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Abstract—We derive an algorithm to exactly calculate the
mixed second order derivatives of a neural network’s output with
respect to its input vector and weight vector. This is necessary
for the Adaptive Dynamic Programming algorithms GDHP and
Value-Gradient Learning. The algorithm calculates the inner
product of this second order matrix with a given fixed vector in a
time that is linear in the number of weights in the neural network.
We use a “forward accumulation” of the derivative calculations
which produces a much more elegant and easy-to-implement
solution than has previously been published for this task. In
doing so, the algorithm makes GDHP simple to implement and
efficient, bridging the gap between the widely used DHP and
GDHP Adaptive Dynamic Programming methods.

Index Terms—Neural Networks, Adaptive Dynamic Program-
ming, Dual Heuristic Programming, Value-Gradient Learning

I. INTRODUCTION

ADAPTIVE Dynamic Programming (ADP) [1] is an im-
portant methodology closely related to reinforcement

learning, which is successfully used for solving control prob-
lems in industry and research, including recent work by
[2]–[5]. Dual Heuristic Dynamic Programming (DHP) and
Globalized Dual Heuristic Dynamic Programming (GDHP)
[6]–[8] are two important algorithms used in ADP.

Out of these two algorithms, DHP has been used far more
often than GDHP in successful applications. For example DHP
has been used in control problems [7], [9], power grid control
[10], [11], and many others applications [1]. One of the reasons
for the comparatively low take-up of GDHP is that GDHP is
more challenging to implement than DHP. The difficult step
of implementation is to correctly and efficiently calculate the
second order mixed partial derivatives of a neural network’s
scalar output y = y(~x, ~w) with respect to its input vector ~x and
weight vector ~w, i.e. the matrix ∂2y

∂ ~w∂~x (where we define this
second derivative notation such that this matrix has the element
at (i, j) equal to ∂2y

∂ ~wj∂~xi ). This matrix is related to, but slightly
different to, the usual Hessian matrix, ∂2y

∂ ~w∂ ~w , described in the
neural network literature (e.g. sec. 4.10 of [12]).

The GDHP algorithm, which we describe in detail in section
IV, only requires this second derivative matrix ∂2y

∂ ~w∂~x as an
inner product ∂2y

∂ ~w∂~x
~k, where ~k is a column vector constant
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of dimension dim(~x). To form this inner product by matrix-
vector multiplication would take time O(dim(~w) dim(~x)2).
In this paper, we provide a very clear and straightforward
algorithm to calculate this inner product directly and exactly
in an asymptotically faster time of O(dim(~w)).

Existing literature does briefly outline an equally efficient
method to calculate the required inner product, but this outline
is only in the form of schematic diagrams [7], or a high
level description of generic backpropagation [13], [14]. Sim-
ple pseudocode applicable for a generic feed-forward neural
network is not available there.

All of these existing descriptions calculate the required
second derivatives by applying the mathematical technique of
backpropagation twice to the neural network’s feed-forward
equations [15]. Using the terminology of “automatic differ-
entiation” [16], [17], this is called a reverse accumulation of
the derivatives. But it is not a trivial task to create a correct
implementation of this for the given error function. In fact
this difficulty is thought to be one of the reasons that the
equations for the required second order derivatives have not
been published before for a generic neural network.

Our method is to do a forward accumulation of the deriva-
tives. This is much easier to derive and implement, and equally
efficient. Our method follows the technique and terminology
of [18], which is used to calculate an inner product of the
Hessian matrix of a neural network in a fast and exact manner,
without explicitly finding the full Hessian matrix itself.

The difference in simplicity in derivation between the for-
wards and backwards accumulation methods is very signif-
icant, as is illustrated by the way the two techniques were
used to find fast products with the Hessian matrix, in the
neural network literature. Here, the backward accumulation
is described by [19], and the derivation takes several pages
(dense with lemmas and equations). The forward accumulation
is described by [18], and the derivation takes just one page
to define a differential operator (“R”), which then is used
to produce the five lines of the algorithm instantly. Despite
the technically demanding accomplishment of [19], it is the
vastly simpler technique of [18] that receives nearly all of the
citations in the literature.

After making some necessary modifications to the technique
of [18], we achieve an algorithm that is almost trivial to
derive, and easy to state in pseudocode. By stating this
forward accumulation method for GDHP clearly, and giving



2

pseudocode for the resulting algorithm, we intend to solve
the problem of GDHP being more difficult to implement than
DHP.

