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Abstract

In this paper, we contribute toward building a better understanding of farmers’

responses to behavioural drivers of land-use decision by establishing an alternative

analytical procedure, which can overcome various drawbacks suffered by methods

currently used in existing studies. Firstly, our procedure makes use of spatially

high-resolution data, so that idiosyncratic effects of physical environment drivers,

e.g. soil textures, can be explicitly modelled. Secondly, we address the well-known

censored data problem, which often hinders a successful analysis of land-use shares.

Thirdly, we incorporate spatial error dependence and heterogeneity in order to ob-

tain efficiency gain and a more accurate formulation of variances for the parameter

estimates. Finally, we reduce the computational burden and improve estimation ac-

curacy by introducing an alternative GMM-QML hybrid estimation procedure. We

apply the newly proposed procedure to spatially high resolution data in England

and found that, by taking these features into consideration, we are able to for-

mulate conclusions about causal effects of climatic and physical environment, and

environmental policy on land-use shares that differ significantly from those made

based on methods that are currently used in the literature. Moreover, we show that

our method enables derivation of a more effective predictor of the land-use shares,

which is utterly useful from the policy making point of view.
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1. Introduction

Land is the most critical natural assets which provides us with various
fundamentals of life, from clean water and food to the natural regulation of
hazards, such as flooding. In the literature, the term “land-use” is used when
describing socio-economic use of land, such as agricultural, recreational or
residential use. In the current paper, we focus on agricultural land-use, e.g.
arable land and pasture land (or grassland). In many countries, the biggest
land-use category is agriculture. For example, agriculture is the biggest
land-use category in England at 63% compared to transport/utilities and
residential at 4% and 1%, respectively (Ministry of Housing, Communities
and Local Government (2017)). Hence, it is a common knowledge that
agricultural land-use decision (e.g. to grow wheat or barley instead of oilseed
rape) significantly affects the environment (e.g. biodiversity) and socio-
economic welfare (see also Mattison and Norris (2005), and Reidsma et al.
(2006)). Moreover, there is a prevalent suggestion that introducing changes
to agricultural land-use, i.e. how agricultural land is cultivated, can help
to achieve deep emission reductions and prepare for climate change. In
the UK, Committee on Climate Change (CCC) proposes various changes to
the way we cultivate land to help to achieve net-zero emission target (CCC
(2018)). These are (a) to reduce land-use for grasslands by 26 to 36%, (b) to
introduce new woodlands by 1.5 million hectares, and (c) to increase land-
use for bio-energy crops, e.g. oilseed rape, by up to 1.2 million hectares. It
is believed that these changes should lead to between 35 and 80% overall
reductions in Metric tons of carbon dioxide equivalent by 2050.

Although the above paragraph only briefly provides an insight into the
importance of agricultural land-use to the environment and socio-economic
welfare, from the policy making point of view, this is sufficient to high-
light the necessity to manage how land is allocated between its alternative
uses. To manage agricultural land requires a good understanding of farm-
ers’ responses to behavioural drivers of land-use decision. Previous stud-
ies have suggested various behavioural drivers. These can be categorised
into: (i) Climatic drivers, e.g. rain and temperature, (ii) Economic drivers,
e.g. input/output prices, and (iii) Environmental policies and schemes, e.g.
greenbelts and environmentally sensitive areas (ESAs) in the UK. A good
understanding of how these drivers influence land-use decisions over time
and spatial space should help the UK government to both evaluate existing
practices and formulate new environmental policies, especially after Brexit.

In the current paper, we aim to contribute toward improving the ability
to formulate a better understanding of farmers’ responses to the behavioural
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drivers of land-use decision. We achieve this objective by establishing an an-
alytical procedure, which can handle complex data structures and is able to
overcome various methodological drawbacks suffered by existing methods,
and applying such a method to investigate how the climatic, economic and
policy drivers influence agricultural land-use patterns in England. In this
paper, these agricultural land-use patterns are depicted by “land-use share”,
which is defined hereafter as a proportion of a given plot of land used for
cultivating a given crop. Moving beyond methods usually used in exist-
ing studies (Fezzi and Bateman (2011), Chkir and Le Gallo (2013), Ay et
al. (2017), and Marcos-Martinez et al. (2017), for example), our analyti-
cal framework explores various directions. These are (i) to examine use of
spatially disaggregated data, (ii) to model the land-use share as a censored
response, (iii) to allow for potential spatial error dependence (SED), (iv) to
model unobserved heterogeneity in an error component structure, and (v) to
reduce computational burden by introducing a hybrid estimation procedure.

We discuss statistical and empirical underpinnings of these proposals in
Section 2.1. Incorporating these features gives rise to a system of two-limit
(TL) random-effect (RE) Tobit models with SED (TL-RE-SED-Tobit here-
after) for spatially high-resolution panel data. We thoroughly explain the
construction of such a system in Sections 2.2 and 2.3, while introducing a
new hybrid QML/generalised method of moments (GMM) estimation proce-
dure in Section 3. We explain each of the necessary steps in detail in Sections
3.1 to 3.4. In Section 4 we apply our method to spatially high resolution
data for England and formulate conclusions about causal effects of climatic
and physical environment, and environmental policy on land-use shares. We
note that these conclusions differ significantly from those made based on de-
ficient methods that are currently used in the literature. Moreover, we show
that our method enables derivation of a more effective predictor of the land-
use shares, which is utterly useful from the policy making point of view.
Section 5 draws some important conclusions. Finally, mathematical proof
and other technical details are delegated to an online appendix.

2. System of TL-RE-SED Tobit Equations

We begin with a set of analytical considerations that lead to the need to
formulate the system of TL-RE-SED-Tobit.

2.1. Methodological Explorations

These are intended to address drawbacks in the empirical methods used
by previous studies for agricultural land-use modelling and prediction.
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2.1.1. Exploring the use of spatially disaggregated data

In an analysis of agricultural land-use, different techniques are required
for different data resolutions. At the extreme ends of the spectrum, we have
individual data (e.g. parcel-level data) and aggregated data on a larger ge-
ographical region (e.g. national level). Regarding the former, an analysis
is often conducted within a discrete-choice modelling framework (e.g. Li et
al. (2013)). An analysis of the latter involves tools in panel-data regres-
sion models and seemingly unrelated regressions (e.g. Baltagi and Pirotte
(2011), Chakir and Gallo (2013), Marcos-Martinez et al. (2017), and Ay
et al. (2017)). We believe that there are benefits to be gained by explor-
ing spatially-disaggregated data, i.e. a convenient middle ground. In this
regard, individual choices are aggregated to construct the land-use shares.
But, unlike the case for national level data, aggregation is done only on a
scale that is small enough to capture the spatial variation in the environmen-
tal and climatic drivers of farmers’ behaviour, and proportionate with the
scale of the decision-making unit. The first characteristic suggests that an
important benefit is the ability to explicitly model the idiosyncratic effects of
policies and other other physical environmental drivers (e.g. mean elevation,
land slope and altitude). Furthermore, to satisfy the second characteristic,
we assume that each of the spatial units considered is a decision-making unit
(see also the discussion in Remark 4.2 for details).

2.1.2. Modeling land-use shares as censored responses

A difficulty of modelling spatially disaggregated data resides in an issue
often referred to as censoring problem, i.e. we are likely to see a wide range
of land-use share values between 0 and 1 with pile-ups at the two endpoints.
The failure to account for these features leads to numerous methodolog-
ical shortfalls, especially the biasness and inconsistency of the parameter
estimates (see e.g. Greene (2008), and Wooldridge (2010)). In this paper,
we address the problem by modelling land-use share equations, which are
based on farmers’ profit maximisation, as a system of simultaneous Tobit
equations. Hence, we have drawn upon a set of tools recently developed for
estimating censored household demand systems (see e.g. Yen et al. (2003),
and Dong et al. (2004)). These are explained in detail in Section 3 below.

2.1.3. Allowing for potential spatial error dependence (SED)

Often the use of the spatially disaggregated data involves some degree of
spatial dependence. This may be brought about by endogenous interaction
effects, which indicates a spatial lag specification, or by the Durbin effects,
which is an exogenous interaction counterpart. Nonetheless, these effects
seem to be secondary in the context of a land-use share model. A more
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relevant type of dependence is the SED. Measurement errors that spill across
grid boundaries, for example, can lead to the SED. Otherwise, there may
exist unobservable latent variables that might be unaccounted for in the
model. For instance, some specific land characteristics, which cannot be
accounted for in the model due to unavailability of the data, may lead to
the SED if they are spatially correlated (see also Moscone et al. (2007), and
Chakir and Le Gallo (2013)). When the problem is not properly addressed,
usual maximum likelihood and quasi maximum likelihood (QML) methods
can be severely affected. In the current paper, we first construct a panel-data
Tobit model with error components, which allow both spatial and time-wise
correlations. This model forms the basis for the development of our system
of land-use shares (see Sections 2.2 and 2.3 for details).

