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ABSTRACT

Microarray data represents the expression levels of genes for differ-
ent samples and for different conditions. It has been a central topic
in bioinformatics research for a long time already. Researchers try
to discover groups of genes that are responsible for specific bio-
logical processes. Statistical analysis tools and visualizations have
been widely used in the analysis of microarray data. Researchers
try to build hypotheses on both the genes and the samples. There-
fore, such analyses require the joint exploration of the genes and the
samples. However, current methods in interactive visual analysis
fail to provide the necessary mechanisms for this joint analysis. In
this paper, we propose an interactive visual analysis framework that
enables the dual analysis of the samples and the genes through the
use of integrated statistical tools. We introduce a set of specialized
views and a detailed analysis procedure to describe the utilization
of our framework.

Categories and Subject Descriptors

I.3.m [Computing Methodologies]: Computer GraphicsMiscella-
neous; J.3 [Computer Applications]: Life and Medical Sciences-
Biology and genetics

General Terms

Design
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1. INTRODUCTION
Analysis of gene expression data has been one of the key analy-

sis in molecular biology in the recent years. This type of datasets
are produced by microarray experiments and represent the activity
of genes under different conditions (different samples). The activ-
ity of the genes are referred to as expression levels. The analysis
of expression data is used to find groups of genes that are respon-
sible for certain biological processes. Such analysis have a wide
application area from agriculture to pharmacy.
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Statistical analysis methods are widely used in the analysis of
microarray data where the data is handled as a table. Convention-
ally, statistical tools perform the analysis on either the rows or the
columns of the data. An example of such a tool is hierarchical clus-
tering where the analyst clusters either the genes or the samples of
microarray data separately. However, in gene expression analysis,
the analyst is interested in discovering the relations between the
genes, as well as between the samples. Moreover, microarray data
usually contains the expression levels of thousands of genes over
a small number of samples. Such type of datasets is referred to as
“large p small n" data and traditional statistical methods are known
to be problematic when they are applied on such datasets [12].

Due to these problems in the utilization of statistical analysis
methods in gene expression analysis, analysts need solutions where
they can use these methods interactively on both the samples and
the genes. The main motivation of this paper is to provide mech-
anisms that enables the expert to perform statistical analysis as a
natural step of interactive visual analysis (IVA). In this paper, we
build upon the ideas from our previous study where we investigated
the dual analysis of items and dimensions in the analysis of high-
dimensional datasets [25].

In this paper, we propose a framework to perform the dual anal-
ysis of genes and samples using an interactive visual analysis envi-
ronment. In our framework, we integrate the most common statisti-
cal analysis tools that are used in microarray data analysis. All the
visualizations and the statistical tools can be used on both the sam-
ples and the genes. We provide an iterative dual analysis scheme,
where the analyst explores, compares, and, refines the results of
statistical methods at each iteration.

We describe how the integration of statistical tools into IVA is
achieved. We introduce three specialized views to use in the analy-
ses. We firstly introduce a categorical data view, which enables the
comparison of the results of different statistical tools, e.g., cluster-
ing, linear discriminant analysis, with available meta-data on the
samples, e.g., gender of a sample. Secondly, we introduce the
“Dynamic PCA Plot", which guides the user to explore more “use-
ful" projections of the data interactively. Finally, we introduce the
“deviation plot", which provides a mechanism to visualize certain
statistics of the samples or the genes. This view computes and vi-
sualizes the deviations in these statistics that occur via interactive
selections. All the three views are used in linking & brushing op-
erations together with a set of traditional visualizations such as,
scatterplots, heat maps or histograms. To achieve the duality in the
analysis, all the views are capable of visualizing either the genes or
the samples.

Additionally, we describe the dual analysis procedure where all
the introduced views and integrated analysis tools are used in com-
bination. We demonstrate a set of analysis procedures that brings



new opportunities in gene expression data analysis.