Besides being useful for GDHP, the quantity ~kT ∂2y
∂ ~w∂~x is

also useful in the general circumstance of trying to adjust the
weights of a neural network so as to force the gradient ∂y

∂~x to
equal a given target value at a given ~x. To achieve this, we
would do gradient descent on an error function E = 1

2 |
∂y
∂~x−~t|

2,
where ~t is the “target” gradient. In this case we would choose
the constant vector ~k by

~k =
∂E

∂(∂y/∂~x)
=
∂y

∂~x
− ~t (1)

We give an example of an application like this in section III-B.
An extension algorithm to GDHP is Value-Gradient Learn-

ing [20]–[22], and this can require a further inner product,
~kT ∂2y

∂~x∂~x , which is also produced by the algorithm.
In the rest of this paper, in section II we define the neural

network and gradient finding algorithms. In section III we
give experimental results for a neural network problem, and in
section IV we define ADP and show how our algorithm can be
used with GDHP. Finally, in section V we give conclusions.

II. THE ALGORITHMS

In this section we describe the algorithm to find the second
order gradients that this paper requires. We define a very
general feed-forward neural network architecture in section
II-A, and derive the second derivatives for it in section II-B.
We describe how the method can be extended to find the full
second derivative matrices in section II-C.

The way we derive the second-derivative matrices for this
neural network is a general technique that could be applied
to any existing feed-forward network structure (or even a
recurrent neural network that has been unrolled using back-
propagation through time), and we describe how we would
validate any algorithm’s correctness in section III-A.

A. Feed-forward Neural Network Architecture and Backprop-
agation

Lines 2 to 8 of Algorithm 1 implement a general neural
network y(~x, ~w), which has a single input layer, and is fully
connected with all shortcut connections. The algorithm takes
an input vector ~x and weight vector ~w, and, for the purposes
of this paper, produces a scalar output y. Pruned or layered
network architectures are possible by fixing specific weights
to zero. Fig. 1 illustrates an example network attainable by the
algorithm.

In the algorithm, superscripts on variable names indicate the
node number, for j = 0, . . . , n, where n is the final node in
the network. The variables aj represent the firing activations of
node j, and the final node’s activation, an, gives the network’s
output, y. Node 0 is a dedicated “bias” node, with a fixed value
of a0 = 1. ~x =

(
x1 x2 . . . xm

)
is the external input

vector to the whole network, with dimension m = dim(~x).
We use the notation wk,j to indicate the weight within ~w that
connects node k to node j. sj , δaj and δsj are workspace
scalars for each node.

1

2

3

4

5

6

Fig. 1. An example neural network architecture obtainable by Algorithm
1, with three input nodes and one output node. When all graph edges
are included, we have a fully connected feed-forward neural network, with
all shortcut connections. If the dotted edges are removed (for example by
clamping those weights to zero) then a more traditional layered network is
obtained, containing a single hidden layer of two nodes. For the purpose of
this paper we always require a single output node, which in this example is
node 6.

Algorithm 1 Feed-forward Dynamics of a neural network
followed by First Order Error Backpropagation to Calculate
∂y
∂~x

1: {Feed-forward input vector ~x through network...}
2: a0 ← 1 {Bias node}
3: ∀j : 1 ≤ j ≤ dim(~x), aj ← xj {Input vector, ~x}
4: for j = dim(~x) + 1 to n do
5: sj ←

∑j−1
m=0 w

m,jam

6: aj ← g(sj)
7: end for
8: y ← an {Network Output}
9: {Backpropagation loop...}

10: for j = n to 1 step −1 do

11: δaj ←

{
1 if j = n∑n
m=j+1(w

j,m)(δsm) otherwise
12: δsj ← (δaj)g′(sj)
13: ∀m : 0 ≤ m < j, ∂y

∂wm,j ← (δsj)am

14: end for
15: ∀j : 1 ≤ j ≤ dim(~x), ∂y

∂xj ← δaj {Output Vector}

g(x) : < → < is the “activation function”, which is often
taken to be g(x) = tanh(x), or the logistic function, g(x) =

1
1+e−x . g′(x) and g′′(x) are its first and second derivatives.

