

City, University of London Institutional Repository

Citation: Cabrera Molina, J.J. (1985). English into Braille translation using augmented

transition networks. (Unpublished Doctoral thesis, The City University)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/33185/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

The City University

Department of Computer Science

English into Braille Translation

Using Augmented Transition Networks

by

Jose de Jesus Cabrera Molina, M. Eng.

Thesis Submitted for the Degree of Doctor of Philosophy

to The City University, Northampton Square, London

Sept ember, 1 985•

C ont ent s

Title i
Cont ent s i i
Abst ract V

Acknowledgement s vi
Declarat i on vi i

Chapter 1 Introduction 1

Chapter 2 English Braille 5

2.1 Braille Description 5

2.2 English Braille Grades I and II. 6
The Need for a Good Translator.

2.3 Computerised Braille Translation. 9

Chapter 3 Translation Problem Characterisation 15
Within Formal Language Theory.

3«1 The Decision to Use Augmented 15
Transition Networks (ATNs).

3»2 Theoretical Background for ATNs. 24

3’3 Application of Augmented Transition 30
Net wo rks.

Chapter 4 The Transition Network for English into 37
Braille Grade II Translation (EBT).

4.1 Formal Definition of the Grammar 37
for English into Braille Grade II
Translation (EBT).

4.2 Network Description. 41

4.2.1 Transition Network for English 42
into Braille Grade II
Translat i on.

4.2.2 State Description for English 43
into Braille Grade II
Translat i on.

4.3 Detailed Description of Transitions 45
for EBT.

i i

Chapter 5 The Translation Process 89

5.1 Description of the Data Structures. 91

5.1.1 Structure of the EBT 92
Di ct i onary.

5*1.2 Structure of the Stacks. 99

5.2 Detailed Process Description. 101

5.2.1 Dictionary Construction. 102

- Initialisation Procedures. 102
- Construction of the 103

Abbreviations and Contractions
Transition Network.

5.2.2 Translation Process. 105

- Processing of the Input Text. 106
- Construction of a Braille Word. 107
- Output Generation. . 120
- The Translation Algorithm. 121

5.3 Complete Examples of English into 127
Braille Grade II Translation.

Chapter 6 Performance Evaluation. 150

6.1 General Performance Characteristics. 150

6.1.1 General Program Characteristics. 151

6.1.2 Accuracy of the Translated Text. 155

6.1.3 Speed of the Translation. 154

6.1.4 Trainability of the Translator. 156

6.1.5 Limitations Existing in the 158
Current Implementation of the
Translat or.

6.2 Comparison with Existing Translators. 160

Chapter 7 Conclusions. 163

7.1 Contribution of the Work Developed 163
to the Field of English into Braille
Translat ion.

7.2 Possibilities for the Future. 163

i i i

Appendi ces

Appendix 1 English Braille Grade II Contractions 167
and Abbreviations.

Appendix 2 Mapping of English Braille Characters 176
to ASCII Characters.

Appendix 5 Finite State Machines and Pushdown 181
Aut omat a.

Appendix 4 Dictionary for the Augmented 196
Transition Network (ATN) for EBT.

Appendix 5 Speeding-up Techniques. 205

Appendix 6 Program Execution and Listing. 213

Appendix 7 Set of tests Used for Validation of 250
the English into Braille Grade II
Translation Program.

Bibliography. 27 6

i v -

ABSTRACT

English into Braille Grade II Translation
Using Augmented Transition Networks.

A program has been written which translates English into
Braille grade II using a formal language approach. Braille
is a system used by blind people and it is the counterpart
of what inkprint is to sighted people. As such, it allows
the representation of their language, and the provision of
printed text”. There are two types of Braille: grade I,

which is a direct one to one mapping of inkprint characters
into Braille, and grade II, which involves the use of
contractions and abbreviations of words, in order to reduce
the bulk of the material translated. This is the one
considered in this thesis.

In the last few years, a number of programs have been
developed for Braille translation; however, due to the
difficulties inherent in the translation process, the
problem is not yet completely solved. Even the professional
systems use human proofreaders to validate the automatic
translation. This implementation for performing Braille
translation considers the use of Augmented Transition
Networks, which are a development of pushdown automata. Its
main advantage is that it offers great computational power
which permits the representation of translation rules and
their exceptions to these in a direct way.

The translation program is written in PASCAL and uses a
small amount of memory resources, providing portability
among different mini and microprocessors. The translator
performs at about 2700 words per minute on a PDP-11/70 under
RSX/11M operating system with an accuracy of over 99$, at
620 words per minute on a Wicat microcomputer, or at 50
words per minute on an Apple. The translator is trainable,
thus providing the possibility of easily including new
translation rules and except ions to the existing ones by
just altering the dictionary tables in a data file. There
is no need to alter and recompile the program to handle the
changes.

v

Acknowledgements

First of all I would like to aknowledge greatly the help I
received from the British Council, which not only financed
this research, but aided me wherever possible during the
period it covered.

I would also like to thank my supervisor, Dr. Geoff
Dowling, to whom I am indebted, for his enthusiasm, guidance
and constant encouragement throughout the period of my
research. I value greatly his advice in the structuring and
writing of this Thesis, and also his friendship, which I
appreciate deeply.

My thanks also go to Ali Syed for his help in copying the
translation program into different micros at The City
Uni versit y.

In relation to Braille translation, the subject of this
Thesis, I greatly acknowledge the help of the staff of the
Royal National Institute for the Blind (R.N.I.B.), mainly
Phil Coleman during the early stages of this research, and
more recently, John Kaplin and Liam Madden. They helped to
implement the translation program in their computer and
provided the labour to generate and proof-read the program
out put.

I would also like to thank my friends in Mexico, especially
E. Salcedo at Aseguradora Mexicana, Mr. S. Funes,

Dr. S. Fuentes-Maya and Mr. M. Medina at the C.P.N.H.,
and Mr. A. Frost at BANAMEX for their assistance
throughout the research project.

I want to thank also my wife Laura, for her patience and
encouragement during these years of frequent week end and
late night work, and also for her great help in the
preparation of the final draft of this Thesis.

Finally, my thanks to my parents and grandfather who always
encouraged me to continue with this research to its end.

Declarat i on

I grant powers of discretion to the University Librarian to

allow this Thesis to be copied in whole or in part without

further reference to me. This permission covers only single

copies made for study purposes, subject to normal conditions

of acknowledgement.

vi i

Chapter 1

INTRODUCTION

One of the handicaps resulting from blindness is the

severely restricted access to printed information. Some of

the attempts to provide this type of information to the

blind has been through the use of talking books and through

the production of Braille. To this respect, at the pres ent

time, significant advances are occurring

computers to augment the accessibility of

information which is needed by the blind for

in the use of

this type of

both employment

and leisure activities (McGillivray, 1984; Gill, 1979;

Davidson, 1979; RNIB, 1979; Silverman, 1980). This thesis

is directed towards the solution of some of the problems

encountered in the provision of printed material for the

blind. More specifically, the aim of this thesis is to

provide a translation program for English into Braille

grade II, using a formal language approach. This approach

was followed because the possibility of using a natural

language translation-oriented approach, suggests a promising

performance for English into Braille grade II translation.

This translator has been written with the idea of

portability. The program is designed to run on

microprocessors. This implies that the resource requirement

for the translation program should be kept low, while the

efficiency and reliability achieved must be high, for the

1

system to be adopted and thus be useful.

The translation program is easy to use. There is no need

for the operator that keys in the printed text, to know

about Braille or about computers. Thus, the keying in of

the printed text is completely straightforward and in fact,

many books are already stored in electronic form (Gill,

1979; RNIB, 1979). The only things to be specified by the

operator are when a new paragraph is required, when italics

are to be used, and when a specific word is not to be

translated to grade II Braille (This occurs with foreign

words, for example). The rules for the translation and

their exceptions are given by means of a dictionary, thus

providing the translator with flexibility in the inclusion

or deletion of rules and exceptions. Ultimately, all this

aims at the increasing of the amount of Braille material

available, both for the community and the individual, thus

providing better opportunities for the blind.

Initially, in chapter 2, a brief description of English

Braille is given, with a review of computerised Braille

translation. Then, in chapter 5, the translation problem is

considered within the theory of formal languages. Comments

are made on the types of grammars and augmented transition

networks (ATNs) are identified within these grammars. In

chapter 4, the transition network for English into Braille

grade II translation is presented. Here the ATN used for

the translation is described in detail. Then, with the

groundwork given, the translation process is presented in

2

chapter 5« This chapter discusses the data structures used

th roughout the translation process and describes thoroughly

each part of the translator. The actual translation

algorithm is also included. The chapter concludes with some

examples of the translation process by following in detail

the corresponding translation algorithm. Together, chapters

4 and 5 form the spinal cord of this research project.

Afterwards, in chapter 6, comments on the characteristics

and performance evaluation of the translator are given.

This includes reliability, speed and flexibility. Finally,

chapter 7 presents some conclusions related to the research

project, and some thoughts in relation to possibilities for

future development are given.

Seven appendices are included. Appendix 1 presents the

contractions and abbreviations of English Braille grade II.

Appendix 2 includes the mapping used for the translation of

English Braille characters to ASCII characters. Appendix 3

presents a discussion related to finite state machines and

pushdown automata, which are the theoretical basis of
z

augmented transition networks. Appendix 4 presents the

dictionary defined for the ATN for English into Braille

grade II translation. It also presents the dictionary of

exceptions. Appendix 5 relates to speeding-up techniques

used throughout the translation process, mostly used to

avoid useless tree-following so that there is always a high

probability of finding a match. Appendix 6 gives

instructions on program execution and the program listing,

5

and appendix 7 includes the set of tests used for the

validation of the English into Braille translation program.

Finally the Bibliography referenced is presented.

4

Chapter 2

ENGLISH BRAILLE

2.1 Braille Description

Braille is a system of printing or writing for the

invented during the first half of the nineteenth century by

the French educator Louis Braille*

It is the most widely used means for providing the blin

with printed material including books of text, mathematics,

music and personal notes and letters. It is based on the

Braille Cell, which consists of six dot positions

(figure 2.1) spaced 2.5 ®m apart, with adjacent cells space

4 mm apart.

1 . .4
2. .5
5. .6

A Braille Cell

Figure 2.1

In the current Braille system, information is conveyed by

raising certain dot positions, so that in principle, 4

different patterns are available.

These cells are packed at less than 2 cells per square

centimetre, whereas a packing density of 22 characters per

5

square centimetre is achieved with normal ink-print text,

for which a greater character set is available and for which

different sizes of characters can be easily used. The ratio

of these two figures in conjunction with the thick paper

necessary for Braille text, explains the weight, volume and

to some extent the cost of the library of a blind person.

2.2 English Braille Grades I and II.

There are two kinds of English Braille: Grade I

uncontracted, and Grade II contracted. Appendix 1 contains

a brief description of Grades I and II of English Braille.

Grade I Braille uses one cell pattern for each letter of the

alphabet, with some of the spare patterns being used for

simple punctuation signs and abbreviations of a few very

common words. Thus, it is a trivial matter to automate the

translation of English text to Grade I Braille.

Grade II Braille makes extensive use of contractions t o

reduce the length of the text, with i na resulting reduction

i nthe number of pages of Braille, and for skilled users,

the reading and writing time Commonly used letter

sequences are contracted to one or two cell patterns.

However, the automatic translation of text to English

Grade II Braille, rather than Grade I, presents great

difficulties if perfection is desired To appreciate the

nature of the difficulties, some specific problems are worth

6

meat i oni ng:

Position within the word.

Some contractions are accept able only at the

beginni ng of the word; others, only in the middle

of a word; ot hers , at any place except at the

begi nni ng of the word.

- Position within the line.

Some contractions may be performed only if the word

that follows fits in the same line. In other cases,

when hyphenating words, the contractions performed

may depend on the place where the word is to be

hyphenat ed.

- Adjacency to punctuation marks.

Some contractions or abbreviations are allowable

only when they are not in direct contact with

punctuation marks.

- Grammatical construction of the word.

Some contractions can only be performed when they do

not break the grammatical structure of the word.

- Pronunciation.

In some cases the reason for contracting or not

contracting a certain word or part of a word depends

on how the word is pronounced.

7

Contraction Priorities.

In many cases a choice has to be made regarding the

selection of one out of two conflicting

contractions. There are specific rules for the

choice of contraction, but in some cases the

underlying reasoning is difficult to define.

Meaning of the word within the sentence.

In some instances the only way to decide whether a

contraction should be performed or not depends

exclusively on the meaning of the word within the

sent ence.

As it may be observed, these problems cause gr

difficulties for automatic translation, and could suggest

the need for a change; however, there are some importan

aspects that hinder this change. In fact, since its

origination, it is remarkable how little the fundamental

information element has changed.

Changes in the system are extremely desirable mostly due to

the great achievements in technological development, which

could permit easier learning by blind readers and sighted

t ranscribers. It would also allow an easier generation of

perfect Braille in an automated way.

However, the main reason for not having performed these

important changes to the system has always been grounded on

the fact that this sort of change would probably find

8

justified unacceptance by most of the people knowing the

current Braille system. They would not be eager to learn a

new system. This would oblige the Braille printing houses

to maintain for a long period of time both the old and the

new system, and this certainly is not economically feasible.

In spite of the difficulties just presented, the savings

achieved with Grade II Braille result in a reduction of

almost 30% in the number of cells required and also in the

reduction of the number of skilled Braillists needed to

proof-read the translated text. This has encouraged several

groups to program translators for English into grade II

Brailie.

2.3 Computerised Braille Translation.

Two types of computer programs have been developed,

dictionary-based translator, and the translator

rules and exceptions and a rather small dictionary-

in the first type of translator a complete dictionary of the

language is stored, including hyphenating rules for eac

the words stored in it. This sort of translator is of

interest from the development point of view, since all

it needs is a great amount of resources available to be ab

store and access the huge dictionary that it requires.

The second type of translator is the one to which greater

9

This sort of translator uses ainterest is to be given.

relatively modest amount of resources and tries to tra

by systematic application of ordered rules, exceptions,

exceptions to the exceptions.

Several attempts have been made to program an Englis

Braille grade II translator, both in medium-sized and small

computers. In the present project we shall concentrate

the work done using microcomputers, since the aim of

project is to provide a microprocessor oriented, portab

translator. Considerable work has been already done in

field (Gill, 1979; Davidson, 1979; Gerhart, Millen and

Sullivan, 1971; Silverman, 1980; Haynes and Siems, 1979,

RNIB, 1979; McGillivray, 1984) but never with a formal

languages approach, a fact that suggests the possibility of

achieving better results than with previous attempts. Some

of the work done in this field is described here to show the

existing approaches.

The translation program written by Dr. Gill is aimed at

producing a compact, inexpensive system for the production

of contracted Braille, in which the operator is not required

to know Braille. The system is easy to use, and generates a

good approximation to Grade II Braille.

The translation program is controlled by a contraction table

which is of the form:

1 0

columns 1 -9 text string

column 10 previous character type

column 1 1 current character type

column 1 2 number of input characters

column 13 number of output characters

columns 1 4-1 8 output string

character types are: L letter

S space or punctuation

N number

Thus, this approach takes into consideration the context in

which the input text appears, but only to a limited extent.

It is able to take decisions according to the previous and

the current- character types, and generates a good G rade II

Braille approximation. It may encounter problems however,

when the context for taking the decision to contract or not

extends beyond one character.

The translation program written by I. Davidson is aimed at

generating a Grade II Braille translator suitable for

microprocessors and is reported to generate a good

approximation to Grade II Braille.

The search process for abbreviations and contractions is as

follows:

For words having more than 10 characters, the first ten

characters are compared with a table of abbreviations, and

1 1

if a match is found, then this group of letters is extracted

and output in Braille form. If no match is found, the

process is repeated with the last ten characters. If still

no match is found, the process is repeated with st ring

nine characters at the front and back of the word,, and so on

a o f

until the string is reduced to two characters in length. If

this is unsuccessful, the first and last letters of the word

are removed and translated into Braille, and the process is

repeated until all the characters have been translated.

Though this approach takes into consideration the whole word

to be translated, it does not take into account its

surroundings, which are definitely important to perform the

t ranslat i on.

Another of the existing translators, and perhaps one of the

DOTSYS-III, written by J. Sullivan.most important ones, is

It is the translator in us e at the R.N.I.B. , and i s

writt en in FORTRAN. It can produce Grade II St andard

Engli sh Brailie from i nput t ext • Th e programi will also

produce grade I Braille, if it i s r equi red at any st age o f

the translation. All of the standard rules of Braille are

implemented, except for word splitting at the end of the

lines. The input text is interspersed with format codes to

indicate page layout. As the program is table driven,

irregularities of Braille can be incorporated as extra

entries. Similarly, any variations in formatting

requirements can be implemented by devising new format codes

which use new combinations of existing facilities. A

1 2

tree-search algorithm is used for accessing the tables, and

this results in a considerable time saving over a sequent i al

search. The program uses a transition table, a decision

table, and condition tables, and their counterparts can be

seen in the translator developed for this thesis. However,

the approach is different, since DOTSYS-III does not make

use of formal languages. The translation achieved is good,

though perhaps its main problem lies in the difficulties it

present s when there is the need to modify or include new

rules. In DOTSYS-III the rules are coded within the

program.

As was mentioned earlier, there are several other

translators, and if more information is required, it is well

worth reading both (R.N.I.B., 1979) and (McGillivray, 1984),

where a considerable number of translators are referenced.

At this point it may be convenient to specify some of the

desirable features to have in a Grade II Braille translator.

- Portability. The English into Braille Grade II

translator should be able to run on different compute ,

mainly in cheap microcomputers, so that the system may

made more easily accesible to a greater number of peopl

- Accuracy. The translator should provide a good

aproximation to Grade II Braille. Reported accuracy for

existing translators is within the range of 90-100$.

This feature may be sacrificed for speed.

1 3

Speed. This depends on two components: the hardware and

systems software supplied by the manufacturer, and the

algorithm for performing the translation. Reported rates

for English into Braille grade II translation are between

50 and 500 words per minute in microcomputers and

2000-3000 words per minute in medium-sized machines.

This feature, as mentioned above, is often traded for

accuracy.

- Trainability. When a translator is to be used

prolonged period, it is useful to be able to

remove) entries in the table of rules and

dictionaries of abbreviations, contractions and

exceptions. This allows the user to be able to keep the

translator up to date, and obviates him from the

necessity of delving into the code and modifying it

In Chapter 6 of this thesis the performance of the

translator is evaluated and a comparison with existing

translators is made. For the moment it suffices to say tha

the translator developed for this thesis satisfies ail

the stated features.

The translator described in this thesis i s buiIt using

Augmented Transition Networks (ATNs), whi ch are a

development of the pushdown automaton. The formal treatment

of the translation problem is described in the following

chapt ers.

14

Chapter 5

AUGMENTED TRANSITION NETWORKS

3.1 The Decision to Use Augmented Transition Networks

The aim of the proposed English into Braille Translator, as

stated in the previous chapter, is to provide a good

approach to Grade II Braille, considering the computational

characteristics of a microprocessor. With this in mind, the

approach for translation by systematic application of

ordered rules and exceptions, with a relatively modest

dictionary, necessarily must be taken.

This suggested the possibility of using a formal language

approach. To this respect, initially the concepts of

grammars and recognisers will be introduced, and afterwards

the English into Braille Grade II translation problem will

be discussed with the types of grammars and state machines

available for performing the translation.

Grammars are probably the most important class of generators

of languages. A grammar is a mathematical system for*

defining a language, as well as a device for giving

sentences in the language a useful structure.

A grammar for a language L uses two finite disjoint sets pf

symbols. These are the set of non-terminal symbols, denoted

15

by ft , and the set of terminal symbols, denoted by L • The

set of terminal symbols is the alphabet over which the

language is defined. Non-terminal symbols are used in the

generation of words in the

language is the finite set P

productions, which describe

language. The heart of the

of formation rules called

how the sentences of the

language are to be generated.

Next, the formal definition of a grammar is given following

the formalism of Aho and Ullman. (Aho and Ullman, 1972)

Definition:

A grammar is a 4-tuple g = (N,£ P, S), where :

H is a finite set of non-terminal symbols (s omet imes

called variables or syntactic categories).

z is a finite set of terminal symbols di s j oi nt from l\| •

P is a finite subset of formation rules (productions) in

which the first component is any string containing at

least one non-terminal and the second component is any

st ri ng.

S is a distinguished symbol inN called the start symbol*

Chomsky defined several types of grammars according to the

16

formats of their productions. They are:

- Right Linear

- Context Free

- Context Sensitive

- Unrestricted

A right linear grammar is a generative system for simple

languages, such that the parse (or syntax analysis) and

translation depend only on the input read from the input

tape and is processed sequentially. An example of this type

of grammar is the one that generates numbers from single

digits. This example is given next.

Example 3.1

to denote the N productions:

Let G =8 ({<digit>} , (0, 1 , . . . , 9} ,

{<digit> O|1 | . . . |9|} , <digit>)

wh ere Z A |b |c| . . . |n is a notational shorthand

17

Z --> A

Z --> B

Z --> N

Here, (digit) is treated as a single, non-terminal

symbol. The language L(G) generated by this

grammar is the set of ten decimal digits. Notice

that L(G) is a finite set.

A Context Free Grammar (CFG) is a generative system mostly

used for the definition of programming languages. It is a

superset of right linear grammars. As its name implies, the

productions generated do not depend on the context or

position of an input character within the input tape. Once

something is identified as part of the grammar fro.m the

input tape, it may be translated directly. A simple example

of this type of grammar is the one that generates arithmetic

expressions, within a programming language. This example is

given next.

Example 5.2

Let G = ([E, T, F}, (a, +, *, (,)} , P, E)

1 8

where P consists of the productions:

E --> E+T | T

T --> T*F|F

F --> (E)a

An example of a derivation in this grammar would he:

-> E+T

—> T+T

-> F + T

—> a + T

a + T*F

—> a + F*F

a + a*F

a + a*a

The language L(G) is the set of arithmetic expressions

that can be built up using the symbols a, + , *, (, an^)

A Context Sensitive Grammar (CSG) depends on the context in

which input arrives from the input tape. The same ' P

character may be parsed and translated differently depe ’ g

on the context in which the input appeared. A CS j.

recursive, and this is the reason why not every CFG is

CSG, since CFGs admit empty productions and CSGs do not.

1 9

However, every CFG without empty productions is a subset of

a CSG.

By admitting empty productions in a CSG, the expande

grammars would be capable of defining recursively enumerable

sets, which correspond to unrestricted grammars.

A second common method for providing a finite specification

for a language is to define a recogniser for

three components of a recogniser: an input tape,

There are

a finite

state control and an auxiliary memory.

The input tape can be considered as a linear sequence

tape squares, each tape square containing exactly one input

symbol from a finite input alphabet. There is a

head, which can read one input square at a given instant

time.

The memory of a recogniser can be any type of data store.

The behaviour of the auxiliary memory for a class of

recogniser.

recognisers is characterised by two functions. a store

function and a fetch function. Generally speaking, it is

the type of memory which determines the name of

For example, a recogniser having a pushdown

list for a memory would be called a pushdown recogniser (or

more usually, a pushdown automaton).

The heart of the recogniser is the finite state control,

which can be considered as a program which dictates the

20

behaviour of the recogniser. The control may be represented

as a finite set of states together with a mapping which

describes how the states change in accordance with the

current input symbol and the current information fetched

from memory.

The behaviour of a recogniser can be conveniently described

in terms of the configurations of the recogniser. A

configuration is a picture of the recogniser describing:

- The state of the finite control.

- The contents of the input tape, together with the

location of the input head.

- The contents of the memory.

The finite control of a recogniser can be deterministic or

non-deterministic. If the control is non-deterministi

in each configuration there is a finite set of po

moves that the recogniser can make. The control is

be deterministic, if in each configuration there is at most

one possible move.

The initial configuration of a recogniser is one in which

the finite control is in a specified initial state: the

input head is scanning the leftmost symbol on the input

tape, and the memory has a specified initial content. A

21

final configuration is one in which the finite control is in

one of a specified set of final states and the input head

has moved off the input tape. Often the memory must also

satisfy certain conditions if the configuration is to be

fi nal.

The language defined by a recogniser is the set " P

strings it accepts. Each of these input strings presented

to the recogniser in an initial state,
t owill cause it

reach a final configuration.

For each class of grammars in the Chomsky hierarchy there

a natural class of recognisers that defines the same class

of languages. These recognisers are finite automata,

pushdown automata, linear bounded automata and 8

Machines. Specifically, the following characterisat’

the Chomsky languages exists:

- A language is right linear if and only if it is defi

by a finite automaton.

- A language is context free if and only if it is defined

by a pushdown automaton.

- A language is context sensitive if and only if it is

defined by a linear bounded automaton.

- A language is recursively enumerable if and only if 1

is defined by a Turing Machine.

22

There are a number of grammatical models that have been

recently introduced outside the Chomsky hierarchy. Some of

the motivation for introducing new grammatical models is to

find a generative device that can better represent the

syntax and/or the semantics of languages. This is true for

Augmented Transition Networks, which are a further

development of pushdown automata, having the same memory

characteristics, but having additionally the possibility of

performing arbitrary tests and actions according to the

incoming information from the input tape and the information

available on top of the stack.

The reason for selecting this device is that

characteristics of the translation of English into Bra'

Grade II go beyond the scope of Context Free Languages,

there are productions that depend very much on the cont

in which the input appears.

Generally speaking, Augmented Transition Networks (A

meant to be used for natural language translation, (Woods,

1970) thus being able to deal with the subtleties involved

therein. English into Braille Translation certainly is not

as complex as natural language translation, but it

complex than translating a programming language for w

well-defined sets of rules exist. The next two sect'

will deal with a thorough description of ATNs , at the

of section 3»3 a set of examples of different uses of AT

is given.

23

5.2 Theoretical Background for ATNs.

Transition networks are a useful way of represent i ng

linguistic structures. They permit a grammar to be

presented through easily

time, they show the

visualised diagrams and at the same

details of the restrictions and

exceptions within the grammar.

There are some basic

networks: states, arcs

concepts related to transition

transitions, recursion and pushdown

stacks. They will be illustrated by means of the simple

transition network, shown in figure

A Simple Transition Network

Fi gure 3•1

24

5*2.1 States and Arcs

The grammar given by the network in figure 5*1 consists of

twelve states and eighteen arcs. The states are indicated

by circles and the arcs by lines. Each state has its own

label; arcs go from one state to another or from a state to

the word 'POP’, which will be explained later. Each arc. is

labeled either with the name of a word category like '-AUX'

(for 'auxiliary') or with the label of another state of the

grammar like ' NP ' , which begins the analysis of a

construction within the grammar.

3*2.2 Transitions

Transitions are the actual transfers from one state

network to another. One of the states in the grammar is

designated as the starting state ’S'* The grammatical

analysis of a sentence begins at state 'S’, and proceeds by

first trying to determine which of the arcs leaving S can

be followed to arrive at the next state. From the

state it tries to see which state may be then reached,

so on until the end of the sentence has been detected

the end of the input sentence coincides with a POP

the analysis is complete. Otherwise, the grammar

incomplete, or the input text was not a valid sentence

therefore is not accepted by the grammar. This will b

illustated using the sample sentence: Mary likes

yellow dress'.

25

In. the dictionary, ’Mary' is a proper noun (NPR) , likes is

a verb (V), 'the' is a determiner (DET), 'yellow is an

adjective (ADJ), and 'dress' is a noun (N).

The arcs leading out of each state may be considered in any

predefined order. This, in fact, allows fine tuning of the

network, since the arcs that are likely to occur most often

may be matched first.

The arc 'NP' is tried initially* As Mary is a prope

(NPR), it forms a noun phrase, causing a transfer from ' NP'

to ' q7' in the embedded ’NP’ construct. As the 'NP match

was successful, the arc from 'S' to 'q1' is followed. The

’V* arc is then tried,and is also found to be successful,

since 'likes' is not an auxiliary verb.

Next, the 'NP' arc is tried. The following input word is a

determiner (the), which may start a noun phrase and sq the

embedded 'NP' network is followed After the det e rmi ne r

c ones to the word 'yellow' , which belongs to the category

and as such, allows a transition from •q5’ back to

belongs

Finally, the last

to the 'N' category,

input word is ' dress', whi ch

initiating transfer from q.5

’ ADJ ’

’ q.5 ' *

to ’q.6’ , and as the noun phrase is complete, a POP is made

to the immediate outer level, thus enabling the transition

from ' ' to '(14’ As the end of the sentence has been

reached, a final 'POP' is performed and the input text is

accept ed as a valid sentence according to the defined

grammar.

26

3 •2.3 Recursion

Recursion is a very important subject, and its application

greatly increases the power of a grammar. Consider what

would happen if instead of treating 'NP' as a construction

by itself, there was an attempt to write it into the main

network wherever it appeared. Notwithstanding the

duplication that it would involve, it would not be possible,

as the *PP ’ construct contains an ’NP' within it, and NP

has an embedded 'PP' construct. It is at this point that

recursion shows itself to be of great value, as it enables

these cyclic constructs to be represented.

3»2.4 Pushdown Stacks

Whenever there is a construct to be recognised, rather than

a simple word category that can be found in a dictionary,

the transition network grammar saves the information

obtained so far about the state of the network, on a special

structure known as a pushdown stack. A new analysis is then

started at the initial state of the subnetwork that

represents the embedded construction. This is repeated

every time there is an embedded construction. When a 'POP'

arc is reached, the information found in the network in the

current level is made available to the level immediately

above. All the state information that had been found

earlier for that higher level, is taken off the pushdown

stack, and the process continues from that point.

27

This strategy for matching embedded constructs is called

'PUSH' match, with every successful 'PUSH leading to

a

a

As shown in the

used for both

dress’, without

previous example, the 'NP' construct was

the noun phrases 'Mary' and 'the yellow

having to represent explicitly the 'NP'

construct within the network.

It can be seen that there is only one accepting path throug

the network to the sentence 'Mary likes the yellow dress

It is thus an unambiguous sentence within the grammar,

is an inherent feature of natural languages that there are

ambiguous sentences that have more than one distinct

analysis path through the transition network. A grammar

that produces more than one parse tree for some sen

said to be ambiguous, i.e., an ambiguous grammar is

produces more than one leftmost or more than one rig

derivation for some sentence. For certain types of pars

it is desirable that the grammar be made unambiguous;

otherwise it cannot be uniquely determined which parse

is to be selected for the input sentence. However, most of

the times rules may be established which allow selection

only one parse tree, thus "disambiguating the gram

This will be illustrated next.

28

E --> E •+ E |e - E

--> E * E | E / E

—> E A E | (E)

—> - E

where E is a nonterminal abbreviation for

precedence of the arithmetic operands.

This grammar is
ambiguous. However. it can be easily

"di sambi guat ed"
by specifying the associativity and

Suppose it is desired to give the operators the precedences

and associativities customarily used in programming

languages [ll .

Precedences in decreasing order:

(unary minus)

* /

[13 . These rules of precedence and associativity are common
in most but not all programming languages.

29

Associ at i vity:

right associative, i.e.,

aAbAc implies aA(bAc).

* / + - left associative, i.e.,

a-b-c implies (a-b)-c

Therefore, with the aid of disambiguating rules,

transition, network is a nondet e rmi ni st i c mechanism that m

be capable of following any and all paths for a give

sentence. Refer to Appendix 3 for more details on ambiguity

(nondeterminism) of grammars.

Every recursive transition network is essentially a pushdown

automaton whose stack vocabulary is a subset of its state

set . Therefore, either a transition network or a pushdown

automaton can represent successfully a context free grammar.

However, it is well known (Woods, 1970; Aho and Ullman,

1972) that a strict context free grammar is not an adequate

mechanism for characterising the subtleties of natural

languages, and so an augmentation of this model is required

to be able to deal with more complex structures.

Application of Augmented Transition Networks

The transition network model above is used as the basis for

constructing Augmented Transition Networks (ATNs), by

augmenting the original network so that the grammar is able

30

to handle agreement, order displacement and a more

meaningful presentation of the results of the analysis. In

fact, an ATN is a machine that is capable of doing

everything that might be required of a grammar.

An ATN is a recursive transition network with three added

features: registers, tests on arcs, and structure building

actions that probably require several coupled pushdown

st acks .

Registers may be likened to notes that are kept about items

or constructions that match arcs. Whenever a PUSH match

is called for, all the registers that have been set up to

that point in the network are saved on the pushdown stack,

together with a record of the path that led up to the

’PUSH'. The analysis of the embedded construction then

starts with empty registers and it fills up its own set of

registers as it needs them. When the analysis of the

embedded construction ends in a 'POP', the registers that

were saved on the pushdown stack are popped, along with the

associated path information, and the original network

analysis resumes.

There is no restriction on how many registers may be set in

going through a network, nor is there any predefined list of

names appropriate for registers. They are created as needed

by the linguist and labeled with one-word identifiers that

serve as reminders for the kind of information they are

st oring.

31

Tests on arcs look for agreement. They do this most often

by examining the contents of registers that have been set by

earlier arcs.

effort would

They may also be used to find out whether

be wasted by trying for a match that could be

shown ahead of time to be bound for failure. The mat ch

speci fi ed for an arc will be tried only if the test on the

arc is successful. If the arc does not pass the test, the

match is not even attempted.

Actions are taken when a match is found. An arc can have

any number of actions associated with it, be p e r f o rme d if

the match works, and ignored if it does not • The action

most frequently taken upon finding mat ch
• *

to s et. or

modify the contents of one or more regi st e rs . Put t i ng

t o

a i s

information into registers allows the transition network to

reorganise the information later on, as the analysis

proceeds. A transition network grammar can set up a

tentative analysis, and change it later on, as new evidence

comes in.

One class of frequent actions are the ones that

transition from the current state to another one

permit a

according

to the tests performed. These are called terminal actions

and can be found of two types; the first of these enables a

transfer to another state ('TO' state), giving the name. of

the st at e to which a transition is to be made a ft e r the

terminal action has been performed, providing the mat ch i s

successful. This type of terminal action causes the

following state to examine the next word of the input

52

sequence. The second type of terminal action, a JUMP

state, makes the named state further examine the current

word, instead of simply moving ahead to process the-next

word in the input text.

Another common action is the one performed hy

which may have fairly complex structure building actions

associated with them. A 'POP arc collects

information about a construction that was put into

various registers since that part of the networ

activated, and places it into a representation

construction that has been found. In building

that initiated the 'PUSH', which from then on, handles it as

represent at ion, the order of elements can be changed, and

information can be either added or removed. The structure

that is built up by the 'POP' arc is passed on to the arc

a unit .

Actions always follow tests on an arc, and end with a single

terminal action. There is no limit on the number of actions

associated with an arc.

Thus, the ATN formalism allows assignment to registers,

arbitrarily complex tests on them, and the performance of

equally arbitrary actions with the available informati

These operations give an ATN its descriptive power a

generality, and increase its computational power to that

a Turing Machine (Woods, 1979)•

35

At this point it may be beneficial to

ATNs. After Woods published his

comment on uses of

report on ATNs (Woods,

1969), he also developed a computer system that applied

transition network

automatic parsing or

grammar to data in order to perform an

grammatical analysis (Grimes, 1974)*

The automatic parser was developed in

information system for lunar geology*

connection with an

By feeding the

analysis performed by the transition network grammar, into a

semantic analyser, it was possible to have a compu

or calculate answers to questions about moon rocks that were

asked in ordinary English rather than in an

constructed computer language. The grammar of English that

was developed for this purpose, does not cover everything

English speakers can say, but it does cover a surpr*

large proportion of the language using only 58 stat

172 arcs (Woods and Kaplan, 1972).

Another example of practical uses of ATNs is found m the

work of N.G.P. Day (Day, 1979), who has used ATNs for

building an editor. Specifically, this type of ed'

one that advises the user of any departure from a given set

of rules (defining, say, a programming language),

based on a table-driven augmented transition network, and it

may be used for example in checking the scope of varia

when editing a language such as PASCAL.

