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ABSTRACT
This article promotes the use of panel data methods in nowcasting. This
shifts the focus of the literature from national to regional nowcasting of
variables like gross domestic product (GDP). We propose a mixed-
frequency panel VAR model and a bias-corrected least squares estimator
which attenuates the bias in fixed effects dynamic panel settings.
Simulations show that panel forecast model selection and combination
methods are successfully adapted to the nowcasting setting. Our novel
empirical application of nowcasting quarterly U.S. state-level real GDP
growth highlights the success of state-level nowcasting, as well as the
gains from pooling information across states.
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1. Introduction

Nowcasting has become established as an important way to make timely near-term predictions, par-
ticularly for economic output variables like gross domestic product (GDP) that are published with a
lag. However, until recently the existing literature has focused on the use of time series methods to
nowcast time series aggregates. In this article, we propose a new panel data nowcasting model which
can be used when the objective is to simultaneously make predictions across many disaggregates like
regions or sectors, and which allows for fixed effects and mixed frequency data. There are several
reasons why this is an important advancement. First, the increasing availability of regional output
data in some developed countries has made regional nowcasting feasible. At the same time, regional
data are often reported in a less timely fashion than national aggregates which further motivates the
need for nowcasting. Secondly, it is often the case that national policymakers care about regional
and sectoral developments and not only the movements that take place at the national level. Finally,
there are many cases when the target nowcast variable is annual or quarterly where we might only
have a small number of time series observations. This can be problematic when performing historical
reconstructions using pseudo out-of-sample methods where the time series estimation window is
only a limited portion of the total sample. Therefore, one could expect substantial benefits from
pooling information across regions or sectors to improve nowcast model estimation.

The first contribution of this article is to propose a mixed-frequency panel VAR (MF-PVAR)
for nowcasting a low-frequency target variable with high-frequency predictor(s). We adopt the
mixed-frequency VAR (MF-VAR) approach of Ghysels (2016), originally proposed for modeling
time series data, which has elsewhere been applied in papers such as Baumeister et al. (2015) and
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Foroni et al. (2018). This method stacks the low-frequency variable in a vector with the
high-frequency variable(s) and is estimated at the lower frequency. We extend this model to the
case where we have panel data with observations measured across time and individual units, and
we also accommodate limited cross sectional heterogeneity through fixed effects. We show how
the model can be generalized to allow for exogenous variables which vary across time but not
individuals, such as when national aggregates are used to predict regional series. The model can
be used to generate multi-step predictions by iteratively forecasting the VAR system one step
ahead at a time. This feature enables backcasts, nowcasts and forecasts using the one-step, two-
step and three-step ahead predictions, which we showcase in our empirical application.

Our next contribution is in providing methods (i) to estimate the MF-PVAR and (ii) to select
from (or combine) different nowcasting model specifications. Both aspects of implementation are
complicated by the inclusion of fixed effects in the MF-PVAR. First, the fixed effects cause the
ordinary least squares (OLS) estimator to be biased (Nickell, 1981), which inflates measures of fore-
cast loss (Greenaway-McGrevy, 2019). To attenuate the bias, we show how the bias-corrected least
squares (BCLS) procedure of Hahn and Kuersteiner (2002) can be adapted and applied to the
mixed-frequency setting. Secondly, because the estimated fixed effects themselves contribute to fore-
cast loss, we require model selection (or combination) methods that are specifically tailored to the
purpose of forecasting model selection.1 We therefore discuss how to adapt panel forecasting model
selection methods to the nowcasting case, such as the panel final prediction error (FPE) criterion,
the Mallows selection criterion and panel Mallows model averaging (MMA) for forecast combination
(see Greenaway-McGrevy, 2019, 2020, 2022). We also consider a simple equal-weights forecast com-
bination scheme as another competing method. As existing studies have not considered the effects
of the mixed-frequency set-up on model selection, we provide a detailed set of realistic Monte Carlo
simulations. We show that our proposed approaches compare favorably to recent panel forecast
selection criteria (Lee and Phillips, 2015) and other naïve criteria.

The final contribution of this article is to apply our methodology with a novel empirical study
of nowcasting U.S. state-level GDP growth. We exploit the flow of monthly information on
employment-related series at the state level which are available in a more timely fashion than
quarterly real GDP. We use a pseudo out-of-sample experiment to explore the performance of
our methods for making forecasts, nowcasts and backcasts. We make several new findings: (i)
mean squared forecast error (MSFE) gains are found in nowcasting state-level GDP by using
timely employment data, over and above na ïve univariate benchmarks, (ii) pooling data across
all states to form a panel is very useful and dominates over simple time series regressions where
the sample size is very small, (iii) there are even improvements from pooling across all states
compared to when we allow heterogeneity of coefficients across geographical or economic sub-
groups, (iv) the use of appropriate bias correction techniques yields improvements over non bias-
corrected methods and (v) applying forecast combination to models with different lag lengths
typically performs better than using individual models, even when using a simple equal-weights
combination scheme. Another novelty of our application is that we can begin to draw inferences
about the benefits of panel nowcasting for individual states. For instance, we see that panel now-
cast gains compared to time series are particularly sizeable in the state of California which is
larger than all other U.S. states and, indeed, most developed economies in terms of real GDP.

Our article contributes to a recent literature on panel nowcasting methodology which, until
recently, comprised only of a few empirical studies (one example being Mouchart and Rombouts,
2005). For instance, the panel nowcasting approach of Koop et al. (2020) was recently developed
for nowcasting regional gross value added (GVA) using the national aggregate. Our method is
different from theirs, which treats regions as separate variables in a high-dimensional stacked

1This is as opposed to model selection for the purpose of inference after incidental parameters have been integrated out
(Greenaway-McGrevy, 2019).
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VAR. Their approach allows more heterogeneity but is much more highly parameterized than
our model. Our set-up is therefore more appropriate for studies with a large number of regions,
such as in our empirical application to U.S. state-level GDP. Another recent study by Babii et al.
(2020) also looks at panel nowcasting but from a machine learning perspective, developing oracle
inequalities for LASSO-type estimators. Neither of these related approaches address the issue of
the Nickell bias which we consider in this article.

This work is also related to the very rich body of time series studies on nowcasting (see
Banbura et al., 2013, and Bok et al., 2018, for references). Given that our model is a panel exten-
sion of the stacked-frequency MF-VAR approach of Ghysels (2016), it also relates to the alterna-
tive time series MF-VAR approach which instead models the low-frequency variable as a latent
high-frequency variable with missing observations. This alternative approach requires the estima-
tion of the latent series using either expectation-maximisation (EM) algorithm methods (see
Kuzin et al., 2011; Mariano and Murasawa, 2010) or Bayesian methods (see Brave et al., 2019;
McCracken et al., 2021; Schorfheide and Song, 2015). Our approach is also related to more trad-
itional single-equation time series nowcasting methods. In essence, our nowcasting equation is a
panel data version of an unrestricted MIDAS model, which is a generalization of the MIDAS
model developed by Ghysels et al. (2007) and Clements and Galv~ao (2008, 2009) in the time ser-
ies context. Furthermore, as Schumacher (2016) shows the link between MIDAS models and
bridge equations, our method is also indirectly related to bridge equation approaches (see for
instance Aastveit et al., 2014; Baffigi et al., 2004; Bragoli and Fosten, 2018).

As well as the link with the panel and time series nowcasting literatures, our article also relates
more broadly to the recently-expanding literature of panel data models for forecasting and mod-
eling mixed-frequency data. Relative to the very long and established field of time series forecast-
ing methodology, the literature on panel forecasting has emerged more recently with perhaps the
earliest survey being Baltagi (2008) and recent new approaches including Liu et al. (2020). Our
approach differs to these studies due to the mixed-frequency set-up we use for nowcasting. There
have also been recent studies which look to address the issue of mixed frequencies in panel data
(Binder and Krause, 2014; Khalaf et al., 2021) though not in the context of forecasting or now-
casting. We envisage that the application of panel methods to the case of nowcasting may have
fruitful applications in many other contexts: sectoral-level GDP or output variables; predicting
multiple different measures of national inflation; early warning predictions of hospital expend-
iture in public healthcare systems to name but a few.

