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Abstract
The problem of modelling the joint distribution of survival  times in a competing risks model, using copula
functions is considered. In order to evaluate this joint distribution and the related overall survival function, a
system of  non-linear  differential  equations  is  solved,  which  relates  the  crude  and  net  survival  functions  of
the  modelled  competing  risks,  through  the  copula.  A  similar  approach  to  modelling  dependent  multiple
decrements  was  applied  by  Carriere  (1994)  who  used  a  Gaussian  copula  applied  to  an  incomplete  double
decrement model which makes it difficult to calculate any actuarial functions and draw relevant conclusions.
Here,  we extend this methodology by studying the effect  of  complete and partial elimination of up to four
competing  risks  on  the  overall  survival  function,  the  life  expectancy  and  life  annuity  values.  We  further
investigate  how  different  choices  of  the  copula  function  affect  the  resulting  joint  distribution  of  survival
times and in particular the actuarial functions which are of importance in pricing life insurance and annuity
products. For illustrative purposes, we have used a real data set and used extrapolation to prepare a complete
multiple decrement model up to age 120.  Extensive numerical results  illustrate the sensitivity of the model
with respect to the choice of copula and its parameter(s).  
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1. Introduction
The  competing  risks  model  with  independent  failure  time  random  variables  has  been  considered  by  a
number of authors in the (bio)statistical, econometric, medical, demographic and actuarial literature and the
list of references, scattered throughout these areas, is extensive. We will mention here the textbooks due to
David and Moeschberger (1978), Elandt-Johnson and Johnson (1980) and Bowers et al. (1997) and also the
recent papers by Salinas-Torres et al. (2002) and Bryant and Dignam (2004), and also by Zheng and Klein
(1994, 1995) where statistical methods for estimating related survival functions are considered. 

The competing risk model, alternatively referred to as multiple decrement model, has also been considered
under the assumption of dependence between the failure times in the early work of Elandt-Johnson (1976).
Later, Yashin, Manton and Stallard (1986) considered conditional independence of the times to death, given
an  assumed stochastic  covariate  process.  More  recently,  Carriere  (1994)  and  Escarela  and  Carriere  (2003)
modelled  dependence  between  two failure  times by  a  two dimensional  copula.  Carriere  (1994)  has  used  a
bivariate  Gaussian  copula  to  model  the  effect  of  complete  elimination of  one  of  two competing  causes  of
death  on  human  mortality.  However,  the  mortality  data  used  by  Carriere  (1994)  was  not  complete  with
respect to older ages and therefore, it was not possible to calculate such important survival characteristics as
expected  lifetimes  and  life  annuities  and  draw  relevant  conclusions.  In  Escarela  and  Carriere  (2003),  the
bivariate  Frank  copula  was  fitted  to  a  prostate  cancer  data  set.  The  issues  of  identifiability  of  marginal
survival functions in a copula based competing risk model have been considered by Tsiatis (1975), Prentice
et al. (1978), Heckman and Honore (1989) and later by Carriere (1994).

In this  paper,  we will  consider  further  the copula-based  competing risk model, studied by Carriere (1994).
We will investigate its sensitivity with respect to alternative choices of bivariate copula and its parameter(s).
For  this  purpose,  we  have  closed the survival  model by applying a method of  spline extrapolation  up to a
limiting  age  120  and  have  explored  the  Gaussian  copula,  the  Student  t -copula,  the  Frank  copula  and  the
Plackett copula as alternatives. As discussed in Section 3, these copulas allow for modelling the dependence
between failure times within the entire age range, from perfectly negative, to perfectly positive dependence.
They  belong  to  different  families  with  different  properties,  and  hence  are  appropriate  for  studying  the
sensitivity of  the model.  We develop this  methodology,  so as  to model the effect  of  both  partial  and com-
plete  elimination  of  a  cause  of  death  on  human  mortality.  The  construction  of  multiple  decrement  tables,
derived from the multivariate competing risk model is also addressed.

Since  most  real  life  applications  are  truly  multivariate,  i.e.,  there  are  more  than  two  mutually  dependent
competing causes of decrement, our further  goal here will be to extend and explore the applicability of the
model to the multi dimensional case. This is in general a difficult task, since the bivariate copula theory does
not extend to the multivariate case in a direct way. Although some fundamental results (e.g. Sklar's theorem)
hold, constructing multivariate copula is related to some open problems, e.g., there is no unique multivariate
dependence  measure  which  extends  the  (bivariate)  definitions  of  Kendall's  t  and  Spirman's  rS  and  the
computational  complexity  increases.  This  makes  multivariate  copula  applications  less  appealing.  Here  we
have  explored  the  applicability  of  the  four  dimensional  Gaussian,  t -  and  Frank  copula  to  model  the  joint
distribution  of  four  competing risks,  heart  diseases,  cancer,  respiratory  diseases and  other  causes of  death,
grouped together. The effect of simultaneously removing one, two or three of them on the overall survival,
on  the  life  expectancy  at  birth  and  at  age  65,  and  on  the  value  of  a  life  annuity,  which  are  important  in
pricing life insurance products, is also studied.

In  the  next  section,  we  introduce  the  dependent  multiple  decrement  model  and  the  related  crude,  net  and
overall  survival  functions.  Section  3  is  devoted  to  copulas  and  their  properties,  and  provides  background
material on the Gaussian, the Student t -,  the Frank and the Plackett copula,  which we have used to imple-
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ment  the  proposed  methodology.  In  Section  4,  we  address  the  problem of  selecting  an  appropriate  copula
function and estimating its parameter(s). Then, in Section 5, we describe how, given some estimates of the
crude survival functions and an appropriately selected copula, one can evaluate the net survival functions for
the corresponding competing risks, by solving a system of nonlinear differential equations. In Section 6, we
show how,  by  introducing  an  appropriate  function,  one  can modify the  net  survival  functions,  obtained  as
solutions of the system of differential equations, so as to model not only complete but also partial elimina-
tion of any of the causes of death in the model. Finally, in Section 7 the proposed methodology is applied to
the  general  US  population,  using  cause  specific  mortality  data  set,  provided  by  the  National  Center  for
Health  Statistics(NCSH) (1999).  Extensive  numerical  results  and graphs  illustrate the effect  on survival  of
complete (partial) elimination of cancer, as a cause of death, in a two dimensional decrement model, and the
elimination  of  any  combination  of  heart  diseases,  cancer  and  respiratory  diseases  in  a  four  variate  model.
Details  of  how  the  raw  mortality  data  was  used  to  obtain  the  crude  survival  functions  and  the  method  of
smoothing and extrapolating the latter up to age 120 are provided in the Appendix.

2. The dependent multiple decrement model 
We consider a group of lives, exposed to m  competing causes of death, i.e., to m  causes of withdrawal from
the  group.  It  is  assumed  that  each  individual  may  die  from  any  single  one  of  the m  causes.  To  make  the
problem more formally (mathematically) tractable it is assumed that,  at birth,  each individual is assigned a
vector  of  times T1, ..., Tm ,  0 § T j < ¶,  j = 1, ..., m,  representing  his/her  potential  lifetime, if  he/she were
to  die  from  each  one  of  the  m  causes.  Obviously,  the  actual  lifetime  span  is  the  minimum  of  all  the
T1, ..., Tm . Thus, it is clear that under this model the lifetimes T1, ..., Tm  are unobservable, and we can only
observe the minHT1, ..., TmL . In the classical multiple decrement theory the random variables T1, ..., Tm  are
assumed independent, whereas here we will be interested in their joint distribution

(1)FHt1, ..., tmL = PrHT1 § t1, ..., Tm § tmL
and more precisely in the multivariate, joint survival function

(2)SHt1, ..., tmL = PrHT1 > t1, ..., Tm > tmL
 which is considered absolutely continuous and where t j ¥ 0, for j = 1, ..., m .

As pointed out by a number of authors (see e.g. Hooker and Longley-Cook (1957), Carriere (1994), Valdez
(2001)),  decrements  in  many  real  life  actuarial  applications  tend  to  be  dependent  and  hence,  the  random
variables T1, ..., Tm  will be considered stochastically dependent and also non-defective, i.e., PrHT j < ¶L = 1.

The  overall  survival  of  an  individual,  under  our  model  assumptions,  is  defined  by  the  random  variable
minHT1, T2, ..., TmL ,  and  so  we  will  be  interested  in  the  overall  survival  function,  which  we  define  as
HtL ª SHt, ..., tL = PrHT1 > t, ..., Tm > tL = PrHminHT1, ..., TmL > tL ,  where  t ¥ 0.  In  particular,  we  are
interested in the effect of elimination of a cause of death, say indexed j , on the overall survival function. We
follow  the  approach  to  this  elimination  problem,  taken  by  Elandt-Johnson  (1976)  and  also  by  Carriere
(1994), and assume that the removal of the j - th cause is equivalent to considering the marginal distribution

FHt1, ..., t j-1, t j+1, ..., tmL = PrHT1 § t1, ..., T j-1 § t j-1, T j+1 § t j+1, ..., Tm § tmL .

The overall survival function then becomes

(3) PrHT1 > t, ..., T j-1 > t, T j+1 > t, ..., Tm > tL = PrHminHT1, ..., T j-1, T j+1, ..., TmL > tL ,

i.e.,  we  are  considering  the  overall  survival  function  with  the  j-th  cause  of  death  removed,  and  we  will
simply  denote  this  by   H- jLHtL ª SHt, ..., t, 0, t, ..., tL ,  where  t = 0  appears  on  the  j-th  position.  Alterna-
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tively, as pointed out by Elandt-Johnson (1976), eliminating a cause of death, may be interpreted as consider-
ing the limiting distribution (conditional on T j ) of surviving from all other causes, given T j Ø ¶ . However,
this  approach  is  confronted  with  the  difficulty  that  this  limiting conditional  distribution  may not  exist  and
even if  it  does exist,  the evaluation of the overall  survival  function is more complicated. It  has to be men-
tioned  that  in  the  case  when  T1, ..., Tm  are  assumed  independent  the  two  approaches  are  equivalent  (see
Elandt-Johnson  1976).  Thus,  our  major  goal  in  this  investigation  will  be  to  find  a  representation  of  the
survival  function   H- jLHtL  which  will  allow us  to  estimate it  and  thereby measure the  effect  of  removing a
cause  of  death.  As  we  will  see  in  the  following  sections,  one  such  representation  is  through  the  use  of  a
suitable copula function. 

