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Abstract

Few-shot image classification is a challenging topic in pattern recognition

and computer vision. Few-shot fine-grained image classification is even more

challenging, due to not only the few shots of labelled samples but also the

subtle differences to distinguish subcategories in fine-grained images. A re-

cent method called task discrepancy maximisation (TDM) can be embedded

into the feature map reconstruction network (FRN) to generate discrimi-

native features, by preserving the appearance details through reconstruct-

ing the query image and then assigning higher weights to more discrimina-

tive channels, producing the state-of-the-art performance for few-shot fine-

grained image classification. However, due to the small inter-class discrep-

ancy in fine-grained images and the small training set in few-shot learn-
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ofing, the training of FRN+TDM can result in excessively flexible bound-

aries between subcategories and hence overfitting. To resolve this prob-

lem, we propose a simple scheme to amplify inter-class discrepancy and

thus improve FRN+TDM. To achieve this aim, instead of developing new

modules, our scheme only involves two simple amendments to FRN+TDM:

relaxing the inter-class score in TDM, and adding a centre loss to FRN.

Extensive experiments on five benchmark datasets showcase that, although

embarrassingly simple, our scheme is quite effective to improve the perfor-

mance of few-shot fine-grained image classification. The code is available at

https://github.com/Airgods/AFRN.git.

Keywords: Few-shot learning, fine-grained image classification,

metric-based methods.

1. Introduction1

Few-shot fine-grained image classification is a challenging task that draws2

wide attention in the pattern recognition and computer vision communities.3

Although deep neural networks learnt from a large amount of labelled train-4

ing data can provide impressive image classification performances, few-shot5

learning that trains a model with little labelled data for each class remains6

difficult. Moreover, the fine-grained setting brings further challenges, as each7

class is divided to a large number of subcategories, which makes the inter-8

class discrepancy even smaller and the classification task much harder.9

Metric-based methods are effective for few-shot learning [1]. They aim to10

learn a metric function to measure the similarities/dissimilarities between dif-11

ferent classes and assign the test image to the class with the highest similarity12

2
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proposed by Snell et al. [2] adopt the average of features of all images from14

the same class in the support set as the prototype of that class, and as-15

sign the query image to the class with the shortest Euclidean distances from16

the class prototypes. Recent works enhance ProtoNet by generating more17

representative prototypes [3]. The matching networks (MatchingNet) [4]18

utilise a bidirectional LSTM network to map the support set and an at-19

tention mechanism-based LSTM to map the query set, and adopt the cosine20

similarity as the metric function. In addition to the common metric func-21

tions, Zhang et al. [5] propose a new metric function EMD, which assigns22

different weights to different positions of the image and calculates the best23

matching between the image blocks of the support set and the query set to24

represent their similarities. To maintain feature discriminability, Nguyen et25

al. [6] propose the square root of the sum of the Euclidean distance and the26

norm distance as the metric function. Similarities between images can also27

be measured via a properly structured neural network [7].28

However, when the high similarities between subclasses are not carefully29

considered, metric-based methods can fail to classify fine-grained images.30

Thus it is crucial to extract features with strong discriminative power to31

distinguish the ultra-fine differences between subclasses. Li et al. intro-32

duce the bi-similarity network (BSNet) with two similarity metrics to learn33

such discriminative features [8]. Huang et al. propose the low-rank pairwise34

aligned bilinear network (LRPABN), which utilises bilinear pooling opera-35

tions to distinguish support and query images [9]. Huang et al. also propose36

the targeted alignment network (TOAN), which can increase the inter-class37

3
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intra-class variation by matching support and query features [10].39

Figure 1: An illustration of the motivation of the adaptive feature map reconstruction

network (AFRN). The solid circles, triangles and diamonds represent the instances from

three classes, respectively, and the transparent circle, triangle and diamond represent the

corresponding prototypes of the three classes, respectively. In (a), we depict a challeng-

ing classification task, with severe overlapping between the three classes in the original

features space. This challenge is partially resolved by FRN in (b), because the appear-

ance details of images are well preserved by reconstruction, which potentially makes the

embedded features more discriminative. In (c), TDM is incorporated to FRN to assign

high weights to channels with strong discriminative abilities, and thus the classes become

more separable. Finally, in (d), AFRN further improves FRN+TDM by amplifying the

inter-class discrepancy, and thus the three classes can be more easily distinguished.

