
              

City, University of London Institutional Repository

Citation: Bjorkwall, S., Hossjer, O., Ohlsson, E. & Verrall, R. J. (2011). A generalized linear

model with smoothing effects for claims reserving. Insurance: Mathematics and Economics, 
49(1), pp. 27-37. doi: 10.1016/j.insmatheco.2011.01.012 

This is the unspecified version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/3842/

Link to published version: https://doi.org/10.1016/j.insmatheco.2011.01.012

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


A generalized linear model with smoothing effects for claims

reserving
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Abstract

In this paper, we continue the development of the ideas introduced in England & Verrall (2001)
by suggesting the use of a reparameterized version of the generalized linear model (GLM) which
is frequently used in stochastic claims reserving. This model enables us to smooth the origin,
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Moreover, we provide a bootstrap procedure to achieve a full predictive distribution.
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1. Introduction

Many stochastic claims reserving methods have now been established, see, for example, Wütrich

& Merz (2008) and England & Verrall (2002). However, many actuaries use intuitive approaches

in conjunction with a standard reserving method, and it is necessary for stochastic methods to

also enable these to be used. One such intuitive method is the subject of this paper, which is to

allow some smoothing to be applied to the shape of the development pattern.

In Björkwall et al. (2009) an example of a deterministic development factor scheme, which is

frequently used in practice, was provided. This approach could be varied in many different ways

by the actuary depending on the particular data set under analysis. This includes smoothing the

development factors, perhaps after excluding the oldest observations and outliers. In this way the

impact of irregular observations in the data set is reduced and more reliable reserve estimates are

obtained. A common approach is to use exponential smoothing by log-linear regression of the

development factors, but other curves could be applied too, see Sherman (1984). These could also

be carried over to a bootstrap procedure in order to obtain the corresponding prediction error as

well as the predictive distribution, whose size and width, respectively, can be changed according

to the amount of smoothing and extrapolation.

Despite the intuitiveness and transparency of this approach it is certainly accompanied by some

statistical drawbacks. For instance, the statistical quality of the reserve estimates is not opti-

mal since they are not maximum likelihood estimators. Moreover, bootstrapping requires some

stochastic model assumptions anyway. When this model is defined at the resampling stage, rather

than at the original data generation stage the resulting reserving exercise leads to somewhat ad hoc

decisions and more subjectiveness compared to a more systematic methodology, where a stochastic

model is defined from start.

England & Verrall (2001) presented a Generalized Additive Model (GAM) framework of stochastic

claims reserving, which has the flexibility to include several well-known reserving models as special

cases as well as to incorporate smoothing and extrapolation in the model-fitting procedure. Using

this framework implies that the actuary simply would have to choose one parameter corresponding
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to the amount of smoothing, the error distribution and how far to extrapolate, then the fitted

model automatically provides statistics of interest, e.g. reserve estimates, measures of precision

and tests for goodness-of-fit. Such an approach is appealing, partly due to its statistical qualities

and partly in order to obtain a tool for selection and comparison of models, which then could be

systemized.

Recently Antonio & Beirlant (2008) applied a similar approach using a semi-parametric regression

model which is based on a generalized linear mixed model (GLMM) approach. However, both

GAMs and GLMMs might be considered as too sophisticated in order to become popular in

reserving practice.

In this paper, we instead suggest the use of a reparameterized version of the popular Generalized

Linear Model (GLM) introduced in a claims reserving context by Renshaw & Verrall (1998). This

model enables us to smooth origin, development and calendar year parameters in a similar way as is

often done in practice, but still keep a GLM structure which we can use to obtain reserve estimates

and to systemize the model selection procedure that arises in the smoothing process. While

England & Verrall (2001) used the GAM in order to analytically compute prediction errors we

instead implement a bootstrap procedure to achieve a full predictive distribution for the suggested

GLM in accordance with the method developed in Björkwall et al. (2009).

The paper is set out as follows. The notation and a short summary of existing smoothing ap-

proaches, which to a large extent is based on the work of England & Verrall (2001, 2002), are

given in Section 2. The suggested model is introduced in Section 3, which also contains three

examples on how it can be used; one of them is the main topic of this paper. In Section 4 we

discuss model selection and some criteria are provided. The estimation of the parameters and the

reserving algorithm are described in Section 5, while Section 6 contains the bootstrap procedure.

The theory is numerically studied in Section 7 and, finally, Section 8 contains a discussion.
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2. Smoothing models in claims reserving

2.1. Notation

Let {Cij ; i, j ∈ ∇} denote the incremental observations of paid claims, which are assumed to be

available in a development triangle ∇ = {(i, j); i = 1, . . . , t; j = 1, . . . , t− i+1}. The suffixes i and

j refer to the origin year and the development year, respectively, see Table 2.1. In addition, the

suffix k = i + j is used for the calendar years, i.e. the diagonals of ∇. Let n = t (t + 1)/2 denote

the number of observations.

Development year

Origin year 1 2 3 · · · t − 1 t
1 C11 C12 C13 · · · C1,t−1 C1,t

2 C21 C22 C23 · · · C2,t−1

3 C31 C32 C33 · · ·
...

...
...

...
t − 1 Ct−1,1 Ct−1,2

t Ct,1

Table 2.1: The triangle ∇ of observed incremental payments.

The purpose of a claims reserving exercise is to predict the sum of the delayed claim amounts in the

lower, unobserved future triangle {Cij ; i, j ∈ ∆}, where ∆ = {(i, j); i = 2, . . . , t; j = t−i+2, . . . , t},

see Table 2.2. We write R =
∑

∆ Cij for this sum, which is the outstanding claims for which the

insurance company must hold a reserve. The outstanding claims per origin year are specified by

summing per origin year Ri =
∑

j∈∆i
Cij , where ∆i denotes the row corresponding to origin year

i in ∆.

Development year

Origin year 1 2 3 · · · t − 1 t
1
2 C2,t

3 C3,t−1 C3,t

...
...

