

City, University of London Institutional Repository

Citation: Robbins, E., Howe, J. M. & King, A. (2015). Theory propagation and reification.

Science of Computer Programming, 111(P1), pp. 3-22. doi: 10.1016/j.scico.2014.05.013

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/3830/

Link to published version: https://doi.org/10.1016/j.scico.2014.05.013

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Theory Propagation and Reification

Ed Robbinsa,∗, Jacob M. Howeb, Andy Kinga

aSchool of Computing, University of Kent, Canterbury, Kent, CT2 7NF, UK
bDepartment of Computer Science, City University London, London, EC1V 0HB, UK

Abstract

SAT Modulo Theories (SMT) is the problem of determining the satis-
fiability of a formula in which constraints, drawn from a given constraint
theory T , are composed with logical connectives. The DPLL(T) approach to
SMT has risen to prominence as a technique for solving these quantifier-free
problems. The key idea in DPLL(T) is to couple unit propagation in the
propositional part of the problem with theory propagation in the constraint
component. In this paper it is demonstrated how reification provides a nat-
ural way for orchestrating this in the setting of logic programming. This
allows an elegant implementation of DPLL(T) solvers in Prolog. The work
is motivated by a problem in reverse engineering, that of type recovery from
binaries. The solution to this problem requires an SMT solver where the the-
ory is that of rational-tree constraints, a theory not supported in off-the-shelf
SMT solvers, but realised as unification in Prolog systems. The approach is
also illustrated with SMT solvers for linear constraints and integer difference
constraints. The rational-tree solver is benchmarked against a number of
type recovery problems, and compared against a lazy-basic SMT solver built
on PicoSAT, while the integer difference logic solver is benchmarked against
CVC3 and CVC4, both of which are implemented in C++.

1. Introduction

DPLL-based SAT solvers have advanced to the point where they can
rapidly decide the satisfiability of structured problems that involve thou-
sands of variables. SAT Modulo Theories (SMT) seeks to extend these ideas

∗Corresponding author
Email address: er209@kent.ac.uk (Ed Robbins)

Preprint submitted to Elsevier July 21, 2014

beyond propositional formulae to formulae that are constructed from logical
connectives that combine constraints drawn from a given underlying theory.
This section introduces the motivating problem of type recovery and explains
why it leads to work on theory propagation in a Prolog SMT solver.

1.1. Type recovery with SMT

The current work is motivated by reverse engineering and the problem
of type recovery from binaries. Reversing executable code is of increasing
relevance for a range of applications:

• Exposing flaws and vulnerabilities in commercial software, especially
prior to deployment in government or industry [13, 19];

• Reuse of legacy software without source code for guaranteed compli-
ance with hardware IO or timing behaviour, for example, for hardware
drivers [11] or control systems [8];

• Understanding the operation of, and threat posed by, viruses and other
malicious code by anti-virus companies [50].

An important problem in reverse engineering is that of type recovery [43].
A fragment of binary code will almost certainly have multiple source code
equivalents, will contain a variety of complex addressing schemes, and during
compilation will have lost most, if not all, of the type information explicit
in the original source code. Additionally, container-like entities, analogous
to high level source code variables and objects, cannot be readily extracted
from binary code. The recovery of variables and their types is an essential
component of reverse engineering, which makes understanding the semantics
of the program considerably easier.

This paper observes that type recovery can be formulated as an SMT
problem over rational-trees, a theory that in the context of type checking
is referred to as circular unification [38]. Circular unification allows recur-
sive types to be discovered in which a type variable can be unified with a
term containing it. The use of rational-trees for type inference is not a new
idea [38], but its application to the recovery of recursive types from an exe-
cutable is far from straightforward because each instruction can be assigned
many different types. Many SMT solvers include the theory of equality logic
over uninterpreted functors [31, 45] which is strictly weaker than circular
unification and cannot capture recursive types. Unfortunately the theory

2

of rational-trees is not currently supported in any off-the-shelf SMT solver,
hence this investigation into how to build a solver.

1.2. SMT solving with lazy-basic

One straightforward approach to SMT solving is to apply the so-called
lazy-basic technique which decouples SAT solving from theory solving. To
illustrate, consider the SMT formula f = (x ≤ −1 ∨ −x ≤ −1) ∧ (y ≤
−1 ∨ −y ≤ −1) and the SAT formula g = (p ∨ q) ∧ (r ∨ s) that corre-
sponds to its propositional skeleton. In the skeleton, the propositional vari-
ables p, q, r and s, respectively, indicate whether the theory constraints
(x ≤ −1), (−x ≤ −1), (y ≤ −1) and (−y ≤ −1) hold. In this approach, a
model is found for (p ∨ q) ∧ (r ∨ s), for instance, {p 7→ true, q 7→ true, r 7→
true, s 7→ false}. Then, from the model, a conjunction of theory constraints
(x ≤ −1) ∧ (−x ≤ −1) ∧ (y ≤ −1) ∧ ¬(−y ≤ −1) is constructed, with the
polarity of the constraints reflecting the truth assignment. This conjunc-
tion is then tested for satisfiability in the theory component. In this case
it is unsatisfiable, which triggers a diagnostic stage. This amounts to find-
ing a conjunct, in this case (x ≤ −1) ∧ (−x ≤ −1), which is also unsatis-
fiable, that identifies a source of the inconsistency. From this conjunct, a
blocking clause (¬p ∨ ¬q) is added to g to give g′ which ensures that con-
flict between the theory constraints is never encountered again. Then, solv-
ing the augmented propositional formula g′ might, for example, yield the
model {p 7→ false, q 7→ true, r 7→ true, s 7→ true}, from which a second
clause (¬r ∨ ¬s) is added to g′. Any model subsequently found, for instance,
{p 7→ false, q 7→ true, r 7→ true, s 7→ false}, will give a conjunction that is
satisfiable in the theory component, thereby solving the SMT problem.

The lazy-basic approach is particularly attractive when combining an
existing SAT solver with an existing decision procedure, for instance, a solver
provided by a constraint library. By using a foreign language interface a SAT
solver can be invoked from Prolog [12] and a constraint library can be used to
check satisfiability of the conjunction of theory constraints. A layer of code
can then be added to diagnose the source of any inconsistency. This provides
a simple way to construct an SMT solver that compares very favourably
with the coding effort required to integrate a new theory into an existing
open source SMT solver. The latter is normally a major undertaking and
often can only be achieved in conjunction with the expert who is responsible
for maintaining the solver. Furthermore, few open source solvers are actively

3

maintained. Thus, although one might expect implementing a new theory to
be merely an engineering task, it is actually far from straightforward.

Prolog has rich support for implementing decision procedures for theo-
ries, for instance, attributed variables [20, 21]. (Attributed variables provide
an interface between Prolog and a constraint solver by permitting logical
variables to be associated with state, for instance, the range of values that
a variable can possibly assume.) Several theories come prepackaged with
many Prolog systems. This raises the questions of how to best integrate a
theory solver with a SAT solver, and how powerful an SMT solver written
in a declarative language can actually be. This motivates further study of
the coupling between the theory and the propositional component of the
SAT solver which goes beyond the lazy-basic approach, to the roots of logic
programming itself.

The equation Algorithm = Logic + Control [33] expresses the idea that
in logic programming algorithm design can be decoupled into two separate
steps: specifying the logic of the problem, classically as Horn clauses, and or-
chestrating control of the sub-goals. The problem of satisfying a SAT formula
is conceptually one of synchronising activity between a collection of processes
where each process checks the satisfiability of a single clause. Therefore it
is perhaps no surprise that control primitives such as delay declarations [44]
can be used to succinctly specify the watched literal technique [42]. In this
technique, a process is set up to monitor two variables of each clause. To
illustrate, consider the clause (x ∨ y ∨ ¬z). The process for this clause will
suspend on two of its variables, say x and y, until one of them is bound to
a truth-value. Suppose x is bound. If x is bound to true then the clause is
satisfied, and the process terminates; if x is bound to false, then the process
suspends until either y or z is bound. Suppose z is subsequently bound,
either by another process or by labelling. If z is true then y is bound to
true since otherwise the clause is not satisfied; if z is false then the clause
is satisfied and the process closes down without inferring any value for y.
Note that in these steps the process only waits on two variables at any one
time. Unit propagation is at the heart of SAT solving and when implemented
by watched literals combined with backtracking, the resulting solver is effi-
cient enough to solve some non-trivial propositional formulae [22, 23, 25]. In
addition to issues of performance the correctness of this approach has been
examined [17]. To summarise, Prolog not only provides constraint libraries,
but also the facility to implement a succinct SAT solver [25]. The resulting
solver can be regarded as a glass box, as opposed to a black one, which allows

4

a solver to be extended to support, among other things, new theories and
theory propagation.

1.3. SMT solving with theory propagation

The lazy-basic approach to SMT alternates between SAT solving and
checking whether a conjunction of theory constraints is satisfiable which,
though having conceptual and implementation advantages, is potentially in-
efficient. With a glass box solver it is possible to refine this interaction by
applying theory propagation. In theory propagation, the SAT solving and
theory checking are interleaved. The solver not only checks the satisfiability
of a conjunction of theory constraints, but decides whether a conjunction of
some constraints entails or disentails others. Returning to the earlier exam-
ple, observe that (x ≤ −1) ∧ (−x ≤ −1) is unsatisfiable, hence for the partial
assignment {p 7→ true} it follows that (x ≤ −1) holds in the theory compo-
nent, therefore (−x ≤ −1) is disentailed and the assignment can be extended
to {p 7→ true, q 7→ false}. Theory propagation is essentially the coordina-
tion problem of scheduling unit propagation with the simultaneous checking
of whether theory constraints are entailed or disentailed. This paper shows
how this synchronisation can be realised straightforwardly in Prolog, again
using control primitives. The resulting solver is capable of solving some non-
trivial problems and performs well against an off-the-shelf DPLL(T) solver on
integer difference logic benchmarks, whilst on rational-trees it outperforms
an SMT solver constructed from PicoSAT [6] and a Prolog coded theory
solver using the lazy-basic approach.

1.4. Contributions

This paper revises and extends [49] and shows how to integrate theory
propagation and unit propagation in Prolog using reification and thereby re-
alise an SMT solver in Prolog. Reification is a constraint handling mechanism
in which a constraint is augmented with a Boolean variable that indicates
whether the constraint is entailed (implied by the store) or disentailed (is
inconsistent with the store). Building on this mechanism, the paper makes
the following contributions:

• A framework for using reification as a mechanism to realise theory
propagation is presented. The idea is simple in hindsight and can
be realised straightforwardly in Prolog. The simplicity of the code
contrasts with the investment required to integrate a theory into an
existing open source SMT solver.

5

• This framework is realised for three theories:

– The first theory is that of rational-trees [39], where the control
provided by block and when-declarations can realise reification.
Efficient rational-tree unification [27] is integral to many Prolog
systems, hence the theory part of the solver is provided essentially
for free.