The rest of this article is organized as follows. Section 2 introduces the panel nowcasting MF-
PVAR model set-up as well as the BCLS estimation method, and outlines how to perform lag
selection and combination. Section 3 details an extensive Monte Carlo simulation experiment and
documents the results. Section 4 describes the data and empirical application to U.S. state-level
GDP nowcasting. Finally, Section 5 concludes the article. There is a separate online document of
Supplementary Material which contains various additional details about model selection proce-
dures, as well as further Monte Carlo and empirical results.

2. BCLS panel data nowcasting

In this section we outline the model and the estimation methodology we develop in this article. We
first describe the MF-PVAR set-up for panel data nowcasting. We then provide details on how the
model is cast in companion form and show how to use BCLS to estimate the model. Finally, we dem-
onstrate how the set-up can be extended to allow for exogenous variables to enter the VAR system.

2.1. Set-up

We are interested in nowcasting the low-frequency target variable yi, t which has time series
observations t ¼ 1, :::,T for individuals i ¼ 1, :::, n: To simplify notation, we assume yi, t is
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measured at the quarterly frequency which is in line with the majority of nowcasting studies
including our empirical application. To make predictions we use a higher frequency predictor
with monthly observations for each individual i which we denote xi, t�2=3, xi, t�1=3 and xi, t which
correspond to the first, second and third month of quarter t for all t ¼ 1, :::,T: We therefore
have a mixed-frequency set-up with monthly data which are available in a more timely fashion
than the quarterly target variable. Our framework can be easily generalized to have multiple pre-
dictors and to have data frequencies other than quarterly and monthly.2 The variable yi, t (as well
as xi, t) is assumed to be weakly dependent in that yi, tf g1t¼�1 is a weakly stationary sequence for
each i and yi, tf g1i¼1

is weakly (cross section) dependent for each t.
We propose to stack the low-frequency and high-frequency variables into a single vector Yi, t :

¼ ðyi, t , xi, tþ1, xi, tþ2=3, xi, tþ1=3Þ0 and use the MF-PVAR at the quarterly frequency:

Yi, t ¼ li þ
Xp
s¼1

K0
sYi, t�s þ Ui, t , (1)

where li is a vector of finite, real-valued individual-specific fixed effects, p is the lag length of the
model, Ks is a matrix of coefficients for each lag s ¼ 1, :::, p and Ui, t is a zero-mean vector of
errors satisfying E½ Yi, t�p , :::,Yi, t�1ð Þ0Ui, t� ¼ 0:3 Weak dependence in the vector process Yi, t implies
that Ui, t is weakly stationary and cross section dependent and that the values of z satisfying
I �

Xp

s¼1

�
zsKs

�
lie outside the unit circle. Note that the VAR(p) is potentially misspecified

because the error vectors are not assumed to be independently distributed over time. The lag
length p is unknown but can be estimated using the model selection methods detailed below.
This stacked approach follows the time series MF-VAR approach of Ghysels (2016) which we
extend to the panel data case as we have observations across i and not only t, and also by allow-
ing heterogeneity through the fixed effects terms li.

Since our primary interest is the nowcasting model for the low-frequency variable yi, t , for later
parts it will be useful to separately write out the first equation from the system in Eq. (1). To do
this, we first partition the vectors li ¼ ðai, n0iÞ0 and Ui, t ¼ ðui, t , t0i, tÞ0, and the matrices Ks ¼
cs : Us½ � for each s. This allows us to write out the single equation for yi, t as:

yi, t ¼ ai þ
Xp
s¼1

c0sYi, t�s þ ui, t (2)

Note that because ai is an individual fixed effect, it can be arbitrarily correlated with the high-
frequency covariates xi, s, s ¼ t, t � 1=3, t � 2=3, :::, t � pþ 1=3:

The specification of the vector Yi, t , in which the variables xi, tþ1, xi, tþ2=3, xi, tþ1=3 appear one
quarter ahead of yi, t , is specific to the nowcasting case so that when Yi, t is lagged one or more
periods on the right hand side of Eq. (2), then yi, t is a function of the three months of the cur-
rent quarter of the monthly predictor (xi, t , xi, t�1=3, xi, t�2=3) and the lagged dependent variable
yi, t�1 (and any further lags when p> 1). In this way, Eq. (2) by itself is a panel extension of the
unrestricted MIDAS model seen in time series contexts (see Fosten and Gutknecht, 2020;
Schumacher, 2016) and can be adapted depending on the available data for the monthly lags.4

2This is something we explore later in the Monte Carlo and empirical application.
3Clearly the number of parameters in Ks grows with the frequency of the xi, t variables. This could result in over-
parameterisation if, for example, daily data were to be stacked alongside the quarterly variable. On the other hand, papers
like Baumeister et al. (2015) have suggested to incorporate daily data into this stacked VAR model simply by using the weekly
aggregation of the daily data.
4For instance, if only the second month of data for quarter t were available (xi, t�1=3) but not the third month (xi, t) then one
could instead re-specify the vector Yi, t :¼ ðyi, t , xi, tþ2=3, xi, tþ1=3, xi, tÞ0: Equation (2) would then relate yi, t to xi, t�1=3, xi, t�2=3 and
xi, t�1 as well as yi, t�1: The fact that this stacked MIDAS-type approach requires the model to be re-specified at different
nowcast points can be considered a drawback relative to the state space approaches mentioned above. On the other hand,
the stacked method does not require the estimation of the latent high-frequency equivalent of the low-frequency variable.
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The model we propose above imposes homogeneity on the slope coefficients when we pool
across individuals. The issue of whether “to pool or not to pool” (see, for example, Wang et al.,
2019) is a long-standing question in panel data econometrics. While many methods now exist to
allow for heterogeneity in the slope coefficients (for example Pesaran, 2006; Pesaran and Smith,
1995; Pesaran et al., 1999), studies dating back to Baltagi and Griffin (1997) and Baltagi (2008)
have found that simple pooling strategies can often dominate in terms of MSFE, particularly
when the model permits limited cross sectional heterogeneity via fixed effects. Whether pooling is
appropriate is an empirical question which we will explore in detail in our application.

The OLS estimators of the cs parameters in Eq. (2) exhibit an OðT�1Þ bias due to the lagged
dependent variable yi, t�1 on the right hand side (see, among others, Nickell, 1981; Lee, 2012) and
weak exogeneity in the lags of the monthly predictor xi, t:

5 Thus, even if the lagged dependent
variable is omitted from Eq. (2), the OðT�1Þ bias will persist unless the monthly predictors are
strictly exogenous (see Wooldridge, 2010, pp. 322–323). This assumption appears unrealistic in
many applications. For example, in our empirical application where monthly measures of employ-
ment are used to nowcast quarterly GDP growth, it is advisable to permit innovations to GDP
growth to have an effect on future employment growth.

The OLS bias inflates measures of out-of-sample MSFE, as seen in Hahn and Kuersteiner
(2002) and Greenaway-McGrevy (2019). BCLS provides an effective way to attenuate the impact
of the OLS bias on MSFE. First, in contrast to many IV and GMM approaches to the problem,
the bias correction does not inflate the asymptotic variance of the estimator (Hahn and
Kuersteiner, 2002) which features in quadratic measures of forecast loss such as MSFE. Second,
the asymptotic MSFE of the OLS estimator can be reduced even when the set of candidate mod-
els is misspecified, provided that the candidate set of models can grow large in the asymptotics
and thus better approximate the true DGP (Greenaway-McGrevy, 2019).

2.2. BCLS procedure

We adopt BCLS estimation of the model a similar way to Hahn and Kuersteiner (2002), and will
first present the bias correction expression. The bias correction here will be slightly different
from the standard forecasting case (for example Greenaway-McGrevy, 2013, 2019) because xi, t is
shifted forward one quarter in the vector Yi, t: Specifically, although Eq. (2) can be estimated
using data spanning t ¼ pþ 1, :::,T, the full system in Eq. (1) can only be estimated with data
spanning t ¼ pþ 1, :::,T � 1 because Yi, t contains xi, tþ1: Thus, as we show below, the bias cor-
rection is implemented using an auxiliary regression model that is estimated on fewer observa-
tions from the panel.