...
t − 1 Ct−1,3 · · · Ct−1,t−1 Ct−1,t

t Ct,2 Ct,3 · · · Ct,t−1 Ct,t

Table 2.2: The triangle ∆ of unobserved future payments.
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Estimators of the outstanding claims per origin year and the grand total are obtained by R̂i =

∑
j∈∆i

Ĉij and R̂ =
∑

∆ Ĉij , respectively, where Ĉij is a prediction of Cij . With an underlying

stochastic reserving model, Ĉij is a function of the estimated parameters of that model, typically

chosen to make it an (asymptotically) unbiased predictor of Cij .

2.2. A deterministic development factor method

This section contains an example of how the chain ladder development factors might be smoothed

and extrapolated into a tail according to a deterministic algorithm.

The chain-ladder and other development factor methods operate on cumulative claim amounts

Dij =

j∑

ℓ=1

Ciℓ . (2.1)

Let µij = E(Dij). Development factors

fj =

∑t−j

i=1 µi,j+1∑t−j
i=1 µij

, (2.2)

where j = 1, . . . , t − 1, are estimated for a fully non-parametric model without any smoothing of

parameters by

f̂j =

∑t−j

i=1 Di,j+1∑t−j
i=1 Dij

. (2.3)

By examining a graph of the sequence of f̂j’s the actuary might decide to smooth them, for

instance, for j ≥ 4. Exponential smoothing could be used for that purpose, i.e. the f̂j ’s are

replaced by estimators obtained from a linear regression of ln(f̂j − 1) on j. By extrapolation in

the linear regression this also yields development factors for a tail j = t, t + 1 . . . , t + u. The

original f̂j ’s are kept for j < 4 and the smoothed ones used for all j ≥ 4. Let f̂s
j denote the new

sequence of development factors. Estimates µ̂ij for ∆ can now be computed as in the standard

chain-ladder method yielding

µ̂ij = Di,t−i f̂s
t−i f̂s

t−i+1 . . . f̂s
j−1 (2.4)

and

Ĉi,j = µ̂i,j − µ̂i,j−1 . (2.5)
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Note that the truncation point j = 4 of the unsmoothed development factors, has to be decided by

eye. Moreover, this approach could be varied, the actuary might choose, for example, to disregard

some of the latest development factors for the regression procedure and then more decisions have to

be made. Hence, this approach is quite ad hoc. A more stringent methodology requires a stochastic

model for the claims, see Verrall & England (2005) and Verrall (2007) for more discussion.

2.3. Lognormal models

Early smoothing models applied to claims reserving were parametric and, for simplicity, normal

distributions were assumed. The usual assumptions were that Cij are independent with

ln(Cij) = ηij + ǫij , (2.6)

where ηij = E(ln(Cij)) and ǫij ∼ N(0, σ2). Hence, Cij ∼ LN(ηij , σ
2), where N and LN denote

normal and lognormal distributions, respectively. Moreover, two models,

ηij = c + αi + βj (2.7)

and

ηij = c + αi + βi ln j + γi j , (2.8)

were suggested.

Model (2.7) was introduced by Kremer (1982). Model (2.8), which is referred to as the Hoerl

curve, can be ascribed to Zehnwirth (1985), see e.g. England & Verrall (2001). The original

document does no longer exist according to Insureware even though it is frequently referred to

in the literature. However, the Hoerl curve is also mentioned in the conference paper Zehnwirth

(1989). This model was popular since it often provides a reasonable approximation to the shape

of the payment pattern; it starts with a rapidly increasing peak and then decays exponentially.

Moreover, it can be used for extrapolation of a tail of payments beyond t.

De Jong & Zehnwirth (1983) used the Kalman filter in order to smooth the estimates of the

parameters βi and γi in (2.8) according to a framework for a family of models. Verrall (1989) also

used the Kalman filter in order to smooth the estimates of αi and βj in (2.7).
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Barnett & Zehnwirth (2000) introduced a model which is referred to as the probabilistic trend

family (PTF), and this model could be expressed using

ηij = αi +

j−1∑

l=1

βl +

i+j−1∑

k=2

γk (2.9)

in (2.6). Here the βl’s and γk’s account for linear trends between the development years and

calendar years, respectively.

2.4. Generalized linear models

Wright (1990) introduced a parametric alternative which is based on a risk theoretic model includ-

ing the assumption of Poisson distributed claim numbers and gamma distributed claim amounts.

The model can be expressed as a GLM

E(Cij) = mij and V ar(Cij) = φij mp
ij

ln(mij) = ηij , (2.10)

where

ηij = uij + c + αi + βi ln j + γi j + δk , (2.11)

and p = 1, see e.g. England & Verrall (2001) for the derivation. The term uij is a known offset,

a function of an exposure and a known adjustment term, see Wright (1990), while δk allows for

claims inflation. It is easy to see that (2.11) is similar to the Hoerl curve in (2.8), but the relation

between the responses and the predictor differs. Moreover, the error distribution no longer has to

be normal. Wright (1990) used the Kalman filter to produce smoothed estimates of the parameters.

Renshaw & Verrall (1998) used (2.7) in (2.10) and related the model to the chain-ladder method

for p = 1. Note that the scale parameter is usually assumed to be constant in this context, i.e.

φij = φ, and, hence, we will stick to this assumption from now on.

Equation (2.7) can be extended to include a calender year parameter according to

ηij = c + αi + βj + γk, k = 2, . . . , 2t . (2.12)
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However, the number of parameters is then usually too large compared to the small data set of

aggregated individual paid claims in Table 2.1. In any case, a side constraint, e.g.

α1 = β1 = γ2 = 0 (2.13)

is needed to estimate the v = 3t− 2 remaining model parameters c, αi, βj and γk, typically under

the assumption p = 1 or p = 2, corresponding to an over-dispersed Poisson (ODP) distribution or

a gamma distribution, respectively. Note that it is only possible to estimate γk for k = 3, . . . , t,

while a further assumption is needed regarding the future k = t + 1, . . . , 2t.

