

City, University of London Institutional Repository

Citation: Ardagna, D., Baresi, L., Comai, S., Comuzzi, M. & Pernici, B. (2011). A Service-

Based Framework for Flexible Business Processes. IEEE Software, 28(2), pp. 61-67. doi:
10.1109/ms.2011.28

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4087/

Link to published version: https://doi.org/10.1109/ms.2011.28

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Service-based Framework for
Flexible Business Processes

Danilo Ardagna1, Luciano Baresi1, Sara Comai1,
Marco Comuzzi2, Barbara Pernici1

1Politecnico di Milano, Italy
2 Eindhoven University of Technology, the Netherlands

Abstract
This article describes a framework for the design and enactment of flexible and adaptive

business processes. It combines design-time and run-time mechanisms to offer a single inte-
grated solution. The design-time environment supports the specification of process-driven Web
applications with Quality of Service (QoS) constraints and monitoring annotations. The run-
time identifies the actual services, from the QoS perspective, oversees the execution through
monitoring, and reacts to failures and infringement of QoS constraints. The article also dis-
cusses these issues on a proof of concept application developed for an industrial supply chain
scenario.

Keywords: Business process, QoS, Web design, Web service, adaptability.

1 Introduction

Globalization and accessibility are imposing a significant shift in business processes. Static so-

lutions are leaving the stage to flexible processes conceived to address rapidly changing business

needs. For example, the Internet as a platform is fostering the idea of virtual supply chains, where

business partners change seamlessly as soon as new business opportunities arise.

The market requires business processes that can be sliced into self-contained elements and

be re-composed on demand. The dynamism and flexibility of these business models impose that

supporting information systems change and evolve as fast as the business they support. Most of the

changes cannot be applied during conventional maintenance, but must be performed transparently

on running systems.

1

These new requirements are making information systems evolve from closed and proprietary

entities to open solutions based on non-proprietary standards [9]. The service-oriented paradigm is

providing the enabling infrastructure for this shift and complex information systems are becoming

suitable compositions of services —often referred to as processes. Services can be performed by

humans and integrated in the process through dedicated user interfaces, or can be automated and

provided as Web services.

In a continuously evolving context, where in many cases the actual services can only be se-

lected at run-time, flexible and adaptive solutions are required to guarantee both the functional

requirements and quality of service (QoS) of the process. Flexible business processes also impose

a shift in validation: Conventional pre-deployment testing is not enough anymore since it cannot

foresee run-time changes; self-validation and self-adaptation techniques must be introduced, to

monitor services and apply corrective actions as soon as problems arise.

These are the underpinnings of the framework DISCoRSO1 (Distributed Information Systems

for COoRdinated Service Oriented interoperability), which offers a comprehensive service-based

solution for the specification and management of flexible and responsive business processes. At

design level, it proposes an “annotated” BPMN (Business Process Modeling Notation) to specify

the entire process including both manual activities and automated services. Human-based activities

are modeled as Web pages through WebML [4]. Automated activities are modeled as “abstract”

interactions with external Web services and specified in terms of functional requirements and QoS

constraints. Both classes of activities can be annotated with supervision rules to probe their exe-

cution at run-time and trigger corrective actions if needed.

Before executing a process, the framework replaces abstract services with “concrete” ones by

selecting those services that best satisfy the functional requirements and fit the QoS constraints

specified through annotations. At run-time, it oversees the execution of the different activities and

reacts accordingly in case of failures or QoS violations.

1www.discorso.eng.it

2

Figure 1: The Architecture of the DISCoRSO Framework

This article introduces the framework (Section 2) and exemplifies it on the development of a

proof of concept cooperative business process borrowed from the textile supply chain (Section 3)

studied in the DISCoRSO project. It also briefly discusses related approaches (Section 4) and

draws some conclusions (Section 5).

2 DISCoRSO Framework

Figure 1 shows the main components of the framework. At design-time, The CASE tool WebRa-

tio2 provides an extended BPMN editor to allow designers to define business processes with both

activities carried out by humans and automated activities performed by Web services. In the for-

mer case, the framework supports the development of the Web interface of each activity, through

the WebRatio WebML editor. In the latter case, it requires that abstract services be specified in

terms of required operations. Complete processes, fragments (i.e., set of activities), and single

2www.webratio.com

3

service invocations are annotated with QoS constraints (e.g., response time, cost, reputation, and

reliability) and statistics, like the probability of executing branches and loops. These annotations

are then used at run-time to guide the selection of the actual services. All the activities can also

be augmented with supervision rules to oversee their execution and trigger corrective actions if

needed.

