

Number 

of ROI 
3 2 2 1 2 1 2 2 3 2 20 

Table 2 Number of data-driven Regions Of Interest identified in each target picture during study phase. 605 

  606 



23 
 

N° picture 
% of target pictures 

correctly recognized 

% of distractor pictures 

correctly rejected 
L2-norm mean 

1 78.57 52.38 0.3619 

2 69.05 64.29 0.40743 

3 73.81 85.71 0.35782 

4 80.95 78.57 0.35135 

5 88.10 40.48 0.40763 

6 85.71 83.33 0.34745 

7 80.95 69.05 0.37707 

8 88.10 83.33 0.38137 

9 61.90 59.52 0.39328 

10 88.10 85.71 0.36134 

Total 79.52 70.24  

Table 3 For each target picture, % of participants who recognized target correctly, rejected distractor 607 

correctly, and L2-norm mean. 608 

 609 

  610 
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Figures 611 

 612 

 613 

Figure 1. Scenes presented to participants during study and recognition phases (only scenes used for 614 

the eye-tracking data analysis are presented). 615 

 616 

 617 

Figure 2. Experimental design. In the study phase (left), participants were presented with pictures 618 

and were asked to watch carefully. In the recognition phase (right), participants were presented with 619 

pictures again and were asked to decide whether they had seen them in the study phase or not. 620 

Pictures in the recognition phase were presented until the participant responded. 621 

 622 

 623 

Figure 3. Schematic representation of the procedures for eye-tracking data analysis. 624 

Note: in order to represent the MDS space in the figure, the size of the n-dimensional space was 625 

chosen equal to 3 (but in the analysis, 8 was used). 626 

 627 

 628 

Figure 4. Recognition accuracy: percentage of pictures correctly recognized (targets) or correctly 629 

rejected (distractors and new) in recognition phase (** p< 0.01, *** p< 0.001). 630 

Note: The red line indicates the median, the bottom and top edges of the box indicate the 25th and 631 

75th percentiles, respectively. The whiskers extend to the most extreme data points not considered 632 

outliers, and the outliers are plotted individually using the '+' symbol 633 

 634 

 635 

Figure 5. Data-driven ROIs (p < 0.01 Bonferroni corrected, significant area marked by dark line) and 636 

visual saliency (obtained using GBVS) for scene viewing during study phase. 637 

 638 

 639 

Figure 6. Relative fixation duration in study phase corresponding to subsequent target hits or misses 640 

(A), correct rejections and false alarms (B) in recognition phase (*** p< 0.001). 641 
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Note: The red line indicates the median, the bottom and top edges of the box indicate the 25th and 642 

75th percentiles, respectively. The whiskers extend to the most extreme data points not considered 643 

outliers, and the outliers are plotted individually using the '+' symbol 644 

 645 

 646 

Figure 7. Spearman’s rank correlation between visual saliency and fixation duration, during study 647 

phase, in whole picture for each target picture. The numbers above each bar correspond to Spearman’s 648 

rank coefficient. 649 

 650 

 651 

Figure 8. Stress value and dimensional-space for the 10 scenes; 0.075 corresponds to the maximum 652 

accepted value for the stress value. 653 

 654 

 655 

Figure 9. Relationship between average MDS-distance and percentage of: targets correctly 656 

recognized (A), distractors correctly rejected (B) (see table 3). 657 