There is a problem in many previous metric-based learning algorithms40

that the input to the metric function has to be reshaped to vectors, resulting41

in deficient spatial information. To resolve this problem, Wertheimer et42

al. [11] propose a novel metric-based classification mechanism, feature map43

reconstruction networks (FRN), for few-shot learning. FRN predicts the44

membership of the query image by reconstructing the query feature map45

via the pooled support features of each class. The idea behind FRN is that46

the query feature map is expected to be well reconstructed by the support47

4



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 2: Examples of the features captured by FRN, FRN+TDM and AFRN on four

subclasses of airplanes. Apparently, FRN focuses on the objects as well as the nuisance

background. Involving TDM in FRN makes the features more discriminative and the

focus on background is reduced slightly. In comparison, our AFRN can identify the most

discriminative features to distinguish the subclasses with the least focus on the background.

5
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through the reconstruction process, FRN can well preserve the appearance49

details of the images.50

However, in FRN, all channels are treated equally with the same weights,51

without stressing the different importance of different channels. Hence, Lee52

et al. [12] propose the task discrepancy maximisation (TDM) module to53

identify channels with high discriminative power and assign higher weights54

to these channels to improve the classification results of few-shot methods,55

such as FRN, for fine-grained images. TDM produces channel weights for56

both support and query sets via the support attention module (SAM) and57

the query attention module (QAM), respectively. SAM provides class-wise58

channel weights to highlight the discriminative channels to distinguish be-59

tween classes, while QAM provides object-wise channel weights to focus more60

on the object-relevant channels. Lee et al. [12] demonstrate that by incorpo-61

rating TDM to FRN, namely FRN+TDM, a state-of-the-art performance of62

few-shot fine-grained image classification can be achieved.63

However, due to the small inter-class discrepancy omnipresent in fine-64

grained images and the small training set in the setting of few-shot learning,65

FRN+TDM can produce excessively flexible boundaries between subcate-66

gories and hence overfitting. To resolve this problem, we propose a simple67

scheme to amplify inter-class discrepancy and thus improve FRN+TDM. To68

this end, instead of developing new modules to further enhance the extraction69

of discriminative features, our scheme only involves two simple amendments70

to FRN+TDM: relaxing the inter-class score in TDM, and adding a centre71

loss to FRN. We name the network incorporating our scheme to FRN+TDM72

6
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The centre loss [13] aims to achieve intra-class compactness by penalis-74

ing the distance between the learnt features and their corresponding class75

centres, which is vital to distinguish subclasses with high similarity normally76

occurring in fine-grained image classification. In Figure 1, we illustrate77

the motivation of AFRN by a challenging classification of three overlapping78

classes, which is typical in fine-grained image classification with small inter-79

class discrepancy. By involving the centre loss in AFRN, we expect that80

the three classes can be intra-class more compact and thus inter-class more81

separated to make the classification easier. Moreover, in Figure 2, we demon-82

strate one real-data example of the discriminative features extracted by FRN,83

FRN+TDM and AFRN on four subclasses of airplanes. The original FRN84

focuses on the airplanes as well as the nuisance backgrounds; incorporating85

TDM can improve this situation with less focus on the backgrounds; while,86

in comparison, AFRN can identify the most discriminative features with the87

least focus on the backgrounds. For instance, in class 2, the background in88

the lower right corner is least highlighted in our method.89

More importantly, we observe that FRN+TDM can produce excessively90

flexible boundaries between subcategories and thus overfitting, as the inter-91

class score in TDM to measure the discrepancy between classes is the Eu-92

clidean distance between one class and its nearest class. Such an inter-class93

score can result in extremely flexible classification boundaries for fine-grained94

images and thus overfitting to the seen classes in the training set. In few-shot95

fine-grained learning, this problem is severer, because in the test phase, few-96

shot learning aims to classify the novel set with completely different classes97

7
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in TDM simply to the Euclidean distance between one class and its furthest99

class, to mitigate the potential overfitting to a large extent. This amendment100