Starting from the extended BPMN specification, the CASE tool automatically derives a skele-

ton of a WebML [4] hypertext extended with primitives controlling the execution of the whole

process (e.g., activities start and the end), specifying the containers for the manual activities and

the hooks for the automated ones. The containers of the manual activities are then refined with

the specification of their content and navigational paths, thus defining the Web interfaces that will

be shown to the users. The extended hypertext can be automatically transformed into application

code executable on top of the Java2EE, Struts, and .NET platforms. The tool also translates the

fragments of the BPMN process that correspond to automated activities into BPEL (Business Pro-

cess Execution Language) processes for their execution. These processes only comprise abstract

services; the actual selection will occur at run-time.

Concrete Web services (services supported by real implementations) are stored in an extended

UDDI registry, where they are associated with QoS profiles. This registry also embodies a func-

tional and a QoS matchmaker [1]. Functional matchmaking is driven by a similarity algorithm

based on services’ descriptions, whereas the QoS matchmaker filters candidate Web services ac-

cording to the QoS constraints associated with the abstract placeholders. The Service Selector uses

these features to find the services that implement the abstract services and best fit the constraints.

At run-time, the WebRatio run-time orchestrates the whole process, by supporting the execution

of the manual activities and interacting with the BPEL engine to invoke retrieved Web services.

The invocation of concrete Web services is obtained by implementing a late binding mechanism

through wrappers [1]. Supervision rules are used by the Process Monitoring to assess process

executions and trigger adaptation mechanisms automatically as soon as anomalies are detected. If

4

a concrete Web service is faulty or violates a constraint, the framework uses the Service Selector

to find a substitute satisfying the QoS constraints in the current state of the process.

2.1 Run-time Service Selection

Abstract service specifications are mapped onto concrete services by exploiting the process annota-

tions defined by the designer. Service selection is modeled as an optimization problem performed

when the business process is instantiated and also iterated at run-time to take into account perfor-

mance variability and invocation failures (notified by the Process Monitoring module presented in

the next section).

The optimization goal is to maximize the average QoS perceived by the user and consider

both local and global constraints. Local constraints can predicate on the properties of a single

activity (or abstract service), while global constraints specify requirements on a set of activities or

at process level.

The average QoS is evaluated statistically from the probability of executing conditional branches

and the distribution of the number of iterations in loops. Statistics can be either estimated at design-

time by the designer or updated at run-time by the monitoring component from past executions [3].

The satisfaction of global constraints is known to be a NP-hard problem. A number of solutions

have been proposed to reduce this complexity, guaranteeing global constraints only for the critical

path (i.e., the path having the highest execution time) or statistically. Our framework exploits a

new optimization approach [2] based on mixed integer linear programming models, which over-

comes the limitations of the previous solutions, supports the selection of stateful Web services, and

is particularly effective under severe QoS constraints.

Furthermore, if a feasible solution of the optimization problem does not exist, the approach

negotiates the QoS parameters with the service providers to find a sub-optimal solution and thus

reduce the failure rate [2]. To this end, we implemented bilateral iterated techniques [6] and we

also exploited a novel approach based on lightweight offer configuration strategies [5], where the

5

service providers express QoS profiles in terms of discrete values (e.g., response time may be 2,

4, or 6 days). Providers also specify a pricing model associated with each QoS dimension, while

the designer specifies a negotiation strategy to distribute the extra-budget among the different QoS

dimensions. At run-time, re-optimization is activated whenever a QoS constraint is violated. It

leads to either the selection of new candidates for the execution of the remaining activities or

maintains the already selected candidates, but with a different (re-negotiated) QoS profile.

2.2 Supervision

Supervision rules comprise both monitoring assertions and recovery actions. Monitoring asser-

tions take the form of pre- and post-conditions and predicate on both functional correctness and

QoS constraints. These expressions are specified in a variant of WSCoL (Web Service Constraint

Language, [3]). WSCoL provides language-specific constructs for data collection and data analy-

sis.