Lines 10 to 15 of Algorithm 1 do a backpropagation
calculation, which calculates the gradients ∂y

∂~x and ∂y
∂ ~w . This is

the standard backpropagation algorithm for neural networks
[15], [23] but modified, following [24], so that the “error
function” used is actually the network output y, and also so
that the backward pass continues until it has fully generated
the quantity ∂y

∂~x , as required.

B. Finding Second Derivatives using the R Operator

To find the second order derivatives that this paper is aiming
to produce, first we note that we can swap the order of differ-
entiation. Hence our desired second derivatives can be written
as ~kT ∂

∂~x

(
∂y
∂ ~w

)
and ~kT ∂

∂~x

(
∂y
∂~x

)
, respectively. This trick makes

it easy to define a differential operator, R, analogous to that
used by [18].



3

Hence we define R(.) as the differential operator

R =
∑
i

ki
∂

∂xi
(2)

where ki is the ith component of ~k.
Using this operator, the two second derivatives that we seek

can now be written as R( ∂y∂ ~w ) and R( ∂y∂~x ), respectively.
Also, applying this R operator to ~x gives:

R(~x) =
∑
i

ki
∂

∂xi
~x

= ~k (3)

As detailed by [18], R obeys the usual rules for a differential
operator, i.e. it obeys the product rule, the chain rule, the sum
rule for derivatives, and differentiating a constant gives zero.
For example, the weight vector ~w is a constant with respect to
the R operator, thus R(~w) = ~0. Using these rules, and (3), we
apply the R operator to each side of each line of Algorithm 1,
to obtain each line of Algorithm 2, respectively. We emphasise
that applying the R operator to each line of the algorithm,
while obeying the correct rules for differential operators, is
calculating the exact derivatives that we are seeking. See
section 3 of [18] for further explanation of the exactness of
the R method.

Hence Algorithm 2 exactly calculates the quantities R( ∂y∂ ~w )
and R( ∂y∂~x ), which are the two second-derivative inner-
products that we seek.

Algorithm 2 Calculation of the Second Order Derivatives
Require: sj , aj , δsj and δaj values calculated according to

Alg. 1 for all nodes j, and vector ~k calculated by an
appropriate equation (e.g. (1))

1: {Forward pass...}
2: R(a0)← 0
3: ∀j : 1 ≤ j ≤ dim(~x), R(aj)← kj

4: for j = dim(~x) + 1 to n do
5: R(sj)←

∑j−1
m=0 w

m,jR(am)
6: R(aj)← g′(sj)R(sj)
7: end for
8: {Backward pass...}
9: for j = n to 1 step −1 do

10: R(δaj)←

{
0 if j = n∑n
m=j+1(w

j,m)R(δsm) otherwise
11: R(δsj)← R(δaj)g′(sj) + (δaj)g′′(sj)R(sj)
12: ∀m : 0 ≤ m < j, R( ∂y

∂wm,j ) ← R(δsj)(am) +

(δsj)R(am) {Output vector 1: ~kT ∂2y
∂ ~w∂~x}

13: end for
14: ∀j : 1 ≤ j ≤ dim(~x), R( ∂y∂xj )← R(δaj) {Output vector

2: ~kT ∂2y
∂~x∂~x}

When implementing the algorithm, R(aj), R(sj), R(δaj)
and R(δsj) are workspace scalars for each node j.

C. Generating the Full Second Derivative Matrices
The above algorithm generates the inner products of two

second order derivative matrices with a constant vector. If

instead of this inner product, the full second order derivative
matrices are required, then these can be constructed one
column at a time. Execution of the above algorithms with ~k
equal to the jth Euclidean standard basis vector of dimension
dim(~x), will calculate the jth column of each matrix. Thus ac-
cumulating the full second order matrices, column by column,
would take O(dim(~w) dim(~x)) time.

An alternative algorithm to find the full matrix ∂2y
∂ ~w∂~x is

given for a neural network with just one hidden layer by
equations 14 and 15 of [7], and for a general network by
appendix A.4 of [25]. These also have asymptotic timings of
O(dim(~w) dim(~x)).

III. EXPERIMENTAL RESULTS

We describe how we validated the correctness of the algo-
rithm in section III-A, and describe a simple experiment that
shows how a neural network can be forced to learn a target
quantity ∂y

∂~x in section III-B.

