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Numerical simulation of fully nonlinear interaction between steep waves  
and 2D floating bodies using the QALE-FEM method 

 

S. Yan and Q.W. Ma  
School of Engineering and Mathematical Sciences, City University, London, EC1V 0HB, UK 

 
Abstract 

This paper extends the QALE-FEM (Quasi Arbitrary Lagrangian-Eulerian Finite Element Method) 

based on a fully nonlinear potential theory, which was recently developed by the authors ([1], [2]), to 

deal with the fully nonlinear interaction between steep waves and 2D floating bodies. In the QALE-

FEM method, complex unstructured mesh is generated only once at the beginning of calculation and is 

moved to conform to the motion of boundaries at other time steps, avoiding the necessity of high cost 

remeshing.  In order to tackle challenges associated with floating bodies, several new numerical 

techniques are developed in this paper.  These include the technique for moving mesh near and on 

body surfaces, the scheme for estimating the velocities and accelerations of bodies as well as the 

forces on them, the method for evaluating the fluid velocity on the surface of bodies and the technique 

for shortening the transient period.  Using the developed techniques and methods, various cases 

associated with the nonlinear interaction between waves and floating bodies are numerically simulated.  

For some cases, the numerical results are compared with experimental data available in the public 

domain and good agreement is achieved. 

 

Keywords: QALE-FEM; Nonlinear water waves; Spring analogy method; Iterative procedure; 2D 

floating bodies 

 

1. Introduction 

With operations in the oil and gas industry moving to deeper water, offshore structures are more 

likely to be exposed to very harsh environments and extremely steep waves and therefore undergo 

large motions.  As a result, there is an increasing interest in numerically simulating nonlinear water 

waves and their interaction with floating structures.  Two classes of theoretical models for cases with 

finite water depth are in common use for numerical simulations.  One is based on general flow theory 

and the other is based on potential theory.  In the first class of models, the Navier-Stokes and 

continuity equations together with proper boundary conditions are solved; while in the second class, 

the Laplace equation with fully nonlinear boundary conditions are dealt with.  For brevity, the first 

class of models will be called NS Model and the second called FNPT (representing fully nonlinear 

potential theory) Model in the paper.  

In the community of researchers who use the NS Model, three formulations have been suggested: 

Eulerian, Lagrangian and arbitrary Lagrangian-Eulerian (ALE) formulations. Various numerical 

methods, such as finite element, finite volume and finite difference methods have been adopted to 
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solve the Navier-Stokes and continuity equations together with one of three formulations. However, 

whichever formulation is used, solving the NS equations is always a time consuming task.  As a result, 

the FNPT Model has been employed in many publications for problems associated with nonlinear 

water waves and their interaction with structures.  In this model, viscosity is ignored.  The governing 

equations are dramatically simplified and therefore need much less computational resources to be 

solved than in the NS Model.  Comparison with experimental data ([3]-[6]) has shown that the results 

obtained by using this model are accurate enough if breaking waves do not occur and/or if structures 

involved are large.  Therefore, the FNPT Model, instead of the NS Model, should be preferred if a case 

considered falls in this category.  

The problems formulated by FNPT model are usually solved by a time marching procedure 

suggested by Longuet-Higgins & Cokelet [7].  In this procedure, the key task is to solve the boundary 

value problem by using an efficient numerical method, such as the boundary element method (BEM) 

or the finite element method (FEM).  The BEM has been attempted by many researchers, such as Vinje 

& Brevig [8] , Lin, Newman & Yue [9] , Wang, Yao & Tulin [10], Kashiwagi [11], Cao, Schultz & 

Beck [12], Celebi, Kim & Beck [13], Grilli, Guyenne & Dias [14] and Kim, Celebi & Kim [15].  The 

FEM has been developed by Wu & Eatock Taylor ([16],[17]) for two dimensional cases and by Ma, 

Wu & Eatock Taylor ([5],[6]) and Ma [18] for three dimensional cases.  All the above publications are 

concerned with problems either about fixed bodies or those with a prescribed motion. Until now, the 

publications about the interaction between fully nonlinear waves and free-response bodies are still 

very limited.  Beck & Schultz [19] made nonlinear computation of wave loads and motions of freely 

rectangular barge in incident waves.  Tanizawa [20], Tanizawa & Minami [21] and Tanizawa, Minami 

& Naito [22] simulated 2D freely barge-type floating body, followed by Koo [23] and Koo & Kim 

[24].  Kashiwagi & Momoda  [25] and Kashiwagi [26] investigated wave-induced motions of 2D 

complicated-shape floating body.  All of them used the BEMs.  Recently, Wu & Hu modelled the 

interaction between waves and a 3D cylindrical FPSO-like structure ([27]) in which the FEM was 

applied.  

Both the BEM and the FEM have been proved efficient but the later require less memory and is 

therefore computationally more efficient for fully nonlinear wave-body problems, as indicated by Ma, 

Wu & Eatock Taylor [5] and Wu & Eatock Taylor [16].  A disadvantage of the FEM, however, is that a 

complex unstructured mesh is necessary for complicated geometries to achieve accurate results, which 

may need to be regenerated at every time step to follow the motion of waves and bodies.  Repeatedly 

regenerating such a mesh may take a major part of CPU time and so makes the overall simulation very 

slow.  To reduce the CPU time spent on updating the mesh, a simple structured mesh was used in [5]-

[6] and [16]-[18]. Wu & Hu [27] recently developed a hybrid mesh for the same purpose but it was 

restricted only to cylindrical structures without rotational motions because of the limitation of the 

mesh structure.  The problem associated with mesh has become a bottleneck in the development of 

efficient methods dealing with the interaction between water waves and freely floating bodies.  To 
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overcome the difficulty, Ma and Yan ([1] and [2]) have recently invented a QALE-FEM (Quasi 

Arbitrary Lagrangian-Eulerian Finite Element Method).  The main idea of this method is that the 

complex unstructured mesh is generated only once at the beginning of calculation and is moved at 

other time steps to conform to motions of boundaries. This feature allows one to use an unstructured 

mesh with any degree of complexity without the need of regenerating it at every time step.  Ma & Yan 

[1] compared the QALE-FEM with conventional FEM in terms of computational efficiency and 

accuracy in the cases with periodic bars on the seabed.  They concluded that the QALE-FEM may 

require less than 15% of the CPU time required by the conventional FEM at the same accuracy level.  

However, they applied the new method only to cases without floating bodies.  

In this paper, the QALE-FEM is extended to deal with problems involving 2D freely floating 

bodies.  In order to tackle the challenges associated with floating bodies, several new numerical 

techniques are developed.  These include a technique for moving the mesh near and on the body 

surface, a scheme for estimating the velocities and accelerations of bodies as well as the forces on 

them, a method for evaluating the fluid velocity on the surface of bodies and a technique for 

shortening the transient period.  The last technique is beneficial to investigations of response 

amplitude operators (RAOs) of floating bodies in waves, which require reaching a steady state (all 

motions being periodic with roughly constant amplitudes) as soon as possible in order to save CPU 

time.  Using these developed techniques, various cases associated with the nonlinear interaction 

between waves and floating bodies are numerically simulated.  For some cases, the numerical results 

are compared with experimental data available in the public domain and good agreement is achieved. 

 

2. Mathematical model and numerical method 

In this paper, waves are generated by a piston-like wavemaker in a tank as shown in Fig.1. The 

wavemaker is mounted at the left end and a damping zone with a Sommerfeld condition (see [5] and 

[18] for details) is applied at the right end of the tank in order to suppress the reflection.  A Cartesian 

coordinate system is used with the oxy plane on the mean free surface and with the z-axis being 

positive upwards.  A floating body is placed at x=0 initially and moored to the bed or walls of the tank. 

 

2.1. FNPT model for fluid 

Similar to the usual formulation for the FNPT Model, the velocity potential (φ ) satisfies Laplace’s 

equation, 

02 =∇ φ  (1) 

in fluid domain. On the free surface ( )tyxz ,,ζ= , the velocity potential satisfies the kinematic and 

dynamic conditions in the following Lagrangian form, 

zDt
Dz

yDt
Dy

xDt
Dx

∂
∂

=
∂
∂

=
∂
∂

=
φφφ ,,  (2)
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2
1 φφ
∇+−= gz

Dt
D

 (3) 

where 
Dt
D

 is the substantial (or total time) derivative following fluid particles and g is the 

gravitational acceleration.  In Eq. (3), the atmospheric pressure has been taken as zero.  On all rigid 

boundaries, such as the wavemaker and the floating body, the velocity potential satisfy  

)(tUn
n

rr
⋅=

∂
∂φ

   (4) 

where  and n  are the velocity and the unit normal vector of the rigid boundaries, respectively.  

The positive direction of the normal vector points to the outside of the fluid domain. 

( )tU
r r

 

Wavemaker Damping zone

Floating body
z

y

x

 
Fig. 1.  Sketch of fluid domain 

 

2.2. Motion equations of a floating body 

The displacements, velocities and accelerations of a floating body are governed (see, e.g., [18] and 

[28]) by  

FUM c

rr
& =][  (5a) 

NII
rrrr

& =Ω×Ω+Ω ][][   (5b) 

cU
dt
Sd r
r

=   (6a) 

Ω=
r

r

dt
dB θ][   (6b) 

where F
r

and  are the force and moment acting on the floating body; N
r

cU
r

and cU
r
&  the translational 

velocity and acceleration of its gravitational centre; Ω
r

 and Ω
r
&   its angular velocity and acceleration; 

),,( γβαθ
r

 the Euler angles; S  the translational displacements.  In Eq. (5) and (6),  [M] and [I] are 

mass and inertia matrixes, respectively; and [B]  is the matrix formed by Euler angles and defined as, 

r

L

Mooring line

LmLw

d 

B 
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⎤
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⎢

⎣

⎡
−=

10sin
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0sincoscos

β
γγβ
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B   (7) 

In 2D cases, 0][ =Ω×Ω
rr

I , 0,0 == γα , Eqs (5b) and (6b) can be rewritten as  

NI
rr

& =Ω][   (8) 

Ω=
r

r

dt
dθ

  (9) 

Once  and ΩcU
r r

 are known, the velocity at a point on the body is determined by  

Ω×+=
rrrr

bc rUU   (10) 

where  is the position vector relative to the gravitational centre. br

 

2.3. Force calculation 

The force ( F
r

) and moment ( ) acting on a body in Eqs. (5) and (6) can be evaluated by, N
r

m
S

fdsngz
t

F
b

rrr
+⎟

⎠
⎞

⎜
⎝
⎛ +∇+
∂
∂

−= ∫∫
2

2
1 φφρ  (11) 

m
S

b Ndsnrgz
t

N
b

rrrr
+×⎟

⎠
⎞

⎜
⎝
⎛ +∇+
∂
∂

−= ∫∫
2

2
1 φφρ   (12) 

where Sb denotes the wetted body surface. mf
r

and mN
r

 are forces and moments due to mooring lines, 

respectively. Because this paper focuses on the wave-body interaction, the mooring lines are 

approximated by using linear springs, i.e.,  

mmm Skf
rr

=   (13a) 

mmm frN
rrr

×=    (13b) 

in which km is the spring stiffness, is the displacement of the mooring point, mS
r

mr
r

 is the position 

vector of the mooring point relative to the gravitational centre.  