2.5. Generalized additive models

GAMs, which include non-parametric smoothers, are an alternative in order to obtain more flexibil-

ity than parametric smoothing models can provide. Using this approach, Verrall (1996) extended

the model in (2.10) and (2.7) to incorporate smoothing of the origin year parameters αi. England

& Verrall (2001) extended that idea further by creating a general framework which can express

several previous reserving models as special cases. The framework was then used, among other

things, to allow for smoothing over the development year parameter βj , in (2.10) and (2.7), too.

2.6. Generalized linear mixed models

Antonio & Beirlant (2008) presented a semi-parametric regression model which is based on a

GLMM approach. Using a Bayesian implementation they extended the work of England & Verrall

(2001) to include simulation of predictive distributions. In addition, the suggested model could

be used for more complicated data sets involving e.g. quarterly development or longitudinal data.

3. GLM with log-linear smoothing

3.1. A general parametrization

In this section we introduce a matrix representation of equation (2.12) according to

η = Xfull θfull (3.1)
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using θfull =
(

c α β γ
)T

and η =
(

η11 . . . η1t η21 . . . η2,t−1 . . . ηt1

)T
, where

α =
(

α2 . . . αt

)
, β =

(
β2 . . . βt

)
, γ =

(
γ3 . . . γt+1

)
. Recall that the number of

observations in ∇C is n = t (t + 1)/2, which is also the length of η. Moreover, Xfull is the design

matrix of the system. The index ’full ’ refers to the GLM in (2.10) and (2.12) which from now on

will be considered as full in contrast to the subsequent smoothed version.

In order to smooth the v = 3t− 2 original parameters αi, βj and γk and, hence, reparametrize the

system (3.1) we introduce a new set of parameters a =
(

a1 . . . aq

)
, b =

(
b1 . . . br

)
and

g =
(

g1 . . . gs

)
, where 0 ≤ q, r, s ≤ t − 1. Let

aA = α

bB = β

g Γ = γ , (3.2)

which corresponds to

(
a1 . . . aq

)



A12 . . . A1t

...
...

...
Aq2 . . . Aqt


 =

(
α2 . . . αt

)
(3.3)

(
b1 . . . br

)



B12 . . . B1t

...
...

...
Br2 . . . Brt


 =

(
β2 . . . βt

)
(3.4)

(
g1 . . . gs

)



Γ13 . . . Γ1,t+1

...
...

...
Γs3 . . . Γs,t+1


 =

(
γ3 . . . γt+1

)
. (3.5)

Moreover, let θ =
(

c a b g
)T

, containing w = 1+q+r+s parameters. We can now express

θfull as

θfull = D θ =




1 0 0 0
0 A 0 0
0 0 B 0
0 0 0 Γ




T

θ (3.6)

using the blocks A, B and Γ in (3.2) - (3.5). The matrix D is of dimension v × w.

Finally (3.1) can be rewritten using the new parameters

η = Xfull θfull = Xfull D θ = X θ , (3.7)



3 GLM WITH LOG-LINEAR SMOOTHING 10

where X is the new design matrix.

Example 1: The full GLM. If q = r = s = t − 1 and A = B = Γ = I, where I is the

identity matrix, we get the full GLM. However, if we choose other values of q, r, s and A, B, Γ,

respectively, we will still keep a GLM structure.

Example 2: A Hoerl curve. A special case of the Hoerl curve in (2.8), where βi = β and

γi = γ, can be expressed according to (3.7) using β =
(

β γ
)
, Γ = 0,

θ =
(

c α2 . . . αt β γ
)T

and

D =




1 0 . . . 0 0 0
0 1 . . . 0 0 0
0 0 . . . 1 0 0
0 0 . . . 0 ln(1) 1
...

...
...

...
...

...
0 0 . . . 0 ln(t) t




.

Hence, q = t − 1, r = 2 and s = 0. Note that there is an overlap in the naming of parameters in

(2.8) and (3.1).

3.2. The log-linear smoothing model

In this section, we consider the GLM which is studied in the remainder of this paper. For smoothing

purposes, curves such as the following are of interest:

αi = ai−1 ; 2 ≤ i ≤ q

αi = aq−1 + aq (i − q) ; q + 1 ≤ i ≤ t

βj = bj−1 ; 2 ≤ j ≤ r (3.8)

βj = br−1 + br (j − r) ; r + 1 ≤ j ≤ t

γk = gk−1 ; 2 ≤ k ≤ s

γk = gs−1 + gs (k − s) ; s + 1 ≤ k ≤ t ,

where 1 ≤ q, r, s ≤ t−1. For definiteness, a0 = 0, b0 = 0 and g0 = 0 in the second, fourth and sixth

equations when q = 1, r = 1 and s = 1, respectively. Moreover, note that a1, . . . , aq−1, b1, . . . , br−1

and g1, . . . , gs−1 are varying intercept parameters, while aq, br and gs are slope parameters.
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The amount of smoothing can now be set by the choice of q, r and s. Note that this has some

similarities to the ad hoc procedure described in Section 2.2. For instance, model (3.8) could be

used in order to smooth the later part of the run-off pattern and perhaps extend βj beyond t for

a tail. It might not make sense to do the same for αi, however, the model could be useful in order

to forecast calendar year effects by extrapolation of γk. The key to this is the choice of q, r and

s, and we will set out an automatic way to do this, to replace the ad hoc procedure often used.

3.2.1. A special case: Smoothing of the run-off pattern

From now on we will stick to the assumption q = t − 1, s = 0 and Γ = 0 in (3.8). Thus, D will

be of size (2t − 1) × (t + r),

D =




1 0 . . . 0 0 . . . 0 0
0 1 . . . 0 0 . . . 0 0
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.
0 0 . . . 1 0 . . . 0 0
0 0 . . . 0 1 . . . 0 0
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.
0 0 . . . 0 0 . . . 1 t − r




. (3.9)

This special case is particularly interesting since it can be related to the log-linear smoothing of

chain-ladder development factors in Section 2.2.