Let us now introduce the notion of the crude survival function. The crude survival function SH jLHtL  is defined
as the survival function with respect to the j-th cause of death, due to which death actually occurs, i.e.,

(4)SH jLHtL = PrHminHT1, ..., TmL > t, minHT1, ..., TmL = T jL
The  survival  function  SH jLHtL  is  called  crude,  since  it  reflects  the  observed  mortality  of  an  individual  and
hence, may be estimated, from the observed mortality data of a population, as will be illustrated in Section 3.
In the biostatistics literature the crude survival function SH jLHtL  is sometimes called the subsurvival function
or the cumulative incidence function (see e.g. Bryant and Dignam, 2004).

It is not difficult to see that 

(5)SHt, ..., tL = SH1LHtL + ....+ SHmLHtL ,

since the events minHT1, ..., TmL = T j , j = 1, ..., m  are mutually exclusive.

This obviously suggests that the distributions in (4) are degenerate and that the crude survival functions are
such that SH jLH0L < 1, j = 1, ..., m . 

Let us now define the net  survival function S ' H jLHtL  as S ' H jLHtL = PrHT j > tL . Note that S ' H jLHtL  is the marginal
survival function, due to cause j  alone, associated with the joint multivariate survival function (2). Thus, we
can  view  (1)  as  a  multivariate  distribution  with  marginal  distribution  functions  F ' H jLHtL = 1 - S ' H jLHtL ,
j = 1, ..., m .  As  we will  see,  S ' H jLHtL  are  the  target  quantities  in  our  study since,  if  we  know them we can
identify  and  calculate  the  joint  survival  function  SHt1, t2, ..., tmL  and  hence,  evaluate  the  overall  survival
function  SHt, ..., tL ,  under  some appropriate  assumptions.  The classical  model of  independence  of  the  r.v.s
T1, T2, ..., Tm  implies that

 SHt1, ..., tmL = S ' H1LHt1Lä ...äS ' HmLHtmL .

When we consider the case of stochastic dependence between the causes of death, apart from knowing the
marginals F ' H jLHtL  we  will  need  to  impose a  certain  dependence  structure,  in  order  to  characterize  the joint
distribution  of  the  r.v.s  T1, T2, ..., Tm. One  way  of  doing  so  is  to  use  copulas.  Thus,  to  obtain  the  joint
survival  function  SHt1, ..., tmL ,  one  would  need  to  select  a  suitable  copula,  which  mixes  (couples)  the  net
survival functions S ' H jLHtL ,  j = 1, 2, ..., m .  However,  in  our model, S ' H jLHtL  are not known and we can only
estimate the crude survival functions, SH jLHtL , j = 1, 2, ..., m , based on an appropriate m -dimensional, cause
specific mortality table. As an illustration of the model, in Section 7, we have used such a table constructed
from the US Decennial Life Tables for 1989-91 published by NCHS (1999). In order to obtain estimates of
the  net  survival  functions  S ' H jLHtL  on  the  basis  of  the  estimated  crude  survival  functions,  a  system  of  m
non-linear  differential  equations,  which  links  the  two  sets  of  functions,  through  the  partial  copula  deriva-
tives, is solved.

Copulas have recently attracted considerable attention as a tool for modelling dependence in a wide range of
applications  in  finance,  insurance,  and  economics.  In  Section  3,  we  introduce  the  required  background
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material on copulas and recall the Gaussian copula and the t -copula from the Elliptical class of copulas, the
Frank  copula  from  the  Archimedean  family,  and  also  the  Plackett  copula.  We  provide  also  some  general
comments on the choice of  copula,  appropriate for  our modelling purposes.  For  further  details  on copulas,
the  interested  reader  is  referred  to  Georges  et  al.  (2001),  Frees  and  Valdez  (1998),  and  Embrechts  et  al.
(2001), and the books by Nelsen (1999), Joe (1997) and Cherubini et al. (2004). 

3. Copulas and their properties
Copulas  provide  a  very  convenient  way  to  model  and  measure  dependence  between  failure  time  random
variables  since  they  give  the  dependence  structure  which  relates  the  known  marginal  distributions  of  the
failure times to their multivariate joint distribution. In order to see this, we first provide a short introduction
on copulas.

If we assume that u = Hu1, ..., umL' , u j œ @0, 1D , an m  copula CHuL  is conventionally defined as a multivariate
cumulative distribution function with uniform margins. A probabilistic way to define the copula is provided
by the theorem of Sklar (1959).  Let X1, ..., Xm  be random variables with continuous distribution functions
F1, ..., Fm ,  and  survival  functions  S1 = 1 - F1, ..., Sm = 1 - Fm  respectively,  and  joint  distribution  and
survival functions HHx1, ..., xmL  and SHx1, ..., xmL . Sklar's theorem states that if H  is an m -dimensional d.f.
of the random vector HX1, ..., XmL  with continuous marginals F1, ..., Fm , then there exist a unique m  copula
C , such that for all x  in m  

(6)HHx1, ..., xmL = CHF1Hx1L, ..., FmHxmLL  

and  conversely,  if  C  is  an  m  copula  and  F1, ..., Fm  are  d.f.s,  then  H  is  an  m-dimensional  distribution
function with marginals F1, ..., Fm . Hence, the copula of the random vector HX1, ..., XmL ~ H  is the distribu-
tion  function  of  the  random  vector  HF1HX1L, ..., FmHXmLL .  Thus,  following  (6),  one  can  construct  a  depen-
dence structure, i.e., an m-dimensional d.f. H  by appropriately choosing a set of marginals F1, ..., Fm  and a
copula  function  C .  In  order  to  construct  a  copula  function,  a  corollary  of  Sklar's  theorem can  be  applied,
according to which a copula can be represented as an m-dimensional distribution function with continuous
marginals, evaluated at the inverse functions F1

-1Hu1L, ..., Fm
-1HumL , defined as Fi@Fi

-1HxiLD = xi  , i.e.,

(7)CHu1, ..., umL = HHF1
-1Hu1L, ..., Fm

-1HumLL  .

By using the probability integral transformation, X j #  F jHX jL = 1 - S jHX jL  as a result of which S jHX jL  has a
uniform distribution on @0, 1D , it is easily verified (see Sklar, 1996) that Sklar's theorem, given by (6) can be
restated  to  express  the  multivariate  survival  function  SHx1, ..., xmL  via  an  appropriate  copula  C

êêê
 called  the

survival copula of HX1, ..., XmL . Thus, 

(8)SHx1, ..., xmL = C
êêêHS1Hx1L, ..., SmHxmLL . 

The  survival  copula,  relates  the  marginal  survival  functions  S1Hx1L, ..., SmHxmL  to  the  multivariate  joint
survival  function  SHt1, ..., tmL  in  much  the  same  way  as  the  copula  C  relates  the  marginal  distribution
functions to the multivariate distribution function. 

Let us note that the copula C  and the survival copula C
êêê

 of a random vector HX1, ..., XmL  do not in general
coincide. In order to see how the survival copula is expressed through its corresponding copula, we refer to
Nelsen (1999) and Georges et al. (2001). The survival copula, C

êêê
, in (8) can be expressed through its copula,

C , derived on the basis of specific distributions F1, ..., Fm , using (7). However, since C
êêê

 HuL  is a copula, one
can directly use any copula CHuL  to link the joint survival function in (8) to its marginals S1Hx1L, ..., SmHxmL .
This  will  be  the  approach  taken  here  in  modelling  the  joint  survival  function  of  competing  risk  survival
times.
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We conclude this description of the general background on copulas by recalling the fundamental Fréchet-Ho-
effding bounds inequality which holds with respect to every m-dimensional copula function. To capture its
importance we will first give its bivariate version, i.e.,

(9)maxHu1 + u2 - 1, 0L § CHu1, u2L § minHu1, u2L . 

where  the  maximum and  the  minimum in  (9)  are  correspondingly  the  lower  and  upper  Fréchet-Hoeffding
bounds  which  themselves  are  copulas.  Following  (9),  in  order  that  the  random  variables  X1, X2  with  a
copula  function  CHu1, u2L  be  perfectly  negatively  (positively)  dependent,  CHu1, u2L  needs  to  coincide  with
the lower (upper) Fréchet-Hoeffding bound. The r.v.s X1, X2  are independent iff their copula is equal to the
product copula, i.e., iff CHu1, u2L = u1 u2 . It can then be shown that (9) generalizes to the multivariate case as

maxHu1 + ... + um - m + 1, 0L § CHu1, ..., umL § minHu1, ..., umL . 

Many popular  families of  copulas depend on a set of parameters, not  related to the parameters of the mar-
ginal distributions. This is due to the fact that copulas are invariant under increasing transformations of their
corresponding random variables, hence are "scale-invariant". In order to model the full range of dependence,
from  perfect  negative  dependence,  through  independence,  to  perfect  positive  dependence,  the  copula
parameters should  be  set  so  that  the  copula  CHu1, u2L  attains  correspondingly,  its  lower  Fréchet-Hoeffding
bound,  coincides  with  the  product  copula,  and  attains  its  upper  Fréchet-Hoeffding  bound.  Copulas  which
allow this are called comprehensive  copulas (see Deheuvels, 1978). Since it is meaningful to investigate the
full range of dependence between survival time r.v.s, it is desirable to use comprehensive copulas in model-
ling the dependence  of  competing causes of  death.  So,  this  is  one of  the important criteria in selecting the
appropriate copula, i.e., it should be able to reproduce dependence throughout the whole range.