Data collection is responsible for obtaining the information used to check whether the activities

match the specified set of constraints and to update the execution statistics on branches and loops

(see Section 2.1). The language distinguishes among three kinds of monitoring data: Data belong-

ing to the state of the running process, data obtained externally from any remote component that

exposes a WSDL interface, and data obtained from previous process executions (since collected

data can be made persistent).

Data analysis checks whether collected data comply with set requirements and highlights pos-

sible variations. It supports the typical boolean, relational, and mathematical operators, predicates

on sets of values through the use of universal and existential quantifiers, and also supplies other

useful constructs (e.g., the max, min, and average values of collected data).

Recovery actions can trigger adaptation mechanisms provided by the run-time infrastructure,

invoke particular external applications implemented as Web services, or notify the violations to the

system administrator and maybe to the user. For example, if a concrete Web service started behav-

6

ing incorrectly or providing responses lately, the system would automatically notify the problem to

the administrator and temporarily remove the service from the registry to avoid further selections

by other processes.

Each rule also comprises a priority, used to tailor the amount of supervision actually performed

at run-time. This value is compared to the priority with which the whole process is executed to

decide whether the rule has to be evaluated: If the value is greater than or equal to the global

priority, the rule is executed, otherwise it is skipped. A process console allows the user to set the

global execution priority, and also visualizes the current state of the different running instances,

along with violated constraints and the values that caused such violations.

3 Case study

The effectiveness of the framework has been assessed through a proof of concept business pro-

cess borrowed from the silk-textile district in Northern Italy, one of the districts studied by the

DiSCoRSO project. The order fulfilment process reflects a typical scenario where different small

and medium enterprises —in the same geographical area— can perform the same activity with

different quality levels (e.g., in terms of response time, availability, reputation, and price).

Figure 2 presents the main activities of the BPMN process. The converter plays a focal role:

from a business perspective, it acts as an intermediary between the corporate customers, that is,

clothing or fashion companies, and the partners (sub-contractors) in the district; from a technolog-

ical standpoint, it is the orchestrator of the whole process. Sub-contractors expose their (legacy)

services as Web services, and publish them onto the extended UDDI registry.

The converter is supposed to select the best services that can perform required activities ac-

cording to QoS constraints. In the current practice, this selection is performed through complex

and lengthy interactions between company managers, leading to long-term contracts that cannot

be easily modified. The example —and the whole project— demonstrates the feasibility of more

automated and flexible solutions to pave the ground to optimized and responsive processes and

7

micro-contracts. To this end, the framework automatically selects the best services at run-time,

monitors the fulfillment of QoS guarantees, and undertakes corrective actions as soon as problems

arise.

As soon as the converter receives an order, it checks whether the requested items are available

in stock. If not, it prepares a dispatch request, which is sent to a weaving mill for the first processing

stage. After preparing the tissue, the weaving mill forwards the order to a dyer to complete the

processing. Then, the quality control checks and certifies the quality of the final product. Quality

checks are classified as basic (if they only require visual analyses to identify defects or holes) or

advanced (if they require chemical analyses to determine fiber properties, e.g., color drying). If any

item included in the order does not pass the first quality check, a second control must be performed.

Real historical data provided by the district allowed us to estimate that this only happens in the 10%

of the cases (probability p2 = 0.1 in Figure 2).

The activities performed by the converter, the weaving mill, and the dyer are executed by

humans and are supported by Web interfaces. In the left top corner of Figure 2 a snapshot of the

WebML model of activity converter order processing is presented: it contains a page to show the

data of the received order and enable the selection of the items needed to satisfy the request.

Quality control activities are performed by automated services, represented by means of a

BPEL specification, automatically obtained from the BPMN process.

The BPMN editor supports the specification of properties (Figure 2 in the left bottom corner),

where QoS constraints, process statistics, and monitoring rules can be associated with the whole

process or with specific activities. In our application we added the following global constraints: (i)

the two quality control activities have to be performed by two different providers, (ii) the overall

process should take less than two weeks, and (iii) the cost of the whole process should be less

than 10K euros. Furthermore we have introduced a local constraint on order processing activities

reputation which has to be greater than 0.9. Service reputation is defined as the percentage of

service invocation such that the service execution time does not exceed the maximum execution

8

time published as threshold in the registry (see Figure 3). When a new service is added to the

Extended UDDI registry, its reputation value is always set to 1, that is, to the maximum value.