The theoretical development factors in equation (2.2) can be rewritten as

fj =

∑t−j
i=1

∑j+1
l=1 mil∑t−j

i=1

∑j

l=1 mil

, (3.10)

where mij is defined by the underlying GLM structure in (2.10), (3.1) and (3.8). Recall that the

observed development factors

f̂j =

∑t−j
i=1

∑j+1
l=1 m̂il∑t−j

i=1

∑j

l=1 m̂il

(3.11)

equal the chain-ladder development factors in (2.3) when we let r = t − 1 (and p = 1 in (2.10)).



4 MODEL SELECTION 12

Thus,

ln (fj − 1) = ln

(∑t−j

i=1

∑j+1
l=1 ec+αi+βl

∑t−j

i=1

∑j

l=1 ec+αi+βl

− 1

)

= ln

(∑j+1
l=1 eβl

∑j
l=1 eβl

− 1

)

= βj+1 − ln

(
j∑

l=1

eβl

)
. (3.12)

For j ≥ r equation (3.12) can be written as

ln (fj − 1) = bp + bp−1 (j + 1 − q + 1) − ln

(
j∑

l=1

eβl

)
. (3.13)

Since r is supposed to be so large that the linear extrapolation captures the tail only small values

of βj will remain to the right of r. Therefore the linear parametrization of βj approximately

leads to log-linear smoothing of theoretical development factors fj , analogous to the log-linear

smoothing of true development factors accounted for in Section 2.2. A numerical comparison of

the two approaches is provided in Section 7.2.

4. Model selection

In practice, we would like to select the truncation points q, r and s of Section 3.2 from data. To

this end, we let θ̂qrs denote the estimated parameter vector for a model with fixed (q, r, s). We

can choose the model

(q̂, r̂, ŝ) = argmin(q,r,s)∈ICrit(θ̂qrs), (4.1)

that minimizes a model selection criterion Crit(θ̂qrs) among a pre-chosen set I of candidate models.

We then take θ̂(q̂,r̂,ŝ) as the final parameter estimators on which to base reserves.

An ad hoc GLM claims reserving approach would correspond to using a single model I = {(q, r, s)}.

This is often what is done in practice, but it requires prior knowledge of the truncation points q,

r and s, which is often not realistic. Indeed, there are many situations when several candidate

models should be allowed for. For instance, suppose smoothing of development years is of concern,

whereas accident years are not smoothed and inflation not included in the model, then

I = {(t − 1, 1, 0), . . . , (t − 1, t− 1, 0)} (4.2)
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is of interest. If we also allow the possibility of the last accident year parameter being linearly

interpolated from the previous two, we put

I = {(t − 2, 1, 0), . . . , (t − 2, t − 1, 0), (t − 1, 1, 0). . . . , (t − 1, t − 1, 0)} . (4.3)

A linear inflation trend can be incorporated into either of (4.2) and (4.3) by simply replacing s = 0

with s = 1 everywhere, and so on.

Note that low values of r, where the most extreme choice would be r = 1, are not of any actual in-

terest in (4.2) and (4.3), however, we still choose to include them for completeness and illustration,

see Section 7.2.

In connection with (4.2), the classical exponential smoothing looks at the chain ladder estimated

development factors and then chooses I to contain one single model (t − 1, r, 0), where r is the

visually determined break point for a linear trend on the log scale.

Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion (BIC) could be used

as model selection criteria when working with likelihood functions. The definitions are

Crit = AIC(θ̂qrs) = 2w − 2l(θ̂qrs) (4.4)

and

Crit = BIC(θ̂qrs) = ln(n)w − 2l(θ̂qrs), (4.5)

see e.g. Miller (2002). Here w = 1 + q + r + s is the number of parameters and l(θ̂qrs) is the

maximized log-likelihood function with respect to model (q, r, s). It can be seen that AIC and

BIC differ in that they penalize the fitted log-likelihood of large models in different ways.

Bootstrapping could also be used to estimate the mean squared error of prediction MSEP(R̂) =

E
(
(R − R̂)2

)
, where the expected value is with respect to R and R̂. Estimating MSEP by

bootstrapping, we get a model selection criterion

Crit = ̂MSEP (θ̂qrs) = E
(
(R∗∗ − R̂∗)2

)
, (4.6)

where R∗∗ and R̂∗ are resampled reserves and resampled estimated reserves, respectively. The

resampled data are created by a parametric bootstrap from model (q, r, s). This corresponds to
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the criterion BOOT in Pan and Le (2001). Note that ̂MSEP measures the deviation between

the future claims and the predicted ones under a certain model, while AIC and BIC measure the

deviation between the observations and their expected values.

Another possibility, pursued by Pan (2001), is to define an analogue of AIC, where the likelihood

is replaced by the quasi-likelihood function Q(θ) of Wedderburn (1974). Pan (2001) suggested a

quasi-likelihood information criterion

QIC(θ̂qrs) = 2 trace(Ω̂ V̂ ) − 2 Q(θ̂qrs), (4.7)

where Ω̂ = − ∂2

∂θ2 Q(θ)|
θ=θ̂qrs

and V̂ is an estimator of V = Cov(θ̂qrs), see Liang & Zeger (1986)

for an example. Note that QIC reduces to AIC when the quasi and true likelihoods coincide, since

then Ω̂ = V̂
−1

.

England & Verrall (2001) discuss the use of the deviance for model comparison in their GAM

framework. They remark that it is not obvious how many degrees of freedom should be used since

the GAM smoothers are non-parametric. Here, on the other hand, the deviance is inappropriate

since it does not penalize large models and, hence, it will by definition be lower for larger models.