2. RELATED WORK
Gene expression matrix analysis aims to discover relations be-

tween genes and samples at the same time. This makes them a
suitable domain for visual analysis. Saraiya et al. provides an eval-
uation of the currently available microarray visualization tools [19].
They evaluated these tools in terms of the insight gained through
the analysis and they aim to provide a guide for analysts in se-
lecting a suitable visualization tool for their data. Quackenbush
provides an overview of the techniques and challenges in the com-
putational analysis of microarray data [16]. Gehlenborg et al. [5]
reviews an wider range of works on the visualization of omics data
and provides valuable future perspectives.

Heat maps are direct visualizations of microrray data, so they are
included in most of the visualization tools [20, 4, 18]. Due to the
large sizes of these heat maps, they are ordered using mainly hierar-
chical clustering and annotated with the resulting dendograms [4].

In Hierarchical Clustering Explorer [20], Seo and Shneiderman
use an interactive dendogram over heat maps and they provide an
interactive framework that contains conventional visualizations. They
include a cluster comparison view where the user can compare two
clustering results. In a recent study, Lex et al. introduce Match-
Maker [14], that is used to compare groups of columns. In their
work, they provide a use-case where they use their methods to
compare clusters of gene expression data. Treeview provides a fo-
cus+context visualization for the microarray heat map [18]. It tries
to overcome problems of dense matrix displays, by highlighting
the selected items in a zoomed view. Another important work is
the SpRay application by Dietzsch et al. [1]. The authors perform
an analysis of the raw gene expression data together with derived
features related to the genes. We take a different approach in our
paper and perform the analysis of the genes and the samples in par-
allel.

Caleydo provides a more general visualization solution by dis-
playing gene expression data together with pathways [13]. It pro-
poses joint and visually linked views of gene expressions and path-
ways in a viewing mechanism called “bucket". Rubel et al. [17]
integrate clustering and visualization in the analysis of 3D gene ex-
pression data. Authors integrated the data clustering for 3D gene
expression analysis into their PointCloudXplore visualization tool.
Additionally, there are a number of commercial tools like Spot-
fire [22], GeneSpring [6] and JExpress [3] that provide a rich set of
views and statistical analysis routines. Jeong et al. [8] demonstrated
how their tool, iPCA, is utilized in performing PCA operations in-
teractively. The results provide mechanisms to observe how PCA
results update in response to several interactive modifications. The
presented method is similar to our dynamic PCA view. However
with our solution, we achieve the seamless integration of the selec-
tions on both the data items and the dimensions into the interactive
PCA computations.

In our previous work, we introduced a dual analysis framework
for the analysis of high-dimensional data [25]. In this general frame-
work, the analysis is carried out over the items and the dimensions
in a linked, parallel fashion. Conventional visualizations, such as
scatterplots are used to visualize the dimensions as visual entities.
The current paper, extends this framework with more specialized
views, namely, the categorical data view and the deviation plot. We
also demonstrate the application of the dual analysis idea in the
analysis of microarray data.

In this work, we extend the current literature in gene expression
data analysis with the dual interactive analysis of genes and sam-
ples. We propose a visual analysis scheme where the analysis of

Figure 1: The dual analysis framework. 1) Data view for select-

ing different data variables and results 2,3,4) Deviation plots

that depict changes in the statistics 5) Dynamic PCA view de-

picting PCA results applied on samples 6) Categorical data

view showing different information on data, such as meta-data,

clustering results. Notice the background color for views show-

ing genes is blue and for samples it is yellow.

genes and samples is carried out in parallel. This analysis involves
the integration of statistical tools into the visual analysis cycle and
it utilizes special views for the evaluation and comparison of the
results of these statistical tools.

2.1 Statistical Analysis Tools
In this paper, we utilize a number of multivariate statistical anal-

ysis methods like principal component analysis (PCA), linear dis-
criminant analysis (LDA), and, clustering. PCA is a widely used
dimension reduction method [10]. The goal of PCA is to create a
lower dimensional projection of the original data, while trying to
preserve much of the variance. PCA creates principal components
(PC) which are the axes of an orthogonal coordinate system. In
microarray data analysis, PCA is usually used to filter genes prior
to other statistical analysis operations like clustering or classifica-
tion [28].