In deriving the bias correction we first denote Kp ¼ K0
1 : K

0
2 : � � � : K0

p

h i0
: We can then express

Eq. (1) in companion form as follows:

Yi, t ¼ li þ A0
pYi, t�1 þ Ui, t (3)

where Yi, t :¼ ðY 0
i, t , :::,Y

0
i, t�pþ1Þ0, li ¼ ðl0i, 00Þ0, Ui, t ¼ ðU 0

i, t , 0
0Þ0 and, denoting m ¼ dimðYi, tÞ :

Ap :¼ Kp : Lp
� �

, Lp :¼ Im p�1ð Þ
0m� p�1ð Þm

� �
:

Returning to the parameters of the nowcasting model for the target variable in Eq. (2), letting
~c denote the OLS estimator, and assuming that Ui, t is independently distributed over time, we
can characterize the bias to the OLS estimates of the nowcasting equation as:

5OLS estimates of the fixed effects are also biased, although most of the extant literature focuses on the bias in the estimates
of common parameters.
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E ~c � cð Þ ¼ � 1
T � p

C�1
p Imp � A0

p

� ��1
Jpm,mRJm, 1 þ O T�2ð Þ (4)

where Cp ¼ covðYi, tjliÞ, R ¼ covðUi, tÞ, and Jm2,m1
¼ Im1 : 0m1�ðm2�m1Þ
� �0 for integers m2 � m1

(see Hahn and Kuersteiner, 2002).
Although much of the literature derives analytic expressions for the OLS bias under cross sec-

tion independence (see, e.g., Nickell, 1981; Hahn and Kuersteiner, 2002; Lee, 2012; Greenaway-
McGrevy, 2013), the analytic expression employed in the bias correction remains valid in the
presence of weak-form cross-sectional correlation in the error term. This is because the bias
expressions are expectations of cross-sectional averages, and cross-sectional averages converge to
their expectations under weak correlation (see, e.g., Chudik et al., 2011; Sarafidis and Wansbeek,
2012). Strong-from correlation alters the bias function (Phillips and Sul, 2007) and thus cannot
be accommodated in our framework.

Although Eq. (4) is derived under the restriction that the vector is generated by a VAR(p)
(since the formula is derived assuming that Ui, t is independently distributed over time),
Greenaway-McGrevy (2019) shows that the bias correction reduces MSFE as both T and n grow
large, thereby providing an asymptotic justification for the use of the bias correction even when
the set of candidate forecasting models is misspecified. In severely misspecified models, the
impact of OLS bias is dominated by specification error in the MSFE, so the accuracy of the bias
correction is of second-order magnitude in the asymptotic expression. Larger models suffer from
less specification error and thus the accuracy of the bias correction becomes more important.
However, as the lag order increases, the bias correction becomes more accurate at a sufficiently
fast rate (Greenaway-McGrevy, 2019).

With the analytic expression for the bias and the model cast into companion form in Eq. (3),
we can now outline the BCLS procedure for making a nowcast for yi,Tþ1, given information on
the same quarter’s monthly predictors xi,Tþ1, xi,Tþ2=3 and xi,Tþ1=3, and further lags.

Bias correction procedure

1. Estimate Eq. (2) for t ¼ pþ 1, :::,T and i ¼ 1, :::, n: Let ~c ¼ ð~c01,~c02, :::,~c0pÞ0 denote the vector
of OLS estimates.

2. Estimate the system in Eq. (1) for t ¼ pþ 1, :::,T � 1 and i ¼ 1, :::, n: Let ~Kp denote the OLS
estimates of Kp and let ~li denote the OLS estimates of li. We also construct:

~Q : ¼ 1
n T � p� 1ð Þ

XT�1

t¼pþ1

Xn
i¼1

€Yi;t�1 €Y
0
i;t�1,

where €Yi, t :¼ Yi, t � �Yi; �Yi : ¼ 1
T�p�1

PT�1
t¼pþ1 Yi, t�1, and:

~R : ¼ 1
n T � p� 1ð Þ

XT�1

t¼pþ1

Xn
i¼1

~Ui, t ~U
0
i, t ,

where ~Ui, t ¼ Yi, t �
Pp

s¼1
~K
0
sYi, t�s � ~li:

3. The bias-corrected OLS estimator of c is:

ĉ :¼ ~c þ 1
T � pð Þ

~Q�1 I� ~A0
p

� ��1
Jpm,m

~RJm, 1

where:
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~A0
p :¼ ~Kp :Lp

h i
Then the bias-corrected fixed effects are âi :¼ 1=ðT � pÞPT

t¼pþ1ðyi, t � ĉ0Yi, t�1Þ:
4. The bias-corrected nowcast is then:

ŷi,Tþ1 ¼ âi þ
Xp
s¼1

ĉ0sYi,Tþ1�s ¼ âi þ ĉ0Yi,T (5)

for all i ¼ 1, :::, n:
In addition to the prediction ŷi,Tþ1, we can also generate multi-step predictions using the iter-

ated method. For instance, the two-step forecast can be obtained as ŷi,Tþ2 ¼ âi þ ĉ0Ŷi,Tþ1, where
Ŷi,Tþ1 is the one-step prediction of the entire Y vector. In our empirical application, according to
the data flow, the one-step prediction is a backcast, the two-step prediction is a nowcast and the
three-step prediction is a forecast.6

2.3. Model selection and combination methods

In the previous section, we detailed how to estimate the panel nowcasting model when we know
the number of lags p in Eq. (2). In practice, we need to be able to select between different lag
lengths using appropriate selection techniques. In the remainder of the article we will focus on
three different methods to combine or select between nowcasting models with different lag speci-
fications, each estimated using the BCLS procedure as detailed above. These methods are: panel
MMA, a panel Mallows criterion and a panel FPE criterion. The first method is a nowcast com-
bination approach in which each model in the candidate set is assigned a different weight,
whereas the other methods are model selection approaches which assign a weight of zero to all
models except one.

These methods require a mixed-frequency adaptation of the methods proposed in the papers
of Greenaway-McGrevy (2019, 2020, 2022). For the sake of space, we provide a detailed
description of all considered methods in Section S1 in the Supplementary Material. Notably, we
will compare these methods to existing panel model selection criteria of Lee and Phillips
(2015). We will also compare the combination method to an equal-weights combination which
is simpler to compute and can sometimes be preferred in empirical settings. Since the relative
finite sample properties of these different model selection methods are not yet known in the
presence of mixed-frequency data, we will perform detailed Monte Carlo simulations to
explore this.

2.4. Extension to include exogenous variables

The baseline nowcasting model assumes that all of the xi, t variables in Eq. (2) are endogenous in
the sense that they each appear as an equation of the MF-PVAR system in Eq. (1). In practice,
however, there might be cases in which we want to allow for exogenous variables. In the case of
panel data nowcasting, this might include national (time series) variables being added into a

6This method corresponds to an iterative forecast. An alternative is the direct forecast, which is generated from a model
tailored to the forecast horizon. This can be obtained by replacing Yi, t in Eq. (1) with Yi, tþh�1: Greenaway-McGrevy (2020)
provides formulae for the associated bias correction and model selection criteria for choosing p. Under misspecification the
direct forecast exhibits a lower asymptotic MSFE than the iterative forecast. However, in the finite sample, it is unclear
whether the direct forecast will have a smaller MSFE because the variance of the iterative forecast is less than that of the
direct forecast for a given lag length. See Greenaway-McGrevy (2013) for further details. Thus, the iterative (direct) forecast
will be more accurate if the degree of misspecification is sufficiently small (large). Introducing data-determined lag selection
or model averaging for each method compounds the difficultly of ranking the two methods.
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regional nowcasting model. The assumption of exogeneity of national predictors is reasonable
unless any single region accounts for a very high proportion of national variation.