– The second theory is that of quantifier-free linear real arithmetic,
where CLP(R) provides a decision procedure for the theory part
of the solver; reification is achieved using a combination of delay
declarations and entailment checking.

– The third theory is that of quantifier-free integer difference logic,
with the decision procedure for the theory coded in Prolog and
theory propagation realised again using entailment checking and
delay declarations.

• Quantifier-free integer difference logic is a theory that is a common
part of SMT packages. As a strength test, the Prolog-based solver is
benchmarked against a popular open-source SMT solver, CVC, using
standard SMT-LIB benchmarks.

• Theory propagation for rational-trees provides the key motivation for
the paper. Standard SMT packages do not include the theory of
rational-trees, but SMT problems over rational-trees arise in reverse
engineering, in particular type recovery. It is demonstrated that an
elegant Prolog-based solver is capable of recovering types for a range of
binaries. It is also shown how the failed literal technique [36] is simply
realised in Prolog to optimise the search. The solver is benchmarked
on these type recovery problems and also compared against an SMT
solver constructed from PicoSAT using the lazy-basic approach.

• Cutting through all of these contributions, the paper also argues that
SMT has a role in type recovery, indeed an SMT formula is a natural
medium for expressing the disjunctive nature of the types that arise in
reverse engineering.

6

2. Motivation: Application in Type Recovery

During compilation code is translated to low level operations on registers
and memory addresses, and all type information is lost. When source code
is not available, type information is of great use to reverse engineers in de-
termining the operation of a program, and tooling for recovery of high level
types is of significant utility. The problem is hard, since the typing of most
assembly instructions can be interpreted in multiple ways, and progress on
the problem has been comparatively slow [3, 10, 35, 37, 43, 48], stopping
short of recovering recursive types.

Consider the problem of inferring types for the registers in the following
x86 assembly code function for summing the elements in a linked list of
type struct A {int value; struct A ∗next}. Note this function is based on
Mycroft’s Register Transfer Language (RTL) example [43].

1 mov edx , [esp+0x4]
2 mov eax , 0x0
3 loop : test edx , edx
4 jz end
5 add eax , [edx]
6 mov edx , [edx+0x4]
7 jmp loop
8 end : ret

The function is simple: first edx is set to point at the first list item (from the
argument carried at [esp + 0x4]) and eax, the accumulator, is initialised to
0 (lines 1 and 2). In the loop body the value of the item is added to eax
(line 5) and edx is set to point to the next item by dereferencing the next
field from [edx + 0x4] (line 6). This repeats until a NULL pointer is found
by the test on line 3, whereupon execution jumps to end and the function
returns.

Before typing the function, indirect addressing is simplified by introducing
new operations on fresh intermediate variables. This reduction ensures that
indirect addressing only ever occurs on mov instructions, thus simplifying
the constraints on all other instructions. Registers are then broken into live
ranges by transforming into Single Static Assignment (SSA) form. This gives
each variable a new index whenever it is written to, and joins variables at
control flow merge points with φ functions [14]. The listing below shows the
result of applying these transformations:

7

1 mov A1 , esp0

2 add A2 , 0x4
3 mov edx1 , [A2]
4 mov eax1 , 0x0
5 loop : mov (eax2, edx2) ,

φ((eax1, edx1), (eax3, edx3))

6 test edx2 , edx2

7 jz end
8 mov B1 , [edx2]
9 add eax3 , B1

10 mov C1 , edx2

11 add C2 , 0x4
12 mov edx3 , [C2]
13 jmp loop
14 end : ret

Rational-tree expressions [26], constraints describing unification of terms and
type variables, are now derived for each instruction. These are similar to the
disjunctive constraints described by [43] for RTL, but include a memory
model that tracks pointer manipulation by representing memory in ‘pointed
to’ locations as a 3-tuple. The type of the specific location being pointed
to is the middle element, the first element is a list of types for the bytes
preceding the location, and the last the types for the bytes succeeding. The
lists are open, as indicated by the ellipsis (. . .), since the areas of memory
extending to either side are unknown. For example, consider add on line 11.
This gives rise to two constraints, one for each possible meaning of the code:

(TC2 = basic(, int, 4) ∧ TC1 = TC2)

∨
(

TC1 = ptr(〈[...], β0, [β1, β2, β3, β4, ...]〉) ∧
TC2 = ptr(〈[... , β0, β1, β2, β3], β4, [...]〉)

)
The first clause of the disjunction states that C2 is of basic type, specifically
a four byte integer (derived from the register size) with unknown signedness
(as indicated by a sign parameter that is an uninstantiated variable), the
result of adding 4 to C1, which has the same type. This is disjoint from the
second clause, that asserts that C1 is a pointer to an unknown type β0, whose

8

address is incremented by 4 by the add operation so that its new instance,
C2, points to another location of type β4. Observe how TC1 prescribes types
of objects that follow the object of type β0 in memory whereas TC2 details
types of objects that precede the object of type β4. If further information
is later added to TC2 due to unification it will propagate into TC1 , and vice-
versa, thus aggregate types analogous to C structs are derived.

The table below shows all constraints generated for the program. Note
that some type variables have been relaxed to , indicating an uninstantiated
variable, so as to simplify the presentation of the types. The complete prob-
lem is described by the conjunction of these constraints. Type recovery then
amounts to solving the constraints such that the type equations remain con-
sistent, whilst also ensuring that the propositional skeleton of the problem is
satisfied.

Line Generated Constraints
1 TA1 = Tesp0

2 (TA2 = basic(, int, 4) ∧ TA1 = TA2)∨(
TA1 = ptr(〈[...], α0, [, , , α1, ...]〉) ∧
TA2 = ptr(〈[... , α0, , ,], α1, [...]〉)

)
3 TA2 = ptr(〈[...], Tedx1 , [, , , ...]〉)
4 Teax1 = basic(, int, 4) ∨ Teax1 = ptr(〈[...], α2, [...]〉)
5 (Teax2 = Teax1 ∧ Tedx2 = Tedx1) ∧ (Teax2 = Teax3 ∧ Tedx2 = Tedx3)
8 Tedx2 = ptr(〈[...], TB1 , [...]〉)

9

(
Teax3 = basic(,int,4) ∧

Teax2 = Teax3 ∧ TB1 = Teax3

)
∨ Teax3 = ptr(〈[...], α3, [...]〉) ∧

Teax2 = ptr(〈[...], α4, [...]〉) ∧
TB1 = basic(,int,4))

∨ Teax3 = ptr(〈[...], α5, [...]〉) ∧
Teax2 = basic(,int,4) ∧
TB1 = ptr(〈[...], α6, [...]〉)

10 Tedx2 = TC1

11 (TC2 = basic(, int, 4) ∧ TC1 = TC2)∨(
TC1 = ptr(〈[...], α7, [, , , α8, ...]〉) ∧
TC2 = ptr(〈[... , α7, , ,], α8, [...]〉)

)
12 TC2 = ptr(〈[...], Tedx3 , [, , , ...]〉)

For the register corresponding to struct A, constraint solving will derive a

9

recursive type:

Tedx1 = ptr(〈[...], basic(, int, 4), [, , , Tedx1 , , , , ...]〉)

which requires rational-tree unification. Note that as Tedx1 is a pointer, it
has a size of four bytes, hence the 3 underscores that follow Tedx1 which
correspond to 3 bytes of padding in our representation.

Observe that there may be multiple solutions; in fact the problem outlined
above has two solutions, which differ in typing eax1, eax2 and eax3. The
first correctly infers that they are (like B1) integers of size 4 bytes, while
the second defines them as pointers to an unknown type, ptr(〈[...], α5, [...]〉).
Both solutions have the following typings in common:

TB1 = basic(,int,4)

Tedx1 = Tedx2 = Tedx3 = TC1 = ptr(〈[...], basic(, int, 4), [, , , Tedx1 , , , , ...]〉)
TC2 = ptr(〈[..., basic(,int,4), , ,], Tedx1 , [, , , ...]〉)

TA2 = ptr(〈[..., α0, , ,], Tedx1 , [, , , ...]〉)
TA1 = Tesp0 = ptr(〈[...], α0, [, , , Tedx1 , , , , ...]〉)

The second solution is equivalent to typing eax as void∗ and performing
addition using pointer arithmetic. In the wider context of a program, this
solution is removed by constraints derived from the main() function.

3. SMT and Theory Propagation

3.1. SAT solving and unit propagation

The Boolean satisfiability problem (SAT) is the problem of determining
whether for a given Boolean formula, there is a truth assignment to the
variables of the formula under which the formula evaluates to true. Most
recent SAT solvers are based on the Davis, Putnam, Logemann, Loveland
(DPLL) algorithm [15] with watched literals [42]; this includes the solver in
[24] that this paper extends.

At the heart of the DPLL approach is unit propagation. Let f be
a propositional formula in CNF over a set of propositional variables X.
Let θ : X → {true, false} be a partial (truth) function. Unit propaga-
tion examines each clause in f to deduce a truth assignment θ′ that ex-
tends θ and necessarily holds for f to be satisfiable. For example, suppose
f = (¬x ∨ z) ∧ (u ∨ ¬v ∨ w) ∧ (¬w ∨ y ∨ ¬z) so that X = {u, v, w, x, y, z}

10

and θ is the partial function θ = {x 7→ true, y 7→ false}. In this instance
for the clause (¬x ∨ z) to be satisfiable, hence f as a whole, it is necessary
that z 7→ true. Moreover, for (¬w ∨ y ∨ ¬z) to be satisfiable, it follows that
w 7→ false. The satisfiability of (u∨¬v∨w) depends on two unknowns, u and
v, hence no further information can be deduced from this clause. Therefore
θ′ = θ ∪ {w 7→ false, z 7→ true}.

Searching for a satisfying assignment proceeds as follows: starting from an
empty truth function θ, an unassigned variable occurring in f , x, is selected
and x 7→ true is added to θ. Unit propagation extends θ until either no
further propagation is possible or a contradiction is established. In the first
case, if all clauses are satisfied then f is satisfied, else another unassigned
variable is selected. In the second case, x 7→ false is added to θ; if this fails
search backtracks to a previous assignment. Further details can be found in
[24, 56].

3.2. SMT solving, the lazy-basic approach

SAT modulo theories (SMT) gives a general scheme for determining the
satisfiability of problems consisting of a formula over atomic constraints in
some theory T , whose set of literals is denoted Σ [46, 54]. The scheme
separates the propositional skeleton – the logical structure of combinations of
theory literals – and the meaning of the literals. A bijective encoder mapping
e : Σ → X associates each literal with a unique propositional variable. Then
the encoder mapping e is lifted to theory formulae, using e(φ) to denote the
propositional skeleton of a theory formula φ.