Sklar's theorem and its corollary, given by (7), provide a convenient tool for constructing copulas. Examples
of  such  copulas  are  the  multivariate  Gaussian  and  Student  t -  copulas  which  belong  to  the  wider  class  of
Elliptical  copulas.  However,  there  are  other  ways  of  constructing  copulas.  For  example,  the  popular
Archimedean copulas are constructed as

(10)CAHu1, u2L = f-1HfHu1L + fHu2LL . 

where  f  is  a  continuous,  convex  function  called  a  generator,  such  that  fH1L = 0  and  fH0L = +¶  (see  e.g.
Nelsen, 1999).  In what follows, we will introduce and use the Frank copula as one of the only two known
comprehensive,  bivariate  Archimedean  copulas.  In  addition,  we  will  also  use  the  Plackett  copula,  which
does not belong to the Elliptical or to the Archimedean family but is comprehensive and hence, suitable for
use  in  the  competing risk  model.  For  these and  other  properties  of  Frank and Plackett  copulas  we refer  to
Section 3.4 and also to Nelsen (1999).

3.1 Measures of association 

We  will  consider  here  the  standard  dependence  measures,  Kendall's  t  and  Spearman's  rS ,  and  the  tail
dependency as measures of association between two random variables X  and Y . These measure are related
to  the  copula  since  the  latter  is  an  expression  of  the  stochastic  relationship  between  X  and  Y  within  the
entire range of values which the variables can take. It is not difficult to show that

(11)rSHX , Y L = 12 ‡
0

1
 ‡

0

1
 CHu1, u2L „ u1 „ u2 - 3

and that the

Modeling the joint distribution of competing risks survival times using copula functions 6



(12)tHX , Y L = 4 ‡
0

1
 ‡

0

1
 CHu1, u2L „ u1 „ u2 - 1

(see  e.g.  Cherubini  et  al.,  2004),  i.e.,  knowing  the  copula  CHu1, u2L  of  a  pair  of  r.v.s  X  and  Y  one  can
evaluate these two measures of rank correlation using (11) and (12). For further properties of rS  and t  we
refer e.g., to Nelsen (2001).

Another, important measure of dependence, which can be described as a measure of concordance in the tails
of two r.v.s X  and Y , is given by the upper and lower tail dependence coefficients

lLHX , Y L = lim
pØ0

PrHY § yp » X § xpL .

lU HX , Y L = lim
pØ1

PrHY > yp » X > xpL .

where xp  and yp  denote the lower p-quantiles of X  and Y , i.e., PrHX § xpL = p  and PrHY § ypL = p .

3.2 The Gaussian copula

We  will  first  introduce  the  Gaussian  copula.  Let  the  random  variables  X1, ..., Xm  be  standard  normally
distributed,  i.e.,  Xi ~ NH0, 1L ,  i = 1, ..., m  and  let  also  the  random  vector  HX1, ..., XmL  have  a  standard
m-variate  normal  distribution  with  correlation  matrix  R = 8Rij< ,  i, j = 1, ..., m .  Clearly,  Rij  are  the  linear
correlation  coefficients  of  the  corresponding  bivariate  normal  distributions,  i.e.,
Rij = rHXi, X jL = CovHXi, X jL ë Iè!!!!!!!!!!!!!!!!VarHXiL  "################VarHX jL M = CovHXi, X jL  in this case.

For  x = Hx1, ..., xmL ' œ m ,  denote  by  fRHx1, ..., xmL  the  joint  density  function  of  the  random  vector
HX1, ..., XmL , i.e.,

fRHx1, ..., xmL = H2 pL-mê2 †R§-1ê2 exp 9 -x' R-1 xÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 =

and  denote  also  by  FRHx1, ..., xmL the  joint  distribution  function  of  HX1, ..., XmL .  Then,  following  (6)  and
(7),  the  copula  CGaHu1, ..., umL  of  the  m-variate  random  vector  HX1, ..., XmL ~ FR Hx1, ..., xmL  may  be
defined as the distribution function of the random vector H FHX1L, ..., FHXmLL , and is given by

CGaHu1, ..., umL = FRHF-1Hu1L, ..., F-1HumLL = ‡
-¶

F-1Hu1L
... ‡

-¶

F-1HumL
 fR Hx1, ..., xmL „ x1 ... „ xm .

where  F-1H.L  is  the  inverse  of  the  standard  univariate  normal  distribution  function.It  is  easy  to  see,  after
direct differentiation of (8) with respect to u1, ..., um , that the density function of the Gaussian copula is 

cGaHu1, ..., umL =
∑m CGaHu1,..., umLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑u1... ∑ um

= fRHF-1Hu1L,...,F-1HumLLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅfHF-1Hu1LLµ...µ fHF-1HumLL .

In  the  two  dimensional  case,  i.e.,  when  m = 2,  the  matrix  R  is  a  2 µ 2  symmetric  matrix  with  diagonal
elements equal to 1  and an off-diagonal entry R12 , which completely defines the Gaussian copula in (8). For
the Gaussian copula lLHX , Y L = lU HX , Y L = 0, i.e.,  there is no tail  dependence and regardless of  how high
the value of r  is, asymptotically extreme events in X  and Y  tend to occur independently.
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3.3 The multivariate Student's t -copula

The  multivariate  Student's  t -copula  is  defined  through  the  multivariate  t -distribution  as  follows.  For
x = Hx1, ..., xmL ' œ m ,  denote  by tR,n Hx1, ..., xmL  the  standardized  multivariate  joint  t -distribution  function
with n  degrees of freedom and correlation matrix R , i.e.,

tR,n Hx1, ..., xmL = ·
-¶

x1

 ∫ ·
-¶

xm

 
GI n+mÅÅÅÅÅÅÅÅÅÅÅ2 M †R§-1ê2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

GI nÅÅÅÅ2 M Hn pL
mÅÅÅÅÅ2

 H1 + 1ÅÅÅÅn x ' R-1
xN

-
n+mÅÅÅÅÅÅÅÅÅÅÅ2  „ x1 ∫ „ xm .

Then, the multivariate Student's t -copula is defined through the multivariate t -distribution as 

CT Hu1, ..., umL = tR,n Htn
-1Hu1L, ..., tn

-1HumLL =

·
-¶

tn
-1Hu1L

 ∫ ·
-¶

tn
-1HumL

 
GI n+mÅÅÅÅÅÅÅÅÅÅÅ2 M †R§-1ê2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

GI nÅÅÅÅ2 M Hn pL
mÅÅÅÅÅ2

 H1 + 1ÅÅÅÅn x ' R-1 xL-
n+mÅÅÅÅÅÅÅÅÅÅÅ2  „ x1 ∫ „ xm

.

where  tn
-1HuiL ,  i = 1, ..., m  is  the  inverse  of  the  distribution  function  of  a  univariate  t -  distribution  with  n

degrees of freedom. The density of the Student's t -copula is 

cT Hu1, ..., umL = †R§-1ê2 GI n+mÅÅÅÅÅÅÅÅÅÅÅ2 M
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

GI nÅÅÅÅ2 M  
i
k
jjjj

GI nÅÅÅÅ2 M
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
GJ n+1ÅÅÅÅÅÅÅÅÅÅ2 N

y
{
zzzz

m

 
H1+ 1ÅÅÅÅn x' R-1 xL-

n+mÅÅÅÅÅÅÅÅÅÅÅ2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Â
j=1

m
 
i
k
jjjj1+

x j
2

ÅÅÅÅÅÅn
y
{
zzzz

-
n+1ÅÅÅÅÅÅÅÅÅÅ2

.

where  x = Htn
-1Hu1L, ..., tn

-1HumLL ' .  Similarly  to  the  Gaussian  copula,  the  t -copula  is  symmetric  but  it  has
upper and lower tail dependence which, in the bivariate case, is given by

lLHX , Y L = lU HX , Y L = 2 tn+1
i

k
jjjjjj-

è!!!!!!!!!!!
n + 1 $%%%%%%%%%%%%%%%%%%%%%%%%%%%1 - rHX , Y L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + rHX , Y L

y

{
zzzzzz .

For  the  t -copula  lLHX , Y L = lU HX , Y L > 0,  i.e.,  there  is  tail  dependence  and  it  becomes  stronger  with  the
decrease of the degrees of freedom, n , and/or with the increase of the linear correlation r . The existence of
tail  dependence  means  that  asymptotically  extremely  large  or  extremely  small  events  in  X  and  Y  tend  to
occur simultaneously. 

Note that the Gaussian and the t -copulas, defined in Sections 3.2 and 3.3, depend on the correlation matrix
R , i.e., they depend on the pairwise linear correlation coefficients Rij , i, j = 1, ..., m  which, in general, are
unknown parameters. The latter may be expressed in terms of Kendall's t  in the following form 

(13) Rij = sinHp tHXi, X jL ê 2L , i, j = 1, ..., m , i ∫ j .

3.4 Frank and Plackett Copulas

The  Frank  copula  is  an  Archimedean  copula,  defined  by  (10)  with  generator
fHtL = -ln@H‰-q t - 1L ê H‰-q - 1LD , q œ H-¶, ¶L \ 80< , i.e.,

CFHu1, u2L = H-1 ê qL ln 8@H1 - ‰-qL - H1 - ‰-q u1L H1 - ‰-q u2LD ê H1 - ‰-qL< , 

and its density is given as

cF Hu1, u2L = @q H1 - ‰-qL ‰-q Hu1+u2LD ë @H1 - ‰-qL - H1 - ‰-q u1L H1 - ‰-q u2LD2 . 
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Another copula, which is neither Archimedean nor Elliptical, since it is constructed from Plackett's family of
distributions on applying Sklar's theorem, is the Plackett copula, defined as 

CPHu1, u2L = 9@1 + Hq - 1L Hu1 + u2LD - "##############################################################################@1 + Hq - 1L Hu1 + u2LD2 - 4 u1 u2 qHq - 1L = í @2 Hq - 1LD , 

where q ¥ 0, q ∫ 1. If q = 1 then CPHu1, u2L = u1 u2 . The density of the Plackett copula is given as

cPHu1, u2L = q@1 + Hq - 1L Hu1 + u2 - 2 u1 u2LDì
"###################################################################################H@1 + Hq - 1L Hu1 + u2LD2 - 4 u1 u2 qHq - 1LL3

if  q ¥ 0,  q ∫ 1  and  cPHu1, u2L = 1  if  q = 1.  Both  of  the  Frank  and Plackett  copulas  are  comprehensive  and
hence are appropriate in our modelling framework. Neither of them has tail dependence.