A. Numerical Verification of the Algorithm

To validate the algorithm was calculating the correct sec-
ond order gradients, we used numerical differentiation. This
method provides a flexible and powerful check of the correct-
ness of the program. Since the R method could be applied to
other neural network architectures, it would be advisable to
verify any other implementation in a similar manner.

To do the numerical confirmation, we first verified the
formation of ∂y

∂~x and ∂y
∂ ~w taking place in lines 10 to 15 of

Algorithm 1, by differentiating y numerically with respect to
both ~x and ~w, respectively. For example, to verify the first of
these, we used a central-differences numerical derivative:

∂y

∂xi
=
y(~x+ ε~ei, ~w)− y(~x− ε~ei, ~w)

2ε
+O(ε2)

where ε is a small positive constant, and ~ei is the ith Euclidean
standard basis vector.

We next checked the second derivatives found by Algorithm
2 against a first order numerical differentiation of the (already
tested) first order analytical derivatives found by Algorithm 1.
For example,

~kT
∂

∂~x

(
∂y

∂ ~w

)
=

∂y
∂ ~w

∣∣∣
(~x+ε~k,~w)

− ∂y
∂ ~w

∣∣∣
(~x−ε~k,~w)

2ε
+O(ε2) (4)

where ∂y
∂ ~w is calculated by Algorithm 1 each time it is required

in the right hand side of this equation. This check was used
to successfully confirm the correctness of Algorithm 2. For
example, using a layered neural network with 4 inputs, three
hidden layers of 4 units each, one output layer with 1 unit,
hyperbolic tangent activation functions at all nodes, and all
components of ~w, ~k and ~x randomised uniformly in [−1, 1], we
found the average magnitude of the vector ~kT ∂2y

∂ ~w∂~x was 1.4,
and the average magnitude of the error in this vector (between
its value calculated by Algorithm 2 and its value calculated
by (4)) was 6.4 ∗ 10−10, when ε = 10−5.
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TABLE I
TRAINING DATA FOR EXPERIMENT 1.

xp (Network input) sp (Target for y) tp (Target for ∂y
∂~x

)
0.0 0 20

0.25 0 -20
0.5 0 20

0.75 0 -20
1.0 0 20

B. Wave Learning Experiment

In this experiment we provide an example of how the
algorithms of this paper can be used to adjust the weights
of a neural network so as to force the gradient ∂y

∂~x to equal a
given target value at a given ~x.

The objective here is to make a neural network with one
input and one output learn the training data given in table
I. In this training data, each row of the table is a different
“pattern”, p. Each pattern consists of an input value for the
neural network (xp), and target output value (sp) and a target
for the gradient ∂y

∂~x (tp). This experiment is aiming to make
a neural network learn two complete periods of a sine wave
from just 5 training patterns positioned along the x-axis.

Learning took place by minimising the error function given
in (5).

E =
1

2

5∑
p=1

η1 (y(xp, w)− sp)2 + η2

(
∂y

∂~x

∣∣∣∣
(xp,w)

− tp

)2

(5)

η1 and η2 are real constants to weight the relative signifi-
cance of the two terms in this equation. The first term is an
ordinary sum-of-squares error for making the network output
y(x, ~w) match the target output for each pattern. The gradient
of this part of the error function (with respect to ~w) would be
found by ordinary backpropagation. The second term of E is a
sum-of-squares error term for making the gradient ∂y

∂~x match
the target gradient tp for each pattern p. Hence this second
term would form the vector ~k described in (1) by

~k =
∂y

∂~x

∣∣∣∣
(xp,w)

− tp

for each pattern p, and then the required gradient for learning
can be found by Algorithm 2.

The neural network used was a multi-layer perceptron, with
two hidden layers of 8 nodes each, and all shortcut connections
present between all pairs of non-adjacent layers. The activation
function used for all nodes was g(x) = 1/(1 + e−x), except
for the output node which used g(x) = x. Training used
gradient descent on (5), with η1 = η2 = 1, i.e. with the same
significance attached to each component of the error function.
Initial network weights were randomised uniformly from [-
0.1,0.1].

When training was accelerated through conjugate gradients,
with a full line search, learning produced a 100% convergence
rate over 100 trials, where convergence was defined as E going
below 10−5 within 20000 iterations. The output of five typical
neural networks trained in this way are shown in Fig. 2.