2.1.4. Modelling unobserved heterogeneity in an error component structure

In an econometric point of view, heterogeneity can be handled via either
a random-effect or a fixed effect model. The choice between these two alter-
natives is complex and depends on the model and data. In a spatial setting,
using individual fixed effects might induce an incidental parameter prob-
lem as the asymptotics in the cross-sectional dimension is necessary. Some
researchers, e.g. Lee and Yu (2010), suggested methods to overcome this
problem. However, none of these papers deals with a system of equations
with inter-equation correlation as in our case. Moreover, in a fixed-effect
model, land quality, which is a time-invariant variable, is swept away by the
within estimator and the associated coefficient is not identified. Unlike pre-
vious studies, the current paper explores the use of spatially disaggregated
data. An important advantage for the use of the disaggregated data is the
ability to explicitly model idiosyncratic effects of policies and other physical
environmental drivers (e.g. land slope/altitude). In the other words, by
using the spatially disaggregated data, we can almost completely capture
the heterogeneity of spatial units, whose existence is due to the differences
in geographical conditions of land. However, since data limitations can hin-
der a complete assessment of the influence of inter-regional biophysical and
socio-economic differences on land-use dynamics, here we model such left-
over individual-effects via a random-effect model. Taking into consideration
the above discussion, an additional assumption that the unobserved vari-
ables are uncorrelated with the regressors seems to be less problematic than
opting for a fixed effect model.

2.1.5. Reducing the computational burden via a hybrid estimation procedure:

In the literature, the SED is often modelled on the basis of one of many
variants of the Cliff and Ord (1973, 1981) formulations. An estimation of
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the Cliff-Ord specifications can be computationally burdensome. This is so
even for spatial panel data models of uncensored responses (e.g. Kapoor
et al. (2007) and Yang (2013)). To lighten the computational burden,
Liu and Yang (2015) suggested an alternative QML procedure that involves
concentrating out a subset of the parameters and maximising a concentrated
log likelihood function. Nonetheless, it is not straightforward to apply such
a tool to our case of censored responses. Hence, in this paper, we formulate a
hybrid method that is a combination of the QML and the GMM techniques
for estimating our system of simultaneous Tobit equations of land-use shares.
Even though Kelejian and Prucha (1999) and Kapoor et al. (2007) have
presented some key asymptotic results for the GMM procedure, in Section
3, we discuss additional properties that are crucial to the statistical validity
of our hybrid framework.

2.2. Constructing the TL-RE-SED-Tobit Model for Panel Data

The censoring problem explained in Section 2.1.2 suggests that we model
land-use shares based on the two-limit Tobit model of the form

y∗k,it = xk,itβk + uk,it (2.1)

yk,it =


0 if y∗k,it ≤ 0

y∗k,it if 0 < y∗k,it < 1,

1 if y∗k,it ≥ 1

(2.2)

where k signifies the kth alternative crop grown on the land, e.g. arable,
xk,it = [1, xk,2,it, . . . , xk,J,it], J denotes the number of land-use determinants
included in the model, i and t signify the i-th grid of land and t-th time
period, respectively. Let k = 1, . . . ,K, i = 1, . . . , N and t = 1, . . . , T. The
models in (2.1) is well founded since it can be viewed as a reduced form of a
well-known structural profit-maximisation problem discussed in Chambers
and Just (1989), and extended to the context of agricultural land-use by
Fezzi and Bateman (2011). A general form of the model is obtained by
replacing 0 and 1 in (2.2) with a and b, where a, b ∈ R and a < b.

We now incorporate the RE-SED component into the TL-Tobit model
by specifying the disturbance process in each time period as following the
first order spatial autoregressive (SAR) process

uk(t) = ρkWkuk(t) + εk(t), (2.3)

where uk(t) = (uk,1t, uk,2t, . . . , uk,Nt)
⊤ (i.e. an N×1 vector of disturbances),

ρk is a scalar autoregressive parameter, εk(t) is anN×1 vector of innovations
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in period t, Wk is an N ×N weighting matrix of known constants. We also
assume that innovation vector εk(t) follows the error component structure

εk(t) = µk + vk(t), (2.4)

where µk denotes a vector of the unit specific error component, which sug-
gests that the disturbances are auto-correlated both spatially and time-wise.

With regard to the above model and specifications, we maintain the
following assumptions throughout this paper.

Assumption 2.1. (a) Let T be a fixed positive integer. (b) For all 1 ≤ t ≤
T and 1 ≤ i ≤ N, where N ≥ 1, vk,it are identically and independently
distributed (iid) with zero mean, variance of 0 < σ2k,v < bv < ∞, and
finite fourth moment. Also, E(vk,it|xk,it) = 0 almost surely. (c) For all
1 ≤ i ≤ N, where N ≥ 1, the unit-specific error components µk,i are iid with
zero mean, the variance of 0 < σ2k,µ < bµ < ∞, and finite fourth moment.
Also, E(µk,i|xk,it) = 0 almost surely. (d) The processes {vk,it} and {µk,i}
are independent. □

Assumption 2.1(a) suggests that our analysis concerns the case where T
is fixed and N → ∞. Assumptions 2.1(b) and (c) imply E(εk,it) = 0 and

E(εk,itεk,js) =


σ2k,µ + σ2k,v if i = j; t = s

σ2k,µ if i = j; t ̸= s.

0 otherwise

(2.5)

In the other words, the innovations εk,it are temporally correlated within a
unit, but are not spatially correlated across units.

Moreover, concatenation of the innovation vector with respect to time
t = 1, . . . , T leads to εk = (eT ⊗ IN )µk + vk, where ⊗ denotes the Kronecker
product, eT is a T×1 vector of 1s, IN is an identity matrix of sizeN, and vk =
(v⊤k (1), v

⊤
k (2), . . . , v

⊤
k (T ))

⊤ = (vk,11, vk,21, . . . , vk,N1, vk,12, . . . , vk,NT )
⊤ . This

suggests that E(εk) = 0 and covariance matrix E(εkε
⊤
k ) of the form

Ωk,ε = σ2k,vINT + σ2k,µ(JT ⊗ IN ) = σ2k,vQ0 + σ2k,1Q1, (2.6)

where INT denotes an identity matrix of size NT, σ2k,1 = σ2k,v + Tσ2k,µ,

Q0 =
(
IT − JT

T

)
⊗ IN and Q1 = JT

T ⊗ IN in which JT = eT e
′
T is a T × T

matrix of unit elements. In (2.6), Q0 and Q1 are transformation matrices
often used in the error component literature (see e.g. Baltagi (2008)). These
matrices are symmetric, idempotent, orthogonal to each other and satisfy
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the following properties: (i) Q0 + Q1 = INT , (ii) TR(Q0) = N(T − 1) and
TR(Q1) = N, and (iii) Q0Q1 = 0. In the light of these properties,

Ω−1
k,ε = σ−2

k,vQ0 + σ−2
k,1Q1 and Ω

−1/2
k,ε = σ−1

k,vQ0 + σ−1
k,1Q1. (2.7)

A similar concatenation to (2.3) also leads to

uk = ρk(IT ⊗Wk)uk + εk = [IT ⊗ (IN − ρkWk)
−1]εk, (2.8)

which we maintain the following assumptions throughout this paper.

Assumption 2.2. (a) The matrix IN − ρkWk is nonsingular. (b) |ρk| < 1.
(c) All diagonal elements of Wk are zero. □

Assumption 2.2(a) ensures that the model is closed, in the sense that it
can be uniquely solved for the disturbance uk in terms of the innovation εk,
whereas Assumption 2.2(c) is a normalisation, which implies that no unit
is related in a meaningful way or being a neighbour to itself. Although the
elements of Wk are assumed to be nonvarying over t, they are allowed to
depend on the cross-sectional dimension N (i.e. they are allowed to form a
triangular array). This corresponds to models in which the weighting matrix
is row-normalised and the number of neighbors for a given unit depends on
the sample size. In this respect, we also assume:

Assumption 2.3. Row and column sums of Wk and Hk = (IN − ρkWk)
−1

are bounded in absolute values by cW <∞ and cH <∞, respectively. □

Accordingly, E(uk) = 0 and covariance matrix E(uku
⊤
k ) is of the form

Ωk,u =
[
IT ⊗ (IN − ρkWk)

−1
]
Ωk,ε

[
IT ⊗ (IN − ρkW

⊤
k )−1

]
. (2.9)

It is useful to also note Ω−1
k,u =

[
IT ⊗ (IN − ρkW

⊤
k )

]
Ω−1
k,ε [IT ⊗ (IN − ρkWk)] .