LDA is a supervised multivariate analysis method which tries
again to find a linear combination of the original dimensions of the
data [9]. Unlike PCA which is a supervised method, LDA considers
class labels when computing the linear combination of dimensions.
Therefore, LDA tries to maximize the class discrimination while
reducing the dimensionality of the data. LDA is used as a classifier
or as a dimension reduction method.

Clustering is the process of assignment of a set of similar data
items into subsets — clusters. It is a commonly used method in
microarray analysis to reveal the underlying structures and rela-
tions between genes and observations. In this paper, we use both
hierarchical and k-means clustering using Euclidean distance for
dissimilarity computations [23].

3. THE DUAL ANALYSIS FRAMEWORK
Our proposed analysis framework involves the iterative and par-

allel analysis of the genes and the samples. At each iteration, the
user modifies the selections, observes the relations visually and
runs statistical analysis tools on the current selections. The results
of the tools are observed and analyzed together with the already
available meta-data. The analyst continues the same procedure in
a loop until sufficient insight is achieved. The proposed frame-



work contains conventional IVA views like scatterplots, histograms
and three special views, namely the categorical data view, the dy-
namic PCA plot and the deviation plot. Additionally, we include
a microarray heatmap to visualize the expression values. In order
to achieve the parallel and linked analysis of genes and samples,
all the views are capable of visualizing genes and/or samples. For
demonstration, assume two scatterplots, where the first one visual-
izes genes and the second one the samples. In this setting, while a
point in the first scatterplot represents a gene, a point in the second
scatterplot represents a sample. In order to make the distinction
between these views easier, we color the background of the views
that visualize the genes with blue (Figure 1 - 2,3) and the views that
depict the samples with yellow (Figure 1 - 4,5). The user decides
interactively to visualize either the genes and/or the samples in any
of the available views. All the views are linked and the selected
genes and/or samples are highlighted in all the views. In Figure 1,
a screenshot of the realization of our framework can be seen.

In the context of this work, we refer to the microarray (or gene
expression ) dataset as n× p matrix M, where mi, j represents the
i−th gene expression level for the j−th sample. We assume that M

contains expression levels of n genes taken from p samples. We de-
note the set of genes as G = {g1, . . . ,gn} and the set of samples as
S = {s1, . . . ,sp}. Also note that |G|= n and |S|= p. Additionally,
such microarray datasets comes with information about the sam-
ples and/or the genes that are referred to as meta-data. Examples
of such additional information can be the known classification of
the samples, diseases associated with the sample, the gender of the
sample, etc. We denote such meta-data regarding samples with DS,
where each sample has a number of meta-data DS

i associated. Sim-
ilarly, we denote each single meta-data regarding the genes with
DG

i . Figure 2 illustrates the structure of the microarray data and the
associated meta-data.

In our framework, we utilize a brushing mechanism which is
based on composite brushing [15]. As we have two types of views
in terms of the visualized data, i.e., genes and samples, we handle
the brushes on genes and samples separately. A brush b represents
a subset of items (genes or samples) that are selected through a
view. Each brush is combined with the already performed brushes
using a Boolean operator Op with Op ∈ {∪,∩,¬}, where ∪ repre-
sents the union, ∩ represents the intersection and ¬ represents the
not operator. As a result, a composite brush B is produced, which is
computed automatically as the user continues to make brushes. In-
dividual brushes bi are merged into composite brushes Bi using the
selected Op by Bi = Op(Bi−1,bi) starting with B1 = Op(b0,b1).
For simplicity, we denote the final set of brushed genes with GL

and samples with SL. It is important to mention that, the type of the
operator can be selected interactively by the user.

3.1 Integrated Statistical Analysis
Statistical analysis tools play a crucial role in the explorative

analysis of gene expression data. However, the results of these tools
become harder to interpret and less reliable due to their black-box
structure and their dependence on the initial parameters. In order
to overcome these drawbacks, visual analysis methods aim to inte-
grate the explorative capabilities of experts with the computational
power of algorithmic tools on the basis of visualization and inter-
action [11].