makes the original TDM module a relaxed TDM module.101

In summary, the main contributions of our work are as follows.102

• We propose AFRN, a simple scheme to amplify inter-class discrepancy103

and thus improve the few-shot fine-grained image classification. Our104

scheme only involves two simple amendments to FRN+TDM: relaxing105

the inter-class score in TDM, and adding a centre loss to FRN.106

• By relaxing the inter-class score in TDM, we are able to remarkably107

mitigate the negative impact, from the overfitting to the seen training108

set of fine-grained subclasses, on the inference of unseen novel classes109

in the few-shot learning setting.110

• By incorporating the guidance of the centre loss to FRN, we are able to111

enhance the discriminative power of the learnt features for fine-grained112

image classification, through enlarging the omnipresent subtle distances113

between fine-grained subclasses.114

• The experiments on five benchmark fine-grained datasets demonstrate115

that our scheme, although very simple, is quite effective to improve the116

performance of few-shot fine-grained image classification.117

The rest of the paper is organised as follows. In section 2, we discuss118

the literature that is closely related to our work. The technical details of119

FRN+TDM and AFRN are presented in section 3. In section 4, we demon-120

strate the superior classification performances of AFRN through extensive121

8
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section 5.123

2. Related Work124

2.1. Metric-based few-shot methods for image classification125

Metric-based few-shot methods aim to learn discriminative feature em-126

beddings that can be well generalized to new classes based on a predefined or127

a learnt distance metric, such as Euclidean distance [2], cosine distance [14],128

hyperbolic distance [15], or distance parameterized by neural networks [16].129

MatchingNet [4] adopts the cosine similarity to assign the label of the query130

image. ProtoNet [2] calculates prototypes as the average features of each131

class in the support set and assign the query image to the nearest class132

prototype by Euclidean distance. Instead of using a predefined metric, Rela-133

tionNet [16, 17] utilises a neural network to compute the nonlinear similar-134

ities between different samples. Moreover, Satorras and Estrach propose to135

utilise graph neural networks to measure the similarities between images [18].136

A large amount of work has also been done to extend the metric-based meth-137

ods for fine-grained images. For example, BSNet involves two similarity met-138

rics to learn discriminative features [8] and LRPABN adopts bilinear pooling139

operations [9].140

2.2. Feature alignment-based few-shot methods for image classification141

Feature alignment methods usually aim to align the object positions142

between the support and query sets to improve the classification perfor-143

mance [19]. CrossTransformers (CTX) [20] utilises the transformer-based144

9
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ilarity between two images. A more recent transformer-based method is146

QSFormer [21], which effectively learns consistent representations of the sup-147

port and query sets via the global sample transformer and the local patch148

transformer. Dynamic meta-filer (DMF) [22] considers both channel-wise149

and spatial-wise alignments by neural ordinary differential equation. Re-150

lational embedding network (RENet) utilises the self-correlational repre-151

sentation (SCR) module and the cross-correlational attention (CCA) mod-152

ule, where the SCR module transforms the basic feature maps into self-153

correlational tensors and extracts structural patterns, while the CCA module154

calculates the cross-correlations between images and generates common at-155

tention between them. FRN [11] aligns the features maps of the query image156

and the support set via reconstructing the query image based on the pooled157

support features, where the ridge regression-based reconstruction with close-158

form solutions makes the process efficient. Besides the L2 norm adopted159

in FRN, Sun et al. [23] propose to utilise the L2,1 norm for feature recon-160

struction. To alleviate overfitting of the reconstruction-based methods, Li et161

al. [24] propose the self-reconstruction network that can diversify the query162

features by reconstructing the query features by themselves.163

3. Methodology164

3.1. Problem definition165

Few-shot learning aims to learn discriminative knowledge from a small166

amount of labelled data to classify test instances from new tasks. In few-167

shot learning, the dataset is usually divided into a base set DB, a validation168

10
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intersect. Few-shot learning learns from the tasks on DB to classify instances170

of new tasks on DN . The instances in DV assist to find the best model during171

the training process. In this paper, we follow the classic setting of N -way172

K-shot, i.e. the model is trained by the support set, S = {xi, yi}N×K
i=1 , of N173

classes with K instances each class, and evaluated on the query set of the174

same classes in S, Q = {xj, yj}N×q
j , of N classes with q instances each class.175

The classification performance of the trained model is finally tested on DN176

with its average classification accuracy as the performance measure.177

3.2. FRN+TDM178

In metric-based few-shot learning methods, reshaping feature maps to179

feature vectors as input to metric function can lead to loss of spatial details.180