From (2.9), it is clear that the variance-covariance matrix of the disturbance
vector uk is proportional to Hk. Since this property is preserved under
matrix multiplication, Assumption 2.3 implies that the row/column sums
of this matrix are bounded uniformly in absolute values, which restricts the
degree of cross-sectional correlation between the model disturbances.

2.3. System Variance-Covariance Structure

We now specify the system variance-covariance structure. Consider first
the disturbance u = (u⊤1 , . . . , u

⊤
K)⊤. In accordance with the definition in

(2.8), covariance matrix of the system disturbance E(uu⊤) is

Ωu = AΩεA
⊤, (2.10)
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where A = diag(A11, . . . , AKK) and Akk = IT ⊗ Hk. In the other words,
covariance matrix E[uku

⊤
l ] can be expressed as

Ωkl,u = E[εkε
⊤
l ]{IT ⊗HkH

⊤
l }, (2.11)

where Hk = B−1
k and Bk = (IN − ρkWk). Now we discuss the covariance

of the innovations ε = (ε⊤1 , . . . , ε
⊤
K)⊤. We assume that the cross-equation

correlation of the innovations is driven by

E

(
µk
vk

)(
µ⊤l v⊤l

)
=

(
σ2kl,µ(JT ⊗ IN ) 0

0 σ2kl,vINT

)
, (2.12)

where k, l = 1, . . . ,K. Accordingly, covariance matrix of the innovations, i.e.
E(εε⊤), is

Ωε = Ωv ⊗Q0 +Ω1 ⊗Q1 = [Ωkl,ε], (2.13)

where Ωµ = [σ2kl,µ] and Ωv = [σ2kl,v] both with dimension K ×K, such that

Ωkl,ε is E(εkε
⊤
l ) defined as

Ωkl,ε = σ2kl,µ(JT ⊗ IN ) + σ2kl,vINT , (2.14)

which is in line with (2.6), where σ2kl,v = E(vkv
⊤
l ) and σ2kl,µ = E(µkµ

⊤
l ).

Alternatively,
Ωkl,ε = σ2kl,vQ0 + σ2kl,1Q1 (2.15)

obtained by defining σ2kl,1 = σ2kl,v+Tσ
2
kl,µ. In relation to (2.7), we also write

Ω−1/2
ε = Ω−1/2

v ⊗Q0 +Ω
−1/2
1 ⊗Q1. (2.16)

Finally, the use of (2.14) in (2.11) leads to

Ωkl,u =
{
σ2kl,1J̄T + σ2kl,v(IT − J̄T )

}
⊗HkH

⊤
l , (2.17)

where J̄T = JT /T.

2.4. Other Useful Results and Transformations

We finish this section by presenting a set of results that will be useful for
the discussion that follows. Firstly, let ωk,i signify covariance between future
and the current disturbances, E[uk,i,T+τu

⊤
k ]. Deriving ωk,i in the context of

the TL-RE-SED model requires first noting that uk(t) = B−1
k (µk + vk(t))

and uk = (eT ⊗Hk)µk + (IT ⊗Hk)vk. In this regard,

E[uk(T + τ)u⊤k ] = E[B−1
k (µk + vk(T + τ))((eT ⊗Hk)µk + (IT ⊗Hk)vk)

⊤]

= σ2kk,µHk(e
⊤
T ⊗H⊤

k ),
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where σ2kk,µ = E[µkµ
⊤
k ], which is N × TN. As the results,

E[uk,i,T+τu
⊤
k ] = σ2kk,µhk,i(e

⊤
T ⊗H⊤

k ), (2.18)

where hk,i is the i-th row of Hk = B−1
k , for an individual i at time T + τ.

Moreover, recall

Ωkk,u = E[εkε
⊤
k ]{IT ⊗HkH

⊤
k }

=
{
σ2kk,1J̄T + σ2kk,v(IT − J̄T )

}
⊗HkH

⊤
k , (2.19)

which were presented previously in (2.11) and (2.17). In this regard, (2.19)
and (2.18) suggest collectively that

ω⊤
k,iΩ

−1
kk,u =

σ2kk,µ
σ2kk,v

hk,i(e
⊤
T ⊗H⊤

k )

[
IT ⊗BkB

⊤
k −

Tσ2kk,µ
σ2kk,1

J̄T ⊗BkB
⊤
k

]

=
σ2kk,µ
σ2kk,1

hk,i(e
⊤
T ⊗Bk) (2.20)

since e⊤T = e⊤T J̄T and
σ2
kk,µ

σ2
kk,v

−
(

σ2
kk,µ

σ2
kk,v

× Tσ2
kk,µ

σ2
kk,1

)
=

σ2
kk,µ

σ2
kk,1

. Since hk,i is the i-th

row of Hk = B−1
k and B−1

k Bk = IN , hk,iBk = l⊤k,i, where l
⊤
k,i is the i-th row

of IN ,hk,i(e
⊤
T ⊗Bk) = (1⊗ hk,i)(e

⊤
T ⊗Bk) = (e⊤T ⊗ l⊤k,i), which is (1× TN).

Hence,

ω⊤
k,iΩ

−1
kk,u =

σ2kk,µ
σ2kk,1

(e⊤T ⊗ l⊤k,i). (2.21)

We shall revisit this result in Section 3.4 when we discuss prediction under
the TL-RE-SED Tobit specification.

In addition, results in the previous section allows derivation of a set of
transformations that are essential for the discussion in the next section.
To this end, let Y = [Y ⊤

1 , . . . , Y
⊤
K ]⊤, where Yk = [Y ⊤

k (1), . . . , Y ⊤
k (T )]⊤

and Yk(t) = [yk,1t, . . . , yk,Nt]
⊤, and let X = diag[x1, x2, . . . , xK ], where

xk = [x⊤k (1), . . . , x
⊤
k (T )]

⊤ and xk(t) = [x⊤k,1t, . . . , x
⊤
k,Nt]

⊤. Firstly, it is the
Cochrane-Orcutt-type transformation

Ẋ = A−1X and Ẏ = A−1Y. (2.22)

Guided by the classical error component literature, we can also include the
RE-GLS-type transformation to obtain the “Cochrane-Orcutt plus RE-GLS
transformations” of the form

Ẍ = Ω−1/2
ε Ẋ and Ÿ = Ω−1/2

ε Ẏ . (2.23)
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In relation to (2.22) and (2.23), let us also define

u̇ = A−1u and ü = Ω−1/2
ε u̇. (2.24)

While the former is equivalent by definition to ε, we assume that the latter
has a contemporaneous error correlation matrix [rkl] for k, l = 1, . . . ,K.

3. Hybrid QML/GMM Estimation Procedure

In the current section, we propose a hybrid QML-GMM procedure for
estimating the above-discussed system of simultaneous Tobit equations for
land-use shares. Overall, our procedure consists of four key steps, namely:
(3.1) Estimating the TL-Tobit panel data model of land-use shares for all
the K categories. Our objective is to obtain consistent estimates of the
disturbances uk,it. (3.2) Performing a GMM estimation to obtain consistent
estimates of the spatial parameters ρk for all k = 1, . . . ,K and constructing
the Cochrane-Orcutt transformations Ẏ and Ẋ. (3.3) Estimating system of
TL-RE-SED Tobit equations of the land-use shares under consideration with
QML in order to obtain estimates of the parameters β = [β⊤1 , . . . , β

⊤
K ]⊤, and

the elements of Ωv = [σ2kl,v] and Ω1 = [σ2kl,1]. (3.4) Constructing land-use
prediction. Performing Steps 3.1 to 3.3 should provide sufficient information
for analysing causal effects of the various drivers on agricultural land-use
shares. Therefore, the final step can be viewed as a supplemental step,
which is useful for policy making. Below we will discuss these steps in turn.

3.1. Estimating the TL-Tobit Panel Data Models

The current step involves estimating the TL-Tobit panel data model for
the k-th category of land-use using QML estimation. Our objective is to
obtain a consistent estimate of the disturbance, uk,it. A number of issues
must be taken into consideration to this end.