Consider the theory of quantifier-free linear real arithmetic where the con-
stants are numbers, the functors are interpreted as addition and subtraction,
and the predicates include equality, disequality and both strict and non-strict
inequalities. The problem of checking the entailment (a < b) ∧ (a = 0 ∨ a =
1) ∧ (b = 0 ∨ b = 1) |= (a + b = 1) amounts to determining that the theory
formula φ = (a < b)∧ (a = 0∨ a = 1) ∧ (b = 0∨ b = 1)∧¬(a + b = 1) is not
satisfiable. For this problem, the set of literals is Σ = {a < b, ... , a + b = 1}.
Suppose, in addition, that the encoder mapping is defined:

e(a < b)=x, e(a = 0)=y, e(a = 1)=z,
e(b = 0)=u, e(b = 1)=v, e(a + b = 1)=w

Then the propositional skeleton of φ, given e, is e(φ) = x∧(y∨z)∧(u∨v)∧¬w.
A SAT solver gives a truth assignment θ satisfying the propositional skele-
ton. From this, a conjunction of theory literals, T̂ hΣ(θ, e) is constructed. The

11

conjunction contains the literal ` if θ(e(`)) = true and ¬` if θ(e(`)) = false.
The subscript will be omitted when Σ refers to all literals in a problem. This
problem is passed to a solver for the theory that can determine satisfiabil-
ity of conjunctions of constraints. Either satisfiability or unsatisfiability is
determined, in the latter case the SAT solver is asked for further satisfying
truth assignments. This formulation is known as the lazy-basic approach and
details on its Prolog implementation can be found in [25].

3.3. SMT, the DPLL(T) approach

The approach detailed in the previous section finds complete satisfying
assignments to the SAT problem given by the propositional skeleton before
computing the satisfiability of the theory problem T̂ h(θ, e). Another ap-
proach is to couple the SAT problem and the theory problem more tightly
by determining constraints entailed by the theory and propagating the bind-
ings back into the SAT problem. This is known as theory propagation and
is encapsulated in the DPLL(T) approach. Figure 1 gives a recursive formu-
lation of DPLL(T) derived from Algorithm 11.2.3 of [34]. A more general
formulation of DPLL(T) might replace lines (11)-(15) with a conflict anal-
ysis step that would encapsulate not just the approach presented, but also
backjumping and clause learning heuristics. However, the key component of
DPLL(T) is the interleaving of unit and theory propagation and the choice
of conflict analysis is an orthogonal issue. The instantiation to chronological
backtracking presented in Figure 1 was chosen to match the implementation
work.

The first argument to the function DPLL(T) is a Boolean formula f , its
second a partial truth assignment, θ, and its third an encoder mapping, e. In
the initial call, f is the propositional skeleton of the input problem, e(φ), and
θ is empty. DPLL(T) returns a truth assignment if the problem is satisfiable
and constant ⊥ otherwise.

The call to propagate is the key operation. The function returns a pair
consisting of a truth assignment and res taking value > or ⊥ indicating the
satisfiability of f and T̂ h(θ, e). The fourth argument to propagate is a set
of theory literals, D, and the function begins by extending the truth assign-
ment by assigning propositional variables identified by the encoder mapping.
Next, unit propagation as described in section 3.1 is applied. The deduction
function then infers those literals that hold as a consequence of the extended
truth assignment. The function returns a pair consisting of a set of theory
literals entailed by T̂ h(θ2, e) and a flag res whose value is ⊥ if T̂ h(θ2, e) or

12

(1) function DPLL(T)(f : CNF formula, θ : truth assignment, e : Σ → X)
(2) begin
(3) (θ3, res) := propagate(f , θ, e, ∅);
(4) if (is-satisfied(f , θ3)) then
(5) return θ3;
(6) else if (res = ⊥) then
(7) return ⊥;
(8) else
(9) x := choose-free-variable(f , θ3);
(10) (θ4, res) := DPLL(T)(f , θ3 ∪ {x 7→ true}, e);
(11) if (res = >) then
(12) return θ4;
(13) else
(14) return DPLL(T)(f , θ3 ∪ {x 7→ false}, e);
(15) endif
(16) endif
(17) end

(1) function propagate(f : CNF formula, θ : truth assignment,
(2) e : Σ → X, D : set of theory literals)
(3) begin
(4) θ1 := θ ∪ {e(`) 7→ true | ` ∈ D ∩ Σ} ∪ {e(`) 7→ false | ¬` ∈ D ∧ ` ∈ Σ};
(5) θ2 := θ1∪ unit-propagation(f ,θ1);

(6) 〈D, res〉 := deduction(T̂ h(θ2, e));
(7) if (D = ∅ ∨ res = ⊥)
(8) return (θ2, res);
(9) else
(10) return propagate(f , θ2, e, D);
(11) endif
(12) end

Figure 1: Recursive formulation of the DPLL(T) algorithm

θ2 is inconsistent and > otherwise. The function propagate calls itself recur-
sively until no further propagation is possible. After deduction returns, if f
is not yet satisfied then a further truth assignment is made and DPLL(T)
calls itself recursively.

13

The key difference between the lazy-basic approach and the DPLL(T)
approach is that where the lazy-basic approach computes a complete satis-
fying assignment to the variables of the propositional skeleton before inves-
tigating the satisfiability of the corresponding theory formula, the DPLL(T)
approach incrementally investigates the consistency of the posted constraints
as propositional variables are assigned. Further, it identifies literals, `, such
that T̂ h(θ, e) |= `, allowing e(`) to be assigned during propagation. It is
the interplay between propositional satisfiability, posting constraints and the
consistency of the store T̂ h(θ, e) that is at the heart of this investigation.

4. Propagation and Reification

This section provides a framework for incorporating theory propagation
into the propagation framework of the SAT solver from [25]. The approach is
based on reifying theory literals with logical variables. As will be illustrated
in subsequent sections, this allows the use of the control provided by delay
declarations to realise theory propagation. The integration is almost seam-
less since the base SAT solver is also realised using logical variables and by
exploiting the control provided by delay declarations.

4.1. Theory propagation

There are three major steps in setting up a DPLL(T) solver for some prob-
lem φ: setting up the encoder map e, linking each theory literal in a problem
with a logical variable; posting theory propagators (adding constraints) that
reify the theory literals with the logical variables provided by e; posting the
SAT problem defined by the propositional skeleton e(φ), then solving this
problem. The code in Figure 2 describes the high level call to the solver.

Set up. Where Prob is an SMT formula over some theory, let lit(Prob) be
the set of literals occurring in Prob. TheoryLiteral is a list of pairs `− e(`)
(or rather, ` ↔ e(`)), where ` ∈ lit(Prob), that defines the encoder mapping
e. Skeleton represents the propositional skeleton of the problem, e(Prob).
Vars represents the set of variables e(`), where ` ∈ lit(Prob). The role of
the predicate setup(+,-,-,-) is, given Prob, to instantiate the remaining
variables.

14

Theory propagators. The role of post theory is to set up predicates to reify
each theory literal. The control on these predicates is key; the predicates
need to be blocked until either e(`) is assigned, or the literal (or its negation)
is entailed by the constraint store T̂ h(θ, e). That is, the predicate for `−e(`)
will propagate in one of four ways:

• If T̂ h(θ, e) |= ` then e(`) 7→ true

• If T̂ h(θ, e) |= ¬` then e(`) 7→ false

• If e(`) = true then the store is updated to T̂ h(θ ∪ {e(`) 7→ true}, e)

• If e(`) = false then the store is updated to T̂ h(θ ∪ {e(`) 7→ false}, e)

Boolean propagators. The role of post boolean is to set up propagators for
the SAT part of the problem e(Prob). This is a call to problem setup as
described in [25]. Search is then driven by assignments to the variables using
elim vars.

Implementing the interface provided by predicates setup and post theory,
together with the SAT solver from [25] results in a DPLL(T) SMT solver.
Note that the propagators posted for the theory and Boolean components are
intended to capture the spirit of the function propagate from Figure 1. In-
deed, the integration between theory and Boolean propagation is even tighter
than the algorithm indicates. Rather than performing unit propagation to
completion, then performing theory propagation, then repeating, here the as-
signment of a Boolean variable is immediately communicated to the theory.
This tactic is known as immediate propagation and is a natural consequence
of using Prolog’s control to implement propagators. Immediate propagation
does away with the need to analyse failure to determine an unsatisfiable
core when a set of theory constraints is unsatisfiable, but attracts a cost in
monitoring the entailment status of the theory literals.

4.2. Labelling strategies

The solvers presented in [25] maintain Boolean variables in a list and
elim vars assigns them values in the order in which they occur; the list has
typically been ordered by the number of occurrences of the variables in the
SAT instance before the search begins, the most frequently occurring assigned
first. This tactic is straightforward to accommodate into a solver coded in
Prolog. The desire for improved performance motivates the adoption of more

15

dpll_t(Prob):-

setup(Prob, TheoryLiterals, Skeleton, Vars),

post_theory(TheoryLiterals),

post_boolean(Skeleton),

elim_vars(Vars).

Figure 2: Interface to the DPLL(T) solver

sophisticated heuristics for variable assignment. Although orthogonal to the
theme of theory propagation, the description of the SMT solver would be
incomplete without an explanation of labelling.

One classic strategy for labelling that is also straightforward to incorpo-
rate into a solver written in a declarative language is to rank variables by
their number of occurrences in clauses of minimal size [29]. This associates
a weight to each unbound variable according to its number of occurrences
in the unsatisfied clauses of the (Boolean) problem. The ranking weights
variables with fewer unbound literals less heavily than those in clauses with
a greater number of unbound literals. A variable with greatest weight is se-
lected for labelling, the aim being to assign one that is more likely to lead to
propagation.

A refinement of this idea is to apply lookahead [36] in conjunction with
this labelling tactic. Each variable with greatest weight, and therefore each
candidate for labelling, is speculatively assigned a truth value. For example,
if X is assigned true and this results in failure, then in order to satisfy the
propositional formula (skeleton) then X must be assigned false. Likewise, if
failure occurs when X is assigned false then X must be true. Moreover, if one
variable can be assigned using lookahead, then often so can others, hence this
tactic is repeatedly applied until no further variables can be bound. Thus
lookahead is tried before any variable is assigned by search.