At run-time, local and global constraints are monitored and in case of failures or QoS violations

a re-optimization of the process is triggered. An example of rule for monitoring constraint can be

specified as follows: Each time an activity terminates, we retrieve its execution time; if it is greater

than the one originally associated with the activity, and we foresee that the global execution time

of the process may exceed the two weeks, we start a new selection (optimization) to identify faster

services, with acceptable QoS, to complete the execution:

if ($execTime >= retrieve($expExecTime, $actId)) &&

call(exptedTime($procId)) > 14d

then notify($emailAddr) && call(serviceSelector($procId))

The rule uses the special-purpose variable $execTime, which stores the execution time of the

last completed activity, and retrieves the expected one ($expExecTime), which is the threshold

stored in the registry, by using the activity’s id $actId. It also calls an external functional-

ity, exceptedTime, to compute the foreseen execution time for the whole process, identified

through its id $procId. If the actual time is greater than the planned one and the predicted exe-

cution time for the whole process is likely to exceed the two weeks (14 days), then it notifies the

system administrator, whose email address is $emailAddr and invokes the service selector to

starts a new optimization process. Constraints (ii) and (iii) can be specified likewise.

Supervision is also used to update the statistics about execution. In particular the following

rule is associated with the SW-quality check switch of Figure 3:

store("SW-quality check", $condValue)

The rule stores the different values (condValue) with which the switch is executed. Since

accepted values are only true and false, we can easily compute the statistics about the element by

9

dividing the number of positive (true) outcomes by the total number of executions, which is the

sum of both true and false ones.

The framework can also deal with incorrect or faulty behaviors by setting proper supervision

rules. For example, the following rule is used to count the number of consecutive failures of the

service identified by $srvId. If this number is greater than 3, then the Web service is removed

from the registry and an email is sent to the system administrator. The approximation used here is

that a service is faulty if its answer does not come within a given timeframe (equal to VALUE in

the rule). Note that this covers also the case of answers never received.

let $execTimes = retrieve($execTime, $srvId, 10)

if (count($execTimes, $time > VALUE) > 3)

then call(remove($srvId)) && notify($emailAddr)

Figure 3 shows an example of the run-time execution of the quality control activities. Note

that concrete services are selected dynamically according to QoS constraints and to the requested

kind of quality checks. In the example, we assume that the current order needs advanced quality

checks. We also consider that the warehouse does not have the items required by the customer in

stock and hence the system must place an order to the weaving mill and dyer. Their activities have

been already completed, in 10 days and a cost of 6K euros, and we are ready for the quality control

activities.

The table in Figure 3 lists the available concrete services: service C is able to perform only

basic analyses and therefore is not considered by the Service Selector. Considering the constraints,

service B is discarded due to a reputation value lower than 0.9. Also service E does not lead to

admissible solutions, since both E+A or E+D quality checks require 5 days. The Service Selector

can then only select services D and A, with an expected total cost of 9K euros and execution time

equal to 14 days (computed by summing the costs/execution time of the selected services to the

cost/execution time of the previous phases), thus satisfying the global constraints. Now we assume

that service D takes 3 days instead of 2 to complete: A supervision rule detects the delay on its

10

execution time and calls the run-time optimization again; in this case a negotiation is triggered and

the second quality check is performed by service A in one day but with a cost of 3K euros. The 1K

euro initial extra-budget is exploited in the negotiation process to reduce the execution time of the

second quality control and to meet the 14-day global constraint.

4 Related work

To the best of our knowledge, we are not aware of any other proposal that integrates the design of

process models with both human-based and automated activities, the QoS-based dynamic selection

of services, and their run-time supervision.