3.1.1. Heteroscedasticity

With regard to the QML estimation, it is well known that presence
of heteroscedasticity is likely to lead to inconsistent estimates. However,
consistent estimation is possible by specifying a model for heteroscedasticity.
Particularly, let

σk,u,it = exp(zk,itαk), (3.1)

where zk,it = [1, zk,1,it, . . . , zk,J,it] and “J” is used with a slight abuse of
notation since it may not be the same as the number of determinants in
(2.1). Here, we assume a multiplicative error specification as is often done
in the auto-regressive heteroskedasticity literature (see e.g. Tsay (2005)).
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3.1.2. Pooled QML estimation

Following the popular pooled method, pooled QML estimators maximise
the quasi-log-likelihood function

Lk,N =
1

NT

N∑
i=1

T∑
t=1

ℓk,it(β̄k, ᾱk), (3.2)

where ℓk,it(β̄k, ᾱk) is log-likelihood function for the it-th observation, i.e.

ℓk,it(β̄k, ᾱk) = 1[yk,it = 0] log
[
Φ((−xk,itβ̄k)/σk,u,it(ᾱk))

]
+ 1[0 < yk,it < 1] log

[
(1/σk,u,it(ᾱk)ϕ((yk,it − xk,itβ̄k)/σk,u,it(ᾱk))

]
+ 1[yk,it = 1] log

[
Φ(−(1− xk,itβ̄k)/σk,u,it(ᾱk))

]
,

and 1[ · ] signifies an indicator function. Lemma 3.1 below confirms that con-
sistent estimates of the disturbances can be obtained using the above QML
estimation. The proof of this lemma requires some additional assumptions.

Assumption 3.1. (a) xk has a full column rank, i.e. rank(xk) = J ,
where J < ∞. (b) For a column of xk, i.e. xk,l, lim

N→∞
x⊤k,lxk,l → ∞,

lim
N→∞

x2k,l,it/x
⊤
k,lxk,l → 0 and E(x4k,l,it) < ∞ for all l = 1, . . . , J and it =

11, 21, . . . , N1, 12, . . . , NT. (c) The empirical distribution function Gk,N (de-
fined by Gk,N (xk) = j/NT where j is the number of points xk,it ≤ xk) con-
verges to a distribution function Gk for all it = 11, 21, . . . , N1, 12, . . . , NT
and k = 1, . . . ,K. □

With the exception of the finite fourth moment condition on xk,l,it, which
is necessary for the proof of Theorem 1 below, Assumption 3.1 is standard
in the Tobit model literature (see e.g. Amemiya (1973)).

Lemma 3.1. Let B1 denote the vector of true parameters (β⊤k , α
⊤
k )

⊤ and

B̂1 be the QML estimator of B1. Under Assumptions 2.1 to 2.3 and 3.1, B1

is uniquely identifiable and B̂1 = B1 +Op((NT )
−1/2) as N → ∞. □

3.1.3. Standardised residuals

Upon completion of the above estimation, the required standardised
residuals for uncensored observations are constructed as

ũk,it/σ̃k,u,it = (yk,it − xk,itβ̃k)/σ̃k,u,it, (3.3)

where σ̃k,u,it = exp(zk,itα̃k) as in equation (3.1), and β̃k and α̃k are the QML
parameter estimates from Step 3.1.2. Otherwise, generalised residuals for
censored observations are computed via the inverse Mills ratio

λk,it = ϕ(xk,itβk/σk,u,it)/{Φ(xk,itβk/σk,u,it)}, (3.4)
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where ϕ(·) and Φ(·) denote normal density function and the cumulative
distribution function, respectively. For instance, the generalised residuals
can be computed as ũk,it = −λ̃k,it for observations left-censored at 0, where

λ̃k,it is obtained using (3.4) and by plugging in the parameter estimates from
Section 3.1.2.

3.2. Estimating ρk & Constructing Cochrane-Orcutt Transformations

Now we use ũk = (ũk,11, ũk,21, . . . , ũk,N1, ũk,12, . . . , ũk,NT )
⊤ in place of

the true disturbances in order to obtain estimates for ρk by using the GMM
procedure introduced in Kapoor et al. (2007). To be accustomed to such a
practice, one only has to note that generalised residuals are commonly used
for performing diagnostic tests in a standard Tobit model literature (see e.g.
Cameron and Trivedi (2005)). Although the QML estimation is used in Step
3.1 unlike Kapoor et al. (2007), who employed the ordinary least squares,
consistency of our GMM estimators for ρk, σ

2
k,v and σ2k,1 can be shown in a

similar fashion.
Lemma 3.2. Let B2 denote the vector of true parameters (ρk, σ

2
k,v, σ

2
k,1)

⊤

and B̂2 is the GMM estimator of B2. Under Assumptions 2.1 to 2.3 and 3.1,
B2 is uniquely identifiable and B̂2 = B2 +Op((NT )

−1/2) as N → ∞. □
The underlying moment conditions and weight matrices for the above

GMM estimators, and the proof of Lemma 3.2 are discussed in detail in the
online appendix. Once the above estimation is completed for allK categories
of land-use, GMM estimates ρ̂1, . . . , ρ̂K of the autoregressive parameters are
readily available. The remainder of the current step focuses on estimating
the matrix Akk via expression (2.10). Particularly, Âkk = IT ⊗ Ĥk, where
Ĥk = (IN − ρ̂kWk)

−1. These are then used for computing the Cochrane-
Orcutt transformations of Y and X, Ẋ = Â−1X̃ and Ẏ = Â−1Ỹ where
Ỹ = [Ỹ ⊤

1 , Ỹ
⊤
2 , . . . , Ỹ

⊤
K ]⊤ and X̃ = diag[x̃1, x̃2, . . . , x̃K ] are the standardised

versions of Y and X with respect to σ̃k,u,it, respectively.
In order to discuss the estimation in the next step, it is useful to clarify

the following notational issues. Firstly, it is a rewriting of the space-time
subscripts it to ι = 1, 2, . . . , NT. Particularly let,

Ẏk = (Ẏk,11, . . . , Ẏk,N1, Ẏk,12, . . . , Ẏk,NT )
⊤ ≡ (Ẏk,1, Ẏk,2, . . . , Ẏk,NT )

⊤

and Ẋk,ι = [Ẋk,1,ι, . . . , Ẋk,J,ι], which is the ι-th row of Ẋk. Secondly, it is the
notational distinction between these transformations, and

Ẏk = (ẏk,1, ẏk,2, . . . , ẏk,NT )
⊤ and ẋk,ι = [ẋk,1,ι, . . . , ẋk,J,ι], (3.5)

which are the k-th element of Ẏ and ι-th row of Ẋk, respectively. We recall
that Ẏ and Ẋk denote the conceptual Cochrane-Orcutt transformations in
which the autoregressive parameters are known.
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3.3. Estimating system of TL-RE-SED Tobit equations

We first note an important drawback of the traditional Amemiya-Tobin
mechanism. This resides in the fact that the adding-up restriction, which
was discussed in Section 2, holds only for the latent equations (i.e. equation
(2.1)), but not for the observed land-use shares. Here, we address such
an issue by treating the Kth use of land as a residual category with no
specific land-use demand of its own. Therefore, the current step focuses on
estimating the system of TL-RE-SED Tobit models of land-use shares for
the total of K = K − 1 categorises (see e.g. Fezzi and Bateman (2011), and
Chakir and Le Gallo (2013) who have also followed this approach).

Moreover, an estimation of a Tobit system requires evaluating multi-
ple Gaussian integrals, which is computationally expensive when there are
more than three equations. Recent studies on the estimation of consumer
demand system suggested a few approaches to alleviate this problem. In
this paper, we follow a suggestion made by Yen et. al. (2003) and specify
the likelihood function based on a sequence of bivariate Tobit likelihoods.
To elaborate, let θ = [β⊤, S⊤

v , S
⊤
1 , S

⊤
ü ]

⊤ be vector of true parameters in a
system of K TL-RE-SED Tobit equations, where β = [β⊤1 , . . . , β

⊤
K ]

⊤, Sm =
[σ211,m, . . . , σ

2
KK,m, σ

2
12,m, . . . , σ

2
K−1,K,m]⊤, Sü = [σ1, . . . , σK, r11, . . . , rK,K−1]

⊤,
and K = K − 1. QML estimators of the vector of true parameters θ can be
obtained by maximising the quasi-likelihood

L =
NT∏
ι=1

L1,K,ι

K∏
k=2

k−1∏
j=1

Lk,j,ι

 (3.6)

in which

Lk,j,ι = {Ψ(ℏk,ιℏj,ι; r̄kj)}1[yk,ι=0,yj,ι=0]

×
{
σ̄−1
k σ̄−1

j (1− r̄2kj)
−1/2ψ(ℏk,ι, ℏj,ι; r̄kj)

}1[0<yk,ι<1,0<yj,ι<1]