We integrated the most widely used statistical analysis tools into
the proposed visual analysis framework. These statistical tools are
principal component analysis (PCA), clustering and linear discrim-
inant analysis (LDA). Although, we demonstrate our visual analy-
sis procedures using these tools, our framework is general enough
to include different types of statistical analysis tools like support
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Figure 2: An illustration to depict the structure of the microar-

ray data M. There are meta data columns associated with both

the samples DS and the genes DG. The color map below is used

to color the heat map visualization accordingly to the expres-

sion levels of the genes.

vector machines or artificial neural networks. In order to incorpo-
rate a wide range of statistical tools into our framework, we inte-
grated the R statistical computation package into our system [24].

The integrated statistical analysis tools operate interactively on
both the samples and the genes, i.e., it is possible to cluster the
genes and the samples. The results of any operation, like clus-
tering, PCA, or, LDA, are stored and available for visual analysis
immediately. At each iteration of the analysis, the expert runs a
statistical analysis tool on the genes and/or the samples. The DG

and DS values are updated with the new results. For instance, when
the user clusters the genes, the clustering results are appended as a
new DG and in the case of clusters of samples, they are included as
DS.

An important point to mention is that, when the user runs a tool,
the results are computed only for the selected genes GL and samples
SL. This enables the analyst to interactively select different regions
of interest, apply algorithmic tools on the samples and compare the
results.

Another mechanism to compare both the genes and the samples
is to devise statistics in the analysis. There are a number of different
statistics that can be employed to summarize and aggregate infor-
mation on the data. Here, we denote these different statistics with
λ . For the sake of simplicity in this paper, we limit λ to be either
the mean or the standard deviation, i.e., λ = µ,σ . In the analysis,
we compute the statistics over both the genes and the samples. To
exemplify, we can estimate the standard deviation σ of the gene
expression values of a particular gene gi over all the samples. Sim-
ilarly, we can estimate the σ of the gene expression values for a
particular sample si over all the genes.
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Figure 3: Categorical data view displaying different types of in-
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to a sample. The colored rectangles on each axis represent a

category in the data associated with the axis. This view also

enables selections of categories.

3.2 Categorical Data View
Our categorical data view enables the comparison of the meta-

data related to the datasets with the results of the statistical analysis
results. It is a modified version of the parallel cluster view [26]
that we proposed in our earlier work. In this work, we extend the
parallel cluster view in such a way that it displays both, the re-
sults of different statistical analysis tools, e.g., clustering, linear
discriminant analysis, and, the categorical information about the
samples/genes. In order to achieve this, we treat the results of each
clustering and LDA result as categorical data. These results are vi-
sualized together with the meta-data. In other words, this view vi-
sualizes all the data columns which contain categorical data. With
categorical data, we refer to data dimensions that consists of a lim-
ited, fixed number of values, where each value corresponds to a
category value or a label.

We delimit the use of categorical data view only to the samples in
this paper, since most of the meta-data is usually associated with the
samples in microarray data analysis. In the categorical data view,
each vertical axis corresponds to a column DS

k
, where k indicates

the order of the column in the view, i.e., for the leftmost axis, k = 1
(Fig. 3). Each rectangle on an axis corresponds to a category (or a
group) in DS

k
and each curve that travels through the axes represents

a sample s j.
All axes contain a set of categories (labels) where each category

is represented by a different color. Curves between axis k and k+1
are colored with respect to the colors of the category they are mem-
bers of in DS

k . This coloring schema improves the comprehension
of the membership relations between different columns. When one
of the visualized columns is a clustering result, each rectangle on
an axis represents a single cluster. In case of hierarchical clustering
result, user sets a cut through the cluster hierarchy interactively.

Analysis view is integrated into the interactive analysis cycle by
category level brushes and links to the selection mechanism in all

other views. The user can select any number of categories, e.g.,
clusters, using a combination of Op operators. The selected items
in the other views are also highlighted in this view. Further details
on this view can be found in our previous paper [26].