As far as the design of business processes and their Web interfaces are concerned, different

Web Engineering methodologies (e.g., OO-H and UWA [8]) have extended their notations con-

ceived for the design of Web applications with business process primitives, but never addressing

the integration with QoS-based selection/optimization/supervision. Web-enabled workflow man-

agement systems, such as, for instance, IBM WebSphere and Oracle Workflow, also provide inte-

gration of processes and hypertexts. These tools, however, solely use the Web as a (thin) interface

to proprietary software modules.

From the QoS perspective, the need for extending traditional service-based platforms by also

considering quality aspects is an emerging research challenge [9]. Our approach for the execution

of flexible applications draws from the PAWS framework [1], which provides advanced mech-

anisms for service retrieval, selection, and mediation. With respect to PAWS, the DISCoRSO

approach provides a richer framework, which couples QoS-based service selection with the auto-

mated generation of user interfaces and run-time supervision.

As for monitoring and supervision, several proposals define specification languages for Ser-

vice Level Agreements (SLAs) and propose an associated monitoring architecture [10, 11]. These

approaches, however, focus on high-level contracts, but they do not scale down to individual pro-

cess’ constructs, which is one of the key elements of our approach. Quite differently, Jurca et

11

al. [7] propose an approach for QoS monitoring based on quality ratings from the clients. Our

approach stresses the synchronous intertwining between execution and supervision to be able to

detect anomalies as soon as they arise.

5 Conclusions and Future Work

The article introduces the elements of the framework DISCoRSO for the design and enactment of

flexible and dynamic business processes. The key innovation of the framework lays in the inte-

grated design of complex processes involving both human and automated activities, with run-time

QoS-based service selection and supervision. This paves the ground to flexible and dynamic solu-

tions, where self-validation and self-adaptation techniques can be introduced. A proof of concept

application has also been discussed: The adoption of the proposed approach allows one to better

coordinate the activities within a cluster of companies and to choose the best “aggregation” of

services (offered by the companies in the district) to reach a given goal, and modify such “aggre-

gations” at run-time according to QoS constraints.

From a research standpoint, we are planning to extend service selection by reducing the opti-

mization overhead to facilitate the management of multiple instances of the same business process

and to investigate constraints on the mutual correctness of different processes.

Authors’ biographies
• Danilo Ardagna is an assistant professor at Politecnico di Milano. His research interests

include services composition and autonomic computing.

• Luciano Baresi is an associate professor at Politecnico di Milano. His research interests
concern the design, deployment, and supervision of fully distributed, dynamic, and depend-
able software systems.

• Sara Comai is an associate professor at Politecnico di Milano. Her main research interests
include conceptual modeling of complex data-intensive workflow and service based Web
applications.

12

• Marco Comuzzi is an assistant professor at Eindhoven University of Technology. His re-
search interests concern automated negotiation algorithms applied in the context of Web
service quality.

• Barbara Pernici is full professor of Computer Engineering at Politecnico di Milano. Her
research activity is in the area of information and service engineering. She has been chair
of IFIP WG 8.1 on Information Systems Design and of IFIP Technical Committee TC8
Information Systems.

References
[1] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, and P. Plebani. PAWS: A famework for executing adaptive

Web-service processes. IEEE Software, 24(6):39–46, 2007.

[2] D. Ardagna and B. Pernici. Adaptive service composition in flexible processes. IEEE Trans. on Software
Engineering, 33(6):369–384, June 2007.

[3] L. Baresi and S. Guinea. Towards dynamic monitoring of WS-BPEL processes. In ICSOC, pages 269–282,
2005.

[4] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera. Designing Data-Intensive Web
Applications. Morgan Kaufmann Publishers Inc., 2002.

[5] M. Comuzzi and B. Pernici. A framework for QoS-based Web service contracting. In ACM Transactions on the
Web, volume 3, pages 1–52, 2009.

[6] P. Faratin, C. Sierra, and N. R. Jennings. Negotiation decision functions for autonomous agents. Int. Journal of
Robotics and Autonomous Systems, 23(3-4):159–182, 1998.

[7] R. Jurca, W. Binder, and B. Faltings. Reliable QoS monitoring based on client feedback. In Proc. WWW2007,
pages 1003–1012, 2007.

[8] N. Koch, A. Kraus, C. Cachero, and S. Meli. Integration of business processes in web application models.
Journal of Web Engineering, 3(1):22–49, 2004.