G. Kaiser (Kaiser, 1981) has used ATNs to build a

automatic extension of a knowledge base in the field

Artificial Intelligence. Specifically, a computer program

54

was written that acquires most of its knowledge from

conversations among operators on Morse code radio networks.

The system consisted of a learning component and a language

understander. The learning component extended a core

augmented transition network knowledge base by generalising

from sentences taken from scripts of actual conversations.

The extensions enabled the understanding component to

process a large number of sentences that are syntactically

and semantically similar to the examples. The system's

primary function was to parse and ' unde rst and' human

conversations in a simple language: it extracted the

important information content of the conversations, updated

particular items as necessary and 'forgot' any information

that was made obsolete by information conveyed later in the

conversation.

D. Bobrow and J. Fraser (Bobrow and Fraser, 1969) used

ATNs for a syntactic analysis procedure, which obtained

directly the deep structure information associated with an

input sentence. The implementation used a state transition

network characterising those linguistic facts representab

in a context-free form, and a number of techniques

and derive additional linguistic information and to p

the compression of the network size, thereby allowing a more

efficient operation of the system. By recognising identica

constituent predictions stemming from two different analysis

paths, the system determined the structure of this

constituent only once. When two alternative paths through

the state transition network converged to a single state

35

some, point in the analysis, subsequent analyses were carried

out only once despite the earlier ambiguity. Use of flags

to carry feature concordance and previous context

information allowed merging of a number of almost identical

paths through the network.

Another example of use of ATNs is found in the field of data

control (Linden, 1978). Linden's research was concerned

with the development of a method of description and control

of complex networks of data. The use of ATNs was proposed

for this purpose; the main advantages of their use in this

field were that they provided a consistent notation ior the

description of all constraints, and that they provided data

independence in applications programs. This approach is

valid in a wide range of application

formalism considered is independent of
areas, and the

the underlying
storage strategy.

36

Chapter 4

THE TRANSITION NETWORK FOR

ENGLISH INTO BRAILLE GRADE II TRANSLATION

The transition network for English into Braill

translation (EBT) is described next. The grammar defi

is based on Wood's formal treatment of grammars (

1970).

Initially, the mathematical definition of the grammar

be presented; afterwards a graphic representation of the

transition networks for the EBT is given, together with

description of the states therein comprised. Finally,

detailed explanation for all the transitions within the

grammar is given, together with examples for the

important cases.

4.1 Mathematical Definition of the Grammar for

English into Grade II Braille Translation

The Augmented Transition Network (ATN) defined for English

into Grade II Braille translation will be established

through the development of a pushdown automaton. This

serves as the basis for the ATN, and the inclusion of a set

of translation rules, which in practice constitute the

arbitrary tests and actions, further develop this pushdown

37

automaton into an ATN

Let N= (Q,E ,r , T, A, , S, Z, F) where:

(1) Q ={S,C,D,E, . . . ,N> Is the finite set of st at e

symbols represent ing the

possible states of the fi nit e

st at e control.

(2) L=Au A Is the finite input alphabet:

A = {A...........z}

A = {delimiters}

(5) r = {0............ 63} Is a finite alphabet of pushdown

list symbols.

(4) Is the set of arbitrary tests

that are required for a

transition to exi st

(5) A (ai > at » ■ atn} Is the set of arbitrary actions

»

to be taken for a transition to

occur if the set of tests ’T' is

sat i s fi ed.

Is the mapping from

Qx(L<de}) xTxT to the finite

subsets of Qxr*xA.
e is the set that contains the

58

empty string.

| is the power set ofP

(7) S 6 Q 3™ 33 3* 3* ^3 S t a t o of the

fi nit e cont rol.

(8) z e r Is the symbol that appears

initially on the pushdown li st.

(9) F = {K,N} Is the set of final stat es .

One point that requires much further specification is (6) $.

The mapping from Qx (xTxT t o QxT*xA implies that it is

possible to have for a specific case, any state (Q), any

input character (£) , including the null string ((e)), any

pushdown list symbol on top of the stack (D , and a set of

specific tests (T) to be satisfied for a transition to

occur. This, in fact, includes the whole of the translation

rules that must be followed to perform the actual mapping

from English into Grade II Braille. It is at this point

where the ATN proves useful, since it allows the

specification of the translation rules, including the many

different types of exceptions.

Each rule must be considered individually for each Braille

abbreviation or contraction, and the suite of rules thus

formed will represent the dictionary that must be searched

in order to perform the translation.

59

cont rol.

At this point it is convenient to int roduce some not at i on

that will be useful for the establishment of the suite of

transition rules for EBT.

A configuration of network N is a quadruple (q, UJ , di, it])

i n Qx r*xT where:

(1) q Represents the current state of the fi nit e

(2) UJ Represents the unused portion of the input. The

first symbol of OU is under the input head of the

automaton. If LU = {e), it is assumed that all of

the input tape has been read.

(3) Represents the contents of the pushdown list. The

leftmost symbol of is the topmost pushdown

symbol. If ©4 = (e}it is assumed that the pushdown

list is empty.

(4) (t) Represents the specific set of tests that should

be satisfied in order to enable a transition.

A move by N will be represented by and is read

produces". One possible move by N is:

(q. , bU), Z<Z , (t)) |- (qj,LU,tf©<, {a))

40

assuming that cT (q- , b, Z, (t)) contains (q. , , {a}) for
V J

q. , q. fe Q, bep (e},U)€ ?*, Ztr,c<€r*, {t)€T.

This move means that if there is a mapping 'cT' that allows a

t ransit i on from state ’<11 ’ » given input ’b’, t opmost

pushdown symbol •z ’ , and tests 't', the transition will

occur to st at e ’<b ' . Th e unused input ' w ' remains

unmodified, the topmost symbol ' Z ' is changed to 6 P , and

the pushdown list usually remains unmodified, unless the

arbitrary actions {a} A affect the stack contents. These

concepts and this notation will be useful in the following

sections, where the network is depicted and complete

examples of the transitions are given.

4.2 Network Description

The following aspects are observed when applying ATNs to

English into Braille Grade II translation.

elements are arcs leaving that state. Each arc set

1 . The ATN is defined as a list of arc sets.

2. Each of these arc s et s is a list whose first

element is a state name and whose remaining

represents one step in the EBT process.

5 . As s o ci at e d with each arc there is a number of

arbit rary tests that must be sat i sfi ed in order t 0

follow the t ransit i on network. Also, there are

41

associated actions that indicate what to do with

the input character and with the stacks’ contents.

These depend on the results of the tests performed.

The ATN for EBT is based on the following 11 simple

subnetworks. The approach of representing the network

separately rather than as a whole has been selected for ease

of understanding. Also, in this way, the notion of

recursion within the network is represented more clearly.

4.2.1 Transition Network for English into Braille Grade II

Translat ion

Fi gure 4•1

42

M

Figure 4*1 (continued)

4.2.2 State Description for English into Braille

Grade II Translation

For the sake of completeness of the network presented, a

brief description of each of the states comprised therein

follows .

43

St at e C

St at e D

St at e E

State F

St at e G

State H

St at e I

St at e J

State K

Contraction under search at the beginning of the

word.

Contraction under search, but not at the

beginning of the word.

Contraction found that must stand alone.

.- Contraction found that must occur at the

beginning of the word or a Braille line.

.- Contraction found that may be anywhere in the

word, but that depends on the following input

text in order to be performed.

.- Contraction found that must be in the middle of

the word.

.- Contraction found that must be used adjoining the

word that follows.

.- After having found a contraction such as "AND",

"FOR", "OF", "THE", "WITH", standing alone, then

if there is another of these also standing alone,

the space will be contracted.

.- A contraction has been found, and nothing may now

hinder its performance.

44

State L A contraction that was previously found was not

accepted because of the following character;

however, there is still the possibility of

forming another contraction with the same initial

charact ers.

State M .- Contraction found that may be anywhere in the

word, but that can be superseded by a longer

contraction which includes the one previously

found. The contraction is always performed.

State N .- The contraction under search was not found.

4.5 Detailed Description of Transitions for EBT

There are several aspects needed to describe completely a

transition for English into Braille grade II translation;

namely,

. a brief description of the transition

. the mathematical productions with which the transitions

are associated, together with a glossary of the relevant

vari ables.

. a precise specification of the tests that must be

satisfied for the occurrence of the transition.

45

the actions that shall be taken if the conditions

specified by the tests are satisfied.

Each transition within the network will be described in this

way, together with examples that show valid cases for

performing the transitions.

Since the tests apply to the state to which the transition

is going to be made, the network description will be ordered

according to the state reached through the transition (not

through the departing state), in the following way: 'C',

D', ’E’, 'F', 'G', ’H’, ’I’, ’J', 'L', 'M', ’K', 'N. This

will allow the grouping of transitions, thus facilitating

the description (refer to figure 4.1).

4.3.'

’C ' .

I Transition from st at es 'S', •C’ , •L’ , ' M ' to st at e

1 . Description:

Cont ract ion under search at the beginning of the

word.

2. Mathematical product ion:

(q. , bUJ, ZoL, (t)) k (' c' U)) , where:

- Any of the states: 'S', 'O', 'L' or *M ’.

46

b - Input character under the input head. the

valid input characters can be extracted from

the English Braille abbreviation and

contraction dictionary shown in appendix

U) - Remaining input text.

Z - Topmost symbol of pushdown stack.

<£ - Remaining contents of pushdown stack. It is

worth noting that the stack contents are

shown in reverse order, except when a

contraction has already been performed, in

which case the contraction is spelled out in

the correct order. Contractions are shown in

uppercase letters, while non-contracted text
♦

in the stack is shown in lowercase letters.

- Set of tests to be satisfied for these

transitions to occur. There are general

tests for each transition and also specific

ones according to the departing state.

General Tests:

1. The translation process status must be at

the beginning of the word.

2. There must be possibility of performing a

47

cont ract i on.

5. The possible contraction must be

i nc omplet e.

Specific Tests:

1. Departing state: 'S'

There is no contraction under search.

2. Departing state: 'O'

The contraction under search is still

possible and incomplete.

5. Departing state: 'L*

The performance of a contraction has been

hindered because of the following input

character, but there is the possibility

of finding a longer contraction.

4. Departing state: 'M*

A contraction has been performed, which

may form part of a longer and still

incomplete contraction or abbreviation.

'O' - State to which the transition reaches.

- New topmost symbol of the pushdown stack. It

48

is worth noting here that the symbols in the

pushdown stack are shown in reverse order

from the one in which they were pushed, in

lowercase letters. When a contraction has

been performed, it appears in the correct

order and in uppercase letters.

a} - Set of actions to be performed when the

previous conditions are met:

1. Postpone the decision of contracting or

not [l] .

2. Update the character under search (the

one already found) to the one that should

appear next in order to be able to

contract later on. This is done

according to the translation dictionary.

Examples of valid transitions [2,3]

[1] . The
relat ed

fact of postponing a decision implies
information is pushed on to the top of

until enough information is available in order

that the
the stack,
to decide

whether or not to contract the input text.

[2]. It is worth mentioning that in this section only the
specific transitions related to the cases under
consideration are shown in order to not extend excessively.
For complete examples refer to the last section of next
chapt er.

w-
real
for ease of understanding for the computer-oriented
For the Braille-oriented reader,
letters, and uppercase represents contractions
performed.

The stack values shown in the
Braille mapping pushed on to

the
done

examples are not
the stack. This is

reader,
lowercase represents single

already

49

1 Transition 'S' to 'C'

(’S', fru), (e) , {t}) |- ('C', rf (e) , {a})

In this case, since the transition departs from

state 'S', there is no contraction under

search. Since the pushdown stack is empty, the

process status is at beginning of the word.

The first two input characters are 'fr', which

allow the possibility of contracting (searching

for the word 'FRIEND'). Finally, it is obvious

that the contraction is not yet complete, so

all of the tests required are satisfied and

thus the transition to state 'C' occurs.

2. Transition 'C' to 'C'

('C', iu>, rf (e) , (t)) J- ('C', irf{e|, {a))

In this case, continuing with the previous

example, since 'i' is the next input character

and the word 'FRIEND' is being considered,

there is still the possibility of contracting,

and the contraction is still incomplete. Thus,

all the required tests are satisfied and the

transition 'C' to 'C' occurs.

3. Transition 'L' to 'C'

(' L ' , ew, st i {e} , {t}) J- ('C', est i

In this case, the word 'ITS' was found. Had it

50

been standing alone, it would have been

contracted. Since an 'e' followed, the

previous contraction was hindered, and the new

contraction searched for is 'ITSELF'. Since it

is still incomplete, all the tests required are

satisfied, and the transition to state 'C'

occurs.

4. Transition 'M' to 'C'

('M', ru), THE (e) , {t}) I- ('O’, rTHEfe), {a})

In this case, the word 'THE' has been found and

contracted, whatever may come later on. Since

the next input character is 'r', there is still

the possibility of contracting the word

'THERE'. Since before 'THE', the stack was

empty, and the process status was at the

beginning of the word. Finally, since the word

is still incomplete, the transition to state

' C ' occurs.

In any of the previous cases, if one or more of the

required conditions are not satisfied, the

transition does not occur.

51

4.3*2 Transitions from states 'S', 'D', 'M' to state 'D'

1. Descripti on:

Contraction under search, but not at the beginning

of the word.

2. Mathematical Production:

(q-L, bU), ztZ, {t}) j- ('D’,^c4, {a}), where

q^ - any of states: 'S', 'D' or 'M'

b,w,z, have been already defined in the first

transition described. From here on, the

elements that were previously defined will

not be repeated. For their description,
- •

refer to section 4.3.1.

it) - set of tests to be satisfied for these

transitions to occur.

General tests:

1. The translation process status must not

be at the beginning of the word.

2. There must be the possibility of

performing a contraction.

3. The possible contraction must be

52

i nc omplet e.

Specific Tests:

1. Departing state: ’S'

There is no contraction under search.

2. Departing state: 'D'

The contraction under search is still

possible and incomplete.

incomplete contraction or abbreviation.

5. Departing state: 'M '

A contraction has been performed, whi ch

may form part of a longer and still

State to which the transition occurs.

New topmost symbol of the pushdown stack.

Set of actions to be performed when the

previous conditions are met:

1. Postpone the decision to contract or not.

2. Update the character under search (the

one already found) to the one that should

appear next in order to be able to

53

contract later on. This is done

according to the translation dictionary.

5. Examples of valid transitions.

1. Transition 'S' to 'D'

('S', ntu, ad (e) , {t}) ('D', nad {e} , U})

In this case, a contraction not at the

beginning of the word is searched starting with

'an' at state 'S'. There is the possibility of

finding the contraction 'ANCE', and is thus

still incomplete. Since all of the required

tests are satisfied, the transition to state

'D' occurs. In chapter 5, where the

translation process is described, it will

become clear how independent, simult aneous

searches can be carried out at different

positions in the word.

2. Transition 'D' to 'D'

(' D ' , cui, nad {e} , (t)) ('D', cna

In this case, continuing with the previous

example, since 'c' is the next input character,

and the contraction 'ANCE' is being searched,

there is still possibility of contracting, and

the contraction is still incomplete. The

54

required tests for the transition 'D' to 'D' to

occur are satisfied.

3. Transition 'M' to ’D'

(' M ' , n(x), OUc > IB) J- (' D ' , nOUc {e}, {a\)

♦

In this case, the search process is not at the

beginning of the word, as the contraction under

search is 'OUNT'. Since 'OU' was contracted,

and it may form part of a longer contraction,

namely 'OUNT', the transition from 'M' to 'D'

occurs.

In any of the previous cases if one or more of the

required conditions are not satisfied, the

transition does not occur.

4«3«3 Transitions from states ’S', 'O', ' M ' to st at e ' E ' .

1 . Desc ri pt i on:

Contraction found that must stand alone.

2. Mathematical Production:

(q. , bU>, z«(, (t)) b ('E',#€<, {a}), where [4]

q^ - Any of the states: 'S', 'C' or 'M'

[41. The elements that were already defined will not be
repeated. Refer to the previous transitions for their
description.

55

{t} - Set of tests to be satisfied for these

transitions to occur.

General Tests:

1. The translation process must be at the

beginning of the word.

2. A contraction has been found that .must

stand alone

Speci fi c Tests:

1. Departing state: 'S'

There is no contraction under search.

2. Departing state: 'O' r

There is a contraction under search at
t

the beginning of the word.

5. Departing state: 'M'

A contraction has been performed, which

forms part of a longer contraction that

has already been found.

{a^ - Set of act i ons to be performed when the

previous conditions are met.

56

1. Postpone the decision of contracting

until the next input character

establishes whether or not the input word

stands alone.

2. Establish that the next input character

needs to be a delimiter (punctuation mark

or space) for the contraction to be

performed.

5. Examples of valid transitions.

1. Transition ’S' to 'E'

(•s’, doU>, (e) , {t}) I- ('E', od{e}, {a})

In this case, there was no contraction under

search, and the process status was at the

beginning of the word. The word 'DO' has been

found, which is a valid Braille contraction

that must stand alone. Thus, the transition

from state 'S' to 'E' occurs.

2. Transition 'O' to 'E'

(’O', rUJ, eft a {e} , {*}) V ('E', ERtfa {e} » M)

In this case, there was a contraction under
V

search at the beginning of the word, and the

word 'AFTER' has been found. It will depend on

57 -

the following input character whether or not

the word will be contracted. Anyway, the

transition from state 'C' to 'E' takes place.

Transition ’M* to 'E*

('M', yu>, EVER {e} , {t}) 1- (' E' , yEVER {e} , (a})

In this case, the contraction for 'EVER' has

been performed. As the input character is

the contraction for 'EVERY' could be used.

However this depends on whether the next input

character is a delimiter or not. The

transition from state 'M' to 'E' takes place.

4.5 • 4 Transition from state 'C' to state 'F'.

1 . Descri pt i on:

Contraction found that must occur at the beginning

of the word or a Braille line.

2. Mathematical Production:

('c', bU), Z(X, (t)) |- (’F'.lfx, {a}), wh ere

{t} - Set of tests to be satisfied for this

transition to occur.

58

Tests:

1. Contraction under search at the beginning

of the word.

2. The following word must fit on the same

line; otherwise the contraction is not

perfo rmed.

aJ - Set of actions to be performed whe.n the

specified conditions are met.

1. Postpone the translation until there is

enough information to decide whether or

not to cont ract •

2. Update the character under search, to

know what input is required in order to

be able to perform the translation.

5. Examples of valid transitions.

Transition *C' to 'F'

(’c’, sQ), id{e}, {t}) f- (‘F’, sid{e}, {a})

In this case, there is a contraction under search

at the beginning of the word. The contraction

59

'DIS' will be performed only if the following input

text satisfies the required conditions. One of

these is, for example, that the following character

is not an 'h' (as in dishes). The word under

search may be for example 'Display'.

4.5.5 Transition from States 'S', '0 ' , 'D', 'H' to

St at e ' G ' .

1. Descri pt i on:

Contraction found that may be anywhere in the word

but depends on the following input text in order to

be performed.

2. Mathematical Production:

(q^ bU), z <4, (t)) f- (’ G ' , , {a}) , where

any of the states 'S',

set of the tests to be

'H '

satisfied for these

transitions to occur

General Tests:

1. A contraction has been found

2. There is possibility that the following

input text hinders its performance.

60

Specific tests

In this case, there are no specific tests

depending on the origin state. State 'G' may-

be reached from state 'S' whether or not

there was a contraction under search, from

state 'O' if the contraction under search was

at the beginning of the word, and from state

'D' if it was not at the beginning of the

word. The transition from state 'H' to 'G'

behaves exactly as the one for state 'D'.

Set of actions to be performed, when the

specified conditions are met.

contraction found is aborted.

1. Post pone the de ci si on of cont racting,

unt i 1 the next i nput charact er

est abli shes whether o r not the

Update the character under search

(already found) t 0 the one that should

appear next, in order t 0 decide whether

to contract or not , later on. This is

done according t 0 the translation

di ct i onary.

61

5. Examples of valid transitions

Transition 'S' to 'G'

('S', beU), {e} , {t}) ('G', eb

In this case, since the transition departs from

state 'S', there was no contraction under

search, and the word 'BE' has been found. If

the following input character is either 'd',

'r', 'e' or 'a', the word 'BE' will not be

allowed to be contracted. However, if another

character comes next, the contraction 'BE' will

be performed. Thus, the transition from 'S' to

' G ' occurs.

2. Transition 'O' to 'G'

('O', eu>, no {e} , {t}) J- ('G', eno{e}, {a})

In this case, the word 'ONE' has been found,

but its contraction may be hindered if the

following input character is 'D', 'N' or 'R',

as in 'onER/OUs'. Thus, the transition from

’O' to ' G' occurs.

3. Transition 'D' to 'G'

(' D ' , eU), not to’ to) I- (' G ' , enot b}, U))

This case behaves exactly as the previous one.

It is just worth noting that here the stack was

62

not empty before identifying the contraction

'ONE'. The word being searched for is 'toneD*.

4. Transition 'H' to 'G'

('H', oto, (t)) I- ('G', offe (e) , {a))

In this case, the word 'effORt' is being

searched for. State 'H' was first reached when

'FF' appeared. Then, as an 'O' was the next

input character, there was still the

possibility of aborting the 'FF' contraction if

an 'r' follows. Thus, the transition from 'H'

to ' G ' occurs.

4 • 5 • 6 Transition from State 'S' to State 'H'.

1. Descri pt i on:

Contraction found that must be in the middle of the

word.

2. Mathematical Production:

(’S', buj, zo(, {t}) F ('H',>TU , {a}), where

U) - Set of tests to be satisfied for this

transition to occur.

65

Tests:

1. There must not be a contraction under

search.

2. The translation process status must not

be at the beginning of the word.

- Set of actions to be performed when the

specified conditions are met.

Postpone the decision of contracting, until

the next input character establishes whether

or not the contraction found is accepted.

5. Examples of valid transitions.

Transition 'S' to 'H'

('S’, glu, gar (e), {t}) b ('H', ggar(e), {a})

In this case, there is no contraction under search,

and the translation process status is not at the

beginning of the word. Since a 'g' was on top of

the stack and another 'g' appears in the input

stream, the transition from 'S' to 'H' occurs.

64

4-3.7 Transition from States 'S', 'C ' to State ’I'

1. Description:

Contraction found that must be used

word that follows.

adjoining the

2. Mathematical Product ion:

(q.j,, bo, /pi, <t}) 1- (, W). where

q• - Either of the states 'S' or 'C 1 •

- Set of tests to be satisfied for this

transition to occur.

General tests:

1. A contraction has been found.

2. The translation process status must be at

the beginning of the word.

3. The contraction found must be one of the

words: 'T0‘, ’BY’, 'INTO*.

Specific Tests:

In this case there are no specific tests

governed by the origin state.

65

a) - Set of actions to be performed when the

specified conditions are met.

Postpone the decision of contracting, until

the next input character is read. If it is a

space, the contraction is still possible, if

the following word fits onto the same Braille

line. If the input character is a delimiter

or another letter, the possibility of

contracting is immediately discarded.

Examples of valid transitions.

1.' Transition 'S' to 'I'

('S', byw, {©}» {t}) ('I', yb {e} , {a))

In this case, since the transition leaves the

state 'S', there was no contraction under

search. Besides, since the stack is empty, the

translation process status is at the beginning

of the word. Moreover, the word 'BY' has

already been found, and there is the

possibility that a space follows, so a

contraction may be performed later on.

2. Transition 'C' to 'I'

('c', OU), tIN{e) ,) I- ('I', otIN{e) , {t})

66

This case is very similar to the previous one,

the only difference being that there is a

contraction under search at the beginning of

the word. The word ’INTO' has been found in

this case.

4.3.8 Transition from States 'M', ' J ' to St at e ' J ' .

1 . Description:

After having found a contraction such as ’A',

'AND', 'FOR', 'OF', 'THE', 'WITH', standing alone,

then if there is another such contraction also

standing alone, the space between them will be

cont ract ed.

2. Mathematical Production:

, buy, Zo(, {t}) I- ('J',^, (a}), where

- Any of the states 'M' or 'J'.

b - Pair of input characters that match with any

of the two first characters of the specified

words.

Z - The topmost element of the stack which must

be a space. This is the one that may be

cont ract ed.

67

<< - The rest of the stack should contain at least

one of the previously specified contractions.

{t} - Set of tests to be satisfied for these

transitions to occur.

General Tests:

1. A contraction of the group 'A', ’AND',

'FOR', ’OF’, 'THE', 'WITH' has been

found, standing alone.

2. A space followed this contraction.

3. There is still the possibility, with the

current input character, of finding

another contraction of this same group.

Specific Tests:

1. For state 'M' as originating state, a

contraction of the specified group has

been found, and the current input

character is a space.

2. For state 'J' as originating state, a

contraction of the previous group has

been found, there is a space after it,

and the current input character must

68

match one of the starting characters of

the same group of contractions.

- Set of actions to be performed when the

specified conditions are met.

1. Postpone the decision of contracting.

2. Update the input character under search,

to know the input to be able to perform

the translation.

5. Examples of valid transitions.

1. Transition 'M* to 'J'

('M' , • ’tu, AND {e} , {t}) I- ('J', AND {eh {a})

In this case the word 'AND' has already been

contracted, and a space is the following input

character. This establishes the possibility of

contracting the space, depending on the

following input text. For example if the

following word is 'FOR' the space between 'AND'

and 'FOR' will be contracted. However, if the

following word is 'FORm', the space between

'AND' and 'FORm' will not be contracted.

69

2. Transition 'J' to 'J'

('J', fow, AND{e}, {t}) V

('J', fo ’ 'AHD{e\, {a})

This is a continuation of the previous example.

The input characters are 'fo', which match with

the expectancies in order to be able to

contract the space. of course, whether or not

the space is contracted still depends on the

following incoming text. •

4.3.9 Transition from States 'E', 'I' to state 'L'.

1. Descript i on:

A contraction that was previously found was not

accept ed because of the following character;

however, there is still the possibility of forming

another contraction with the same i nit i a 1

charact ers.

2. Mathematical Production:

transition to occur.

(q-t , bu>, Zo^, {t}) 1- ('L',^ , (a}) , where

*1 - Any of the stat e s ' E ’ or ’I’
•

- Set of tests t 0 be satisfied for this

70

General Tests:

1. A contraction had been found that should

stand alone.

2. The current input character hinders the

performance of this contraction.

5. There is the possibility of forming

another contraction, which includes the

text of the previous contraction as the

starting part of the new one.

4. The contraction under search is not yet

c omplet e.

Specific Tests:

In this case, it does not matter whether the

originating state is 'E' or 'I'. In both

cases the contraction under search was not

performed, but there is still the possibility

of forming another longer contraction.

{a>- Set of actions to be performed when the

specified conditions are met.

1. Postpone the decision of contracting

until more information is available to

71

decide whether to contract or not.

according to the current input

2. Get the next cont ract i on from the

dictionary (if there is one with the same

two i ni t i a 1 cha ra ct e rs), s 0 that

charact er,

the right contraction in the di ct ionary

is being accessed.

3. Examples of valid transitions.

1. Transition 'E' to 'L*

(' E ' , nW, ERt fa {e}, {t}) I-

(’ L ' , nERt fa {el> {a))

In this case, since the input character was not

a space, the contraction for 'AFTER' may not be

performed. However, this word may still form

part of a longer word that may still be

contracted, for example, 'AFTERNOON' or

'AFTERWARD'.

2. Transition 'I' to 'L'

(' I ' , dU), ot {e}, {t)) J- (' L ' , dot {e} , { a})

In this case the contraction for the word 'TO'

is prevented since the input character was not

a space. However, since the input character is

72

a 'd' there is the possibility of performing

another contraction, and so, the contraction

for 'TODAY' will be searched for, from this

point on.

4-3.10 Transition from States 'S', 'O', 'F', 'G', 'M'

to St at e ' M ' .

1. De sc ri pt i on:

Contraction found that may be anywhere in the word,

but that can be superseded by a longer contraction

which includes the one previously found. The

contraction found is always performed, whether or

not the longer contraction is identified later on.

2. Mathematical Production:

(q-u , buj, Zo<, (t}) F ('M',tfc<, -(a}), where

q. - Any of the states 'S’, 'C', *F', 'G' or 'M'.

{t} - Set of tests to be satisfied for this

transition to occur.

General Tests:

1. A contraction has been found.

73

2. The contraction will be performed, though

it may be superseded by a longer

contraction or abbreviation.

Specific Tests:

1. For originating states ’S', 'C' and 'M',

there are no specific tests; the

transition to state *M' is performed.

2. For originating states 'F' and 'G', there

are tests to determine whether general

exceptions exist. This will be clarified

in the examples of the next section. For

the state 'F', the translation process

status must be at the beginning of the

word, while for state 'G' it is not

rest ri ct ed.

Set of actions to be performed when the

specified conditions are met.

1. Perform the contraction found.

2. Delay output until there is enough

information to know whether the

contraction found forms part of a longer

contraction or not.

74

5• Examples of valid transitions.

1. Transition ’S' to 'M'

('S', into, {el, {t}) F (' M ’ , IN {e} , {a})

In this case, there was no contraction under

search, and the translation process status is

at the beginning of the word. The word 'IN'

has been found, and as the transition from

state 'S' to state 'M* occurs, the

corresponding translation is performed.

However, the text is not yet ready for output,

since it may form part of a longer contraction

(for example, in the word 'INTO').

2. Transition 'C' to 'M'

(’o', wU), onk {e} , {t)) F ('M', KNOW {e} , {a])

In this case, there was a contraction under

search at the beginning of the word. The word

'KNOW' has been found, and as the transition

from state 'C ' to state 'M' occurs, the

corresponding translation is performed, since

nothing may now hinder its performance. The

translated text is kept for further analysis,

since it may form part of a longer contraction

(as for example in the word 'KNOWLEDGE').

75

3. Transition 'F' to 'M'

(’F ' , tiu, noc{e] , {t}) F- (' M ' , tCON {©} , {a))

has precedence over ’CON'.

In this case, since the input letter 't ' does

not hinder the cont ract i on of CON ’ , it is

performed, and the parse of the i nput t ext

continues (the word under search in this

example could be 'cont ai n'). Had the i nput

letter been an ' e', the transition would have

been hindered, thus providing a way of

establishing the rule that cont ract i on 'ONE'

4. Transition 'G' to 'M'

(' G ' , su>, eno {e}> {*}) F ('M', sONE {e) , {a})

In this case, since the i nput lett er was not a

t j i • _d , r ' or 'n', the translation for 'ONE' is

performed. This still may form part of a

longer contraction ('ONESELF ') and thus it is

not yet out put. Had the i nput letter been one

of the letters previously ment i oned, the

contraction would not have been performed,

showing the precedence of cont ract i ons ’ ED ' ,

'EN', 'ER' over 'ONE'.

5» Transition 'M' to 'M'

('M ' , eU), TH M. (a)) F ('M', THE {e}, {a})

76

In this case, ’TH' had been already contracted,

and so the translation state was 'M'. Since

the next input letter is an 'e', the

contraction for 'THE' in now performed. This

is kept for further analysis, since this word

may still form part of a longer contraction

(for example 'THEIR' or 'THERE').

4.3*11 Transition from States 'S', *C', 'D', 'E', 'F', 'G',

'H', 'I', 'J', 'L', 'M' to State 'K'

1. Descripti on:

A contraction has been found, and nothing may now

hinder its performance. This is a terminal state,

t ranslat or.

and act ually is the only one t h at performs a

cont ract i on and at the same time causes a 'POP'

from the translation stacks . This is one of the

two empt yi ng condit i ons that exist within the

2. Mathematical Production:

(qp bU), ZX, {t}) b ('K' {a}) , where

- Any of the stat es 'S', ’O' , 'D' , 'E', 'F',

'G' , ’H’, ’I’, ' J', 'L' > or •m ' .

10 - Set of tests to be satisfied for these

77

transitions to occur.

Specific tests:

For state 'I' it is necessary that the

following word fits in the same Braille line.

Otherwise the contraction cannot he

performed. There are no more specific tests

required for the transition to state 'K' to

occur.

- Set of actions to he performed when the

specified conditions are met.

1. Perform the contraction found, thus

emptying the stacks under use.

2. Prepare the translated text to he sent to

the output file.

3 Examples of valid transitions.

1. Transition 'S' to 'K'

('S’, ghW, (e) , {t}) k (’K', GH {e} , (a))

In this case the contraction for 'GH' has been

found. Regardless of what may come next, these

two letters are contracted, since nothing may

78

now hinder the performance of the contraction.

For example, the word under analysis could be

'GHost'. It is worth mentioning that in this

and the following cases, the stack contents in

the mathematical productions are shown before

being emptied by the corresponding transition

action. This has been done for ease of

represent at ion.

2. Transition 'C’ TO *K '

(’ C ’ > s lo, sorca (e) , {t}) F

(*K ‘, ACROSS {e} , {a))

In this case, there was a contraction under

search at the beginning of the word, and as the

input character 's’ completed the abbreviation

under search (‘ACROSS’), it was performed and

prepared for output.

J. Transition 'D' to 'K'

('D', dto, nal{e^, {t}) I- ('K', ANDI {e}, (a))

In this case, there was a contraction under

search, but not at the beginning of the word.

The input character completed the contraction,

which was performed and prepared for output.

4. Transition *E ‘ to 'K'

('E‘, ' ’u), sih{e], {t}) b ('K‘, his(e), {a})

79

In this case, a contraction has been found, but

it is required to stand alone, for it to be

performed. As the input character is a space,

this condition is satisfied and the transition

from 'E' to 'K* occurs.

5. Transition 'F' to 'K'

(' F ' , eW, mo c <eb OP F ('K ' , eCOM {©} > {a})

In this case, since the input character is an

'e', the word 'COMe' is formed, and thus 'COM'

is contracted. This is a delayed decision',

since the contraction does not involve the

current input character, but because of it, the

previous text is contracted.

6. Transition 'G' to 'K'

('G', ' 'u), ecENh{e}, {t}) F

('K', ENCEh(e), {a})

In this case, since the input character is a

space, the contraction for 'ENCE' is performed.

Had the input character been 'd', 'n' or 'r',

the contraction would have been prevented.

7. Transition 'H' to 'K'

('H', tu>, aeh(e), {t}) F ('K', t EAh {e} , {t))

In this case, since the input character is not

80

a delimiter the contraction 'EA' is performed.

This is a delayed decision, since the current

input character * t ' is not involved in the

cont ract i on.

8. Transition 'I' to 'K*

('I ' , ’ 'w, yb {e) , (t)) I- ('K', BY {e} , {a})

There, since the input character is a space the

contraction is performed. Had the input

character been another delimiter or a letter,

the contraction would have been hindered. Note

that this is also a delayed decision.

9. Transition 'J' to 'K'

('J', ' 'u>, FOR’ ’AND{e}, (t)) P

('K', FOR/AND (e) , {a})

In this case the space between 'FOR' and 'AND'

is contracted. This may be done only after

knowing that the current input character is a

space, so that it can be guaranteed that both

words stand alone.

10. Transition 'L’ to 'K'

('L ' , suu, ediseb {e} > W) h

('K', BESIDES {e} » {a})

In this case, the word 'BESIDE' had been

81

det ect ed but could not be contracted until it

was known whether or not it stood alone. Since

the current input character is an 'S', the

contraction cannot be performed, but as it may-

form part of a longer contraction, and in this

case it does ('BESIDES'), the transition from

'L' to 'K' takes place.

11. Transition ‘M’ to *K'

('M', gu>, IHs{e), {t}) b ('&'> INGs {e} , {a})

In this case the contraction for 'IN' has

already been performed, but as it may form part

of a larger contraction ('ING’), and the input

character 'g' provides this, the transition

from 'M' to 'K' occurs. The contraction

performed is 'ING' in the word 'siNG'.