Scoping this activity over the variables of greatest weight limits the over-
head of lookahead. The net effect is to direct the search away from variable
assignments that will ultimately fail. Lookahead can be considered to be
dual of clause learning since the former seeks to avoid inconsistency by con-
sidering assignments that are still to be made, whereas the latter diagnoses
an inconsistency from an assignment that has previously been made. The
case for lookahead versus learning has been studied [36], but in a declarative
context, particularly one where backtracking is supported, lookahead is very

16

(1) function findcore (e = [t1 7→ x1, ... , tn 7→ xn] : Σ → X,
(2) f : CNF formula, c : int, core : Σ → X)
(3) begin
(4) if (e = [])
(5) return core;
(6) else if (c = 0)
(7) core′ := [t1 7→ x1, tn 7→ xn] ∪ core;
(8) return findcore([t2 7→ x2, ... , tn−1 7→ xn−1], f , bn−1

2
c, core′);

(9) else
(10) i := 1; j := n;
(11) if (¬DPLL(T)(f , ∅, [tc+1 7→ xc+1, ... , tn 7→ xn] ∪ core))
(12) i := c + 1;
(13) endif
(14) if (¬DPLL(T)(f , ∅, [ti 7→ xi, ... , tn−c 7→ xn−c] ∪ core))
(15) j := n− c;
(16) endif
(17) if (c = 1)
(18) c′ := 0;
(19) else
(20) c′ := b c+1

2
c;

(21) endif
(22) return findcore([ti 7→ xi, ... , tj 7→ xj], f , c′, core);
(23) endif
(24) end

Figure 3: Finding an unsatisfiable core

simple to implement, requiring less than 20 lines of additional code in the
SAT solver. Clause learning could be added the solver following the tech-
niques discussed in [25], though it does not fit elegantly with chronological
backtracking since one cannot straightforwardly add a clause in one branch
of the search which is subsequently applied in another branch.

4.3. Calculating an unsatisfiable core

Given an unsatisfiable SMT problem, it can be useful to find an unsatisfi-
able core of this problem, that is, a subset of the theory literals, Σ′ ⊆ Σ, such
that T̂ hΣ′(θ, e) is not satisfiable for any assignment θ, and for all Σ′′ ⊂ Σ′

17

there exists a θ such that T̂ hΣ′′(θ, e) is satisfiable.
The unsatisfiable core needs to be calculated in the lazy-basic approach

(in [25] an algorithm adapted from [28] was used). Further, in the application
to type recovery problems, it is useful to be able to diagnose the cause of
unsatisfiability. An unsatisfiable core for the type recovery problems is typ-
ically small and this motivates an algorithm that attempts to aggressively
prune out literals that are not in a core. Such an algorithm is presented in
Figure 3.

The first argument to findcore is (an ordered representation of) a partial
encoder mapping from theory literals to propositional variables; the second
argument is a propositional formula, namely e(φ), the propositional skeleton
of the initial problem; the third argument is an integer, giving the number
of elements of the mapping on literals that will be pruned from one end (and
then the other end) in order to investigate satisfiability; the fourth argument
is a partial mapping from theory literals to propositional variables, where
the theory literals are part of the unsatisfiable core. The initial call to the
function is findcore(e,e(φ),dm

2
e,∅), where e is the complete encoder map for

Σ, [t1 7→ e(t1), ... , tm 7→ e(tm)].
The algorithm removes c elements from the beginning of the mapping

(represented as a list) and tests the resulting problem for satisfiability. If
the problem remains unsatisfiable, the c elements removed are not part of
the unsatisfiable core and can be pruned all at once. This is repeated for
the end of the mapping. The c value begins large and is logarithmically
reduced until it has value 0, at which point the first and last elements of the
list representing the mapping must be in the core. The function findcore is
then again recursively called with these end points removed and the process
continues until a core has been found.

Our findcore algorithm is related to the QuickXplain algorithm of [30]
which likewise computes an unsatisfiable core by removing blocks of consis-
tent constraints. QuickXplain recursively divides a set of constaints into two
subsets. If the first subset is inconsistent, then the second can be discarded
immediately in the search for a core. Otherwise, some constraints from the
second are merged with constraints from the first to derive a core. This
divide-and-conquer algorithm resembles a precedessor of findcore though,
crucially, the above incarnation of the algorithm attempts to remove the first
c1 = dm

2
e constraints, then the last c1, then the first c2 = d c1

2
e, then the last

c2, etc, as it converges onto a core. This appears to be a more aggressive
pruning strategy than that applied in QuickXplain which maintains the first

18

subset intact (see [30, Figure 1, Line 9]) whilst pruning the second.
The following proposition asserts that the algorithm correctly computes

a core.

Proposition 1. If T̂ hΣ(θ, e) is unsatisfiable for any assignment θ and e is an
encoder mapping for Σ, then function findcore returns an encoder mapping
that represents an unsatisfiable core, Σ′ ⊆ Σ.

Proof. First it is argued that findcore terminates. Where a call to findcore
is findcore(e, f, c, core) consider the ordered pair 〈|e|, c〉. For each recursive
call to findcore the value of this pair lexicographically decreases, therefore by
induction findcore terminates.

Next it is demonstrated that findcore returns an encoder mapping repre-
senting an unsatisfiable set of variables. A precondition of a call to findcore
is that T̂ hΣ(θ, e) is unsatisfiable. Since core is initially empty, the encoder
e ∪ core represents an unsatisfiable set of variables. Lines (12) and (15) are
the two places where findcore changes e ∪ core. Observe that the conditions
on line (11) and (14) state that the change of e to e′ (where e′ is the updated
encoder mapping) occurs only when e′ ∪ core represents an unsatisfiable set
of variables. Hence that e ∪ core represents an unsatisfiable set of variables
is invariant through the algorithm. findcore returns when |e| = 0, therefore
returning core = e ∪ core which represents an unsatisfiable set of variables.

Lastly it is demonstrated that the set of variables represented by the
encoder mapping returned represents an unsatisfiable core. Note that if
some encoder mapping d represents an unsatisfiable set, then d′ ⊇ d also
represents an unsatisfiable set. Variable mappings are added to core on line
(7). Suppose t 7→ x is added to core at line (7). In the preceding call with
c = 1, either (e \ [t1 7→ x1]) ∪ core represents a satisfiable set or it does
not. (The argument for tn 7→ xn is symmetric.) If satisfiable, then t1 7→ x1

is required for unsatisfiability, and this is the t 7→ x added in line (7). If
unsatisfiable, then the t 7→ x added in line (7) is t2 7→ x2.

Note that in the initial call to findcore with mapping e (where |e| = m) all
elements of e to the left of t2 7→ x2 are not part of the representation of the
unsatisfiable core since they are removed by lines (11)-(13). The number of
elements removed is described by Lemma 1, that is, m−1. Therefore t2 7→ x2

is the only element remaining and this must be part of the representation of
the unsatisfiable core, since otherwise it would have been removed by lines
(14)-(16). Therefore no redundant elements are added and findcore returns
an unsatisfiable core.

19

Lemma 1. Where m ∈ N, let c1(m) = dm
2
e and ci(m) = d ci−1(m)

2
e, if

ci−1(m) > 1 and ci(m) = 0 otherwise. Then
∑

i ci(m) ≥ m− 1.

Proof. The proof proceeds by induction. Suppose m = 1, then c1(m) = 1 ≥
m − 1. Suppose m = 2, then c1(m) = 1 and c2(m) = 0, hence

∑
i ci(m) =

1 ≥ m − 1. Now suppose m is odd, that is m = 2k − 1 (where k ∈ N,
k ≥ 1), then c1(2k − 1) = d2k−1

2
e = k and c2(2k − 1) = c1(k). Hence∑

i ci(2k − 1) = k +
∑

i ci(k) ≥ 2k − 1 ≥ 2k − 2. Suppose m is even, that
is m = 2k (where k ≥ 1) then c1(2k) = d2k

2
e = k and c2(2k) = c1(k). Hence∑

i ci(2k) = k +
∑

i ci(k) ≥ 2k − 1.

Note that when this lemma is applied, ci(m) corresponds to the third argu-
ment of findcore (c) at iteration i. This value is a function of m, the size of
the initial encoder map.

5. Instantiation for Rational-Trees

The theory component of an SMT solver requires a decision procedure for
determining the satisfiability of a conjunction of theory literals. Unification
is at the heart of Prolog and many Prolog systems are based on rational-
tree unification, hence a decision procedure for conjunctions of rational-tree
constraints comes essentially for free. This can be coupled with the con-
trol provided by delay declarations to reify rational-tree constraints, hence
implementing the interface described in section 4. The code in Figure 4
demonstrates the use of delay to realise theory propagation over rational-
tree constraints via reification.

An SMT problem over rational-trees consists of Boolean combinations
of theory literals `. The call to setup/4 will instantiate TheoryLiterals

to a list of pairs of the form ` − e(`); the propositional skeleton and a list
of the e(`) variables are also produced. In the following, a labelled literal
eqn(Term1, Term2)-X is discussed. post theory sets up propagators for
each theory literal in two steps. theory wait propagates from the theory
constraints into the Boolean variables.

theory wait uses the builtin control predicate when/2, which blocks the
goal in its second argument until the first argument evaluates to true. In this
instance the condition ?=(Term1, Term2) is true either if Term1 and Term2

are identical, or if the terms cannot be unified. That is, if Term1=Term2 is
entailed by the store then theory prop is called and assigns X=true. Simi-
larly, if the constraint is not consistent with the store, then Term1 and Term2

20

cannot be unified and again theory prop reflects this by assigning X=false.
In the opposite direction, bool wait communicates assignments made to
Boolean variables to the theory literals. The predicate is blocked on the in-
stantiation of the logical variables, waking when they become true or false.
When true the constraint must hold so Term1 and Term2 are unified. When
false, it is not possible for the two terms to be unified, hence the constraint
is discarded and the call to bool wait succeeds. Note that it is not possible
to post a constraint that asserts that two terms cannot be unified, since the
control predicate dif/2 is defined as:

dif(X, Y) :- when(?=(X, Y), X \== Y).

That is, it blocks until either X and Y are identical or they cannot be unified,
then tests whether or not they are identical. Hence dif/2 acts as a test,
rather than a propagating constraint. Consistency of the store is maintained
by theory wait; if X=false and the constraint is discarded, then later it
is determined that Term1=Term2, theory wait will attempt to unify X with
true, which will fail. Finally, post boolean sets up the propositional skele-
ton for the solver from [24].

6. Instantiation for Linear Real Arithmetic

Many Prolog systems come with the CLP(R) constraints package, which
can determine consistency of conjunctions of linear arithmetic constraints.
This decision procedure makes quantifier-free linear real arithmetic a sensi-
ble theory for the solver. The challenge is to implement reification for the
constraints, an operation not directly supported.

The code in Figure 5 demonstrates the integration of linear real arith-
metic as realised by CLP(R) into the DPLL(T) scheme. It assumes that the
input problem has been normalised so that all the constraint predicates are
drawn from =, =< and <. The propagators, theory wait, are blocked on
two variables. The first of these is the labelling variable e(C) – if this is in-
stantiated, the appropriate constraint is posted. To complete the reification,
the propagators need to detect the entailment of the linear constraint (or its
negation). This can be achieved using the builtin entailed/1, however the
control for ensuring that this is called at an appopriate time is less obvious.

Once a new constraint has been posted (or once the constraint store has
changed) other constraints or their negations might be entailed and this needs
to be detected and propagated. The communication between the propagators

21

post_theory([]).

post_theory([eqn(Term1,Term2)-X|Rest]) :-

setup_reify(X, Term1, Term2),

post_theory(Rest).

setup_reify(X, Term1, Term2) :-

bool_wait(X, Term1, Term2),

theory_wait(X, Term1, Term2).