× {Ψ(−ℏk,ι, ℏj,ι;−r̄kj)}1[yk,ι=1,yj,ι=0]

× {Ψ(ℏk,ι,−ℏj,ι; r̄kj)}1[yk,ι=0,yj,ι=1] (3.7)

×
{
σ̄−1
k ϕ(ℏk,ι)Φ

[
(ℏj,ι − r̄kjℏk,ι)/(1− r̄2kj)

1/2
]}1[0<yk,ι<1,yj,ι=0]

×
{
σ̄−1
j ϕ(ℏj,ι)Φ

[
(ℏk,ι − r̄kjℏj,ι)/(1− r̄2kj)

1/2
]}1[yk,ι=0,0<yj,ι<1]

,

where ℏk,ι = [Ÿk,ι−Ẍk,ιβ̄k]/σ̄k, ℏj,ι = [Ÿj,ι−Ẍ j,ιβ̄j ]/σ̄j , 1[yk,ι = 0, yj,ι = 0] is a
dichotomous indicator which equals 1 when yk,ι = 0 and yj,ι = 0, and ψ(·, ·, ·)
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and Ψ(·, ·, ·) are the bivariate standard normal probability density function
and corresponding cumulative distribution, respectively. Furthermore, Ÿk,ι

and Ẍk,ι are elements of Ÿ = Ω̄
−1/2
ε Ẏ and Ẍ = Ω̄

−1/2
ε Ẋ in which

Ω̄−1/2
ε = Ω̄−1/2

v ⊗Q0 + Ω̄
−1/2
1 ⊗Q1,

where Ω̄
−1/2
v = [σ̄2kl,v] and Ω̄

−1/2
1 = [σ̄2kl,1].

To establish consistency of the proposed estimation requires first defining
the following counterpart of (3.6)

L0 =

NT∏
ι=1

L0
1,K,ι

K∏
k=2

k−1∏
j=1

L0
k,j,ι

 , (3.8)

which is constructed under an assumption that the spatial parameter ρk is
known. In this regard,

L0
k,j,ι = {Ψ(hk,ιhj,ι; r̄kj)}1[yk,ι=0,yj,ι=0]

×
{
σ̄−1
k σ̄−1

j (1− r̄2kj)
−1/2ψ(hk,ι, hj,ι; r̄kj)

}1[0<yk,ι<1,0<yj,ι<1]

× {Ψ(−hk,ι, hj,ι;−r̄kj)}1[yk,ι=1,yj,ι=0]

× {Ψ(hk,ι,−hj,ι; r̄kj)}1[yk,ι=0,yj,ι=1] (3.9)

×
{
σ̄−1
k ϕ(hk,ι)Φ

[
(hj,ι − r̄kjhk,ι)/(1− r̄2kj)

1/2
]}1[0<yk,ι<1,yj,ι=0]

×
{
σ̄−1
j ϕ(hj,ι)Φ

[
(hk,ι − r̄kjhj,ι)/(1− r̄2kj)

1/2
]}1[yk,ι=0,0<yj,ι<1]

,

where hk,ι = [ÿk,ι− ẍk,ιβ̄k]/σ̄k and hj,ι = [ÿj,ι− ẍj,ιβ̄j ]/σ̄j . Furthermore, ÿk,ι

and ẍk,ι are elements of Ÿ = Ω̄
−1/2
ε Ẏ and Ẍ = Ω̄

−1/2
ε Ẋ, where Ẏ and Ẋ are

defined in (2.22), i.e. under the assumption that the spatial parameter ρk
is known (see also (3.5)). In this regard, establishing the consistency of the
proposed QML estimation requires showing that

L(θ̄) = L0(θ̄) +OP

(
(NT )−1/2

)
(3.10)

uniformly over a compact parameter space Θ, where θ̄ ∈ Θ, and L and L0

represent 1
NT lnL and 1

NT lnL0, respectively. Theorem 3.1 below presents
the consistency of the proposed QML estimation.
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Theorem 3.1. Let inf
uk,ιuj,ι∈R2

ψ(uk,ι, uj,ι) = δ1 and inf
uk,ι∈R

ϕ(uk,ι) = δ2, where

δl > 0 is an arbitrary small value for l = 1 or 2. In addition, let

lim sup
N→∞

{
max

θ̄∈D̄δ(θ)∩Θ
EL0(θ̄)

}
̸= lim sup

N→∞
EL0(θ)

for any θ̄, where D̄δ(θ) is the complement of the δ-neighborhood of θ. Then,
under the conditions of Lemma 3.2, θ is uniquely identified and θ̂ = θ +
OP

(
(NT )−1/2

)
as N → ∞. □

By taking into consideration the consistency of the GMM estimation, i.e.
Lemma 3.2, and that presented in Theorem 3.1, the asymptotic normality
and variance formula of our estimators are in line with those of a standard
QML for system of Tobit equations. This is in conformity with standard
results in the literature, e.g. Theorem 4 of Kapoor et al. (2007) who based
their claim of asymptotic normality of their feasible GLS estimators on a
similar set of consistency. To discuss asymptotic normality of a standard
QML for system of Tobit equations, let us begin with Amemiya (1973) who
showed such a result under mild regularity conditions for a univariate Tobit
model with normal disturbances. With respect to our model, since there are
no irregularities for our multivariate generalisations, Amemiya’s analysis
can be generalised to establish asymptotic normality of the QML estimators
for the multivariate Tobit models. Such a generalisation was previously
discussed in e.g. Lee (1993), Wooldridge (2010), and Deng and Xue (2014).
An important point to note, however, is the fact that, by specifying the
likelihood function based on a sequence of bivariate Tobit likelihoods (e.g.
(3.8)), the QML estimators provide the most efficient parameter estimates if
and only if the quasi-likelihood function is the true likelihood function of the
data. However, it is not possible to theoretically derive such loss of efficiency
without imposing further assumptions on the data generating process.

Remark 3.1. In practice, we may perform the estimation discussed in Step
3.3 by using a similar iterative steps to that in Wang and Kockelman (2007),
and Baltagi and Pirotte (2011). That is to first estimate Sv and S1 condi-
tional upon the estimate of β from Step 3.1.2. Secondly, it is to estimate
β conditional upon the above estimates of Sv and S1. These two steps are
iterated until the optimal estimates of β, Sv and S1 are found.

Remark 3.2. An alternative way to estimate the causal parameters β and
to obtain efficiency gain is to make use of the the knowledge about Sv and S1.
This involves computing the Cochrane-Orcutt plus RE-GLS transformations

Ẍ = Ω̂−1/2
ε Ẋ and Ÿ = Ω̂−1/2

ε Ẏ, (3.11)
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where Ω̂
−1/2
ε = Ω̂

−1/2
v ⊗Q0+Ω̂

−1/2
1 ⊗Q1, and performing the final equation-by-

equation TL-Tobit estimation, which was explained in Section 3.1.2, by using
the resulting transformations. Since we will make use of this estimation
strategy in our empirical analysis in Section 4, we provide a discussion of the
validity of this procedure in detail. However, such a discussion is delegated
to the online appendix due to space limitation.

3.4. Prediction under the TL-RE-SED Tobit Model

Previous studies in econometrics (e.g. Baltagi and Li (2006), Chakir and
Gallo (2013), Baltagi et al. (2012) and Ay et al. (2017)) show that

ŷ ∗
k,i,T+τ = Xk,i,T+τ β̂k + ω̂⊤

k,iΩ̂
−1
kk,uûk (3.12)

is the best linear unbiased predictor of the i-th individual at the future
period T + τ. The derivation in Section 2.4 suggests that we compute

ω̂⊤
k,iΩ̂

−1
kk,u =

σ̂2kk,µ
σ̂2kk,1

(e⊤T ⊗ l⊤k,i) and σ̂2kk,µ = (σ̂2kk,1 − σ̂2kk,v)/T. (3.13)

Moreover, β̂k, σ̂
2
kk,1, and σ̂2kk,v are parameter estimates obtained in Step

3.3. Using ũk = (ũk,11, ũk,21, . . . , ũk,N1, ũk,12, . . . , ũk,NT )
⊤ from Step 3.1.3

to represent ûk suggests that ŷ ∗
k,i,T+τ is the predictor of the latent variable

y∗k,i,T+τ , which brings about inclusion of the “∗” superscript. As a result,
the best linear unbiased predictor of the land-use share for the i-th plot of
land at the future period T + τ is computed as

ŷk,i,T+τ =


0 ŷ ∗

k,i,T+τ ≤ 0

ŷ ∗
k,i,T+τ if 0 < ŷ ∗

k,i,T+τ < 1,

1 if ŷ ∗
k,i,T+τ ≥ 1

.