As can be seen, the time derivative of the velocity potential ( t∂∂ /φ ) is required and is critical for 

accurately calculating forces and moments. A simplest way to calculate t∂∂ /φ  is to use a backward 

finite difference scheme: 

tt

nnn

∆
−

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ −1φφφ

   (14) 

where is the time step and the superscript n denotes nt∆ th time step. As is well known, however, the 

scheme may suffer from a problem of the saw-tooth instabilities ([29]).  An alternative approach is to 
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find t∂∂ /φ  by solving a similar boundary value problem to that for φ  defined in Eqs. (1)-(4) (see, for 

example,[5]-[6], [16]-[18]).  The boundary value problem for t∂∂ /φ  is defined by, 

02 =⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∇
t
φ

          (15) 

in the fluid domain.  On the free surface ( )tyxz ,,ζ= ,  it is given by 

2

2
1 φζφ
∇−−=

∂
∂ g

t
  (16) 

On all rigid boundaries, it satisfies 

)]([][ φφφ
∇−×

∂
∂

⋅Ω+
∂
∂∇
⋅−⋅×Ω+=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

cbcbc Ur
nn

UnrU
tn

rr
r

rrrrr
&

r
& .  (17) 

It should be noted here that there is a difficult with solving Eqs. (15) to (17).   As can be seen from 

Eq. (17), the accelerations cU
r
&  and Ω

r
&  should be known when solving the boundary value problem for 

t∂∂ /φ .  However, in cases involving a free-response floating body, they are evaluated by Eqs. (5) and 

(6), which depends on the force and moment given in Eqs. (11) and (12).  In turn, to find the force and 

moment, one needs t∂∂ /φ .   The scheme to overcome this difficulty will be detailed in Section 5 

below. 

 

2.4. FEM formulation 

The full details about the FEM formulation have been discussed in our previous publications, for 

example [1], [5] and [18].  They will not be repeated here.  Only summary of the formulation is given 

below. 

The problem described by Eqs. (1) to (4) will be solved by using a time step marching procedure.  

At each time step, the free surface and the potential values on it as well as velocities on all rigid 

boundaries are known.  Thus, the boundary condition for the potential on the free surface can be 

replaced by a Dirichlet condition: 

pf=φ   (18) 

where  is the potential values on the free surface, which can be estimated by using Eq. (3) and a 

time integration scheme with second order accuracy.  Therefore, the unknown velocity potential in the 

fluid domain can be found by solving a mixed boundary value problem which is defined by Eqs. (1), 

(4) and (18).  To do so, the fluid domain is discretised into a set of small tetrahedral elements and the 

velocity potential is expressed in terms of a linear shape function,

pf

( )N x y zJ , , : 

∑=
J

JJ zyxN ),,(φφ   (19) 

where Jφ is the velocity potential at Node J.  Using the Galerkin method, the Laplace equation and the 
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boundary conditions are discretised as follows, 

∑∫∫∫∫∫∫ ∫∫∑
∈

∀∀

∉

∀∇⋅∇−=∀∇⋅∇

P

n

P SJ
J

JJpIS nI

SJ
J

JJI dNfNdSfNdNN )(φ   (20) 

where SP represents the Dirichlet boundary on which the velocity potential fp is known and Sn 

represents the Numann boundary on which the normal derivative of the velocity potential fn is known. 

Eq. (20) can further be written in the matrix form: 

[ ]{ } { }BA =φ                                          (21) 

where 

{ } [ ] )(,,,,, 321 P
T

I SI ∉= KK φφφφφ  (22a) 

( PPJIIJ SJSIdNNA ∉∉∀∇⋅∇= ∫∫∫
∀

, ) (22b) 

( )P
SJ

JJpI
S

nII SIdNfNdSfNB
Pn

∉∀∇⋅∇−= ∫∫∫ ∑∫∫
∀ ∈

)(  (22c) 

The algebraic Eq. (21) is solved by using a conjugate gradient iterative method with SSOR pre-

conditioner and optimised parameters [18].  The problem about t∂∂ /φ  described in Eqs. (15) to (17) 

is also solved by using the above method with φ  and the boundary conditions for it are replaced by 

t∂∂ /φ  and corresponding boundary conditions for t∂∂ /φ . 

 

3. Summary of QALE-FEM method  

As indicated in the Introduction, the QALE-FEM developed in [1] will be extended in this paper 

to deal with problems with 2D floating bodies.  In this section, the key elements of the QALE-FEM in 

[1] are summarised before presenting new developments of this paper. 

 

3.1. Scheme for moving mesh 

The main idea of the QALE-FEM is that the complex unstructured mesh is generated only once at 

the beginning of calculation and is moved at other time steps to conform to the motion of boundaries.  

Obviously, the technique for moving the mesh is crucial in this method to achieve high robustness and 

high efficiency.  For this purpose, a novel methodology is suggested and adopted, in which interior 

nodes and boundary nodes are considered separately; the nodes on the free surface and on rigid 

boundaries are considered separately; nodes on the free surface are split into two groups: those on 

waterlines and those not on waterlines (inner-free-surface nodes); and different methods are employed 

for moving different nodes. 

To move the interior nodes which do not lie on boundaries, a spring analogy method is used.  In 

this method, nodes are considered to be connected by springs and the whole mesh is then deformed 

like a spring system.  Specifically, the nodal displacement is determined by 
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∑∑
==

∆=∆
ii N

j
ij

N

j
jiji krkr

11

rr
                                                                                                        (23) 

where ir
r

∆  is the displacement at Node I;  kij is the spring stiffness and Ni is the number of nodes that 

are connected to Node I.  For problems about nonlinear water waves, it is crucial to maintain the 

quality (good element shapes and reasonable node distribution) of mesh near the free surface.  To do 

so, the spring stiffness in the QALE-FEM is suggested as  

( )[ ]dzz

ij
ij

jie
l

k 21
2
1 ++= γ   (24) 

where kij is the spring stiffness, lij is the distance between Nodes I and J; zi and zj are the vertical 

coordinates of Nodes I and J; d is the water depth; and γ is an coefficient that should be assigned a 

larger value if the springs are required to be stiffer at the free surface.  The spring analogy method is 

also used for moving nodes on rigid boundaries. 

The positions of nodes on the free surface are determined by physical boundary conditions, i.e., 

following the fluid particles at most time steps.  The nodes moved in this way may become too close 

to or too far from each other.  To prevent this from happening, these nodes are relocated at a certain 

frequency, e.g. every 40 time steps.  When doing so, the nodes on the waterlines is re-distributed by 

adopting a principle for a self-adaptive mesh, i.e., the weighted arc-segment lengths satisfies 

sii Cs =∆ϖ  (25) 

where ϖ  is a weighted function,  the arc-segment length between two successive nodes and Cis∆ s a 

constant.  In order to relocate the inner-free-surface nodes, they are first moved using the spring 

analogy system in the projected plane of the free surface, resulting in new coordinates x and y; and 

then the elevations of the free surface corresponding to the new coordinates are evaluated by an 

interpolating method.  In order to take into account of the local gradient of the free surface, however, 

the spring stiffness for moving the nodes in x- and y- directions is determined, respectively, by: 

( )
2

2 11
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+=
xl

k
ij

x
ij

ζ   and ( )
2

2 11
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+=
yl

k
ij

y
ij

ζ . (26) 

where  and  are the spring stiffness;  ( )x
ijk ( )y

ijk
x∂

∂ζ
 and 

y∂
∂ζ

 the local slopes of the free surface in the x- 

and y-directions, respectively.  The numerical tests in [1] have shown that the scheme for moving 

mesh is very robust and very efficient. 

 

3.2. Calculation of fluid velocities on the free surface 

The mesh used in the QALE-FEM is arbitrarily unstructured and moving during the calculation.  

An effective method to calculate the fluid velocity on the free surface under this condition is 

developed in [1].  In this method, the velocity at a node I with neighbours Jk (k=1,2,3, ……, m) on the 

 8



free surface is split into normal and tangential components.  To estimate the normal component of the 

velocity, two points on the normal line at Node I are selected firstly and the velocity potentials at these 

two points are then approximated by using a moving least square method.  The normal component ( nvr ) 

of the velocity is determined by a three-point finite difference scheme: 

n
hh

h
hhhhh

hh
h

v I
II

I

I
I

II
I

II

II

I
n

rr
⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+
+

= 2
21

1

2
1

1221

21

1 3
21

3
2

2
12

3
2 φφφ . (27) 

where I1 and I2 represent the two points selected; hI1 and hI2 are the distances between I and I1 and 

between I1 and I2, respectively; and Iφ , 1Iφ  and 2Iφ  denote the velocity potentials at the node and the 

two points; the later two, 1Iφ  and 2Iφ , are found by a moving least square method.  After the normal 

component of the velocity is determined, the tangential components of the velocity is calculated using 

a least square method based on the following equation 

kkkykx IJnIJIJIJ lvllvlv
rrrrrrr
⋅−∇⋅=⋅+⋅ φττ  ( k=1,2,3, ……, m)  (28) 

where 
kIJl

r
is the unit vector from Node I  to Node Jk; 

x
vτ
r

 and 
y

vτ
r

 represent the velocity components 

in xτ
r

 and yτ
r

 directions, respectively.  These directions are determined by nx
rr

⊥τ , xx err //τ , ny
rr

⊥τ  

and yy err //τ , where xer and yer  are the unit vectors in the x- and y-directions, respectively. 