PC
1

PC
2

PC
1

PC
2

PC
1

PC
2

PC
1

PC
2

Selected genes/samples

Figure 4: Illustration of dynamic PCA plot. It is possible to ap-

ply PCA interactively both on the samples and the genes. PCA

results are computed using all the genes and all the samples.

This operation can be seen as adding a new row or a new col-

umn to the dataset (left part). Dynamic PCA plots are updated

automatically with the selections on the microarray data (right

part). The updated results (computed using only the selected

genes/samples) are overlayed on the previous PCA projections

for comparison.

3.3 Dynamic PCA Plot
In our model, we introduce dynamic scatterplots to display PCA

results. These plots are different than conventional scatterplots in
terms of their focus+context (F+C) visualization. In conventional
scatterplots, while the focus, i.e., the selected items, is highlighted
in a more saturated colors, the context, i.e., the rest of the items,
are visualized in a less saturated color. In order to enable the com-
parison of different PCA results, we modify this F+C visualization
technique.

Dynamic PCA plot visualizes PCA results, where the genes or
the samples are plotted using their projected values, e.g., projected
onto the first two principal components. Contrary to the conven-
tional scatterplots, it visualizes two different PCA results at a time.
As its context, dynamic plots visualize the PCA results that are
computed using all the genes and all the samples. And as its focus,
it visualizes the PCA results that are computed using only the se-
lected genes GL and samples SL. As the user updates a brush in any
view, the PCA is computed interactively and the dynamic scatter-
plot is updated. In Figure 4 (the left part), we apply PCA on both
the genes and the samples. The results are visualized as scatter-
plots that show the projection of the data to the first two principal
components. When the user selects a new subset of genes and sam-
ples, the dynamic plot performs PCA analysis automatically in the
background using only the selected genes and the samples. As a
result, the focus of the plot highlights the new results and the con-
text visualizes the results that are computed using the whole dataset
as seen in Figure 4 (right part). The interactive computation of the
PCA results enables the user to assess the impact of the current se-
lection (on the PCA results) immediately. Since this plot depicts
different projections of the data due to interaction, mechanisms to
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Figure 5: Deviation plots for the samples (a) and the genes (b).

These views depict the changes in λ = µ,σ values w.r.t. the

brushes.

assess the projections could be included as well. In order to derive
more quantitative conclusions on the resulting projections, one can
make use of quality measures. One such relevant measure is re-
lated to class consistency suggested by Sips et al. [21]. The authors
propose measures to evaluate the data projections where class la-
bels are present for the projected items. In such a way, the dynamic
PCA projections could be evaluated quantitatively.

3.4 Deviation Plot
Another powerful tool to analyze microarray data is to visualize

statistics that describes the genes and/or the samples. As noted
earlier, we refer these statistics as λ in our framework. In order
to achieve interactivity, we link the computation of the λ values
with the selections on the items and the dimensions. To illustrate,
assume that we estimate the σ value for a gi using all the values for
all the samples. Than, a subset of the samples is selected. When we
estimate the new σ value for gi, we perform this computation using
only the selected samples. Such an operation yields a different σ
value. The difference between the first σ value (computed over
all samples) and the second σ (computed over only the selected
samples) carries relevant information for the analysis.

Firstly, we consider the difference computation over the genes.
We estimate the statistic λ for two arbitrary gene subset selections
BG

1 , BG
2 and compute the difference ∆G

λ
. This can be denoted as:

∆G
λ = λ (BG

2 )−λ (BG
1 )

Here, we refer to λ (BG
1 ) as the reference selection value and λ (BG

2 )

as the current selection value. Similarly for the samples, ∆S
λ

de-
notes the difference value between two λ values (computed for the
two sample subset selections). In order to facilitate these differ-
ence values in our analysis, we introduce the deviation plot. This
view visualizes the ∆ values associated with two different statistics
computed between the two identical brushes. Figure 5 illustrates
such views for both the samples (a) and the genes (b). In both of
the visualizations, the x-axis represents the change in the µ values
(λ1 = µ) and y-axis represents the change in the σ values (λ2 = σ ).
We denote such scatterplots as [∆S