Note that the outcome of the model selection is sensitive to the chosen criterion. For instance,

AIC usually tends to select large models. Moreover, the suggested criteria do not help us choose

among the underlying distributional assumptions. In Section 7 we will illustrate model selection

numerically using AIC, BIC and ̂MSEP as criteria for the special case in Section 3.2.1.

5. Estimating the model parameters

Here the estimation procedure for the special case in Section 3.2.1 is described, which could be

extended to consider the general model in Section 3.2.

5.1. Estimation of φ for model selection

Care must be taken regarding the choice of estimator φ̂, since it will strongly affect the outcome of

the model selection. The error terms Cij −mij of a smaller model with some degree of smoothing,
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i.e. (t− 1, r, 0) where r < t− 1, can be expressed as a sum of two terms; the random errors of the

full model (t − 1, t − 1, 0) and a second term mfull
ij − mij , which accounts for systematic effects

not captured by the smaller model. Hence, estimating φ for each model (t− 1, r, 0) yields a higher

value compared to estimating φ based on the full model (t − 1, t − 1, 0).

For model selection using AIC and BIC in (4.4) and (4.5) we are interested in comparing the

random errors of the models. Therefore the estimator of φ should be based on the full model,

see e.g. Pan (2001). However, if we use bootstrapping, as in (4.6), the systematic effects of

model (t − 1, r, 0) should be included, otherwise smaller models will benefit since MSEP would

be underestimated.

Hence, in order to estimate φ for AIC and BIC we use the Pearson residuals

rfull
ij =

Cij − m̂full
ij√(

m̂full
ij

)p
(5.1)

and for ̂MSEP we use

rij =
Cij − m̂ij√

m̂p
ij

, (5.2)

where m̂ij is the estimator of mij for the particular model under analysis. This yields

φ̂full =
1

n − 2t + 1

∑

∇
(rfull

ij )2 , (5.3)

and, since w = 1 + q + r + s = 2t− 1 is the number of estimated parameters (excluding φ̂) in the

full model (t − 1, t − 1, 0),

φ̂ =
1

n − w

∑

∇
(rij)

2 . (5.4)

Here, the index ’full ’ is only used for clarity.

5.2. The reserving algorithm

We can now implement a log-linear smoothing procedure for the reserving exercise according to

the following scheme.

1. Define the design matrix Xfull of the full model in (3.1) when the GLM in (2.10) and (2.7)

is assumed.



6 BOOTSTRAP AND QUANTILE PREDICTION 16

2. Define a family I of models, based on truncation points (t − 1, r, 0), that we would like to

select a model from.

FOR all (t − 1, r, 0) ∈ I DO:

3. Create A and B, and hence, the block matrix D.

4. Calculate X = Xfull D.

5. Set up the new GLM η = X θ. Then use some standard software to compute an estimate

θ̂t−1,r,0 of θ = θt−1,r,0 by maximizing e.g. the likelihood or quasi likelihood.

6. Evaluate the chosen model selection criterion Crit(θ̂t−1,r,0) for model (t−1, r, 0) using either

(5.3) for AIC, BIC and QIC in (4.4), (4.5) and (4.7) or (5.4) for ̂MSEP in (4.6).

END.

7. Select model (t − 1, r̂, 0) as in (4.1).

8. Obtain estimators Ê(Cij) = m̂ij and V̂ ar(Cij) = φ̂ m̂p
ij from (2.10) and (2.7), with c, αi and

βj replaced by estimates, computed from the first four equations of (3.8) and θ̂t−1,r̂,0. Here

φ̂ is obtained from (5.4)

6. Bootstrap and quantile prediction

It is now straightforward to implement a bootstrap procedure for either the model θ̂t−1,r̂,0 selected

by the reserving algorithm in Section 5.2 or for the full model θ̂t−1,t−1,0 corresponding to the GLM

in (2.10) and (2.7). Including the model selection part in the bootstrap procedure implies that

each resampled pseudo-triangle is being individually analyzed in the bootstrap world in a similar

way as it had been by the actuary if it was an observed triangle in the real world. Hence, if there

are outliers in the data set the prediction error could decrease compared to the situation when

we less accurately apply the same reserving algorithm to all pseudo-triangles. It is difficult to

implement such a procedure for the deterministic approach in Section 2.2 since the truncation

points for the smoothing of the development factors usually is based on an ad hoc decision instead

of a systematic one.

We will use the bootstrap technique provided in Björkwall et al. (2009) for the implementation.

However, since it is beyond the scope of this paper to compare bootstrap algorithms we will focus

only on the parametric approach due to its robustness even for small data sets.
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Hence, in addition to the assumptions in (2.10) and (2.7) we assume a full distribution F for Cij ,

parameterized by the mean and variance, so that we may write F = F (mij , φmp
ij). Typically we

assume that F is either an ODP or a gamma distribution corresponding to p = 1 and p = 2,

respectively. We draw C∗
ij from F (m̂ij , φ̂m̂p

ij), where m̂ij is calculated according to the model

(t − 1, r̂, 0) selected as in (4.1), for all i, j ∈ ∇ and φ̂ is obtained from (5.4). This produces the

pseudo-triangles ∇C∗. Steps 1-8 in Section 5.2 are then repeated for each ∇C∗ and the bootstrap

estimates R̂∗
i =

∑
j∈∆i

m̂∗
ij and R̂∗ =

∑
∆ m̂∗

ij are finally calculated for each pseudo-triangle.

In order to get R∗∗
i =

∑
j∈∆i

C∗∗
ij and R∗∗ =

∑
∆ C∗∗

ij , corresponding to the process error, we

sample once again from F (m̂ij , φ̂m̂p
ij) to get C∗∗

ij for all i, j ∈ ∆ . Finally, the B observations of

the standardized or unstandardized prediction errors given in Björkwall et al. (2009) are plotted

to yield the predictive distribution.

If we let I = {(t−1, t−1, 0)} in step 2 in Section 5.2 and then implement the resampling described

above, we get a bootstrap algorithm for the full model θ̂t−1,t−1,0. Hence, assuming p = 1 in (2.10)

and an ODP distribution for F yields a bootstrap algorithm for the chain-ladder method.