We will also use the straightforward multivariate generalization of the bivariate Frank copula 

CFHu1, ..., unL = H-1 ê qL ln 91 + @H‰-q u1 - 1L ... H‰-q un - 1LD ë H‰-q - 1Ln-1= ,

which  still  depends  on  one  parameter  q > 0,  but  does  not  allow  for  modelling  negative  dependence  (see
Nelsen, 1999).

4 Estimating the model parameters
As noted in Section 2, in order to introduce and evaluate the functions of interest, arising from the compet-
ing  risk  model,  one  needs  to  specify  a  suitable  copula,  define  its  parameters  and  provide  estimates  of  the
crude  survival  functions,  based  on  an  appropriate  multiple,  cause  specific  mortality  table.  This  will  be
discussed in somewhat greater detail in this section.

4.1 Specifying the copula and its parameters

Let us consider  the bivariate case. As mentioned earlier, the association between the survival  times T1, T2 ,
related to the two competing causes of death may in general vary, from extreme positive to extreme negative
dependence.  In  order  to  capture  such variation,  one needs  copulas  whose  parameters can be varied so that
Kendall's  t  and  Spearman's  rs,  expressed  through  the  copula,  by  (11)  and  (12),  take  the  whole  range  of
values from -1 to 1. Thus, it is desirable to use comprehensive copulas in modelling dependence of compet-
ing  causes  of  death.  Applying  this  criterion,  we  have  selected  the  four  copulas,  introduced  in  Section  3,
whose  basic  properties  are  summarized in  Table  1.  Here  C- ,  C¦  and  C+  denote  the  lower  Fréchet-Hoef-
fding bound, the product copula and the upper Fréchet-Hoeffding bound respectively.

Table 1. Selected bivariate comprehensive copulas: main properties.

Copula Comprehencive Tail Dep. Param. range C- C¦ C+

GaussianHrL Yes No r œ H-1, 1L r = -1 r = 0 r = 1
t - copulaHr, nL Yes Yes r œ H-1, 1L, n > 2 r = -1 n = ¶ r = 1

FrankHqL Yes No q œ H-¶, +¶L \ 80< q = -¶ q = 0 q = +¶

PlacketHqL Yes No q œ H0, ¶L \ 81< q = 0 q = 1 q = +¶

As seen from Table 1, the selected copulas depend on one or two parameters, not related to the parameters
of  the  marginal  distributions.  The  copula  parameters,  need  to  be  estimated,  based  on  a  set  of  N  pairwise
observations on the survival times T1  and T2 . However, there is only one observable survival time, i.e., the
minHT1, T2L  and it  is  impossible to  estimate the copula parameters, and hence to identify the joint  survival
function  SHt1, ..., tmL ,  by  simply  knowing  the  net  survival  functions  S ' H jLHtL ,  j = 1, ..., m .  For  further
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discussion on the identifiability of competing risk models we refer to Yashin, Manton and Stallard (1986),
and Carriere (1994), from where related references can be followed up.

The fact that estimation of the copula parameter(s) is not possible imposes the necessity of considering them
as free parameters. They could be set according to a priori available (medical) information, about the degree
of pairwise dependence between the two competing risks, expressed through Kendall's t  and/or Spearman's
rS .  In what follows, we have set the copula parameters equal to fixed values, covering the whole range of
possible values of t  and rS . Here, we provide a more detailed discussion on how this is done for the exam-
ple of the Gaussian copula case as an illustration.

As pointed out in Section 3.2, R12  can be expressed through the Kendall's tHT1, T2L , as given by (13), which
in  this  case  is  a  free  parameter,  and  hence,  the  dependence  structure  will  have  to  be  studied  for  different,
fixed values of tHT1, T2L  within the open interval H-1, 1L . Let us note that tHT1, T2L  can not take the bound-
ary values -1  and 1, since in this case, the copula in (8) is not differentiable. Obviously, by fixing tHT1, T2L
we assume a certain degree of association (correlation) of the two r.v.s, T1  and T2 , as given in terms of the
Kendall's  t .  This  means  that,  when  constructing  the  joint  survival  function  of  T1  and  T2 ,  we  assume  a
certain degree of dependence between the two causes of death, which we believe is realistic to admit. Thus,
if  tHT1, T2L = 0.99,  we  assume  a  strong  positive  correlation  between  the  two  causes  of  death.  This  would
mean that, removal of one of the causes from our model will not significantly affect, i.e. improve the overall
survival,  since,  due  to  their  positive  correlation  the  remaining cause  will  operate  similarly as  the  removed
one.  If  tHT1, T2L = 0  then  we  are  in  the  usual  independence  assumption.  In  the  other  extreme,
tHT1, T2L = -0.99  would  mean  that  removal  of  one  of  the  causes  will  significantly  affect  the  overall  sur-
vival,  since due  to  the  negative  correlation,  we  assume that  the  remaining cause  has  an  opposite  effect  on
mortality to the removed one, and hence can not compensate for its removal.

All of the considerations made here for the two dimensional case carry over to the multivariate case, noting
however, that in this case there is not a unique definition of an association measure, equivalent to Kendall's
t  or Spearman's rS . One has to bear in mind, of course, that assumptions have to be made about all pairwise
coefficients tHTi, T jL ,  i, j = 1, ..., m ,  i ∫ j  which,  for  large values of m ,  will require careful consideration
(for m = 2  one numerical value for t  would need to be specified, but for m = 3, 4, 5  and 6  one would need
to specify correspondingly 3, 6, 10  and 15  entries for the corresponding correlation matrix R). So, one can
conclude  that  the  best  approach  to  defining  the  values  of  t  is  to  set  them,  based  on  medical  or  expert
knowledge about the level of pairwise dependence between diseases. Obviously, some of the diseases may
be expected to be mutually pairwise independent so, the corresponding t  values can be set equal to zero.

Let  us  note  that,  in  order  to  model  extreme  positive  and  negative  dependence,  i.e.,  when  t  takes  values
1 and -1, it is more convenient to use the Frank copula.

4.2 Estimating and extrapolating the crude survival functions

As  noted  in  Section  2,  it  is  possible  to  estimate  the  crude  survival  functions,  based  on  an  appropriate  m
dimensional set of cause specific, mortality data. If the data for each cause have already been smoothed they
may  then  be  directly  interpolated,  using  spline  interpolation  or  another  alternative  approximation  method
(see e.g.,  Dellaportas et. al, 2001).  Here, we propose using the 'data averaging' optimal spline interpolation
method described by De Boor (2001).  Applying this  method, m  spline models may be fitted to the sets  of
observed  values  for  the  m  crude  survival  functions  and  smooth  estimates  of  the  crude  survival  functions,
S H jLHtL  j = 1, ..., m , could then be obtained.

An  important  point  to  make  in  this  connection  is  that  often  the  multiple  cause  of  death  mortality  data
available may not be "closed", i.e., the data source may not include complete data for the older ages, beyond,
say,  100  years  of  age,  so  that  the  final  age  group  is  "100  years  and  older".  This  makes  it  impossible  to
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produce  complete  net  and  overall  survival  functions  and  to  estimate  life  expectancy  and  other  actuarial
functions, under the dependent competing risk model, and to investigate the complete or partial elimination
of one or more causes of death. There have been several approaches to extending life tables beyond an upper
age limit, such as the old-age mortality standard, developed by Himes, Preston and Condran (1994), the old
age part  of  the Heligman-Pollard mortality model (see Heligman-Pollard,  1980)  and also  the Coale-Kisker
method  of  closure  of  mortality  tables  (see  Coale  and  Kisker,  1990,  developed  from  a  previous  paper  by
Coale  and  Guo,  1989,  and  a  recent  investigation  by  Renshaw  and  Haberman,  2003).  For  a  more  detailed
account on these methods and their application we refer to Buettner (2004). Here, we have applied a differ-
ent approach (described in the Appendix),  based on an appropriate extrapolation of the spline interpolants,
produced  by  the  'data  averaging'  method.  As  will  be  seen  from our  numerical  results  (see  Section  7),  and
based  on  our  experience  of  a  number  of  examples,  this  method  produces  reasonable  extrapolations  of  the
mortality experience up to the oldest ages, in the range 100-120.

If the mortality data have not been smoothed, a (spline) smoothing method may be applied to the raw data.
A good  candidate  for  the  purpose  is  the method of  constructing  'geometrically designed'  free-knot  splines,
called GeD splines, which is automatic and does not require any knowledge of the number of knots and their
locations (see Kaishev, Dimitrova, Haberman and Verrall, 2004). 

5. Evaluating the net and overall survival functions
Having fixed the copula function, CHu1, ..., umL , one may use (8) and evaluate the joint survival function 

(14)SHt1, ..., tmL = CHS ' H1LHt1L, ..., S ' HmLHtmLL
if  the  net  survival  functions  S ' H jLHt jL ,  j = 1, ..., m  were  known.  In  order  to  find  them,  we  may  use  the
relationship  between  S ' H jLHtL  and  the  crude  survival  functions,  S H jLHtL ,  j = 1, ..., m  given  by  Heckman and
Honore (1989) and also by Carriere (1994). Thus, under the assumption of differentiability of CHu1, ..., umL
with respect to u j œ H0, 1L  and of S ' H jLHt jL  with respect to t j > 0, for t > 0, the following system of differen-
tial equations holds

(15)

dÅÅÅÅÅÅÅd t  S H1LHtL = C1HS ' H1LHtL, ..., S ' HmLHtLL µ dÅÅÅÅÅÅÅd t  S ' H1LHtL

dÅÅÅÅÅÅÅd t  S H2LHtL = C2HS ' H1LHtL, ..., S ' HmLHtLL µ dÅÅÅÅÅÅÅd t  S ' H2LHtL
ª

dÅÅÅÅÅÅÅd t  S HmLHtL = CmHS ' H1LHtL, ..., S ' HmLHtLL µ dÅÅÅÅÅÅÅd t  S ' HmLHtL ,

where C jHu1, ..., umL = ∑ÅÅÅÅÅÅÅÅÅ∑u j
 CHu1, ..., umL , j = 1, ..., m . 