:- block bool_wait(-, ?, ?).

bool_wait(true, Term1, Term2) :-

Term1 = Term2, !.

bool_wait(false, _Term1, _Term2).

theory_wait(X, Term1, Term2) :-

when(?=(Term1, Term2), theory_prop(X, Term1, Term2)).

theory_prop(X, Term1, Term2) :-

Term1 == Term2 ->

X = true

;

X = false

.

Figure 4: Theory propagation for rational-tree constraints

22

to capture this is achieved with the second argument to theory wait. Each
propagator is set with its second argument the same logical variable (Y in
the code) and the propagators are blocked on this second argument. When
a constraint is posted, Y is instantiated, Y = prop(). This wakes all active
propagators which either propagate or block again on the new variable. An
alternative approach, which would invoke the propagators less frequently,
would be to only wake up the activate propagators for those constraints that
share a variable with the posted constraint.

It should be emphasised, however, that although a linear solver is inter-
esting for self-contained Prolog applications, this theory is supported by a
number of off-the-shelf SMT solvers; the approach presented in this paper
is primarily designed for constraint theories that are unavailable in standard
SMT distributions.

7. Instantiation for Difference Logic

Thus far it has been demonstrated how theory propagation can be re-
alised for SMT solvers over rational-tree unification and linear constraints,
both of which are constraint systems that are built-in to Prolog. This begs
the question of whether logical variables can be used to orchestrate theory
propagation for a solver over a theory, such as difference constraints, that is
not readily available in Prolog. The challenge is to find a way for efficiently
deciding which theory constraints are entailed or disentailed, and then com-
municating this information to the SAT solver.

Difference constraints are a strict subclass of linear constraints in which
each constraint has unary coefficients and is over at most two variables. To
be precise, each constraint must take the form xi−xj ≤ c, where xi and xj are
variables, and c is a constant. A designated variable x0 is interpreted as zero
to encode unary constraints, and the constants themselves are either integers,
rationals or reals. Difference constraints are emblematic of other two variable
systems and can be readily modified to richer domains such as Octagons
[41]. For this study we focus on integer difference logic. Integer difference
logic (QF IDL) is an SMT problem where integer difference constraints are
composed with logical connectives.

7.1. The Floyd-Warshall algorithm

Decision procedures for systems of difference constraints are often ob-
tained by viewing a system as a weighted directed graph. To illustrate,

23

post_theory(TheoryLiterals):-

setup_reify(TheoryLiterals, _).

setup_reify([], _).

setup_reify([C-V|Cs], Y) :-

negate(C, NegC),

theory_wait(V, Y, C, NegC),

setup_reify(Cs, Y).

negate(X =< Y, X > Y).

negate(X < Y, X >= Y).

negate(X = Y, X =\= Y).

next_var(Y, Z) :-

var(Y), !, Y = Z.

next_var(prop(Y), Z) :-

next_var(Y, Z).

:- block theory_wait(-, -, ?, ?).

theory_wait(V, Y, C, _NegC) :-

V == true, !,

{C}, Y = prop(_).

theory_wait(V, Y, _C, NegC) :-

V == false, !,

{NegC}, Y = prop(_).

theory_wait(V, Y, C, _NegC) :-

nonvar(Y), entailed(C), !,

V = true.

theory_wait(V, Y, _C, NegC) :-

nonvar(Y), entailed(NegC), !,

V = false.

theory_wait(V, Y, C, NegC) :-

next_var(Y, U),

theory_wait(V, U, C, NegC).

Figure 5: Theory propagation for linear real arithmetic

24

Figure 6: Illustrating Floyd-Warshall

x1 x2

x3x4

-212

100-100

211

x1 x2 x3 x4

x1 0 ∞ −100 ∞
x2 −212 0 ∞ ∞
x3 ∞ ∞ 0 211
x4 ∞ 100 ∞ 0

x1 x2 x3 x4

x1 −1 211 −101 110
x2 −213 −1 −313 −102
x3 99 311 −1 210
x4 −113 99 −213 −2

consider the constraints (x1 − x2 ≤ −212) ∧ (x3 − x1 ≤ −100) ∧ (x4 − x3 ≤
211) ∧ (x2 − x4 ≤ 100), which can be interpreted as the graph given in the
left column of Figure 6. The graph in turn can be represented by the adja-
cency matrix given in the middle column. Solving the all pairs shortest path
problem then populates the matrix with entries that describe the shortest
paths between any two variables, as shown in the right column of Figure 6.
Observe that the diagonals of this final matrix are negative, indicating that
the graph contains negative cycles, showing that the system of constraints is
inconsistent.

The Floyd-Warshall algorithm [18, 55], which is in O(n3), solves the all
pairs shortest path problem where n is the number of variables. Moreover,
an incremental version can be formulated that is only O(n2) for each new
added constraint [5]. Both versions are shown below in Figure 7. The non-
incremental version compares all possible paths through the graph between
each pair of variables xi and xj by checking whether the path between them
can be shortened by passing through another variable xk.

The incremental version takes a new constraint xp − xq ≤ c, and checks
whether the path between xi and xj could be reduced by travelling via the
new edge that represents the constraint. That is, if the cost of travelling
from xi to xp, then from xp to xq (a distance of c) and then from xq to xj,
is less than that of moving from xi to xj directly. Observe that mp,q will be
updated to c if c < mp,q when i = p and j = q since mi,i = 0 and mj,j = 0,
assuming consistency. In both cases the consistency check is placed inside
the main loop so that negative cycles cause rapid failure (though failure could
be made faster at the expense of decomposing the innermost loop).

25

Figure 7: Floyd-Warshall algorithm: non-incremental and incremental versions

(1) function
(2) floyd-warshall(m, n)
(3) for k = 1 to n
(4) for i = 1 to n
(5) for j = 1 to n
(6) mi,j := min(mi,j, mi,k + mk,j)
(7) endfor
(8) if (mi,i < 0)
(9) return UNSAT
(10) endif
(11) endfor
(12) endfor
(13) return SAT

(1) function
(2) floyd-warshall(m, n, xp − xq ≤ c)
(3) for i = 1 to n
(4) for j = 1 to n
(5) mi,j := min(mi,j, mi,p + c + mq,j)
(6) endfor
(7) if (mi,i < 0)
(8) return UNSAT
(9) endif
(10) endfor
(11) return SAT

26

Figure 8: Setting up the Floyd-Warshall matrix and the watch matrix

post_theory(Encoding, Store) :-

build_store(Encoding, Store),

setup_reify(Encoding, Queue),

process_queue(Queue, Store).

build_store([], Store) :-

empty_avl(Matrix), empty_avl(Watch),

Store = store(Matrix, 0, Watch).

build_store([(X-Y =< C)-Prop | Rest], Store) :-

build_store(Rest, StoreRest),

StoreRest = store(Matrix1, N1, Watch1),

Store = store(Matrix3, N3, Watch3),

add_var(X, N1, Matrix1, N2, Matrix2),

add_var(Y, N2, Matrix2, N3, Matrix3),

(avl_fetch(X-Y, Watch1, EntL-DisL) ->

avl_store(X-Y, Watch1, [C-Prop | EntL]-DisL, Watch2)

;

avl_store(X-Y, Watch1, [C-Prop]-[], Watch2)

),

NegC is -(C + 1),

(avl_fetch(Y-X, Watch2, EntL2-DisL2) ->

avl_store(Y-X, Watch2, EntL2-[NegC-Prop | DisL2], Watch3)

;

avl_store(Y-X, Watch2, []-[NegC-Prop], Watch3)

).

7.2. Theory propagation in difference logic

For rational-trees, a built-in test can be used within a wait declaration to
block a goal until a rational-tree constraint is entailed or disentailed, which
binds the propositional variable that reifies the constraint when the goal
resumes. It is less obvious how to program an analogous control structure
for difference logic in order to realise theory propagation. The rest of this
section explains how this control can be achieved.

27

Figure 9: Propagating from the SAT solver to the theory solver

setup_reify([], _).

setup_reify([(X-Y =< C)-Prop | Rest], Queue) :-

bool_wait(Prop, X, Y, C, Queue),

setup_reify(Rest, Queue).

:- block bool_wait(-, ?, ?, ?, ?).

bool_wait(Prop, X, Y, C, Queue) :-

Prop == true, !,

insert_queue(Queue, X, Y, C).

bool_wait(Prop, X, Y, C, Queue) :-

Prop == false, !,

NegC is -(C + 1),

insert_queue(Queue, Y, X, NegC).

insert_queue(Queue, X, Y, C) :-

var(Queue), !,

Queue = [(X-Y =< C) | _Cons].

insert_queue([_Con | Cons], X, Y, C) :-

insert_queue(Cons, X, Y, C).

:- block process_queue(-, ?).

process_queue(Queue, Store1) :-

nonvar(Queue), !,

Queue = [(X-Y =< C) | Cons],

process_constraint(X-Y =< C, Store1, Store2),

process_queue(Cons, Store2).

7.2.1. Data-structures

The proposal is to shadow the Floyd-Warshall matrix with a square ma-
trix of the same dimension that records which constraints in the SMT formula
are possibly entailed or disentailed. This matrix, dubbed the watch matrix, is
so named because it is inspired by watch literals [42] that are key to efficient
SAT solving. The matrix is a control structure for efficiently identifying
which propositional variables should be bound, and to what truth values,

28

when an entry in the Floyd-Warshall matrix is updated.
The watch matrix is constructed once. This matrix, in conjunction with

the Floyd-Warshall matrix, constitutes the store. The Floyd-Warshall matrix
maps each variable pair x-y (its indices) to a value v ∈ Z ∪ {∞} which is the
length of the shortest known path from x to y (∞ used to indicate the
absence of any such path). An entry of v can be interpreted as asserting the
inequality x− y ≤ v, which vacuously holds if v = ∞.

The watch matrix maps the indices x-y to a pair EntL-DisL where EntL

and DisL are themselves lists of pairs, referred to as the entailed pairs and the
disentailed pairs. Each of the entailed pairs takes the form c − Prop where
Prop is a propositional variable that reifies a constraint x − y ≤ c which
occurs somewhere in the SMT formula. When the x − y entry is updated
with v in the Floyd-Warshall matrix, the corresponding list EntL is traversed
to find those pairs c − Prop for which v ≤ c. Each pair corresponds to a
constraint x−y ≤ c in the formula that is entailed and moreover reified with
Prop. Thus Prop can be bound to true thereby achieving partial theory
propagation.

Complete theory propagation is realised by additionally recording in DisL

those disentailed pairs (−c − 1) − Prop for which there exists a constraint
y−x ≤ c in the SMT formula. When v ≤ −c−1 it follows that x−y ≤ −c−1,
thus y − x ≤ c is disentailed since y − x ≤ c < c + 1 ≤ y − x. Disentailment
is communicated to the SAT solver by setting Prop to false. Note that Prop
may already be bound, though not necessarily to the same truth value, in
which case inconsistency is detected. Detecting all disentailed constraints
again only involves a list traversal and low-cost inequality checks.