[9] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-Oriented Computing: a Research Roadmap.
Int. J. Cooperative Inf. Syst, 17(2):223–255, 2008.

[10] A. Sahai, V. Machiraju, M. Sayal, L. J. Jin, and F. Casati. Automated SLA monitoring for web services. In Proc.
IFIP/IEEE International Workshop on Distributed Systems, pages 28–41, 2002.

[11] J. Skene, A. Skene, J. Crampton, and W. Emmerich. The monitorability of service-level agreements for
application-service provision. In WOSP 2007 Proc., pages 3–14, New York, NY, USA, 2007. ACM Press.

13

p2
=0

.1

p1
=0

.9

p2
=0

.1

p1
=0

.9

SW
-q

ua
lity

 ch
ec

k

SW
-in

 st
oc

k

SW
-q

ua
lity

 ch
ec

k

Figure 2: BPMN model of the example process.
14

qc1 Or
de

r
Pro

ces
sin

g

qc2 Or
de

r
Pro

ces
sin

g

Ela
pse

d t
ime

: 1
0 d

ays
Cu

rre
nt

Co
st:

6,0
00

 EU

Ma
x E

xe
Tim

e:
2 d

ays
Re

pu
tat

ion
: 0

.96
Co

st:
2,0

00
 EU

Ma
x E

xe
Tim

e:
2 d

ays
Re

pu
tat

ion
: 0

.95
Co

st:
1,0

00
 EU

Ela
pse

d t
ime

: 1
3 d

ays
Cu

rre
nt

Co
st;

7,0
00

 EU

Ma
x E

xe
Tim

e:
1 d

ay
Re

pu
tat

ion
: 0

.96
Co

st:
3,0

00
 EU

Ex
e T

ime
: 3

 da
ys

Ela
pse

d t
ime

: 1
4 d

ays
Cu

rre
nt

Co
st;

10
,00

0 E
U

Ex
e T

ime
: 1

 da
y

Ex
e T

ime
: 3

 da
ys

Fir
st r

un
-tim

e o
ptim

iza
tion

Re
-op

tim
iza

tion
 an

d n
eg

otia
tion

Ex
ecu

tion
 en

d

A B C D

2 d
ays

5 d
ays

3 d
ays

2 d
ays

0.9
6

0.8
5

0.9
5

0.9
5

2,0
00

 EU

50
0 E

U

20
0 E

U

1,0
00

 EU

Ad
van

ced

Ad
van

ced

Ba
sic

Ad
van

ced

Co
ncr

ete
 Se

rvic
e

Ma
x E

xe
Tim

e
Re

pu
tat

ion
Co

st
Cla

ss

E
3 d

ays
0.9

2
80

0 E
U

Ad
van

ced

Co
ncr

ete
 se

rvic
e d

oe
s n

ot
fulfi

ll lo
cal

 co
nst

rai
nt

Ab
str

act
 sp

eci
fica

tion
Co

ncr
ete

 se
rvic

e s
ele

ctio
n

qc1 Or
de

r
Pro

ces
sin

g

qc2 Or
de

r
Pro

ces
sin

g

Ab
str

act
 sp

eci
fica

tion
Co

ncr
ete

 se
rvic

e s
ele

ctio
n

Glo
ba

l co
nst

rai
nt

vio
lati

on
Re

-op
tim

iza
tion

 is
trig

ge
red

.
Ex

tra
 bu

dg
et

is u
sed

 to
 re

du
ce

A e
xec

utio
n t

ime

qc1 Or
de

r
Pro

ces
sin

g

Ab
str

act
 sp

eci
fica

tion
Co

ncr
ete

 se
rvic

e s
ele

ctio
n

qc1 Or
de

r
Pro

ces
sin

g

Ab
str

act
 se

rvic
e a

lre
ad

y e
xec

ute
d

Ab
str

act
 se

rvic
e t

o b
e e

xec
ute

d

Tim
e r

em
ain

ing
: 4

 da
ys

Bu
dg

et
rem

ain
ing

: 4
,00

0 E
U

Tim
e r

em
ain

ing
: 1

 da
y

Bu
dg

et
rem

ain
ing

: 3
,00

0 E
U

D
D

A
A

D A

Figure 3: Execution of the quality control activities.
15