We will briefly outline the adjustment which must be made to the BCLS procedure to allow us
to nowcast using exogenous variables. Suppose we now have additional regressor variable(s) zi, t
which we wish to use in nowcasting the target variable yi, t: We adapt Eq. (2) to be:

yi, t ¼ ai þ
Xp
s¼1

c0sYi, t�s þ h0zi, t þ ui, t (6)

where zi, t is strictly exogenous in that Eðzi, tui, t�sÞ ¼ 0 for all t and s ¼ :::� 2, � 1, 0, 1, 2:::: It
will be convenient to combine the parameters into the vector g :¼ c0 : h0

� �0
:

The OLS estimators of both c and h exhibit OðT�1Þ bias (Lee, 2012; Phillips and Sul, 2007).
As above, we employ a bias correction as follows. First, the full MF-PVAR with exogenous varia-
bles (MF-PVAR-X) is of the form:

Yi, t ¼ li þ
Xp
s¼1

K0
sYi, t�s þH0zi, t þ Ui, t (7)

We first estimate Eq. (7) by least squares to obtain the estimates ~Ks, ~H and ~li for s ¼ 1, :::, p
and i ¼ 1, :::, n: We next construct:

~QZ : ¼ 1
n T � p� 1ð Þ

XT�1

t¼pþ1

Xn
i¼1

€Zi;t�11€Z
0
i;t�1,

where Zi, t ¼ ðY0
i, t , z

0
i, tÞ0 ; €Zi, t :¼ Zi, t � �Zi; �Zi : ¼ 1=T � p� 1

PT�1
t¼pþ1 Zi, t�1, and:

~R : ¼ 1
n T � p� 1ð Þ

XT�1

t¼pþ1

Xn
i¼1

~Ui, t ~U
0
i, t ,

where ~Ui, t ¼ Yi, t �
Pp

s¼1
~K
0
sYi, t�s � ~H

0
zi, t � ~li:

The bias-corrected OLS estimator of g, denoting mz ¼ dimðzi, tÞ, is then:

ĝ :¼ ~g þ 1
T � pð ÞQ

~ �1

Z Jpmþmz , pm I� A
~ 0
p

� ��1

Jpm,mRRJm, 1

and the nowcast for yi,Tþ1 can be found in the same way as before.

3. Monte Carlo study

We conduct a battery of simulation experiments in order to explore the out-of-sample forecasting
performance of the model specification methods described above. Our goal is to provide practical
advice for choosing a panel model nowcasting specification by exploring how the different meth-
ods perform in a variety of settings realistic to nowcasting.

In these simulations we allow a general aggregation frequency k, so we have the time series
index t ¼ 1=k, 2=k, :::, k� 1=k, 1, 1þ 1=k, 1þ 2=k, :::,T,T þ 1=k, :::,T þ 1 for individuals i ¼
1, ::: , n: When k¼ 3 we therefore simulate according to a quarterly to monthly frequency mix
which is the case of Eq. (2). Meanwhile, annual aggregation of quarterly data corresponds to
k¼ 4 and annual aggregation of monthly data corresponds to k¼ 12. We will focus on the results
for k¼ 3 which is the most common scenario in the nowcasting literature, with results for k¼ 4
and k¼ 12 available upon request.

We generate data for the low-frequency target variable by assuming a latent high-frequency
process y�i, t which is only observed upon aggregation of the time series yi, t at t ¼ 1, 2, :::,T,
namely:
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yi, tf gTt¼1
¼ y�i, t þ y�i, t�1=k þ � � � þ y�i, t�ðk�1Þ=k
n oT

t¼1
(8)

where as we do directly observe the high-frequency predictor variable xi, t:
We generate a bivariate panel VARMA(1,1) process for y�i, t and xi, t at the high frequency as

follows:

y�i, t
xi, t

" #
¼ q11 q12

q21 q22

" #
y�i, t�1=k

xi, t�1=k

" #
þ vi, t ,

vi, t ¼
h1 0

0 h2

" #
ei, t�1=k þ ei, t , ei, t � iidN 0,

1 /

/ 1

" # !

This provides us with the low-frequency data for yi, t aggregated using Eq. (8) and the high-fre-
quency data xi, t , required to run the nowcasting MF-PVAR regressions described in Eq. (1)
above. Since these nowcasting models are mixed frequency VARs of different lag orders p, all
models within the candidate set will be misspecified relative to the DGP. Thus the framework
retains a tradeoff between misspecification and model complexity when selecting the size of a
model even in large samples (c.f. Schorfheide, 2005).

We generate results for a wide range of serial dependence in the VARMA(1,1) by setting h1 ¼
h2 ¼ 0:5 and letting the AR dependence parameter q11 ¼ q22 ¼ q take on values q ¼ 0:2, 0:5, 0:8:
To ensure that the system remains stable under these values of q11 and q22 we set q12 ¼ q21 ¼
0:1: We set / ¼ 0:5 so that there is a moderate correlation between the innovations to the two
time series. For the sample sizes, we consider n ¼ 25, 50, 100, 200, 400 and T ¼ 20, 40, 80, 160:
This corresponds to 5, 10, 20 and 40 years of data for the monthly-to-quarterly aggregation. Our
empirical application is somewhere in the middle of these ranges for n and T. We will generate
results for predictive horizons h¼ 1, 2, 3 which will correspond to the backcast, nowcast and
forecast cases discussed in our application. In setting the maximum lag order we use the rule
pmax ¼ intðmaxð ffiffiffiffiffiffi

2T
p

, min
ffiffiffiffiffi
2n

p
, 12T

� �
ÞÞ:7 We use M¼ 1,000 simulation draws.

We consider six different methods for selecting the lag order of the nowcasting model: panel
Mallows, panel FPE, and the Lee and Phillips (2015) KLIC and BIC criteria, model averaging
with equal weights, and fixing the lag order to one (see Supplementary Material for details). We
compare the various lag order selection methods to panel MMA. By way of comparison, we also
show the results for KLIC and BIC selection when using OLS instead of BCLS for estimation.

We evaluate the different model specification methods by their out-of-sample MSFEs. The
MSFEs are the simple average of the squared forecast errors for each i ¼ 1, :::, n, i.e.
n�1Pn

i¼1ðyi,Tþ1 � ŷi,Tþ1Þ2, where ŷi,Tþ1 denotes a given forecast. Tables S1–S9, which can be
found in the Supplementary Material, exhibit the MSFEs of the various model selection (and
averaging) methods. To facilitate comparisons between the various methods, we (i) normalize
each MSFE by subtracting off the unforecastable component of the MSFE,8 and (ii) express the
normalized MSFE relative to panel MMA (so that an entry greater than one indicates that panel
MMA had a lower MSFE across the simulations, on average).

The results show that the relative performance depends on the forecast horizon h and amount
of time series dependence (as governed by q). For the backcast (h¼ 1), panel MMA generally
outperforms the model selection methods. For the nowcast and forecast (i.e. h¼ 2 and h¼ 3), fix-
ing the lag order to one when serial dependence is limited (q ¼ 0:2) results in the most accurate
forecast. When the magnitude of serial dependence is moderate or large (q ¼ 0:5, 0:8), the BIC
and KLIC criteria perform better than panel MMA. This may reflect that the panel MMA weights

7Greenaway-McGrevy (2019) shows that the maximum permissible rate of expansion in the lag order is just slower than
max

ffiffiffi
n

p
,
ffiffiffi
T

p	 

: This lag order selection rule ensures that pmax grows at a rate just above this maximum permissible rate.

8This is the MSFE of an infinitely large model with known (not estimated) parameters.
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are optimized to minimize MSFE for one-step forecasts – not iterative multistep forecasts.
Although there are selection criteria for use in iterative multistep forecasting in time series appli-
cations (Bhansali, 1997), these have not yet been generalized to the panel data context.

Results for the quarterly-to-annual (k¼ 4) and monthly-to-annual (k¼ 12) aggregations are
similar to that for the k¼ 3 case. We do not reports the results but they are available upon
request. For these simulations we consider n ¼ 25, 50, 100, 200, 400 and T ¼ 5, 10, 20, 40, which
corresponds to 5, 10, 20 and 40 years of data for annual aggregations

4. Empirical application: nowcasting state-level GDP

In this section we will present a detailed empirical application of our methodology by nowcasting
the real GDP growth rate across the 50U.S. states using employment data. This is a novel contribu-
tion to the empirical nowcasting literature as all of the aforementioned studies of U.S. real GDP
nowcasting have taken place at a national level (for instance Aastveit et al., 2018; Fosten and
Gutknecht, 2020; Giannone et al., 2016). On the other hand, the ability to produce timely state-level
real GDP nowcasts could be of significant interest to national and regional policymakers. Similar
state-level data for unemployment have been used in a recent paper of Gonzalez-Astudillo (2019),
but this was in the context of using local data to predict national business cycles and not for the
purposes of making nowcasts of state-level GDP. Elsewhere, the Philadelphia Fed uses state-level
employment as a coincident index for the states, but also not in the context of GDP nowcasting.9

4.1. Data

4.1.1. Quarterly state-level GDP data
The target variable for this study is the real GDP growth rate for all U.S. states. The data are available
at the quarterly frequency, produced by the Bureau of Economic Analysis (BEA),10 and the time span
ranges from 2005Q1 to 2018Q1 for all 50 states. The raw panel dimensions for the study are therefore
T¼ 52 and n¼ 50, though the time series dimension will be lower when we perform the pseudo out-
of-sample exercise. In terms of the timeliness of data release, which is of critical importance for now-
casting, the data for state-level GDP are only available around four to five months (on average) after
the end of the reference quarter. This is a substantial publication lag relative to the national GDP fig-
ures where the preliminary estimate is available less than a month after the end of the reference quar-
ter. The lack of timely data in this setting gives a strong case for the use of nowcasting. Our study
uses final release data and not fully real-time data as the first available historic vintage of data occurs
in 2015 which does not give sufficient real-time observations for our out-of-sample evaluation.11

Table 1. Largest and smallest four states by real GDP (average 2005–2018).