It  is  important  to  note  that  (15)  is  a  system of  nonlinear,  differential  equations  which  may be  solved  with
respect to the net survival functions S ' H jLHtL , once we have specified the type of copula function, and given
estimates of  the crude survival  functions S H jLHtL ,  j = 1, ..., m  in a suitable functional form, which can then
be substituted into the left-hand side of (15). Then, in order to obtain the net survival functions S ' H jLHtL , we
need to find an efficient numerical method of  solving the system (15).  Once the net survival  functions are
obtained,  we  may  substitute  them  into  the  copula  on  the  right-hand  side  of  (14)  and  evaluate  the  joint
survival function, and in particular the overall survival function HtL ª SHt, ..., tL , which is of major interest
in our investigation.

The derivatives with respect to time of the crude and net survival functions in (15) are actually the crude and
net  probability  density  functions  of  the  r.v.s  T1, T2, ..., Tm .  We  will  denote  these  densities  as  f H jLHtL  and
f ' H jLHtL , j = 1, ..., m , respectively.
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In order to solve the system (15) numerically, one can rewrite it as a system of difference equations, assum-
ing that the time variable t ¥ 0  takes integer values, (i.e., integral age values) k = 0, 1, 2, ... . This has been
the  approach  taken  by  Carriere  (1994).  Its  disadvantage  is  that  the  net  survival  functions  S ' H jLHtL ,
j = 1, ..., m  are  obtained  only  for  integral  ages.  Here,  we  have  used  the  Mathematica  built-in  function
NDSolve,  which  solves  numerically  systems  of  differential  equations  and  produces  solutions,  S ' H jLHtL ,
j = 1, ..., m , for any t > 0.

Let us also note that we have used equality (5) as a check on the solution of (15). For this purpose, we can
apply (14) to express the overall survival function on the left-hand side of (5) as

(16)CHS ' H1LHtL, ..., S ' HmLHtLL = SH1LHtL + ....+ SHmLHtL , 0 § t § 120.

Equality  (16)  implies  that  if,  for  any  fixed  t ,  we  substitute  the  values  of  the  net  survival  functions
S ' H1LHtL, ..., S ' HmLHtL , obtained as a solution of (15), in the copula function, its value must be equal to the sum
of the m  crude survival functions, evaluated at t .

6. Partial and complete disease elimination 
In  order  to  study  the  effect  of  partial  and  complete  disease  elimination,  we  have  adopted  the  following
approach. Let us recall that, in our model, we have assumed that T1, T2, ..., Tm  are the future lifetime spans
of a newborn individual, under the operation of m  causes of death, i.e., all the survival functions, introduced
up to now, refer to age zero. We will now need to adjust explicitly the adopted notation for the crude and net
survival  functions,  by  adding  a  0  subscript,  indicating  age  at  birth,  i.e.,  we  will  write  S0

H jLHtL ,  and  S0
' H jLHtL

instead of S H jLHtL  and S ' H jLHtL , and also Sx
H jLHtL , and Sx

' H jLHtL  to denote the corresponding crude and net survival
functions for a life aged x . In order to illustrate the concept of partial and complete disease elimination, we
will assume here that t  takes integral values, i.e., t ª k = 1, 2, ... ,120. Thus, we can express the net survival
functions S0

' H jLHtL , j = 1, ..., m , which we obtained as a solution of (15) as

(17) S0
' H jLHkL = S0

' H jLH1L µ S1
' H jLH1L µ∫µ Sk-1

' H jLH1L  .

Applying the well known relation Sx
' H jLHkL = S0

' H jLHx + kL ë S0
' H jLHxL  to the factors on the right-hand side of (17),

we obtain the convenient identity

(18) S0
' H jLHkL = IS0

' H jLH1L ë S0
' H jLH0LM µ IS0

' H jLH2L ëS0
' H jLH1LM µ∫µ IS0

' H jLHkL ë S0
' H jLHk - 1LM

Rewriting (18) in actuarial notation gives

(19) S0
' H jLHkL = p '0 µ p '1 µ ... µ p 'k-1 = H1 - q '0L µ H1 - q '1L µ∫µ H1 - q 'k-1L ,

where, for simplicity, the dependence on the index j  on the right-hand side has been suppressed.

We now introduce the piecewise linear function qlHa, b; c, dL , with respect to l = 0, 1, 2, ... , as

(20)

 qlHa, b; c, dL = a , if l œ @0, cD

         = a + b-aÅÅÅÅÅÅÅÅÅÅd-c µ Hl - cL  , if l œ @c, dD
 

         = b  , if l œ @d, 120L  ,

where a, b, c, d, are parameters, such that 0 § a, b § 1and 0 < c < d < 120.
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We  shall  use  qlHa, b; c, dL  to  modify  the  net  survival  function  in  (19),  in  order  to  be  able  to  control  the
degree of elimination of the j -th disease. Thus, if we denote by S0

'' H jLHkL  the modified net survival function
and set q ''l = H1 - qlL q 'l , l = 0, 1, 2, ..., k - 1, (19) can be rewritten as

 S0
'' H jLHkL = H1 - q ''0L µ H1 - q ''1L µ∫µ H1 - q ''k-1L .

By  appropriately  choosing  particular  values  of  the  parameters  a, b, c  and  d ,  for  each  age,  the  degree  of
elimination may be varied with the age l , with reasonable flexibility, from partial to complete elimination of
the particular  j-th  cause  of  death.  We may see how the modification of  the net  survival  function  (i.e.,  the
degree  of  its  elimination)  will  affect  the  overall  survival  function  by  substituting  S0

'' H jLHkL  back  into  the
copula, which defines the joint survival function in (14), i.e., the overall survival function becomes

HkL ª SHk, ..., kL = CIS0
' H1LHkL, ..., S0

' H j-1LHkL, S0
'' H jLHkL, S0

' H j+1LHkL, ..., S0
' HmLHkLM

where k = 0, 1, ..., 120. So, by varying the parameters a, b, c and d ,  one can adjust the degree of elimina-
tion  of  the  j-th  cause  of  death  at  different  ages  and  study  its  effect  on  HkL  in  the  m-variate  dependent
multiple  cause  of  death  model.  Let  us  note  that  the  choice  of  a = b = 1corresponds  to  ql ª 1,  for
l = 0, 1, 2, ....k - 1 which  leads  to  S0

'' H jLHkL ª 1,  k = 0, 1, 2, ... ,  which  corresponds  to  complete  elimination
of the j-th disease, since obviously, the overall survival function with j-th disease removed is

 H- jLHkL = PrHT1 > k, ..., T j-1 > k, T j+1 > k, ..., Tm > kL =

CIS0
' H1LHkL, ..., S0

' H j-1LHkL, 1, S0
' H j+1LHkL, ..., S0

' HmLHkLM .

 A numerical implementation of complete and partial elimination is presented in Section 7.

7. Numerical results
In  this  section,  we  apply  the  methodology,  described  earlier,  to  a  real  data  set,  related  to  the  US  female
general population, in which the data are grouped by causes of death, using  "Table 10. Number of life table
deaths  from  specific  causes  during  age  interval  for  the  female  population:  United  States,  1989-91"  of  the
U.S.  Decennial  Life  Tables  for  1989-91  (see  NCHS,  1999).  For  ease of  presentation,  we consider  the two
dimensional and the multidimensional competing risk models separately.

7.1 Two causes of death

We consider here the simplest case of only two competing causes of death, one due to cancer, and a second
one due to all other, non-cancer causes, pooled together. Thus, all the results of Sections 2-6 apply here for
the case of m = 2. Denote by Tc  and To  the lifetime random variables for the cancer and non-cancer causes
of  death  and  by  S HcLHtL ,  S ' HcLHkL ,  and  S HoLHtL ,  S ' HoLHkL,  the  crude  and  net  survival  functions  for  cancer  and
non-cancer respectively. As noted in Section 4.2, it is possible to estimate crude survival functions based on
an  appropriate  set  of  cause  specific,  mortality  data.  In  order  to  estimate  the  crude  survival  functions  for
cancer and other (non-cancer)  causes, we have used a two decrement data set, obtained on the basis of the
multiple decrement "Table 10" from NCHS (1999). The data are presented in 5 year age intervals and cover
the  age  range  from  0  to  100+  years.  It  should  be  noted  that  the  'observed'  values  of  the  crude  survival
functions are, in fact, the values which have already been smoothed and published in NCHS (1999). For this
reason, no further smoothing has been required and we have interpolated the 'observed' values of the crude
survival functions for ages from 0 to 100, using the 'data averages' optimal spline interpolation method (see
De Boor, 2001). In order to obtain a "closed" mortality model up to a limiting age of 120, we have extrapo-
lated the  fitted  cubic  spline  functions  S HcLHtL  and  S HoLHtL ,  for  the  cancer  and  the  other  (non-cancer)  causes,
over the 100-120 age range,  under the condition that S HcLH120L = S HoLH120L = 0. The extrapolation has been
performed using female mortality data for the old ages 100-115 given in "Table 3" from NCHS (1997). The
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actual numbers, as well as the method and formulae, used to obtain the 'observed' and extrapolated values of
the crude survival functions are given in the Appendix.