7.2.2. Setup

The watch matrix is set up in tandem with the Floyd-Warshall matrix
by build store predicate. This predicate traverses the encoder map, con-
sidering each reified constraint (X-Y =< C)-Prop in turn. Both matrices
are represented by AVL trees so that elements of these matrices are ac-
cessed and updated by avl fetch and avl store respectively. The body
of build store adds C-Prop to the list of entailed pairs and NegC-Prop to
the list of disentailed pairs where NegC = −C − 1. The calls to the add var

predicate, when necessary, add a new row and column to the Floyd-Warshall
matrix and populates the new diagonal element with zero and any other new
entries with ∞.

29

Figure 10: Propagating from the theory solver to the SAT solver

process_constraint(X-Y =< C, StoreIn, StoreOut) :-

StoreIn = store(Matrix1, N, Watch),

StoreOut = store(Matrix3, N, Watch),

avl_fetch(X-Y, Matrix1, C_XY),

min(C_XY, C, Min),

(C == Min ->

matrix_update(X-Y, C, Matrix1, Matrix2, Watch),

floyd_warshall(N, Matrix2, Matrix3, Watch)

;

Matrix3 = Matrix1

).

matrix_update(Key, Value, Matrix1, Matrix2, Watch) :-

(avl_fetch(Key, Watch, EntL-DisL) ->

true

;

EntL = [], DisL = []

),

entailed(EntL, Value),

disentailed(DisL, Value),

avl_store(Key, Matrix1, Value, Matrix2).

entailed([], _).

entailed([C-Prop | Rest], Min) :-

(Min =< C -> Prop = true ; true),

entailed(Rest, Min).

7.2.3. Posting difference constraints

Reification provides a channel for passing information from the theory
solver to the SAT solver. Conversely, when the SAT solver binds a propo-
sitional variable that reifies a difference constraint, either the constraint, or
its negation, must be posted (added) to the store. As a consequence of
the update, incremental Floyd-Warshall should be applied together with any
ensuing theory propagation.

30

Logical variables also provide a mechanism for coordinating these events,
which must be fully backtrackable. This can be elegantly achieved with an
open list that queues up the difference constraints that are to be posted to
the store. The predicate insert queue inserts a difference constraint at the
end of Queue. The predicate process queue blocks until a constraint is in
the queue at which point the constraint is passed onto process constraint

that activates Floyd-Warshall, before inspecting, and if necessary blocking,
until another element appears in the Queue. Observe how the store is up-
dated as the constraints are processed. The predicate process constraint

invokes Floyd-Warshall, though only if the new constraint x − y ≤ c has
a constant c that is strictly smaller than the value stored in the matrix at
index x− y. The update is performed by matrix update which extracts two
lists from the watch matrix: the entailed pairs and the disentailed pairs. The
predicate entailed serves to illustrate how lightweight this form of theory
propagation actually is once the watch matrix has been constructed. The
predicate disentailed is defined analogously.

The predicate bool wait which, recall, waits until a reification variable
is set to a truth-value, in this setting merely pushes the constraint, or its
negation, into the queue.

8. Experimental Results

8.1. Rational-tree solver

The DPLL(T) solver for rational-trees has been coded in SICStus Prolog
4.2.1, as described in section 5. Henceforth this will be called the Prolog
solver. To assess this solver it has been applied to a benchmark suite of
84 type recovery problems, its target application. The first eight bench-
marks are drawn from compilations at different optimisation levels of three
small programs manufactured to check their types against those derived by
the solver. These benchmarks are designed to check that the inferred types
match against those prescribed in the source file, and also assess the robust-
ness of the type recovery in the face of various compilation modes. The
remaining benchmarks are taken from version 8.9 of the coreutils suite of
programs, standard UNIX command line utilities such as wc, uniq, echo etc.
With an eye to the future, the DynInst toolkit [40] was used to parse the
binaries and reconstruct the CFGs. This toolkit can recover the full CFG for
many obfuscated, packed and stripped binaries, and even succeeds at deter-
mining indirect jump targets. CFG recovery is followed by SSA conversion

31

which, in turn, is followed by the generation of the type constraints, and the
corresponding SMT formula complete with its propositional skeleton. The
latter rewriting steps are naturally realised as a set of Prolog rules.

To the best of the authors’ knowledge, this work represents the first time
that recursive types have been automatically derived, hence it is not pos-
sible to compare to previous approaches. Furthermore, no comparison is
made with an open source SMT solver equipped with rational-trees since the
authors are unaware of any such system. Nevertheless, to provide a compara-
tive evaluation a lazy-basic SMT solver based on an off-the-shelf SAT solver,
PicoSAT [6], has been constructed. This solver is also implemented in SIC-
Stus Prolog 4.2.1 but uses bindings to PicoSAT to solve the SAT formulae.
PicoSAT, though small by comparison with some solvers at approximately
6000 lines of C, applies learning, random restarts, etc, a range of tactics
not employed in the Prolog SAT solver. This SMT solver will henceforth
be called the hybrid solver. However, crucially, the hybrid solver does not
apply theory propagation; it simply alternates SAT solving with satisfiability
testing following the lazy-basic approach, which is all one can do when the
SAT solver is used as a black box.

The experiments were run on a single core of a MacBook Pro with a
2.4GHz Intel Core 2 Duo processor and 4GB of memory. A selection of the
results are given in Table 1. The first column gives the binary from which the
constraints were generated, the second column the number of instructions
in the binary, the third the number of clauses in the problem, the fourth
the number of propositional variables, and the fifth the number of theory
variables. In terms of timings, the sixth column records the runtime in
seconds to find a model or a core for the Prolog solver, the seventh gives
the number of times the Prolog SMT solver was called, the eighth gives the
runtime in seconds to find a model or a core for the hybrid solver, and the
final column gives the number of times the PicoSAT solver was called. To
clarify, consider benchmark 1. The SMT formula is satisfiable, hence a core
is not derived, and the problem is solved with just one call to the Prolog
SMT solver. The hybrid solver also requires just one call but this, in turn,
requires PicoSAT to be invoked 796 times, on all but the last occasion adding
a single blocking clause to the propositional skeleton. By way of contrast,
benchmark 9 is unsatisfiable hence a core is computed that pinpoints a type
conflict. The Prolog SMT solver is invoked 51 times to identify this core;
the hybrid SMT solver requires exactly the same number of calls, hence the
number is not repeated in the table. However, these 51 calls to the hybrid

32

solver cumulatively require 536 invocations of PicoSAT. On occasions the
hybrid solver terminated with a memory error1, indicated by seg, invariably
after several hours of computation. The fault is repeatable.

In addition to these timing results, the recursive types inferred for merge-
sort, as well as those for iterative-sum and recursive-sum, have been checked
against the types prescribed in the source. The sum programs both build list
of integers but then traverse them in different ways. Another point not re-
vealed from the table is that the largest benchmarks can take over 20 minutes
to parse, reconstruct the CFG, perform SSA conversion and then generate
the SMT formula. Thus the time required to solve the SMT formulae does
not exceed the time required to generate them, at least for the Prolog solver.

8.2. Integer difference logic solver

One of the attractions of the current work is that new theories can be
coded in Prolog and be integrated straightforwardly into the SMT solver via
reification. For rational-trees a comparison was made against a hybrid solver
using PicoSAT as a SAT engine. Since the theory of quantifier-free integer
difference logic (QF IDL) is a standard part of SMT packages, for this theory
a more direct comparison between the solver presented and an off-the-shelf
solver can be made. That said, off-the-shelf solvers deploy learning, random
restarts, among other things, so as to not get lost in the search space, whereas
Prolog difference logic solver does not even apply lookahead.

For this more demanding strength test, the Prolog-based SMT solver is
benchmarked against the open-source CVC3 and CVC4 solvers, which both
consist of many hundreds of thousands of lines of C++ code and have per-
formed well in the SMT competitions [7]. Problems from the latest (2013)
version of the SMT-LIB library of SMT benchmarks [4] were used for test-
ing and evaluation. SMT-LIB provides benchmarks for many SMT theories,
notably QF IDL problems. Moreover, benchmarks from this suite are con-
veniently labelled according to whether they are satisfiable or not, making it
straightforward to test the Prolog solver for correctness, even for unsatisfiable
instances.

To read the instances, the Prolog solver was extended with a parser for
the smtlib2 input language, written using flex and bison, that outputs an

1This bug has been fixed in the forthcoming SICStus 4.3, though at the time of writing
the latest version available is 4.2.3

33

abstract syntax tree for an SMT instance represented as a single Prolog term.
To resolve overloading on the equality operator, which can be interpreted
either as logical bi-implication or as a relational arithmetical operator, the
abstract syntax tree was traversed to infer types and thereby disambiguate
the usage of equality terms.

The benchmarks include both industrial problems, and difficult crafted
problems designed specifically to test the performance of a solver. Instances
in the QF IDL class were ranked according to size, and directed at the Prolog
solver and at CVC3 and CVC4. CVC3 was timed using the unix time com-
mand, measuring overall runtime, while the runtime of CVC4 was measured
using its stats command line option. The runtime of the Prolog solver was
found using the statistics predicate, though it was only able to resolve the
run time with a granularity of ten milliseconds. Table 2 gives a selection of
the results taken from the first two hundred benchmarks, which have been
pruned to remove any whose run time was less than fifty milliseconds for all
three solvers (which removed 35 benchmarks before the table even started).
Benchmarks with similar names and performance were also removed to make
space for a wider range of instances.

9. Discussion

9.1. Rational-tree solver

The results in Table 1 demonstrate that an SMT solver equipped with
an appropriate theory can be used to successful automate the recovery of
recursive types, a problem not previously solved.

On no occasion is the hybrid solver faster than the Prolog solver, which
suggests that a succinct implementation of theory propagation is more pow-
erful than deploying an off-the-shelf SAT solver as a black box in combination
with a handcrafted theory solver using the lazy-basic approach.

It can be observed in Table 1 that many of the problems are unsatisfiable.
For these problems an explanation for a type conflict is returned rather than
a satisfying type assignment. As a strength test of the solver these problems
are good since the exhaustive search required to demonstrate unsatisfiability
is more demanding than search for a first satisfying assignment. There are
two results that require discussion. Benchmark 4 has an unsatisfiable core
of 26 constraints, whereas most cores have less than 10 constraints. This
explains why it is relatively slow. Benchmark 7 has timed out, a reminder
that large SMT problems can be hard to solve.