µ ,∆
S
λ
] and [∆G

µ ,∆
G
λ
] with respect

to the displayed statistics.
Assume we have a deviation plot of the samples similar to Fig-

ure 5-a, where each point represents a sample. When there is no
change in either the µ or the σ value for a particular sample, the
resulting point is at the origin (i.e., no change between the two se-
lections , ∆S

µ = 0, ∆S
σ = 0). On the other hand, assume that the

difference values are, for example, ∆S
µ = 3 and ∆S

σ = 5. Then, we

draw a point on (x,y) = (3,5) and connect this point with a line to
the origin (0, 0).

One important aspect of the deviation view is that it always de-
picts the difference between the aforementioned reference value
and the current value. The reference value can be set interactively
at any stage in the analysis. In order to do this, the user determines
a selection B1 which can be used as a basis to compare to further
selections. Then, the statistics are computed using B1 and the re-
sult is set as the reference value. From this point on, when the
user updates the current brush in the system, the ∆λ value is com-
puted according to this saved reference value. It is possible to have
multiple and linked instances of these deviation views and each
view can have a separate reference value. This mechanism enables
us to save certain brushes for future comparisons. When multiple
instances with different reference values (each corresponding to a
different previous selection) are used, these views provide a history
of previous steps in the analysis.

4. ANALYSIS PROCEDURE
In microarray data analysis, marker genes are the genes that

characterize certain diseases or properties in the given samples.
One of the most common approaches used in the identification

of such genes is to search for genes that have expression levels
below or above a certain threshold. The genes are marked as down-

regulated or up-regulated if they are below or above the predefined
threshold. Such genes are then investigated for the production of
specific proteins and therefore critical in understanding the devel-
opment of specific behavior in different organisms. Such an iden-
tification phase is usually followed by a classification or grouping
phase, where the analyst tries to find the gene or the sample groups
which share common characteristics. Such groups then form the
basis of diagnosis and the classification of certain diseases or prop-
erties. A very common and well-studied example for such analyses
is the classification of tumors using gene expression data [2].

In this paper, we focus on a visual analysis procedure where
the main goal is to find out sets of genes/samples that are impor-
tant in determining the classification and the groupings of the sam-
ples/genes. Additionally, we utilize the available metadata, accom-
panying the expression values themselves, that classify the samples
into different classes C = {C1, . . . ,Ck}, where ∑i |Ci| = |S|. These
classes can stand for distinct parameters, spanning from different
tumor types that the sample was obtained from, to the gender of
the sample source (male or female). Such classifications provide
useful selections to compute the reference or the current values in
the deviation plot.

In this paper, we work on a gene expression dataset provided
by Golub et al. [7]. Here, the samples are known to come from
two types of acute leukemia, namely acute lymphoblastic leukemia
(ALL) and acute myeloid leukemia (AML). The dataset consists
of 7129 genes taken from 38 different tissue samples where 27 is
known to be ALL and the rest AML, i.e., we consider two groups
C1 ≡ ALL and C2 ≡ AML. More formally, the corresponding data
matrix M comes with |G| = 7129 and |S| = 27. Additionally, we
load the known class labels (C1, C2) of samples into DS.

As the first step, we apply unit scaling to the data (i.e., scaling
to [0,1]), so that the columns of M are comparable. There are ex-
tensive studies on the effects of normalization on gene expression
analysis [27] and we prefer unit scaling as it is one of the preferred
normalization methods in tumor classification studies [2].