The fitted cubic spline curves S HcLHtL  and S HoLHtL , 0 § t § 120  and their derivatives are given in Figure 1. As
can  be  seen,  the  spline  models  of  the  two  crude  survival  functions  and  the  corresponding  densities  are
smooth and posses very good visual quality.
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SHcLHtL
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0.01
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0.03

f HoLHtL
f HcLHtL

Fig.  1.  Interpolated  crude  survival  functions  (left  panel)  and  their  densities  (right  panel)  for  'cancer'  and
'other' causes of death.

Having  estimated  the  crude  survival  functions  S HcLHtL  and  S HoLHtL ,  0 § t § 120,  we  obtain  the  net  survival
functions  S ' HcLHtL  and S ' HoLHtL ,  0 § t § 120,  by solving  the  system (15),  using  the four  copulas,  specified in
Table 1.  The solutions S ' HcLHtL, S ' HoLHtL,  0 § t § 120,  obtained from (15) have been checked,  using equation
(16) for the case m = 2. Since the solutions S ' HoLHtL  and S ' HcLHtL  approach zero very closely in the age range
100 § t § 120, solving (15) is much more difficult for 100 § t § 120  and the solution there may not possess
the  built-in  Mathematica  precision.  Another  important  point  is  that  the  numerical  solution  of  (15),  S ' HoLHtL
and  S ' HcLHtL ,  is  influenced  by  the  extrapolated  sections  of  the  crude  survival  functions  not  only  for
100 § t § 120  but  within  the  entire  age  range  0 § t § 120.  This  in  turn  means  that  the  results  and  conclu-
sions with respect to survival under the dependent competing risk model, given later in this section, depend
on the extrapolation that has been carried out.

7.1.1 The bivariate Gaussian copula case

The  net  survival  functions,  obtained  as  a  solution  of  (15),  using  the  Gaussian  copula,  CGaHu1, u2L ,  with
values  of  r  corresponding  to  five  different  values  of  Kendall's  t  are  plotted  in  Fig.  2  (so  that  t = 0.91
corresponds  to  r = 0.99,  t = 0.35  corresponds  to  r = 0.52  and  so  on).  As  explained  in  Section  4.1,  the
linear correlation  r  is  considered  as  a  free  parameter,  by means of  which  different  degrees  of  association,
between the cancer and non-cancer modes of death, are preassigned. Thus, the system (15) has been solved
for values of r  equal to -0.99, -0.52, 0.00, 0.52, 0.99  and the obtained net survival functions S ' HoLHtL  and
S ' HcLHtL ,  0 § t § 120,  are  represented  by  the  curves,  in  the  left  and  right  panel  in  Fig.  2  (of  course,  other
values of  r  could  have  been  chosen).  In  the  bivariate  case,  for  fixed  r ,  the  net  survival  function,  S ' HoLHtL ,
0 § t § 120,  coincides  with  the  overall  survival  function,   H-cLHtL ,  0 § t § 120,  when  cancer  has  been
removed.  Obviously,  if  cancer  is  removed  from  the  bivariate  decrement  model,  the  overall  survival  will
entirely  be  determined  by  the  only  remaining  cause  of  death,  that  of  non-cancer,  and  vice-versa.  Thus,  in
order  to  study  the  overall  survival,  when  cancer  is  removed,  we  may  directly  study  the  non-cancer  net
survival function S ' HoLHtL .

Modeling the joint distribution of competing risks survival times using copula functions 14



20 40 60 80 100 120

0.2

0.4

0.6

0.8

1
S' HoLHtL

0.91
0.35
0

-0.35
-0.91

t

20 40 60 80 100 120

0.2

0.4

0.6

0.8

1
S' HcLHtL

0.91
0.35
0

-0.35
-0.91

t

Fig. 2. The net survival functions S ' HoLHtL , 0 § t § 120  for 'other' (non-cancer) cause (i.e. cancer removed) -
left panel and for 'cancer' (i.e. 'other' cause removed) - right panel.

As  can  be  seen  from  the  left  panel  of  Fig.  2,  removing  cancer  affects  survival  most  significantly  when
Kendall's  t = -0.91  (rS = -0.99),  which  corresponds  to  the  case  of  extreme  negative  dependence.  This
effect of rectangularization of the net (overall) survival function is seen even more clearly on the right panel
of Fig. 2, where the 'other' cause of death has been removed. In addition, we note that in the case of negative
dependence or even independence between Tc  and To , the trend of the overall survival curves suggests that
the limiting age lies somewhere beyond 120 and it would not be natural to expect the old age survivors to
die almost simultaneously at 120.

For the example of the bivariate Gaussian copula with Kendall's t = -0.91  (rS = -0.99), we will illustrate
how,  not  only a  complete,  but  also a  partial  elimination of  cancer,  will  affect  the overall  survival  function
HtL ª SHt, tL , 0 § t § 120. As described in Section 6, we apply the function qt , given by (20) to modify the
cancer  net  survival  function  S ' HcLHtL .  The  results  are  illustrated  in  the  right  panel  of  Fig.  3,  where  SHt, tL ,
0 § t § 120, is evaluated and plotted for five different choices of the function qtHa, b; c, dL , plotted in the left
panel of Fig. 3. As can be seen from Fig. 3, for any fixed age t , the probability of overall survival increases
if  we  vary  qt  from qt ª 0  (a = b = 0)  -  the  solid  curve,  corresponding  to  no  elimination,  through  qt ª 0.5
(a = b = 0.5)  -  the  dot-dashed  curve,  corresponding  to  half  elimination equally  applied  for  0 < t < 120,  to
qt ª 0.9  (a = b = 0.9) -  the double dot-dashed curve,  corresponding to almost complete cancer elimination.
qtH0.2, 0.8; 20, 65L  represents  respectively  20 %  cancer  elimination for  ages  0 < t § 20,  linearly  increasing
elimination  from  20 %  up  to  80 %  for  20 < t § 65  and  80 %  cancer  elimination  for  65 < t < 120.  The
remaining choice qtH0.8, 0.2; 20, 65L  is similar but with the 20 % and 80 % parameters interchanged.

1 20 65 120
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0.5

0.8

0.9

1
qt

1 20 65 120

0.2
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0.8

0.9

1
SHt,tL

Fig.  3.  The  effect  of  different  degree  of  partial  elimination  of  cancer  on  the  overall  survival  function
HtL ª SHt, tL , 0 § t § 120 - right panel for different choices of the elimination function qt  - left panel.
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7.1.2 Sensitivity of the results with respect to choice of copula

In this  Section,  we present  a comparative study of  the survival  under  the dependent  competing risk model
with respect to different choices of copula functions. For reasons stated in Section 4.1, we have performed
the  comparison  by  testing  the  proposed  copula-based  competing  risk  methodology  with  four  different
copulas,  the Gaussian,  the Student  t -copula,  the  Frank  and the Plackett  copulas.  For  each copula  we have
used  five  different  values  of  Kendall's  t  equal  to  -0.91, -0.35, 0.00, 0.35, 0.91.  The  results  obtained
show  that  the  overall  survival,  given  that  cancer  were  eliminated  as  a  cause  of  death,  is  most  strongly
affected  by  the  choice  of  the  copula  in  the  case  of  extreme negative  dependence,  t = -0.91  and  with  the
increase  of  t  this  effect  decreases.  The  curves  of  the  density  f ' HoLHtL ,  0 § t § 120,  for  the  four  choices  of
copulas, are plotted in Fig. 4 in the case of t = -0.35- left panel and t = 0.35 - right panel. 
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Fig. 4. The effect of the choice of copula on the overall survival density, f ' HoLHtL , given cancer eliminated.

Although  in  the  model  presented  here,  it  is  more  reasonable  to  look  at  the  overall  survival  function  HtL ,
0 § t § 120, the joint survival function of Tc  and To , SHt1, t2L = PrHTc > t1, To > t2L , 0 § t j § 120, j = 1, 2, is
also of interest. However, since either one of the causes leads to death, and the other lifetime remains latent,
probabilistic inference related to the joint distribution of Tc  and To  is somewhat artificial. Nevertheless, it is
instructive and in Fig. 5-8 we have illustrated the joint density of Tc  and To  in case of the bivariate Gauss-
ian, Student t -,  Frank and Plackett copulas. For any bivariate copula, the joint density of Tc  and To  can be
calculated from (14) as

(21)∑2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑t1  ∑t2

 SHt1, t2L = cHS ' HcLHt1L, S ' HoLHt2LL µ f ' HcLHt1L µ f ' HoLHt2L .