4.3.12 Transition from States

’H', ’I', ’J’, *L ’, ’M'

'S', 'O',

to State

'D' ,

’N’

'E' , 'F ' , 'G' ,

1. Descripti on:

The contraction under search was not found. This

is a terminal state, and actually is the

counterpart of state 'K'. This state forbids

definitely the peformance of a contraction and at

the same time causes a 'POP' from the translation

82

stacks. This is the other state (together with

state 'K') that may cause the emptying of the

stacks.

2. Mathematical Production:

(q. , bm, Z<< (t)) J- ('N * {a)) , where
L

transitions to occur.

- Any of the states ’S’, 'O', *D ' , ’E’ , 'F ’ ,

’G’ , *H’, ’I’, ’J’ , ’L’ , or 'M ' .

- Set of tests t 0 be sat i s fi ed for these

General Tests:

This actually is the complement of state 'K'.

Any tests that are not satisfied are

implicitly considered as candidates for

having a transition to state ’N'. Thus, a

transition to state 'N' occurs whenever a

contraction is not allowed.

Specific Tests:

There are no specific tests for these

t ransit i ons.

83

5* Examples of valid transitions.

The examples presented in this section are matched

one to one to the examples of the previous section.

This is done for comparison purposes to show what

happens when a contraction is performed, and when

it is forbidden.

1. Transition 'S' to 'N'

('S’, giU), (ej , {t}) t- ('N', ig{e), {a))

In this case there is no possibility of

contracting, since 'gi' is not included in the

set of possible contraction beginnings. It is

worth mentioning that in this and the following

cases, the stack contents in the mathematical*

productions are again shown before being

emptied by the corresponding transition action.

2. Transition 'C' to 'N'

(' C ' , nU), orca {4 , {t}) I- ('N ' , norca {e} » {a})

In this case, the word 'ACROSS' was being

considered. The 'n' (to form the word

'acronym')st opped the contraction and the

output is prepared.

3. Transition 'D' to 'N'

('D', eW, nal(e}, {t)) F ('N ' , enal(e), {a})

84

In. this case, the contraction under search was

'AND', as in the word 'laND', but as an 'e' was

the next input character, the contraction was

prevented and the text was prepared for output.

4. Transition 'E' to 'N'

(' E ' , siu, si h (e) , {t}) F ('N', ssih {e} , {a})

In this case, the contraction under search was

'HIS'. As it did not stand alone because of

the incoming 's', rather than an incoming

space, the contraction is forbidden and the

text is prepared for output.

5. Transition 'F' to 'N'

(’?', d(D, oc{e), {t}) F ('N', doc(e}, {a}) .

In this case, the contraction under search -was

'COM'. Since a 'd' entered as input character

instead of an 'm', the contraction is forbidden

and the text prepared for output.

6. Transition 'G' to *N'

('G', duj, ecENi repxe (e) , {t}) F

('N', EDcENi repxe {e} , {a})

In this case, the contraction for 'ENCE' may

not be performed, since there is precedence of

contraction 'ED' over 'ENCE'. Thus, 'EN' and

85

'ED' (not ENCE) are contracted and prepared for

out put .

7. Transition 'H' to 'N*

('H' , ' 'W, aet{e) , {t}) I-

(•»', 1 -aet^e), {a))

In this case, the contraction under search is

' EA' . Since it must occur in the middle of the

word, and a space is the following input

character, the contraction is forbidden and the

text is prepared for output.

8. Transition 'I' to 'N'

('I', yb{e}, O}) I- ('N', ’;’yb{e), {a))

In this case, the contraction under search is

'BY'. However, in order to be contracted, 'BY'

must be followed by a space, because it is

contracted adjoining the word that follows.

Since a semicolon is the following input

character the contraction is forbidden and the

text is prepared for output.

9« Transition 'J' to 'N'

('J', mW, FOR' 'AND {el, {t}) F

('N', mFOR' 'AND {e) , {a})

In this case, the space between 'AND' and 'FOR'

86

was to be contracted if both words stood alone.

As an 'm' was the next input character instead

of a delimiter, this contraction is forbidden

and the text is prepared for output.

10. Transition 'L' to 'N'

(, su>, ERtfa{e) ,) I-

(' N ' , s ERt f a <e) , {a})

In this case, the word 'AFTER' was to be

contracted if it stood alone, or could have

formed part of another word ('AFTERNOON' or

' AFTERWARD’). However, since the input

character is an 's’, the contraction may not be

performed and the text is prepared for output.

11. Transition 'M' to 'N'

('M' , sUJ, INs {e} , {t}) J- (’N’ , sINs {e}> {a})

In this case, the contraction under search was

’ING'. Since the incoming character was an

's', the contraction may not be performed and

thus the text is prepared for output.

By now, all of the transitions of English into Grade II

Braille have been explained in detail. However, there are

many cases that have variants and that there are not

87

included here, as they would greatly extend this chapter.

To this end, it is worth mentioning that with the

information of the previous sections and with the aid of the

dictionary described in appendix 4, any example could be

t ogene rat ed However, present examples of the translation

of complete words, it convenient to describe first the

t ranslat i on process as whole, in order to show the usage

of multiple stacks for embedded processing. Complete

examples are thus deferred to the end of the next chapter

i s

a

88

Chapter 5

THE TRANSLATION PROCESS

The purpose of this chapter is to give a thorough

description of the English into Braille Translation (EBT)

process as a whole. Though there is no intention to present

here the actual implementation of it, some references to the

translation program are given in order to facilitate the

process description. The description given is to be

considered within the frame of reference established in the

previous chapters.

identified several portions that

As is well known, a translation process i s very similar in

its nature to a compilation process. In fact , c ompilat i on -

may be regarded as a specialised type of translation for

programmi ng languages. Within this scope, there may be

comprise a translator.

Specifically these are:

(1) Lexical analysis

(2) Bookkeeping or symbol table operations

(3) Parsing or syntax analysis

(4) Code generation or translation

For programming languages, there may be still another part,

89

regarded usually as code optimisation. For the sake of

English into Braille Translation (EBT) this part need not be

considered. It may also be noted that for EBT, the lexical

analysis is trivial, since it is assumed that any English

input text is valid (no attempt is made to correct or

identify errors within the input text). Thus, the portions

that concern the present chapter are:

. Bookkeeping, where a complete description of the data

structures used throughout the translation process is

present ed.

. Parsing, where strings of tokens are examined to

determine whether they obey the structural conventions

explicit in the syntactic definition of Braille-,

contractions and abbreviations.

. Translation, which actually provides the means for

generating the desired output.

It is convenient to mention that though these processes may

be presented separately, they are intimately related, and at

some points it may even prove difficult to define a border

between them.

Initially, in the bookkeeping section (EBT Dictionary

Structure) a thorough description is given of the structure

defined for the translation dictionary and of the structure

90

used for input data storage, process and retrieval. In the

second section (Translation Process), a detailed description

is given on how the translation is performed. This includes

the presentation of the complete translation algorithm.

Emphasis is given to the methods used for constructing and

accessing the English into Braille translation dictionary

and to those related to the actual translation performance.

Finally, in the last section of this chapter, complete

translation examples are presented, according to the

detailed description of the translation process previously

given. These use the transitions and notation established

in chapter 4.

5.1 Description of the Data Structures

It is very important to provide a good definition of the

data structures to be used in any programming process. This

can never be over-emphasized. Initially, it establishes the

frame of reference for the program development and

afterwards it controls the program performance. The more

effective the data structures of a process are, the more

efficient the process often becomes.

For the specific process with which the present thesis is

concerned - English into Braille Translation - there are two

major aspects that need to be considered: the construction

of the translation dictionary, and the structures used for

accessing the dictionary and keeping track of the state of

91

the translation process.

5*1.1 Structure of the EBT Dictionary.

The EBT dictionary is defined according to the information

required for performing the translation and to the planned

access of this information. The minimal information

requirements for performing English into Braille translation

are:

. The sequence of English characters to be contracted.

. The transitions defined for contracting

- at the beginning of the word.

- not at the beginning of the word.

. The translation for the characters to be contracted or

abbreviat ed.

The information stored in the dictionary will be accessed

very frequently, since for each pair of input characters a

check must be made to know if the contraction is feasible.or

not. Thus, a very fast access mechanism is required in

order to optimise the searching process. This has been

achieved by two means:

. The establishment of a data structure based on binary

92

trees and linked lists, which provides very fast access

to the information required.

. The consideration of speeding-up techniques, such as

binary digrams to minimise the number of times the binary

tree is searched. These techniques are discussed in

Appendix 5-

The data structures used for the English into Brailie

translation process will be present ed next .

Let a tree structure be de fi ned as follows: a tree

structure with base type T is either

. An empty structure

. A node of type T with a finite number of associated

disjoint tree structures of base type T, called subtrees.

Next, for sake of completeness, some definitions regarding

trees will be given; a thorough treatment of this theme may
tf

be found in (Wirth, 1976).

It is customary to depict trees upside down and show their

roots (see figure 5»1). Thus, the topmost element in a tree

is called its root; if an element has no descendants, it is

called a terminal element or a 'leaf'; an element which is

95

not terminal and is not the root is called an interior node.

An ordered tree is a tree in which the branches of each node

are sequentially arranged, and of particular importance for

the present work are the ordered trees of degree 2, or

binary trees. A binary tree is defined as a finite set of

elements (nodes) which is either empty or consists of a root

(node) with two disjoint binary trees called the left and

right subtree of the root. A tree is said to be perfectly

balanced if for each node the number of nodes in its left

and right subtrees differ by at most 1.

Binary trees are frequently used to represent a set of data

whose elements are to be retrieved through a unique key. In

the specific case for EBT, this key is generated by the

first two letters forming an abbreviation or contraction,

according to the formula:

key:= nchars* (ord(ch 1)-ord('A')) + (ord(ch2)-ord(’A')) + 1 ;

where:

nchars.- number of characters in the alphabet

considered (in this case 26).

o rd . - Pascal function 'ord'.

ch 1 , ch2. -- characters 1 and 2 of the input word.

The use of perfectly balanced trees allows the achievement

of high efficiency in information management, since the

number of searches needed to reach the desired element is

reduced to a minimum.

94

As was previously mentioned, the data structure required for

holding the dictionary information for EBT is based on

binary trees and linked lists. This is organised as

depicted in figure 5*1* Referring to this figure, the

description of the information stored in the EBT dictionary

will be given, starting with the tree description, and

continuing with the node description together with the

linked lists hanging from each node. The pieces of code

given in the text are in pseudo-Pascal code.

95

2

i

[‘abov e |

(Md) 3

I

VD
cn

I

2281

z

DICTIONARY STRUCTURE FOR ENGLISH INTO BRAILLE GRADE H TRANSLATION .

3.

105,

151

E A

106

pOCCRONGl

fACROSS]

© -CO
KJ (9

z

6

AFTER 1

51

%

CRJ

H-
CO
cr

y
cT
O

to
4
$»
H-

E D

K
0>

c

Iaft er noon]

O

II

!

ictionary Structure for

FIGURE 5.1

Notes to figure 5»1

1. The nodes show the access keys.

2. The tree branches are the network ramifications.

3. The central link emerging from each node is the

pointer to the first contraction with that key. If

there is another contraction hanging from the same

node, it will be referenced by the leftmost link

emerging from the previous contraction. Refer to

Appendix 4 for the dictionary of the ATN

description for English into Braille translation.

4. The second link (from left to right) is the pointer

to transitions at the beginning of the word (refer

to Appendix 4 for an explanation about this).

Chapter 4 gives the state description.

5. The third link (from left to right) is the pointer

to transitions not at the beginning of the word

(Appendix 4 again explains this).

6. The fourth link (the rightmost one) is the pointer

to the actual translation. The translation is

represented by numbers which correspond to the

mapping of Braille characters to ASCII characters

(Appendix 2 has this mapping and Appendix 4 the

translation description).

97

7. Earth (T) means the end of the linked list

(point er to nil).

An example is given next in which it is shown how this

figure ties up with the translation dictionary of Appendix 4

and with the Braille representation in ASCII of Appendix 2.

Specifically, let us take the word "AFTER" and go through

the dictionary to obtain its translation. The first two

characters ("a" and "f") generate the key number 6,

according to the formula previously given. As it is seen in

Appendix 4, the possible transitions at the beginning of the

word are through states "C", "E", "K" and "L". There is no

possibility of a transition if the process is not at the

beginning of the word (after the second slash in the

dictionary). The Braille translation characters are 1, 11,
•’*.1

which can be seen in Appendix 2 to correspond to the ASCII

characters "a", "f", respectively. All this information is

represented pictorically in figure 5.1*

The tree structure defined for EBT is based on the following

node structure:

noderef = Anode; (* pointer to node *)
node = record

key : integer;
contraction : contref; (* pointer to first

cont ract ion *)
left, right : noderef (* pointers to left

and right subtrees *)
end;

98

contref = Acontractions (* pointer to contractions *)
contractions =

record
i chars : transiref; (* pointer to input

characters *)
t ransibw : transiref; (* pointer to transitions

at the beginning of
the word *)

t ransinbw : transiref; (* pointers to transitions
not at the beginning
of the word *)

t ransi : transiref; (* pointer to tran slation *
nextcontraction : contref (* pointer to the next

c ont ract i on *)
end;

transiref = Atransitions (* pointer to transitions *)
transitions =

record
state : char; (* transitions or characters *)
nexttransi : transiref (* pointer to next

transition state *)
end;

transiref =Atranslations; (* pointer to translations *)
translations =

record
translation : integer; (* first component of

the translation *)
nexttranslation : transiref (* pointer to next

component of the
translation *)

end;

This structure is represented in figure 5-1-

5-1-2 St ruct ure of the Stacks.

Associat ed with the diet i onary st ruct ure used for EBT, there

is another dat a structure very impo rt ant for the t ranslat i on

process . This i s used for the storage of info rmat ion

regarding the state of the translation process. Unlike the

dictionary, which once it has been created, is completely

static, the stack structure defines stacks which are very

dynamic in nature and their contents are continuously*
t

changing depending on the input text to be translated. This

99

structure is the basis for the representation of the

pushdown automaton required for the development of the

augmented transition networks used for the English int.o

Braille translation process, and is described in the section

related to parsing and translation (section 5*2.2).

Thus, the stack structure defined for information storage

throughout the translation process is:

stackref = Astack; (* pointer to stack *)
stack =

record
level
chs
b rreps

posat bw

dept h
presst at e
acnode

accont

aci chars

numi chars

act ransi

act ransi

next

int eger;
char;
i nt ege r;

boolean;

i nt eger;
char;
noderef;

cont ref;

t ransi ref;

int eger;

t ransi ref;

t ransiref;

st ackref

accessed last *)

(* stack level *)
(* character on top of stack *)
(* Braille character

represent at ion on top of
the stack *)

(* position at the beginning
of the word or not *)

(* stack depth *)
(* present state *)
(* point er to the node

transition accessed *)
(* address of the next

translation *)
(* stack linking *)

(* pointer to the contraction
last *)accessed

(* point er to the last character
accessed in a contraction *)

(* number of input
read *)

charact ers

(* address of the last

end;

The usage of these two data structures (the EBT dictionary

and the stack) just defined, will become clear in the next

sect i on.

100

5.2 Detailed Process Description

Perhaps the best way to describe the English into Braille

translation process is with the aid of the pseudocode of the

first level of refinement of the translation program.

Through it, it will be possible to show the

inter-relationships of each of the subprocesses that form

the EBT process. This pseudocode is presented next.

BEGIN (* PROGRAM EBT *)
openfiles;

initialise;

mapbrailletoascii;

IF gradeii THEN
buildabconttransnetw;

WHILE NOT eof(inp) DO

BEGIN
getbraillerep(brrep,inputch);
IF NOT newparagraph THEN

fo rrabrwo rd;
REPEAT

IF wordcomplete THEN
fo rmbrli ne;

IF linecomplete OR eof(inp) OR newparagraph THEN
BEGIN
out put brailleline;
preparenext line
END;

UNTIL wordfitinline
END

END. (* PROGRAM EBT *)

The program may be separated into two main sections: the

dictionary construction, which is a one time process that

introduces all the static information for performing English

into Braille translation, and the actual parsing and

translation process which makes use of the static

1 01

information introduced by the previous section and processes

the incoming input text, in order to obtain correct Grade II

Braille. The process description will be presented

according to these sections, although, it may be necessary

to make reference to the program listing, which is presented

in Appendix 6. •

5.2.1 Dictionary Construction

This process comprises two subprocesses, namely the

initialisation procedures and the construction of the

abbreviation and contraction transition network. The first

part handles the opening of files, the initialisation of

variables and the mapping of ASCII to Braille. The second

part includes the construction of the tree and linked lists

required for contractions, transitions and translations.

5.2.1.1 Initialisation Procedures.

1. "Openfiles" is in charge of opening the files

required throughout the whole translation process.

These are an input file for reading the dictionary

information, another input file for the text to be

translated, and one output file which is to hold

the translated text.

2. "Initialise" gives initial values to variables that

1 02

are required throughout the translation process

which must have predefined initial values.

5. "Mapbrailletoascii" assigns Braille characters to

each of the inkprint ASCII characters. As each

Braille cell is formed by six dots (see chapter 2),

it is possible to perform this mapping in a one to

one way.

5.2.1.2 Construction of Abbreviation and Contraction

Transition Network ("buildabconttransnetw ")

The translation dictionary is built just once, as it is

never updated. It requires fast access, so trees and linked

lists are used for the dictionary storage. A detailed

description of the construction of the structures used

follows.

1. Tree Construction

Two trees are built for the translation process:

the first, for constructing the actual dictionary

of abbreviations and contractions, and the second

for building an exceptions dictionary to prevent

the performance of certain contractions.

As was mentioned in section 5*1.1, the trees used

are perfectly balanced binary trees. In order to

achieve this, it is necessary to know the number n

103

of nodes in the tree. Thus, the rule for equal

distribution is best formulated in recursive terms

(Knuth, 1973):

- Using one node for the root.

- Generate the left subtree with nl = n div 2 nodes

in this way (NL is the number of nodes to the

left) .

- Generate the right subtree with nr = n - nl - 1

nodes in this way (NR is the number of nodes to

the ri ght).

The rule is expressed as the recursive function

"tree" that forms part of the translation program.

The listing of this function is given in

appendix 6, The Program Listing. It is worth

noting the simplicity of this section of the

program, which is obtained through the use of

recursive procedures. It is obvious that recursive

algorithms are particularly suitable when a program

is to manipulate information whose structure is

itself defined recursively.

2. Linked Lists Construction for Cont ract i ons,

Transitions and Translations.

The procedures within the program that perform

these functions are "formcontraction",

"formtransition" and "formtranslation". The three

of them make use of recursion for the construction

104

of the dictionary. This is used because, as it is

seen in figure 5*1, several contractions may hang

from a single node, and each of these has different

transition rules (states) and, of course, different

translations. As these hang from each contraction,

they enable the use of recursion for each of the

three cases: contractions, transitions and

t ranslat i ons.

It is worth noting that within the formation of

contractions procedure, the assignment of values to

the binary digrams takes place, in preparation for

the speeding-up techniques to be used to avoid

unnecessary tree following wherever possible (see

Appendix 5, Speeding-up Techniques). Binary

digrams are used both, for the contractions and

abbreviations dictionary, and for the exceptions

dictionary.

5*2.2 The Translation Process

This process performs the actual parsing and translation of

English into Braille Grade II. The first part deals with

the processing of the input text. The next part is the most

important one and deals with the construction of the Braille

word; this has embedded processes for searching the

dictionary, and for the translation itself. The last part

deals with the much simpler output generation. These

1 05

processes are next described in detail.

5.2.2.1 Processing of the Input Text

The procedure for processing the input text is

"getbraillerep". It's first task is to read the next

character from the input stream. Then, some general

operations are performed regarding the accepted input

character. They are:

1. Every lowercase input character is converted to

uppercase. This is done because in English Braille

there is no distinction between uppercase and

lowercase. There is a "capital sign", but it is

not often used in practice.

2. Certain inkprint characters require two Braille

cells for their translation. Thus, an auxiliary

Braille cell is needed, and is assigned here.

5. There is a special character for indicating a new

paragraph, the backslash symbol. Whenever this is

the current input character, a new paragraph is

generated in the Braille text.

4. There is the possibility of preventing the

contraction of any word in English, by the use of a

"bypass" character (the at sign • When this is

1 06

found in the input text, every character is

translated literally, bypassing all the rules for

English into Braille Grade II translation, until a

space or punctuation mark occurs.

5« In Braille the opening quotation mark is different

from the closing quotation mark. This is handled

in this part of the program. The first quotation

in the input text is always considered to be an

opening one, and the one that follows to be a

closing one.

5.2.2.2 Construction of a Braille Word

This translator may translate English into either Grade I or

Grade II Braille. The translation to Grade lisa simple

one to one mapping and so the Braille words are translated

with 100$ accuracy. However, the process of forming a

Braille Grade II word is the most complex part within the

translator and the following have to be considered:

1. The management of the Stacks.

2. The performance of the arbitrary tests related to

the Augmented Transition Network (ATN) in use.

5. The performance of the arbitrary actions governed

by the ATN in use.

107

Each of these parts will be described in detail in the

following pages.

1. The Management of the Stacks.

In section 5.2. 1 the stack structure for the

t ranslat ion process was defined. There follows a

descri pt ion of how this structure is managed

throughout the translation process. This actually

influences the whole translation process, and so it

will overlap with some portions of the translator

that will be described later.

It is well known how a stack behaves; at all' times

there is access to its topmost part and whatever is

to be stored has to be pushed onto its top. Thus,

a stack always works with a LIFO (last in, first

out) strategy. Formally defined, a stack is a

linear list for which all insertions and deletions

(and usually all accesses) are made at one end of

the list (Knuth, 1975)*

This is required since a Braille contraction may be

For the specific purposes of the English int o

Braille Grade II t ranslat or , arrays of stacks have

been defined in order to be able t 0 hold

information at di f f erent levels of processing.

1 08

found at any position within the word, and the

possibility of contracting at different places

frequently occurs, so;different stacks must be used

for storing information for all such cases. This

is represented pictorically in figure 5«2.

Top of the
stack

Bottom of
the stack

i
j
I
i
j
j
i
i
i

I
j
i j
j j
j
!
i

j
j
I
i
ij
i
i
j

j
j
!
t
I j
j
j
j

j
;
I
t
I
i
i t
i

i
j
f
i
i
j
! I
I

Stack level 1 2 3 4 5

Represent at ion of an Array of Stacks

Figure 5*2

In figure 5*2, stack level N (1 <= N <= 5) used

for searching simultaneously for N Braille

i s

contractions at different positions within the same

word

To illustrate how this array of stacks is used

during the translation process take for example

the analysis of the word "fright" By the time the

third letter is being considered, the word "friend”

would be under search with the use of a fi rst

stack. A second stack is required for initiating

109

another analysis, starting with the second letter.

In this case, it is for the word "right", which may

be contracted anywhere in a word. A third stack is

needed to store the "i", since yet another

contraction could appear. When the following

letter is read ("g"), it is stored initially in a

fourth stack; however, since the letter

combination "ig" cannot form a contraction, the

third stack is emptied and the fourth is displaced

to the third. For the time being, this description

will suffice; complete examples of the translation

process, including all the required management of

the stacks, are shown in the last section of this

chapter, in section

Maintenance of the stacks is performed with two

simple procedures: "PUSH" and "POP", which are the

only ones allowed to insert or retrieve information
*

from any of the stacks. The assignment of values

to the stacks' variables is performed in different

places according to the requirements of the

translator. The pointers to the tops of the stacks

that are in use are held in an array "STACKS".* Any

access to this array yields a pointer and hence

gives a way of reaching a stack, and thus the

information it contains.

These stacks constitute the most important part of

the translator, since through their use, in

1 1 0

conjunction with the tests and actions performed

governed by the dictionary, the augmented

transition network, which is the theoretical basis

for the construction of this translator, is

implemented. The next sections will cover the

arbitrary tests and actions realised for the

performance of the translation of English into

Braille Grade II.

2. Tests performed for the translation of English into

Braille Grade II.

According to the philosophy of ATNs, there is the

possibility of performing arbitrary tests on the

information held on top of the stacks in relation

to the last input character. This allows for

checking different situations, and so guides the

translation process. These checks will be

presented next.

1. Checking for numbers.

The translation of numbers from English into

Braille introduces some special conditions.

Thus, a check is required to translate them

correctly. Specifically, the problems in

translating numbers arise when they occur as

arithmetic operands associated with letters and

special symbols as in mathematical expressions.

When letters are used in conjunction with

1 1 1

numbers, every time a change from letter to

number or vice versa occurs, a special symbol

(called letter or number symbol respectively)

must be used in Braille to indicate the change.

This is because in Braille the digits (0 - 9)

also represent the first 10 letters of the

alphabet, so their only distinction is the

preceding letter or number symbol.

When numbers (and possibly letters, such as

those found in equations) are encountered as

arithmetic operands, then the operators

"/" and "*" are translated differently

from how they are translated when met in

ordinary alphabetic text. It is worth noting

that special formatting is required when

writing numbers in Braille in relation to

arithmetic operands, as extra spaces need to be

insert ed.

2. Checking the Dictionary.

The tests related to checking the presence of

words in the dictionary are intimately related

with the analysis of transitions. There is a

very vague boundary between the tests performed

and the actions taken according to the results
•

of the tests. Because of this, the tests

performed with the aid of the dictionary will

be described briefly, leaving the thorough

1 1 2

analysis to the part where the actions are

described, which comes later in this same

section.

Di ct i onary checking is directed mainly at

det ermining whether to contract or not , at the

different stages of the process. It is worth

mentioning that it is at this point where the

use of binary digrams turns out to be extremely

useful, since in this way the need to perform

tree following at unnecessary times is avoided.

If at any of the stages of the process it is

determined that there is no possibility of

contracting, the corresponding actions taken

are to empty the stack and update the state of

the process. In a similar way, if it is found

that there is the possibility of contracting,

the corresponding actions are to push

information on to the top of the stack and

update the transition state. Finally, if’ it is

determined, according to the dictionary, that a

contraction has definitely been found, the

corresponding actions for contracting are

t aken.

3. Checking for Exceptions.

When the formation of a Braille word is

completed, there is still a last test to be

performed, to see if the translated word lies

1 15

within the dictionary of exceptions. For this

condition, a positional binary digram is used

to speed up the process. If it is shown that

it is possible to match an exception from the

dictionary to the word just translated, then

the exceptions dictionary is accessed. If' the

translated word is in fact an exception, then

it is re-translated according to the exceptions

dictionary specifications. If the translated

word is not matched with an exception, then it

is sent to output unaltered.

5. Actions taken for the translation of English into

Braille Grade II.

The actions taken within the translator may be

considered of two types: actions related to the

dictionary access and actions related to the

translation process.

For dictionary access the actions taken are the

following:

1. Creation of the key for access.

This is done through the procedure "getkey",

which uses the formula given in section 5.1.1.

2. Location of the key information in the

di ctionary.

114

This is done through the procedure "locatekey",

which is the one in charge of the tree

following. It will either locate the position

of the key or inform the caller that it does

not exist .

5. Get next contraction ("get nextcont").

This procedure finds the next contraction with

the same key. This occurs when it is

determined (through the tests) that the

contraction under search was not found, so the

next contraction is accessed to see if another

contraction can be found.

4. Get position at next contraction

("get posatnext cont").

In some cases it is necessary not only to get

the next contraction, but to remember the exact

place where a contraction search was being

made. This is done to save time, because the

process already initiated for the previous

contraction is saved in preparation for the

next one. As the next contraction is obtained,

the characters forming the current input word

are compared, with the characters of the next

contraction in the dictionary. If this-match

fails then there is no possibility of

cont ract ing.

1 1 5

The actions related to the translation process are

the following:

1. Get next transition ("gettransition").

The implementation of a contraction or the

determination not to contract, occurs according

to the transitions defined in the dictionary.

This is the procedure that determines the flow

within the transition network. Every time text

is given as input to the translator, a state is

assigned according to its characteristics.

Every new input character causes a move from

one state to another (or possibly to itself

again), until a terminal state is reached.

Transitions occur just as presented in

chapter 4, where a complete description of the

possible transitions between states was given.

This portion of the translator ultimately

serves as the controller for initiating

subsequent actions according to the input text.

It is this coordinator which establishes when

to postpone a decision, when to contract and

when not to contract. These actions are

discussed next.

2. Postponement of Decisions ("postpone").

This action is taken whenever there is not

enough information to decide whether or not to

1 1 6

cont ract It is not a terminal decision that

implies an end of a search. The postponement

of a decision keeps alive all possibilities,

until enough information is available to make a

definite decision. The postponement of the

decision by no means implies a do-nothing

situation. It involves keeping track of the

translation by updating the information stored

in the stacks. It is a very delicate matter,

depending mostly on what is happening in the

outer levels of the stacks.

Decision not to contract ("donotcontract ")

This portion of the translator is in charge of

performing all the necessary actions related to

the decision of 'not contracting'. This

happens when, according to the dictionary (or

the binary digrams), there is no possibility of

matching a contraction or abbreviation to the

input text.

When the decision not to contract is taken, the

information stored in the corresponding stack

is popped. What is done with this information

depends solely on the position of the stack

within the array of active stacks. If the

stack is the first one, the information in it

is stored in an array which eventually will be

sent to output. If the stack is not the first

1 1 7

one (the lowest one), the information in it is

discarded, since it also exists in the

immediately previous stack. Also, if the stack

is not the last (the highest one), all stacks

after the one under analysis are displaced

downwards one position, since this stack was

left empty and is not required any more. In

this way, it is guaranteed that only the active

stacks are alive and that there is automatic

garbage collection as the input text is being

processed.

4. Decision to contract ("contract")*

This portion of the translator is in charge of

performing all the necessary actions related to

the decision of contracting. Specifically,

these actions are:

1. Clearing of upper stacks.

All the stacks above the one where the

contraction was found must be cleared.

There is, however, an exception to this

rule, which consists in taking care not to

empty stacks when a delayed contracting

decision was taken. A delayed decision

means that the contraction was performed as

a result of the last input character, but

that character is not included in the

contraction. When delayed decisions are

1 1 8

made, the outer level etacks will contain

all the input text that was not included in

the actual contraction.

2. Getting the Translation.

Once that it is decided to contract, it is

necessary to read the corresponding

translation from the dictionary. At this

point the stack position where the

contraction was found becomes important.

If the contraction is found in the first

stack position, then the translation is

directly stored in the output array. If

this is not the case, then the translation

is stored in the corresponding stack, and

is propagated downwards into all the

preceding stacks. It is important to take

into consideration contractions that may

form part of yet larger contractions; when

this is the case, the contracted text must

be kept in the stacks until there is enough

information to decide to send it to the

output array as it is, or to perform the

longer contraction which includes the one

previously found, and only then send it to

the output array.

119

5* 2.2.5 Output Generation

This portion of the program is in charge of formatting the

output text in Braille, according to predefined

specifications, and sending it to the output device. The

parts that form the output generation are the following:

1. Construction of a Braille line.

A line length is defined at the beginning of the

program, and every Braille line generated must

adhere to it. Thus, every time that a Braille word

is formed, if it fits into the line, there is no

problem and the process continues. If the word

does not fit into the line, then the current line

is sent to the output stage and after this, the

word that did not fit is stored in a new line array

that will hold the next line to be output.

2. Output of a Braille line.

The characters used internally during the

translation process are a mapping of ASCII

character code to Braille representation (For the

description of this mapping, refer to Appendix 2).

Thus, the translated text is just a sequence of

numbers, which represent bit patterns, that still

have to be represented in Braille, i.e., with dots

and spaces. The procedure "selectdots” was written

for this purpose, and it transfers the Braille line

array to another one where the characters are

1 20

represented with dots. When this array has been

filled, it is sent to the output device. Care is

taken at this stage to take into account the page

length, which is also defined at the beginning of

the program.

5.2.2.4 The Translation Algorithm

Finally, with all the background information previously

presented, the translation algorithm is given to show in a

simplified way how the translation is performed.

1. A character is read from the input stream.

1.1 If the character read is a number, there is no

possibility of contracting, since all Braille

contractions and abbreviations are defined for text.

When this happens, any contraction under search is

abandoned and all the stacks are emptied. The only

thing that must be taken care of is that there exist

certain formatting rules in Braille for translating

numbers in relation to mathematical signs or letters.

The character read is sent to the output array. Go

to step 2, for handling the formation of a Braille

wo rd .

1.2 If the character read is a punctuation mark, there is

also no further possibility of contracting. However,

1 21

this may mean that contractions previously under

search can be allowed, since there are contractions

that can be performed only if they stand alone or

appear at the end of a word. In any case, the

appearance of a punctuation mark forces the emptying

of stacks, either without contracting or forcing a

contraction, depending on what is dictated by the

dictionary. The relevant information is stored in

the output array. Go to step 2.

1.3 If the character read is a space there are 2

possibilities of action. It may be that according to

the dictionary, and of course, to the previous input

text, there are no possibilities of contracting the

space, and its appearance is equivalent to that of a

punctuation mark. If this is not the case (i.e., the

space may be contracted), then its appearance is

equivalent to that of a letter. This is described

next .

1.4 If the character read is a letter, the actual

translation from English into Braille Grade II

begins. The character read is pushed on top of the

first empty stack. The stack level is assigned to

the last occupied stack.

1.4.1 If there are no other stacks in use then return

to step 1.

1 22

*

1.4.2 If there are other stacks in use, the input

character, in combination with previously

stored, information is checked against the

diet ionary.

1.4.2.1 If during this process a contraction is

found, all the stacks in use above the

stack level being processed (including

the present one) are cleared.

- If the stack under process is the

first one, the contraction found is

transferred to the output array. Go

to step 2.

If the stack under process is not the

first one, the cont ract i on found i s

propagated to all the lowe r levels.

Decrease the st ack level under

considerat i on by one, and return t 0

step 1.4.2.

If during this process there i s the

possibility of subsequent contraction,

the input character is pushed on to the

top of the corresponding stack. This is

called postponing the decision of

cont racting.

1 25

If the stack under process is the

first one, return to step 1.

- If the stack under process is not the

first one, decrease the stack level

under consideration by one and return

to st ep 1.4*2.

1.4.2.5 If during this process there is no

possibility of contracting, the

corresponding stack is emptied, and all

the stacks above this one are displaced

one position, eliminating the one for

which there is no possibility of

cont ract ing.

- If the stack under process is the

first one then the information that

cannot be contracted is transferred to

the output array. Go to step 2.

If the stack under process is not the

first one, decrease the stack level

under consideration and return to step

1.4.2.

1.5 If the character read is a special character, the

following actions are defined within the translator:

1 24

1.5*1 Backslash (\). This character has been defined

to cause a new paragraph in the output Braille

text. Return to step 1.

1.5*2 At si gn (@). This character has been defined

as a bypass character, when placed in front of

a word that should not be contracted, causes

the input word to be copied exactly to the

output stream.

1.5*5 Number sign (#)* This character has been

defined to indicate italicised words, when

placed in front of words that are italicised in

inkpri nt .

2. A Braille word is formed.

The output array to which information is transferred

during the performance of the translation, is actually an

array for storing a Braille Grade II sequence of

characters, always delimited by a space, punctuation mark

or end of text mark. For the translator such a

terminated string is considered to be a Braille word. If

the word is complete then go to step 3, otherwise go to

st ep 1.

3. Checking for exceptions.

Once a Braille word has been formed it is necessary to

see if it appears in the exception list. If it does not,

then go to step 4, otherwise consult the exceptions

1 25

dictionary and perform the correct translation. Continue

to step 4.

4. A Braille line is formed.

A Braille line is formed from complete Braille words. If

a Braille word does not fit into the current line, it is

saved temporarily for the following line. It is

important to know if a certain word fits into the current

line at translation time, since it affects the

translation process. In fact, this may govern whether a

certain word is contracted or not. If a line is complete

then go to step 5, otherwise return to step 1.