 

4. Mesh moving scheme associated with floating bodies 

The new developments of this paper for dealing with problems with a 2D floating body will be 

presented in the next three sections.  They mainly contain three aspects: 1) mesh moving when a 

floating body is involved; 2) calculation of fluid velocities on the surface of the floating body and 3) 

estimation of velocities of the floating body and forces on it.  The first aspect is presented in this 

section. 

The basic strategy and principle to move the mesh are similar to that for the problem without 

floating bodies as summarised above.  Nevertheless, special considerations must be devoted to the 

mesh near the body and on its surface, which is discussed in the following two subsections. 

 

4.1.  Moving interior nodes 

Interior nodes are moved by the analogy spring method, similar to that for problems without 

floating bodies as outlined above.  However, with a floating bode involved, the mesh must preserve a 

reasonable element shape and node distribution not only in the vicinity of the free surface but also in 

the region close to the floating body, i.e. the near-body-region, as illustrated in Fig.2.  To achieve this, 

the springs near both the free and body surfaces are chosen to be stiffer than those in other areas, that 

is, Eq. (24) is replaced by 
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( )[ ] )2/ˆˆ(21
2
1 jibjif wwdzz

ij
ij ee

l
k +++= γγ  (29) 

where fγ  is the same as γ  in Eq. (24); bγ  plays the same role as fγ  but is used to adjust the spring 

stiffness near the body surface.  The two coefficients may be different but in this paper they are taken 

to be the same values, i.e., 7.1== bf γγ .  In Eq. (29),  is a weight function and is determined by, ŵ

⎩
⎨
⎧

≤−
>

=
ffff

ff

DdDd
Dd

w
/1

   0
ˆ    (30a) 

where df is the minimum distance from the node concerned to the body surface as shown in Fig. 2; Df 

is the distance between the body surface and the boundary of the near-body-region and is defined as, 

maxcf dD ε=   (30b) 

where dcmax is the maximum distance from the gravitational centre to the wetted body surface and 

depends on the relative position of the floating body to the free surface.  Numerical tests show that ε  

= 1.5 is suitable.  It can be seen from Eq. (29) and (30) that the spring stiffness outside the near-body-

region is the same as that for problem without a floating body. 

 

                            
Fig. 2 Region near floating body (GC: Gravitational centre) 

 

4.2.  Moving nodes on body surfaces 

The wetted body surface is time-dependent in the problems considered here.  In order to conform 

to the change in the wetted body surface, the nodes on the surface must also be moved at each time 

step.  The principle for doing so is similar to that for moving the nodes on the free surface, i.e., 

splitting the nodes into two groups: nodes on the waterline and nodes lying on the body surface but not 

on the waterline, the later called inner-body-surface nodes.  For 2D problems, there are only two nodes 

on the waterline.  They are moved by using the tangential velocity of the fluid relative to the body 

surface.   The inner-body-surface nodes may appear to be moved by the same approach for moving 

inner-free-surface nodes, i.e., projecting the nodes onto a horizontal plane, moving the nodes in it by 

using the spring analogy method and then finding the new positions of nodes on the body surface by 

interpolation.  This approach is obviously subjected to a condition that the surface must have only one 

Free surface 

GC 

dcmax

Floating body 

Df 

I 
dmin

Near-body-region 
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intersecting point with any vertical line; in other words, it can be expressed by a single-valued 

function.  However, this is not always true for floating body surfaces, particularly when they undergo 

angular motions, such as roll and/or pitch.  Therefore, one can not actually use the same approach as 

for moving the inner-body-surface nodes.  A new approach is developed here.  In this new approach, 

the spring analogy method is applied in a local coordinate system formed by the local tangential and 

normal lines.  In this local coordinate system, the body surface is single–valued; i.e., there is only one 

intersecting point between the body surface and a line parallel to the local normal line (and, of course, 

perpendicular to the local tangential line).  A node, e.g., i, is first moved along the tangential line by 

∑∑
==

⋅∆=∆
ii N

j
ij

N

j
iiji krkr

11
ττ
rrr

 (31) 

where iτ
r

 is the tangential direction at node i.  After that, the new position of the nodes on the body 

surface is found by interpolation in the local coordinate system.  The spring stiffness in Eq. (31) is 

taken as . 2/1 ijij lk =

It should be noted that at a sharp corner, there will be no unique tangential and normal lines and 

so the above approach fails.  The remedy for overcoming the difficulty is to prescribe a node at the 

corner or to smooth the corner.  Either way works well and gives similar results based on our 

numerical tests.  It should also be noted that the new approach described in this sub-section may be 

employed to move inner-free-surface nodes when overturning waves are involved, though they are not 

considered in the paper. 

 

5. Calculations of fluid velocity on the surface of the floating body 

        The velocity potential on the floating body surface always satisfies Eq. (4) and so the normal 

components of fluid velocity on the body surface can be determined by 

)()( bcn rUntUnv vvrvrrr
×Ω+⋅=⋅=   (32) 

Eq. (28) is then used to estimate the tangential component of fluid velocity on the body surface.  In 2D 

cases, it is similar to a central difference scheme at the inner-body-surface nodes.  However, at the 

nodes on the waterline, it becomes similar to a backward scheme due to unsymmetrical distribution of 

nodes around the waterline and so becomes less accurate than at the inner-body-surface nodes.  As an 

alternative, the tangential velocity at waterline nodes is estimated by using a three-point method 

similar to Eq. (27).  The normal line required by Eq. (27) is taken as a line (τw) tangent to the body 

surface, as shown in Fig. 3.  The three points contain the node on the waterline and other two points on 

the line τw.  The velocity potentials at the two points (marked as empty circles in Fig. 3) are found 

using the same method as that for I1 and I2 in Eq. (27). 
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Fig. 3 Definition of tangential and normal directions at a node on the waterline 

 

6. Calculation of forces on and velocities of the floating body 

In this paper, t∂∂ /φ , involved in Eqs. (11) and (12) for estimating the forces on floating bodies, 

is calculated by solving a boundary value problem defined in Eqs. (15)-(17).  As discussed in Section 

2.3, there is difficulty with doing so due to the nonlinear coupling between the body and wave motions.  

In order to tackle this difficulty, four types of methods have been suggested in the literature, i.e. the 

indirect method, the mode-decomposition method, the Dalen & Tanizawa’s method and the iterative 

method.  The indirect method was developed by Wu & Eatock Taylor [16] and followed by Kashiwagi 

& Momoda [25] and Kashiwagi [26], Wu & Hu [27].  In this method, some auxiliary functions were 

introduced to decouple the mutual dependence between the force and the acceleration of the body.  

The mode-decomposition method was suggested by Vingi & Brevig [8] and adopted by Koo [23] and 

Koo & Kim [24].  In this approach, the body acceleration is decomposed into several modes (4 modes 

in 2D cases or 7 modes in 3D cases, respectively).  Every mode is found by solving a boundary value 

problem similar to that for the velocity potential but under different boundary conditions. Using these 

modes and the body-motion equations, the body acceleration is determined.  Both these methods have 

to solve 4 or 7 extra Laplace equations under different boundary conditions.  The CPU time, therefore, 

may be considerably increased if employing an iterative procedure rather than a direct solution scheme 

(such as Gauss Elimination) which is unlikely to be suitable for solving the corresponding linear 

algebraic system containing a very large number of unknowns.  In the method proposed by Dalen [30] 

and Tanizawa in [20] and [31], the body accelerations in Eq. (17) are implicitly substituted by the 

Bernoulli’s equations and thus the velocity potential and its time derivative are solved without the 

need of calculating accelerations of the floating bodies.  However, this method requires one to form a 

special matrix for t∂∂ /φ  which is different from the one for the velocity potential and whose 

properties have not been sufficiently studied.  This is likely to increase the difficulty for numerically 

solving the algebraic equations associated with t∂∂ /φ  and also needs more CPU time for generating 

the special matrix.  That would be the main reason for this method not to be commonly used.   Cao, 

Beck. & Schultz [19] suggested an iterative method to calculate the force and acceleration at each time 

step; in this way, the need to solve extra equations in the first two methods and the problem with the 

third method is eliminated. 

For the purpose of time marching, a standard explicit 4th-order Runge-Kutta scheme is generally 

n
Free surface 

τw

Floating 
body 
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used to update the velocity of the floating body, which requires three sub-step calculations at one time 

step forward.  In each sub-step, the geometry of the computational domain may or may not be updated.  

If it is not updated, it is called a frozen coefficient method; if it is update, it is called a fully updated 

method.   The CPU time spent on updating in the fully updated method is roughly equal to 4 times that 

in the frozen coefficient method.  However, the frozen coefficient may not lead to stable and 

reasonable results for problems with large motions of floating bodies, as indicated by Koo & Kim [24]. 

The body velocity is estimated from the acceleration at previous time steps (or sub-steps) in all 

the above methods; i.e., the corresponding procedure is explicit.  The explicit procedure may be 

satisfactory if time steps and so changes in the velocity and acceleration in one step are sufficiently 

small; otherwise, it may degrade the accuracy and even lead to instability. 

In this paper, an improved iterative procedure, called Iterative Semi Implicit Time Integration 

Method for Floating Bodies (ISITIMFB), is developed, which takes some advantages and overcome 

some disadvantages of other methods.  This method features by (a) using the acceleration in the 

current step to estimate the body velocity, i.e., it is implicit, distinguishing it from all other methods 

discussed above; (b) not requiring sub-step calculations, different from the fully updated Runge-Kutta 

method; (c) eliminating the necessity of solving the extra equations as in the indirect method and the 

mode-decomposition method and the need to generate a special matrix in the Dalen & Tanizawa’s 

method, getting rid of the main disadvantages of all three; (d) not updating the positions of the free 

surface and the floating body during the iteration to find the acceleration and force, saving the CPU 

time spent not only on this but also on forming the new coefficient matrix. The details of the method 

are described as follows. 

Suppose that all calculations until t=tn-1 have been finished and so the velocity potential and its 

time derivative on the free surface, the positions of all boundaries including the free surface and the 

body surface have been obtained through updating.  To find the fluid and body velocities at time tn, the 

following procedure is used. 

1) Predict the body acceleration )0(nA
r

 at time tn by curve fitting of accelerations at previous 

time steps using a least square method [34] and estimate the corresponding body velocity by 

using the Adams-Moulton method [35] as following, 

( ) ( ) )85(
12

21010 −−− −++= n
b

n
b

n
b

n
b

n
b AAAtUU

rrrrr ∆
 (33) 

where )0(nA
r

 and  represent the predicted values of translational or angular body 

accelerations and velocities, respectively, at the current time step, which are used as the initial 

values of iteration. 