Finally, it should be noted that ŷ ∗
k,i,T+τ modifies the usual predictor

simply by adding a fraction of the corresponding residuals to the i-th unit
of land. A similar result was obtained in Baltagi and Li (2006), Baltagi
et al. (2012), and Ay et al. (2017). Here, the addition is equivalent to
that of a random-effects model without the spatial autocorrelation, which
deviates from the results formulated in Baltagi and Li (2004, 2006). This
is because our SAR random effects model differs from that of Anselin et al.
(1988) in that the disturbance term itself follows a SAR process whereas
the remainder term follows an error component structure. This point will
be useful when performing the hypothesis test for comparing our model’s
predictive accuracy in Section 4.4.
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Table 1: Land-use Determinants†

Abbreviations Definitions

Group 1:

alt0 deb200 × elev, where deb200 = 1 if elev < 200 and 0 otherwise

alt200 dea200 × elev, where dea200 = 1 if elev > 200 and 0 otherwise

alt200d alt200d = 1 if elev > 200 and 0 otherwise

slope6 Share of each grid square with a slope higher than 6o

rain Accumulated rainfall for the growing season

temp Average temperature for the growing season

ratemp rain× temp (i.e., an interaction term)

dist300 Distance to the closet major market

speat Proportion of soil characteristic “Peat”

sgravel Proportion of soil characteristic “Gravel”

sstoney Proportion of soil characteristic “Stone”

sfragipan Proportion of soil characteristic “Fragipan Soil”

scoarse Proportion of soil texture “Coarse”

sfine Proportion of soil texture “Fine”

smedium Proportion of soil texture “Medium”

sud sud = 1, if the grid square is located in the Southern England

nor nor = 1, if the grid square is located in the Northern England

mid mid = 1, if the grid square is located in the Midlands

yℓ Yearly dummies, where ℓ = 1976, 1979, 1981, 1988, 2000, 2004

npark Share of each grid square designated as a National Park

esa Share of each grid square designated as an Environmentally Sensitive Area

greenbelt Share of each grid square designated as a Greenbelt

setaside Share of each grid square designated as a Set-aside

Group 2:

rainℓ rainℓ = (rain− ℓ)drℓ for ℓ = 300, 350, 400, 450, 500, 600

tempℓ tempℓ = (temp− ℓ)dtℓ for ℓ = 9, 10, 11, 12, 13, 14
† Since sud, nor and mid are summed to one, mid is omitted in the estimation because
of multicollinearity. smedium is also omitted for a similar reason.
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4. Empirical Analysis of Selected Land-Use Shares in England

The objective of this section is to illustrate the applicability of our frame-
work by using it to investigate farmers’ responses to the behavioural drivers
of land-use decision in England. We are particularly interested in investigat-
ing whether environmental schemes and grants have assisted in freeing up
land used for arable, rough grazing, temporary and permanent grasslands
and converting it to bio-energy crops to help to achieve deep emission re-
ductions and prepare for climate change. We are also interested in finding
out whether our predictor, which includes the above-derived fraction of the
residuals to the i-th unit of land, can improve accuracy for the prediction of
future land-use share.

4.1. Data descriptions and sources

To achieve these goals, our analysis focuses on land-use shares of (i)
arable, i.e. cereals (wheat, barley, and oats) and root crops (excluding
oilseed rape), (ii) temporary grassland (grassland typically part of an arable
crop rotation), (iii) permanent grassland (grassland maintained perpetually
without reseeding), (iv) rough grazing (uncultivated land used for grazing
livestock), and (v) oilseed rape. While the first four categories are the main
land-use types for the English agricultural sector, the fifth is a representa-
tion of bio-energy crops, which should be financially incentivised in order
to help to reduce emissions and prepare for climate change (CCC (2018)).
Moreover, we consider a set of land-use determinants and drivers, which can
be classified into three categories, namely (i) economics, (ii) climatic and
physical environment, and (iii) environmental policy.

Regarding the data used, they are from a unique database that consists
of data compiled from various sources at the Land, Environment, Economics
and Policy (LEEP) Institute. Data on agricultural land-use are derived from
the June Agricultural Census on a 2-km2 (400 ha) grid available online from
Edinburgh University Data Library. These data cover England andWales for
17 irregular spaced years between 1969 and 2006 and yield roughly 38,000
grid-square records each year. Table 1 presents a full list of exogenous
variables considered in our model. Due to space limitation, more details of
the data are presented in the online appendix.

Remark 4.1. A lack of information on the spatial variation of market input
and output prices hinders an explicit modelling of their effects on land-use
shares. Hence, in our empirical analysis these will be accounted for by a set
of yearly and regional dummy variables (see also Sterling et al. (2013) and
Fezzi et al. (2015) who used a similar approach).
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Remark 4.2. We suggested in Section 2.1.1 that aggregation of the individ-
ual data is done only on a scale that is small enough to capture the spatial
variation in the environmental and climatic drivers of farmers’ behavior, and
proportionate with the scale of the decision-making unit. In order to satisfy
the second characteristic, we shall assume that the spatial unit considered,
i.e. 2-km2 grid, represents a decision-making unit. The average farm size in
the North East of England, for example, was about 1.5-km2 (150 hectares)
in 2018 (Department for Environment, Food and Rural Affairs (2020)).

The formulation in Section 2.2 suggests that TL-RE-SED-Tobit Model
only accepts balanced panel data. To satisfy such a condition, a subset of
the data in the space dimension is selected by randomly extracting one grid
square and then sampling every fourth grid cell along both the latitude and
longitude axes. In the time dimension, since the original data cover unevenly
spaced years, only observations from 1976, 1979, 1981, 1988, 2000 and 2004
are selected to stay as close to a regular time series as possible. In the other
words, T = 6 years. For England, this leads to NT = 10, 034 or N = 1, 729
observations. This spatial sampling method has been used extensively in
the literature (see e.g. Nelson and Hellerstein (1997), Carrión-Flores and
Irwin (2004), and Fezzi and Bateman (2011)) and should help to improve
estimation performance since undesirable noises are also removed.

Finally, to compute the land-use share, we first calculate total amount of
land within a 2-km2 grid used for cultivating arable, temporary grassland,
permanent grassland, rough grazing, oilseed rape, then compute land-use
share of a given crop as a percentage of such a total. Table 2 presents
descriptive statistics for the areas of land used in hectares. The table also
indicates cases in which p-values for Welch’s unequal variances t-test for
mean-comparison are less than 0.01, 0.05 and 0.1, respectively. These results
suggest that only the area used for temporary grassland has statistically
significantly declined between 1976 and 2004. The level of land used for
permanent grassland (arable) remained unchanged between 1976 and 1988,
then fluctuated slightly (decreased steadily) between 1988 and 2004.

4.2. Empirical Specifications

This section discusses a number of empirical specifications, which are
important to the analysis that follows.

Conditional mean: Regarding the empirical specifications of the condi-
tional mean, the most basic specification is to impose linear effects on all the
determinants of the land-use shares. In the other words, how the expected
value of the unobserved and censored land-use share y∗k,it varies with the
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Table 2: Descriptive Statistics for Land-Uses (in ha)

1976 1979 1981 1988 2000 2004

Temp. grassland 35.929 30.133 c 29.645 25.363 c 23.428 b 20.753 c

Perm. grassland 96.705 96.623 94.938 91.338 81.641 c 88.755 c

Rough grazing 25.772 25.274 24.995 24.341 23.622 24.948

Arable 113.255 117.333 121.042 119.114 107.460 c 99.035 c

Total arg. land† 272.910 271.415 274.330 269.853a 245.715c 248.451
† Total agricultural land is computed as the summation of temporary, permanent, rough
grassland and oilseed rape. c, b and a signify cases where p-values for Welch’s unequal
variances t-test (e.g. H0 : µk,1979 − µk,1976 = 0 or H0 : µk,1988 − µk,1981 = 0) are less than
0.01, 0.05 and 0.1, respectively.

environmental, climatic and policy variables is described by

E
[
y∗k,it|xk,it

]
= xk,itβk, (4.1)

where xk,it is an 1 × 29 row-vector whose elements are a constant one and
the variables listed under Group 1 in Table 1. Since the specification in (4.1)
can be overly restrictive, we also consider an alternative which (i) allows for
some nonlinear flexibility within the parametric specification, and (ii) does
so without imposing too much computational pressure. This is to capture
the potential nonlinear effects of climatic factors by modelling the measures
of rainfall and temperature as piecewise linear functions. In particular, how
the expected value of the unobserved and censored land-use share y∗k,it varies
with the environmental, climatic and policy variables is described by

E
[
y∗k,it|xk,it

]
= xk,itβk + ϑk(rainit) + ζk(tempit),

where ϑk(rainit) = βk,r300rain300,it+· · ·+βk,r600rain600,it and ζk(tempit) =
βk,t9temp9,it + · · ·+ βk,t14temp14,it.