34

Table 1: Benchmarking for a selection of type recovery problems

vars SMT SAT
benchmark insns clauses prop theory time calls time calls
1 iter-sum.O1 296 2047 564 779 14.57 SAT 413.36 796
2 iter-sum.O2 312 2132 586 812 52.34 SAT seg
3 recu-sum.O1 302 2129 588 809 15.37 SAT 6382.50 998
4 mergesort.O0 480 3216 888 1220 585.89 70 seg
5 mergesort.O1 387 2636 718 1011 20.05 SAT 1176.58 1720
6 mergesort.O2 395 2628 713 1017 20.30 SAT 805.93 860
7 mergesort.Os 444 3275 907 1244 >14400 seg
8 mergesort.O3 2586 15696 3741 6670 1551.23 31 >14400
9 false 3747 27645 5357 12957 19.46 51 3250.05 536
10 true 3747 27645 5357 12955 19.27 51 3247.02 536
11 tty 3825 28255 5417 13373 20.02 51 3509.06 552
12 sync 3901 28706 5571 13466 70.76 52 3607.01 553
15 hostid 3912 28973 5576 13634 62.70 52 3651.77 550
19 basename 4114 30125 5829 14212 69.48 53 3939.21 544
20 env 4016 29670 5589 13956 22.69 53 3914.54 544
22 uname 4074 31048 5653 15034 32.28 52 3676.94 534
23 cksum 4259 31973 5975 15370 101.85 52 4516.21 554
24 sleep 4442 32993 6343 15637 84.89 51 4876.85 566
29 echo 4310 33087 6064 15571 41.41 51 4723.52 564
30 nice 4397 33057 6000 15719 11.23 51 4907.31 581
33 nl 5719 43834 7692 21240 17.20 56 seg
34 comm 5563 45401 7790 22797 108.09 53 10667.25 650
42 wc 6377 52105 8818 26713 93.91 52 12681.63 575
43 uniq 6595 52779 9013 27190 35.46 53 13281.49 581
51 join 7946 67168 10844 34688 85.93 60 >14400
53 sha384sum 11612 78776 16419 36153 191.87 53 >14400
54 cut 8173 68332 11248 36736 185.84 60 >14400
58 ln 9369 83877 12668 44935 292.21 54 >14400
61 getlimits 10797 92504 14856 47845 396.81 54 >14000
66 timeout 12063 98544 16306 50019 126.79 53 >14000
78 ptx 15919 141197 21850 76881 702.67 55 >14000
89 mbslen 25895 257132 35148 148102 1935.12 56 >14400

35

Note that the time required for type recovery is sensitive to optimisation
level, though it is not obvious why different optimisation levels impact on the
difficulty of the SMT instance, apart from the obvious effect on code size.

For the unsatisfiable problems, a core of unsatisfiable constraints is cal-
culated using multiple calls to the DPLL(T) solver as indicated. This core
can be used to diagnose unsatisfiability, in turn allowing the analysis to be
refined to return meaningful information despite the initial result. In the
benchmarks unsatisfiability is typically owing to nop instructions such as
nop [rax+rax+0x0]. This instruction does nothing, but has been generated
by the compiler with an encoded operand in order to make it a specific size
for optimal performance. The indirect addressing is broken down and con-
straints generated as follows:

mov A1, rax1 TA1 = Trax1

add A2, rax1

(
TA2 = basic(,int,4) ∧ TA1 = TA2 ∧

Trax1 = TA2

)
∨ TA2 = ptr(〈[...], α1, [...]〉) ∧

TA1 = ptr(〈[...], α2, [...]〉) ∧
Trax1 = basic(,int,4)

∨

 TA2 = ptr(〈[...], α3, [...]〉) ∧
TA1 = basic(,int,4) ∧

Trax1 = ptr(〈[...], α4, [...]〉)

mov A3, [A2] TA2 = ptr(〈[...], TA3 , [, , , ...]〉)
nop A3

The final constraint states that A2 must have pointer type, hence those for
the add dictate that one of A1 and rax1 must be of basic type, and the other
a pointer; however, the first constraint says they have the same type, so the
system is inconsistent.

Another unexpected source of inconsistency is the hard-coded pointer
addresses sometimes found in mov instructions. These are often addresses
of strings included in the binary, but also include constructor and destructor
lists, added by the linker for construction and destruction of objects. For
example, the instruction mov ebx1, 0x605e38 appears in the cksum binary,
and moves the address of a string into ebx1 resulting in the constraint Tebx1 =

36

basic(,int,4). Later however, ebx1 is dereferenced, which implies that it is
a pointer, and conflicts with the earlier inference.

Quite apart from the disjunctive nature of constraints, the sheer num-
ber of x86 instructions pose an engineering challenge when writing a type
recovery tool; indeed the constraint generator module has taken longer to
develop than both SMT solvers together. Moreover, as the above two exam-
ples illustrate, type conflicts stem from type interactions between different
instructions which makes the type conflicts difficult to anticipate. The result
produced from the solver is either a successful recovery of types, or a core of
inconsistent types, both of which can be achieved sufficiently quickly. Since
the core is typically small, it is of great utility in pinpointing omissions in
the type generation phase. It seems attractive to augment the solver with a
domain specific language for expressing and editing the type constraints so
that they can be refined, if necessary, by a user.

9.2. Integer difference logic solver

From the results in Table 2, together with the 35 benchmarks solved
in less than 50ms by all solvers, it can be observed that the Prolog QF IDL
solver performs surprisingly well, solving many benchmark instances in times
comparable to a well established SMT solver. We suspect that the perfor-
mance stems partly from our incremental algorithm and partly from the
watch matrices which enable lightweight theory propagation, though it is
not straightforward to determine the relative importance of these techniques.
The performance is particularly pleasing considering that the solver employs
neither learning nor lookahead. Morever, this performance has to be balanced
against the engineering effort required to implement and integrate the theory
in the Prolog solver, which totalled less than six hundred lines of code. The
brevity of the code also facilitates easy modification and experimentation, an
advantage of any declarative language.

Timeouts occur with several of the benchmarks. The diamonds bench-
marks, handcrafted by Ofer Strichman [52], are particularly hard for the
Prolog solver, and indeed CVC3 and CVC4 both also timeout on several of
these problems. These benchmarks are recognised as challenging problems
[2], for which special tactics have been suggested [47], so it is no great sur-
prise that they cause difficulty, particularly as this Prolog solver does not
employ any labelling heuristics. The jobshop and DTP benchmarks are also
hand-crafted problems designed to stress a solver.

37

Table 2: Benchmarking for a selection of QF IDL problems

benchmark sat p-vars t-vars cvc3 cvc4 Prolog
super queen6-1.smt2 7 264 7 64 77 10
jobshop4-2-2-2-4-4-11.smt2 7 112 17 64 40 310
toroidal queen6-1.smt2 7 288 7 344 310 30
super queen7-1.smt2 7 354 8 216 368 40
queen8-1.smt2 X 352 9 288 702 30
toroidal queen7-1.smt2 X 434 8 132 99 20
super queen8-1.smt2 7 456 9 444 770 110
queen9-1.smt2 X 450 10 908 462 120
toroidal queen8-1.smt2 7 544 9 4680 670 740
jobshop6-2-3-3-2-4-9.smt2 7 252 25 7288 321 >60000
jobshop6-2-3-3-2-4-12.smt2 X 252 25 36378 295 160
super queen9-1.smt2 7 570 10 896 128 210
diamonds.11.3.i.a.u.smt2 7 188 78 25526 817 >60000
toroidal queen9-1.smt2 7 738 10 14005 2267 3030
diamonds.16.2.i.a.u.smt2 7 209 81 >60000 49910 >60000
diamonds.12.3.i.a.u.smt2 7 205 85 57284 1584 >60000
diamonds.17.2.i.a.u.smt2 7 222 86 >60000 >60000 >60000
toroidal queen10-1.smt2 7 880 11 >60000 7346 16490
super queen11-1.smt2 X 834 12 356 296 90
queen12-1.smt2 X 816 13 752 521 140
jobshop8-2-4-4-4-4-12.smt2 7 448 33 >60000 184 >60000
SortingNetwork4 live bgmc002.smt2 X 503 21 28 17 110
diamonds.10.5.i.a.u.smt2 7 251 111 26782 525 >60000
inf-bakery-invalid-4.smt2 X 536 23 20 46 48050
super queen12-1.smt2 X 984 13 988 260 130
queen14-1.smt2 X 1120 15 11445 1810 1850
LinearSearch live bgmc003.smt2 X 673 36 28 0 430
queen15-1.smt2 X 1290 16 14397 3272 2150
DTP k2 n35 c175 s4.smt2 7 699 35 10317 1076 >60000
toroidal queen13-1.smt2 X 1586 14 3548 678 630
super queen15-1.smt2 X 1506 16 12109 659 5280
queen16-1.smt2 X 1472 17 1728 767 360
inf-bakery-mutex-7.smt2 7 914 38 132 288 >60000
super queen16-1.smt2 X 1704 17 50195 3770 12270
queen17-1.smt2 X 1666 18 7876 1213 850

38

10. Conclusions and Future Work

This paper has presented a DPLL(T) SMT solver coded in Prolog for
three theories – rational-tree unification, linear arithmetic and integer differ-
ence constraints. The motivation for this work is the need for an SMT solver
over rational-tree unification in order to recover types from x86 binaries;
with Prolog providing a decision procedure for rational-tree unification the
integration with the SAT solver in [25] is a natural development. The effec-
tiveness of the approach has been demonstrated by the successful application
of the solver to a suite of type recovery problems.

The solver can be extended by providing decision procedures for further
theories. Finite domain solvers, such as SICStus CLP(FD), often allow rei-
fied constraints [9], hence finite domain constraints might appear a good
candidate to incorporate into the DPLL(T) framework. Unfortunately, fi-
nite domain constraint solvers typically maintain stores that are potentially
inconsistent, hence without labelling (an unattractive step) a decision pro-
cedure for conjunctions of theory constraints is not readily available. That
said, finite domain techniques have been applied to infer typings for the
predicates of logic programs that are disjunctive [16]. Like our work this
approach avoids the need for fixpoint computation, and its use of propaga-
tor constraints echoes theory propagation. However, this work assumes type
definitions are prescribed up-front and recasting type recovery as SMT, with
use of the core algorithm, can in principle resolve inconsistencies by applying
MaxSMT. Future work will focus on this direction of inquiry.

The integer difference solver performs suprisingly well, and it would cer-
tainly be worthwhile investigating what further improvements could be made
in order to tackle harder problems. The search and labelling heuristics de-
scribed in section 4.2 provide a good starting point, and additional domain
specific optimisations could also be made.

The approach to theory propagation described in this paper is not nec-
essarily tied to DPLL-based SAT solvers and future work is to describe how
to integrate it into a generalisation [53] of St̊almarck’s proof procedure [51].
Other future work is to add certification, as in [1]. That is, for unsatisfi-
able instances not only is the result returned, but also a demonstration of
unsatisfiability that can be determined by a small trusted computing base.