( )0n
bU
r

2) Solve the boundary value problem for φ  using ( )0n
bU
r

 in Eq. (4) for the boundary condition 

on the body surface. 

3) Calculate the fluid velocity and the time derivative of the velocity potential on the free 
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surface. 

4) Calculate the fluid velocity ( )0n
bV
r

on the body surface. 

5) Using the following loop to find the acceleration of and forces on the body: 

(a) Solve the boundary value problem for 
( )kn

t
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂φ

  using )1( −knA
r

,  and ( 1−kn
bU
r ) ( )1−kn

bV  

in its boundary condition on the body surface (Eq. (17)), where the subscript n(k-1) 

represent the variables at time tn but at k-th iteration (k=1,2,3……); 

(b) Calculate the forces or moments )(knF
r

 and so the acceleration  

 [ ] ( )[ ])1()(1)( 1 −− −+= knnknnkn
b FFMA

rrr
αα ;                                                              (34) 

in which mass matrix [ ]M should be changed to the moment matrix of the mass [ ]I , 

(Eq. (8)), if the annular acceleration and moment are concerned; 

(c) Estimate the new body velocity using the similar method to Eq. (33) 

            ( ) ( ) )85(
12

211 −−− −++= n
b

n
b

kn
b

n
b

kn
b AAAtUU

rrrrr ∆
;                                                         (35) 

(d) Solve the boundary value problem for φ  using ( )kn
bU
r

 in Eq. (4) for the boundary 

condition on the body surface; 

(e) Calculate the new fluid velocity ( )kn
bV
r

 on the body surface; 

(f) Check if the relative error of accelerations (or forces) is small enough; if not, go to a); 

otherwise go to 6). 

6) Update the position of the body using the final body velocity and acceleration in the above 

loop by using the 3rd order Taylor expansion,   

dt
UdtUttUSS

un
ununn

b
n

b

)(3
)(

2
)(1

62

r
&r

&
rrr ∆

+
∆

+∆+=+  (36)                             

where is the translational or annular displacement of the body to be used for the 

calculation of the next time step; 

1+n
bS
r

)(unU
r

and )(unU
r
&  represent the final values of body 

velocities and accelerations (translational or annular) in the above loop, respectively; and 

dt
Ud un )(
r
&

is calculated by using the finite difference scheme ( ) tUU
dt

Ud unun
un

∆−= − /)(1)(
)( r

&
r
&

r
&

.  

 7) Calculate the fluid velocity on the free surface using the final velocity potential in the above 

loop. 

8) Update the time derivative of the velocity potential on and the positions of the free surface 

using the same method as in [5] and [18].  

9) Go to next time step.   
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As can be seen, an under-relaxation in Eq. (34) is employed in the iterative loop from (a) to (f) to 

improve the convergent efficiency.  The value of αn is determined by  

)0(1)1(1

)0(1)(1

−−

−−

−
−

= n
b

n
b

n
b

un
bn

AA
AAα                                                                                                        (37) 

where  is the final value of the acceleration in the iteration at the previous step.  This 

expression is proposed by considering the fact that if one had known , the solution for 

would have been found in one iteration through (a) to (f) and by assuming that . 

)(1 un
bA −

1−nα
)(1 un

bA − 1−≈ nn αα

The efficiency of the iterative procedure is signified by the iterative counter (or the number of 

iterations) in the above loop - the smaller iterative counter the more efficient.  One may understand 

that the iterative counter for a specified accuracy depends on the quality of the predicted velocity in Eq. 

(33) and three values of the acceleration in Eq. (35).  The better prediction of the velocity and the 

closer values of the acceleration should lead to the smaller number of iterations.  The quality of the 

predicted velocity and the values of the acceleration are in turn determined by the time step, the 

amplitude of the body motions and the natural frequency of the system.  It is expected that the velocity 

is better predicted and three values of the acceleration becomes closer and hence the iterations is fewer 

if the time step and the amplitude are smaller and/or if the natural period is larger.  For the given wave 

and the shape of the body, the largest motion amplitude is related to the natural period. Therefore, the 

two most important factors affecting the iterative counter may be the time step and the natural period.  

Their effects are to be investigated in Section 7.2.2.  

This iterative procedure is distinguished from one in [19] by three aspects.  (1): The velocity 

potential (and so the fluid velocity) is obtained in [19] by assuming that the body velocity in Eq. (4) is 

estimated using the acceleration at the previous time step and thus the boundary value problem for  φ  

is solved only once, i.e. without Step (d), in the above loop.  Therefore the procedure in [19] is actually 

an explicit method as implied above.  (2): The relaxation scheme in Eq. (34) and the corresponding 

relaxation coefficient in Eq. (37) are employed in this paper while it is not clear whether any 

relaxation is adopted in [19].  (3): The body velocity used in Eq. (4) is continually updated here by 

employing the scheme as given in Eqs. (33) and (35), while it needs to be evaluated only once in [19].   

It has been pointed out that the body and free surface positions are not updated in the iteration 

loop in the above procedure.  That is why this method is classified as ‘Semi Implicit’.  In this aspect, it 

is similar to the frozen coefficient method.  However, this procedure has not been found to suffer the 

instability problem associated with the frozen coefficient method; instead, it has been found to share 

the similar stable behaviour with the full updated Runge-Kutta method.  Numerical demonstration of 

this will be given below. 
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7. Validations and discussions  

In this section, the QALE-FEM method is validated by comparing its numerical predictions with 

analytical solutions and published results from other papers.  Unless mentioned otherwise, the 

parameters with a length scale are nondimensionalised by the water depth d; and other parameters, 

including the time and frequency, by  

gdt /τ→  and dg /ωω→ .  

 

7.1. Forced-motion bodies 

Although the main aim of this paper is to simulate cases involving 2D free-response floating 

bodies, the case for a 2D body in forced motions is investigated in the first stage in order to validate 

the force calculation, in which the iteration loop discussed in the previous section becomes 

unnecessary since the body acceleration does not need to be found.   The body in these cases is formed 

with a circular cylinder as the submerged part and vertical walls above it, as shown in Fig.4 (a). The 

dimensionless radius of the cylinder ( bR ) is 0.25.  The initial mesh around the body is similar to that 

in Fig. 4(b) but much finer.  

   
                     (a) floating body                                               (b) initial mesh near the body 

Fig.4 Sketch of body motions and illustration of initial mesh 

 

The displacement (η ) of the body is specified by 

)sin()( τωτη bba=  (38) 

where  and ba bω  are the amplitude and circular frequency of the motion, respectively.  The velocity 

corresponding to Eq. (38) is .  This implies that the floating body suddenly 

gain a finite value of velocity from rest, which is not only practically impossible but also can result in 

a numerical difficult ([32]-[33]).  To avoid it, the velocity 

)cos()( τωωτ bbbc aU =
r

cU
r

is ramped as in [33] and given by 

)1)(cos()( βττωωτ eaU bbbc −=
r

    (39a) 

πχωβ 2/b−=        (39b) 

where χ  is a coefficient.  The larger the value of χ , the shorter the time is, during which the effects of 

free surface 
Rb

sway 
heave 
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the ramp function persist, though the value does not affect the final results.  In this paper, 5=χ  is 

used. 
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                     (a) forced sway                                                     (b) forced heave 

Fig. 5 Comparison of force histories for cases for forced sway/heave with analytical solution 
(Solid line: numerical results, Dot line: analytical solution [36]) 

 

 

7.1.1. Comparison with the analytical solution 

When the amplitude of the harmonic motion is small, the hydrodynamic force can be evaluated 

by summing the analytical added mass and radiation damping forces [36], which is used for 

comparison with numerical results to verify our method.  For the numerical simulation, the total tank 

length is taken as L ≈ 30 with the length from the wavemaker to the body taken as Lw ≈ 15 (Fig. 1).  

The motion amplitude in Eq. (38) are assigned as 01.0=ba . The mesh is unstructured and there are 

about 35 elements on the free surface in each wave length.   The time step is taken as T/128, where T 

is the wave period. The x-direction hydrodynamic force (divided by ) in the forced sway and the 

z-direction hydrodynamic force (also divided by ) in the forced heave are plotted in Fig.5 for 

three cases with different values of 

2gdρ
2gdρ

ξ , where bb R2ωξ =  is the frequency parameter.  It can be seen 

that the numerical results agree very well with the analytical ones in all the cases, except in the 

transient period when the difference is expected because the analytical forces are evaluated for steady 

state but not for the transient stage.  To quantitatively show the accuracy of the numerical results, the 

relative error (Er) for the results in Fig. 5 is evaluated by: 

a

an
r f

ff
E

−
=          (40) 
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where ∫=
eA

dAff 2 ;  and  are the numerical and analytical forces, respectively; and Anf af e is the 

duration over which the error is estimated.  Because the accuracy of the forces within the transient 

period should not be of concern, Ae is taken as the total duration of simulation minus the transient 

period (about half of wave period).  The relative errors evaluated in this way for all the cases in Fig. 5 

do not exceed 0.5%. 
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(a) Sway                                                                        (b) Heave 

Fig. 6 The relative error for different meshes and different time steps 
 
The characteristics of the relative error are further investigated by considering different time steps 

and different mesh sizes.  For this purpose, the relevant parameters are taken as 01.0=ba  

and 75.0=ξ  (the corresponding wave length is about 0.2≈λ ), which are the same as the second case 

in Fig 5.  It should be noted that the investigation on how numerical errors are affected by time steps is 

relatively easy but not on how they are related to mesh sizes.  That is because the errors depend on 

both mesh sizes and mesh structures and also because it is impractical to consider all possible mesh 

structures as the unstructured meshes are used in this paper.  Apart from these, the mesh sizes 

constantly change with time for water wave problems.  To eliminate the difficulty, a representative 

mesh size (ds) is used, which is defined as the distance between nodes on the free surface when the 

water is at rest.  The initial mesh structures are almost the same in all cases considered, which feature 

that the nodes on the free surface, the tank bed and the body surface are uniformly distributed; the 

distance between nodes on the free surface is roughly twice of that on the body surface and half of that 

on the tank bed; and the distance between nodes in the vertical direction gradually decrease from the 

bed to the free surface.  The relative errors corresponding to different time steps and different 

representative sizes (ds) are presented in Fig. 6a and Fig. 6b for sway and heave, respectively.  In these 

figures, the time step is given as the wave period (T) divided by a number.  It is observed that the 
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relative errors are reduced with the decrease in mesh sizes and/or time steps, as expected.  Particularly 

in the ranges of 057.00 << ds  (about 35 elements in over one wave length) and , the 

relative errors are less than 0.8% for all these cases. This implies that the numerical results with a 

specified accuracy are achievable by using a sufficiently fine mesh and small time step. 