State Real GDP ($billion, ann. SA) Real GDP growth (%)

California 2073.9 1.89
Texas 1290.3 3.13
New York 1204.0 1.20
Florida 770.6 0.69

Montana 38.3 1.73
South Dakota 38.1 1.90
Wyoming 35.2 1.54
Vermont 26.7 0.68

9See https://www.philadelphiafed.org/research-and-data/regional-economy/indexes/coincident. Last accessed 07 August 2020.
10See https://www.bea.gov/data/gdp/gdp-state. Last accessed 25 October 2018.
11See https://apps.bea.gov/regional/histdata/. Last accessed 04 May 2021.
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Features of the GDP data are displayed in Table 1 which shows the largest and smallest four
states ranked by average real GDP over the sample period. Figure 1 provides a graphical depic-
tion of the real GDP data whereas Fig. 2 depicts the year-on-year real GDP growth rate. These
display the disparity in real GDP across states, with California having around 60% higher real
GDP than the next highest, Texas, on average over the sample period and more than 75 times
the real GDP of the lowest state, Vermont. There is also considerable variability in terms of real
GDP growth which can be seen in Fig. 2. With the exception of Texas, the rankings in real GDP
do not tend to match up with those of real GDP growth over the sample period. For example,
Florida’s growth is near the bottom of the rankings and North Dakota (not seen in Table 1) is at
the top of the GDP growth rankings (5.0%) while being near the bottom in terms of the level of
real GDP ($40bn).

Figure 1. Real GDP by State, average over 2005–2018.

Figure 2. Real GDP Growth (% year-on-year) by State, average over 2005–2018.
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This disparity in the real GDP growth rates across states gives motivation for the inclusion of
fixed effects in Eq. (2).

4.1.2. Monthly state-level employment data
We will use employment-related series as the main source of predictor variables in the MF-PVAR
analysis. There are several reasons we use these in our analysis. First, employment-type series are
amongst the most commonly-used predictors in previous empirical nowcasting studies. Secondly,
this can serve as a proxy to labor income which is one of the key ingredients of the BEA’s meth-
odology for constructing state-level GDP data. Finally, there are limited regional data on other
typical nowcast predictors such as industrial production.

The Bureau of Labor Statistics (BLS) produces monthly state-level data for employees on non-
farm payrolls through the Current Employment Statistics (CES) programme, and state unemploy-
ment through the Local Area Unemployment Statistics (LAUS) programme.12 The fact that these
data are monthly makes them ideal candidates for use in nowcasting, particularly as the data are
released in a much more timely fashion than real GDP, being available around a month and a
half after the end of the reference month. This flow of data, depicted in Fig. 3, means that we
have data on all three months of a given quarter well in advance of the same quarter’s GDP data
release. This can allow us to build up an early picture of state-level GDP.

4.2. Pseudo out-of-sample set-up

We will perform a panel pseudo out-of-sample evaluation to see how our proposed methods
compare to competitors throughout history. As is customary in the nowcasting literature since
studies such as Giannone et al. (2008), we will assess the performance of our models in making
predictions at different points in the data flow depicted in Fig. 3. Specifically, we will make three
different predictions per quarter of interest: a forecast, a nowcast and a backcast. These will be
made roughly in the middle of the quarter, just after the release of GDP data, when the employ-
ment data for all three months of the previous quarter are available. As an example, looking at
Fig. 3, the backcast of Q1 will be made in the middle of Q2 just after the release of the Q4 GDP
data when all three months of the employment data for Q1 are available. Similarly, the nowcast
of Q1 is made in the middle of Q1 and the forecast is made in the middle of Q4.

We first transform the data to stationarity using the year-on-year growth rates of the series
which is the same growth rate as that presented by the BEA. This gives a final time series dimen-
sion of T¼ 49 quarterly observations for real GDP growth (denoted gdpi, t) and 3T ¼ 147 for the
monthly employment and unemployment variables (denoted empi, t and unemi, t respectively).
The use of the year-on-year transformation is in line with other nowcasting studies which follow
the year-on-year growth rate convention used by the relevant statistical authority, including
Dahlhaus et al. (2017) and Bragoli and Fosten (2018). However, we will also compare our results

Figure 3. Graphical illustration of the data flow in predicting Q1.

12See https://www.bls.gov/sae/ and https://www.bls.gov/lau/. Last accessed 25 October 2018.
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to those using the quarter-on-quarter real GDP growth rate which is more common in studies
which nowcast national aggregates.

To perform the out-of-sample evaluation we split the sample in the time series dimension into
T ¼ Rþ P observations. We use the first R quarters of the data to estimate the models and make
the backcasts, nowcasts and forecasts across the n states for quarter Rþ 1 and then proceed in a
recursive fashion, adding one quarter of data at a time and re-estimating the parameters (includ-
ing the bias correction) and the predictions throughout the remainder of the sample. As a central
scenario, we start making out-of-sample nowcasts in 2012Q1 which splits the sample equally, giv-
ing a total of P¼ 25 quarters of evaluation over the n states and an initial estimation window of
R¼ 24 quarters. To assess robustness to the choice of sample split, we will also report present
results where nowcasting commences in 2010Q1 (R ¼ 16, P ¼ 33) and 2014Q1 (R ¼ 32, P ¼ 17).
We will also check robustness to the use of the rolling estimation scheme, where the estimation
window is held fixed at R quarters, unlike the recursive scheme where the window expands by
one quarter at a time. Since we are estimating the models using small estimation windows in the
time series dimension relative to the cross-section dimension, we are in a situation where bias
correction is particularly relevant.

For the monthly endogenous explanatory variables in the MF-PVAR we will try both xi, t :¼
empi, t and xi, t :¼ unemi, t:

13 For the lag specification, we will search over models up to pmax ¼ 4
lags to allow up to annual dynamics. For the BCLS MF-PVAR nowcasts we use four methods: lag
selection using the panel FPE criterion above (denoted “MF-PVAR(FPE)” in the results), the
Mallows model averaging method (“MF-PVAR(MMA)”), equal-weights forecast averaging (“MF-
PVAR(EW)”) and a bias-corrected panel VAR(1) model (“MF-PVAR(1)”) which fixes the lag
length at p¼ 1 in every period and does not select lags optimally. In order to compare BCLS
with simple OLS (nonbias corrected) predictions, we will also present the MF-PVAR results
where OLS is used for model estimation with a naïve BIC criterion (“MF-PVAR(BIC)”), details of
which can be found in the Supplementary Material.

We will also report results for three benchmark methods. First, in order to assess the import-
ance of the pooled panel approach, we will report results where individual time series OLS now-
casting regressions are run for each state (“MIDAS(1)”). This is like an unrestricted version of
the MIDAS model of Clements and Galv~ao (2008, 2009) and corresponds to estimating Eq. (2)
state-by-state instead of pooling the data across states. Since the sample size for time series
regression will be as low as R¼ 16, we restrict the number of parameters by fixing the lag length
to be p¼ 1, which we denote the MIDAS(1) model. Finally, we will use two univariate bench-
marks: a panel AR(1) model with homogeneous AR(1) coefficient estimated by OLS, and a time
series AR(1) model which does not pool the information across states. The AR(1) model with no
additional predictors is the most commonly-used benchmark in nowcasting studies, which is why
we assess the performance of our methods relative to the panel and time series version of
this benchmark.