FRN [11] aims to resolve this problem by reconstructing every location of the181

query feature map by the pooled support features from each class through182

ridge regression. The class membership of the query instance is then assigned183

based on the reconstruction error. However, in FRN, all channels are treated184

equally with the same weights, which cannot stress the regions with high185

discriminative abilities. To identify the discriminative regions, the TDM186

module can be embedded in the FRN framework.187

Specifically, TDM [12] takes the features extracted from the embedding188

module to calculate the task-wise channel weight vector βn of the nth class189

as a linear combination of the support weight vector βS
n and the query weight190

vector βQ:191

βn = αβS
n + (1− α)βQ ∈ RC , (1)

11
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n and βQ are obtained from the192

support attention module (SAM) and the query atttention module (QAM),193

respectively, based on the task-wise intra-class scores rintran and inter-class194

scores rintern .195

The input to SAM is the prototype of each class Pn ∈ RH×W×C , i.e. the196

average of all support set instances in the nth class. The cth element of rintran197

is then calculated as198

rintran,c =
1

H ×W
||Pn,c −Mn||22, (2)

where H and W are the height and width of the feature maps, C is the199

number of channels, Pn,c ∈ RH×W is the cth channel of the nth prototype and200

Mn ∈ RH×W is the average of the channels in Pn, i.e. Mn = 1
C

∑C
c=1Pn,c.201

Thus rintran measures the dispersion of the channels in the prototype of each202

class. On the contrary, the cth element of rintern involves information from203

different classes:204

rintern,c =
1

H ×W
min

1≤l≤N,n̸=l
||Pn,c −Ml||22, (3)

where Ml denotes the mean spatial features of the lth class. It is clear205

that rintern,c measures the difference between each channel and its closest mean206

spatial features of a different class. Finally, we obtain βS
n as207

βS
n = η(ginter(rintern )) + (1− η)(gintra(rintran )), (4)

where ginter and gintra are fully-connected blocks and η ∈ [0, 1]. We adopt the208

same structure for g as in [12].209

Since the labels of query images are unknown, only the intra-class score210

12
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rintraQ,c =
1

H ×W
||PQ,c −MQ||22, (5)

where PQ,c is the cth channel of the query feature maps and MQ is the mean212

of all channels of PQ. Then, β
Q is calculated as213

βQ = gQ(rintraQ ), (6)

where gQ is a fully-connected block with the same structure as ginter and gintra.214

By substituting equation(4) and equation(6) to equation(1), we obtain the215

task-wise weights βn.216

In FRN+TDM, suppose the pooled support features of the nth class is217

Sn ∈ R(K×H×W )×C while the the query features are Q ∈ R(H×W )×C . Q is218

reconstructed by each Sn via ridge regression:219

Ŵ = argmin
W

||Q−WSn||22 + λ||W||22, (7)

where W ∈ R(H×W )×(K×H×W ) is the weight matrix and λ is a non-negative220

value that controls the contribution of the ridge penalty. The reconstructed221

query image by the nth class is calculated as222

Q̂n = ŴSn. (8)

Then, the task-wise weight vector βn is applied to the original and the

reconstructed query feature maps to re-weight the channels:

Qr
n = (1H×WβT

n )⊙Q,

Q̂r
n = (1H×WβT

n )⊙ Q̂n, (9)

13
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product.224

Lastly, to assign the class membership of the jth query image, we calculate225

its probability of belonging to the nth class as226

P (ŷj = n|xj) =
e−γd(Qr

n,j ,Q̂
r
n,j)

∑
n′∈[1,N ] e

−γd(Qr
n′,j ,Q̂

r
n′,j)

, (10)

where d(Qr
n, Q̂

r
n) =

1
H×W

||Qr
n − Q̂r

n||22 and γ is a non-negative parameter.227

The training process of FRN+TDM is guided by the cross-entropy loss

and the auxiliary loss in FRN:

LFRN = LCE + LAUX

= −
Nq∑

j=1

log(P (ŷj = yj|xj))

+
∑

n∈[1,N ]