7. Numerical study

The purpose of this numerical study is to illustrate the smoothing effect of the GLM parametriza-

tion in Section 3.2.1; the special case corresponding to smoothing of the run-off pattern. Moreover,

we will show how the model selection can be carried out and how the predictive distribution can

be simulated by the suggested bootstrap approach.

In the subsequent sections, we work under the assumption of ODP (p = 1) and gamma (p = 2)

distributions. We use the unstandardized prediction errors for the bootstrap procedure since they

are always defined, see Björkwall et al. (2009).

7.1. Data

We analyze the data set from Taylor & Ashe (1983), even though the chain-ladder development

factors of this particular triangle are already quite smooth, since it is useful to compare with
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previous studies. The triangle of paid claims ∇C is presented in Table 7.1.

1 2 3 4 5 6 7 8 9 10
1 357 848 766 940 610 542 482 940 527 326 574 398 146 342 139 950 227 229 67 948
2 352 118 884 021 933 894 1 183 289 445 745 320 996 527 804 266 172 425 046
3 290 507 1 001 799 926 219 1 016 654 750 816 146 923 495 992 280 405
4 310 608 1 108 250 776 189 1 562 400 272 482 352 053 206 286
5 443 160 693 190 991 983 769 488 504 851 470 639
6 396 132 937 085 847 498 805 037 705 960
7 440 832 847 631 1 131 398 1 063 269
8 359 480 1 061 648 1 443 370
9 376 686 986 608

10 344 014

Table 7.1: Observations of paid claims ∇C from Taylor & Ashe (1983).

7.2. A comparison of the smoothing effects

In order to illustrate the smoothing effect of the model Figures 1 and 2 show the ln(f̂j − 1)

curves under the assumption of an ODP and a gamma distribution, respectively. Here f̂j are the

estimated development factors before and after the smoothing. A sequence of deterministically

smoothed chain-ladder development factors has also been included in the figures for comparison.

It is difficult to compare the reparameterized GLM with the deterministic approach since there are

no rules of how to smooth the latter. As mentioned previously, the deterministic approach could

be varied in many different ways based on ad hoc decisions made by the actuary. However, in order

to construct a consistent and repeatable algorithm we have first applied a log-linear regression on

the two last chain-ladder development factors (this does of course not change the estimates, since

all we do is to draw the same line as before between the two factors). This would correspond to

r = 9. Secondly, we have applied a log-linear regression on the three last chain-ladder development

factors and created a new smoothed sequence using the first seven original factors and the three

new ones. This would correspond to r = 8. In this way we have proceeded through the sequences

until we included all the original factors in the log-linear regression and then created a smoothed

sequence which completely consists of new smoothed factors. This would correspond to r = 2.

Finally, we have fitted a straight line through origin, which would correspond to only one model

parameter and, hence, r = 1.

Note that the model r = 1 is of hardly any actual interest for reserving purposes, but we still

choose to include it here for completeness and illustration. In practice the first original factors are

often kept, while only the tail is smoothed and, hence, low values of r should be excluded from I
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Figure 1: The ln(f̂j −1) curves for the full GLM (−−−), the smoothed GLM (—) and the smoothed chain-ladder (·−·) under the assumption of an ODP (p = 1) distribution.
On the x-axis we have j.
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Figure 2: The ln(f̂j − 1) curves for the full GLM (− − −), the smoothed GLM (—) and the smoothed chain-ladder (· − ·) under the assumption of a gamma distribution
(p = 2). On the x-axis we have j.
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in a real application.

Recall that the factors for r = 9 under the assumption of an ODP in Figure 1 equal the pure

chain-ladder development factors, while the corresponding estimates under the assumption of a

gamma distribution in Figure 2 slightly differ. As can be seen, the reparameterized GLM yields a

smoother curve than the deterministic approach when it is used in the tail of the factor sequence.

Also note that the smoothed part of the curves is almost a straight line for large values of r, just

as would be expected according to equation (3.13). For lower values of r the curves are convex in

comparison with the straight line obtained by the deterministic approach. The difference between

the assumptions of an ODP and a gamma distribution is the slope of the curve, which tends to

be lower for the latter one. However, for r = 4 the two curves coincide quite well. Note that the

reparameterized GLM yields a heavier tail than the deterministic approach. If the curve would be

extrapolated for a tail this might lead to an unrealictically large reserve according to the actuary’s

judgement.

A decision by eye would probably result in the use of one of the models r = 5, 6 for the ODP

distribution and r = 5, 6, or maybe r = 7, 8, for the gamma distribution. However, Figures 1 and

2 do not reveal how to choose between the two distributional assumptions. For the deterministic

approach we would choose the amount of smoothing corresponding to r = 5, 6. However, this

approach does not yield maximum likelihood reserve estimates and we will instead focus on the

difference between the ODP and gamma assumptions for the reparameterized GLM.

7.3. The model selection

AIC and BIC cannot be used as model selection criteria in (4.1) for the assumption of an ODP

distribution since we do not have a likelihood function due to the over-dispersion. However, the

square roots of ̂MSEP in (4.6) are presented in Table 7.2. Recall that φ̂ in (5.4) is used for the

resampling in the bootstrap procedure. We also present the deviance computed in the statistical

software used for the modeling (MATLAB); here it is defined as the sum of the squared deviance

residuals. As remarked in Section 4 the deviance does not penalize large models and, hence, it

will by definition be lower for larger models.
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AIC and BIC can be used for the assumption of a full gamma distribution with expected value

mij and variance φm2
ij , i.e. Cij ∼ Γ

(
1
φ
, φmij

)
. Summing over the n observations in ∇C, which

are assumed to be independent, yields

l(θ̂, φ̂full) =
1

φ̂full

∑

∇

(
− Cij

m̂ij

− log(m̂ij)

)
+
∑

∇

(
1

φ̂full
log

(
Cij

φ̂full

)
− log(Cij) − log Γ

(
1

φ̂full

))
.