In measuring the accuracy of the nowcasts across the various competing methods, we will use
the MSFE criterion which averages the squared nowcast errors across the n states and the P
evaluation periods.14 The unweighted MSFE is also used as the evaluative criterion for panel now-
casts in the papers of Babii et al. (2020) and Koop et al. (2020). If we generically define ûi, t ¼
yi, t � ŷi, t as the nowcast errors from any of the above methods, then we calculate MSFE as:

13Earlier versions of the paper also checked the results when both predictors were used and xi, t :¼ ½empi, t , unemi, t�0: The
results did not improve over the main results and these models involved the estimation of more parameters.
14We do not assess the statistical significance of the MSFE differences between models as in Diebold and Mariano (1995) and
West (1996). Although there have been recent papers looking at panel versions of the Diebold-Mariano (DM) test for pairwise
comparisons (Timmermann and Zhu, 2019; Akgun et al., 2020), they are not applicable in our context which looks at multiple
different forecast methods with no single ‘benchmark’ model (like Hansen et al., 2011, provide in the time series context).
Additionally, the contribution of parameter estimation to DM tests has not yet been explored in a panel context, which is
particularly relevant in our case with small panel dimensions and the introduction of an estimated bias correction.
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MSFE ¼ 1
nP

Xn
i¼1

XT
t¼Rþ1

û2
i, t (9)

Finally, we will also explore the results by way of a subgroup analysis, where we restrict the
sample of states to selected groups of size smaller than n. This is to check the impact of the
homogeneous coefficients assumption on the results. The groupings will be discussed in more
detail later.

4.3. Results: pseudo out-of-sample nowcast evaluation

4.3.1. Results across all states
We first present the main set of results where we compare the panel nowcasting methods esti-
mated on information pooled across all states. The results of the pseudo out-of-sample evaluation
of the forecasts, nowcasts and backcasts are displayed in Table 2. This shows the average MSFE
across all states for each of the methods, first for the employment version of the model (top
panel) and then for the unemployment version (bottom panel). There are several key findings to
draw out of these results.

We first note that the idea of incorporating timely information is important for nowcasting.
We can see from the top panel of Table 2 that the MF-PVAR models with employment have sub-
stantially lower MSFE on average than the panel or time series AR(1) methods. For example, in
the case where R ¼ 24, P ¼ 25, the BCLS MF-PVAR(1) method gives uniformly lower MSFE
than the panel AR(1) method by a factor of 9% for the backcast and around 13% for both the
nowcast and forecast. This result is robust to the choice of R and P with even larger relative
MSFE gains in the case of R ¼ 32, P ¼ 17: On the other hand, looking at the lower panel of
Table 2 we see that the unemployment version of the model fares much worse than the employ-
ment version of the model, typically with 10%–30% higher MSFE depending on the method. This

Table 2. MSFE Results: recursive estimation.

Predictor variable: empi, t

R ¼ 16, P ¼ 33 R ¼ 24, P ¼ 25 R ¼ 32, P ¼ 17

Forecast Nowcast Backcast Forecast Nowcast Backcast Forecast Nowcast Backcast

Panel BCLS MF-PVAR(FPE) 6.572 4.007 2.162 5.009 3.300 1.926 3.603 2.263 1.154
MF-PVAR(MMA) 6.571 4.007 2.162 5.009 3.300 1.926 3.603 2.263 1.154
MF-PVAR(EW) 5.031 3.356 2.068 4.490 3.086 1.918 3.234 2.129 1.134
MF-PVAR(1) 5.214 3.557 2.247 4.557 3.282 2.044 3.080 2.194 1.213

Panel OLS MF-PVAR(BIC) 6.905 4.336 2.256 5.269 3.468 1.979 3.981 2.416 1.191
Panel AR(1) 6.097 4.228 2.409 5.254 3.754 2.243 4.029 2.859 1.447

TS OLS MIDAS(1) 7.004 4.780 2.911 5.481 3.975 2.455 3.972 2.836 1.609
AR(1) 7.365 4.551 2.433 5.984 4.065 2.302 3.907 2.791 1.438

Predictor variable: unemi, t

R ¼ 16, P ¼ 33 R ¼ 24, P ¼ 25 R ¼ 32, P ¼ 17

Forecast Nowcast Backcast Forecast Nowcast Backcast Forecast Nowcast Backcast

Panel BCLS MF-PVAR(FPE) 6.609 4.439 2.400 5.929 4.047 2.217 4.850 3.152 1.530
MF-PVAR(MMA) 6.602 4.439 2.401 5.929 4.047 2.217 4.850 3.152 1.530
MF-PVAR(EW) 5.550 3.944 2.328 5.123 3.655 2.181 4.104 2.826 1.444
MF-PVAR(1) 5.646 4.092 2.416 5.116 3.717 2.238 3.807 2.737 1.440

Panel OLS MF-PVAR(BIC) 7.154 4.844 2.517 6.295 4.298 2.292 5.222 3.344 1.592
Panel AR(1) 6.097 4.228 2.409 5.254 3.754 2.243 4.029 2.859 1.447

TS OLS MIDAS(1) 8.814 5.844 3.144 7.078 4.860 2.722 3.970 2.835 1.640
AR(1) 7.365 4.551 2.433 5.984 4.065 2.302 3.907 2.791 1.438
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indicates that employment growth provides a better timely signal than the unemployment rate,
and we will focus on these results in what follows.

In relation to the bias-corrected methods, there are two main points to draw out of Table 2.
We first note that the backcasts are improved by the use of model selection or combination
yields, relative to fixing the number of lags at p¼ 1 as is done in the BCLS MF-PVAR(1) method.
We especially note that the equal weights forecast combination method MF-PVAR(EW) delivers
the lowest MSFE across forecast, nowcast and backcast with the exception of the R ¼ 32, P ¼ 17
case. In some cases the gain is well above 20% relative to the panel AR(1) model. This indicates
that the use of forecast combination in conjunction with BCLS can be a very useful method in
making state-level nowcasts of real GDP growth. Secondly, we find that the bias correction is,
indeed, beneficial since the BCLS method using FPE results in lower MSFE than the equivalent
use of OLS with the standard BIC selection criterion. The improvement is in the range 5–10%
across all of the results in the top panel of Table 2. We expect gains from bias correction to be
even larger in other applications where the overall time series dimension T is yet smaller.

Finally, a very important result is that there appear to be substantial gains from pooling infor-
mation across states in our panel nowcasting approach. The MIDAS(1) model, which uses
employment information in state-by-state time series regressions, performs poorly relative to the
panel methods and even relative to the time series AR(1) method in some cases. The fact that the
MIDAS(1) and time series AR(1) are the worst performing methods across most of the results in
Table 2 illustrates the benefits from pooling information across states rather than obtaining pre-
dictions from time series models with few observations and many parameters.

In addition to displaying the robustness of the results to the choice of R and P, in Table 3 we
also report results where we change to the rolling parameter estimation scheme. This is where the
estimation window is held fixed at R time series observations rather than expanding the window
one-by-one as in the recursive scheme. Focusing again on the employment version of the model,
in the top panel of Table 3 we see that the MSFE is larger than that of recursive estimation in all
cases. For instance, taking the BCLS MF-PVAR(1) method for R ¼ 24, P ¼ 25, the rolling scheme

Table 3. MSFE results: rolling estimation.

Predictor variable: empi, t

R ¼ 16, P ¼ 33 R ¼ 24, P ¼ 25 R ¼ 32, P ¼ 17

Forecast Nowcast Backcast Forecast Nowcast Backcast Forecast Nowcast Backcast

Panel BCLS MF-PVAR(FPE) 9.601 4.926 2.362 5.557 3.530 2.023 3.717 2.361 1.241
MF-PVAR(MMA) 9.240 4.821 2.336 5.534 3.509 2.017 3.716 2.359 1.239
MF-PVAR(EW) 6.000 3.604 2.104 5.027 3.288 1.988 3.388 2.237 1.187
MF-PVAR(1) 6.374 4.115 2.403 5.488 3.779 2.202 3.286 2.323 1.261

Panel OLS MF-PVAR(BIC) 9.295 5.258 2.520 5.509 3.628 2.086 4.135 2.548 1.301
Panel AR(1) 6.275 4.396 2.485 5.383 3.885 2.321 4.118 2.901 1.447

TS OLS MIDAS(1) 10.023 7.054 4.448 6.024 4.477 2.996 4.122 3.015 1.807
AR(1) 7.824 4.818 2.560 6.215 4.190 2.367 4.050 2.875 1.479