∑

n′∈[1,N ],n′ ̸=n

||Ŝn(Ŝn′)T ||2, (11)

where Ŝn is the row-normalised Sn.228

3.3. Adaptive feature map reconstruction network (AFRN)229

Although FRN+TDM has achieved a state-of-the-art performance in few-230

shot fine-grained image classification, due to the small inter-class discrepancy231

omnipresent in fine-grained images and the small training set in the setting232

of few-shot learning, the training of FRN+TDM can still result in excessively233

flexible boundaries between subcategories and hence overfitting to the seen234

subclasses in the training set. To mitigate this issue, we propose a simple235

scheme to amplify inter-class discrepancy and thus improve FRN+TDM.236

Our scheme only involves two simple amendments to FRN+TDM: relaxing237

14
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Figure 3: The structure of AFRN with an example of 2-way 5-shot classification. The

embedded features of the support set and the query set are input to the FRN and the

relaxed TDM modules. The FRN module reconstructs the query feature map by the

pooled support features of each class and output the reconstructed query feature maps

Q̂1 and Q̂2. The relaxed TDM module produce the task-wise channel weights β1 and

β2. Then, the original query feature map Q and the reconstructed Q̂1 are re-weighted by

β1 to obtain Qr
1 and Q̂r

1. Similarly, Q and Q̂2 are re-weighted by β2 to obtain Qr
2 and

Q̂r
2. Lastly, the two pairs of re-weighted query features are used to obtain probabilities in

equation(10) to assign the membership of the query image.

15
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network incorporating our scheme to FRN+TDM the adaptive feature map239

reconstruction network (AFRN). The structure of AFRN is illustrated in240

Figure 3.241

3.3.1. Relaxing inter-class score in TDM242

In equation(3), rintern,c measures the minimum distance between each chan-243

nel and its closest mean spatial features of a different class. Therefore, the244

classes that are mostly difficult to distinguish are specifically considered.245

However, this may lead to extremely flexible classification boundaries in the246

setting of fine-grained image classification, which is even severer in the few-247

shot setting where the classes in the base set and the novel set are not the248

same, due to the overfitting to the seen subclasses in the base set. To miti-249

gate this problem, we propose the relaxed TDM by revising the calculation250

of rintern,c in equation (3) as251

rintern,c =
1

H ×W
max

1≤l≤N,n̸=l
||Pn,c −Ml||22. (12)

In this way, rintern,c measures the differences between classes that are less dif-252

ficult to distinguish, which makes the classification boundaries less flexible253

and thus mitigates the overfitting to a large extent.254

3.3.2. Adding centre loss to FRN255

The centre loss LCT measures the intra-class variation of each class, which256

is calculated as257

LCT =

Nq∑

j=1

||Qj −Cyj ||22, (13)

16
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of the jth query. To effectively update the centre, we compute the centre as259

the average of the query samples in one task.260

Hence, the total loss function of AFRN is a simple amendment to that of261

FRN in equation (11):262

LAFRN = LFRN + νLCT . (14)

4. Experiments263

In this section, we empirically demonstrate the superior classification per-264

formance of AFRN on five fine-grained image datasets, by comparing it with265

eight state-of-the-art methods: MatchingNet [4], ProtoNet [2], CTX [20],266

DeepEMD [5], RENet [25], MixFSL [26], FRN [11] and FRN+TDM [12].267

4.1. Datasets268

We choose five publicly-available benchmark datasets for few-shot image269

classification, namely CUB-200-2011 [27], aircraft [28], Oxford flowers [29],270

Stanford cars [30] and Stanford dogs [31]. We name these datasets CUB,271

aircraft, flowers, cars and dogs for short hereafter.272

The CUB dataset contains 200 species of birds, with a total of 11,788273

images. We randomly divide the 200 categories into the training, validation274

and test sets, each consisting of 100, 50 and 50 categories, respectively.275

The aircraft dataset has 100 classes of aircrafts, with a total of 10,000276

images. We randomly divide the dataset into the training set with 50 classes,277

the validation set with 25 classes and the test set with 25 classes.278

17



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofThe flowers dataset consists of 102 categories of flowers with 8,189 images.279