64/0 Tdt <<

 

7.1.2. Forced motion with larger amplitudes 

In order to investigate the nonlinear effects on waves generated by the forced-motions of the 

floating body, the cases similar to Fig. 5 but with larger amplitudes are simulated.  The wave histories 

recorded on the left hand side of the body for the case with forced sway (ab=0.123) is depicted in Fig.7 

together with that for ab=0.0041.  Fig.8 shows the wave histories for the forced heave, in which the 

solid line is the wave history for ab=0.082, while the dot line is that for ab=0.0041.  In both figures, the 

wave elevations are divided by the motion amplitude (ab). 
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Fig.7 Wave history recorded at x=-1 due to forced sway  

(L=30, ωb=1.45, 75.0=ξ , solid line: ab=0.123, dot line: ab=0.0041) 
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Fig.8 Wave history recorded at x=-1 due to forced heave 

(L=30, ωb=1.45, 75.0=ξ , solid line: ab=0.082, dot line: ab=0.0041) 

 

It can be observed that the wave height seems not to be changed dramatically while the shape of 

the wave history curve becomes more complicated as the amplitudes of motions becomes larger in the 

cases for forced sway.  In the cases for forced heave, the wave history becomes sharper at crests and 

flatter at troughs with the increase of the motion amplitudes.  All are typical features of nonlinear 

waves.  To show how well the mesh conform to the variation of the body and free surfaces, the mesh 

configurations for forced sway motions at some time steps are given in Fig. 9. From these figures, it 

can be seen that the mesh quality near the body surface is maintained even though the motion of the 

floating body is large. This implies that the suggested method to move nodes works well in the cases 

including the floating bodies and the free surface. 
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(c)τ≈16.66 

Fig. 9 Mesh configurations for forced sway motion (L=30, ωb=1.45, 75.0=ξ  ab=0.123) 

 

7.2. Free-response floating bodies  

After being validated by using cases for forced-motions, the QALE-FEM method is now applied 

to simulate the motions of a 2D free-response floating body.  The incident waves are generated by a 

wavemaker in a tank and the body is moored to the walls of the tank, as illustrated in Fig. 1.  The 

initial mesh used is similar to Fig 4(b) but the circular cylinder is changed to a barge-type floating 

body.  For this body, the mass is 125kg; the moment of inertia about the gravitational centre is 4.05 

kg·m2; the width (Bb) is 0.5m; the draft is 0.25m; the local radius of round corner of the body is 

0.064m and the gravitational centre is located at 0.885m measured from the keel of the barge.  In this 

paper, the mooring line is modelled by a horizontal spring through the gravitational centre with the 

spring stiffness taken as 197.58 N/m.  These parameters and the shape of the body are chosen to be 

consistent with those in [24] and [37], whose results will be used to validate our numerical ones in 

Section 7.2.3.  In the simulations, the average water depth of the tank is equal to the wave length 
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determined by )2tanh(2
2 π

ω
πλ g

= .  In the following presentation, the frequency (ω) of the 

wavemaker motion is represented by ; the force is nondimensionalised by using  

on the assumption that the length of the 2D body in the direction parallel to the wavemaker is unit; and 

the roll angle is nondimensionalised by , where  is the amplitudes of incident waves.  

Other parameters are nondimensionalised by the same way as in previous sections.  

gBb 2/2ωξ = 2gdρ

ww Ag)/( 2ω wA

 

7.2.1 Wavemaker ramp function and artificial damping technique 

  It is well known that the waves generated by a wavemaker in a tank are characterised by a 

transient wave profile in the front part of a wave train even though the motion of the wavemaker is 

purely harmonic.  The transient wave profile often consists of several waves with different lengths and 

heights and a larger wave crest separating the transient and steady parts in the wave train.  If one aims 

to investigate the properties of steady-sate responses, such as RAOs, of floating bodies, the transient 

waves and corresponding body responses are useless and hence they should be suppressed in order to 

reduce computational cost.  Three methods may be used for this purpose.  The first one is to apply 

wavemaker ramp functions that reduce the wave heights in the transient part.  The second is to add 

artificial viscosity in the dynamic equations of floating bodies (called artificial damping technique), 

which diminishes the transient body responses.   The third method is the combination of the first and 

the second ones.  Details about them are given below. 

 Two wavemaker ramp functions are investigated, which are similar to those in [32] and [33].  

The wavemaker motion corresponding to the first ramp function, called ‘Ramp1’, is governed by  

( ) ( )ωττ cosaSw −= ,    (41a) 

),sin()( ωτωτ aUw =   (41b) 

)1)(cos()( 2 βτωτωτ eaU w −=&   (41c) 

where  are the displacement, velocity and acceleration of the wavemaker respectively; 

and the coefficient 

www UUS & and ,

β  is the same as that in Eq.(39) with bω  replaced by ω .  In this approach, the 

generated wave is not modified by the ramp function because the velocity of the wavemaker and so 

the velocity potential are not affected.  The ramping is only performed on the acceleration of the 

wavemaker, which implies that the value of t∂∂φ  and so forces on bodies are ramped.  The 

wavemaker motion corresponding to the second ramp function, called ‘Ramp2’, is governed by 

( ) ( ) )(cos τωττ raSw −= ,   (42a) 

ττ ∂∂= /)( ww SU   ,    (42b) 

ττ ∂∂= /)( ww UU&     (42c) 
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where Tf  is the cut-off time of the ramp function and is determined by 

gwf CLT /κ=    (44) 

in which κ  is a coefficient between 0 and 1; and Cg is the group velocity of waves. 

The efficiency of Ramp1 and Ramp 2 are investigated with 1=ξ , 0016.0=a , L  ≈15 and Lw 

≈10.  The mesh used is unstructured with about 35 elements on the free surface in each wavelength.  

For the Ramp2, 25.0=κ  and 5.0=κ  are adopted for two cases, respectively. 
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Fig. 10 Sway motion by using different ramp functions  

 

Fig. 10 shows the sway motions obtained by using different ramp functions.  It can be observed 

that Ramp2 can make the calculation become steady sooner than Ramp1, though its effectiveness 

depends on the value of κ.  It should be noted, however, that the waves at the wavemaker generated by 

using Ramp2 during period fT<τ  are not the incident waves desired, implying that the waves at the 

floating body do not become the desired incident waves until gwf CLT /+>τ .  In addition, even after 

the desired incident waves arrive at the floating body, its responses exited by undesired waves do not 

disappear immediately and so take extra time ( ) to become those excited by the desired waves.  As a 

result, the time history of motions during the time 

eT

egwf TCLT ++< /τ  should not be considered 

when estimating RAOs.  Based on this analysis, it is obvious that the shorter the sum of , the 

less CPU time is required for estimating RAOs.  As can be seen in Fig. 10, the transient period 

becomes longer, indicating that T

ef TT +

e becomes larger, with  being shorter (i.e., smaller κ) when using 

the Ramp2 only.  Therefore, the reduction in  does not necessarily lead to the reduction in the sum 

of .  The other option left to us is to reduce  by using the artificial damping technique 

mentioned above.  With this technique, the motion equation, e.g., Eq. (5a), is modified to 

fT

fT

ef TT + eT

FUUM cac =+ β&][   (45) 

where aβ  is the artificial damping coefficient.  It is given by 
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where cβ is the critical damping corresponding to a motion component (such as sway or heave); α  is a 

coefficient; and  is the time during which the artificial damping is active.  It is found by numerical 

tests that  and  

dT

gwd CLT /= 5.0=α  are appropriate for applications in this paper.  Although this 

technique may be used alone, we will only discuss numerical results obtained by combining it with the 

Ramp2 to shorten the length of the paper. 

To show the effectiveness of the combined method, the two cases for the Ramp2 with 25.0=κ  

and 5.0=κ in Fig.10 are considered again but in the first case, both the Ramp2 with 25.0=κ  and the 

artificial damping technique with 5.0=α  are applied.  Fig. 11 gives the results, in which the dashed 

line denotes the result from the combined method while the solid line represents the result obtained by 

only using the Ramp2 with 5.0=κ .  It is interesting to see that the response by the combined method 

using 25.0=κ becomes steady at about 60=τ ,  approximately two wave periods earlier than that by 

the Ramp2 alone with 5.0=κ , which is steady at about 65=τ .  However, as shown in Fig. 10, the 

response corresponding to 25.0=κ becomes steady much later than that to 5.0=κ  when using the 

Ramp2 alone.  This indicates that the combined method is more effective to suppress the transient 

response. 
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Fig. 11 Sway motion by using artificial damping technique 

 

Apart from these given above, the hydrodynamic forces acting on the body obtained by using 

different ramp functions and/or the artificial damping technique are also investigated.  The results are 

plotted in Fig.12.  It shows that no matter which method is used, the hydrodynamic force acting on 

floating body tends to the same steady-state limit.  This result indirectly indicates that the wavemaker 

ramp function and artificial damping technique do not affect the RAOs. 
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Fig.12 Hydrodynamic force in cases with different ramp functions 

 

7.2.2. The convergent properties of the ISITIMFB  

One of developments in this paper is the suggestion of the ISITIMFB procedure to find the forces 

and the motions of the floating body.  Its convergent properties, i.e. the iterative counter to achieve a 

specified accuracy, are presented and discussed in this subsection for the following case: the barge is 

similar to the one described at the beginning of Section 7.2; the length of the numerical tank is taken 

as  with ; and the dimensionless incident wave height generated is about 0.018 and the 

frequency parameter is 

13≈L 8≈wL

4.0=ξ .  Similar to above cases, the mesh used is unstructured with about 35 

elements on the free surface in each wavelength.  As has been discussed in Section 6, the two most 

important factors affecting the iterative counter are the time step and the natural period (frequency) of 

the system.  Thus we mainly look at the convergent properties by changing the time step and the 

natural period in the following. 