Predictor Variable: unemi, t

R ¼ 16, P ¼ 33 R ¼ 24, P ¼ 25 R ¼ 32, P ¼ 17

Forecast Nowcast Backcast Forecast Nowcast Backcast Forecast Nowcast Backcast

Panel BCLS MF-PVAR(FPE) 7.962 4.763 2.510 6.199 4.144 2.270 4.899 3.167 1.561
MF-PVAR(MMA) 7.789 4.710 2.499 6.176 4.131 2.269 4.898 3.166 1.560
MF-PVAR(EW) 5.937 3.994 2.336 5.327 3.774 2.244 4.231 2.880 1.462
MF-PVAR(1) 6.268 4.467 2.539 5.333 3.891 2.320 4.020 2.867 1.475

Panel OLS MF-PVAR(BIC) 8.760 5.499 2.823 6.776 4.533 2.415 5.357 3.426 1.655
Panel AR(1) 6.275 4.396 2.485 5.383 3.885 2.321 4.118 2.901 1.447

TS OLS MIDAS(1) 11.982 8.366 5.134 8.706 6.016 3.278 4.425 3.212 1.944
AR(1) 7.824 4.818 2.560 6.215 4.190 2.367 4.050 2.875 1.479
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gives 8% higher MSFE for the backcast, 15% higher for the nowcast and 20% higher for the fore-
cast. The gap is even larger when R¼ 16 which highlights the need to use the maximum number
of observations possible in estimating the models. Also, we see huge inflation of MSFE for the
time series MIDAS(1) and AR(1) models as these are only estimated on a small window of obser-
vations which does not grow as in the recursive scheme. We therefore would not recommend the
use of rolling estimation in panels with similar dimensions to these. That being said, the results
are qualitatively similar in the sense that the BCLS MF-PVAR methods typically deliver the low-
est MSFE in the employment model, especially in the equal weights forecast averaging method.

We also ran results for the quarter-on-quarter growth rate which, although not reported by the
BEA in the context of state-level GDP growth, is often used by researchers interested in national
aggregate real GDP growth. The results can be found in Table S11 in the Supplementary Material.
These show qualitatively similar findings to the year-on-year results above, where the model with
employment data seems to perform better than unemployment data. The gains from nowcasting,
relative to autoregressive benchmarks, appear to be slightly smaller than in the year-on-year case,
but can still be over 20%, for example the backcast results for the R ¼ 35, P ¼ 17 case.

4.3.2. State-level results
Rather than focusing on the nowcast model performance on average across states, it is interesting
to zoom in and see how the models perform within specific states. To achieve this we can also
present the MSFE results from Table 2 for individual states, acknowledging that this is based on
a relatively small quarterly time series sample. For this reason, we now turn attention to the
results with the largest evaluation window P ¼ 33:

Returning to the four states with highest real GDP from Table 1 above, Table 4 presents the
benchmark results as in Table 2 but for these four states. We can see from these results that the
BCLS MF-PVAR methods also perform the best when looking at these individual states, deliver-
ing the lowest MSFE in 11 out of the 12 cases. Again, it appears that the use of lag selection can,
in fact, give larger MSFE in the forecast and nowcast periods and the BCLS MF-PVAR(1) method
gives the lowest MSFE in many cases.

We also see that there is considerable variation in the performance of the time series
MIDAS(1) models. In some cases the MIDAS(1) method appears better than the average we see

Table 4. MSFE results: largest four states.

California Florida

Forecast Nowcast Backcast Forecast Nowcast Backcast

Panel BCLS MF-PVAR(FPE) 2.853 1.931 0.937 5.201 2.138 0.996
MF-PVAR(MMA) 2.856 1.931 0.937 5.202 2.138 0.996
MF-PVAR(EW) 1.997 1.504 0.903 3.484 1.716 1.071
MF-PVAR(1) 2.099 1.335 0.877 2.587 1.479 1.163

Panel OLS MF-PVAR(BIC) 3.332 2.128 0.929 5.466 2.405 1.001
Panel AR(1) 4.013 2.604 1.317 4.796 2.893 1.530

TS OLS MIDAS(1) 1.898 1.589 1.190 5.985 3.561 1.775
AR(1) 3.761 2.486 1.295 3.815 2.273 1.349

New York Texas

Forecast Nowcast Backcast Forecast Nowcast Backcast

Panel BCLS MF-PVAR(FPE) 3.545 2.084 1.543 4.425 2.438 1.031
MF-PVAR(MMA) 3.524 2.084 1.543 4.426 2.438 1.031
MF-PVAR(EW) 2.149 1.687 1.408 3.672 2.372 1.080
MF-PVAR(1) 3.147 2.416 1.692 3.566 2.336 1.252

Panel OLS MF-PVAR(BIC) 2.947 2.201 1.634 5.067 2.631 1.060
Panel AR(1) 3.344 2.988 1.929 4.693 3.080 1.359

TS OLS MIDAS(1) 5.944 4.070 2.261 4.097 2.684 1.541
AR(1) 3.281 2.954 1.869 5.725 3.279 1.352

These results are for the model with employment as the single predictor, and for R ¼ 16, P ¼ 33 with recursive estimation.
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in Table 2, and in some cases worse. For instance, in Texas the MIDAS(1) method gets close to
the MF-PVAR methods in terms of MSFE. On the other hand, for New York we see that the
results are much worse for the MIDAS(1), with almost 80% higher MSFE than the panel AR(1)
in the forecast column. The variation in these results seems to gives some motivation toward
exploring the assumption of homogeneity of the panel model coefficients which we impose in Eq.
(2). We will explore this in more detail in a later section.

Finally, in addition to exploring the state-level results in these four important cases, we can
also shed further light by looking at the distribution of MSFE across all states. In the
Supplementary Material, we display histograms (Figures S5, S7 and S9) representing the distribu-
tion of the MSFE across states for forecast, nowcast and backcast, corresponding to the results in
Table 2. We also present the same histograms but for the MSFE relative to the panel AR(1)
model (Figures S6, S8 and S10) which are less prone to the outliers seen in the raw MSFE histo-
grams. These results confirm that the equal-weights forecast averaging method MF-PVAR(EW)
seems to perform well across forecast, nowcast and backcast, with the bulk of the MSFE distribu-
tion being to the left of all of the other methods. The results also serve to highlight that there can
be extreme outliers when using the nonpooled time series AR(1) method instead of using pooled
panel methods. This is evident especially in the nowcast and forecast results where the highest
MSFE for the time series AR(1) method is more than double that of the equal-weights method.

4.3.3. Exogenous national-level predictors
It is possible that the predictions of real GDP growth across states can be improved by incorpo-
rating variables related to national business cycle movements. Similar arguments are used in a
different context by Koop et al. (2020) who nowcast regional GVA in the U.K. using national
GVA. On the other hand, the opposite approach is taken in the U.S. by Gonzalez-Astudillo
(2019) who uses state-level data to estimate national business cycles.

We therefore add in national real GDP growth as an exogenous variable into the mixed fre-
quency VAR methods. This also gives us the opportunity to explore the modified bias correction
which holds in the presence of exogenous predictors, as outlined above. The results are displayed
in Table 5 which contains the MSFE results for the employment model and for the R ¼ 16, P ¼
33 case. These results can be compared to the upper left panel of Table 2 which show the equiva-
lent set of results without the exogenous national GDP predictor. This seems to suggest that we
do not gain a lot by adding in the exogenous national variable. Focusing on the equal weights
forecast averaging method, which delivers the best results generally, we see an improvement in
MSFE over Table 2 of around 4% for the backcast, 1% for the nowcast and a worsening of
around 20% for the forecast. Overall, while there may be some small gains to be had from adding
in national predictors to regional nowcasting models in the U.S., further work should be done to
explore the circumstances of these improvements.

Table 5. MSFE Results: - exogenous national GDP.

Forecast Nowcast Backcast

Panel BCLS MF-PVAR(FPE) 9.805 4.184 2.102
MF-PVAR(MMA) 9.664 4.154 2.096
MF-PVAR(EW) 6.230 3.306 1.983
MF-PVAR(1) 5.436 3.549 2.214

Panel OLS MF-PVAR(BIC) 6.836 4.094 2.182
Panel AR(1) 6.097 4.228 2.409

TS OLS MIDAS(1) 10.787 6.153 3.413
AR(1) 7.365 4.551 2.433

These numbers display the MSFE for the model with employment as the single predictor, and for R ¼ 16, P ¼ 33 with recur-
sive estimation. The Panel and Time Series AR(1) methods give the same MSFE as in Table 2 as they do not use any add-
itional predictors.
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4.3.4. Allowing heterogeneity: sub-group pooling versus all-states pooling
The results of the MF-PVAR nowcasting models up until now have used information pooled
across all n¼ 50 states under the assumption that each state has homogeneous slope coefficients
in Eqs. (1) and (2). We also found that it was not advisable to allow heterogeneity by estimating
individual time series equations when the sample size is prohibitively low. In this section we
explore whether there is any merit to pooling across specific subgroups of states, as an intermedi-
ate step between all-state pooling and time series estimation.