Each type of flower consists of 40 to 258 images, mainly featuring common280

British flowers. We randomly select 51 classes as the training set, 26 classes281

as the validation set, and 25 classes as the test set.282

The cars dataset includes 196 classes of cars, with a total of 16,185 images.283

We randomly divide the dataset into the training set with 130 classes, the284

validation set with 17 classes and the test set with 49 classes.285

The dogs dataset contains 120 breeds of dogs, with a total of 20,580286

images. We randomly divide the 120 categories into the training set with 60287

categories, the validation set with 30 categories and the testing set with 30288

categories.289

4.2. Implementation details290

We adopt ResNet-12 as the backbone with the same implementation de-291

tails as in [28, 32, 33]. The ResNet-12 backbone consists of 4 residual blocks,292

and each residual block has 3 convolutional layers. We adopt the leaky ReLU293

with α = 0.1 and 2× 2 max pooling. We also adopt the deep block from the294

original implementation [32, 28, 33], so the output size of each residual block295

is 64, 160, 320 and 640. Therefore, the shape of the output feature map of296

an input image of size 84× 84 is 640× 5× 5. During the training process, we297

implement the standard data augmentation step, including random cropping,298

horizontal flipping and color jittering, as in [28, 5, 34, 35].299

Following [14, 33], we train ResNet-12 for 1,200 epochs and reduce the300

learning rate proportionally at the 400th and 800th epochs. We use the301

validation set to select the best performing model during the training process302

and validate every 20 epochs. We train the models with the 10-way 5-shot303
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For AFRN, we follow TDM [12] to set α = η = 0.5, and set ν = 0.05. In305

section 4.5, we will show the robustness of ν.306

AFRN and FRN+TDM have the same amount of parameters and they307

have the same FLOPs. For the 5-way 1-shot task with 16 query images, their308

FLOPs is 299.6G per task while for the 5-way 5-shot setting with 16 query309

images, their FLOPs is 370G per task.310

Table 1: 5-way few-shot classification accuracies on the CUB, aircraft, flowers, cars and

dogs datasets with the ResNet-12 backbone. Methods labeled by † denote our implemen-

tations. The best classification accuracies are labelled in bold fonts.

hod
CUB Aircraft Flowers Cars Dogs

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot

gNet[4] † 71.87±0.24 85.08±0.24 56.74±0.87 73.75±0.69 71.89±0.90 85.46±0.59 45.29±0.82 64.00±0.74 66.48±0.88 7

et[2] † 81.02±0.20 91.93±0.11 46.68±0.81 71.27±0.27 75.41±0.22 89.46±0.14 82.29±0.20 93.11±0.10 73.81±0.21 8

[20] † 80.39±0.20 91.01±0.11 65.60±0.25 80.20±0.25 - - 85.03±0.19 92.63±0.11 73.22±0.22 8

MD[5]† 75.59±0.30 88.23±0.18 - - 70.00±0.35 83.63±0.26 73.30±0.29 88.37±0.17 70.38±0.30 8

t[25] † 77.45±0.45 90.50±0.26 59.16±0.47 76.48±0.37 79.91±0.42 92.33±0.22 79.66±0.44 91.95±0.22 71.69±0.47 8

L[26] † 64.53±0.92 80.67±0.64 60.55±0.86 77.57±0.69 72.60±0.91 86.52±0.65 58.15±0.87 80.54±0.63 67.26±0.90 8

[11] † 82.33±0.19 92.02±0.11 70.26±0.22 83.58±0.14 81.68±0.20 92.61±0.11 86.59±0.18 95.01±0.08 76.49±0.21 8

DM[12] † 83.31±0.19 92.70±0.10 70.61±0.21 84.53±0.13 82.95±0.19 93.61±0.10 89.38±0.16 96.98±0.06 76.67±0.21 8

rs 83.95±0.18 93.17±0.10 72.19±0.21 85.59±0.13 83.59±0.19 94.05±0.09 89.27±0.16 96.89±0.06 77.01±0.21 88

Table 2: The results of the one-sided paired t-test of comparing the classification ac-

curacies of our method with those of the state-of-the-art methods in Table 1. The null

hypothesis H0 is µAFRN < µm, where µ is the mean classification accuracy and m ∈
{MatchingNet, ProtoNet, CTX, DeepEMD, RENet, MixFSL, FRN, FRN+TDM}.

Ours vs. MatchingNet ProtoNet CTX DeepEMD RENet MixFSL FRN FRN+TDM

p value 1×10−3 7×10−3 3.9×10−5 2.8×10−4 2.8×10−4 1.4×10−4 3.3×10−5 7×10−3

Reject at 1% level ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

4.3. Comparison with the state-of-the-art methods311

We report the classification accuracies of AFRN and the eight state-of-312

the-art methods on five fine-grained image datasets in Table 1. Obviously,313
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Figure 4: The visualisations of the confusion matrices of AFRN and FRN+TDM on the

CUB and aircraft datasets under the 5-way 1-shot and 5-way 5-shot settings.