Spatial Weighting Matrices: Various studies have reported that predic-
tive accuracy and empirical results in general are sensitive to the choice
of spatial weighting matrix Wk (e.g. Anselin and Bera (1998) and Bhat-
tacharjee, and Jensen-Butler (2006)). To investigate such sensitivity, we
consider weighting matrices based on two types of schemes, namely “inter-
point-distance” and “graph-based-neighbours”. Particularly, we construct
the κ-Nearest-Neighbours weighting matrices, W κNN

k , where either κ = 2
or κ = 5, and the Sphere-of-Influence-Neighbours weighting matrix, WSOI

k .
All these spatial weighting matrices are row-normalized.
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Reference Land Use Category: Note that the adding-up restriction on the
land-use shares only holds for the latent shares in (2.1), but it is unsatisfiable
for the observed shares. In the demand study literature, such a problem is
avoided by treating one of the categories as a reference and omitting it
from the system (i.e. Yen et al. (2003), Chakir and Le Gallo (2013), and
Rarcos-Martinez et al. (2017)). In the study that follows, we drop the
category “oilseed rape” and jointly estimate a system of four TL-RE-SED-
Tobit models for arable, temporary grassland, permanent grassland and
rough grazing for England.

4.3. Estimation results and important findings

We have prepared detailed results for each of the steps discussed in Sec-
tion 3. They are presented in the online appendix due to space limitation. In
the current section, we first provide a brief description of these results, then
thoroughly explain important findings from each of the estimation steps.

In the online appendix, Tables 3 to 10 present estimation results for the
four land-use shares under consideration. In these tables, we present these
results for four modelling strategies: (i) Without RE-SED, (ii) RE-SED
underW 2NN

k , (iii) RE-SED underW 5NN
k , and (iv) RE-SED underWSOI

k . In
addition, for each strategy, we present the results in three columns, namely
parameter estimates (β̂k), associated standard errors (SEs), and p-values
(p-vals). At the bottom of the tables, we also present numbers of coefficient
estimates that are statistically significant at 0.01, 0.05 and 0.1 significance
levels. Furthermore, Table 11 presents results of the GMM estimation for
the autoregressive parameters ρk, where k = 1, . . . ,K = 4. For each of
the four land-use shares under consideration, we compute six estimates, i.e.
three based on the linear specification under W 5NN

k , W 2NN
k and WSOI

k , and
the remainders based on the partial linear specification. In addition, Tables
12 to 14 presents the resulting estimates for Ωv and Ωµ denoted by Ω̂v and

Ω̂µ = (1/T )(Ω̂1−Ω̂v). Based on these, we also compute correlations matrices
ρ̂v and ρ̂µ, which gauge the cross-equation correlations in the error terms vk
and the random effects µk, respectively. These estimates are for the RE-SED
models underW 2NN

k , W 5NN
k andWSOI

k matrices, respectively, and both the
linear and partial linear specifications.

4.3.1. Pooled QML estimation of the TL-Tobit panel data models

The results, which concern the pooled QML estimation of the TL-Tobit
panel data models, are presented under W/O RE-SED (Without RE-SED)
in Tables 3 to 10. We shall discuss these numbers more thoroughly below.
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4.3.2. GMM estimation of the spatial parameters

In Table 11, it is clear that at κ = 5, the corresponding estimates of ρ̂k
for W κNN

k are close to those of WSOI
k for all cases. The most likely reason

underpinning such a phenomenon is the similarity in the degree of spareness
of these weighting matrices. Furthermore, a higher degree of spareness in
the weighting matrix is usually associated with higher estimates of ρk. The
estimates for shares of arable and permanent grassland are statistically sig-
nificant at 0.05 significance level for all cases. For the share of temporary
grassland, the estimates are significant at 0.1 significance level for W 2NN

k

and at 0.05 for both W 5NN
k and WSOI

k . For the share of rough grazing, the
estimates are significant at 0.1 level, except that of W 2NN

k . Moreover, these

estimates enable computation of Âkk = IT ⊗ Ĥk, Ĥk = (IN − ρ̂kWk)
−1,

and the Cochrane-Orcutt transformations Ẋ = Â−1X̃ and Ẏ = Â−1Ỹ as
explained in Step 3.2.

4.3.3. Iterative QML method

This step performs the iterative QML method discussed in Remark 3.1.
Our main focus is on estimating Sv = [σ211,v, . . . , σ

2
KK,v, σ

2
12,v, . . . , σ

2
K−1,K,v]

⊤

and S1 = [σ211,1, . . . , σ
2
KK,1, σ

2
12,1, . . . , σ

2
K−1,K,1]

⊤, where K = 4. We use these
estimates to construct the Cochrane-Orcutt plus RE-GLS transformations
defined in (3.11), then perform the final Tobit QML estimation of the causal
parameters (as discussed in Remark 3.2) in order to obtain the associated
standard errors. Estimation results for the four land-use shares in question
are also presented in Tables 3 to 10 under the headings RE-SED under
W 2NN

k , RE-SED under W 5NN
k and RE-SED under WSOI

k . Below, let us
summarise a number of key findings.

Form these tables, it is clear that taking into consideration cross-equation
correlations and RE-SED reduces the number of coefficient estimates that
are considered statistically significant in all cases. Let us take the share of
arable as an example. The number of estimates that are significant at 0.01,
0.05 and 0.1 significance levels are 17, 20 and 21 (15, 16 and 17) under the
linear (partial linear) specification and without RE-SED. These reduces to
13, 15 and 16 (11, 13 and 13) when the RE-SED is modelled under W 2NN

k .
The increase in the degree of spareness in the weighting matrices leads to
further reduction of the figures to 10,11 and 12 (8, 10 and 10) for modelling
under W 5NN

k . Similar results are also obtained for modelling the RE-SED
under WSOI

k . The most likely reason underpinning such a phenomenon is
the similarity in the degree of spareness of these weighting matrices.

Inevitably, these lead to differences in the conclusions drawn about the
causal effects of climatic and physical environment, and environmental pol-
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icy on the land-use shares. We now discuss the implications of the above
findings on the individual land-use shares.

Share of Arable: The coefficient estimates associated with different mea-
sures of altitude are statistically significant under the model without RE-
SED, but are insignificant under RE-SED irrespective of the weighting ma-
trices used. The coefficient estimates associated with slope (negative), rain
(positive) and temp (positive) are statistically significant across the mod-
elling strategies considered. However, only that associated with sfragipan
(negative) remains statistically significant after taking into consideration
RE-SED. Being in the north of England has a negative effect on the share of
arable compared to Midlands. Year dummies are all statistically significant
irrespective of the modelling strategies. Finally, the coefficient estimates
associated with environmental policies becomes insignificant when RE-SED
is modelled irrespective of the weighting matrices used.

Share of Permanent Grassland: Unlike those of arable, the coefficients
estimates associated with measures of altitude are statistically significant un-
der all the models considered for share of permanent grassland. Also unlike
those for arable, the coefficient estimates associated with slope, rain, and
temp, which are statistically significant under the model without RE-SED,
become insignificant when RE-SED is taken into consideration. Although,
soil characteristics remains matter for the share of permanent grassland, lo-
cations of the land (i.e. nor or sud) become insignificant after taking into
consideration RE-SED. A similar conclusion can also be drawn for all the
year dummies (except y4 and y5 which remains statistically significant).
Finally, the coefficient estimates associated with esa becomes statistically
significant after including RE-SED.

Share of Temporary Grassland: We now shift our attention to the share
of temporary grassland. The coefficient estimates associated with measures
of altitude and slope are not statistically significant in all models. On the
contrary, those associated with rain and temp are significant irrespective
of the modelling strategies used. Soil characteristics seem to matter when
modelling without RE-SED, but the coefficient estimates become insignif-
icant under weighting matrices with higher degree of spareness. A similar
conclusion can also be drawn for nor and sud, and y1 and y2. Finally, all
the coefficient estimates associated with the environmental policies (except
that of setaside (positive)) are not statistically significant.