5« Output of a Braille line.

The newly formed Braille line is sent to an output file.

If a word was temporarily saved because it did not fit in

that Braille line, it is stored at the beginning of a new

Braille line. If there is more input text return to step

1, otherwise send the last Braille line (if there was

one) to the output file and finish the translation.

The algorithm presented accounts for the most relevant

actions taken within the translator. With this aid, it is

possible to generate by hand the translation of whatever

input text is entered. This will be demonstrated with the

following section.

1 26

5*5 Complete Examples of English into Braille Grade II

Translat ion

In this section some examples are presented, in which the

translation from English into Braille Grade II is shown step

by step, exactly as it is performed by the translation

program. Initially, a section for notation will be given.

Then, for each example presented, the mathematical

development of the translation will be given, according to

the notation previously defined. For the first example a

very detailed associated description will be included, to

aid understanding. For the rest of the examples this

description will be reduced to highlight new features.

5 • 1 Not ati on

Most of this notation has been already included in

Chapter 4* However, for sake of completeness of this

section, the relevant parts for the examples will be

repeated here.

Let , bu), Z{e}» (0) F- (qj , # {e) , {a})

be a move within the transition network, where:

qj represents the .initial state before the transition.

Valid values for it are: S, D, E, F, G, H, I, J, L,

M.

1 27

b represents the character under the input head. It

may be any valid English character.

(u represents the unused portion of the input stream.

It may be any valid English text.

Z represents the contents of the stack under

consideration. These are always shown in reverse

order (as they were pushed onto the stack) and in

lowercase letters, except when a contraction has been

performed. In this case the contents are shown in

the correct order and in uppercase letters.

(e) represents the empty set, that is, the contents of

the stack are null.

fa) represents the set of arbitrary tests to be performed

in order to accept the transition proposed by the

move within the transition network.

I- represents the actual move within the transition

network and is read "produces".

q^ represents the final state after the transition.

Valid values for it are: S, C, D, E, F, G, H, I, J,

K, L, M, N.

represents the new contents of the stack. It may

have either a new character on top of it or a

1 28

contraction or abbreviation, if one was found.

(a) represents the set of arbitrary actions to be

performed when the transition proposed by the move

within the transition network is accepted.

(Stack Levels) represent the different levels at which the

transitions occur. There are as many levels as

necessary for the embedded processes.

^J/(text> represents the text being sent to the output array.

This text may include both plain characters and

Braille contractions or abbreviations.

^5<text) represents text that has been contracted in stacks

of a level higher than 1 and that this text is going

to be displaced into all the lower levels of

analysis, i.e., contractions found in stack level 5

will be displaced to stacks 2 and 1.

/ represents a separation between two consecutive

contractions. As Braille contractions are

represented in uppercase, when two of them appear

together, they could be misinterpreted if they were

not properly separated. This is not actually

included in the translated text; it is used just for

clarity in the translation representation.

<eot> represents the end of input text.

1 29

5«3«2 Examples of English into Braille Grade II Translation

Example 1: Translation of the word ’'FRIGHTFULNESS

The reason for choosing this word is to be able to; show

within one word, several searching processes, some of them

successful and s ome unsuccessful The mathematical

development of this translation is shown in figure 5*3

There follows a description of how the translation is

performed This will be done, step by step, according to

the numbers on the left of figure 5-3

Be sc ri pt i on:

1. The first input character ("f") is read and pushed

into the first stack. As at least two characters

are needed for any contraction, state "S" remains

unchanged.

2. The following character ("r") is read from the

input stream. Initially, it is pushed on top of

the first empty stack (in this case, stack 2), in

preparation for subsequent searches. Then, the

input character is checked in combination with the

character on top of the last non-empty stack (in

this case, stack 1), in order to determine if there

is the possibility of contracting. In this

particular case the word "FRIEND" exists in the

contractions and abbreviations dictionary, so the

130

letter combination "fr" allows the possibility of

contracting. Thus, as the dictionary indicates for

this case, the state is changed from "S" to "C",

indicating that there is a contraction under search

at the beginning of the word.

3. The following character ("i") is read from the

input stream and i s pushed on top of the fi rst

empty stack, stack 5, in preparation for subsequent

searches. Then, the input character is checked in

combination with the character on top of the last

non-empty stack (in this case, stack 2), in order

to determine whether there is the possibility of

contracting. In this particular case the word

"right" is in the contractions and abbreviations

dictionary, so the letter combination "ri" allows

the possibility of contracting. As the search is

now not at the beginning of the word, the state is

changed from "S" to "D", governed by the

dictionary.

The input character is now checked in combination

with the topmost element of the next non-empty

stack (in this case, stack 1), taking into account

the information supplied by the stack's contents

regarding transition state and data for direct

dictionary access. Since the input character "i"

still allows the possibility of contracting the

word "friend", this character is pushed on top of

151

stack 1 and the transition state remains at state

"C", indicating a search for a contraction at the

beginning of a word.

4. The following character ("g") is read from the

input stream. The process proceeds as described in

the previous step. Initially it is pushed on top

of the first empty stack (stack 4). Then, it is

checked in combination with the character on top of

the last non-empty stack (stack 3)• Since the

characters "ig" are not contracted or abbreviated

in Braille, the stored information is popped from

this stack, leaving it empty. After this has been

done, all subsequent stacks are displaced by 1 in

order to use the stack that has just been freed.

In this case just stack 4 is displaced backwards to

stack 3, which was the one freed. The process then

continues with stack 2. In this case the

dictionary allows a ”g” for the contraction under

search (right), so it is pushed on top of the stack

and the transition state remains at "D".

The process continues with stack 1. At this point

the stack information does not allow the

possibility of contracting the word "FRIEND", since

the input character was a "g" and not an "e".

There is an attempt to find another contraction

from the dictionary with the same initial

characters ("frig"), but as nothing is found, a

132

transition to state "N” takes place, indicating

that there is no possibility of contracting this

sequence of characters. Thus, since this is the

first stack, the characters that cannot possibly be

contracted are sent to the output array. In this

particular case, just the letter "f" is sent to

this array, since from the "r" onwards, there is

still the possibility of contracting. At this

point, stack 1 is emptied (by recursive popping of

its contents), and the remaining stacks are

displaced by 1 in order to use the stack that has

just been freed. The second row of step number 4

in figure 5.3 shows the stacks' contents after

these actions have been taken.

5. The character ("h") is read from the input stream.

Initially it pushed on top of the first empty

stack (stack 3). Then, it checked in

combination with the charact er on top of the last

non-empty stack (stack 2). Since characters "GH"

i s

i s

form a contraction, regardless of what may come

later on, a transition to state "K" is performed,

using the information stored in the dictionary.

Since the contraction performed is not in stack 1,

it must be displaced downwards to all stacks in

which it is present (in this case, it is displaced

to st ack 1). When this has been done, there is a

check to see that the embedded contraction does not

hinder the performance of the contraction under

133

search (in this case the word "RIGHT" is being

considered, and the letter combination "GH" allows

for this contraction). When a transition to state

"K" occurs, all the information stored in higher

stack levels must be popped, freeing these stacks.

This is because a contraction has been found and

cannot be superseded. In this case, stacks 2 and 5

are freed.

6. The next character ("t") is read from the input

stream. Initially, it is pushed on top of the

first empty stack (stack 2). Then, it is checked

in combination with information held in stack 1.

The dictionary indicates that a contraction has

been found and that nothing may now hinder its

performance. This is accomplished by a transition

to state "K". Since the contraction "RIGHT" has

been found at stack 1, it must be sent to the

output array, and all the stacks have to be cleared

by popping their contents. As this happens, the

transition state is reset to the start state "S".

7. The input character ("f") is read from the input

stream and pushed on top of stack 1, which is the

first empty stack. The transition state remains at

state "S", as there is no contraction under search.

8. Character ("u") is read from the input stream.

Initially it is pushed on top of stack 2. Then, it

154

is checked in combination with the character on top

of stack 1 in order to determine if there is the

possibility of contracting. Since the process is

still not at the beginning of the word, with the

aid of the dictionary it is determined that the

sequence of letters "ful" may be contracted. The

transition state is changed from "S" to "D",

indicating that there is a contraction under search

which is not at the beginning of a word.

9. The input character ("1") is read. Initially it is

pushed on top of stack 5. Then, it is checked for

the possibility of forming a contraction with the

topmost contents of stack 2. Since there are no

possibilities of contractions with starting

characters "ul", a transition to state "N" is

forced, causing the popping of the contents of

stack 2. At this point the contents of stack 5 are

transferred to stack 2, leaving stack 5 empty. The

input character is then checked in conjunction with

the contents of stack 1. Since the sequence of

letters "FUL" is detected, a transition from state

"D" to state "K" is performed. This causes "FUL"

to be sent to the output array, and all the stacks

are emptied again. This causes the transition

state to be reset to the start state "S".

10. The following input character ("n") is read from

the input stream and pushed on top of stack 1. The

135

transition state remains at "S", since there is no

contraction under search. The process of searching

for contractions not at the beginning of the word

continues, since until now no delimiters

(punctuation marks or spaces) have been found.

11. Character "e" is read from the input stream.

Initially it is pushed on top of stack 2. Then, it

is checked in combination with the topmost element

of stack 1. With the aid of the dictionary, it is

determined that the word "NECESSARY" could be

currently under examination. This is because "nec"

could be part of a contraction which is not at the

beginning of the word (as in unNECESSARY). The

state is changed from "S" to "D".

12. The following input character ("s") is read from

the input stream and pushed on top of stack 5•

Then, it is checked in combination with the topmost

element of stack 2 against the dictionary. Since

the sequence "es" does not allow for any

contraction, a transition from "S" to "N" occurs,

causing a pop of the contents of stack 2. The

contents of stack 5 are transferred to stack 2,

leaving stack 5 empty. Then, the input character

is checked in combination with the information of

stack 1. Since this is an "s", the contraction

under search is no longer feasible. However, an

attempt is made to find in the dictionary another

1 56

possibility of contracting with the same initial

characters. This search is successful, and now the

sequence of letters "NESS" is under consideration.

The transition state remains at "D", and procedures

"get next cont" and "getposatnext cont" are used for

getting the next contraction and the position in

the dictionary for this next contraction.

13. The following input character ("s") is read from

the input stream and pushed on top of stack 5*

Then, it is checked against the dictionary in

conjunction of the topmost element of stack 2, and

since "ss" does not allow for the possibility of

contracting, this stack is cleared and the contents

of stack 5 are transferred to stack 2. Then, the

input character is checked in combination with the

information in stack 1. The sequence of letters

"NESS" is found, so according to the dictionary, a

transition to state "K" occurs. This causes "NESS"

to be sent to the output array, and all stacks are/

emptied again.

14. Since there is no more input (the end of text

mark has been found), it indicates that the word

under scan is complete and that the translated text

can be physically sent to output. The translation

process finishes.

157

138

step St ack level 1 Stack level 2 Stack leve>1 3 Stack level 4

1 (S,fu>, {e)) F (S,f)

2 (S, TU), f) F (C,rf) (S , rw, {e}) F (S,r)

3 (C , iw, rf) F (C.irf) (S , iuj , r) F (D,ir) (S,iuJ, (e)) F (s,i)

4 (C,gw,i rf) F (N,^f, {e}) (D, gW,ir) F (D, gi r) (S,gw,i) F (», {el) (S,gW, {e}) t- (S,g)

(D,gir) (S , g)

5 (D,ho>, gir) F (D,GHir) (S,hu),g) F (K,4= GH,{e)) (S,hu>, {e}) F (S,h)

6 (D,tUJ,GHir) F (K,BRIGHT, <e)) (S ,tu>, (e)) F (s,t)

7 (S,fW, {e}) F (S.f)

8 (S,uuj,f) F (D,uf) (S , uy, (e)) F (s ,u)

9 (D , 1UJ, uf) F (K.^FUL, {e}) (S , 1U), u) F (N, {e)) (S,1W, (e)) F (S,l)

10 (S , nbJ, {e}) F (S, n)

1 1 (S , eiu, n) F (0,en) (S,eW, {e}) F (S,e)

1 2 (D, su>, en) F (D,s en) (S , sio, e) F (N, (e)) (S , SUJ, {e}) F (S,s)

1 3 (D , so), sen) F (K,4>NESS, {e}) (S , slO, s) F (N, {e}) (S , sU), (e)) F (S,s)

14 (S, <eot> , {e}) b (N, {e})

Example 1: Translation of 'Frightfulness'

Figure 5*3

Example 2: Translation of the phrase "GREETINGS FOR HIM."

The mathematical development of this translation is shown in

figure 5.4. There follows a description of how the

translation is performed; this, however, will be given in

much less detail than the one for example 1. The

description will be done step by step according to the

numbers on the left of figure 5.4. The steps that are

obvious will be grouped together.

Desc ri pt i on:

1,2. At stack level 1, the word "GREAT" is under

consi derat i on.

3. At stack level 2 the letter combination "re" does not

allow for the possibility of contracting, so this

stack is cleared. At stack level 1 the word "GREAT"

is still being considered.

4. At stack level 2 the letter combination "ee" does not

allow for the possibility of contracting, so this

stack is cleared. The search at stack level 1 fails,

so the sequence of letters "gre" is sent to the output

array. This stack is also cleared.

5. At stack level 1, the letter combination "et" does not

allow the possibility of contracting, so the letter

"e" is sent to the output array.

139

6,7. At stack level 2, the contraction for "IN" is

performed. It is kept there in case it forms part of

a longer contraction. This contraction is displaced

to stack level 1, but since it does not allow the

performance of the contraction under search ("TIME")

nor is any other contraction possible, the letter "t"

is sent to the output array and the stack is cleared.

Stack 2 is displaced downwards to stack 1.

8. At stack level 1 the contraction "ING" is performed

and all the stacks are cleared.

9,10. At stack level 1 the end of the word is detected, so

there is no further possibility of contracting and the

characters "s space " are sent to the output array.

11,12. At

the

stack level

cont ract i on

1 the letters "fo" have been accepted;

under search is "FOR".

15,14. At stack level 1 the cont ract ion "FOR" i s pe rf 0 rmed.

The info rmat ion i s kept in this s ame stack to allow

for the possibility of cont ract i ng it with a space.

This is governed by the dictionary.

15. At stack level 1, the sequence "FOR space " is sent to

the output array, since the input character "h" did

not allow the possibility of contracting that space.

The stack is first cleared and then the input

character "h" is stored in it, since this character

140

contributed to a "delayed" decision

16,17. At stack level 2, the characters "im" do not allow

the possibility of contracting, so this stack is

cleared. At stack level 1 the word "him" has been

found. It is kept in the stack until there is enough

information to decide whether to contract or not.

This will be done depending on whether the next input

character is a punctuation mark or space which allows

contraction, or another letter which does not.

18. At stack level 1 a full stop is detected from the

input stream. This enables the performance of the

contraction and the sequence "HIM." is sent to the

output array.

19. The end of text is detected, so the translation

process finishes.

141

st ep St ack level 1 Stack level 2 St ack level 5

1 (S , guj, {e}) F (s.g)

2 (S, raJ, g) F (c,rg) (S,rtu, (e)) F (S,r)

5 (C , ecu, rg) F (C,erg) (S, euu, r) F (N,{e]) (S , ecu, {e}) F (S,e)

(C , erg) (S,e)

4 (C , euu, erg) F (N,^gre , {e}) (S , etu, e) F (H, {e}) (S, ecu, W) F (S,e)

(S,e)

5 (S.tUJ.e) F (N,<Fe, (e)) (S,tUj, {e}) F (S,t)

(s,t)
6 (S , i(ju,t) F (D,it) (S,iuu, {e}) F (S,i)

7 (D,nm, it) F (N,<h , {e}) (S,nw, i) F (M,IN) (S , nuu, 10) F (S,n)

(M,IN)
8 (M, gU>, IN) F (K.-U-ING, {e}) (S , gU), {e}) F (S,g)

9 (S , stu, {e}) F (S,s)

1 0 (S , ' 'vu, s) F (N ,^s ' ' , {e)) (s,‘ 'w, {e}) F (N, {e})

1 1 (s,fw, {e}) F (s,f)

Example 2: Translation of 'Greetings for him.*.

Fi gure 5.4

st ep Stack level 1 Stack level 2 Stack level 5

1 2 (S , OU), f) F o o H
j (S,ouj , (e)) F (S,o)

15 (C , ru), of) F (M,FOR) (S, ru), o) F (H, (e)) (S , ru), {e}) F (S,r)

(M,FOR)

14 (M,' 'w.FOR) F (J,’ 'FOR) (s,' 'u>, {e}) F (N, {e})

15 (j,hU), ' ’FOR) F (N,<FFOR' ' » {e}) (S , hU), {e}) F (S,h)

(S,h)

1 6 (S , iu), h) F (C,ih) (S,iuu, (e)) F (S,i)

17 (C , mus, ih) F (E,mih) (S , mu), i) F (N, (e)) (S , mW, (e)) F (S,m)

(E , mi h)

18 (E, ' . 'u>, mih) F (K,#HIM' . ’ ,{e)) (S, ' . 'w,m) F (N, (e)) (S, ' . 'W, {e)) F (», {e))

19 (S , <eot> , {e}) F (s, (e))

Example 2: Translation of 'Greetings for him.'.

Figure 5*4 (continued)

Example 3: Translation of the phrase "The sword of the

kni ght . "

The mathematical development of this translation is shown in

figure 5»5» The description which follows will be given in

the same detail as that of example 2.

Descript i on.

1,2. At stack level 1 the contraction "TH" i s performed.

It is kept in the stack, since it may form part of a

longer contraction.

5,4. At stack level 1 the contraction "THE" i s pe rf 0 rmed.

It is kept in the stack as the contraction with a

space is possible.

5. At stack level 1 the input character "s" forbids the

space contraction, so the sequence "THE space " is

sent to the output array. This stack is cleared and

stack 2 is moved to stack 1.

6. At stack level 1 there is no possibility of

contracting with the starting letter combination "sw".

The letter "s" is sent to the output array and the

stack is cleared.Thecontents of stack 2 are moved to

st ack 1.

7,8. At stack level 2 there is no possibility of

144

contracting with the starting characters "or". This

stack is cleared and the contents of stack 3 are moved

to stack 2. At stack level 1 the contraction under

search is "WORD".

9« At stack level 2 there is no possibility of

contracting with starting characters "rd". This stack

is cleared. At stack level 1 the contraction for

"WORD" is found and performed, and the contraction for

"WORD" is sent to the output array.

It is at this point where the exceptions dictionary is

used. The word "sword" is included in it, so the

contents of the output array are changed using the

correct translation stored in the dictionary.

10,11. At stack level 1 the word "OF" is contracted. It is

kept in the stack since a space could be contracted

with it later on.

12,13. At stack level 1 there is still the possibility of

contracting the space.

14. At stack level 2 the contraction "TH" has been found.

This is performed and kept in the stack in case there

are further possibilities of contracting. The

contraction "TH" is displaced to stack 1, where the

possibilities of contracting the space remain alive.

1 45

1 5 At stack level 2 the contraction "THE" has been found

It is performed, kept in the stack and displaced to

stack 1. At stack level 1 there is still the

possibility of contracting the space between "OF" and

"THE"; however, it is necessary to wait to see if the

following input character is a punctuation mark or a

space.

16,17. The following input characters " space " and "k"

allow the contraction of the previous space (at stack

level 1) and since there is no more possibility of

space contraction (because of the input "k"), the text

"OF/THE" is sent to the output array without the

intervening space. The last space found is sent to

the output array after this. Stacks 1 and 2 are

cleared and the contents of stack 3 are moved to

st ack 1.

18,19,20. At stack level 1 the characters "k", "n", "i" are

sent to the output array at each of their individual

steps. This is because

combinations "kn", "ni",

possibility of contracting,

cleared and the contents

the respective letter

"ig" do not allow the

In each case, stack 1 is

of stack 2 are moved to

st ack 1.

21. At stack level 1 the contraction "GH" is performed and

sent to the output array. All the stacks are cleared.

146

22,25- At stack level 1 a punctuation mark is detected;

this hinders the possibility of further contraction,

so the stack contents are sent to the output array

(these are "t. ") .

24- The end of text is detected, so the translation

process finishes.

147

148

Fi gure 5•5

step Stack level 1 Stack level 2 Stack level 5

1 (S , tUJ, {e}) F (s,t)

2 (S , huj, t) F (M,TH) (S,hU), {e}) F (S,h)

(M,TH)

5 (M,eU), TH) F (M,THE) (S , ecu, {e}) F (S,e)

(M,THE)

4 (M,’ 'U),THE) F (J,’ ’THE) (s,1 ’(JU, £e}) F (N, {e})

5 (J, su>, ' ’THE) F (N.IPTHE' ' , {e}) (S, stu, {e}) F (S,s)

(S,s)

6 (S , wiy, s) F (N,<Fs , 4e)) (S , wu), {e}) F (S , w)

(S,w)

7 (S , OU), w) F (D,ow) (S, ou), {e}) F (S,o)

8 (D , rU), ow) F (D,row) (S , rcu, o) F (», {e}) (S , rtu, {e}) F (S,r)

(D,row) (S,r)

9 (D,dm, row) F (K,^WORD, {e}) (S , du), r) F (N, {e}) (S , dm, -{e^) F (S,d)

Exception: sWORD = => :3wo rd

10 (S , oU), {e}) F (S,o)

1 1 (s,fw,o) F (M.OF) (S,fW, {e}) F (S,f)

Example 5: Translation of ’The sword of the kni ght . ' .

st ep Stack level 1 Stack level 2 Stack level 3

Figure 5*5 (continued)

1 2 (*>' 'uu.OT) F (J,' ’OF) (S,' 'uj , {e }) F (s,d)

13 (j,tu>, ' ’OF) F (J,t* ’OF) (S ,tui, <e)) F (S,t)

14 (j,hW,f ’OF) F (J,TH' ’OF) (S,hm,t) F (M,TH) (S,hw, {e}) F (S,h)

(J,TH’ ’OF) (M,TH)

15 (j,eW,TH' ’OF) F (J,THE’ ’OF) (M,eW,TH) F (M,THE) (S,eu), {ej) F (S,e)

(J,THE' ’OF) (M,THE)

16 (J,’ 'uJjTHE' ’OF) F (j,' 'THE' ’OF) (M, ' '(ju, THE) F (J,’ ’THE) (S, 1 'uj , (e}) F (N, {e})

17 (J,kw, ' 'THE' ’OF) F (K 3JOF/THE ' ' , {e}) (J,km,' ’THE) F (N, (e)) (S.kiu, {ej) F (S,k)

(S,k)

18 (S, nuj, k) F (N,HFk, (e)) (S , nw, <e)) F (S,n)

19 (S , iu), n) F (N,Vn, {e}) (S,iw, {e}) F (S.i)

20 (S , gU), i) F (N,<Fi , {e}) (S,gw, {e}) F (S,g)

21 (S ,hU), g) F (K,^GH, {e}) (S,hCU, {e}) F (S,h)

22 (S,tuj, {e}) F (s,t)

23 (S , • <AJ, t) F (N, t ' . ' , (e)) (S, ’. 'tU, {e)) F (N, {e})

24 (S, <eot> , {e}) F (N, {e|)

Example 3: Translation of 'The sword of the kni ght. ' .

Chapter 6

PERFORMANCE EVALUATION

This chapter is devoted to the description of the

performance characteristics of the translation program

developed. The first section discusses general performance

characteristics of the translator in an isolated

environment. The second section deals with a comparison

with existing translators, in order to establish the

position of the one implemented within the frame of

reference defined by the existing translators.

6.1 General Performance Characteristics

At this moment it is necessary to evaluate the performance

of the translator written using the techniques specified in

the previous chapters. Five aspects will be considered in

this evaluation:

- general program characteristics

- accuracy of the translated text

- speed of the translation (words per minute)

- trainability in relation to new rules or exceptions

1 50

limitations existing in the current implementation.

Each of these is important, but for different purposes, and

they will be described next, separately.

6.1.1 General Program Characteristics

Language: PASCAL

Number of lines of the code: 1750 approximately.

Files: Three. Two input files, one for the input text

and the other for the dictionaries of rules and

their exceptions. The output file holds the

translated information.

Memory usage: About 52K bytes of static memory and 5K of

dynamic work space.

Dictionary: 189 entries

Exceptions dictionary: 50 entries.

There is flexibility in relation to the definition of the

output page size, both for width and length.

1 51

The program is very easy to use; the only user interaction

necessary when running it is to give the names of the input

and output files, and to answer whether or not grade II

translation is desired. The instructions to run the

program, including input data specifications, are given in

Appendix 6.

In relation to portability, the translation program has been

run on the following machines;

I i

Comput er ! Operating system ! Pascal

PDP-11/70 ! RSX-11M !! OMSI
HONEYWELL ! TSS ! ISO
WICAT ! UNIX !! WICAT
CODATA ! UNIX ! UCSD
APPLE ! UCSD ! UCSD

i i

Minor changes were required regarding the input-output

procedure "OPENFILES"; the required changes are specified

with comments in the program listing (see Appendix 6). Some

microcomputer versions of Pascal do not implement dynamic

storage management using 'new' and 'dispose'. This

difficulty was overcome by the use of 'mark' and 'release'.

This is also commented in the program listing in appendix 6.

In that respect, the procedure 'POP' would need to be

modified to overcome the lack of 'dispose' and the main

program body would need changing to use 'mark' and

'release'. These alterations to procedure 'POP', and to the

main program are shown in comments where they may be made.

1 52

6.1.2 Accuracy of the Translated Text

Several tests have been carried out to determine this.

Appendix 7 shows in detail the set of tests performed to

evaluate the accuracy of the translated text. It may be

seen there that the set of tests is complete and aims to

cover all of the possibilities that may arise when dealing

with English Braille contractions and abbreviations. Tests

are performed to check that a contraction or abbreviation is

performed when it ought to be and that it is not performed

when it ought not to be.

Of course that the accuracy achieved with these tests is

1 00%, since they were used to t une the t ranslat or.

Certainly this cannot be used as a reliable figure, but

tests were made with other texts (see table 6.1), and the

accuracy achieved was over 99*5%, the problems detected

dealt mostly with accents on foreign words and inner

quotation marks.

155

J__ J
! Text Text Number of !
INumber Description Words Accuracy!
! Translated !
j___ j
! 1 Ordinary text: a letter to 467 100. 0$!
! GRD written by the author. !
i__j
! 2 Examples from the Braille 550 100.0$!
! Primer for testing !
! proficiency in writing !
! Braille !
|___ !
! 5 Further examples from the 405 99*6$!
! Braille Primer. !
j__i
! 4 Text extracted from Ray 525 99*7$!
! Bradbury's "All Summer in !
! a Day" !
f__J
! 5 Set of tests of appendix 7 461 100.0$!
i__ i
! 6 Tests performed by the R.N.I.B. 45000 99*6$!I__ I

Tests for Measuring Accuracy of the Translation

Table 6.1

6.1.5 Speed of the Translation

Several tests were designed to evaluate the speed and

behaviour of the translator. The same texts as the ones

used for accuracy tests were used for evaluating speed. To

increase the number of words available, these texts were

replicated several times, monitoring each time how long the

translation took. This is shown in Table 6.2. It is worth

mentioning that the text description is not given there,

only the text number from table 6.1 is referenced.

154

1
! Text
! Number
i
i________

Number of
replicat ions
of the orig.
t ext

Translat ion
Time (sec.)
Grade Grade

Number of
words

t ranslat ed

Speed
per

Grade
I

(Words
min.)

Grade
III II

! 1 1 8 1 1 467 5502 2547
! 1 2 1 5 21 954 3736 2669
! 1 4 29 42 1868 3865 2669
! 1 8 57 85 3736 5955 2701
I 1 16 115 1 66 7472 3967 2701
I 1 52 226 552 1 4944 3967 2701
! 2 1 1 0 1 6 550 51 80 1 988
! 2 2 1 9 51 1 060 5547 2052
! 2 4 57 56 21 20 5485 2271
! 2 8 70 1 06 4240 3634 2400
! 2 1 6 1 58 212 8480 3687 2400
! 2 52 275 424 1 6960 5700 2400
! 5 1 9 14 461 5075 1 976
! 5 2 17 25 922 5254 2215
! 5 4 52 49 1844 5457 2258
! 5 8 65 97 5688 551 2 2281
! 5 1 6 125 1 92 7576 5540 2505
! 5 52 249 584 1 4752 5555 2505
! 6
i________

1 758 1 087 45000 3692 2423

J
J
I
!

I
J
JJ
IJ
JJ
I
I
f
I

fJ
I
J
J
I
IJ
I
f

Test for Measuring Speed of the Translation
on a PDP-11/70

Table 6.2

Tests on texts numbered 5 and 4 were not considered

necessary, as the translation rates reported in table 6.2

are quite consistent. The variation in translation speed is

dependent on the average length of the word for the

translated text. The longer the average word-length is, the

more the translator will delay in the translation. For

example, the translation speed for test number 1 is the

fastest, as its average word-length is the smallest (5«5

characters per word). The opposite can be said of test

number 5, which is not coherent English script. This test

is formed from words used to check accuracy, and has no

1 55

linking prepositions or articles, which tend to reduce the

average word-length of natural text. The word length in

this case was 6.4 characters per word.

6.1.4 Trainability of the translator

One of the features of this translator is the possibility of

training the translator according either to new rules that

may emerge in the future, or to deficiencies which may be

observed while testing. This tuning is done through changes

in the dictionary of exceptions. These changes include

additions to the dictionary, deletions from it, or changes

to existing entries. The procedure to perform changes to

the dictionaries is given next. Appendix 4 must be

completely understood before making any change.

1. Addition to any of the dictionaries

If the addition introduces a new pair of initial

characters, care must be exercised to add one unit

to the number appearing at the beginning of the

dictionary. This represents the number of nodes in

the tree constructed by the translator. The string

defining an entry in the dictionary is constructed

according to the specifications of appendix 4. In

this case the entry must end with a full stop.

If the addition introduces an entry in which the

initial pair of characters already exist, it should

156

be inserted where it belongs, alphabetically

ordered. In this case the number at the beginning

of the dictionaries is not altered. Care must be

exercised in that if the new entry is the last with

that pair of initial characters, then the full stop

in the previous entry should be changed from a full

stop to a colon, and the current one must be

terminated with a full stop. If the new entry is

not the last with that pair of initial characters,

then the new entry must be terminated with a colon.

The string defining the new entry is constructed

according to the specifications of appendix 4.

2. Deletions from any of the dictionaries.

The deletion procedure is similar to the one given

in addition. The only variation is that care must

be taken to decrease the number of entries in the

tree if the deletion removes the only existing

entry with that pair of initial characters. Colons

and full stops must be treated exactly as described

in the previous section.

3. Changes to existing entries in the dictionaries

The changes to existing entries must be made

according to the specifications of appendix 4.

This feature of trainability extends beyond the correction

of entries in the dictionaries, to the translation of

different languages, just by providing the corresponding

1 57

contractions and abbreviations dictionaries, tog ther with

their transitions both at the beginning and not at the

beginning of the word. The dictionary of except io ns can

also be included. Thus, the present translator may actually

be considered as a universal language translator, for i

language with the same English alphabet.

6.1.5 Limitations existing in the current implementation of

the translator.

There are some aspects that have not been included in the

current version of the translator. They are:

1. Abbreviations of value and measurement

When a symbol or a literal abbreviation of value or

measurement follows a numeral, the corresponding

literal abbreviation or its equivalent, without the

abbreviation point, should be placed in Braille

before the numeral sign. This is not performed

within the translator. At present the input text

is translated exactly as it is given.

2. Translation of text

- The poetry sign is not handled, so there is no

provision for indicating that poetry follows.

- Double italics sign is not implemented. The fact

1 58

of not having a double italics sign means that

the single italics sign must be given before

every italicised word.

- Inner quotation marks are not implemented. Only

outer quotation marks are handled by this

t ranslat or.

- There is no provision for specifying accents for

foreign words.

5. Translation of numbers.

Several features are omitted by this translator

when translating numbers.

- Fractions and mixed numbers are not included.

- The mathematical separation sign to separate

large numbers is not implemented.

- The decimal point sign is not implemented.

- Roman numerals are translated directly, without

the preceeding letter sign, which is required in

Brailie.

1 59

4. Hyphenation rules are not provided.

In the current version of the translator, whenever

a word needs to be hyphenated, it is transferred in

entirety to the following line.

5. Braille text formatting.

A new line is given whenever the "paragraph" symbol

appears. No centering of titles is provided.

All of these are considered relatively minor aspects that do

not hinder the making of a good translator.

6.2 Comparison with Existing Translators

As it was already mentioned in chapter 2, there exist

several Grade II Braille translators, for micro, mini and

mainframe computers. The literature regarding the

description of these translators generally does not include

figures for specifying their speed and accuracy. The

literature normally restricts itself to specifying general

characteristics such as the hardware for which they are

designed, the language in which they are written and the

general purpose of the translator. For this reason, the

only valid performance comparison may be made in relation to

DOTSYS III, the system in use at the R.N.I.B. for

translating English into Grade II Braille, and for which the

R.N.I.B. give figures regarding their translator's

performance.

1 60

The translator written for this thesis (EBT) was not run on

the same computer in which DOTSYS-III is running (a

GC-4070), because the R.N.I.B. machine does not support

PASCAL. It is, however, comparable to the PDP-11/70 in

which the performance evaluation tests for EBT were run.

DOTSYS-III currently translates about 3000 words per minute,

while as it is seen in section 6.1, EBT translates between

2400 and 2700 words per minute. It is worth noting that

Grade I translation using EBT achieves about 3600 words per

minute, which represents the theoretical upper bound for the

speed of translation of Grade II Braille in the computer in

which the program was tested.

the correctness of

With respect t 0 accuracy, DOTSYS-III has been tuned over

several years and now has over 800 except ions in its

di ct i onary. It achi eves near 100$ of accuracy, though

proof-readers are still used to validate

the out put . EBT has 50 exceptions in its dictionary and an

accuracy of over 99«5$« The main problem of the translator,

as reported by the R.N.I.B., is with formatting of the

Braille output These result s were obtained when

translating 43000 i nput words of whi ch 0.4$ were

mi st ranslat ed

With respect to maintainability of the program, DOTSYS-III

requires changes in the code of the translator each time

that a rule has to be changed; with the trainability

facility of the translator written, it is possible to change

161

rules without having to modify the code of the program

recompile it.

and

1 62

Chapter 7

CONCLUSIONS

7.1 Contributions of the Work Developed to the Field of

English into Braille Translation.

A new approach for English into Grade II Braille translation

has been developed, using augmented transition networks.

The translator provides a good approximation to Grade II

Braille and is suitable for running in microprocessors. Its

speed and accuracy are satisfactory and its flexibility in

the specification of rules and exceptions provide ease of

use, thus allowing the program to be handled by people who

are not experts in either computer science or Braille.

It is hoped that with the increasing facility of being able

to automatically translate English into Grade II Braille,

more visually handicapped people will have access to printed

information, both for employment and leisure activities.

7.2 Possibilities for the Future

There is still much that can be investigated further in

relation to Braille translation. One of these matters is

for example, the use of this translator for translating

other languages into Braille. The use of this translator in

165

other languages is straightforward and does not require

changes to the program, as long as the language to be

translated has the same alphabet and the rules for its

translation to Grade II Braille are a subset of the ones

defined for translating English to Grade II Braille. The

dictionary for the specification of rules would need to be

constructed in the same way as that described in appendix 4-

Exceptions would also be specified in a similar way.

The program is able to handle the situations where a

different mapping of ASCII characters to Braille characters

is required. This may happen in other language (i.e.

Spanish) with letters which have associated accents.

However, in this case the program would need to be altered

in the procedure ' MAPBRAILLETOASC11' and recompiled.