In  the  upper  panels  of  Fig.  5-8,  negative  dependence  between  Tc  and  To  has  been  modeled  with
tHT1, T2L = -0.35,  and in the lower  panels,  the modeled dependence is positive with tHT1, T2L = 0.35. The
mass of the distribution is oriented in such a way that,  under negative dependence,  as seen from the upper
panels  of  Fig.  5-8,  higher  values  of  To  are  more  likely  to  occur  jointly  with  smaller  values  of  Tc .  Under
positive dependence, as seen from the lower panels, jointly increasing values of the lifetimes Tc  and To  are
likely to occur. This is valid, regardless of what copula has been used, as can be seen from Fig. 5-8. There
are, of course, some copula specific differences in the joint density functions, as is natural to expect in view
of (21).  For example, in the case of  Student t -copula,  there are probability masses in the corners inherited
from the density of the copula itself (Fig. 6).  In other cases, the joint density is significantly influenced by
the  (marginal)  net  survival  functions,  which  cause  probability  masses  to  occur  along  the  borders  Tc = 0
and/or  To = 0,  as  e.g.,  in  the  case  of  Frank  copula  (Fig.  7).  Another,  obvious  characteristic  of  the  joint
density  function  is  that  for  t = -0.35  it  has  one  mode  approximately  around  To = 90,  Tc = 80  and  for
t = 0.35 it has a mode approximately around To = 85, Tc = 95.
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Fig.  5.  A  3D  plot  and  a  contour  plot  of  the  joint  density  of  Tc  and  To ,  expressed  through  the  Gaussian
copula for Kendall's t = -0.35 (upper panel) and t = 0.35 (lower panel).
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Fig.  6.  A 3D plot and a contour  plot of the joint density of Tc  and To ,  expressed through the t -copula for
Kendall's t = -0.35 (upper panel) and t = 0.35 (lower panel).
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Fig. 7. A 3D plot and a contour plot of the joint density of Tc  and To , expressed through the Frank copula
for Kendall's t = -0.35 (upper panel) and t = 0.35 (lower panel).
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Fig. 8. A 3D plot and a contour plot of the joint density of Tc  and To , expressed through the Plackett copula
for Kendall's t = -0.35 (upper panel) and t = 0.35 (lower panel).
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The sensitivity, with respect to the choice of copula, of the dependent competing risk model has been tested

using  actuarial  functions,  such  as  the  life  expectancy  at  birth,  eë0
H-cL

,  at  age  65,  eë65
H-cL

,  and  the  whole  of  life
annuity at age 65, aêê65

H-cL , calculated in case of complete cancer elimination. We are interested in assessing the

gain due to cancer elimination, and so we have compared the latter actuarial functions, e
ë

0
H-cL

, e
ë

65
H-cL

 and aêê65
H-cL ,

with  eë0 = 78.83,  eë65 = 19.03  and  aêê65 = 12.63,  calculated  in  the  case  when  none  of  the  causes  has  been
eliminated.  The  results  of  the  sensitivity  test  are  summarized  in  Tables  2-5  for  the  Gaussian,  Student  t -,
Frank and Plackett copulas respectively. 

Table 2. Gaussian copula results. Table 3. Student's t -copula results.

t NHrL e
ë

0
H-cL

@gainD
e
ë

65
H-cL

@gainD
aèè65

H-cL

@gainD

-0.91 r = -0.99
87.43
@8.60D

26.75
@7.71D

15.08
@2.45D

-0.35 r = -0.52
83.37
@4.54D

22.26
@3.23D

14.13
@1.50D

0 r = 0.00
82.16
@3.34D

21.00
@1.97D

13.66
@1.03D

0.35 r = 0.52
81.05
@2.22D

20.00
@0.96D

13.21
@0.59D

0.91 r = 0.99
79.15
@0.32D

19.05
@0.02D

12.70
@0.07D

t THr, n = 3L e
ë

0
H-cL

@gainD
e
ë

65
H-cL

@gainD
aèè65

H-cL

@gainD

-0.91 r = -0.99
87.00
@8.17D

26.27
@7.24D

15.06
@2.43D

-0.35 r = -0.52
83.43
@4.60D

22.36
@3.33D

14.14
@1.51D

0 r = 0.00
82.28
@3.46D

21.19
@2.16D

13.72
@1.09D

0.35 r = 0.52
81.18
@2.35D

20.20
@1.17D

13.29
@0.66D

0.91 r = 0.99
79.17
@0.34D

19.10
@0.07D

12.72
@0.09D

Table 4. Frank copula results. Table 5. Plackett copula results.

t FHqL e
ë

0
H-cL

@gainD
e
ë

65
H-cL

@gainD
aèè65

H-cL

@gainD

-0.91 q = -44.88
86.96
@8.13D

26.23
@7.20D

15.04
@2.41D

-0.35 q = -3.46
83.20
@4.37D

22.09
@3.05D

14.08
@1.45D

0 q = 0.00
82.16
@3.34D

21.00
@1.97D

13.66
@1.03D

0.35 q = 3.46
81.13
@2.30D

20.00
@0.97D

13.20
@0.57D

0.91 q = 44.88
79.27
@0.45D

19.00
@-0.04D

12.66
@0.03D

t PHqL e
ë

0
H-cL

@gainD
e
ë

65
H-cL

@gainD
aèè65

H-cL

@gainD

-0.91 q = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅ735.8
86.33
@7.50D

25.53
@6.50D

14.97
@2.34D

-0.35 q = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅ5.022
83.24
@4.42D

22.14
@3.11D

14.09
@1.46D

0 q = 0.00
82.16
@3.34D

21.00
@1.97D

13.66
@1.03D

0.35 q = 5.022
81.17
@2.34D

20.07
@1.04D

13.23
@0.60D

0.91 q = 735.8
79.27
@0.44D

19.11
@0.08D

12.72
@0.09D

A  general  conclusion  is  that  the  gain  in  eë0
H-cL

,  eë65
H-cL

 and  aêê65
H-cL  is  bounded  by  the  gain  in  these  actuarial

functions,  obtained  with  the  Fréchet-Hoeffding  copula  bounds  (9).  As  seen  from Tables  2-5,  the  approxi-

mate upper bound for the gain in eë0
H-cL

 is 8.60, for the gain in eë65
H-cL

 is 7.71  and for the gain in aêê65
H-cL  is 2.45

years.  So,  the  choice  of  copula  can  affect  these  actuarial  functions  only  up  to  the  corresponding  upper

bounds.  As  expected,  each  of  eë0
H-cL

,  eë65
H-cL

 and  aêê65
H-cL  decreases  as  Kendall's  t  increases,  regardless  of  the

choice  of  copula.  It  is  important  to  note  that  the  stated actuarial  functions,  computed for  the  four  selected
copulas,  differ  more  significantly  in  the  case  of  extreme  negative  dependence.  In  this  case  the  maximum

gain, in any of  e
ë

0
H-cL

, e
ë

65
H-cL

 and aêê65
H-cL , is obtained for the Gaussian copula (Table 2) and the minimum for the
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Plackett  copula  (Table  5).  As  can  be  seen  from Tables  2-5,  the  differences  between  the  selected  actuarial
functions become insignificant for t  equal to -0.35, 0 , 0.35, 0.91 for the four copulas.

It is worth mentioning that our estimates of the gain in e
ë

0
H-cL

 and in e
ë

65
H-cL

, for the independent case, are 3.34
and  1.97,  and  these  figures  are  consistent  with  the  values  3.30  and  1.92  respectively,  given  in  NCHS
(1999).  The  small differences  between these  2  sets  of  estimates may be  due  to  the  extrapolation  up  to  the
limiting age of 120, that has been performed in our study.

7.2 Multiple causes of death ( m = 4)

We now illustrate the extension of  the proposed  methodology to the multivariate case by considering  four
competing  causes,  heart  (h),  cancer  (c),  respiratory  diseases  (r)  and  other  causes  (o).  As  in  the  bivariate
case, we have constructed the four decrement table using "Table 10" from NCHS (1999).  The interpolated
crude survival functions S HhLHtL , S HcLHtL , S HrLHtL , S HoLHtL , 0 § t § 120 and their derivatives are given in Fig. 9.
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Fig. 9. The crude survival functions (left panel) and their densities (right panel).

As noted in Section 3.4,  the multivariate Frank copula allows for  modelling only positive dependence.  So,
here  for  illustrative  purposes  we  have  used  the  Frank  copula  to  model  purely  positive  dependence  along
with  the  Gaussian  and  t -copula  which  can  capture  a  wide  variety  of  pairwise  dependencies  between  the
lifetimes Th , Tc , Tr  and To  given that the matrix R  is positive definite. We have been successful in solving
the system (15) in this four dimensional case for the selected three copulas. The four net survival functions
and  their  densities  for  the  Gaussian  copula  with  (arbitrarily  chosen)  pairwise  correlation  coefficients
Rhc = -0.5, Rhr = -0.5 , Rho = 0.5 , Rcr = 0.5 , Rco = -0.5 , Rro = -0.5 , are presented in Fig. 10. 
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Fig. 10. The net survival functions (left panel) and their densities (right panel).

In the left panel of Fig. 11, we have given the obtained overall survival functions with no disease eliminated,
HtL ,  and  each  one  of  the  diseases  eliminated,   H-hLHtL ,   H-cLHtL  and   H-rLHtL .  As  can  be  seen,  the  most
significant improvement in survival for the age range 40 § t § 85  is achieved if cancer is eliminated whereas
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for 85 § t § 120 the best improvement in survival is due to removal of heart diseases. As expected, improve-
ment in survivorship due to removal of respiratory diseases is not as significant. Fig. 12 presents examples
of the cases where 2 causes of death are simultaneously eliminated: the simultaneous elimination of cancer
and  heart  diseases  gives  the  best  improvement  in  the  overall  survival  over  the  entire  range  40 § t § 120,
compared to the removal of any other combination of two causes. The densities given in the right panels of
Fig. 11-12 combined with Table 6 provide information about the effect of removal of one disease and a pair
of diseases on the life expectancy.  As is natural to expect,  the complete simultaneous elimination of  heart,

cancer  and  respiratory  diseases  provides  the  highest  gain  in  the  actuarial  functions  eë0
H- jL

,  eë65
H- jL

 and  aêê65
H- jL ,

j œ 8h, c, r, hc, hr, cr, hcr< . The results obtained with the Student t -copula with identical correlation matrix
and n = 3 are almost identical and therefore are omitted.
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Fig. 11. The overall survival functions with no elimination and only one disease eliminated (left panel) and
their densities (right panel).
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Fig. 12. The overall survival functions with no elimination and only two diseases eliminated (left panel) and
their densities (right panel).

Table 6. Multivariate Gaussian copula results.