As the second step, we estimate the two following statistics,
λ = {µ,σ}, over three different sample selections determined by
the classification; i.e; B(C1) =C1, B(C2) =C2 and B(∀) =C1∪C2.
Essentially, we add six rows to the data table µS(C1),µS(C2),µS(∀)
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genes that are significantly expressed for classes C1 and C2 respectively. After performing a brush selection in (b), having significant

values with respect to class C2, we perform k-means clustering and LDA and produce them into the Categorical View. The deviation

plot on samples (c) shows statistics on the samples [µS(B
1)− µS(∀),σS(B

1)−σS(∀)] while the Dynamic PCA plot displays projection

of samples onto two principal components (PC1, PC2) computed only by means of the genes in brush (b). We brush a small group

of tightly placed in samples in (c) and through the linked views, we observe the highlighted samples in the categorical view. The

categorical view depicts the resulting classes in the clustering and the LDA results, together with the tumor classes in the leftmost

axis.

and σS(C1),σS(C2),σS(∀). It is important to mention that any fur-
ther statistics can be computed and subsequently utilized in such
analyses.

Afterwards, we produce two Deviation plots on genes, where
one depicting [µG(C1)− µG(∀),σG(C1)−σG(∀)] (Plot A, Fig 6-
a) and the other one showing [µG(C2)− µG(∀),σG(C2)−σG(∀)]
(Plot B, Fig 6-b). Here, we can easily observe that the genes that
are significantly expressed with respect to both classes C1 and C2

respectively. Thus, we brush a set of genes in plot B that have sig-
nificant values with respect to class C2; i.e., producing the selection
B1. The selected genes are also highlighted in Figure 6-a, by the
linking mechanism.

Subsequently we perform k-means clustering (Fig 6,middle axis)
and LDA (Fig 6,right axis) on the genes in B1, while showing them
with tumor types separation in Categorical View (Fig 6, left axis).
These two classification are used to analyze the appropriateness of
the gene selection B1. The corresponding heat map for genes in B1

is depicted in Figure 7-a.
Then we produce two more views, one Deviation plot on samples

showing statistics on the samples [µS(B
1)−µS(∀),σS(B

1)−σS(∀)]
(Plot C, Fig 6-c), and one Dynamic PCA plot to display the projec-
tion of the samples onto the two principal components (PC1, PC2)
computed only by means of the genes in B1 (Plot D, Fig 6-d). Im-
portantly, by changing the gene brush B1, we can interactively see
the change in all the accompanying sample views that depict the
statistics and/or PCA results. In Plot C, we observe a set of sam-
ples grouping together, which we then select by a rectangular brush
to select a set of samples BS. Here we can interactively observe how
the current selection (BS) relates to the real categories. In the cat-
egorical data view, we observe that the selected samples (BS) are
from the ALL type. However, there are still a number of samples
from the ALL group that are not included in BS. This result can then
be improved further with different selections and using other com-
putational tools. Accordingly, we perform another brush (in Plot

A, Fig 8) to select also the significant genes for the class C1. Here,
we keep the previous brush B1 and the selection is updated with the
new selection B2through the ∪ operator, i.e, B2 = B2 ∪B1. As was
mentioned above, the linked views (Plot C and Plot D, Fig 8) are
automatically updated. Additionally, we update k-means clustering
(Fig 8,middle axis) and LDA (Fig 8,right axis) for a set of genes
B2. The corresponding heat map showing just the brush in Plot A
is displayed in Figure 7-b. Now, by selecting the class C2 (Fig 8,
left axis), we can notice that the clear separation of samples in the
statistics based view (Plot C) is lost, since B2 now contains mu-

(a) (b)

genes

ALL AML ALL AML

Figure 7: Gene expression levels through a standard heat map

visualization, where genes being the rows and samples being

the columns. The color map from Figure 2 is used to color-

code expression values. The heat map for genes obtained by

the brush B1 (being significant for class C2) (a) and the ones

defined just by brush B2 excluding B1 (b) (being significant for

class C1). We can clearly see the separation of the expression

values along all the samples (columns).
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Figure 8: Continuation of the analysis from Figure 6. In Deviation Plot (a), we additionally brush (∪) the significant genes represent-

ing C1; the plots C and D are automatically updated. We also recompute k-means clustering and LDA, and refresh the Categorical

View. We notice that the clear separation of samples in plot C is lost, since the brush contains mutually significant genes representing

both classes equally. However, Plot (d) reveals a grouping structure. We also brush the class C2 in the Categorical View, where we

observe a perfect separation of the samples into two groups as a result of LDA applied only on the brushed genes.

tually significant genes representing both groups equally. On the
other side, Plot D reveals a good clustering of the samples through
the updated PCA projection. As a major result, we found the se-
lected genes B2 are producing a perfect separation of samples into
two groups by applying LDA (Fig 8,right axis), while utilizing of
k-means is good but still not perfect (containing three more sam-
ples from C1). This was achieved by selecting the class C2 in the
Categorical View (Fig 8).