The values of AIC and BIC are presented in Table 7.3 together with the square root of ̂MSEP

and the deviance.

As can be seen, ̂MSEP selects model r = 5 or r = 9 for the assumption of an ODP distribution.

For the gamma assumption AIC and ̂MSEP select model r = 9 or r = 5, while BIC selects model

r = 3 or r = 2. Hence, for the triangle under analysis AIC and ̂MSEP seem to be better selection

criteria than BIC, since model r = 5 was one of the models chosen by eye in Section 7.2 too.

The number of parameters w has large impact on the value of AIC in (4.4), since the log-likelihood

is quite constant for 5 ≤ r ≤ 8 for the triangle under analysis. This explains why AIC selects

model r = 9 or r = 5.

7.4. Reserve estimates and quantiles

The reserve estimates and bootstrap statistics under the assumption of an ODP and a gamma

distribution, respectively, are shown in detail in A. In Figure 3 we present the results graphically

in order to get an overview for different choices of r. Here B = 10 000 iterations were used in the

bootstrap procedure.

As can be seen from (a), smoothing affects the reserve estimates in different ways for the assump-

r 9 8 7 6 5 4 3 2 1√
̂MSEP (103) 3 039 3 222 3 247 3 114 3 000 3 051 3 234 3 659 4 921

Deviance (103) 1 903.0 2 073.0 2 077.5 2 079.2 2 108.1 2 402.0 2 607.2 3 161.3 7 807.9

Table 7.2: The square root of ̂MSEP in (4.6) and the deviance when an ODP distribution is assumed.

r 9 8 7 6 5 4 3 2 1
AIC 1 502.3 1 508.9 1 506.9 1 505.0 1 503.1 1 505.1 1 504.6 1 508.6 1 578.3
BIC 1 540.5 1 545.1 1 541.1 1 537.1 1 533.2 1 533.2 1 530.7 1 532.6 1 600.4√

̂MSEP (103) 2 736 3 047 3 012 2 944 2 915 2 974 3 024 3 160 3 733
Deviance (103) 4 023.5 4 931.9 4 932.0 4 934.3 4 951.3 5 372.0 5 526.8 6 155.5 13 717.8

Table 7.3: The values of AIC, BIC, the square root of ̂MSEP in (4.6) and the deviance when a gamma distribution
is assumed.
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Figure 3: Reserve estimates and bootstrap statistics for the assumption of an ODP and a gamma distribution, respectively. Here we use (− − −) for the ODP distribution
and (—) for the gamma distribution. On the x-axis we have r.
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tion of an ODP and a gamma distribution. For r = 4 the reserve estimates coincide, as was

already concluded in Section 7.2. The means of the bootstrap samples in (b) follow the reserve

estimates, with the latter ones being slightly larger since the difference in (c) is negative (but ran-

dom). Therefore,
√

MSEP in (e) is slightly larger than the standard deviation of the bootstrap

samples in (d). The 95 percentiles in (f) mainly follow the shape of the reserve estimates, since

the standard deviations are relatively constant (except for the lowest values of r).

In general, the first development factors of a sequence should be kept unsmoothed since they

are supposed to provide significant information regarding the data set. Hence, it is only relevant

to smooth the tail of the development factor sequence. However, Figure 3 shows that, for the

particular triangle under analysis, smoothing of the tail only has a minor effect on the results,

while the distributional assumption seems more important. To illustrate this, we investigate the

reserve estimate and the risk corresponding to the 95th percentile. Suppose that we start with the

chain-ladder method, i.e. r = 9 and the assumption of an ODP distribution, and, moreover, that

we decide to smooth the development factors using model r = 5 in order to eliminate the shakiness

appearing in Figure 1. According to Tables A.1 and A.3 in the appendix we would then see a 1.5%

increase in the reserve estimate and a 0.8% increase in the 95th percentile. If we instead would

stick to r = 9, but assume a gamma distribution, we would see a 3.3% decrease in the reserve

estimate and a 4.3% decrease in the 95th percentile according to Tables A.2 and A.4.

7.5. Implementing model selection in the bootstrap procedure

In this section, model selection is included in the bootstrap procedure, as described in Section 6,

for the assumption of a gamma distribution. The results are presented in Table 7.4. Recall that

φ̂full is always used for the calculation of AIC and BIC, but for the resampling of pseudo-triangles

in the bootstrap procedure φ̂ is used. Also recall that the first choice of model for AIC and BIC

was r = 9 and r = 3, respectively, see Table 7.3. It is not possible to distinguish these results

Estimated Bootstrap Boot. mean Bootstrap
√

MSEP 95
reserve mean − Est. res. stand. dev. percentile

AIC 18 085 773 17 911 099 -174 674 2 735 238 2 740 673 22 082 887
BIC 18 071 392 17 969 537 -101 855 3 031 674 3 033 233 22 602 603

Table 7.4: Bootstrap results when the model selection has been implemented in the bootstrap procedure.
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from the ones for r = 9 and r = 3, respectively, in Table A.4. Table 7.5 shows the frequency of

the selection of each model in the 10 000 iterations of the bootstrap, where it can be seen that

AIC strongly prefers high values of r, while BIC does the opposite.

8. Discussion

In this paper, a model has been described which allows for smoothing of origin, development and

calendar year parameters. This smoothing model for the run-off pattern has some similarities

to the somewhat ad hoc log-linear smoothing of chain-ladder development factors which is often

used in practice. The suggested model is much simpler, but less flexible, than the GAM frame-

work presented in England & Verrall (2001) and the GLMM approach provided by Antonio &

Beirlant (2008). It can be used as a stochastic foundation for a claims reserving exercise includ-

ing smoothing, model selection and bootstrapping for either prediction errors or a full predictive

distribution.