Disease, j j ∫ 8h< j ∫ 8c< j ∫ 8r< j ∫ 8hc< j ∫ 8hr< j ∫ 8cr< j ∫ 8hcr<

e
ë

0
H- jL

@gainD
84.77
@5.96D

84.16
@5.35D

80.54
@1.72D

91.51
@12.69D

86.86
@8.05D

88.17
@9.35D

97.51
@18.70D

e
ë

65
H- jL

@gainD
25.06
@6.04D

23.18
@4.16D

20.82
@1.80D

30.20
@11.18D

27.13
@8.12D

27.14
@8.12D

36.09
@17.08D

aèè65
H- jL

@gainD
14.62
@1.99D

14.24
@1.61D

13.19
@0.56D

16.42
@3.80D

15.23
@2.61D

15.45
@2.82D

17.82
@5.19D
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Using  the  multivariate  Frank  copula,  we  have  modelled  positive  dependence  with  parameter  q = 34.64
which  in  the  bivariate  case  corresponds  to  t = 0.35.  The  results  are  similar  in  nature  but  expressed  to  a
lesser extend, as seen from Fig. 13 and Table 7, where the maximum gain achieved is just over half of that
achieved  with  the  Gaussian  copula,  where  we  have  assumed  positive  as  well  as  negative  pairwise
correlations.
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Fig. 13. The overall survival functions with no elimination and only one disease eliminated (left panel) and
only two disease eliminated (right panel).

Table 7. Multivariate Frank copula results.

Disease, j j ∫ 8h< j ∫ 8c< j ∫ 8r< j ∫ 8hc< j ∫ 8hr< j ∫ 8cr< j ∫ 8hcr<

e
ë

0
H- jL

@gainD
81.95
@3.14D

81.11
@2.30D

79.48
@0.67D

85.28
@6.46D

83.24
@4.43D

81.96
@3.15D

87.13
@8.31D

e
ë

65
H- jL

@gainD
21.83
@2.82D

19.98
@0.96D

19.53
@0.52D

23.59
@4.57D

23.00
@3.99D

20.62
@1.60D

25.22
@6.20D

aèè65
H- jL

@gainD
13.78
@1.16D

13.14
@0.52D

12.86
@0.23D

14.63
@2.01D

14.22
@1.59D

13.43
@0.81D

15.24
@2.61D

8. Conclusions
The  objective  of  this  paper  is  to  demonstrate  how copulas  may be  used  in  the  modelling  of  dependencies
among  causes  of  death  for  the  purposes  of  analyzing  the  impact  of  the  complete  or  partial  elimination of
causes of death on survival functions and related indices, expectations of life and annuity values.

The paper extends the earlier work of Carriere (1994) and Valdez (2001) to include more than two compet-
ing risks, to investigate the sensitivity of the model to the choice of copula and to provide a more rapid and
universal computation process for solving the underlying system of non-linear differential equations, which
yields a solution not just at integral ages (as in Carriere 1994) but at any (intermediate) age 0 § t § 120.

The methodology and results may be applied to

- setting target levels for mortality rates that will assist with scenario testing and sensitivity analyses
in the presence of dependence between causes of death

- population forecasting and planning
- life insurance business where the financial impact of mortality improvements on life insurance and

annuities products may be investigated. 
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Possible  extensions  include  allowing  for  the  introduction  of  "new"  causes  of  death  (for  example,  as  hap-
pened in the late 1980s with HIV/AIDS) and exploring the alternative approach to elimination as formulated
in Section 2, following Elandt-Johnson (1976).
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Appendix
We first describe how we have constructed the two decrement US female population data set (FP), using the
multiple decrement "Table 10.  Number of life table deaths from specific causes during age interval for the
female population:  United  States,  1989-91"  of  NCHS (1999).  This  table  contains  the number of  deaths  by
cause of death, relating to five year age groups. The first and the last age spans for which data are given in
the  table  are  correspondingly  0-1  and 100+.  For  the  cancer  column dx

HcL  in  our  two decrement FP data  set
(see  Table  A1),  we  have  used  the  "Malignant  neoplasms"  column  of  "Table  10"  from  NCHS  (1999),  in
which  numbers  of  deaths  from  all  cancer  causes,  coded  140-208  with  respect  to  ICD-9  (International
Classification  of  Diseases,  9-th  revision),  are  pooled  together.  In  order  to  obtain  the  column  of  the  other
(non-cancer)  deaths,  dx

HoL ,  in  our  FP  data  set,  we  subtracted  the  cancer  deaths,  dx
HcL ,  from  the  difference

lx
HtL - lx+5

HtL ,  where lx
HtL  is the number of living at the beginning of age x .  The values lx

HtL  are listed in column
"Number of  living at beginning  of  age interval" of  "Table 10" from NCHS (1999).  Thus,  we have formed
two columns of data in our FP data set, number of deaths due to cancer, dx

HcL , and number of deaths due to
other causes, dx

HoL . Based on these crude data, we obtain the observed values at ages k = 1, 5, 10, ..., 95, 100
of the crude survival function S0

HcLHkL  and S0
HoLHkL , (see Table A2). 

The extrapolation over the 100-120 age range has been performed using the US female mortality data for the
old ages 100-115 given in "Table 3. Life table for females: United States, 1989-91"of NCHS (1997). Thus,
we have obtained the number of female deaths from cancer for the range 100-120 as

5dx
HcL = ¶dx

HcL µ H5dx ê ¶dxL ,     x = 100, 105, 110, 115, 120,

where 5dx  and ¶dx , are the numbers of female deaths from all causes, including cancer, given in "Table 3"
from NCHS (1997). 
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Table A1: The extrapolated US female general population data set. 

x dx
HcL dx

HoL lx
Ht L

0-1 221 82579 10000000
1-4 1246 15354 9917200
5-9 1475 8025 9900600

10-14 1279 8421 9891100
15-19 1637 20063 9881400
20-24 2430 24770 9859700
25-29 3941 27259 9832500
30-34 8295 33405 9801300
35-39 16491 39809 9759600
40-44 31121 49979 9703300
45-49 56365 72635 9622200
50-54 93955 111145 9493200
55-59 140508 173392 9288100
60-64 194175 272525 8974200
65-69 244473 410827 8507500
70-74 288062 635438 7852200
75-79 299411 930689 6928700
80-84 276256 1310844 5698600
85-90 211549 1533351 4111500
90-95 117510 1314490 2366600

95-100 40591 668909 934600

100 - 105
105 - 110
110 - 115
115 - 120

120

7393
1050

45
11
0

188407
26750
1155
289

0

225100
29300
1500
300

0

x - age spans
dx

HcL  - the number of deaths due to cancer during the age interval x
dx

HoL  - the number of deaths due to non-cancer causes during the age interval x
lx
Ht L  - the number of living at the beginning of the age interval x

The following quantities are necessary in order to find the 'observed' values of the crude survival functions
S0

HcLHxL  and S0
HoLHxL :

¶q0
HcL  - the multiple-decrement probability that a newborn will die from cancer

¶q0
HoL - the multiple-decrement probability that a newborn will die from non-cancer causes

¶d0
HcL - the total number of deaths from cancer for all ages from 0 to ¶

¶d0
HoL - the total number of deaths from non-cancer causes for all ages from 0 to ¶

The  following  formulae  were  used  to  obtain  the  values  of  ¶q0
HcL = 0.2039,  ¶q0

HoL = 0.7961,  based  on  the
values given in Table A1:

¶q0
HcL =

‚
x

 dx
HcL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l0
HtL = ¶d0

HcL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l0
HtL ;        ¶q0

HoL =

‚
x

 dx
HoL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l0
HtL = ¶d0

HoL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l0
HtL .
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Table A2: The FP data set. 

k kd0
HcL

kd0
HoL S0

HcLHkL S0
HoLHkL 0HkL

0 - - 0.203949 0.796051 1
1 221 82579 0.203927 0.787793 0.99172
5 1467 97933 0.203802 0.786258 0.99006

10 2942 105958 0.203655 0.785455 0.98911
15 4221 114379 0.203527 0.784613 0.98814
20 5858 134442 0.203363 0.782607 0.98597
25 8288 159212 0.203120 0.780130 0.98325
30 12229 186471 0.202726 0.777404 0.98013
35 20524 219876 0.201897 0.774063 0.97596
40 37015 259685 0.200248 0.770083 0.97033
45 68136 309664 0.197135 0.765085 0.96222
50 124501 382299 0.191499 0.757821 0.94932
55 218456 493444 0.182103 0.746707 0.92881
60 358964 666836 0.168053 0.729367 0.89742
65 553139 939361 0.148635 0.702115 0.85075
70 797612 1350188 0.124188 0.661032 0.78522
75 1085674 1985626 0.095382 0.597488 0.69287
80 1385085 2916315 0.065441 0.504420 0.56986
85 1661341 4227159 0.037815 0.373335 0.41115
90 1872890 5760510 0.016660 0.220000 0.23666
95 1990400 7075000 0.004909 0.088551 0.09346

100 2030991 7743909 0.000850 0.021660 0.02251

105
110
115
120

2038384
2039433
2039479
2039490

7932316
7959067
7960221
7960510

0.000111
0.000006
0.000001

0

0.002819
0.000144
0.000029

0

0.00293
0.00015
0.00003

0

k - exact age in years
kd0

HcL  - the number of deaths due to cancer from age 0 to age k
kd0

HoL - the number of deaths due to other causes from age 0 to age k
S0

HcL IkL - 'observed' values at age k  of the crude survival function for cancer
S0

HcL IkL - 'observed' values at age k  of the crude survival function for other causes
0HkL - 'observed' values at age k  of the overall survival function

The following formulae were used to calculate the values of kd0
HcL ,  kd0

HoL ,  S0
HcLHkL ,  S0

HoLHkL  and 0HkL  given in
Table A2, based on the values given in Table A1:

kd0
HcL = ‚

x<k

 dx
HcL ; kd0

HoL = ‚
x<k

 dx
HoL ;

S0
HcL HkL = ¶q0

HcL - kd0
HcL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l0
HtL ; S0

HoL HkL = ¶q0
HoL - kd0

HoL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l0
HtL ; 0HkL = S0

HcLHkL + S0
HoLHkL =

lk
HtL

ÅÅÅÅÅÅÅÅÅÅ
l0
HtL ;

S0
HcL H0L = ¶q0

HcL ; S0
HoL H0L = ¶q0

HoL ; 0H0L = S0
HcLH0L + S0

HoLH0L =
l0
HtL

ÅÅÅÅÅÅÅÅÅÅ
l0
HtL = 1.
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