In dividing the U.S. states into smaller subgroups there are many possibilities. The first, and
perhaps most obvious, way to categorize is based on geographical regions. We therefore break
down the states into the U.S. Census Bureau’s four census regions: Northeast (n1 ¼ 9), Midwest
(n2 ¼ 12), South (n3 ¼ 16) and West (n4 ¼ 13).15 Other categorizations we consider are those
discussed in Greenaway-McGrevy and Hood (2019) which are based on states with similar pro-
duction characteristics. As such we will look at energy-producing states (n1 ¼ 7) as well as the
so-called “Rust Belt” states (n2 ¼ 7) which experienced common industrial decline since the
1980s. For completeness we will also report an “Other” subgroup (n3 ¼ 36) which excludes both
energy and Rust Belt states. These groupings are displayed in Table S10 in the Supplementary
Material. To avoid only using pre-determined groups, we also check our results using a data-
driven method suggested by Su et al. (2016) which identifies latent subgroup structures in panel
data using a classifier-Lasso (C-Lasso).

Table 6 displays the MSFE results from sub-group pooling versus all-states pooling for the
backcast and for the model with employment as the single predictor with recursive estimation
and sample split R ¼ 16, P ¼ 33: The nowcast and forecast results can be found in Tables S12
and S13 in the Supplementary Material. To produce these results, we first estimate the panel

Table 6. Backcast MSFE results: sub-group pooling vs. all-states pooling.

Northeast Midwest South West

Sub-group All-states Sub-group All-states Sub-group All-states Sub-group All-states

Panel BCLS MF-PVAR(FPE) 3.065 1.688 3.047 2.730 1.827 1.703 2.963 2.531
MF-PVAR(MMA) 2.091 1.688 2.941 2.730 1.816 1.703 2.846 2.531
MF-PVAR(EW) 1.641 1.719 2.788 2.721 1.819 1.674 2.406 2.191
MF-PVAR(1) 1.891 1.838 3.145 3.060 2.013 1.962 2.183 2.131

Panel OLS MF-PVAR(BIC) 2.157 1.692 3.047 2.810 2.080 1.750 2.939 2.757
Panel AR(1) 1.889 1.971 3.465 3.448 1.957 1.936 2.312 2.335

TS OLS MIDAS(1) 2.292 – 3.577 – 2.658 – 3.036 –
AR(1) 1.835 – 3.499 – 2.060 – 2.322 –

Rust Belt Energy Other

Sub-group All-states Sub-group All-states Sub-group All-states

Panel BCLS MF-PVAR(FPE) 2.010 1.478 4.879 4.328 1.942 1.874
MF-PVAR(MMA) 1.726 1.478 4.338 4.328 1.923 1.874
MF-PVAR(EW) 1.514 1.419 3.831 3.933 1.818 1.831
MF-PVAR(1) 1.893 1.672 4.258 4.335 1.958 1.953

Panel OLS MF-PVAR(BIC) 1.459 1.520 4.221 4.806 1.960 1.903
Panel AR(1) 1.673 1.651 5.208 5.270 1.994 2.000

TS OLS MIDAS(1) 2.280 – 5.479 – 2.534 –
AR(1) 1.689 – 5.507 – 1.980 –

These numbers display the MSFE by subgroup for the model with employment as the single predictor, and for R ¼ 16, P ¼ 33
with recursive estimation. The “Sub-group” column shows the MSFE results for that sub-group of states, and where the
panel models are estimated only using data from that that sub-group. The “All-states” column gives the MSFE results for the
same sub-group of states, but where the panel models are estimated using data from all states. Since the time series (TS)
models are estimated state-by-state the results are the same across these two columns, so one entry is replaced with “–” to
avoid confusion.

15See https://www2.census.gov/geo/pdfs/maps-data/maps/reference/us_regdiv.pdf. Last accessed 17 July 2019.
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models (MF-PVAR and panel AR(1)) only using the sub-group data and report the average
MSFE for that sub-group. We then take the results from the all-states estimation (as used in
Table 2) and report the average MSFE measure for the same sub-group. This helps us to gauge
whether results improve if we strip out extra states, or whether pooling additional information
from other states can improve estimation and therefore the predictions in particular sub-groups.

The striking result from Table 6 is that there appears to be no evidence in favor of using sub-
group pooling as a way to allow for heterogeneity in the coefficients. In fact, the opposite result
holds that the MSFE actually tends to be lower when all-states pooling is used to estimate the
parameters of the model. These gains from all-states pooling are typically in the region of 5% to
10% but can be as large as 40% in some cases. The nowcast and forecast results in the
Supplementary Material show even worse results for the sub-group estimation, perhaps because
they iterate forward the estimates from very small samples. This result is in favor of our baseline
approach for modeling the panel by pooling across all states with homogeneous coefficients.

Overall, these results indicate that in relatively small panels like this, the gains from pooling
information across all states appear to outweigh any improvement from permitting heterogeneity
across subgroups. This provides further evidence in favor of pooling in the “to pool or not to
pool” debate posed by Wang et al. (2019) and others. We also note that we find similar results
when using a data-driven selection of the subgroups using the C-Lasso approach of Su et al.
(2016) instead of these pre-determined subgroups.16

In looking across the geographical regions, the worsening from subgroup pooling is lowest in
the South, which is the region with the largest number of states. This also gives evidence that
pooling across a large estimation sample size is more important than allowing heterogeneity in
this example. In the lower panel of Table 6 a similar story emerges in that the largest “Other” cat-
egory gives similar results between sub-group and all-state pooling. As a final extension to
explore subgroup pooling, we added in the inflation in the West Texas Intermediate (WTI) crude
oil price as an exogenous variable into the MF-PVAR for energy-producing states to see if this
yielded any MSFE improvements.17 While there were some minimal improvements in the order
of 1–2% gain in MSFE for some of the methods, we did not find any substantial and consistent
improvements in adding this as an exogenous predictor.

5. Conclusion

In this article, we look to shift the attention of the existing nowcasting literature away from time
series methods to the panel data context. This allows us to perform near-term prediction of
regional or sectoral data which typically suffer from even worse issues with data timeliness than
national aggregate data such as real GDP. In our empirical application we find clear gains from
pooling information using panel methods when the purpose is nowcasting U.S. state-level
GDP growth.

We propose a mixed-frequency panel VAR approach to nowcasting and demonstrate how the
model can be estimated using a BCLS approach. We also suggest several model selection and
combination methods, building on recent panel forecasting research by Greenaway-McGrevy
(2019, 2020, 2022). Since the model selection methods have not been developed in a mixed-
frequency framework, we are careful to demonstrate, though Monte Carlo simulation, the effect-
iveness of these model selection methods relative to naïve benchmarks. Our application to U.S.
state-level GDP nowcasting yields further insights than previous national studies which cannot

16Specifically, we find that the C-Lasso approach predominantly picks out a very small subgroup of three energy-producing
states when it is used to identify two latent sub-groups: Alaska, North Dakota and Wyoming. When we run the results for this
small subgroup the results are poor relative to the all-state pooled results, presumably due to the very small sample size for
estimation. The results are therefore not presented here, but are available on request.
17Data accessed from FRED Economic Data: https://fred.stlouisfed.org/series/DCOILWTICO. Last accessed 17 September 2019.
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give state-level information, and highlights the usefulness of pooling information across states.
We envisage many further possible applications of our methods, such as the prediction of sectoral
GDP or nowcasting multiple different proxies for inflation.

Further work may look to enhance this panel nowcast model specification by allowing factors
to be estimated from a large set of external (time series) variables, or to estimate a common fac-
tor from the panel of endogenous variables itself. This would extend existing factor-based time
series nowcasting methods (see Antolin Diaz et al., 2017; Banbura et al., 2013; Fosten and
Gutknecht, 2020; Giannone et al., 2008) to the panel data context.
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