The results for different time steps are presented by three curves in Fig 13 (a), which correspond 

to three specified relative errors: 0.1%, 0.5% and 1%.  In the figure, there are two rows of numbers 

under the horizontal axis.  The first row represents the number of time steps in each wave period and 

the second row gives the length of the time step, i.e. the period divided by the number in the first row.  

In these cases, the mass of the floating body is the same as before, i.e. 125 kg.  Under this condition, 

the value ofξ  based on the natural frequency is about 0.5 ~ 0.6 as shown by the experimental data in 

[24].  One may observe from this figure that the iterative counter for a specified error decreases with 

the increase in the number of time steps in each period as expected.  One may also observe that the 

convergence can be achieved within 10 iterations when the control error is 1% and the number of time 

steps in each period is larger than 64; and that reducing the control errors leads to the increase of 

iteration but not significantly.  It should be noted that the wave frequency is near the natural frequency 

in these cases.  For other cases (not presented) where the wave frequencies are much larger than the 

natural frequency, the convergent properties are better than those shown here. 

The results corresponding to the different natural frequencies at three different control errors are 

depicted in Fig. 13b, which are obtained by artificially changing the mass in the range of 

 (m0: the mass for Fig. 13a) without changing the mooring stiffness and the 

shapes of the floating body (i.e., the restoring coefficient being roughly fixed).  Under this condition, 

the square of the natural frequency should be inversely proportional to the mass; and on this basis, the 

00 1001.0 mmm ≤≤
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iterative counter is plotted against the ratio of the mass to m0 rather than the frequency in the figure.   

The time step is taken as T/128 and all other parameters are the same as those in Fig.13(a).  The results 

in Fig 13b indicate that the iterative counter varies with the change in mass or natural frequency but 

only in a small range for a large range of change in mass.  Similar to Fig. 13a, the difference in the 

iterative counter does not change dramatically when the control error change from 0.1% to 1%.  In 

addition, the iterative counter is smaller than 10 in the whole range of mass investigated for the control 

error of 1%.   

Another point that needs to be discussed is how the control error in the ISITIMFB procedure 

affects the computed responses.  Fig. 14 shows the comparison of roll motions obtained by using two 

different control errors for the cases of ∆t = T/64 in Fig. 13.  It can be seen that the difference between 

the results is negligible.  Therefore, one may consider the control error of 1% is acceptable in 

engineering practice but it is recommended that the computed results are compared with those by 

using a smaller control error such as 0.5%, which is followed when acquiring the numerical results in 

the paper. 
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Fig 13 Iterative counters for different time steps and different masses (err: the control iterative 
error) 
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Fig. 14. Comparison of roll histories for different control errors ( ) 64/Tdt =

 

7.2.3 Comparison with other force calculation methods 

In this subsection, the ISITIMFB procedure is firstly compared with a fully explicit method 

obtained by replacing Eq. (35) with an explicit Adams-Bashforth scheme [35], 

( ) )3(
2

211 −−− −+= n
b

n
b

n
b

kn
b AAtUU

rrrr ∆
. 

For the fully explicit method, the iteration is not needed.  The time step is taken as T/200 and T/64; 

and other parameters are the same as those used in Fig.14. The results are plotted in Fig. 15.  From Fig. 

15(a), it is observed that the ISITIMFB leads to similar results to the fully explicit integration 

procedure when the time step is small (T/200).  However, when the time step becomes larger (T/64), 

the results from the ISITIMFB have negligible difference from those for smaller time steps while the 

results from the fully explicit integration procedure poses evident disagreement with those using 

smaller time step (Fig.15(b)).  This indicates that the ISITIMFB proposed in this paper can give more 

accurate results at the same time step or can use larger time steps for specified accuracy and so needs 

less CPU time for a given period of simulation than the explicit method. 
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Fig.15 Comparison of roll motions from the ISITIMFB and explicit procedures  

 

To further demonstrate the behaviours of the ISITIMFB, its results are then compared with those 
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from fully-updated and frozen-coefficient 4th-order Runge-Kutta schemes ([23]) and shown Fig. 16, 

using the same parameters except for the wave height and the time step as for Fig. 15.  To consider the 

same case as in [23], the dimensionless incident wave height of 0.0025 and the time step 

are used here.  As can be seen, the presented procedure leads to steady-state results that 

agree well with those from the full-updated Runge-Kutta method while the frozen-coefficient Runge-

Kutta scheme does not give similar results even when the time step is as small as T/128.  The results 

for the frozen-coefficient Runge-Kutta scheme also tends to be unstable as indicated in [23].  This 

clearly demonstrates that the ISITIMFB can alleviate the instability problem of the frozen-coefficient 

method and can be as accurate and robust as the full-updated Runge-Kutta method but without the 

need of multiple updating of fluid domain geometries and so of the coefficient matrix in one time step 

forward. 

40/Tt =∆
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Fig.16 Comparison of roll motions from ISITIMFB and other methods 

(Frozen-coefficient scheme: ; ISITIMFB and Fully updated Runge-Kutta method: 128/Tt =∆
40/Tt =∆ )  
 

7.2.4. RAOs of sway, heave and roll motions 

To further validate the QALE-FEM method in the cases with a floating body, the RAOs of sway, 

heave and roll motions of the barge are compared with the linear solution by using frequency domain 

analysis as given in [24] and the experimental data in [37].  In the numerical simulations, Ramp2 

together with the artificial damping technique is employed, for which the associated parameters are 

taken as 25.0=κ , =  and dT gw CL / 5.0=α ;  as in above sections, the unstructured mesh is adopted 

with about 30 elements on the free surface in each wavelength and the time step is taken as 

.  For all cases considered here, the amplitudes of the wavemaker are adjusted properly 

so that generated incident wave heights are either 0.01m or 0.07m, which are the same as those in the 

cited publications.  

128/Tt =∆

The RAOs of sway, heave and roll motions corresponding to different incident waves are plotted 

in Fig. 17 together with the results from other publications.  They are estimated by performing the FFT 

analysis on the steady-state portion of the time histories of corresponding motions.  As can been seen, 

the present numerical results are closer to the linear solution when the incident waves are small (0.01m) 

but closer to the experimental data when the wave height becomes larger (0.07m).  This is reasonable 

because the experimental data for the larger wave height contain nonlinear effects that are taken into 

account by the nonlinear numerical simulations but not by the linear solution.  
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(b) RAO of heave motion 
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(c) RAO of roll motion 

Fig.17 RAOs of sway, heave and roll as a function of ξ  

 

However, the difference between experimental data and numerical results is obvious in the area 
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near resonance frequencies.  That may be due to the fact that the viscosity is not considered in 

numerical simulations whereas it is inevitable in experiments.  To demonstrate that the conjecture 

might be true, an empirical damping force is added into the roll equation, which is formed by a 

damping coefficient multiplying the roll velocity.  The value of the damping coefficient is taken as 

1.5% or 2.8% of the critical damping coefficient in two different simulations.   It should be noted that 

the empirical damping added here plays different rules and is for different purposes from the artificial 

damping discussed above.  The empirical damping here is applied from the start to the end of 

simulations to approximately model the real viscosity and so affects the amplitudes and RAOs even 

after the motions become steady.  The artificial damping discussed in Section 7.2.1 is applied in a 

specified simulation period from the start in order to suppress the transient responses and does not 

affect the amplitudes and RAOs after motions become steady. 

The RAOs of the roll motion near the resonant frequency obtained by using different empirical 

damping for the same cases in Fig. 17 are shown in Fig.18 together also with the linear solution and 

the experiment data.   It can be seen that when the empirical roll damping is 2.8% of the critical 

damping, our numerical results agree quite well with the experimental data in the resonant area in this 

case.  Based on this, one may envisage that with an appropriate empirical roll damping, our numerical 

method can give good approximate results even when the viscosity plays an import rule. 
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Fig. 18. RAO of roll motion in case with roll artificial damping  

 

 

The cases in Figs. 17 and 18 are also simulated by using different meshes, different iterative control 

errors and different time steps.  Some results are shown in Fig. 19, from which one can see that the 

difference between them is invisible.  This signifies that the numerical errors due to selecting different 

mesh sizes, time steps and iterative control errors are negligible for the results in these two figures.  
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(a) different time steps(iterative control error is taken as 0.005,30 nodes per wave length) 
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(b) different iterative control errors( 128/Tt =∆ ,30 nodes per wave length) 
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(c) different meshes( 128/Tt =∆ ,iterative control error is taken as 0.005) 

Fig.19. Roll motion in terms of different time steps, iterative control error and meshes 
 ( 5.0=ξ , the wave height is 0.07m) 

         

 

7.2.4. Transient responses of floating bodies 

So far, discussions about responses of floating bodies to waves have been focused on the RAOs 

and how to calculate them in a more efficient way.  In this section, some results are presented for 

transient responses of floating bodies, which are also used to show the nature of nonlinear interaction 

between floating bodies and waves.  For the cases considered in this section, the tank length is L≈10 

with Lw≈5 and the frequency parameter is 65.0=ξ that is near the resonant value as seen in Fig. 17.  

The generated wave heights are about 7cm.  Because we are interested here in the transient behaviours 

here, the ramp function is not applied. 

 The wave elevations and body responses are shown in Fig.20, which illustrates how the body 

responds to the transient waves.  One may see that the body motion, particularly the roll angle in this 

case, is dramatically larger when the front part of the wave trains just reaches the body than those in 

other instances and so larger than those predicted by using RAOs.  It is clearer in Fig. 21, where the 

roll time history is plotted.  This implies that the transient responses rather than RAOs should be 

considered in design in order to check if a floating body is safe when it is subjected to a transient 

waves.   
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-3 -2 -1 0 1
0.8

0.9

1.0

1.1

1.2

x

z

 
(d) τ≈35.72 

-3 -2 -1 0 1
0.8

0.9

1.0

1.1

1.2

x

z

 
(e) τ≈51.39 

-3 -2 -1 0 1
0.8

0.9

1.0

1.1

1.2

x

z

 
(f) τ≈52.64 

Fig. 20 wave elevation and body motion ( 65.0=ξ , the wave height is about 7cm) 
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Fig.21 time history of roll for the wave height of 7cm and 65.0=ξ  

 

To show the nonlinear effects in this case, the sway force and roll moment acting on the floating 

body is plotted Fig.22.  It can be observed that all the curves are quite complex.  For the sway force, 

the curve in one wave period is not symmetric about the apex point in that period.  For the roll 

moment, the curve exhibits the sharper high crests and flatter and shallower troughs.  All are features 
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of nonlinearity.   
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(c) roll moment 

Fig.22 Force and moment acting on the floating body ( 5.6=ξ , the wave height is about 7cm)  

 

8. Computational efficiency of QALE-FEM for cases with free-response floating bodies 

The significant development of the QALE-FEM is that the unstructured mesh is moved to 

conform to the motion of boundaries.  As indicated in [1], without floating bodies, the mesh quality 

can be kept well.  With the inclusion of floating bodes, their motions, particularly large angular 

motions, can make the mesh near body surfaces undergo large variations and so it is necessary to 

check if the methodology for moving meshes in the QALRE-FEM could also produce good quality of 

meshes in these cases.  Some illustrations have been given for the cases with forced motions in Fig. 9. 