Table 3: The ablation study on the relaxed TDM module and the centre loss.

Relaxed TDM Centre loss
CUB Aircraft

1-shot 5-shot 1-shot 5-shot

(a) - - 83.31±0.19 92.70±0.10 70.61±0.21 84.53±0.13

(b) ✓ - 83.73±0.12 92.86±0.10 71.59±0.22 85.06±0.13

(c) - ✓ 83.77±0.18 93.09±0.10 71.05±0.21 84.58±0.13

(d) ✓ ✓ 83.95±0.18 93.17±0.10 72.19±0.21 85.59±0.13
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ers and dogs dataset, while providing competitive classification results with315

FRN+TDM on the cars dataset. This demonstrates the effectiveness of in-316

volving the centre loss and the relaxed TDM module. To have a deep insight317

to the results, we compare the visualisations of the confusion matrices of318

AFRN and FRN+TDM in Figure 4 on the CUB and aircraft datasets. It is319

clear that AFRN is better than FRN+TDM on the two datasets with more320

deep red stripes or higher values on the diagonals. To confirm that AFRN is321

significantly better than the state-of-the-art methods, we perform one-sided322

paired t-test to compare the classification accuracies of AFRN and those of323

other methods in Table 1, with a null hypothesis H0 of µAFRN < µm, where µ324

is the mean classification accuracy and m ∈ {MatchingNet, ProtoNet, CTX,325

DeepEMD, RENet, MixFSL, FRN, FRN+TDM}. H0 can be rejected at 1%326

level for all methods compared, suggesting that the classification accuracy of327

AFRN is significantly better than those of other methods.328

4.4. Ablation studies329

Here we explore the impacts of the relaxed TDM module and the centre330

loss on the classification performance and report the results on the CUB and331

aircraft datasets in Table 3. For the relaxed TDM column, ‘-’ represents332

adopting the original TDM module while ‘✓’ is for the proposed relaxed333

TDM module. For the centre loss column, ‘-’ is to train the model by the334

original FRN loss in (11) while ‘✓’ represents training the model by the335

AFRN loss in (14). Thus, scenario-(a) corresponds to FRN+TDM while336

scenario-(d) represents AFRN. Clearly, the classification accuracy of TDM337

can be raised by only modifying the inter-class score via the relaxed TDM338
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aircraft dataset, the accuracy is improved greatly by almost 1%, suggesting340

that the subcatergories of aircraft are highly similar and the relaxed score is341

required to reduce potential overfitting. In scenario-(c), when we only involve342

the additional centre loss, the improvement is more substantial for the CUB343

dataset, suggesting that the variation within each subcategory of the CUB344

dataset is relatively large and thus making intra-class variation smaller via345

centre loss is beneficial. Finally, utilising the relaxed TDM module as well346

as the centre loss can provide the best classification accuracies.347

Table 4: The effect of ν in (14) of the AFRN loss.

ν
CUB Flowers

1-shot 5-shot 1-shot 5-shot

0.5 83.22±0.19 92.75±0.10 82.75±0.19 93.46±0.10

0.05 83.95±0.18 93.17±0.10 83.59±0.19 94.05±0.09

0.005 83.69±0.18 93.07±0.10 82.35±0.20 93.22±0.10

4.5. The effect of ν in (14)348

In this section, we present the effect of ν in (14), i.e. the parameter con-349

trolling the contribution of the centre loss, on the classification performance.350

The classification accuracies of the CUB and flowers datasets for three values351

of ν, 0.5, 0.05 and 0.005, are summarised in Table 4. It shows that 0.05 is a352

proper choice. In addition, the accuracies of using the three values of ν are353

all higher than or competitive with FRN+TDM.354
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Figure 5: The visualisation of the discriminative features extracted by FRN, FRN+TDM

and AFRN (‘Ours’) on the CUB and cars datasets. AFRN focuses on the most discrimi-

native regions compared with FRN and FRN+TDM.
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Figure 6: The visualisation of the feature embeddings of FRN, FRN+TDM and AFRN

(‘Ours’) on the flowers and aircraft datasets. AFRN can provide the best separation of

different classes.