Appendix 2 shows how it could be implemented.

Regarding exceptions the choice of contractions, this is

handled within the code of the program and defined

specifically for English into Grade II Braille If changes

in this respect are needed when specifying the Grade II

Braille translation rules another language,

recompilat ion of the program requi red This is one

aspect that could be enhanced within the t ranslat ion

program. It should be possible to feed these except i onal

i n

f o r

i s

choices of contractions as part of the dictionary of

exceptions, thus being able to specify the complete

operation for another language, without having to recompile

the program. Similarly, another aspect that would be

1 64

beneficial in relation to the translation of other languages

into Grade II Braille, is to provide an editor for creating

and maintaining the dictionary of rules and exceptions. At

present, one must learn the translation rules and specify

them by hand, using a normal text editor, and know how and

when a word or part of a word should be contracted. The

automation of this would be of great help in creating and

maintaining the translation dictionary.

From the operational point of view, the fact of only

building dictionaries and being able to translate different

languages with the same program may be of great use for a

blind person and organisations for the blind, having to deal

only with one program and several dictionaries (one for each

language) and not with several such programs.

The translator described, running in small micros (as

Apples, for example), could serve individually to Blind

people both for employment and leisure activities. If

larger micros are considered, i.e. those based on the 68000

chip, regional translation centres could be established,

housing processor, printer, and up to 16 terminals (with

1984 technology) which could be used for Braille

translation. This would diminish significantly the cost of

Braille translation on an individual approach basis.

Finally, it is also worth mentioning that there are very

important matters that remained untouched in the present

thesis, as are Braille music, mathematics and graphics,

1 65

which are currently being developed by the R.N.I.B.

166

Appendix 1

STANDARD ENGLISH BRAILLE(*)

(*) This information has been extracted from the Standard
English Braille, published by the Royal National Institute
for the Blind in 1971 -

Braille is a system of embossed characters formed by using

combinations of six dots, arranged:

1 . . 4
2..5
3. . 6

The possible combinations of the six dots give 63 simple

signs (plus the space, denoted by no dots), which are shown

in figure A.1.1 arranged in seven lines. Herein, the black

dots represent the raised points of the sign; the dashes

serve to show their position in the group of six. The next

figure, figure A.1.2, shows the characters used in forming

contractions, some Braille compound signs and mathematical

signs.

For ordinary purposes there are two grades of Braille:

Grade I uncontracted and Grade II contracted.

For Grade I, the only signs used are those underlined in

figure A.1.1 for letters, digits, punctuation marks, and

special symbols to indicate poetry, numbers, letters, etc.

The only compound characters used in Grade I are those

1 67

corresponding to the mathematical signs ' + ’/'

and ' = ', and for the symbols dash, square brackets and

inner inverted commas (see figure A.1.2).

For Grade II the rest of the characters not used in Grade I

are used for the most common English contractions. It is

worth mentioning that valid rules for Grade I are also valid

for Grade II, so Grade II is a superset of Grade I.

Mo reover, for Grade II there are other contractions defi ned

by using the letter signs for specifying c omplet e words

that the most common words, standing alone, may be

represented by a single letter sign This is shown

s o

i n

In conjunction with somethe letter sign,figure A.1.5

compound contractions are used. Finally, there are some

English words (some of the most commonly use d) , that are

abbrevi at ed. The c omplet e list of these i s shown in

fi gure A.1.4

1 68

POINT

1 2 3 4 5 6 7 8 9 0
A B C D E F G H I J

Fi r st • • • • • • • • • • • • • •
Li ne • • • • • • • • • • •

K L M N 0 p Q R s T
Second • • • • • . • • • • • • •
Li ne • • • • • • • • • • •

• • • • • • • ■ • • •

u V X Y z AND FOR OF THE WITH
Third • • • • • • • • • • • • • •
Li ne • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •

CH GH SH TH WH ED ER OU ow w
Fourth • • • • • • • • • • • • • •
Line • • • • • • • • • • •

• • • • • • • • •

> 5 • J 0 If If

EA BE CON DIS EN ? IN
DEC. BB CC DD FF GG

Fifth
Li ne • • • • • • • • • • • • • •

• • • • • • • • • • •

SLASH
ST ING

NUM.
SIGN
BLE

POETRY
SIGN
AR

APOSTROPHE HYPHEN
MATH. COMMA COM

Sixth • • • •
Li ne • •

• • • • • • • • •
— — — — —

ACCENT ITALIC LETTER CAPITAL
Sevent h • • • •
Line • • •

Standard English Braille

Figure A. 1 . 1

1 69

Used in forming contractions:

Dash Square Brackets Inner Inv. Commas
I I

C ompound
Si gns

Mat hemat i cal
Si gns

Braille Compound Signs

Figure A.1.2

1 70

I JUST»
i

1 !Word sign!Initial Contractions!Final Contractions I
J
! Si gn

!Column 1
! _________

!Col.2 ICol.3 I Col.4 ICol.5 !Col.6 I Col.7 !
____ __ _ i

ISt andi ng IPrec . IPrec. IPrec. IPrec . IPrec . IPrec . !i
I ! Alone Iby dot I by dot I by dot I by dot I by dot I by !
i
!_______

i
_ f___________

15 14, 5 14,5,6 14,6 15,6 Idot 6!
________ i

f
I .
t
j

r
j
I A
j

j
j

j

t
j
j
t

1
I
f
J

t
j
j
1

i
j
j
i

t !
! i
j j
! t

I
i
j

t
I BUT
i

i
j
j

i
i
j

f
!
t

i
t
j

I
i
j

! I
j t
j !

I . .
j
i

j
ICAN
i

!
t
j

1
I
i

t 1
I CANNOT I
i i

j
j
i

I i
I I
I |

I
I
j

j
IDO
j

i
IDAY
j

i
i
I

j
i
j

j
I0UND
i

j
i
j

f f
I I
! f

! .
I .
i

j
!EVERY
j

j
IEVER
i

j
j
1

j
j
i

»
I ANCE
j

I
I ENCE
j

j f
I ;
! I

I
I
j

i
IFROM
j

! I
IFATHER!

1
i
I

j
t
j

I
f
j

| I
f I
i !

! . .
I . .
j

j
IGO
j

j
i
j

j
I
1

i
t
j

j
!
t

j
I ONG
I

I ;
! f
j J

I
!
t

j
I HAVE
i

j
I HERE
i

»
j
I

j
I HAD
j

j
j
j

j
j
t

[I
I I
I i

I . j j j i j j I J
I . II i 1 j j j | |
j I j » j i r » J
I t f i j i I I !
I
I
J
I
I

I
!
I

! KNOWLEDGE!KNOW
I J

J
I
I
I
J

I

t
I
J
J
t

J
J
J
I
f
I

I
J
J
J
I
I

J
J
f
J
I
t

I
|
J
I
!
t

I
I

ILIKE
i

’LORD I I I
I I I I
tttt

IFUL I I
I I I
r ! r

I . .
i

I

IMORE
j t

I MOTHER I
t j

I MANY I
I I I
I 1 I

I . l i J i I I I

Braille Contractions

Fi gure A.1.3

171

I
1
! Si gn

[Word signllnitial Contractions!Final Contractions !
’Col.6 [Col.7![Column 1

i __________
[Col.2 ’Col.5 [Col.4 !Col.5

• •
t ! St andi ng ! Prec. !Prec. ! Prec. !Prec. ! Prec. ! Prec.!
j [Alone [by dot [by dotiby dotlby dot [by dotlby ’
j
t__

t
. r____ ______

!5 !4,5 !4,5,6 ’4,6 ! 5,6 [dot 6 !
________ ___ i

1
i
j

• •
•

•

j
[NOT
I

j
! NAME
i

j
j
j

J !
! [SION

{
! TION
I

t |
! ATION!
j f

I .
! .
I .

i
10
r

[ONE
j

j
j
i

I !
i i
I r

j
j
j

I j
j j
! J

t
j

• • j
’PEOPLE

t
[PART

»
i

! !
! J

I
i

f i
! 1

J
f •

t
r
i

j
i

I J
t i

I I I
i f; • •

! . .
! .

[QUITE
!

[QUESTION!
i j

j !
j I

I
f

t J
! •!

i
t
j

•
• •
•

J
!RATHER
j

j
[RIGHT
t

j
1
j

i t
i I
I i

j
I
j

j [
I I
I i

1 .
I .
! .

j
[SO
j

j
! SOME
j

j
i
j

I I
[SPIRITILESS
J J

I
! NESS
t

i I
r J
i j

;
J
1

•
• •
•

i
’THAT
|

j
[TIME
i

j
I
I

i t
! [OUNT
j I

j
IMENT
j

j I
[j
! j

! .
j
f

j
[US
i

t
[UNDER
j
j

i
[UPON
t

I !
j j
t i

j
j
i

t t
1 |
t f! • •

f I ! ! j j t J
1
I

•
• •

[VERY
i

|
j

j
j

i I
j i

j
f

j I
j ;

I .
I..
I .

i
[WILL
|

i
[WORK
i

i
[WORD
i

i t
[WORLD !
J !

I
t
I

I I
j I
I I

1
t

• • i
! IT
i

t
i
t

t
i
t

t i
i j
t i

I
j
i

| i
f j
t t

! . .
• •

j r i 1 ! j I !
! . [YOU [YOUNG i i ! !ITY [ALLY !
! . . j j j i J i j t
t t i { r t t ! r
f
j
!

•
•

• •

i
! AS
i

j
j
j

j
!
t

; !
i i
t I

j
t
j

j I
t j
I i

! . .
! .

I
’AND

i
i

t
I

I j
I I

! j i
j t

I . . j | I I I ! I

Figure A.1.5 (Continued)

1 72

j____ i__»
! IWord signllnitial Contractions!Final Contractions !
! IColumn 1 !Col.2 ICol-3 !Col.4 !Col.5 !Col.6 !Col.7!
! Si gn ! --- !
I IStanding !Prec. !Prec. !Prec. !Prec. !Prec. !Prec.!
! lAlone ’by dot!by dot!by dotlby dotlby dotlby !
! ! 15 !4,5 14,5,6 14,6 15,6 ’dot 6!j____ j_______________________________________ I
I
j
t
I . i ,
I .
t
j
I j
I .
I . j»
i
I .I
i;
j
|
I , j
i
t
»
i
I
! ,
! ,i j
I
t
j
I . !
i
|
I
j
I
j
I , ! .

. !

. IFOR. II
!0F;

. I
ITHE

. Ii
.’WITH

f
.'CHILD

. Ii
! SHALLI

. I

. ITHIS

. Ij
I WHICHjj

. I0UT. Ii
IBE|
i
IENOUGH. II
i
ITOi
t
j

. IWERE. Itj
IHISj

j
» t t
|
I
t

I
I
IJJ
t
J

I
i
j !
J
IJ

j
i j
!
J
I
j I
j j

!
j
j
t
j
t
j
j
t
i
j

t
t
j jI
j
j
ITHERE ITHESE ITHEIR !i
j j
j
j
ICHARACTER!j
j
I j
I THROUGH I THOSE I
! ! I
! ! !
IWHERE IWHOSE ! ji
I0UGHTt
I
j
j
j
I
j »
j I j j
j
i f
i
I f j

» j I
j
j
i
j
|
j
j
j
j
j j
j
|
i
j
j j t

I
j
j
i
I
t
|
j
I
j
j
t
j
t
j
|
j
f
i
j
I
I

I
J J
I
t
J
I
J JI I
J
I
J I t J
J
I
t
I
J
I
f
J J
J ;II
r
j j
i
iI

I
t
j
i
j
i
j
j
j
j
j
i
j
j
t
i
j
t
j
j
i
j
I
i
i
j
f
j
i
t
j
i
I
j
I
j
j
j
j
t
j
I
j
i
j

»
j
I
j
t
j
i
;
i
j
I
j
i
j
j
t
I
i
t
j
i
j
j
j
t
j
j
j
j
;
i
j
j
j
j
t
I
i
i
j
j
I
j
j
j

j
I
I
j
i
I
i
I
I
j
i
j
j
i
j
f
»
j
j
I
j
i
I
I
i
I
f
j
i
I
t
j
i
j
I
I
j
I
j
j
i
t
i
j
j

Figure A.1.3 (Continued)

173

! t
! .’Word si gn! Ini t i al Contractions!Final Contractions !
! JColumn 1 !Col.2 !Col.5 !Col.4 !Col.5 !Col.6 !Col.7!
!Sign ! -- !
! ’Standing IPrec. IPrec. !Prec. !Prec. !Prec. IPrec.!
! ’Alone !by dotlby dotlby dot!by dot!by dot!by !

! ! 15 14,5 14,5,6 !4,6 !5,6 !dot 6!!____ »__ i
! ! I !

! IN !
! I

1
i

I t
. ..JINTO I

1 1

tjt
! i f
!WAS, BY !
’ !

I
r1• ! !

ISTILL ! I
. I ! J

j i tI j
i f
i
j
i
j

I

I
tI
I
i
iI
i
j
j
I
i

j I Iij
j j
i!
I
i
j

j I i j I
» t
j
i
j
j
!

iI jij
fI
!
i
j
j
f

Figure A.1.5 (Continued)

174

Engli sh Braille ! Engli sh Brailie
Word Abbreviation ! Word Abb revi at i on

about ab ! herself hERf
above abv ! him hm
according ac ! himself hmf
across acr ! i mmedi at e i mm
aft e r af ! its xs
aft ernoon af n ! itself xf
aft erward af w ! lett er lr
aft erwards afws ! little 11
agai n ag ! much mCH
agai nst agST ! must mST
almost alm ! myself myf
already air ! necessary nec
also al ! neither nei
although alTH ! o'clock o ' c
alt ogether alt ! oneself ONEf
always alw ! ourselves OUrvs
because BEc ! pai d pd
before BEf ! perceive pERc v
behind BEh ! percei vi ng pERcvg
below BE1 ! perhaps pERh
beneat h BEn ! qui ck qk
beside BEs ! recei ve rev
besides BEs s ! recei vi ng r c vg
between BEt ! rejoice r jc
beyond BEy ! rejoicing r jeg
bli nd bl ! said sd
brailie brl ! should SHd
chi Idren CHn I such sCH
concei ve CONcv ! t h ems elves THEmvs
conceiving CONcvg ! t hys e1f THyf
could cd ! t oday t d
deceive dev I t ogether t gr
deceiving devg ! t omo rrow t m
declare del ! t oni ght t n
declari ng dclg I would wd
either ei ! your yr
fi rst fST ! yourself yrf
f ri end f r ! yourselves y rvs
good gd !
great grt !

Braille Abbreviations

Fi gure A. 1.4

175

Appendix 2

MAPPING OF ENGLISH BRAILLE CHARACTERS TO ASCII CHARACTERS

The need to translate English into Braille forces the

selection of a character set from which Braille characters

will be mapped to English characters. The character set

chosen was ASCII, since it is one of the most widely

accepted in the field of computing.

As it is well known, ASCII is formed by 128 characters,

while Braille has only 64 (see appendix 1).

that Braille code will not be able to hold

This implies

all of the

information kept in ASCII. However, this is not even

desired, since about 25$ of ASCII characters are used for

control characters which are not used in Braille. Besides,

not all of the English special signs that exist in ASCII

have an equivalent in Braille. On the other hand, there are

some Braille characters that do not exist in English, as are

special symbols to denote capital letters, numeral signs,

letter signs, poetry signs and others. These two facts

allow a one to one mapping of all the ordinary English

characters, as well as the special symbols used in Braille.

There are still some empty cells that can be used for

special symbols that do not exist in English, but are used

in Braille, for contractions and abbreviations of frequently

used English character sequences.

176

It is worth noting that the Braille character set definition

is computationally ambiguous, since the same Braille

character is used to represent different English (inkprint)

characters. This is the case for numbers, for example,

which are represented with the same symbols as the first ten

letters of the alphabet. This same ambiguity occurs with

several different contractions of English letter sequences,

which are mapped to the same Braille character depending on

the context in which they appear, the context being at the

begining, in the middle, or at the end of a word. The

opposite case to the one just

translating Braille into

different ASCII characters

present ed also occurs when

Engli sh. This happens when

are mapped t 0 one Braille

charact er. Examples of this are the left and right

parenthesis, and the opening quotation mark and question

mark.

Braille compound characters, which are formed from two

Braille cells , represent the ASCII charact ers: bracket s,

ast eri sk and the mathematical symbols +> ”> x, /» and =.

All the aspects previously described hinder a totally

direct, static mapping from Braille to ASCII, and it must be

complemented by a dynamic mapping. However, it is worth

noting that even though the dynamic mapping is presented

here, it needs to be performed at execution time with the

aid of the dictionary, which is given for Braille

contractions and abbreviations and were tabulated in

appendix 1.

177

The contents of table A.2.1 are organised in the following

way. In the first column, Braille characters are numbered

from 0 to 65* The corresponding inkprint character is given

in the second column, and the third column contains the

ASCII equivalent of this character. When an inkprint

counterpart does not exist for a Braille character, its

description is given in the second column. If multiple

translations are possible for the same Braille character,

the alternatives, separated by a comma, are given in the

second and third columns.

Finally, it is worth noting that the Braille character's

numbering is performed according to the sum of powers of the

dots in the Braille cell, numbered as shown in appendix 1.

The values are obtained for dots 1-6 by raising 2 to the

power 0-5 respectively, thus generating numbers in the range

0 to 65 when summed.

178

J
I
I
I
J
I
I
I J
I
J
I J
I
t
J J
J
J
!
f
I
j
i
j
j
j
|
j
!
I
I J
I
I
I J
!
I
!
!
J J
J
|
J
!
IJ
| J

BRAILLE
CHARACTER

INKPRINT
REPRESENTATION

ASCII
EQUIVALENT

„ i
I
i

.. i

0 space 32
i
j

1 A, 1 65, 49 1
2 ’, ’, ea 44, none j
3 B, 2 66, 50 i
4 apost rophe 39 t
5 K 75 j
6 ' ; ’ , BE, BB 59, none, none j
7 L 76 j
8 accent sign none »
9 C, 3 67, 51 »

10 I, 9 73, 57 »
1 1 F, 6 70, 54 i
1 2 ST none i
13 M 77 j
14 S 83 J
1 5 P 80 1
1 6 used to form

c ompound
I
|

cont ract ions none !
17 E, 5 69, 48 1
1 8 ’: ’ , CON, CC 58, none, none J
1 9 H, 8 72, 56 J
20 IN none f
21 0 79 J
22 ’!’, FF, TO 33, none, none J
23 R 82 J
24 used to form

c ompound
J
J

cont ract i ons none J
25 D, 4 68, 52 J
26 J, 0 74, 48 J
27 G, 7 71, 55 1
28 AR, poetry sign none, none J
29 N 78 1
30 T 84 1
31 Q 81 t
32 capital sign none I
33 CH none J
34 EN none J
35 GH none 1
36 COM, none, 95 J
37 U 85 |
38 • II 1 * 9 * 42, 63 f
39 V 86 1

. !
1

Mapping of Braille to ASCII

Table A.2.1

1 79

1.
t
I
f

BRAILLE
CHARACTER

INKPRINT
REPRESENTATION

----------------------------------- i
ASCII !
EQUIVALENT !

t
t
J
JI

40 used to form
c ompound
cont ract i ons none

j
I
I ;; 41 SH none iI 42 OW none jt 45 ED noneI 44 ING none I

t 45 X 88 j
i 46 THE none j
j 47 AND . none I
j j j

48 used to form
c ompound
cont ract ions none

j
ij

f 49 WH none j
j 50 DIS, DD 46, none, none j
I 51 OU none i
i 52 • 1 42 j
i 55 z 90 it 54 ')•. GG 40 ji 55 OF none Ii 56 used to form i
j
j c ompund

cont ract i ons none
t t

j 57 TH none j
j 58 W 87 t
t 59 ER none j
1 60 numeral sign, BLE none, none t
i 61 Y 89 j
j 62 WITH none j
j
j 65 FOR none j

j

Mapping of Braille to ASCII

Table A.2.1 (continued)

1 80

Appendix 5

FINITE AND PUSHDOWN AUTOMATA

One of the most common ways of specifying a language is to

define a recogniser for it. A recogniser is formed by 5

elements: an input tape, a finite state control and an

auxiliary memory; the type of recogniser varies according

to the characteristics of these elements. This is shown

pictorically in figure A.3« 1 • According to this, finite and

pushdown automata will be described next.

i ;_____J______I _ _____ J

! a„ ! a, ! ax ! . . . ! a„ !
j_____I______j______j - - !_____ !

! Input head
i
i
I_______________ t

j
j__________________________ t

! Finite state !
! control !
i___________________ »

A
i

I_______________ f
! Auxiliary !
! memory !
f_______________ j

A recogniser

Figure A.3*1

181

Finite Automata

Finite automata are used to define the class of reg.ular

sets. Other ways of defining these are for example through

regular expressions or through the languages generated by

right-linear grammars. However, the advantage of using

finite automata to define them i s

represented by labeled directed graphs,

that they may be

thus allowing easier

understanding that with other methods. The class of regular

sets defined by a finite automaton is the set of input

strings it accepts. A finite automaton is one of the

simplest recognisers and ordinarily it consists only of an

input tape and a finite control, since its auxiliary memory

is null. For this automaton the input head is restricted to

move in one way (to the right), the finite control is

allowed to be nondeterministic. By this it is meant that

the same character can label two or more transitions out of

one state. The nondeterrainism of the automata should not be

confused with randomness, in which the automaton could

randomly choose a next state according to fixed

probabilities, but had a single existence. Such an

automaton is called "probabilistic” and will not be

considered here. The formal definition of an

nondet erraini st i c finite automaton is given next:

De fi nit i on:

A nondet ermini st i c finite automaton (NFA) is a 5-tuple

M=(Q,Zl,(f, q0 , F), where:

182

Q is a finite set of states

I is a finite set of permissible input symbols

/ is a mapping from Qx E to Q* which dictates the

behaviour of the finite state control; J* is sometimes

called the state transtition function

in Q is the initial state of the finite state control

F is the set of final states (subset of Q)

To determine the future behaviour of the automaton, it is

necessary to know:

- the current state of the finite control

- the string of symbols on the input tape consisting of

the symbol under the input head, and all the symbols

to its right .

These two items provide an instantaneous description of the

finite automaton, which is normally called its

c onfi gurat ion.

An example of an NFA is given next.

1 83

Example A.3•1

at art

A Nondeterministic Finite Automaton
Accepting (a|b)*abb

Fi gure A. 3 • 2

This NFA recognises the language (a|b)*abb. The nodes are

called states and the labeled edges are called transitions.

One state, (0 in figure A.3*2) is distinguished as the

"start state" and one or more states may be distinguished as

"accepting states" (or "final states"). In figure A. 3*2,

the state 3 is a final state.

The transition of an NFA can be conveniently represented in

tabular form by means of a transition table. The transition

table for the NFA of figure A.3*2 is shown in figure A.3*5*

In the transition table, there is a row for each state and a

column for each admissible input symbol. The entry for row

'i* and symbol ’a' gives the set of possible next states for

state ’i' with input 'a'.

184

I
I st at e
i
i

»
input symbol !

a b I
»

! 0 I
I 1 !
! 2 !
I I

(o, 1) {ol !
Pi !Pi !J

Transition Table for NFA of figure A.5*2

Figure A. 5 • 3

The NFA accepts an input string 'x' if and only if there is

a path from the start state to some accepting state, such

that the labels along that path spell out 'x'. The NFA of

figure A.3*2 will accept the input strings ’abb', 'aabb',

'babb', 'aaabb', etc. For example, 'aabb' is accepted by

the path from state 0 following the edge labeled 'a' to

state 0 again, then the states 1, 2 and 3 through edges

labeled 'a', 'b' and 'b', respectively. Note that the NFA

of figure A.3»2 has more than one transition from state 0

with input 'a'; that is, it may go to state 0 or 1. This

situation in which the transition function in- multivalued,

is the reason why it is hard to simulate an NFA with a

computer program. The definition of acceptance establishes

that there must be some path labeled by the input string in

question leading from the start state to an accepting state.

If there are many paths with the same label string, it is

necessary to consider all of them before finding the one

that leads to the final state, or to determine that no path

185

leads to acceptance. For every NFA there is a deterministic

version which simulates it in a rather straightforward

manner. Aho and Ullman, (Aho and Ullman, 1979), present

algorithms for generating a Deterministic Finite Automaton

(DFA) from a NFA. They also present an algorithm for

minimising the number of states of a DFA.

It is said that a finite automaton is deterministic if:

1. it has no transition on empty input.

2. for each state 's' and input symbol 'a', there is

at most one edge labeled 'a' leaving 's'.

Figure A.3*4 shows a DFA accepting the languages (a|b)*abb,

which is the same language as the one accepted by the NFA of

figure A.3•2.

st art

A Deterministic
Accept i ng

Finite Automaton
(a|b)*abb

Figure A. 3» 4

Since there is at most one transition out of any state for

1 86

any input symbol, a DFA is easier to simulate by a computer

program than an NFA. To simulate a DFA, separate program

fragments can be created for each state, each fragment

determining the proper transition to make on the current

input symbol.

Pushdown automata.

A pushdown automaton is a one-way nondeterministic

recogniser whose auxiliary memory consists of one pushdown

list, as shown in figure A.3*5.

!______j_______j_______ j _

A
j
I

_ I______ I
! an ! Read only

- !----------! input tape

______ j
t

i____________ I
! Finite !
! St at e !
! Control !
j____________ i

Pushdown
Li st

Pushdown Automaton

Fi gure A. 3 • 5

1 87

This recogniser is the natural model for the syntactic

analyser of context free languages. Aho and Ullman (Aho and

Ullman, 1972) prove a fundamental result regarding this.

They prove that a language is context free if and only if it

is accepted by a nondeterministic pushdown automaton. If

the context free language is deterministic, then it will be

recognised by a deterministic pushdown automaton.

The formal definition of a pushdown automaton is given next.

Definition.

A pushdown automaton (PDA) is a 7-tuple

P=(Q,E,r , zo , F), where

Q is a finite set of state symbols representing the

possible states of the finite state control.

is a finite input alphabet.

r is a finite alphabet of pushdown list symbols.

<r is a mapping from Q X (ZU (e))xrt o the finite subset

of Qx T*

ia the initial state of the finite control (subset of

Q).

188

z.mr is the symbol that appears initially on the pushdown

list .

F is the set of final states (subset of Q).

A configuration of P is triple (q,(JU , c<) in «xE* xr*.
where:

q represents the current state of the finite control.

10 represents the unused portion of the input. The

first symbol of is under the input head. If

UJ = e , then it is assumed that all of the input

tape has been read.

represents the contents of the pushdown list. The

left-most symbol of is the topmost pushdown symbol.

If = e , then the pushdown list is assumed to be

empty.

A move by P is represented by a binary relation on

configurations as:

(q, atu, Zp() I- (r,lU,tf<X)

If cf(q, a, z) contains (r) for any q £Q, a€£ U {ej , U)
Z£,P» and P *.

189

If a / {e} , the previous equation states that if Pis in a

configuration such that the finite control is in state 'q',

the current input symbol is 'a' and the symbol on top of the

pushdown list is 'Z', then P may go into a configuration in

which the finite control is now in state 'r'» the input head

has been shifted one square to the right, and the topmost

symbol on the pushdown list has been replaced by the string

of pushdown list symbols. If 2T=e, the pushdown list is

said to have been popped. If a = 4e}, then the move is

called an e-move. In an e-move, the current input symbol is

not taken into consideration, and the input head is not

moved. However, the state of the finite control can be

changed and the constants of the memory can be adjusted.

Note that an e-move can occur even if all of the input has

been read; no move is possible if the pushdown list is

empty. Some examples of pushdown automata follow.

Example A. 5 • 2

Let us consider Aho and Ullman’s design for a pushdown

automaton for the language:

L = (lOudT|u>G {a ,

This is a language which accepts strings formed by any

number of 'a's and 'b’s such that the second part of the

string matches, in reverse order, its first part.

1 90

Let P = ((q0 , q, , qj , {a, b}, {z, a, b) , J* , qo, Z, {q^) ,

where:

(1) J (% , a, Z) = {(qQ , aZ)}

(2) <f(q0, b, Z) = {(q0, b2))

(5) a > a) = {(q 0 ’ aa)»
(4) J(q0, a, b) = {(qQ , ab)}

(5) J(q0> b, a) = {(q0 , ba))

(6) J(q0, b, b) = {(q0, bb), (q, , je))}

(7) J (q, , a, a) = {(q, , ^e))}

(8) (Qj » b, b) = {(q, , {e})}

(9) J* (q, , e, Z) = {(q2 , {e})}

P initially copies some of its input onto its pushdown list,

by rules (1), (2), (4) and (5) and the first alternatives of

rules (5) and (6). However, P is nondeterministic . Anytime

it wishes, as long as its current input matches the top of

the pushdown list, it may enter state qB , and begin matching

its pushdown list against the input. The second alternative

of rules (3) and (6) represents this choice, and the

matching continues by rules (7) and (8). Note that if P

ever fails to find a match, then this instance of P "dies".

However, since P is nondeterministic, it attempts all

possible moves. If any choice causes P to expose the ’Z' on

its pushdown list, then by rule (9) 'Z* is erased and state

q*entered. Thus, P accepts if and only if all matches are

made.

For example, with the input string 'abba’, P can make the

1 91

following sequences of moves:

(1) (q0, abba, Z) F (q», bba, aZ)

V- (qa , ba, baZ)

F (qo> a, bbaZ)

I- (qo> abbaZ)

(2) (q , abba, Z) I- (q0, bba, aZ)

I- (qo, ba, baZ)

F- (q,, a, aZ)

F (q, , {e} , Z)

F (» {©} ,)

Since the sequence (Z) ends in final state q2 , P accepts the

input string 'abba'. It should be mentioned here that these

are not the only sequences of recognising moves.

The pushdown automaton of this example clearly brings out

the nondeterministic nature of a PDA. From any

configuration of the form (q0, au), ac<) it is possible for P

to make one of two moves: either push another 'a' on the

pushdown list or pop the 'a' from the top of the pushdown

li st .

From this, it should be emphasized that although a

nondeterministic pushdown automaton may provide a convenient

abstract definition of a language, the device must be

deterministically simulated to be realised in practice.

1 92

This will beillustrated through an example related to the

syntax of programming languages, most of whose constructs

can be described by context-free languages which are

themselves recognised by pushdown automata.

Example A. 3* 3

The following grammar fragment generates conditional

st at ement s:

stat---- > IF cond THEN stat

I IF cond THEN stat ELSE stat

I ot he r-st at

Thus the string

'IF condl THEN statl ELSE IF cond2 THEN stat2 ELSE stat?’

has the parse tree shown in figure A.3.6

A parse tree

Fi gure A.3•6

193

This grammar, however, is ambiguous, since the string

'IF condl THEN IF cond2 THEN statl ELSE stat2' has the two

parse trees shown if figure A.5*7

Two parse trees for an Ambiguous Sentence

Figure A. 7

In all programming languages with conditional statements of

this form, the first parsing is preferred. The general

"disambiguating" rule is "each ELSE is to be matched with

the closest previous unmatched THEN".

A method of incorporating this "disambiguating" rule into

the grammar fragment of example A.5*3 follows.

1 94

st at ->
I unmat ched-stat

mat ched-st at

matched-stat - --> IF cond THEN mat ched-st at

ELSE mat ched-st at

jother - st at

unmat ched-st at -> IF cond THEN st at

I| IF cond THEN mat ched-st at

ELSE unmat ched-st at

This grammar fragment generates the same set of strings as

the previous one, but it allows only one parsing for the

st ri ng

"IF condl THEN IF cond2 THEN statl ELSE stat2",

namely the one that associates the ELSE with the previous

unmatched THEN.

195

Appendix 4

DICTIONARY DESCRIPTION

There follows a description of the notation used for the

definition of the dictionary for English into Braille

Grade II translation. After this, the dictionary is

presented, including (a) the contractions and abbreviations

dictionary, and (b) the exceptions dictionary. The numbers

appearing at the beginning of each of these sections (89 and

29) indicate the number of different first two letters

existing for each case. This is used for efficient

construction of the required look-up trees.

General Comments.

1. Slashes are delimiters among different types of

items. Specifically, they are used to separate

contractions or abbreviations in English from

transitions at the beginning of the word, these

from transitions not at the beginning of the word,

and these from the translation representation.

2. Commas are delimiters within elements of the same

type (i.e. to separate one transition from

another) .

1 96

anot her cont ract i on o r5. Colons indicate that

abbreviation follows

charact ers.

with the same two starting

4. Full Stops indicate that no more cont ract ions or

abbreviations that st art with the same t wo

characters follow.

Specific Description (Dictionary of Contractions and

Abbreviat ions).

1. Before the first slash, is the contraction or

abbreviation to be contracted.

2. After the first slash, is the state transition if

the input text matches the dictionary, and if the

translation process is at the beginning of the

wo rd.

5. After the second slash, is the state transition if

the input text matches the dictionary, and if the

translation process is not at the beginning of the

wo rd.

4. After the third slash, is the actual translation

for the contraction or abbreviation under

consi derat ion.

- 197 -

L

5. After the fourth slash, is either a colon or a

period, to differentiate whether there are any more

contractions starting with the same two initial

characters, or not.

Specific Description (Dictionary of Exceptions).

1. Before the fi rst slash, i s the wo rd t 0 be

considered an except i on.

2. After the fi rst slash , i s the Braille

representation with which the exception word is to

be translated by a program.

5. The fields after the second and third slashes are

unused.

4. After the fourth slash, is the correct translation

for the exception under consideration.

5. After the fifth slash, is either a colon or a

period, to differentiate whether there are any more

exceptions starting with the same two initial

characters, or not.

The dictionary for EBT is shown next in table A.4.1, and the

dictionary for exceptions is shown in table A.4.2. It is

1 98

worth noting that by specifying exceptions in this

dictionary all derived words from the root word will also be

considered as exceptions. However, if this is not desired,

it is necessary to give a null after the specified part of

the word (in its Braille representation), which needs to be

considered as an exception, but which is not a root. This

is shown in the exceptions dictionary with the word "disc".

For cases where the space is contracted and this is not

desired because of the context in which it occurs (i.e.,

when "by was" appear together, the space should not be

contracted). In this special case, the word that should be

included as an exception is "was", to prevent the space

contraction of being performed. This is exemplified in the

exceptions dictionary.