Apart from these, extensive investigations have also been made for the cases associated with free -

response floating bodies during the development of the method.  One case will be presented in this 

section to demonstrate the effectiveness of the method in producing good meshes at all time steps.  

The same floating body described in Section 7.2 is used, which is subjected to a wave with the height 

of  7cm and the frequency parameter of 65.0=ξ  in a tank of L=10.  This case is run on a PC 

(Pentium  2.53GHz processor, 1G RAM )Ⅳ . The fluid domain is discretised into about 129,732 

elements and 28,725 nodes.  

Fig. 23 presents the mesh at different instances, where the right column illustrates the enlarged 

mesh in the vicinity of the body surface.  Fig. 23a depicts the initial unstructured mesh while Fig. 23b 

and Fig. 23c show the meshes in the same area but after quite long time simulation.  These figures 

demonstrate that the original refinement and distribution are maintained well and all elements are in 

satisfactory shape during the simulation.  In addition, negative elements, which are of concern when 

using the linear spring analogy method, do not appear.  Nevertheless, certain changes in the sizes and 

shapes of individual elements are observed and expected because the fluid domain varies with 
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propagation of waves.  It is these changes that make it possible to conform to the moving boundaries 

at all time steps and so to achieve satisfactory results as demonstrated in previous sections.  In addition, 

the CPU time spent on moving the mesh at each time step is on average about 1s, including 0.01s for 

moving mesh on the body surface, approximately the same as the CPU time spent on sandbar 

problems in [1].  The CPU time spent on all calculations in one step is about 7s on average.  It 

indicates that the method used to move mesh in the QALE-FEM in cases with floating bodies is as 

efficient as in cases without floating bodies.  It also indicates that useful results for a problem like 

these may be obtained in several hours by using a normal PC. 
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(a) Initial mesh (τ=0.0) 
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(b) τ≈39.6 
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(c) τ≈43.11 

Fig. 23 Mesh at different instances (Left: mesh around body; Right: enlarged mesh)  

 

For cases with floating bodies, the ISITIMFB procedure for calculating forces has been 

developed in this paper.  The accuracy and stability of the procedure have been investigated in Section 

7.2.2.  In this section, the efficiency of the procedure is discussed by comparing it with mode-

decomposition method with the 4th-order Runge-Kutta method as the time integration scheme.  In the 

later method, the motion is decomposed into 4 modes in 2D cases to find the solution for the potential 

derivatives ( t∂∂ /φ ) by solving 4 different boundary value problems in addition to one for the 

velocity potential (φ ).  Thus, total 5 different boundary value problems must be dealt with for one 
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sub-step and therefore total 20 different boundary value problems for calculating φ  and t∂∂ /φ  need 

to be solved in one time step forward.   In addition, updating of the coefficient matrix is necessary to 

achieve stable solution as discussed in Section 7.2.2.  On the other hand, when using our ISITIMFB, 

the number of iterations in one step forward is on average 7 for the case in Fig. 23 by using the control 

error of 1% in the procedure and so about 15 boundary value problems need to be solved without the 

necessity of updating the coefficient matrix.  Therefore, for this case, the CPU time required by the 

ISITIMFB is less than 75% of that required by the mode-decomposition method.   Although the CPU 

time used by the ISITIMFB is problem-dependent, it is more efficient as long as the number of 

iterations in the ISITIMFB is less than 10; this may not be exceeded in many cases unless choosing a 

control error and a time step that are unnecessary small, as indicated in Section 7.2.2.  In addition, if 

the mode-decomposition method with the 4th-order Runge-Kutta scheme is used in our QALE-FEM 

method, the calculation of velocities on the free surface with unstructured meshes must be performed 

five times in one time step forward, which likely requires considerable more CPU time.  Consequently, 

the ISITIMFB is a procedure that is efficient and is best matched with our QALE-FEM method. 

 

8. Conclusion 

In this paper, the QALE-FEM developed in our previous papers [1] and [2] is extended to 

simulate nonlinear interaction between water waves and 2D floating bodies based on the FNPT Model.  

In this method, the boundary value problems for the velocity potential and its time derivatives are 

solved by using a finite element method; and the mesh is moved in order to conform to the variations 

of the free surface and the body surface by the spring analogy method specially proposed for these 

problems.  The method allows the efficient use of unstructured mesh without the need to regenerate it 

at every time step, which is a necessary and very costly feature of the conventional FEM.  The main 

developments in this paper are the techniques required for dealing with 2D nonlinear wave-body 

interactions.  They include a scheme for moving mesh near and on the body surface, the ISITIMFB 

procedure for efficiently estimating the velocities and accelerations of bodies as well as the forces on 

them, the method for evaluating the fluid velocity on the surface of bodies and the use of wavemaker 

ramp functions and an artificial damping technique for shortening the transient period. 

The newly extended method has been validated by comparing its numerical predictions of forces on 

bodies undergoing forced motions with analytical solutions.  Comparison has also been made between 

the numerical results from this method for the RAOs of a free-response floating body and 

experimental data.  Good agreement has been achieved in all the comparisons.  Assessments are made 

on the efficiency of moving mesh and the quality of elements obtained by the QALE-FEM.  These 

show that the unstructured mesh quality is satisfactorily maintained at all time steps even when the 

complex interactions between waves and free-response floating bodies are involved and also that the 

QALE-FEM requires a little time for moving mesh.  Due to these developments, the useful results for 

a 2D floating body may be obtained in several hours using a normal PC. 
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Dear Editor, 
 
The enclosed are the revised version of the above paper.   The main changes based on the referees’ comments and 
suggestions are summarised as below: 
 
1) The last paragraph at the end of Section 4.2 is rewritten to clarify the method for treating bodies with sharp corners. 
2) Two more paragraphs are added in Section 6 to present more details and discussions about the iterative procedure. 
3) One new figure and paragraph are added in Section 7.1.1 to give more details about convergent studies. 
4) A new subsection (7.2.2) is added to present the discussion and results for the investigations on the properties of the 

ISITIMFB procedure, which includes two new figures (Figs. 13 and 14) 
5) Fig. 14 and Fig. 15 are replaced by Fig. 17 and Fig. 18, respectively.  In the new figures, the values of RAOs at the 

same frequencies as experiments are added and some unnecessary results from other publications are removed 
following the suggestions of one of the referees.  In addition, Fig. 19 and corresponding discussions are added to 
convince people that the difference of the numerical results from the experimental ones at the resonant frequency is 
due to the ignorance of viscosity in the potential model.  

 
The detailed responses to the referee’s comments are given on separate pages enclosed with this letter.  Some minor 
changes made in this version are also mentioned at proper places on those pages. 
 
 
 
Yours sincerely 
 
 
 
Qingwei Ma  
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Responses to the comment of Reviewer #1 
 
The authors appreciate very much the reviewer’s constructive comments.  The followings are our replies (Italic 
fonts) to reviewer’s questions. 
 
This manuscript describes extensions to the QALE-FEM method (developed by the authors and others) to treat 
nonlinear wave interaction with freely floating bodies in 2D. The extensions include: An improved method for 
dynamic re-griding near the moving body; an improved scheme for computing fluid velocities on the body; and a 
semi-implicit method for treating the coupled body and fluid dynamics. The model is validated using linear 
forced motion of a semi-circle, and calculations are presented for the nonlinear motions of a moored barge-like 
structure in waves. The motion RAOs are compared to experimental results, linear theory, and other calculations. 
The claim is made that the current calculations are closer to the linear theory results at small wave amplitude and 
closer to the experimental results at large amplitude. It is also argued that the difference between the computed 
and experimental results can be explained by viscous damping. Neither of these claims is convincingly supported 
by the results shown. 
 
The work described by this paper is however interesting and worth publishing after a moderate-to-major revision 
of the manuscript addressing the deficiencies itemized below and detailed in the attached marked up copy. 
 
We have modified the text following the most suggestions given in the marked copy by the reviewer. 
 
1. Convergence and order of accuracy of the method: The validation test case presented (one  is discretisation 
compared to the exact result leading to the vague statement that errors are less than 0.5%) does not give any 
indication of the convergence properties of the model, nor does it say anything about the overall order of 
accuracy of the model. Detailed convergence and accuracy studies also appear to be lacking from previous 
publications regarding this model but if they exist they should be referred to. Can it be demonstrated that the 
model converges to the exact linear solution as the grid is refined? If so, what is the rate of convergence? These 
questions need to be answered. 
 
The overall order of the numerical scheme is determined by the shape functions NJ in (19) (among other things) 
and the manuscript does not mention what these functions are chosen to be. We can guess, based on previous 
publications, that they are bi-linear polynomials. Does this lead to first-order or second-order accuracy? What is 
expected, and can this be verified numerically? 
 
 
We agree with the reviewer that the convergent issues should be addressed.  Actually, all results in our previous 
publications related to the FEM method and in the first version of this paper are carefully validated by 
comparing with other known results and/or by  using different meshes and time steps, though they may not be 
presented in the format as the reviewer kindly suggested.   In the revised versions, two figures (Fig 6 a & b) are 
included and one paragraph is added to give the details about the convergent studies in the way the reviewer 
suggested.   
 
As for the statement related to the error less than 0.5% in our original version, we would like to point out that 
the specific value of the error was obtained for the cases in Fig. 5 as mentioned in the first version of the 
manuscript but not for other cases. 
 
It is our mistake to fail to mention that the shape function is linear, which is rectified in the revised version.  The 
results in the added figure (Fig. 6 a & b) demonstrate that the accuracy is indeed the first order, as expected. 
 