Share of Rough Grazing: Regarding share of rough grazing, the coeffi-
cient estimates associated with measures of altitude are statistically insignif-
icant, while that associated with slope are statistically significant irrespec-
tive of the modelling strategies considered. A similar conclusion can also be
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drawn for rain and temp. Nonetheless, the coefficient estimates associated
with soil characteristics become insignificant after taking into consideration
RE-SED. The location of the land, i.e. nor and sou, contribute positively to
the share of rough grazing compared to the Midlands. Furthermore, all year
dummies are statistically significant across all the model used. Finally, all
coefficient estimates associated with npark, esa, and greenbelt are signifi-
cant when modelled without RE-SED, but only that of greenbelt remains
significant after taking RE-SED into consideration.

We complete this section by discussing the resulting estimates for Ωv

and Ωµ denoted by Ω̂v and Ω̂µ = (1/T )(Ω̂1 − Ω̂v). Firstly, we find that the
cross-equation correlations µk are much stronger than those of vk. In the
other words, the cross-equation correlations in the TL-Tobit system of the
land-use shares are dominated by those of the random effects. Secondly,
switching between the weighting matrices does not alter the signs of the
estimated cross-equation correlations. However, their magnitudes change
more significantly when switching from W 2NN

k to W 5NN
k than from W 5NN

k

toWSOI
k . These changes are largely dominated by those in the cross-equation

correlations of µk. Finally, we find that the above findings hold for both the
linear and partial linear specifications.

4.4. Improvement in Prediction Accuracy

In the current section, we investigate whether inclusion the above-derived
fraction of the residuals to the i-th unit of land is able to improve accuracy
for the prediction of future land-use share. To this end, note that predictive
evaluation must be performed by treating

ŷk,i,T+τ =


0 ŷ ∗

k,i,T+τ ≤ 0

ŷ ∗
k,i,T+τ if 0 < ŷ ∗

k,i,T+τ < 1,

1 if ŷ ∗
k,i,T+τ ≥ 1

as the test dataset since ŷk,i,T+τ is the best linear unbiased predictor of the
latent variable y∗k,i,T+τ . Moreover, our examination focuses on comparing
root mean squared errors (RMSEs) from a number of alternative predictors.
These are computed based on: (A.1) Linear two-limit Tobit model without
the random effects and spatial error dependence ỹ ∗

k,i,T+τ = xk,i,T+τ β̃k. (A.2)
Partially linear two-limit Tobit model without the random effects and spatial
error dependence ỹ ∗

k,i,T+τ = xk,i,T+τ β̃k+ϑ̃k(rainit)+ζ̃k(tempit). (B.1) Linear
two-limit Tobit model with the random effects and spatial error dependence,
but without the fraction of the residuals corresponding to the i-th unit of
land ŷ ∗

k,i,T+τ = xk,i,T+τ β̂k. (B.2) Partially linear two-limit Tobit model with
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the random effects and spatial error dependence, but without the fraction
of the residuals corresponding to the i-th unit of land

ŷ ∗
k,i,T+τ = xk,i,T+τ β̂k + ϑ̂k(rainit) + ζ̂k(tempit).

(C.1) Linear two-limit Tobit model with the random effects and spatial error
dependence, and with the fraction of the residuals corresponding to the i-th

unit of land ŷ ∗
k,i,T+τ = xk,i,T+τ β̂k +

σ̂2
µ,kl

σ̂2
1,kl

(e′T ⊗ l′k,i)ûk. (C.2) Partially linear

two-limit Tobit model with the random effects and spatial error dependence,
and with the fraction of the residuals corresponding to the i-th unit of land

ŷ ∗
k,i,T+τ = xk,i,T+τ β̂k + ϑ̂k(rainit) + ζ̂k(tempit) +

σ̂2
µ,kl

σ̂2
1,kl

(e′T ⊗ l′k,i)ûk.

In this regard, we are interested in two set of comparisons: (a) It is the
comparison between the predictors listed under categories A and B. These
are important because they can help to confirm the asymptotic compati-
bility between β̃k and β̂k. (b) Comparison between the predictors listed in
categories B and C. These are significant since they can affirm that improve-
ment in predictive accuracy can be achieved by including the above-derived
fraction of the corresponding residuals to the i-th unit of land without ad-
justing the causal specification. In this regard, it should also be noted that
such an inclusion is not possible without incorporating the random effects
and spatial error dependence into the model.

Furthermore, we reinforce these results by conducting hypothesis testing
for the equivalence of predictors listed under categories B and C. To this end,
it is useful to recall the difference between the predictors in these categories,
namely the added fraction of the corresponding residuals to the i-th land.
Unlike other error component models (e.g. those formulated in Baltagi and
Li (2004, 2006)), the addition here is equivalent to that of a random-effect
model without the spatial autocorrelation. This suggests that the absence
of random effect should lead to simplification of the predictors in category C
to those in B, and therefore that a testing procedure such as that of Breusch
and Pagan (1980), which tests for the random-effects model, could be used
for checking the equivalence of these predictors. Breusch and Pagan (1980)
devised a Lagrange multiplier test for the random-effects model, in which
the test statistic is

LMBP =
NT

2(T − 1)



∑N

i=1

[∑T
t=1 εit

]2
∑N

i=1

∑T
t=1 ε

2
it

− 1


2

. (4.2)

The limiting distribution of LMBP is chi-squared with one degree of freedom
under the null hypothesis H0 : σ2k,µ = 0. The practical implementation of
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the test relies on computation of ε̂k,it using ρ̂k and ûk, and based either on
(2.8) or εk = uk − ρk(IT ⊗Wk)uk.

In the empirical analysis, the observed land-use shares in 2010 are treated
as the validation dataset. In this regard, let ŷ ∗

k,i,2010 denote the best linear
unbiased predictor of crop k’s land-use share on the i-th plot of land in 2010.
Hence, ŷ ∗

k,i,2010 quantifies the expected level of crop k’s land-use share on
the i-th plot of land in 2010 for a given scenario of climatic, economic and
policy drivers based on our estimated models and specifications. Clearly, if
changes in environmental policies (e.g. an increase in farming in London’s
greenbelt) or climate (e.g. a higher level of rainfall and/or temperature in
some regions) are expected in 2010, then ŷ ∗

k,i,2010 is adjusted accordingly.
This suggests an important benefit of land-use prediction in practice that is
the ability to accurately forecast the effects of policy and/or climate changes
on agricultural production and land-use in the UK.

In the online appendix, Tables 15 to 18 present the RMSEs for the out-of-
sample predictions of the land-use shares in 2010. Some important findings
are as follows: (i) It is clear that the RMSEs reported in rows [a] within
each of the tables do not vary significantly from one another. These suggest
that β̃k and β̂k are closely similar. Such findings are as anticipated and
theoretically deducible from the estimation consistency. (ii) The RMSEs
reported in rows [b] in each table (even under different weighting matrices)
are always smaller than those in rows [a]. These differences are particularly
significant for permanent grassland and arable. Such findings stress the
need to incorporate the random effects and spatial error dependence into
the model in order to improve the predictive accuracy. (iii) It seems that
at κ = 5, the RMSEs reported for W κNN

k are relatively close to those of
WSOI

k . Nonetheless, the evidence is not conclusive on which specifications
of the weighting matrix is able to bring about better forecasts. Moreover, in
Tables 15 to 17, rows [c] present the corresponding LMBP test statistics and
p-values under the different weighting matrices. In all cases, the LMBP test
statistics far exceed 3.84, which is the 95% critical value for the chi-squared
distribution with one degree of freedom. These lead to rejection of the
null hypothesis and a suggestion that superiority in the predictive accuracy
reported in the previous paragraph was not caused by measurement error.
The predictors under category C are statistically different from those listed
under category B and are able to provide more accurate prediction.

5. Conclusions

We contributed toward building a better understanding of farmers’ re-
sponses to behavioural drivers of land-use decision by establishing a new
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analytical procedure that can handle complex data structures and overcome
various drawbacks suffered by existing methods. Firstly, our procedure made
use of spatially high-resolution data so that idiosyncratic effects of physical
environment drivers could be explicitly modelled. Secondly, we addressed
the famous censored data problem to ensure theoretical consistency of the
parameter estimates. Thirdly, we incorporated spatial error dependence and
heterogeneity in order to gain efficiency, more accurate formulation of the
variances for the parameter estimates and hence more effective statistical
inferences. Finally, we reduced the computational burden and improved
estimation accuracy by introducing a GMM/QML hybrid estimation proce-
dure. We applied our method to spatially high resolution data in England
and found that the number of coefficient estimates that are statistically sig-
nificant reduces significantly when the SED and heterogeneity are taken into
consideration. Inevitably, this leads to conclusions about causal effects of
climatic and physical environment, and environmental policy on land-use
shares that differed significantly from those made based on methods that
are currently used in the literature. Moreover, we showed that our method
enables derivation of a more effective predictor of the land-use shares, which
is utterly useful from the policy making point of view.
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