1 99

! 89, !
I ABOUT/C,K/D,K/1,3/: !
! ABOVE/C,K//1,3,39/• !
! ACCORDING/C,K//1,9/: !
! ACROSS/C,K//1,9,23/• !
! AFTER/C,E,K,L/D,K/1,11/: !
! AFTERNOON/L,C,K//1,11,29/: !
! AFTERWARD/L,C,E,K,L//1,11,58/: !
! AFTERWARDS/L,K//1,11,58,14/. !
! AGAIN/C,E,K,L//1,27/: !
! AGAINST/L,C,K//1,27,12/. I
! ALLY//D,K/32,61/: !
I ALMOST/C,K//1,7,13/: I
! ALREADY/C,K//1,7,23/: !
! ALSO/C,K//1,7/: !
! ALTHOUGH/C,K//1,7,57/: I
! ALTOGETHER/C,K//1,7,30/: I
! ALWAYS/C,K//1,7,58/. !
! ANCE//D,K/40,17/: !
! AND/C,M,J,K/D,K/47/. I
! AR/K/K/28/. !
! AS/E,K,N//53/. !
! ATION//D,K/32,29/. !
! BB//H,G,K/6/. !
I BE/G,M//6/: !
! BECAUSE/M,C,K//6,9/: !
I BEFORE/M,C,K//6,11/: !
! BEHIND/M,C,K//6,19/: !
! BELOW/M,C,K//6,7/: !
! BESIDE/M,C,E,K,L//6,14/: !
! BESIDES/L,K//6,14,14/: !
! BETWEEN/M,C,K//6,30/: !
! BEYOND/M,C,K//6,61/. !
! BLE//D,K/60/: !
! BLIND/C,E,K,N//3,7/. !
! BRAILLE/C,E,K,N//3,23,7/. !
! BUT/C,E,K,N//3/. I
! BY/l,K,N//52/. !
I CAN/C,E,K,L//9/: !
! CANNOT/L,C,K//56,9/• I
! CC//H,K/18/. !
! CH/M/M/33/: !
! CHARACTER/M,C,K/M,D,K/16,33/: !
! CHILD/M,C,E,K,L//33/: !
! CHILDREN/L,C,K//33,29/. !
! COM/C,F,K//36/: !
! CON/C,F,M//1 8/: !
I CONCEIVE/M,C,K//1 8, 9, 39/: !
! CONCEIVING/C,K//1 8,9, 39, 27/: I

Dictionary of abbreviations and contractions
for English into Braille Grade II Translation

Table A.4.1

200

! COULD/C,K//9,25/• I
! DAY/C,K/D,K/1 6,25/. I
I DD//H,G,K/5O/. !
! DEC ElVE/C,K//25,9,39/: !
! DEC ElVING/C,K//25,9, 39, 27/: !
! DECLARE/C,K//25,9,7/: !
! DECLARING/C,K//25,9,7,27/. !
! DIS/C,F,K//5O/. !
! DO/E,K,N//25/. • I
! EA//K/2/. !
! ED/K/K/43/. !
! EITHER/C,K//17,10/. !
! EN/M/M/34/: !
! ENCE//M,D,G,K/48,17/: !
! ENOUGH/M,C,E,K,N//54/. !
! ER/K/K/59/. !
! EVER/C,M/D,K/16,17/: !
! EVERY/M,E,K,N//17/. I
I FATHER/C,K//16,11/. !
! FF//H,G,K/22/. !
! FIRST/C,K//11,12/. !
! FOR/C,M,J,K/D,K/63/. !
! FRIEND/C,K//11,23/: !
! FROM/C,E,K,N//11/. !
! FUL//D,G,K/48,7/. !
! GG//H,K/54/. I
! GH/K/K/35/. !
! GO/E,K,L//27/: I
! GOOD/L,C,K//27,25/. !
! GREAT/C,K//27,23,30/. !
! HAD/C,E,K,N//56, 1 9/: !
! HAVE/C,E,K,N//19/• I
! HERE/C,G,K/D,K/1 6, 1 9/: I
! HERSELF/C,K//19,59,11/• !
! HIM/C,E,K,L//1 9, 1 3/: !
! HIMSELF/L,C,K//19,13,11/: !
! HIS/C,E,K,N//38/. !
! IMMEDIATE/C,K//1 0,13, 1 3/• I
! IN/M/M/20/: !
! ING//M,K/44/: !
! INT0/M,C,I,K,N//20,22/. !
! IT/E,K,L//45/: I
! ITS/L,E,K,L//45,14/: !
! ITSELF/L,C,K//45,11/: I
! ITY//D,K/48,61/. !
! JUST/C,E,K,N//26/. !
! KNOW/C,M/D,K/16,5/: I
! KNOWLEDGE/M,C,E,K,N//5/» !
! LESS//D,K/40,14/: !
! LETTER/C,K//7,23/. !
I LIKE/C,E,K,N//7/: !
! LITTLE/C,K//7,7/• !
! LORD/C,K/D,K/16,7/. !

Table A.4.1 (continued)

201

! MANY/C,K/D,K/56,13/. I
! MENT//D,K/48,30/. I
! MORE/C,E,K,N//13/: !
! MOTHER/C,K/D,K/16,13/• I
! MUCH/C,K//13,33/: I
! MUST/C,E,K,N//13,12/. !
I MYSELF/C,K//13,61,11/. I
! NAME/C,K/D,H,G,K/16,29/. !
I NECESSARY/C,K/D,K/29,17,9/: !
! NEITHER/C,K//29,17,10/: !
! NESS//D,K/48,14/• I
! NOT/C,E,K,N//29/• I
I OF/M,J,K/K/55/. !
! ONE/C,G,M/D,G,K/16,21/: !
I ONESELF/M,C,K//16,21,11/: !
I ONG//D,K/48,27/. !
! OU/M/M/51/: I
! OUGHT/M,C,K/M,D,K/16,51/: !
! OUND//M,D,K/40,25/: I
! OUNT//M,D,K/40,30/: !
! OURSELVES/M, C, K//51 ,'23, 39, 14/: I
! OUT/M,E,K,N//51 / • !
! OW/K/K/42/. f
! PAID/C,K/D,K/1 5,25/: !
! PART/C,K/D,K/1 6,15/. I
! PEOPLE/C,K//1 5/: !
! PERCEIVE/C,K//1 5, 59, 9, 39/: !
! PERCElVING/C,K//1 5,59,9,39,27/: !
! PERHAPS/C,K//1 5,59, 1 9/• !
! QUESTION/C,K//1 6,31 /: !
! QUICK/C,K//31 , 5/: I
! QUITE/C,E,K,N//31/. I
! RATHER/C,K//23/. !
! RECEIVE/C,K//23,9, 39/: !
! RECEIVING/C,K//23, 9, 39, 27/: !
! REJOICE/C,K//23,26,9/: !
! REJ0ICING/C,K//23,26,9, 27/. !
! RIGHT/C,K/D,K/16,23/. !
I SAID/C,K//14,25/. !
! SH/M/K/41/: !
! SHALL/M,C,E,K,N//41/: !
I SHOULD/M,C,K//41,25/. !
I SION//D,K/40,29/. I
I SO/E,K,L//14/: !
! SOME/L,C,K/D,K/16,14/• !
! SPIRIT/C,K/D,K/56,14/. !
! ST/M/K/12/: I
! STILL/M,C,E,K,N//1 2/. !
! SUCH/C,K//1 4,33/• !
I TH/M/M/57/: !
! THAT/M,C,E,K,N//30/: !
! THE/M,M,J,K/M,K/46/: !
I THEIR/M,C,K//56,46/: I

Table A.4.1 (continued)

202

! THEMSELVES/M,C,K//46,15,59,14/: !
! THERE/M,C,K//16,46/: !
I THESE/M,C,E,K,N//24,46/: !
! THIS/M,C,K//57/: !
! THOSE/M,C,K//24,57/: !
! THROUGH/M,C,K/M,D,K/16,57/: !
I THYSELF/M,C,K//57,61,11/. !
! TIME/C,K/D,H,G,K/16,50/: I
! TION//D,K/48,29/• !
! TO/I,K,L//22/: !
! TODAY/L,C,K//5O,25/: !
! TOGETHER/L,C,K//5O,27,25/: !
! TOMORROW/L,C,K//5O,15/: !
! TONIGHT/L,C,K//5O,29/. I
! UNDER/C,K/D,K/16,57/• !
I UPON/C,K/D,K/24,57/. I
! US/E,K,N//57/• !
! VERY/C,K//59/. I
! WAS/C,E,K,N//52/. !
! WERE/C,E,K,N//54/• !
I WH/M/M/49/: 1
! WHERE/M,C,G,K/M,D,K/16,49/: !
! WHICH/M,C,K//49/: I
I WHOSE/M,C,K//24,49/. I
! WILL/C,E,K,N//58/: !
! WITH/C,M,J,K/D,K/62/. I
! WORD/C,K/D,K/24,58/: !
I WORK/C,K/D,K/16,58/: !
! WORLD/C,K/D,K/56,58/: !
I WOULD/C,K//58,25/. !
! YOU/C,E,K,L//61/: !
! YOUNG/L,C,K//16,61/: !
! YOUR/L,E,K,L//61,25/: !
! YOURSELF/L,C,K//61,25,11/: !
! YOURSELVES/L,C,K//61,25,59,14/. !

Table A.4.1 (continued)

205

! 29, !
! AESTHE/1 ,1 7,1 2,1 9,17///1,1 7, 1 4,46/. !
! ANEMONE/1 , 29, 1 7, 1 3, 1 6,21 ///1 , 29, 1 7, 1 3, 21,29, 1 7/• !
1 ATMOSPHERE/1 , 30, 1 3,21 , 1 4, 1 5, 1 6,1 9///1,30, 1 3,2 1 , 1 4, 1 5 , !
! 19,57,17/. !
! BARONE/3,28, 1 6,21///3, 28, 21,29, 17/. !
! BEGG/6,54///3,17,54/: !
! BELL/6,7, 7///3, 1 7, 7, 7/: !
! BELT/6,7,3O///3, 17,7,30/: >
I BENEATH/3,34,2,57///6,29/: !
! BEST/6,12///3,17,12/: !
! BETT/6,30,3O///3,17,30,30/. >
! BLINDNESS/3,7,20,25,48,14///3,7,48,14/: !
! BLOSSOMED/3,7,21,1 4,1 6, 1 4, 25///3,7,21,14,14,21,13,43/.I
! CENTIME/9,34,16,30///9,34,30,10,13,17/. !
! C0L0NE/9, 21,7,1 6, 21///9, 21,7, 21,2 9, 1 7/: !
! CONCEIVE/22,18,9,17,10,39,17///22,18,9,39/: !
! CONCH/1 8, 33///9, 2 1,29, 33/: !
! CONG/9,48,27///18,27/. !
I CREATION/9, 23, 2,48, 29///9, 23, 1 7, 32, 29/. !
! DISC/50,9,O///25,10,14,9/. !
! FORENAME/63,34,1,13,17///63,17,16,29/. !
! FRUITY/11,23,37,48,61///11,23,37,10,30,61/. i
! HERET/1 6,1 9.30///1 9, 59, 1 7,30/. i
! LI0HE/7,10,16,21///7,10,21,29,17/. !
! MISH/1 3, 1 0, 41///1 3, 1 0, 1 4, 1 9/. !
! PERSEVER/15,59,14,16,17///15,59,14,17,39,59/- !
! PI0NE/1 5, 1 0, 1 6,21///1 5,1 0, 21,29, 17/. !
I PREAM/15,23,2,13///15,23,17,1,13/: !
! PRED/1 5,23,43///1 5,23, 1 7, 25/. !
! REAB/23,2,3///23,17,1,3/: !
! REAC/23, 2,9///23, 1 7, 1,9/: >
! READJ/23,2,25,26///23, 17, 1 , 25,26/: !
! REABM/23, 2,25, 1 3///23, 1 7, 1,25, 1 3/: !
! REAFF/23,2,22///23,17,1,22/: f
! REALLY/23, 2,7, 7, 61 ///23, 1 7, 32, 61 /: f
! REAP/23,2,15///23,17,1,15/: !
! REARR/23,2,23,23///23,17,28,23/: !
! REASS/23,2,14,14///23,17,1,14,14/: !
! REDE/23,43,17///23,17,25, 17/: !
! REDI/23,43, 10///23,17,25, 10/: t
! RENAME/23,34, 1 , 1 3, 17///23, 1 7, 1 6,29/: !
I REN0U/23,34, 51 ///23, 17, 29,51 /: !
! REVER/23,16,17///23,17,39,59/. !
! SEVERE/1 4, 16, 17, 17///1 4,17,39,59,17/. !
! SH0ULDER/41,25,59///41,51,7,25, 59/. !
! SPHERE/1 4,15,16,19///14,15,19,59,17/. !
! SWORD/1 4,24,58///1 4, 58, 21,23,25/• !
! THENC/46,29,9///57,48/. >
! UNDERI VED/1 6,37,1 0, 39,43///37, 2 9,2 5,5 9, 1 0,39,43/• !
! WAS/52,52///3,61,0,52/. >
! WHEREVER/16,49,39,59///49,59,16,17/. !

Dictionary of Exceptions

Table A.4.2

204

Appendix 5

SPEEDING-UP TECHNIQUES

It is well known that whenever it is necessary to access

dictionaries frequently, any process slows down Thus the

best way to optimise the use of dictionaries is to guarant ee

that whenever an access is going to be made, it is really

necessary. One

many cases as

way of doing this is by filtering out as

possible that will result in unsuccessful

searches

With this in mind for the translation from English into

Braille Grade II, speeding-up techniques have been

introduced into the process to improve translation times,

namely with the use of positional n-grams to guarantee that

tree following is only done when it is really required.

This technique, developed by Riseman and Ehrich (Riseman and

Ehrich, 1971), is an effective means of extracting large

amounts of the information from the dictionary in a readily

retrievable form, at a relatively modest cost of storage.

This information is in the form of a database of quantised

n-grams (Riseman and Hanson, 1974). These n-grams, for any

n, may be either positional or non-positional, depending on

the amount of information stored and the method by which the

information is extracted from the dictionary. For example,

corresponding to the non-positional letter pair

205

probabilities, there is a 27 by 27 binary matrix whose

entries are 1 if and only if that corresponding letter pair

appears in some word in the dictionary. The rest of the

entries will have a zero value. It is worth noting that

spaces must be considered in non-positional information,

r equi ri ng 27 characters; positional n-grams using 26

charact ers automatically include this information, since a

space always precedes the first position and follows the

last position. Positional digram matrices are constructed

to take into consideration the relative positions of the

letters within words. One binary matrix exists for each

distinct pair of positions; for example, for 6 letter words

there are 15 positional digrams required to contain all

pairwise positional information contained in the dictionary.

These figures are obtained according to the following

f o rmula:

NPD = (NL)! I ((NL-2)! * 2!) , where

NPD is the number of positional digrams,

NL is the number of letters in words under

consi de rat i on,

and ! represents factorial.

This formula emerges from the different

permutations of 6 elements arranged pairwise.

possible

The set of all positional digrams allows one to obtain the

same information that would be obtained from an associative

206

memory that could only be asked the following type of

question: Is there some word in the dictionary that has the

letters 1 and 2 in positions i and j, respectively? Letters

1 and 2 may be any letter from ’a' to 'z'.

way. Since very few of 26**1 possible 1-letter words

From this, the extension to binary trigrams is quite

straightforward. In fact, a dictionary of words of length 1

can be viewed as a binary 1-gram organised in a different

actually exist in the dictionary, rather than construct an

extremely large and sparse matrix, the dictionary itself is

a list of the nonzero entries.

Here, for Engli sh int o Brailie Grade II t ranslat i on,

posit i onal bi nary di grams are used t 0 mi ni mi s e tree

followi ng. Bi nary di grams are used both for the

abbreviations and cont ract i ons di ct i onary and for the

except i ons dictionary. For the f i rst di ct i onary, t wo

posit i onal bi nary di grams are const ruct ed, both of them

considering only the first t wo letters of the Braille

cont ract i ons and abbrevi at i ons in the di ct i onary. Th e

purpose of this is •to be able to det ect with a bi na ry test

whether a certain pair of characters from the input stream

is valid or not as a Braille contraction or abbreviation.

The first of these digrams was built according to the

Braille contractions and abbreviations that can be used at

the beginning of the word, and the second, according to the

Braille contractions and abbreviations that can be used

207

anywhere, except at the beginning of the word. This, of

course, involves the redundancy generated by repeating the

Braille contractions and abbreviations that can be used

anywhere in the word; however, the splitting was considered

convenient because in both digrams the density is reduced

considerably, implying time saving mainly in tree following,

which is the most time-consuming part of the translation

process.

At this point it may be convenient to state some statistics

regarding digrams for the English Language and for Braille

contractions and abbreviations. The digram for English

Language has a density that approaches 60$ (Riseman and

Ehrich, 1 979). The digram for Braille contractions and

abbrevi at i ons that may occur at the beginning of the word

has a density of 11.7$ (figure A.5.1), and the digram for

Braille contractions and abbreviations that occur not at the

beginning of the word has a density of 6.5$ (figure A . 5 • 2)

It is important to note that according to the average length

of the English word (5*8 characters (Haynes and Si ems,

1 979)), 17.2* of the matching process will be carried out

using the first digram and the remaining 82.8$ using the

second di gram, which has a very low density and will avoid

most of the useless t ree followi ng.

In both digrams (figures A.5«1 and A.5.2), a binary 1 at an

intersection indicates that there are Braille contractions

or abbreviations starting with the corresponding two-letter

combination. the first character corresponds to the row of

208

the intersection; the second character corresponds to the

column.

For the exceptions dictionary only one digram is used,

considering the first two letters of exceptions, so that it

is possible to guarantee that when tree following is

performed, there is a high possibility of success in finding

an exception. The positional digram for exceptions is shown

in figure A.4.3, and has a density of 4.4%. However, it is

worth noting that this figure is entirely dependent on the

number of exceptions included in the dictionary, and would

vary according to this (or more precisely, according to the

number of different two initial letters in the exceptions

di ct i onary).

209

SECOND LETTER
ABCDEFGHIJKLMNOPQRSTUVWXYZ

I--- j
A!
B!
C!
D !
E!
F !

1 '

1
1

1

I 1 1

1
1

1
1

1

1

1
1

1

1 1
1

1
1

1

1

11

1
1

1

F G ! 1 1 1
I H ! 1 1 1
R I ! 1 1 1
S J! 1
T K! 1

L ! 1 1 1
L M! 1 1 1 1
E N ! 1 1 1
T 0! 1 1 1 1
T P ! 1 1
E Q! 1
R R I 1 1 1

S ! 1 1 1 1 1 1
T I 1 1 1
U! 1 1 1
V ! 1
W! 1 1 1 1 1
X! !
Y! 1 !
Z! I
i___ !

Density of the digram: 11.7$

Binary Digram for Braille Contractions and Abbreviations
at the Beginning of the Word
(Letter positions 1 and 2)

Fi gure A . 5 • 1

210

SECOND LETTER
ABCDEFGHIJKLMNOPQRSTUVWXYZ

F
I
R
S
T

L
E
T
T
E
R

A! 1 1 1 1 t
B! 1 1 j
C ! 1 1 i
D ! 1 1 1 I
E! 1 1 1 1 1 »
F I 1 1 1 j
G ! 1 1 j
H! j
I ! 1 1 t
J! I
K! 1 j
L I 1 j
M! 1 1 j
N! 1 i
0 I 1 1 1 1 j
P I 1 j
Q! i
R! 1 t
S! 1 1 1 1 j
T I 1 1 j
U! 1 j
V! j
W! 1 1 1 j
X! t
Y ! I
Z !

t
t

______ t

Density of the digram: 6.5$

Binary Digram for Braille Contractions and Abbreviations
Not at the Beginning of the Word

(Letter positions 1 and 2)

Fi gure A . 5 • 2

21 1

SECOND LETTER
ABCDEFGHIJKLMNOPQRSTUVWXYZ

!__ t

A!
B! 1

1
1

1
1

1

C ! 1 1 1
D ! 1 1
E! 1
F I 1

F G I
I H! 1
R I!
S J!
T K!

L ! 1
L M! 1
E N!
T 0 !
T P! 1 1 1 1
E Q!
R R! 1

SI 1 1 1 1
T ! 1
U! 1
V! !
W! 1 1 !
X! !
Y! . !
Z ! . !

Density of the digram: 4.4%

Positional Binary Digram for EBT Exceptions
(Letter positions 1 and 2)

Fi gure A . 5 • 3

21 2

Appendix 6

PROGRAM EXECUTION AND LISTING

1. Running the Translation Program.

The instructions for executing the program will vary

depending on the machine and operating system used.

Specifically, to run the program on an Apple

microcomputer, first it is recommended to set the file

prefix to "EBT:". Then the "X" command should be used.

The response to the execution-file query should be the

name of the file which contains the program code. At

this moment, the translation program is running, and the

names for the input and output files are requested. If

the input file does not exist, the program terminates

and the system is re-initialised. Afterwards, the user

is requested to decide whether or not Grade II

translation is required. If this is the caa^e, the

dictionaries of abbreviations, contractions and

exceptions are loaded, and then the translation process

begins. If Grade II Braille is not desired, Grade I

translation starts immediately.

In relation to the input text submitted to the

translator there are some control characters which will

be required for translating English into Braille

adequately* These are listed next.

215

Italics sign. The symbol for specifying that a word

should be italicised is "#". This symbol

must precede the italicised word.

- Bypass contraction. For specifying that a certain

string should not be contracted, an

"(©" (at sign) should precede it. This sign

may appear anywhere within a word, and from

this point on, the following text will be

translated as Grade I. The bypassing of

contractions is terminated either by a blank

or by another 'jg”, thus enabling contraction of

just’ nart of a word.

- Letter sign. An ampersand (’’&") at the beginning of a

string specifies that the following

characters are to be interpreted as

individual letters rather than as a word.

- New paragraph. A backslash ("\") in the input text

specifies provision of a new paragraph in the

corresponding Braille output.

If letter, bypass and/or italics symbols must be

specified together, the precedence used should be:

first, the bypass (no-contraction) character, then the

letter symbol, and finally the italics symbol.

214

2. The Program Listing.

The listing of the program for English into Braille

Grade II translation is provided next. It is internally-

commented for ease of understanding.

The individual parts of the program are referred to and

described in chapter 5» section 5*2.

215

program ebt;

const
nchars = 26;
maxnstacks = 10;
wordsize = 20;
linesize = 26;
linesperpage = 16;
numbersymbol = 60;
lettersymbol = 48;
signsymbol = 48;
closequote = 52;
letter = -;
bypasschar = '0';
paragraph = 'V;
italics =

type
asciirange = 32..95;
delimiter = '
number = '0'..'9';
bchset = 0..63;

translref = ~transls; <* pointer to translations *)
transls = record

transla : integer;
ntransla : translref;

end;
transiref = ''transitions; (* pointer to transitions *)
transitions = record

state : char;
nexttransi : transiref;

end;
contref = ''conts; <* pointer to contractions *)
conts = record

ichars : transiref;
braillerep : translref;
transibw : transiref;
transinbw : transiref;
transl : translref;
nextcontraction : contref;

end;
noderef = ''node; <* pointer to node *)
node = record

key : integer;
contra : contref;
left,right : noderef;

end;
stackref = '‘stack; (* poin ter to stack *)
stack = record

level : integer;
chs : char;
brreps : integer;
posatbw : boolean;
depth : integer;
presstate : char;
acnode : noderef;
accont : contref;
acichars : transiref;

216

numichars
acbraillerep
actransi
actransl
next

end;

: integer;
: translref;
: transiref;
: translref;
: stackref;

var
inp,out,inp2 : text;
capital,lastcharblank,lastchdot,
wordcomplete,linecomplete,wordfitinline,
num!lag,letterflag,exceptions,quotation,
gradeii,bypasscontraction,newparagraph,
bypassgradeii,positionatbw,posblankcont : boolean;
digrambw,digramnbw,excepdigram : arrayE1..nchars,1..nchars]

of boolean;
brrep,auxbrrep,xx,nletters,
linenumber,linecount,wlength,stacklevel
delims
numbers
ordbchset
inputch,presentstate

: integer;
: set of delimiter;
: set of number;
: set of bchset;
: char;

sref
stacks : arrayE1..maxnstacks]
conthead
hbwtransi,hnbwtransi,icharshead
brarephead,translhead

: stackref;
of stackref;

: contref;
: transiref;
: translref;

root,exceproot
braillechrep
word
line
heap

: noderef;
: array E ascii range] of integer;
: array E .1.. words! zej of integer;
: array E1..linesize] of integer;

: ''integer;

217

procedure openfiles;
var

inpfile,outfile : string;
begin <* openfiles *)

write(“Input file name: ');
readln(inpfile);
reset(inp,inpfile);
write('Output file name: ");
readln(outf ile) ;
rewrite(out,outfile);
reset(inp2,'abcont..text') ;

end (* openfiles *);

procedure initialise;
var

answer : char;
i,j : integer;
newloc : stackref;

(* initialisation of global variables *)
begin (* initialise *)

wordcomplete : = false;
linecomplete := false;
wordfitinline : = true;
numflag := false;
letterflag := false;
exceptions := false;
quotation := false;
gradeii := false;
bypasscontraction := false;
newparagraph := false;
bypassgradeii := false;
linenumber := 0;
linecount := 0;
wlength := 0;
stacklevel := 0;

delims

numbers
r J;

write("Do you want Grade II translation? ");
reading answer);
if (answer = ~Y~) or (answer = "y") then

begin
gradeii := true;
positionatbw := true;
posblankcont := false;
for i := 1 to nchars do

for j := 1 to nchars do
begin
digrambw[i,j] := false;
digramnbwEi,j3 := false;
excepdigraro[i,j] := false;
end;

new(newloc);
sref := newloc;
conthead := nil;
icharshead := nil;

218

brarephead := nil;
hbutransi := nil;
hnbwtransi := nil;
translhead := nil;
for i := 1 to maxnstacks do

stacksLil := nil;
end

end (* initialise *);

procedure mapbrailletoascii;
<* procedure in charge of mapping the braille characters

to the ASCII character set *)
var

i : integer;
begin (* mapbrailletoascii *)

braillechrepLordC 'A') 3
braillechrepLordC'B') 3
braillechrepLordC'C') 3
brai1lechrep[ord<"D')1
braillechrepLordC)3
braillechrepLordC'F') 1
brai1lechrep[ord<'G')1
braillechrepLordC'H') 3
braillechrepLordC'I') 3
braillechrep[ord<'J')1
braillechrepLord<'K')3
braillechrepLord<'L')J
brail lech repL ord ('M') J
braillechrepEord< 'N')J
brai 1 lech rep L ord ('0') 3
braillechrepLord('P') 3
brai1lechrepLord<'Q') 3
braillechrepLord('R')3
braillechrepLord('S')3
braillechrepLordC'T')3
braillechrepLord<'U')3
brai1lechrepLord('V')3
braillechrepLordC'W')3
braillechrepLord<'X')3
braillechrepL ord<'Y')3
brai1lechrepLord<'Z') 3
ordbchset :=

= 1;
= 3;
= 9;
= 25;
= 17;
= 11;
= 27;
= 19;
= 10;
= 26;
= 5;
= 7;
= 13;
= 29;
= 21;
= 15;
= 31;
= 23;
= 14;
= 30;
= 37;
= 39;
= 58;
= 45;
= 61;
= 53;

LI,3,9,25,17,11,27,19,10,26,5,7,13,29,21,15,31,
23,14,30,37,39,58,45,61,533;

(* ordbchset is the ordinary braille character set *)
to ordC'9') do
:= braillechrepLi+163;

for i := ord<'1')
braillechrepLi 3

braillechrepLord<
brai1lechrep[ord<
braillechrepLordC
brai1lechrepEord (
braillechrepLordC
braillechrepLordC
braillechrep[ord<
braillechrep[ord(
braillechrep[ord(
braillechrepLordC
braillechrepLordC
braillechrepLordC

O') 3 = 26;
')3 = 0;

!')3 - 22;
?')3 = 38;
”')3 = 38;
"')3 := 4;
C')3 = 54;
)')3 = 54;
Z)3 = 2;
~')3 = 36;
. ~>3 - 50,
:')3 = 18;

219

braillechrepEord(";*)] := 6;
braillechrepEord<"/')] := 12;
braillechrepEord<"+")] := 22;
braillechrepEord<' = ")] := 54;
braillechrepEordC)] := 50;
braillechrepEordC"%")] := 18;
braillechrepEordC"*")] := 20;
braillechrepEordC"E")] : = 32;
braillechrepEordC"]*)] 54;
braillechrepEordC"#")] := 40; C*
braillechrepEordC"&")] := 48; C*
end C* mapbrailletoascii *);

char for specifying italics *)
char for letter sign *)

procedure buildabconttransnetw;
C* Procedure in charge of building up the dictionary

required for the translation process. Specifically,
it builds the abbreviation and contraction
transition network. *)

var
n : integer;

function tree Cn:integer) : noderef;
C* Construction of a perfectly balanced tree with n nodes.

Recursive function *)
var

newnode : noderef;
x,nl,nr : integer;
ch : char;

function formcontraction Cvar ch : char) : contref;
(* Insertion of contractions in the dictionary. Recursive

procedure that calls itself as many times as contractions
with the same two initial characters exist. *)

var
newcont : contref;
chl,ch2 : char;

function ftransllist : translref;
(* Formation of translation list *)

var
newtransl : translref;
num : integer;

begin (* ftransllist *)
readCinp2,num);
readC inp2„ch);
read(inp2,ch);
new(newtransl);
newtransl~.transla : = num;
if ch = "/" then

newtransl''. ntransla := nil
el se

newtransl*' . ntransla : = ftransllist;
ftransllist := newtransl;

end (* ftransllist *);

function ftransilist : transi ref;
(* Insertion of input characters into dictionary

and of lists of transitions. *)
var

newtransi : transire!;
begin <* ftransilist *)

220

read(inp2,ch);
if ch = then

ftransilist := nil
else

begin
if ch = 'then

read(inp2, ch);
new(newtransi);
newtransi''.state := ch;
newtransi''. nexttransi := ftransilist;
ftransilist := newtransi;
end

end (* ftransilist *);

begin <* formcontraction *)
if ch <> - * then

begin
icharshead : = itransilist;
chi := icharshead~.state;
ch2 := icharshead''. nexttransi~ . state;
x := nchars * <ord<chl) - ord('A")) +

(ord<ch2) - ord('A')) + 1;
if exceptions then

brarephead := ftransilist;
hbwtransi := ftransilist;
if hbwtransi <> nil then

digrambw[ord<chi) - ord('A') + 1,
ord<ch2) - ord('A') + 1] := true;

hnbwtransi := ftransilist;
if hnbwtransi <> nil then

digramnbwlord(chl) - ord(JA') + 1,
ord(ch2) - ord("A") + 1] := true;

if exceptions then
excepdigram[ord<chi) - ord<"A') + 1,

ord(ch2) - ord('A^) + 1] := true;
translhead ftransilist;
readlnC inp2,ch);
new(newcont);
with newcont'' do

begin
ichars := icharshead;
if exceptions then

braillerep := brarephead;
transibw := hbwtransi;
transinbw := hnbwtransi;
transl := translhead;
nextcontraction := f ormcont.ract j on< ch)
end;

formcontraction newcont
end (* if then *)

else
formcontraction := nil

end (* formcontraction *);

begin (* tree *)
if n = 0 then

tree := nil
else

221

begin
conthead ;= formcontraction(ch);
ch ;= ’ ’ ;
nl s = n div 2;
nr := n - nl - 1;
new(newnode);
with newnodeA do

begin
key ; = x;
contra j = conthead;
left := tree(nl) ;
right := tree(nr)
end;

tree a= newnode
end

end (* tree *);

begin (* bui1dabconttransnetw *)
readln(i np2,n);
root := tree(n) ;
exceptions true;
readln(i np2,n);
exceproot : = tree(n);
exceptions ;= false;

end (* bui1dabconttransnetw *);

procedure getbrai11 erep;
(* Procedure for reading the next input character and getting its

corresponding Braille representation *)
const

deface = 32; (# for treating lowercase as uppercase *)
begin (* getbrai11 erep *)
repeat

inputch 8= inpZs;
get(inp);
if eoln(inp) and not eof(inp) then

get (inp);
until (not 1astcharblank) or (inputch <> ’ ’) or eof(inp);
if ord(inputch) > 96 then

begi n
inputch 8= chr(ord(inputch) - deface);
capital ;= true
end;

newparagraph := (inputch = paragraph);
bypassgradeii := (inputch = bypasschar);
brrep ;= brai11echrepCord(inputch)3;
if (lastcharblank or lastchdot) and (inputch = ’ .) then

brrep := 4; (* representation of ellipsis *)
lastcharblank := (inputch - ? ’);
lastchdot != (ihputch = ’.’);
if inputch = then

begin
if quotation then

begin
brrep 8 = closequote;
quotation 8» false
end

else

222

quotation := true
end;

if inputch in [“*■*] then
case inputch of

■* * - : auxbrrep : = 20;
: auxbrrep := 54;

'r : auxbrrep := 4;
: auxbrrep := 15

end;
if (inputch = bypasschar) or (inputch = letter) then

bypasscontraction := not bypasscontraction
el se

if bypasscontraction then
if inputch = then

bypasscontraction := false;
end (* getbraillerep *);

function locatekey(x : integer; t : noderef) : noderef;
(* function for locating existinq kev in di rt i rv ♦’i
var

found,endofs : boolean;
begin
found := false;
endofs : = false;
while (t <> nil) and (not found) and (not endofs) do

begin
if t~.key = x then

found := true
else

if t^.key > x then
endofs : = true

else
begin
if t~.right <> nil then

begin
if t* . right''. key > x then

t := t^.left
else

t := t^.right
end

else
t := t~.left

end
end;

if found then
locatekey := t

else
locatekey := nil

end (* locatekey *);

223

procedure f ormbraword;
(* Formation of a Braille grade 1' or grade II
var

stackpos : integer;
topofstack : stackref;
contatoutlevel : boolean;
numtrans : integer;

word *)

procedure push(var topofstack : stackref);
<* this procedure creates a new .location on top of a stack *)

var
neuloc : stackref;

begin <* push *)
new(newloc);
new1oc".next := topofstack;
topofstack := newioc
end <* push *);

procedure pop(var topofstack : stackref);
(* this procedure eliminates the top element from a stack *)

var
temp : stackref;

begin <* pop *)
if topofstack <> nil then

begin
temp topofstack;
topofstack := topof stack*' . next;

(* disposeC temp) *) (* since "dispose"* is not implemented in
apple pascal, "mark" and "release"
are used in the outer block *)

end
else

writeln("Error: Popping element from empty stack.")
end (* pop *);

procedure checkfornums;
(* number translation *)

begin <* checkfornums *)
if inputch in numbers then

begin
if (not numflag) and (stacklevel = 0) then

begin
wlength := succ(wlength);
wordEwlength] := numbersymbol;
numflag := true;
letterflag false
end

end
else

begin
if numflag or letterflag then

begin
if inputch in then

begin
if (not letterflag) and not

((inputch = "T") or (inputch ~ "R") or
(inputch = "S") or (inputch = 'N')) then

begin
wlength := succ(wlength);

224

wordEwlength] := lettersymbol;
letterflag := true
end

end
else

begin
if inputch in /r then

begin
wlength := succ(wlength);
wordEwlength] := 0;
wlength := succ<wlength);
wordEwlength] := signsymbol;
if inputch = '/' then

brrep := 50
else

if inputch = then
brrep := 38;

end;
letterflag := false
end;

numflag := false
end

end
end (* checkfornums *);

procedure translate;
<* Procedure for coordinating the translation

of the input text *)
var

possiblecont,brrepsinordbchset : boolean;
blankgen,continue : boolean;
i,x,decr : integer;

function getkey(topofstack:stackref; inputch:char) : integer;
(* This function computes the key value, according to the

input character and the one on top of the stack *)
var

chi : char;
begin (* getkey *)
chi := topof stack''. chs;
getkey := nchars * (ord(chi)-ord<'A')) +

(ord(inputch)-ord('A")) + 1
end (* getkey *);

function checkdigram(topofstack : stackref;
inputch : char) : boolean;

<* This function checks for the possibility of contracting
any two contiguous characters. Binary digrams are used
for this purpose. *)

begin
with topofstack~ do

begin
if posatbw then <* digram for contractions at the

beginning of the word *)
checkdigram := digrambwEord(chs) - ord('A') + 1,

ord(inputch) - ord('A') + 1]
else (* digram for contractions not at the beginning

of the word *)

225

checkdigram digramnbw[ord(chs) - ord('A') + 1,
ord(inputch) - ord('A') + 1]

end
end <* checkdigram *);

procedure getnextcont;
(* This procedure gets the next contraction in the

dictionary, if there is one with the same two
starting characters *)

begin <* getnextcont *)
with sref~ do

begin
continue := false;
while not continue and (accont''. nextcontraction <> nil) do

begin
accont := accont''. nextcontraction;
acichars accont''. ichars;
if posatbw then

actransi := accont''. transibw
else

actransi := acconf".transinbw;
actransi := accont~.transl;
if actransi <> nil then

continue := true
end

end
end (* getnextcont *);

procedure getposatnextcont;
(* This procedure gets the current position in the word

being analised, in the following word (if there is one
with the same 2 starting chars) *)

var
oldichars,cmpichars : transiref;
posfound : boolean;
i : integer;

begin (* getposatnextcont *)
posfound := false;
continue := true;
oldichars : = sref'". accont''. ichars;
while continue and not posfound do

begin
i : = 1 ;
cmpichars := oldichars;
getnextcont;
with sref~ do

begin
if continue then

begin
while (i <= numichars) and continue do

begin
if acichars <> nil then

begin
if cmpichars <> nil then

begin
if acichars''. state <> cmpichars''. state then

continue := false;
acichars := acichars''. nexttransi;