There are also some more basic properties of the model which seem not to have been illuminated by previous 
publications. Without a structure in the domain, how well does the model predict the propagation of linear and 
nonlinear waves? Consider a periodic domain, where both linear and fully nonlinear analytic solutions exist (e.g 
[Fenton(1988)]). How many elements per wavelength are required to achieve a certain level of accuracy per 
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period of propagation? Can the model handle highly nonlinear waves? I.e. how close to the stable breaking limit 
can the model successfully propagate waves? 
 
In our previous publications, we think we have made sufficient investigations for all presented cases without a 
structure, which include the comparison of numerical results with the linear solution for progressive waves 
made by a wavemaker (Ma, Wu And Eatock Taylor, 2001, Part 2, and Ma & Yan 2006); with  experimental data 
from three different laboratories (Ma, Wu And Eatock Taylor, 2001, Part 2 and Ma & Yan 2006) for steep waves; 
and with the linear and second order analytical solutions of sloshing waves (Ma, Wu And Eatock Taylor, 2001, 
Part 2 and Ma, and Wu, "Second order transient waves around a vertical cylinder in a tank", Journal of 
Hydrodynamics, Vol.7,1995, No.4, pp72-81).  In addition, our results are also compared by other researchers 
with their results, for examples, Kim (“Numerical simulation of sloshing flows with impact load”, Applied 
Ocean Research, Vol. 23, 2001, pp. 53-62) for a case with a nearly-breaking sloshing wave.  Although some of 
these investigations were carried out by using our conventional FEM, the comparisons between results for 
waves without a structure obtained by using the QALE-FEM and our conventional FEM in Ref [1] showed very 
good agreement.  One this basis, it seems to us that the behaviors of the model and method have been well 
validated for the cases without structures.  Of course, the model and the method would become more convincing 
if they would have been validated against more results obtained by other experiments and other numerical 
methods including one in Fenton (1988).    Nevertheless, because this paper is mainly concerned with problems 
associated with floating structures, we wish the reviewer would agree that we would not go into more details 
about problems without structures on the basis that more details about the convergent properties are added in 
the revised version.   
 
As for how many elements per wavelength are required to achieve a certain level of accuracy, one may see this 
from the new Fig. 6 a & b. 
 
2. A new semi-implicit scheme is presented for solving the coupled problem of the wave and body dynamics and 
important details of how this scheme is derived are missing, as noted directly in the manuscript. 
 
More details are given in this version.  In addition, a new subsection (7.2.2 in this version) is added, in which 
the convergent properties of the ISITIMFB procedure are discussed in more details. 
 
3. §7.2.2: In figures 14 & 15 the motion RAO’s of a barge are compared to experiments and other calculations. 
On the basis of these results, two conclusions are made: 1) The calculations are close to linear theory for small 
amplitude waves and closer to experiments for larger amplitude waves; 2) The difference between the nonlinear 
calculations and the experiments can be explained by viscous damping effects. The results in those figures do not 
convincingly support these conclusions for several reasons. 

 
These conclusions are supported now by more convincing discussions, thanks to the reviewer’s suggestions.  
The details are given below corresponding to the reviewer specific comments. 
 
(a) The plots are too small to read properly, especially with so much data on them. I suggest larger plots and 

removal of the calculations by Koo & Kim and Tanizawa which simply provide distraction. 
 

We have removed the results of Koo & Kim and Tanizawa, which makes our results clearer.  
 

(b) The experimental and the calculated data points are not at the same frequencies which make it 
impossible to properly compare them. The calculations need to include all the same frequencies as the 
experiments, and ideally many more. 
 
In the previous version of the manuscript, our numerical results are compared to the numerical results 
from Koo & Kim and Tanizawa at the same frequencies, which are not at the same frequencies as the 
experimental data.  In the revised one, the results of Koo & Kim and Tanizawa are removed following 
the suggestion of the reviewer as mentioned above and the results at almost the same frequencies as the 
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experiments are added in Fig 17 (that replaces Fig. 14 of the old version), except at the resonant 
frequency which is discussed below in answering question (c).  In addition, some results at other 
frequencies, at which experimental data are unavailable, are also included.  These results for the cases 
presented agree well with the linear results when the wave amplitude is relative smaller and with the 
experimental data when the wave amplitude (almost the same as that in the experiments) is larger, as 
would be seen.   

 
(c) Given the lack of any kind of demonstration of convergence of the calculations, the claim that the 

difference between experiment and calculation can be attributed to viscous damping is suspect. The 
results shown in figure 15 are in any case quite ambiguous. Some indication that these are converged 
results is required, the data points need to line up (in terms of frequency), and all the data points need to 
be discernable. 
 
In addition to the discussions about the convergent properties of the ISITIMFB procedure added in 
Section 7.2.2 and of the overall method in Section 7.1.1, the response of the floating body at the resonant 
frequency presented in Fig. 18 (replacing Fig 15 of old version) are also simulated by using different 
meshes, time steps and control errors for the ISITIMFB and the corresponding time histories are plotted 
in Fig. 19.  Good agreement between all the results may sufficiently support our second conclusion.   
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Responses to the comment of Reviewer #2 
 
The authors appreciate very much the reviewer’s constructive comments.  The followings are our replies (Italic 
fonts) to reviewer’s questions. 
 
Recommendation 
In my opinion, the paper requires moderate to major revisions to render it acceptable for publication. The paper 
quite obviously is a sequel to Ref. [1] of the manuscript. The extension pertains to the introduction of a floating 
body. There are significant textual overlaps with [1]. Nevertheless, the new developments warrant separate 
publication, provided that they are presented in a consolidated form. Below, I provide comments to support my 
recommendation and to assist the authors in revising the manuscript. 

 
As the reviewer pointed out, this is a sequel to Ref [1] and so there are some overlaps in the introduction 
and in Sections 2 and 3.  The author thinks that they are necessary to give readers sufficient background 
about the new developments presented in this paper. 

 
Major comments 

1. My main objection against the paper is that some parts of the extension to floating bodies have not 
matured sufficiently. In particular, the node-movement scheme on the body is still rather crude, as 
acknowledged by the authors in §4.2. I would recommend the authors to consolidate the new aspects of 
their method before publishing it. That is, the authors should propose a mature scheme for the node 
movement on the body. 
 
These might be due to our misleading discussions to justify the method for moving nodes on body 
surface with sharp corners at the end of Section 4.2 of the previous manuscript, which is now rectified.  
It should be noted that all numerical methods for the potential model have difficulties with dealing with 
the sharp corners.  One way to overcome them is to smooth the corner, which is also tested in our work.  
In addition to this, we also suggest another technique - prescribing a node at the corner.  Both of them 
work well and give consistently converged results, as demonstrated by the new discussions in Section 
7.2.2 and 7.2.4 .  We think the method for moving nodes on the body surface become sufficiently matured 
to be published, though peoples may continuously suggest other techniques to deal with sharp corners as 
in other numerical methods.     

 
2. As the iterative scheme for computing forces and velocities at the floating body in §6 is considered an 

important new contribution, the authors should specify how this iterative method is different from 
previous iterative methods, e.g., Ref. [19] of the manuscript. 
 
To make it clearer, the second paragraph from the end of Section 6 is added. 
 

3. Moreover, the iterative scheme for computing forces and velocities at the floating body is inadequately 
tested in the numerical experiments. Of course, the convergence of this iterative procedure is of pivotal 
importance. Conjecturally, the convergence of this procedure deteriorates with increasing time step and 
decreasing mass of the floating body. The authors should also provide a systematic study of the 
convergence of their iterative procedure (error v.s. iteration counter) at various sizes of the time step and 
floating-body masses. 

 
One new section (7.2.2) is added to discuss the convergent properties of the iterative scheme associated 
with time steps and floating-body masses, together with the convergent studies with respect to the mesh 
sizes added in Section 7.1.1. 

 
4. Furthermore, I recommend that the authors request a native English speaker to check the paper for 

spelling and grammar. In its present form, certain parts of the paper are difficult to read. 
A native English speaker has kindly checked the spelling and grammar.  
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Minor comments 

 
1. The statement of the kinematic condition (2) is rather strange. Normally, the kinematic condition is 

given by 

 
 
The authors should specify the relation between (2) and the above conventional form of the kinematic 
condition. 

 
There are two formulations for the free surface boundary conditions: one is based on the Eulerian view 
and the other on the Lagrangian view.  The one given by the reviewer is based on the Eulerian view.  
The one we use is based on the Lagrangian view, which was first suggested by Longuet-Higgins and 
Cokelet (“The deformation of steep surface waves on water: I. A numerical method of computation.” 
Proceedings of the Royal Society of London A 1976; 350: 1–26) and has been employed by many 
researchers who model fully nonlinear water waves.  But there were some errors in Eq. (2) of the 
previous manuscript, which is now rectified. 

  
2. What is the connotation of Dx/dt in (2)? This notation is at the least unconventional and must be defined. 

Moreover, the DtD /φ  in (3) should be t∂∂ /φ  
This is now rectified  

 
3. I have reservation against the terminology QALE method. In principle, the method is just an ordinary 

ALE method. The Q derives from the property that the mesh motion does not appear in the equations in 
the form of temporal derivatives. This, however, is a result of the fact that Laplace’s equation is 
independent of time. Hence, the Q is a result of the underlying equation, and not of the method. 
 
The QALE-FEM features not only that the mesh motion does not affect the governing equations 
including the free surface and body boundary conditions depending on temporal derivatives but also 
that (1) the mesh is moved by a distinctive technique combing the spring analogy method and self-
adaptive principle suggested for the free surface problems by the authors; (2) the fluid velocity is 
estimated by a method developed for the continuously moving mesh and (3) the coupling of the floating 
body with the nonlinear waves is dealt with by the ISITIMFB procedure, best matching with the QALE-
FEM method.  These features distinguish it from the conventional FEM and also the ordinary ALE. 

 
 
4. The authors should specify how the boundary conditions are incorporated into the finite-element 

formulation in §2.4. The treatment of BCs is of critical relevance, especially in free-surface flow 
applications. 
 
We agree with the reviewer that the treatment of BCs is of critical relevance. We think it has been 
sufficiently discussed in our previous publications.  One paragraph is added at the starting of the section 
2.4 to give specific references.  We wish the reviewer would agree that fully repeating them would lead 
to more overlaps and would distract readers’ attention away from our focus of this paper. 
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