While it is difficult to make any final conclusions from the single data set which has been analyzed

in this paper, it is interesting to note that the distributional assumption of the model had a

larger impact on the results than the smoothing effect. Hence, it seems important to first find an

appropriate model, which then possibly could be adjusted by smoothing of the model parameters.

The main weakness of a GLM with a log-link is that the model cannot be used for data sets

including negative increments when a full distribution is assumed. A future development would

be to use pure quasi-likelihood and the resulting estimating equations. In that case resampling of

residuals would be required for the bootstrap procedure.

r 9 8 7 6 5 4 3 2 1
AIC 7 010 24 85 166 1 240 454 801 220 0
BIC 9 10 32 47 117 368 5 394 4 023 0

Table 7.5: The frequency of chosen models in a bootstrap simulation where B = 10 000.
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Department of Mathematics,

Division of Mathematical Statistics

SE-106 91 Stockholm University

E-mail: susanna@math.su.se



A APPENDIX 29

A. Appendix

Year r = 9 r = 8 r = 7 r = 6 r = 5 r = 4 r = 3 r = 2 r = 1
2 94 634 240,187 221 536 230 156 202 906 142 453 178 698 234 891 397 438
3 469 511 490 001 468 650 481 624 435 577 322 911 394 173 505 214 826 224
4 709 638 769 423 767 511 778 890 725 379 571 929 677 310 844 415 1 330 160
5 984 889 1 039 712 1 029 537 1 029 175 992 396 840 830 961 998 1 162 612 1 755 176
6 1 419 459 1 477 137 1 466 432 1 473 134 1 483 356 1 373 765 1 508 001 1 756 918 2 521 484
7 2 177 641 2 241 521 2 229 665 2 237 087 2 208 130 2 310 842 2 399 913 2 667 064 3 585 818
8 3 920 301 3 996 865 3 982 655 3 991 552 3 956 845 3 864 518 3 655 170 3 776 692 4 609 461
9 4 278 972 4 342 643 4 330 826 4 338 225 4 309 362 4 232 583 4 278 865 3 735 382 3 778 936

10 4 625 811 4 681 894 4 671 485 4 678 001 4 652 579 4 584 950 4 625 716 4 690 754 2 155 908
Total 18 680 856 19 279 383 19 168 297 19 237 844 18 966 529 18 244 781 18 679 843 19 373 942 20 960 607

Table A.1: The estimated reserves under the assumption of an ODP distribution.

Year r = 9 r = 8 r = 7 r = 6 r = 5 r = 4 r = 3 r = 2 r = 1
2 93 316 202 152 203 511 207 892 199 638 172 114 184 757 211 549 309 558
3 446 505 408 480 409 958 416 799 404 635 351 964 376 550 429 348 639 118
4 611 145 629 353 629 086 632 612 618 547 574 367 611 511 688 582 1 018 712
5 992 023 1 008 479 1 008 970 1 003 960 996 081 934 022 967 584 1 073 045 1 415 607
6 1 453 085 1 470 922 1 471 480 1 473 661 1 497 337 1 481 516 1 511 006 1 616 061 2 080 145
7 2 186 161 2 209 807 2 210 383 2 212 695 2 206 567 2 416 362 2 386 357 2 497 200 3 015 061
8 3 665 066 3 687 154 3 687 803 3 689 857 3 684 059 3 651 627 3 402 313 3 351 061 3 906 657
9 4 122 398 4 139 309 4 139 832 4 141 344 4 136 502 4 107 371 4 118 985 3 557 488 3 149 813

10 4 516 073 4 532 001 4 532 447 4 532 966 4 528 998 4 502 114 4 512 328 4 524 778 1 755 546
Total 18 085 773 18 287 657 18 293 470 18 311 784 18 272 364 18 191 456 18 071 392 17 949 111 17 290 218

Table A.2: The estimated reserves under the assumption of a gamma distribution.

Estimated Bootstrap Boot. mean Bootstrap
√

MSEP 95
r reserve mean − Est. res. stand. dev. percentile
9 18 680 856 18 502 852 -178 004 3 034 174 3 039 240 23 187 718
8 19 279 383 19 055 285 -224 098 3 214 046 3 221 689 24 027 278
7 19 168 297 18 889 878 -278 419 3 235 449 3 247 245 23 830 275
6 19 237 844 19 058 883 -178 961 3 108 771 3 113 762 23 825 274
5 18 966 529 18 749 895 -216 634 2 992 653 3 000 334 23 365 377
4 18 244 781 18 089 415 -155 366 3 047 533 3 051 339 22 742 333
3 18 679 843 18 457 164 -222 679 3 226 904 3 234 417 23 442 951
2 19 373 942 19 159 588 -214 354 3 652 746 3 658 848 24 738 289
1 20 960 607 20 727 316 -233 291 4 915 800 4 921 087 28 065 538

Table A.3: Bootstrap results for the total under the assumption of an ODP distribution.

Estimated Bootstrap Boot. mean Bootstrap
√

MSEP 95
r reserve mean − Est. res. stand. dev. percentile
9 18 085 773 17 943 796 -141 977 2 732 628 2 736 177 22 233 262
8 18 287 657 18 099 941 -187 716 3 041 109 3 046 746 22 767 497
7 18 293 470 18 109 290 -184 180 3 006 144 3 011 631 22 706 271
6 18 311 784 18 122 332 -189 452 2 938 433 2 944 387 22 707 132
5 18 272 364 18 073 957 -198 407 2 908 233 2 914 848 22 545 380
4 18 191 456 18 049 088 -142 368 2 970 365 2 973 626 22 612 284
3 18 071 392 17 885 372 -186 020 3 018 708 3 024 283 22 558 091
2 17 949 111 17 791 615 -157 496 3 156 046 3 159 815 22 611 167
1 17 290 218 17 086 896 -203 322 3 727 575 3 732 930 22 702 370

Table A.4: Bootstrap results for the total under the assumption of a gamma distribution.