39

11. Acknowledgments

We thank Alan Mycroft for stimulating discussions on type recovery at
Dagstuhl Seminar 12051 [32]. We also thank Wei-Ming Khoo for explaining
his approach to type recovery and Mats Carlsson for his help with SICStus
Prolog. Finally, we would like to thank both the PPDP and SCP reviewers
for their helpful comments, and for alerting us to QuickXplain [30].

References

[1] S. Anoep, E. Drijver, A. Ganga, and M. Kirsten. Resolution Proof
for Look-ahead SAT Solvers. 2006. www.st.ewi.tudelft.nl/sat/

reports/resolution.pdf.

[2] A. Armando, C. Castellini, E. Giunchiglia, M. Idini, and M. Maratea.
TSAT++: an Open Platform for Satisfiability Modulo Theories. Elec-
tronic Notes in Theoretical Computer Science, 125(3):25–36, 2005.

[3] G. Balakrishnan and T. Reps. Recovery of Variables and Heap Structure
in x86 Executables. Technical report, University of Wisconsin, 2005.

[4] C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org, 2010.

[5] C. Baykan and M. Fox. Spatial Synthesis by Disjunctive Constraint
Satisfaction. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 11(4):245–262, 1997.

[6] A. Biere. PicoSAT Essentials. Journal on Satisfiability, Boolean Model-
ing and Computation, 4:75–97, 2008.

[7] R. Bruttomesso, D. Cok, and A. Griggio. SMT-COMP 2012.
http://smtcomp.sourceforge.net/2012/, 2012.

[8] T. Bull, E. Younger, K. Bennett, and Z. Luo. Bylands: Reverse Engi-
neering Safety-critical Systems. In International Conference on Software
Maintenance, pages 358–366. IEEE Computer Society, 1995.

[9] M. Carlsson, G. Ottosson, and B. Carlson. An Open-Ended Finite Do-
main Constraint Solver. In Programming Languages: Implementations,
Logics, and Programs, volume 1292 of Lecture Notes in Computer Sci-
ence, pages 191–206. Springer, 1997.

40

[10] D. R. Chase, M. N. Wegman, and K. F. Zadeck. Analysis of Pointers
and Structures. In Programming Language Design and Implementation,
pages 296–310. ACM Press, 1990.

[11] V. Chipounov and G. Candea. Reverse Engineering of Binary Device
Drivers with RevNIC. In European Conference on Computer Systems,
pages 167–180. ACM Press, 2010.

[12] M. Codish, V. Lagoon, and P. J. Stuckey. Logic Programming with
Satisfiability. Theory and Practice of Logic Programming, 8(1):121–128,
2008.

[13] W. Cui, M. Peinado, K. Chen, H. Wang, and L. Irun-Briz. Tupni:
Automatic Reverse Engineering of Input Formats. In Computer and
Communications Security, pages 391–402. ACM Press, 2008.

[14] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck. Efficiently
Computing Static Single Assignment Form and the Control Dependence
Graph. ACM Transactions on Programming Languages and Systems,
13(4):451–490, 1991.

[15] M. Davis, G. Logemann, and D. Loveland. A Machine Program for
Theorem Proving. Communications of the ACM, 5(7):394–397, 1962.

[16] B. Demoen, M. Garćıa de la Banda, and P. J. Stuckey. Type Constraint
Solving for Parametric and Ad-hoc Polymorphism. In Australian Com-
puter Science Conference, pages 217–228. Springer, 1999.

[17] W. Drabent. Logic + Control: An Example. In ICLP (Technical Com-
munications), volume 17 of LIPIcs, pages 301–311. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2012.

[18] R. Floyd. Algorithm 97: Shortest Path. Communications of the ACM,
5(6):345, 1962.

[19] B. Guha, C. Davis, and B. Mukherjee. Network Security via Reverse
Engineering of TCP code: Vulnerability Analysis and Proposed Solu-
tions. In Conference on Computer Communications, pages 603–610.
IEEE Computer Society, 1996.

41

[20] M. Hermenegildo, D. Cabeza, and M. Carro. Using Attributed Variables
in the Implementation of Concurrent and Parallel Logic Programming
Systems. In International Conference on Logic Programming, pages 631–
645. MIT Press, 1995.

[21] C. Holzbaur. Metastructures vs. Attributed Variables in the Context
of Extensible Unification. In International Symposium on Programming
Language Implementation and Logic Programming, volume 631 of Lec-
ture Notes in Computer Science, pages 260–268. Springer, 1992.

[22] J. M. Howe and A. King. Positive Boolean Functions as Multiheaded
Clauses. In International Conference on Logic Programming, volume
2237 of Lecture Notes in Computer Science, pages 120–134. Springer,
2001.

[23] J. M. Howe and A. King. Efficient Groundness Analysis in Prolog.
Theory and Practice of Logic Programming, 3(1):95–124, 2003.

[24] J. M. Howe and A. King. A Pearl on SAT Solving in Prolog. In Func-
tional and Logic Programming, volume 6009 of Lecture Notes in Com-
puter Science, pages 165–174. Springer, 2010.

[25] J. M. Howe and A. King. A Pearl on SAT and SMT Solving in Prolog.
Theoretical Computer Science, 435:43–55, 2012.

[26] G. Huet. Résolution d’équations dans les langages d’ordre 1, 2, . . . ,
ω. PhD thesis, Université Paris VII, 1976.

[27] J. Jaffar. Efficient Unification Over Infinite Trees. New Generation
Computing, 2(3):207–219, 1984.

[28] J. Jaffar, A. E. Santosa, and R. Voicu. An Interpolation Method for CLP
Traversal. In Constraint Programming, volume 5732 of Lecture Notes in
Computer Science, pages 454–469. Springer, 2009.

[29] R. G. Jeroslow and J. Wang. Solving Propositional Satisfiability Prob-
lems. Annals of Mathematics and Artificial Intelligence, 1:167–187,
1990.

[30] U. Junker. QuickXPlain: Preferred Explanations and Relaxations
for Over-Constrained Problems. In AAAI, pages 167–172. AAAI Press,
2004.

42

[31] D. Kapur. Shostak’s Congruence Closure as Completion. In Rewriting
Techniques and Applications, volume 1232 of Lecture Notes in Computer
Science, pages 23–37. Springer, 1997.

[32] A. King, A. Mycroft, T. W. Reps, and A. Simon. Analysis of Exe-
cutables: Benefits and Challenges (Dagstuhl Seminar 12051). Dagstuhl
Reports, 2(1):100–116, 2012.

[33] R. A. Kowalski. Algorithm = Logic + Control. Communication of the
ACM, 22(7):424–436, 1979.

[34] D. Kroening and O. Strichman. Decision Procedures. Springer, 2008.

[35] J. Lee, T. Avgerinos, and D. Brumley. TIE: Principled Reverse En-
gineering of Types in Binary Programs. In Network and Distributed
System Security Symposium. The Internet Society, 2011.

[36] C. M. Li and Anbulagan. Look-Ahead Versus Look-Back for Satisfia-
bility Problems. In Constraint Programming, volume 1330 of Lecture
Notes in Computer Science, pages 341–355. Springer, 1997.

[37] Z. Lin, X. Zhang, and D. Xu. Automatic Reverse Engineering of Data
Structures from Binary Execution. In Network and Distributed System
Security Symposium. The Internet Society, 2010.

[38] D. MacQueen, G. Plotkin, and R. Sethi. An Ideal Model for Recursive
Polymorphic Types. In Principles of Programming Languages, pages
165–174. ACM Press, 1983.

[39] M. J. Maher. Complete Axiomatizations of the Algebras of Finite, Ra-
tional and Infinite Trees. In Logic in Computer Science, pages 348–357.
IEEE Computer Society, 1988.

[40] B. P. Miller and A. R. Bernat. Anywhere, Any Time Binary Instrumen-
tation. In Workshop on Program Analysis for Software Tools and Engi-
neering, September 2011. See also http://www.dyninst.org/dyninst.

[41] A. Miné. The Octagon Abstract Domain. Higher-Order and Symbolic
Computation, 19(1):31–100, 2006.

43

[42] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Ma-
lik. Chaff: Engineering an Efficient SAT Solver. In Design Automation
Conference, pages 530–535. ACM Press, 2001.

[43] A. Mycroft. Type-Based Decompilation (or Program Reconstruction
via Type Reconstruction). In European Symposium on Programming,
volume 1576 of Lecture Notes in Computer Science, pages 208–223.
Springer, 1999.

[44] L. Naish. Negation and Control in Logic Programs, volume 238 of Lecture
Notes in Computer Science. Springer, 1986.

[45] R. Nieuwenhuis and A. Oliveras. DPLL(T) with Exhaustive Theory
Propagation and Its Application to Difference Logic. In Computer-Aided
Verification, volume 3576 of Lecture Notes in Computer Science, pages
321–334. Springer, 2005.

[46] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Mod-
ulo Theories: From an Abstract Davis-Putnam-Logemann-Loveland
Procedure to DPLL(T). Journal of the ACM, 53(6):937–977, 2006.

[47] D. Pham, J. Thornton, and A. Sattar. Modelling and Solving Tem-
poral Reasoning as Propositional Satisfiability. Artificial Intelligence,
172(15):1752–1782, 2008.

[48] G. Ramalingam, J. Field, and F. Tip. Aggregate Structure Identification
and Its Application to Program Analysis. In Principles of Programming
Languages, pages 119–132. ACM Press, 1999.

[49] E. Robbins, J. M. Howe, and A. King. Theory Propagation and
Rational-Trees. In Principles and Practice of Declarative Programming,
pages 193–204. ACM Press, 2013.

[50] M. Sharif, A. Lanzi, J. Giffin, and L. Wenke. Automatic Reverse Engi-
neering of Malware Emulators. In Symposium on Security and Privacy,
pages 94–109. IEEE Computer Society, 2009.

[51] M. Sheeran and G. St̊almarck. A Tutorial on St̊almarck’s Proof Pro-
cedure for Propositional Logic. Formal Methods in System Design,
16(1):23–58, 2000.

44

[52] O. Strichman, S. Seshia, and R. Bryant. Deciding Separation Formulas
with SAT. In CAV, volume 2404 of Lecture Notes in Computer Science,
pages 209–222. Springer, 2002.

[53] A. V. Thakur and T. W. Reps. A Generalization of St̊almarck’s Method.
In Static Analysis Symposium, volume 7460 of Lecture Notes in Com-
puter Science, pages 334–351. Springer, 2012.

[54] C. Tinelli. A DPLL-based Calculus for Ground Satisfiability Modulo
Theories. In European Conference on Logics in Artificial Intelligence,
volume 2424 of Lecture Notes in Artificial Intelligence, pages 308–319.
Springer, 2002.

[55] S. Warshall. A Theorem on Boolean Matrices. Journal of the ACM,
9(1):11–12, 1962.

[56] L. Zhang and S. Malik. The Quest for Efficient Boolean Satisfiability
Solvers. In Computer Aided Verification, volume 2404 of Lecture Notes
in Computer Science, pages 17–36. Springer, 2002.

45