226

cmpichars := cmpichars''. nexttransi
end

else
continue := false

end
else

begin
if cmpichars <> nil then

continue := false
end;

i := succ<i);
if presentstate = then

presentstate := actransi''.state;
if (actransi''. state <> presentstate) and

(actransi~.nexttransi <> nil) then
actransi := actransi''. nexttransi

end;
if (acichars~.state = inputch) and

(i = numichars+1) and continue then
posfound := true;

end (* if continue *)
end <* with *)

end (* while *);
if not posfound then

presentstate :=
end (* getposatnextcont *);

procedure gettransition;
<* procedure for performing a state transition according

to the information in the dictionary *)
var

cond : boolean;
x : integer;

procedure getnextstate;
begin
sref~.actransi := sref~ . actransi'' . nexttransi;
presentstate := sref . actransi''. state
end;

procedure cdtransition;
<* transition from state 'C' and "D" *)
begin (* cdtransition *)
if inputch <> sref ~. acichars''. state then

getposatnextcont;
if presentstate <> "N" then

if sref ~. acichars''. nexttransi = nil then
getnextstate;.

end <* cdtransition *);

procedure etransition;
(* transition from state "E" *)
var

y : integer;
begin <* etransition *)
y : = sref * . acnode''. key;
if inputch = then

presentstate := sref ~. actransi'' . nexttransi''. state

227

el se
if inputch in deli ms then

if (y=118) or (y=573) or (y=577) or
((y= 191) and (srefnext "-, brreps =14)) then

presentstate := ’N’ (* do not allow -’was-’, ’were’, ’his’,
■’enough'’ before punctuation marks *)

el se
presentstate := sref actransi nexttransi-’-. state

else
begin
presentstate : = srefactransinexttransi nexttransistate;
if presentstate = ’L’ then

getposatnextcont;
if presentstate = ’L’ then

getnextstate;
end

end (* etransition *);

procedure ftransition;
(* transition from state ’F’s consideration of ’COM’, ’CON’, ’DIS’ *)
var

cond1,cond2,cond3,cond4 s boolean;
begin (* ftransition $)
nletters ;= 3; (* number of letters in ’COM’, ’CON’, ’DIS’ *)
x sref acnode"-, key;
deer ;= sref numichars - nletters + 1;
i f sref posatbw then

if inputch in delims then
presentstate ;= ’N’

el se

push(stacksC11);

begin
condl := (x=87) and (inputch=’T’); (* ’DIS’ before ’T’ *)
cond2 := (x=67) and (stacksC 1 ZT-. chs=’ N’) and ((i nputch = ’ E’) or

(inputch = ’S’) or (inputch = ’K’>); (* ’CON’ before ’E,G,
cond3 := (x=87) and (inputch=’H’); (* ’DIS’ before ’H’ *)
if condl then

begin

srefnext := stacksC 1 J-s. next;
stacksC 1 J-A- : = sref--;
with stacks[1 J-"' do

begin
depth := succ(depth);
numichars ;= pred(numichars);
brreps := 14; (* mapping for ’S’ is 14, instead of m

mapping stored for ’ST’ *)
end;

contatout1evel := false;
sref--.chs := inputch;
sref •-» brreps := 30 (* mapping for ’T’ *)
end

el se

228

if cond2 or cond3 then <* 'CON' and 'DIS' will not be
contracted in these cases *

presentstate := 'N'
else
getnextstate;

end
else

presentstate := "N"
end (* ftransition *);

procedure gtransition;
<* procedure for getting the transition from

state 'G' (special cases) *)
var

condl,cond2 : boolean;
begin <* gtransition *);
x := sref . acnode''. key;
condl := (((x=118) or <x=378)) and

((inputch='D') or (inputch= 'N') or (inputch='R')))
(* 'ENCE' or 'ONE' followed by 'D', 'N', or 'R' *)
or
((x=31) and ((input.ch='A') or (inputch='D') or

(inputch='E') or (inputch-'N') or
(inputch='R')))

(* 'BE' followed by 'A', 'D', 'E', 'N' or 'R' *)
or
(<x=187) and <<inputch='D') or (inputch='N') or
(inputch='R')));

(* 'HERE' followed by 'D', *N* or 'R' *)
cond2 := (<x=28) and (inputch='E'))

(* 'BB' followed by 'BLE' *)
or
(<x=82) and (inputch='Y'))

(* 'DD' followed by 'DAY' *)
o r
((x=136) and (inputch='R'))

(* 'FF' followed by 'FOR' *)
or
((x=339) and (inputch='T'))

(* 'NAME' followed by 'MENT' *)
or
((x=503) and (inputch='T'));

(* 'TIME' followed by 'MENT' *)
if x in [28,82,136,339,503] then

if inputch in delims then
deer := 1

else
deer := 2

else
if inputch in delims then

deer := 0
else

deer := 1;
if condl or cond2 then

presentstate := 'N'
el se

getnextstate;
if (presentstate='M') and (inputch in delims) then

229

presentstate := "K";
end (* gtransition *);

procedure htransition;
<* procedure for getting transitions in the middle

of the word *)
begin <* htransition *)
x := srefacnode^.key;
if inputch in delims then

if (x=339) or (x=503) then
presentstate := "K"

el se
presentstate := "N"

el se
begin
deer := 1; (* delayed decision with deface - 1 *)
getnextstate;
if ((x=28) and (inputch <> "L")) or

(* check for "BB" followed by "BLE" *)
((x=82) and (inputch <> "A")) or

(* "DD" followed by "DAY" *)
(<x=136) and (inputch <> "0")) or

(* followed by "FOR" *)
((x=339) and (inputch <> "N")) or

(* "NAME" followed by "WENT' *)
((x=503) and (inputch <> "N")) then

(* "TIME" followed by "WENT" *)
getnextstate;

end
end (* htransition *);

procedure .^transition;
(* procedure for getting transitions for words whose

contraction depends on their position within the line,
in relation to the word that follows *)

begin (* itransition *)
if posblankcont then

begin
if (sref*. actransl~.transla = 22) or

(sref~.actransl~.transla = 52) then
nletters := 2; (* # of letters in "TO" or "BY" *)

deer := sref~.depth - nletters;
if (inputch in delims) or (inputch in numbers) then

if brrep <> 4 then
begin
getnextstate;
posblankcont := false
end

else
begin
presentstate : = "N";
blankgen := true;
posblankcont := false
end

else
begin
if (linecount + sref''. depth) > linesize then

il (linecount t nletters) < iinesize then

230 -

begin (* the first word fits in the line *)
presentstate := 'N“;
blankgen := true;
posblankcont := false
end

end
end

else
begin
deer := 0;
if inputch = then

begin
posblankcont := true;
nletters := sref"-. depth
end

el se
if (inputch in delims) or (inputch in numbers) then

presentstate := "N”
else

presentstate :=
srefactransinexttransi~. nexttransi"‘. state

end;
if presentstate = "L" then

getposatnexteont;
if presentstate - "L" then

getnextstate;
end (* itransition *);

procedure jtransition;
(* procedure for getting transitions when

contracting spaces *)
var

t : integer;
begin (* jtransition *)
if posblankcont then

begin
if not (inputch in deliias) and

not (inputch in numbers) then
begin
deer := sref~.depth - nletters;
if stacksEstackpos + 1] <> nil then

begin
if stacksEstackpos+1K.actransl <> nil then

begin
if stacks E st.ackpos+1 actransl*. ntransla = nil then

begin
t := stacksEstackpos+1.actransl~.transla;
if (t<>47) and (t<>63) and (t<>55) and (t<>46) and

(t<>57) and (t<>62) and (t<>58) then
begin
presentstate := “N‘;
blankgen : = true
end

else
if ((t.=58) and (decr=2) and (inputch <> -T")> or

<(t=47) and (decr=2) and (inputch <> "ED) then
begin
presentstate "N";

231

blankgen := true
end

end
else

begin
presentstate := "N";
blankgen := true
end

end
else

begin
presentstate :=' "N";
blankgen := true
end

end
else

begin
presentstate := "N";
blankgen := true
end;

if (presentstate = "N") and (stackpos = 1) then
posblankcont := false

end
else

if (sref~.depth > (nletters + 1)) or
((sref~.depth = nletters + 1) and
(inputch <> " ')) then

begin
deer := sref~.depth - nletters;
blankgen := true;
presentstate := "N"
end

else
begin
deer := 0;
nletters := sref~.depth;
if stackpos = 1 then

posblankcont := false;
if inputch o'" then

getnextstate
end

end
else

begin
deer := 0;
nletters := sref~.depth;
if inputch in ["A","F","0","T","W"] then

begin
if stackpos = 1 then

posblankcont := true
end

else
begin
presentstate := "N";
blankgen := true
end

end
end (* jtransition *>;

232

procedure ratransition;
(* procedure for getting transitions for words which

will be contracted but which may form part of a
longer contraction *)

var
cond,posfound : boolean;

begin
cond := false;
if eof<inp) then

presentstate := "N"
else

begin
continue := true;
if sref~. actransi''. nexttransi <> nil then

begin
if (sref~. actransi''. nexttransi''. state = "J") and

(inputch <> " “J then
begin
deer := 0;
cond := true
end

end
else

cond := true;
if cond then

begin
if (<sref~.acichars = nil) or

(sref^ . acichars''. state <> inputch)) and
continue then

getposatnextcont
end;

if continue then
begin
getnextstate;
if presentstate - "J" then

begin
deer := 0;
if inputch = " “ then

begin
if (stackpos = 2) and

(stacks!1.presstate = "I") then
presentstate := “N"

else
begin
if stackpos = 1 then

posblankcont := false;
stacks!stackposJ*', presstate := "J";
stacks! stackposI''. actransi : =

stacks!stackpos 3~.actransi'.nexttransi
end

end
else

begin
if sref".depth > 1 then

blankgen := true;
presentstate := "N'
end

233 -

end
end

else
presentstate := "FT

end
end <* mtransition *);

begin (* gettransition *)
case presentstate of

: begin
if sref~.actransi = nil then

getposatnextcont
else

presentstate := sref ~. actransi''. state;
if (stackpos > 1) and

(presentstate = "I") then
if stacksEstackpos-1.presstate = then

begin
getposatnextcont;
if presentstate = " ' then

presentstate := sref ~. actransi''. state
end;

if stackpos > 1 then
if (stacks[stackpos~l]~.actransi~.transla = 23) and

(stacks[stackpos]~.actransi~.transla = 2) then
presentstate

end;
:= 'FT;

"D" : cdtransition;
(* transition f rom states and

'E" : etransition;
(* transition f rom state "E" *)

: ftransition;
(* transition f rom state *)

'G" : gtransition;
(* transition f rom state 'G" *)

'IT : htransition;
(* transition f rom state ^ir *)

"I* : itransition;
(* transition f rom state 'i- *)

"J" : jtransition;
(* transition f rom state *)

'IT : mtransition;
(* transition f rom state *)

end (* case *);
if eof(inp) then

if (presentstate in L,"D","E", "G", ,'K']) or
((presentstate = "I") and (wlength > 4)) then

presentstate := "K"
else

presentstate := ~NT;
srefpresstate := presentstate;
end (* gettransition *);

234

procedure contract;
(* Procedure for performing contractions, whenever

they are detected. *)
var

position, sdepth,tot,i,j,k
i nitrans,trans
temp

procedure clearupperstacks;

integer;
translref;
stack ref;

var
i,j : integer;

begin (* clearupperstacks *)
for i stackposM to stacklevel-decr do

begin
sdepth := stacksLi I"',depth;
for j :=• 1 to sdepth do

pop(stacksEi3);
stacksEi] stacksEi+decr3;
stacksEi+decr3 := nil
end;

if (stacklevel-decr) >= (stackpos+1) then
stacklevel stackpos + deer;

end (* clear.upperstacks *);

procedure gettrnsl(var i,j : integer; var trans : translref);
(* Procedure for getting the translation from the dictionary

and placing it on the current stacks or output array, as
it corresponds *)

var
k : integer;

begin (* gettrnsl *)
3 := 0;
while trans <> nil do

begin
if stackpos = i then

numtrans := succ(numtrans);
if (stackpos^l) and (presentstate='K') then

begin
3 := succ(j);
wordEwlength+j1 := trans"'. transla
end

else
begin
if (stackpos <> i) or (presentstate <> "K") then

begin
push(stacksEi 3);
sref''. next := stacksEil"'. next;
stacks Li J"' : = sref"';
with stacksEil"' do

begin
depth := depth + 1;
brreps := trans"'. transla
end;

sref"' := stacksEil''
end

end;
trans := trans"'. ntransla
end (* while *>;

wlength := wlength 4- j;
end <* gettrnsl *>;

235

begin (* contract *)
cl earupperstacks;
if deer = 0 then

contatoutlevel := true;
sdepth := stacks!stackpos]~.depth;
initrans := sref . actrans'L;
if deer = 0 then

sref~.numichars sref '.numichars + 1;
for i:= stackpos downto 1 do

begin
trans := initrans;
if i < stackpos then

sref" := stacksfi]'';
if deer > 0 then

begin
if stacksfstackpos+1] - nil then

tot := deer
else

tot := deer - stacks!stackpos+1K.depth
end

el se
tot := 0;

k := 0;
for j := 1 to sdepth do

(* pop chars that will be contracted *)
begin
if (deer > 0) and (stacks!stackpos+1]~.depth <= i) then

begin
if k < tot then

word!wordsize-k] := stacks!i]'\ brreps;
k := succ(k)
end;

pop!stacks!i]>
end;

if stacksfi] <> nil then
(* store present stack depth after pop *)

sref''.depth := stacksfi]''.depth
else

sref''.depth := 0;
gettrnsl<i,j,trans)

(* get translation for current contraction *)
end (* for *);

if presentstate = "K" then
begin
if (deer > 0) and (stackpos = 1) then

begin
for j := 1 to tot do

word!wlength+j] := wordfwordsize-tot+j];
wlength := wlength + tot
end;

for i := stackpos to stacklevel - 1 do
begin
stacksfi] := stacksfi+1];
if stacksfi] <> nil then

stacksfi]~.level := stacks!iK. level - 1;
stacksfi+1] := nil
end;

236

stacklevel := pred<stacklevel);
end

else (* presentstate = "M" *)
begi n
if <decr > 0) and (stackpos = 1) then

begin
for j := 1 to tot do

begin
push(stacksE stackpos]);
sref''.next := stacksTstackpos]'.next;
stacksEstackpos]' sref'';
with stacksEstackpos]' do

begin
depth := succ(depth);
brreps wordEwordsize - tot + j]
end;

sref' := stacksEstackpos]';
end;

getposatnextcont;
if presentstate = "M" then

begin
sref'.acichars sref '. acichars'. nexttransi;
presentstate := sref'.acichars'.state
end;

if presentstate = then
begin
push< stacks[stackpos]);
temp stacksEstackpos]'.next;
with stacksEstackpos]' do

begin
level := temp'. level;
posatbw : - temp'.posatbw;
depth := temp'.depth;
acnode := temp'.acnode;
accont := temp'.accont;
acichars := temp'.acichars;
numichars := temp'.numichars;
actransi := temp'.actransi;
actransl temp'.actransi
end

end
el se

begin
push< stacks[stackpos]);
sref'.next := stacksEstackpos]'.next;
sref '. nuinichars srefnumichars + 1;
stacksEstackpos]' := sref'
end;

with stacksEstackpos]' do
begin
depth succ(depth);
brreps := brrep;
chs := inputch;
if presentstate = "NT then

presstate := ~N';
end

end
end

237

end (* contract *);

procedure donotcontract;
<* Procedure for performing actions associated with the

decision of not contracting. *)
var

position,sdepth,i,j,wl,u2 : integer;
asg : boolean;

begin (* donotcontract *)
sdepth topof stack''. depth;
for i := sdepth downto 1 do

begin
if stackpos = 1 then

uordEwlength + i] := topof stack''. brreps;
pcp< topof stack)
end;

stacksEstackpos] := nil;
for i := stackpos to stacklevel - 1 do

begin
stacksEi] := stacksEi + 1];
if stacksEi] <> nil then

stacksEi]~.level := stacksEi]''. level - 1;
stacksEi + 1] := nil
end;

stacklevel := pred(stacklevel);
if stackpos = 1 then

begin
if (inputch in ["A".."Z"]) then

wordcomplete false
el se

wordcomplete := true;
if stacksEi] <> nil then

begin
if contatoutlevel then

wlength := wlength + sdepth - stacksE1]~.depth
else

wlength := wlength + sdepth - stacksl1]~.depth + 1
end

else
wlength := wlength + sdepth;

if blankgen then
begin
wlength := succ(wlength);
if (deer = 0) or (wlength = 2) then

wordEwlength] := 0
else

begin
for i wlength - 1 downto nletters + 1 do

wordEi+1] : = wordEi];
uordEnletters+1] := 0
end

end
end;

end (* donotcontract *);

procedure postpone;
(* Procedure for performing the actions related to the

postponement of the decision to contract or not *)

238

begin (* postpone *)
if inputch <> then

begin
sref~.numichars := sref~.numichars + 1;
if not contatoutlevel then

<* no previous contraction at an outer level *)
begin
if sref''.acichars <> nil then

sref * . acichars := sref''. acichars''. nexttransi;
sref ~ . depth := sref''.depth + 1;
push(topofstack);
topofstack'' := sref''
end

else
begin
sref''.next := topofstack~.next;
topofstack'' := sref'';
with topofstack'' do

if acichars <> nil then
acichars := acichars~.nexttransi;

end;
stacksEstackpos] := topofstack
end

end (* postpone *);

begin <* translate *)
deer := 0;
blankgen := false;
possiblecont true;
topofstack := stacks!stackposl;
brrepsinordbehset := topof stack''. brreps in ordbehset;
if topof stack''. actransi = nil then

begin
if not brrepsinordbehset then

begin
if not (inputch in delims) and

not (inputch in numbers) then
g etposatnexteont

else
begin
presentstate := 'N';
possiblecont := false
end

end
else

presentstate :=
end

el se
presentstate := topof stack''. actransi''. state;

if (topofstack'.depth - 1) and brrepsinordbehset then
begin
x : = getkey(topofstack,inputch);
if inputch in !"A".."Z"j then

possiblecont : = checkdigram(topofstack, inputch)
else

possiblecont := false;

239

if topof stack''. posatbw and (inputch in then
begin
exceptions : = excepdigram[ord(topofstack'.chs)

- ord('A') + 1, ord(inputch)
- ord('A') + 1];

xx : = x
end;

if possiblecont then
begin
with sref" do

begin
level := stackpos;
chs := inputch;
brreps := brrep;
posatbw : = topof stack''. posatbw;
depth := 1;
presstate := presentstate;
acnode := locatekey<x,root);
accont := acnode''. contra;
acichars := accont''. ichars'' . nexttransi;
numichars := 1;
if posatbw then

begin
if accont''. transibw <> nil then

actransi := accont''. transibw
else

actransi := nil
end

else
begin
if accont''. transinbw <> nil then

actransi := accont''. transinbw
else

actransi := nil
end;

actransi := accont''. transl;
next := topofstack
end

end
end

el se
begin
sref*' := topofstack'';
sref''.chs := inputch;
if not contatoutlevel then

sref".brreps := brrep;
sref".next := topofstack
end;

if possiblecont then
(* there is possibility of contracting *>

begin
gettransition;
if presentstate in then

contract
el se

if presentstate then
donotcontract

el se

240

postpone
end

el se
donotcontract

end <* translate *);

begin (* formbraword *)
if gradeii and not bypasscontraction then

begin
numtrans := 0;
contatoutlevel := false;
for stackpos := stacklevel + 1 downto 1 do

begi n
if stackpos <> 1 then

positionatbu :=
stacksLstackpos-1.presstate in E"I","J"1;

if stacksEstackpos] = nil then
<* there is nothing in stack *>

begin
checkfornums;
if (inputch in E'A*..'Z']> and not letterflag then

begin
stacklevel := succ<stacklevel);
wordcomplete := false;
with sref'' do

begin
level := stackpos;
chs := inputch;
brreps := brrep;
posatbw : = positionatbw;
depth := 1;
presstate := " ";
acnode := nil;
accont := nil;
acichars := nil;
numichars := 1;
actransi := nil;
actransi := nil;
next := nil
end;

push(topofstack);
topofstack'' := sref~;
stacksEstackpos] := topofstack
end

else
begin
if stackpos = 1 then

begin
if inputch in numbers then

begin
wlength := succ(wlength);
wordEwlength] := brrep;
wordcomplete := false
end

else
if not posblankcont then

wordcomplete := true
end

241

end
end

else <* there is something in stack *)
begin
sref* stacksE stackpos]~;
t ranslate
end;

if {stackpos = 1) and (inputch in delims) and
(not posblankcont) then

if (inputch in [- — -(-, -[- , -] > or
(brrep = 4) then

begin
wordcomplete := false;
wlength := succ(wlength);
wordEwlength] := brrep
end

else
if presentstate = "J" then

wordcomplete := (wlength > 0)
else

wordcomplete := true;
if eof(inp) and (stackpos = 1) then

wordcomplete := true;
if wordcomplete then

begin
positionatbw := true;
if inputch in numbers then

checkfornums;
wlength := succ(wlength);
wordEwlength] := brrep;
if (inputch in E ' E'V]) or

((inputch = "*•*) and (brrep = 20)) then
begin
wlength := succ(wlength);
wordEwlength] := auxbrrep
end

end
end

end
else

begin
if stacksEi] <> nil then

begin
stackpos := 1;
sref~ := stacks[l]~;
translate
end;

checkfornums;
wlength := succ(wlength);
wordEwlength] := brrep;
wordcomplete := (inputch in delims) and not

(brrep = 4) and not
(inputch in E~ ~,'tT ,Z(",'E"])

end
end (* formbraword *);

242

procedure formbraline;
(* procedure for forming the output Braille line *)

var
i , j : integer;

procedure lookforexcep;
<* procedure for searching for exceptions *)
var

change,getout,chlast : boolean;
: integer;

false;
false;
false;

do

iJA
begin
change :=
getout :=
chlast :=
with sref

begin
acnode : = locatekey(xx,exceproot);
accont := acnode'.contra;
acbraillerep := accont^.braillerep;
actransl accont'.transl;
1 := 0;
k := 0;
while (not change) and (not. getout) do

begin
i := succ(i);
if acbraillerep'.transla = wordEi] then

acbraillerep := acbraillerep''. ntransla
else

begin
if (((wordEi] = 43) or (wordEi] = 59)) and

(* ED & ER *)
then(acbraillerep''. transla = 17))

begin
change : = true;
chlast true;
for j := i to wlength do

begin
wordEwordsize-j+i] := wordEj];
k := succ(k);
end;

if (xx = 447) and (wordE21 = 34) then
(* exception for 'renamed' *)

begin
uordEwordsize] := 25; (* Braille char for "D”
wordEwordsize - 1] := wordEwlength];
k 2;
chlast := false
end

end
else

if acbraillerep'.transla = 0 then
begin
if (wordEi] in ordbchset) or

(wordEiJ in [2,34,43,59]) then
getout := true;

end
else

getout := true;
end;

*)

243

if < acbraillerep - nil) and not getout then
begin
change := true;
if i < wlength then

begin
for j := i + 1 to wlength do

begin
wordEwordsize-j+i+13 := wordEjl;
k := succ<k)
end

end
end

else
if (acbraillerep'.transla = 0) and not getout then

if wordEi+11 in ordbchset then
getout := true

else
begin
change := true;
for j := i + 1 to wlength do

begin
wordEwordsize-j+i+11 := uordEjl;
k succ(k)
end

end;
if getout then

if accont~.nextcontraction <> nil then
begin
getout := false;
i : = 0;
accont := accont".nextcontraction;
acbraillerep accont''. braillerep;
actransl := accont''. transl;
end

end <* while *);
if change then

begin
i := 0;
while actransl <> nil do

begin
i := succ(i);
wordEil : = actransl".transla;
actransl actransl''. ntransla
end;

if chlast then
i := pred(i); (* last char is eliminated *)

for j := i+1 to i+k do
wordrj] := wordEwordsize-j+i+11;

wlength := i + k;
end <* if *)

end <* with *)
end (* lookforexcep *); •

procedure generalexcep;
(* Procedure for treating general exceptions

of letter combinations *)
begin (* generalexcep *)
if (uordEll = 20) and (inputch in delims) and

244

(inputch <> " ") and (wlength - 2) then
begin (* "IN" standing alone, followed by

punctuation marks *)
word[3] := word[2];
wordEl] := 10;
word[2] := 29;
wlength := succ(wlength)
end

el se
begin
if inputch in delims then

i := 1
el se

i := 0;
if wlength > 4 then

begin (* "ENESS", "INESS" "STION" "STHE" *)
if (word[wlength-i] = 14) and

(word[wlength-i-l] = 14) and
(wordEwlength-i-2] = 17) then

begin
if wordEwlength-i-3] in [20,34] then

begin
uordEwlength-.i-2] := 48;
wordEwlength-i-1] := 14;
if word[wlength-i-3] = 20 then

word[wlength-i-3] := 10
else

wordEwlength-i-3] := 17;
word[wlength-i] := wordEwlength];
wlength := wlength - i
end

end
else

if (wordEwlength-i] = 29) and
(wordEwlength-i-1] - 21) and
(word[wlength-i-2] = 10) and
(word[wlength-i-3] = 12) then

begin
word[wlength-i-3] := 14;
uordEwlength-i-2] := 48;
wordEwlength-i-1] := 29;
wordEwlength-i] wordEwlength];
wlength := wlength - i
end

end;
if (inputch in delims) and (wlength > 1) then

if wordEwlength-1J = 2 then
begin (* "EA" at the end of the word *)
wordEwlength + 1] := wordEwlength];
wordEwlength] := 1;
wordEwlength - 1] := 17;
wlength succ(wlength)
end;

end;
end (* generalexcep *);

begin (* formbraline *)
posblankcont := false;

- 245 -

nletters := 0;
if wordEi] = 0 then

begin
while (wordEi] = 0) and (wlength > 1) do

begin
for i := 1 to wlength - 1 do

wordEi] := wordEi + 1];
wlength := pred(wlength);
end

end;
generalexcep;
if wlength > 1 then

while (wordEwlength] = 0) and <wordEwlength - 1] = 0) do
wlength := pred(wlength);

if exceptions then
begin
lookf orexcep;
exceptions := false;
end;

if linesize >= (linecount + wlength) then
begin
for i := linecount + .1 to linecount + wlength do

lineEil := wordEi - linecount];
linecount := linecount + wlength;
wlength := 0;
wordfitinline := true;
linecomplete := (linesize = linecount)
end

else
begin
if wlength > linesize then

begin
writeln("The word length is greater than

the line size defined.");
wlength := linesize
end

else
begin
j := wlength;
i := 1;
while (i <> i+1) and (i < wlength) do

begin
if wordEi] = 0 then

j : = i;
i := succ(i)
end;

if linesize >= linecount+j then
begin
for i := 1 to j-1 do

lineElinecount+i] := wordEi];
linecount := linecount + j - 1;
for i := j + 1 to wlength do

wordEi-j] := wordEi];
wlength := wlength - j
end;

linecomplete := true;
wordfitinline := false
end

246

end
end <* formbraline *>;

procedure outputbrailleline;
(* Physical output of a Braille line *)
const

horbrachlen = 3;
verbrachlen = 2;
blank = "
dot = " . ";

var
brailledots : array[1..horbrachlen,

1..verbrachlen,1..linesize]
of boolean;

horpos : 1. .horbrachlen;
verpos : 1..verbrachlen;
chpos : integer;

procedure selectdots (brrep : integer);
(* formation of Braille characters, according

to mapping defined *)
var

powerof2 : integer;
temp : boolean;

begin
powerof2 32; <* Greatest power of 2 < 63 *
for verpos : = verbrachlen downto verbrachlen - 1 do

for horpos := horbrachlen downto 1 do
begin
if (brrep - powerof2) >= 0 then

begin
brailledotsEhorpos,verpos,chpos] := true;
brrep := brrep - powerof2
end

else
brailledotsLhorpos,verpos,chpos] := false;

powerof2 := powerof2 div 2
end <* for *)

end (* selectdots *);

begin (* outputbrailleline *)
linenumber := succ<linenumber);
for chpos := 1 to linecount do

selectdots(lineEchpos]);
for horpos := 1 to horbrachlen do

begin
for chpos := 1 to linecount do

begin
for verpos := 1 to verbrachlen do

if brailledotsEhorpos,verpos,chpos] then
write(out,dot)

else
uri te(out,blank);

writeCout,blank)
end;

writeln(out,blank)
end;

if linenumber < linesperpage then
writein(out,blank)

247

else
begin
linenumber := 0;
writeln(out) (* page(out) *)
end

end (* outputbrailleline *);

procedure preparenextline;
begin <* preparenextline *)
linecount := 0;
if wlength = 0 then

begin
wordcomplete := false;
linecoroplete := false
end

end (* preparenextline *);

248

begin (* program ebt *)
writein;
writein;
writeln(" English into Braille Translation Program");
writein;
openfiles;
initialise;
mapbrailletoascii;
if gradeii then

begi n
writein;
writeln("loading dictionary . . .">;
buildabconttransnetw;
end;

mark(heap);
writelnC"translating . . .");

while not eof(inp) do
begin
getbrai11erep(brrep,inputch);
if not newparagraph and not bypassgradeii then

formbraword;
repeat

if wordcomplete then
f ormbraline;

if linecomplete or eof(inp) or newparagraph then
begin
releaseC heap);
outputbrailleline;
preparenextline;
mark(heap);
end;

until wordfitinline
end;

writein;
writeln("End of translation.");
close (out,lock)
end (* program ebt *>.

249

Appendix 7

SET OF TESTS USED FOR THE VALIDATION OF THE EBT PROGRAM

The establishment of a complete set of tests that should be

included to verify the correctness of any program is a

difficult task, and certainly individual to each program,

depending on its purpose.

In the case of the translator being considered, it is of

utmost importance to check for two things:

- that the input text is adequately translated when it

ought to be.

- and that it is not translated when it ought not to

be.

This is not even easy to define. However, a testing

strategy has been defined and implemented, to cover the two

aspects mentioned.

The test data includes not only the words that should be

translated, but also the ones that should not be translated.

This provides a complete view of the performance of the

translation program. The tests defined are the following:

250

1. Test for abbreviations and contractions standing

alone.

2. Tests for abbreviations and contractions not at the

beginning of the word.

3. Tests for abbreviations and contractions in the

middle of the word.

4. Tests for showing the choice of contractions by the

t ranslat or.

5. Tests for exceptions to the general rules.

6. Tests for space contractions.

7. Tests for translation of punctuation marks.

8. Tests for translation of numbers.

With the first 5 tests in mind, a table was designed to

represent in the clearest way possible, the behaviour of

English Braille Grade II contractions and abbreviations

(Table A.7.1).

The first column of this table contains a complete

alphabetically ordered list, of all of the English Grade II

Braille contractions and abbreviations (BCAs). This column

serves for testing all the BCAs that stand alone; the ones

251

that cannot exist standing alone are marked with an

asterisk. The second column lists the words that contain

BCAs at the beginning of the word. The third column

contains BCAs occurring not at the beginning of the word,

and the fourth, BCAs occurring in the middle of the word.

The fifth column contains examples related to choice of

contractions between conflicting contractions and/or

exceptions for each case in which these exist. The empty

cells in the table indicate that no words were found in

English that contained exactly the particular contraction or

abbreviation, while satisfying the position restrictions

imposed for each column. This table is presented next.

252

!W0RDS
STANDING
! ALONE

!TEST AT THE!TEST NOT ATITEST IN THE.’CHOICE OF
.’BEGINNING
’OF THE WOR
f

!THE BEG.
D!OF THE WO]

f

.’MIDDLE
}D!OF THE WORD

f

!CONTRAC.
!EXCEPTIONS
f

’ABOUT
f

1
f

J
f

IWHEREABOUTS
t

J
!

! ABOVE J
f

1
»

j
_ i -

!
t _

! ACCORDING ! ACCORDINGLY!
» i

j
_ !_________

J
1________

! ACROSS I 1 I f
L____________ i____________ _!___________ __ t_____ ;_______ f____________
! AFTER ! AFTERS

f
1

_ 1___________
1

_ |___________

J
_ f

J
!__

! AFTERNOON
1

J
t___ _ ______

I
_ 1______________

J
t____________

! AFTERWARD
f

1
I _________

J
_ !___________

J
__ I_____________

J
1____________

! AFTERWARDS
f

1
1

J
_ !___________

J
__ 1_____________

J
1____________

! AGAIN
f

J
I ___ _ ______

J
_ t___________

J
__t______________

J
1____________

! AGAINST I
f __________

J
_ I___________

J
__f______________

I
1____________

! ALLY J
f

INATURALLY
— I

I
f

t
|

!ALMOST
f

1
f _______ _ _ _

J
_ f___________

J
__f______________

1
!____________

!ALREADY I
f____________

I
_ !___________ _ _ i________ _____

J
!____________

! ALSO
f

J
!___ ______

t
_ !___________

i
__i______________

J
1____________

! ALTHOUGH
f

J
t____ ___ ___

1
_ 1___________

j
!_____________
J

J
t____________

’ALTOGETHER J I J
i____________ 1____________ _l___________ __ I_____________ »____________
IALWAYS
f

J
|

J
_ f

J
__t____

J
I__

!ANCE * ! ANCESTOR !ENDURANCE
_ !___________

J
f

! INSTANCES
f

!ENHANCED
f

j J
f

!
t

IDANCER
f

! AND ! ANDY
f

’HAND
f

JBANDIT
_ _ i

J
J

!AR * ! ARM
f

IBAR
f

!WARM ! EAR
t

j J
f

J
f t

!BEARD
t

! AS ! ASK
f

’HAS
i

!BASS
i

J
1

JATION *
I____________

J
t____________

! INFORMATION!INTERNATIONAL!
_ 1_____________ !______________ 1_____________

Set of Tests for Braille Translator

Table A.7.1

j______
IWORDS
•STANDING
IALONEi______
IBB *I______
j
!______
IBEI______
I
I______________
j
i______
IBECAUSE j______
IBEFORE!______
IBEHIND
!______________

IBELOWI______
IBENEATH1______
I BESIDEI______
I BESIDESj______
I BETWEEN j______
IBEYONDj______
IBLE *j______
j
j______|
I______

t________ t________ J_________j________
ITEST AT THEITEST NOT ATITEST IN THEICHOICE OF
•BEGINNING ITHE BEG. IMIDDLE ICONTRAC.
IOF THE WORDIOF THE WORDIOF THE WORD I EXCEPTIONS
i_____________ i______________ j______________ i___________
I • I IRABBIT IABBEY
t_____________ I______________ t______________ t___________
I I I ICOBBLERj _ _,______ j________ j________ i______
IBELONG IBRIBE IABERRATION IBEEN BELLj________ J________ t________ J______
I I I ! BETTER BED
!_____________ I______________ t______________ j___________
I I I I BEAVER
j_____________ I______________ I______________ J___________
III!I________ I________ J________ j________
•BEFOREHAND ! ! II________ J________ !________ J------------
! ! I I
i_____________ j______________ J______________ i_____________
! ! ! !
!_____________ j______________ i______________ i_____________
! ! ! !
!_____________ f______________ t______________ i_____________
III!
j_____________ i______________ t______________ j_____________
III!
j_____________ t______________ !______________ !_____________
•III
t_____________ ;______________ I______________ j_____________
I ! ! I
!_____________ t______________ j______________ j_____________
IBLESS IABLE IENABLES .’DISABLED
j_____________ i______________ i______________ |_____________
I I I ’DOUBLED
j_____________ j______________ i______________ i_____________
I I I IGAMBLERI________ f________ f________ ;________

J
I
!