4.6. The visual comparisons of FRN, FRN+TDM and AFRN355

4.6.1. Visualisation of discriminative features356

To demonstrate that AFRN can focus on the most discriminative regions357

for classification, we visually compare the discriminative regions identified by358

FRN, FRN+TDM and AFRN, following the Grad-CAM technology [36] in359

Figure 5. For the CUB and cars datasets, we randomly select 10 images for360

visualisation. We can observe that FRN tends to focus on both the objects361

and irrelevant backgrounds. FRN+TDM can improve this by identifying362

smaller discriminative regions, while AFRN can usually make the areas even363

smaller by focusing on the highly discriminative ones.364
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To further show that AFRN can amplify the inter-class discrepancy, we366

visualise the feature embeddings learnt by FRN, FRN+TDM and AFRN367

via t-distributed stochastic neighbour embedding (t-SNE) [37] in Figure 6.368

The results of the flowers and aircraft datasets are presented in the first and369

second rows in Figure 6, respectively. For each dataset, we randomly select370

five classes with 16 test samples each and label them by different colours. The371

five classes are severely mixed in FRN while better separated in FRN+TDM.372

Obviously, the best separation of the classes is achieved by FRN: the inter-373

class discrepancy is amplified, which also supports our motivation in Figure 1.374

4.7. Discussion375

Table 5: The classification accuracies of FRN, FRN+TDM and AFRN (‘Ours’) on two

coarse-grained datasets, mini-ImageNet and FC100, with the ResNet-12 backbone. The

best classification accuracies are labelled in bold fonts.
mini-ImageNet FC100

1-shot 5-shot 1-shot 5-shot

FRN 63.26±0.21 77.68±0.15 40.31±0.17 55.34±0.17

FRN+TDM 62.18±0.20 78.41±0.15 39.84±0.17 54.16±0.17

Ours 62.78±0.20 78.60±0.15 40.09±0.18 54.38±0.18

In this section, we further test the ability of AFRN to classify coarse-376

grained data, where larger categories or super-categories with large intra-377

class variations are considered. We adopt two benchmark coarse-grained378

datasets, the mini-ImageNet dataset [4] and the FC100 dataset [38]. The379

mini-ImageNet dataset contains 60,000 images distributed evenly over 100380

classes. We randomly divide the dataset to a training set with 64 classes,381
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dataset has 100 object categories which are merged to 20 super-categories.383

We randomly divide it to a training set with 12 super-categories containing384

60 object categories, a validation set with 4 super-categories containing 20385

object categories and a test set with 4 super-categories containing 20 object386

categories.387

The classification accruacies of FRN, FRN+TDM and AFRN on coarse-388

grained datasets are reported in Table 5. Clearly, the original FRN dominates389

FRN+TDM and AFRN in most scenarios, except for the classification of 5-390

shot mini-ImageNet. However, we note that AFRN performs slightly better391

than FRN+TDM in all cases, which demonstrate that the two amendments392

also work on coarse-grained data, but not effective enough to beat the original393

FRN. One explanation to this result is that TDM or relaxed TDM put too394

much attention on few channels while ignore information from other channels395

that may be valuable for coarse-grained data. Thus, they perform worse than396

the original FRN when all channels are considered equally.397

5. Conclusions398

In this paper, we propose AFRN, a simple scheme to amplify the inter-399

class discrepancy and thus improve the classification performance of FRN+TDM400

on few-shot fine-grained images. To mitigate the potential overfitting to the401

seen subclasses, we propose to relax the inter-class score in TDM. To enlarge402

the subtle differences between the subclasses of fine-grained images, we pro-403

pose to incorporate the centre loss to FRN. Extensive experiments on five404

fine-grained datasets showcase that our scheme can produce the state-of-the-405
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reveal the effectiveness of each amendment. Moreover, we note one limitation407

of our method on classifying coarse-grained data, which we identify as our408

future work.409
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 We relax the inter-class score in TDM to mitigate the negative impact of overfitting.
 We incorporate the guidance of the centre loss to FRN to enhance the discriminative 

power of learnt features.
 The experimental results demonstrate that our scheme is simple yet effective to 

improve the few-shot classification performance.
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