In order to evaluate if the selected genes are biologically rele-
vant, we evaluated the above selected gene set by comparing it to
the results found in the reference study by Golub et al. [7]. The
authors present an advanced, neighborhood and correlation based
class predictor to distinguish different cancer types. In their paper,
they determined 50 genes (out of 7129 genes) that are the most dis-
tinctive with respect to their algorithm. We compared the genes
that are found in our analysis with their outcome. With the above
selections in the two deviation plots (Figure 8-a,b), we select 89
genes in total. When we compared these selected genes with those
in the paper by Golub et al., we observe that our selection contains
25 of these distinctive genes. Since Golub et al. are using more ad-
vanced computational methods to determine the distinctive genes,
our selection contains only half of the listed genes. However, the
overall result of our evaluation clearly shows that even with the use
of basic descriptive statistics, our methodology results in a highly
relevant subset of genes. Such a subset could easily be subject to
more advanced and deeper analysis for a more exact result.

One important point to mention here is that our aim with the
above evaluation is not to compare the predictive capability of our
method with the other prediction methods. In fact, our goal is to
improve such methods rather than to compete with them. We aim
to aid and guide the analysts with the use of computational tools,
such as the one suggested by Golub et al., and help them to interpret
the outcomes much more easier.

The above process is the basic steps of the analysis that is possi-
ble with the proposed dual analysis scheme and the special views.
All the above steps of the analysis can be performed iteratively in
any order until sufficient insight is achieved.

5. CONCLUSION & DISCUSSIONS
In this paper, we introduced a dual analysis framework that en-

ables the joint and the linked analysis of the genes and the sam-
ples through the use of integrated statistical analysis modules. We
firstly described the integration of statistical tools into the IVA cy-
cle. These tools always operate only on the selected samples and
the selected genes, and their results are available for interactive
analysis immediately.

We described a set of specialized views to use in the visual anal-
ysis of microarray data. These views are: i) categorical data view
that compares the results of different statistical tools such as, clus-
tering and LDA, together with the meta-data on the samples, such
as the gender of the samples ii) dynamic PCA plot that performs
PCA on the data interactively as the user modifies the selections
iii) the deviation view that depicts the changes in the computed
statistics due to interactive selections.

We provided the steps of analysis procedures that are possible
with the introduced framework. The proposed analysis scheme is
based on the iterative analysis of the data, where the user explores
and refines the statistical analysis results at each iteration. Such
an iterative process not only leads to more insights but also more
reliable statistical results.

We observed that our framework brings new opportunities in
generating and evaluating hypotheses in the analysis of gene ex-
pression data. With the tight integration of statistical tools in inter-
active visual analysis cycle, it is possible to overcome the black-box
characteristics of these tools. This brings the possibility to produce
reliable results that are easier to communicate.

The proposed framework is currently being developed and there
are a number of possible future directions. We plan to integrate
a larger variety of statistical analysis methods into the view and
develop specialized views for the results of these methods. Possible
methods can be listed as support vector machines, decision trees
and factor analysis.

In this paper, we worked only on non-temporal datasets. How-
ever, microarray datasets with a temporal nature, i.e., acquired over
a period of time, are also common. In order to extend our approach



to such datasets, we need to include views that are capable of han-
dling temporal data, such as function plots.

Another possible future direction is the integration of informa-
tion from different sources. Examples of such information are
metabolic pathways, gene ontologies, and, more comprehensive
clinical data. Additionally, we plan to extend our methods to lon-
gitudinal studies where the temporal domain of the datasets brings
new challenges in analysis.
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