I
j
j
i j
t j
| t
I j
i j
i i
j
I
i •
I j
j j
j i
I J
III
JI
I
It

IBLIND
i

IBLINDING t I IBLINDNESS I
t i t

IBRAILLE ! ! ! ! !
ft ! ! ft

’BUT
t__________

IBUTTER
__t____________

.’DEBUT
__t_____________

IABUTMENT I I
_ t_____________ i_____________ t

IBY
t _______

I BYLAW
__t____________

ILULLABY
__t_____________

I I I
_ t_____________ t_____________ t

•CAN
f

I CANDY
_ i ________

.’PECAN
__t_____________

IDECANT I I
! ! 1

.’CANNOT
t__________

f
__t____________

t
__!____________

'---------------------J-------j----------- !
I I I

_ f_____________ t_____________ t
ICC * J I

f
IACCEPT IACCOMPLISH!
f 1 !

! CH * ICHOIR ’.BEACH '.ECHO I !

Table A.7.1 (continued)

254

J____________ J______________ I______________ I______________ J_____________ J
•WORDS JTEST AT THEJTEST NOT ATJTEST IN THEJCHOICE OF !
JSTANDING JBEGINNING JTHE BEG. JMIDDLE JCONTRAC. I
JALONE JOF THE WORDJOF THE WORDIOF THE WORD!EXCEPT IONS!
i____________ j______________ j______________ I______________ i_____________ i
.'CHARACTER ! CHARACTERISTIC ! ! J J
j____________ j______________ !______________ i______________ j_____________ j
.'CHILD JCHILDHOOD JROTHSCHILD ! ! .»
i____________ j______________ !______________ I______________ i_____________ I
! CHILDREN .» .' ! ! !
!____________ »______________ I______________ t______________ !_____________ j
JCOM * JCOMPUTE ! !UNCOMFORTABLE!C0MB I
J____________ j______________ !______________ j______________ i_____________ j
ICON * !CONCENTRATE!SILICON 'ECONOMY !CONK !
J____________ J______________ j______________ I______________ j_____________ I
! ! ! ! JCONES !

CONCEIVE !CONCEIVED
f

J
f

J
f

! CONCEIVABLE

CONCEIVINGJCONCElVINGLY!
f f

f
f

J

COULD .'COULDN'T
i

f
f

J
1

J
f

DAY JDAYS
i

JMONDAY
t

f
f

J

DD * i
t

! ADD
t

! ADDS
f

JBEDDING •

DECEIVE JDECEIVED
i ________

j
!

J
1

i
i

JDECEIVING ! DECEIVINGLY! ! J J
!__________________ !__________________»___________________ t _______________j_____________I
.'DECLARE JDECLARED ! ! ! !
•______________ t----------------------- I_______________ I________________j_____________ j
JDECLARING ! ! ! ! !

JDIS *
i_________

.'DISPLAY
__ f____________

t
._ i____________

JUNDISMAYED JDISC I
i i t

t
t

j
!____________ . _ t

j
t

JDISTURB I
! ! I ! JDISHES I
t ! ! ! 11
.'DO
i_________

.'DONE
__I____________

JIDOLATRY
i____________

j
._ i__________

t ji i
.'EA *
i

I EAGLE .'TEA
i

JLEAD JLEARN !i t
! ! ! ! JFEAR !
1 _ 1 1 ! It
JED *
i_________
j
i

!EDITOR
_ i____________

i
i

.'TRUSTED
._ i____________

j
t

!EMBEDDED
. _ !________ __

1
1

JPREDETERMINE!
----J------X_______ 1

JLOATHED____ !

!EITHER ! I I J J
i t i_____ I t t
JEN *
!_________

.'ENTRANCE
__ i____________

JHEN
._ i____________

JPENNY
._ i___________

JTHEN !_ i________ i
Table A.7.1 (continued)

255

f___________
IWORDS

_ i___ __________
ITEST AT THE ITEST NOT AT

i_________
ITEST IN

____ t______________i
THEICHOICE OF I

I STANDING IBEGINNING ITHE BEG. IMIDDLE ICONTRAC. I
! ALONE
i______________________

IOF THE WORD
_ i_____________

IOF THE WORD IOF THE 1i^ORD I EXCEPTIONS I

IENCE *
i___________

i
_ t_____________

I PESTILENCE I EXPERIENCES I EXPERIENCED I
i i t i

IENOUGH
i __________

i
_ t_____________

i
1_____________

i
i________

t I
____ !_____________ !

! ER *
i___________

IERRADICATE
_ t_____________

ILARGER
i_____________

’PERFORM
i________

IOTHER I
____ i_____________ i

I EVER I EVERYBODY
_ i_____________

IFEVER
i____________

i
i________

ISEVERE I
_ _ _ i____________ i

j i
i

i
t

i
i

.'PERSEVERE I
i i

! ! ! ! IREVERSE !
I ! ! t II
IEVERY IEVERYTHING

_ i_____________
i
i_____________

i
i________

t I
____ i_____________ i

•FATHER IFATHERLY
_ i_____________

!
i_____________

i
i________

f i
____ i_____________ i

’ FF * i
i

ICLIFF
i

ICLIFFS
i

IEFFORT I
i t

! ! ! I ! OFFER !
i i » i i i
IFIRST .’FIRSTLY i

i_____________
i
i________

i i
____ i_____________ i

IFOR
!

IFOREST i
t_____________

I INFORM
i

t I
t i

IFRIEND
t __

IFRIENDLY IBEFRIEND
i_____________

IUNFRIENDLY I I
i i t

IFROM
I ___

IFROMAGE
_ i_____________

i
i______________

i
i

i I
i i

IFUL * IFULLY
_ i_____________

IRESPECTFUL
i_____________

I FRIGHTFULNESSI I
t t t

IGG * i
_ i_____________

i
i_____________

IRAGGED
i________

I I
____ i_____________ t

IGH *
t ______

IGHOST
_ i_____________

ISIGH
i_____________

I EIGHT
i________

i i
____ i_____________ i

IGO
t ______

.'GONE
_ i_____________

I EGO
t_____________

I EGOISM
i________

I t
____ i_____________ i

.’GOOD
t___________

IGOODNESS
_ i_____________

i
i____ _________

i
t________

i i
____ !_____________ I

IGREAT
i __________

IGREATER
_ i_____________

i
i_____________

i
i________

I 1
_ _ I____________ 1

I HAD IHADDOCK
_ ,_____________

i
i_____________

i
i________

1 1
____ 1_____________ 1

I HAVE I HAVEN IBEHAVE
i_____________

I BEHAVED
t________

1 I
____ I_____________ 1

IHERE
t

IHEREWITH
i _________

I ADHERE
i __ __

I ADHERED
i

IHERETIC I
i i

I I I I ISPHERE I
j __________i______________ i______________i______________ t_____________ i
IHERSELF I I I I I
» _ i _________________________i___________ i i i

Table A.7.1 (cont i nued)

256

j____________ j______________ i______________ j______________ i_____________ j
!WORDS {TEST AT THEJTEST NOT AT’TEST IN THEJCHOICE OF !
{STANDING {BEGINNING {THE BEG. {MIDDLE ICONTRAC. !
{ALONE ! OF THE WORDIOF THE WORDIOF THE WORD!EXCEPT IONS!

{HIM ! ! ! !
f____________ t _ _________ 1______________ ! ____________ » ___________
{HIMSELF ! ! ! !
t f f ! f

!HIS {HISS {THIS
. t

i I
__i______________ i_____________

!IMMEDIATE
t____________

!IMMEDIATELY!
. ! 1

J J
__1______________ 1_____________

! IN
i____________

{INSIGHT
. t_____________

{PIN
. i___________

{DINNER !
__!______________ 1_____________

!ING *
1__________________

! INGRATE
. i____________________

{SINGING
. t___________

{NIGHTINGALE!
__f______________ !_____________

{INTO
i____________

{INTOLERANT
. t_____________

{PINTO
. i___________

t i
__i______ _______ i____________

! IT
i

{ITERATE
. t

{BANDIT
. i

{SPITTED !
t_______ __ f_______ __

{ITS ! {BANDITS ! I !j________ i________ j_________ t________ !________ »
{ITSELF ! ! ! ! !

{LITTLE ! ! ! ! !

ITY * ! {ENTITY
. i i

! {FRUITY
___1______________________!____________________

JUST {JUSTIFY
. i___________

{ADJUST
!___________

{ADJUSTMENT !
__i______________ i_____________

KNOW {KNOWN i
i

j t
i i

KNOWLEDGE {KNOWLEDGEABLE!ACKNOWLEDGE!ACKNOWLEDGEMENT!
. 1 ! ! f

LESS * {LESSON
. i___________

! TOPLESS
__i____________

{BLESSING !
__1______________ !_____________

LETTER {LETTERS
. |___________

j
__ i___________

J I
__ 1_____________ 1_____________

LIKE {LIKELY {DISLIKE
__ i___________

{DISLIKED !
!___ __ _ 1

{LORD {LORDLY_ !_______ I ! !t t f
{MANY
!

I
__J_____________

{GERMANY
i____________

J J
_ !_____________ t__ __________

IMENT *
i __

{MENTAL
__t_____________

{INCREMENT
!____________

{ELEMENTS !
_ f_____________ f_____________

{MORE
i

{MOREOVER
__!_____________

’SOPHOMORE
. _ t____________

{SOPHOMORES !
_ i_____________ t_____________

{MOTHER {MOTHERLY
t ________

{SMOTHER
. _ !___________

1 !

_ ! !

{MUCH ! ! ! !
f f ___ 1 ! !

{MUST
t_______________

{MUSTANG
__!____________

1
1____________

I J
_ 1_____________ f_____________

Table A.7.1 (continued)

257

j
I__________
! RENAME
i____________________

I
i_______________

j
j__________
! BARONESS
J__________
JLIONESS
i____________________

i______________ t_______________ |_______________ j______________
JTEST AT THEJTEST NOT ATJTEST IN THEJCHOICE OF
JBEGINNING ’THE BEG. JMIDDLE ICONTRAC.
!OF THE WORDJOF THE WORDJOF THE WORD IEXCEPTIONS
!------------------------i------------------------- j_______________ i_____________

! j
i______________ i_______
! SURNAME !
i______________ j_______
! UNNECESSARY!
j______________ j_______
i |
i______________ j______
!HELPLESSNESS!
;______________ j______

I______________ i______
JDENOTE !
I______________ i______
I JCOFIN
i______________ J______
JPRONE !BONES
j______________ |_______
I t
t _ ___________ ;______
j i
!______________ t______
! I
t______________J______

I

j
t
j
II
»
i

I
j
t
j
j

t

i

i

I

I

I

I

r
»
I

I
i

j
t
j
I
j
j
i

j
t
j
j
j
i
I
j
i
j
i
j
i
i
i
j
i
j
i
!

t__________
JWORDS
JSTANDING
! ALONE
I__________
IMYSELF !
i_____________i_________
JNAME ’NAMELY
t_____________!_________
JNECESSARY !
j_____________J_________
’NEITHER !
j_____________j_________
INESS !
i____________ !_________
i !
i_____________i_________
.'NOT JNOTHING
i_____________j_________
! OF JOFFICE
i_____________!_________
JONE
j___
i
j___
i
i___
j
i___

I
J________
1
I____________

! COLONEL
I____________

! TONED
j_________
! ANEMONE
j_________
!PIONEER
i____________

! ONEROUS
I________
j
j_________
j
I_________

i_________
JONESELF ! ! ! !
i t t i t
JONG * I

. !_____________
!WRONG
i____________

JLONGER
t____________

! CONGRESS
_ t____________

JOU * JOURS
. t_____________

j
t____________

ICOUGH
i____________

i
_ t____________

JOUGHT j
. t_____________

.'BOUGHT
t____________

JTHOUGHTFUL
. _ t____________

!
_ t____________

JOUND * j
. !_____________

!COMPOUND
i____________

JFOUNDER
. _ i____________

j
_ !____________

IOUNT * J JCOUNT
t

JMOUNTAIN
_ t

J

JOURSELVES ! I ! !
t t t t i
! OUT JOUTSIDE

. t_____________
JSPROUT
!____________

JROUTE
. _ t____________

J
_ !____________

!OW * I OWNER
. !_____________

JNOW
t____________

JFLOWER
t____________

J
_ t____________

JPAID J
. !_____________

JUNPAID
t ______

j I
_ t____________

.’PART JPARTLY
_ t _______

! COUNTERPART I DEPARTED
t t

J
1

.’PEOPLE ! ! ! .'
i » ___________ t t t
JPERCEIVE JPERCEIVES. t________ j

t
1 JPERCEIVABLE

Table A.7.1 (cont i nued)

j
t

258

I J J! II

{WORDS
! STANDING
’ALONE
t

{TEST AT THE’TEST NOT ATITEST IN THE!CHOICE OF !
{BEGINNING
!OF THE WORD

. i

{THE BEG.
!OF THE WORD
1

{MIDDLE
!OF THE WOR

’CONTRAC. !
DIEXCEPTIONS!

’PERCEIVING! ! ! ! !
I________ _ f_____________ t______________ !____________ _!____________ |
{PERHAPS ! ’ ! ! !
f f ! t ft
{QUESTION
i____________

!QUESTIONABLE!
. I !

j
i________ ___

j j
_ i____________ f

! QUICK
i____________

! QUICKLY
. t_____________

1
t_____________

j
r____________

I t
t t

’QUITE
f____________

i
. i_____________

j
t_____________

j
t____________

! j
t t

{RATHER
i____________

j
. i_____________

I
i_____________

j
t____________

I j
_ !____________ f

{RECEIVE
t

{RECEIVED
. t

j
i

1
t

{RECEIVABLE!
t t

{RECEIVING ! ! ! ! !
I I t ! It
{REJOICE
i____________

{REJOICED
. i_____________

i
i_____________

j
i____________

i i
_ i____________ t

’REJOICING
t____________

j
. i

I
i

f
!____________

t j
_ !____________ !

.’RIGHT
i

.'RIGHTHANDED ! BRIGHT
. i _ t

{FRIGHTFUL
t

! i
t i

.’SAID ! ! ! ’ !
1 1 I ! f t
!SH *
i____________

{SHORE
. t_____________

IMESH
i_____________

{RUSHED
!____________

t |
t !

!SHALL
i____________

!SHALLOW
. !_____________

’MARSHAL
i_____________

J
t____________

| 1
_ |____ ______ I

.’ SHOULD
i____________

!SHOULDN'T
. »_____________

j
!_____________

I
1____________

{SHOULDER !
i t

{SION *
i____________

{SIONISM
. i_____________

!EXTENSION
i_____________

.'PASSIONAL
t____________

i i
! f

.’SO
1____________

.'SOLE
. t_____________

j
i_____________

{ASSOCIATE
i____________

t j
_ i____________ f

! SOME
t____________

{SOMEBODY
. !_____________

{HANDSOME
!_____________

I
!____________

{BLOSSOMED !
_ t ____________ t

!SPIRIT
i____________

{SPIRITUOUS
. !_____________

1
1_____________

1
!____________

I !
_ !____________ f

1ST *
i____________

! STAND
. t_____________

{LOST
t_____________

{RASTER
!____________

I 1
_ f____________ |

’STILL
i____________

! STILLNESS
. i_____________

i
!_____________

1
f____________

J !
f |

! SUCH
!____________

!
. t_____________

t
1_____________

1
I____ _______

j j
_ t____________ t

{TH *
t____________

.'THIN
. t_____________

.'OATH
t_____________

.' ETHICS
t____________

I j
! |

! THAT
i___ ________

{THATCHER
. i___ __________

j
t_____________

j
i________ ___

J J
_ !____ _______ f

’THE {THEME
. i_____________

’LOATHE
t

{ATHEIST
t

{THERMAL !
! _ _ 1

Table A.7.1 (continued)

259

Table A.7.1 (continued)

!WORDS ITEST AT THEITEST NOT ATITEST IN THEICHOICE OF !
!STANDING .’BEGINNING ITHE BEG. IMIDDLE ICONTRAC. !
I ALONE .’OF THE WORD!OF THE WORDIOF THE WORD!EXCEPTIONS’

f __________________!_____ 1 I l

! ! ! ! ! CATHEDRAL !
t__________________i_____________________i____________________i_____________________i___________________ i

! ! ! I ’THENCE !
If ! f If

JTHEIR
i

1THEIRS t
. i_____________

I
. i___________________

t j
_ f__________________!

ITHEMSELVES!
i t

j
. f___________________

f
. i___________________

I J
_ I__________________1

ITHERE .’THEREFORE
_ !___________________

j
. i_____________

i
. !__________________

f I
_!__________________I

I THESE ITHESES
i

j
. i

J ! 1
1 1

I THIS ! ! ! ! !
f__________________I____________________ I____________________ f____________________ 1___________________1

’THOSE ! ! I ! !
! f f 1 If

’THROUGH
i __

ITHROUGHOUT
_ i___________________

j
. i_____________

1
. 1____________

1 1
_ f__________________1

I THYSELF
t __

I
_ f___________________

j
.i___________________ . t__________________

J J
_ I__________________t

ITIME
i _______________

ITIMELY
_ i___________________

IOVERTIME
.!_____________

j
. !__________________

!CENTIMETRE!
_ !__________________1

!TION *
! _

i
_ f___________________

IMOTION
. t___________________

I EMOTIONAL
. i____________

f 1
_ !____________ !

ITO
i

ITOAST
1 ____

1
. I

! ATOM J J
1 I

!TODAY ! ! ! ! I
I i ___ t f t i
ITOGETHER
!________________

1
_ I___________________

IALTOGETHER
.i_____________

f
. i__________________ _ f__________________i

! TOMORROW
t ______

J
_ I___________________

i
. t_____________

j
. I____________

J I
_»____________ i

ITONIGHT
i ___

1
_ 1___________________

j
.!_____________

J
. 1____________

f t
_ i__________________i

IUNDER
t ____

1UNDERNEATH
_ t_____________

IBLUNDER
. t___________________

ITHUNDERS
. 1____________

IUNDERIVED !
_!__________________t

.’UPON
i ______________

i
_ f___________________

!COUPON
. f___________________

J
. 1____________

f !
_ 1 _ _____________ !

.’US
t________________

!USE
_ f___________________

IBUS
. t___________________

IFUSE
. i____________

1 I
_ 1__________________!

.’VERY
i ______

j
_ 1___________________

j
. t_____________

j
. i____________

! I
_ 1__________________1

.’WAS
1 — —

JWASP
_ i___________________

j
. i___________________

! SWASH
. I____________

J J
_ I__________________!

!WERE
f — —

IWEREN’T
_ i___________________

1
. I___________________

1
. f__________________

1 I
_ f__________________1

!WH *
f ______

IWHISTLE
i _______________

J
. !

J
. I____________

f J
_ f__________________f

IWHERE
!___________

! WHEREABOUTS I EVERYWHERE
_ !___________________ !____________________

J
. 1____________

IWHEREVER !
_i____________ f

260

Table A.7.1 (continued)

! WORDS
ISTANDING
! ALONE
f

ITEST AT THE’TEST NOT ATITEST IN THEICHOICE OF
IBEGINNING ITHE BEG. IMIDDLE ICONTRAC.
I OF THE WORDIOF THE WORDIOF THE WORD IEXCEPTIONS
t _ i i f

IWHICH
f

IWHICHEVER
_ i

j
. t

J 1
J !

!WHOSE ! ! ! !
! 1 t t 1
! WILL
!___________

IWILLING
_ t_____________

I
. t___________

IUNWILLING I
__t______________ i ____________

! WITH
i___________

IWITHDRAW
_i_____________

ITHEREWITH
. i___________

J !
__t______________ i_____________

IWORD
j___________

IWORDY
_ f ____________

IFOREWORD
. i___________

I .’SWORD
__!______________ t___________

.’WORK
!___________

’WORKPEOPLE
_ t_____________

I NETWORK
. i___________

INETWORKS I
__i______________ t_____________

IWORLD
f___________

IWORLDLY
_ i_____________

j
. i___________

.’UNWORLDLY I
__!______________ !_____________

IWOULD
i___________

.’WOULDN'T
_ 1____________

t
. t___________

J f
__1______________ !_____________

! YOU
i _________

I YOUTH
_ !_____________

IBAYOU
. r___________

J J
__!__________ _ 1____________

! YOUNG
i___________

I YOUNGSTER
_ !_________ 1 __

j
.!___________

I J
__f______________ !_____________

IYOUR
i

I YOURS J
. 1

J J
! f

IYOURSELF ! ! ! !
! _______ 1_____________ !____________ !_____________ 1 _________
IYOURSELVES! ! ! I
!____________ !______________ !______________ 1______________ 1_____________

261

Tests for Space Contraction

The tests for space contraction are also designed to check

for cases where it should and should not be applied,

according to rules 21 and 25 of the Standard English

Braille (*). This set of tests is presented separately

because complete sentences or phrases are needed to check

for space contraction. The sentences selected are:

(*) Rule 21.- The word signs "a", "and", "for", "of", "the",
"with" may follow one another without the space between
them, when the sense permits. The word signs should be used
as part of words wherever possible in preference to any
other contraction, unless their use entails waste of space.

Rule 25«- The contractions for "to", "into" and "by" are
always to be written close up to the word which follows.
They may never be joined to other words by the hyphen to
form compound words. They may be contracted before the
numeral, capital, italic, letter and accent signs, but not
before any other Braille composition or punctuation sign.

1. And for the withdrawal of the troops.

2. For the formation of a workplan.

5. And with a great offer.

4. For her, for the girl and for the rest of the
people. ,

5. It was given to him by the beach.

6. He went into the cave with a knife.

7. They passed by.

8. He was referred to, when they were speaking.

In cases 1 to 4, space contraction between the words ’A',

’AND', 'FOR', 'OF', 'THE', 'WITH' is shown, including cases

where the space contraction could be mistakenly performed.

Cases 5 and 6 show situations where the space after 'TO',

262

'BY', 'INTO' should be contracted; cases 7 and 8 show when

the space should not be contracted.

Tests for Translation of Punctuation Marks

Most of the punctuation marks are translated in a

straightforward way; however, there are some exceptions in

the cases of adjacency with lower signs (signs without dots

1 or 4 in the Braille cell). The tests performed were on

words followed by a space, and then the same words followed

by different punctuation marks. Both, straightforward cases

and exceptions are included in the following list.

1. About about; above above, according according.

2. His his; his? his-

5. Was was. was? was-

4. Be be, be? be.

5» Were were? were. were-

6. Inin, in.

7. Enough enough, enough!

8. Childlike, child-like.

9. Can't, don't, couldn't, shouldn't, child's

In case 1, there is no difference in translation with an

adjacent punctuation mark. However, cases 2 to 5 show words

which are not allowed adjacent puntuaction marks. Cases 6

and 7 show the exceptions in the translation of some lower

wordsigns. In case 8, 'childlike' is completely spelled

265

out, whereas in ’child-like', both contractions for 'child'

and 'like' may be used. Case 9 shows the use of apostrophe

with some words.

Tests for Translation of Numbers

The tests for the translation of numbers involves numbers by

themselves (1), numbers in relation to letters and operation

signs as is in equations (2 and 3), and numbers in relation

to text (4 and 5)« The list of tests performed is given

next .

1. 25 55 48 59 1125

2. 25a+4b=45;

3. 45z+11y-55x*25w= 1 5

4. 100 by 22. 2 to 5

5. Year of 1985•

The set of tests presented is considered to be complete and

representative for the analysis of the performance of the

translation program, since most of the rules given in the

Standard English Braille are included, with the exceptions

noted in chapter 6.

264

Braille Listings of the tests performed

These listings are included in figures A.7.1 to A.7.4 for

completeness, and to provide the possibility of validating

the program output.

The input to the program was in the following order:

1. The words appearing in Table A.7.1 (row by row).

2. The sentences for testing space contraction.

3. The tests for the translation of punctuation marks.

4. The tests for the translation of numbers.

265

■ a

a a a

a

a

a a

a a

a a

a

a

8 a a

a

a 8

a • a a

a a • a a a ■ a

a • • a a • ■ a a

a a a a a a a a

a a « a a a a

• a a ■ a ■

a a a a a 8

a a a • a a a

• a a a a a a 8 a

■ ■ a a a a a a a a a a 8 a a

■ • a a a a a a a a a

■ ■ a a a a a a a a 8

■ a a a a a a a a a

■ ■ a a a. a • • -

a a a 8

a a a a a a a 8 a 8

« a a a a a • a a a a ■

- ■ a a • a 8 8

■ ■ a a a a 8 ■ .

■ a a a a a a a a a a

a a a a a ■ a ■

a a

a ' a a a a a a b a a a 8 8

a a a a 8

a a a a a a a a

■ a a a a a a a a a a a

8 a a a a a a

a a a a a a a a

■ a a a a a a a

• a a a a * • a a

■ ■ a a a a a a a a a 8 a

■ > a a a a a a a a a

a • • a a a a ■

■ a a a a a a • a a a a

■ a a

a

a

a aa a a •

a a • a a a a a ■ 8 a

■ 8 a a a a a • • ■

a a a a a a a aa • a

a a a a a a a a a a a a a a 8

■ ■ a a • • 8 8

a a ■ a

Figure A.7.1
Words appearing in table A.7. 1 (row by row)

266

■ ■

Figure A.7.1

Words appearing in table
- 267 -

(continued)

A.7.1 (row by row)

a

a

a a a

a a a

a

a

a

a

a

a

a a a

a

a

a a a

a

a a a a a a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a a

a

a

a a

a

a

a

a a

a a

a

a a

a

a

a a a a a a a

a

a a

a

a a a a

a a a a

a a a

a a

a

a

Figure A.7.1 (continued)

Words appearing in table A.7.1 (row by row)

268

■

■ ■

■ 8 8

■ a

a a

a a

a a a

■ a

a

a

a

8 8 8

8 8 8

8 8 8

a

a e

a

a a a a a a a

• ■ a a 8 8 a a

■ a • a a

■ a 8 8 ■ 8 8 8 a

• a a • as a ■ • ■

a a a * a a

a a a 8 a a a aa a 8 8 8

a • a a a as s a

a a a a a 8 8 8 8 8 8 8

a a a a 8 a B 8

a a a a a a aa

a a a a

a a ea

Figure A.7.1 (continued)

Words appearing in table A.7.1 (row by row)

269

■ ■ ■ a 8 ■

■ ■ a a a a ■ . a a a

■ a • • • - a a a a •

a a a a a a a

■ a a a a a a a 8

■ • - • a a • a a ■ • • a a

■ a a a a a a a

■ a a a a

■ 8 • a a • ■ • a ■ 8

■ a a a • • a a

■ a a a a a a 8 8 a

■ a a a a a a a a a a a a

a a a a * a

a a a a a a a

■ a a • a a a a a a a a a a a

• • • a a a a

■ ■ a a a a a a

a a a a a • ■ a a ■

• a a a a ■ a aa

a - ■ a a a a 8 a a a a a

a a - a ■ • a a

a a a a a a ■

a a ■ a a a a a a

a a a a a a a

a a a a a • a a a

a a a a a a

■ • - a a a • • a ■ a a a

• • " • • *

a a a a a a a a a a

a a a ■ a a ■ • a

• • a a • a a

a a a a a a a a a a aa a a

a a ■ a a a a a a a a a

a a a •

a a a a a a ■ a a a a

a a a a • a a a a a a a aa

a a a a a ■

Figure A.7.1

Words appearing in table

(continued)

A.7.1 (row by row)

270

Words appearing in table A.7.1 (row by row)

271

Figure A.7.1 (continued)

Words appearing in table A.7.1 (row by row)

272

■ ■

Figure A.7.2

The sentences for testing space contraction

273

■ ■

Figure A.7.3

The tests for the translation of punctuation marks

274

■ ■

Figure A.7.4

The tests for the translation of numbers

275

Bi bli ography

Aho, A. Nested Stack Automata, Journal of the ACM, Vol.
16, 1969, pp. 585-406.

Aho, A., Hopcroft, J. and Ullman, J. The Design and
Analysis of Computer Algorithms, Addison-Wesley,
1 974.

Aho, A. and Ullman, J. Principles of Compiler Design.
Addison-Wesley Pub. Co., USA, April, 1979*

Aho, A. and Ullman, J. The Theory of Parsing, Translation,
and Compiling., Vol. I : Parsing, Vol. II :
Compiling. New Jersey: Englewood Cliffs, 1972.

Atkinson, M.P. Network Modelling, Ph.D.
of Cambridge, May, 1974.

Thesis, University

Bobrow, D.G. and Fraser, J.B. An Augmented State
Transition Network Analysis Procedure. Proceedings
of the International Joint Conference on Artificial
Intelligence. Washington, D.C., 1969, pp. 557-567.

Chomsky, N. Aspects of the Theory of Syntax, MIT Press,
Cambridge, Mass., 1965*

Davidson, I. Braille Translation by Microcomputer.
International Conference on Computerised Braille
Production - Today and Tomorrow, London, May - June,
1 979.

Day, N.G.P. Non-Linear Structures and
Proposal, Computer Laboratory,
Cambridge, January, 1978.

Day, N.G.P. Correct Editing with ATNs.
Vol. 1, No. 2, Summer, 1979*

ATNs, Thesis
University of

IUCC Bulletin,

Douce, L.J. Some Developments in Computer-Aided
for the Blind. Proc. of IEEE, Vol.
January, 1976.

Inf o rmat ion
125, No. 1,

Earley, J. An Efficient Context-Free Parsing Algorithm.
Ph. D. Thesis, Dept. of Computer Science,
Carnegie-Melon University, Pittsburgh, Pa., 1968.

Earley, J. An Efficient Context-Free Parsing Algorithm.
Communications of the ACM, Vol. 15, No. 2, February,
1970, pp. 94-102.

Etherton, M. Data Structures for a Network Design System,
Computer Journal, Vol. 14, No. 4, 1971, pp.
566-574.

276

Findlay, W. and Watt, D.A. An Introduction to Methodical
Programming. London: Pitman Publishing Ltd., 1979*

Gerhart, W.R., Millen, J.K. and Sullivan, J.E. DOTSYS III:
a Portable Program for Grade II Braille Translation.
Mitre Corporation, Bedford, Mass., U.S.A., 1971.

Gibbons, J.J. TINGES--A Transition Network Grammar Editing
System, Diploma Dissertation, Computer Laboratory,
University of Cambridge, July, 1977.

Gill, J.M. Microprocessor Braille Translator. Braille
Research Newsletter No. 10, 1979, pp. 25-28, Warwick
Research Unit for the Blind, University of Warwick,
Coventry, England.

Gill, J.M. and Clarke, L.L. Braille Research Newsletters
(No. 1-11). Warwick Research Unit for the Blind,
University of Warwick, Coventry, England. July, 1976
t o July, 1980.

Gill, J.M. and Humphreys, J.B. An Analysis of Braille
Contractions. Braille Research Newsletter No. 7.
Warwick Research Unit for the Blind, University of
Warwick, Coventry, England.

Grimes, J.E. Network Grammars.

Haynes, R.L. and Siems,
Grade II Braille.

J.R. Computer
Int ernat i ona1

Translat i on
Conference

of
on

Computerised Braille Production - Today and Tomorrow,
London, England, May 50th - June 1st, 1979-

Hopcroft, J. and Ullman, J. Formal Languages and their
Relation to Automata, Addison-Wesley, 1969*

Jensen, K. and Wirth, N. Pascal: User Manual and Report.
New York: Springer-Verlag, 1978.

Kaiser, G.E. Automatic Extension of an ATN Knowledge Base.
Communications of the ACM, Vol. 24, No. 9, September,
1 981 .

Kaplan, R.M. Augmented Transition Networks as Psychological
Models of Sentence Comprehension. Second
International Conference on Artificial Intelligence,
British Computer Society, London, 1981.

Knuth, D.E. The Art of Computer Programming: Sorting and
Searching. Massachusetts: Addison-Wesley Pub. Co.,
1973.

Lawes, W.F. The Feasibility Study into the Usage of
Computers by and for the Blind. London, R.N.I.B.,
1 975.

277

Linden, C.A. Grammars for the Control of Structured Data.
Ph. D. Thesis, Cambridge University Computing Lab.,
1 978.

Lomet, D.B. A Formalization of Transition Diagram Systems,
Journal of the ACM, Vol. 20, 1973, pp.235-257.

McGillivray, Robert. Aids and Appliances for the Blind.
Newton MA 02158: The Carroll Center for the Blind,
issue No. 11, Winter, 1984.

Perrault, C.R. Augmented Transition Networks and their
Relation to Tree Manipulation Systems. Ph. D.
Thesis, University of Michigan, Dept. of Computer
and Communication Sciences, Michigan, USA, 1975-

Peters, P.S. and Ritchie, R.W. On the Generative Power of
Transformational Grammars, Information Sciences, Vol.
6, 1973, pp.49-83.

Ri seman, E.M.
Using
Computers, Vol.

and Ehrich, R.W.
Binary Digrams.

C-20, No

Contextual Word Recognition
IEEE Transactions on

4, April, 1971.

Riseman, E.M. and
Post-processing
Binary Digrams.
C-23, No. 5, May

Hanson, A.R. A Contextual
System for Error Correction Using
IEEE Transactions on Computers, Vol.

1 974.

Ritchie, G. Augmented Transition Networks and Semantic
Processing. CSR-20-78, Dept. of Computer Science,
University of Edinburgh, Edinburgh, Scotland,
January, 1978.

Rounds, W.C. Context Free Grammars on Trees, Proceedings of
the Second ACM Symposium on Theory of Computing,
1970.

Rounds, W.C. Complexity of Recognition in Intermediate
Level Languages, Proceedings of 14th IEEE Symposium
on Switching and Automata Theory, 1971.

Royal National Institute for the Blind (R.N.I.B.). Braille
Primer with Exercises. London: R.N.I.B., 1969.

R.N.I.B. International Conference on Computerised Braille
Production - Today and Tommorrow. London: May-June,
1 979.

R.N.I.B. Standard English Braille: Grades I and II.
London: British National Uniform Type Committee,
1971 .

Rubinstein, R. and Feldman, J. A controller for Braille
Terminal. Communications of the ACM, Vol. 15, No. 9,
September, 1972.

278

Shannon, C.E. Prediction and Entropy of Printed English.
Bell System Tech. Journal, 1951, Vol. 50, pp. 51-64.

Silverman, B.S. A Microcomputer-Based Braille Converter.
Braille Research Newsletter No. 11, August, 1980,
pp. 4-11.

Slagle, J.R. Artificial Intelligence: The Heuristic
Programming Approach. New York: McGraw-Hill, 1971.

Ullman, J.R. A Binary n-gram Technique for Automatic
Correction of Substitution, Deletion, Insertion, and
Reversal Errors in Words. Computer Journal, Vol. 20,
No. 2., November, 1975*

Wirth, N. Algorithms + Data Structures = Programs.
Prentice Hall, Inc., Englewood Cliffs, New Jersey,
USA, 1976.

Woods, W.A. Augmented Transition Networks for Natural
Language Analysis. Rep. CS-1, Computing Laboratory,
Harvard University, Cambridge, Mass., 1969-

Woods, W.A. Transition Network Grammars
Language Analysis. Communications
Vol. 15, No. 10, October, 1970.

for Natural
of the ACM,

Woods, W.A. and Kaplan, R.M. Lunar Sciences Natural
Language Information System, Final Report, Bolt,
Beranek and Newman, Inc., Report No. 2578, 1972.

279