The results show that the problem has been solved correctly,
and that it has been possible to make a neural network learn
specified target gradients ∂y

∂~x at given values of ~x. However
when experimental parameters were changed, we observed
that the success rate could drop significantly. For example
if RPROP was used, and the activation functions used were
swapped to g(x) = tanh(x), then the success rate dropped
from 100% to 65%. It seems that it is harder to train a neural
network to learn target gradients, ∂y

∂~x , than target values. By
analogy we can imagine that in trying to make the flexible
curves of Fig. 2 bend into the shape of a sine wave, it is harder
to do so by just twisting the curve at certain points along the
x-axis than it is by stretching the curve to pass through given
target points.

-4
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-2

-1

0
1

2
3

4

0 0.2 0.4 0.6 0.8 1

y
(o

ut
pu
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x (input)

Neural network output

Target Gradient
Network output

Fig. 2. Outputs from a sample of five neural networks created in the
experiment of section III-B. Each dotted curve shows the output from a neural
network produced in a different trial. The solid thick lines on the x-axis are
designed to give a visual indication of the training point and target gradient.
The objective of training is to make the dotted lines run parallel and through
the thick lines, which has been achieved well in all of the five network outputs
in this figure.

IV. ADAPTIVE DYNAMIC PROGRAMMING

In this section, we describe adaptive dynamic programming,
and in sections IV-A and IV-B we define the algorithms GDHP
and DHP, showing how the methods of this paper can be
applied to GDHP. We describe a simple GDHP experiment
in section IV-C. However we point out that since the methods
of our paper calculate ~kT ∂2J̃

∂ ~w∂~x exactly, the empirical results
in using GDHP with it will be identical to any other exact
method.

In Adaptive Dynamic Programming, an agent moves in an
environment such that at time t it has state vector ~xt. At each
time the agent chooses an action ~ut which takes it to the next
state according to the environment’s model function ~xt+1 =
f(~xt, ~ut), thus the agent passes through a trajectory of states
(~x0, ~x1, ~x2, . . .). On transitioning from each state ~xt to the
next, the agent receives an immediate scalar cost Ut from the
environment according to the function Ut = U(~xt, ~ut).1

The ADP problem is for the agent to learn how to choose
actions so as to minimise the expectation of the total long term
cost received, J(~x0) = 〈

∑
t γ

tUt〉, from any given start state
~x0, where γ ∈ [0, 1] is a constant discount factor that specifies

1Throughout this section, subscripts indicate the time step of a trajectory,
and superscripts indicate a component of a vector.
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the importance of long term costs over short term ones.2

Specifically, the problem is to find an action network A(~x, ~z),
where ~z is the parameter vector of a function approximator,
that calculates which action ~u = A(~x, ~z) to take for any given
state ~x, such that this total long term cost is minimised.

To aid training the action network, ADP algorithms make
an intermediate goal to first learn a scalar “critic” function
J̃(~x, ~w) over the state space. This function is the scalar output
of a function approximator (e.g. a neural network with one
output node) with parameter vector ~w, and the objective of a
critic-learning algorithm is for the critic function to be trained
to equal the cost-to-go function J(~x) over all of the state
space. The function J is also known as the value function
from dynamic programming [26].

A. The GDHP Algorithm
The GDHP algorithm is a critic learning algorithm that

attempts to learn the function J̃(~x, ~w) by making its gradient
∂J̃
∂~x explicitly match the gradient of the cost-to-go function,
∂J
∂~x . For each time step t of a trajectory (~x0, ~x1, ~x2, . . .), the
GDHP algorithm is defined to be the following critic weight
update:

∆~wi =η1

(
∂J̃

∂ ~wi

)
t

(Ut + γJ̃t+1 − J̃t) + η2
∑
j

(
∂2J̃

∂ ~wi∂~xj

)
t

(
~Et

)j
(6)

where η1 and η2 are small positive learning rates correspond-
ing to a learning rate for the values of J , and a learning rate
for the gradients ∂J

∂~x , respectively; where J̃(~x, ~w) is the critic
function; where ~Et ∈ Rdim(~x) is a vector defined to be

~Et =

(
DU

D~x

)
t

+ γ
∑
j

(
Df j

D~x

)
t

(
∂J̃

∂~xj

)
t+1

−

(
∂J̃

∂~x

)
t

(7)

and D
D~x is shorthand for

D

D~x
≡ ∂

∂~x
+
∑
j

∂Aj

∂~x

∂

∂~uj
; (8)

where all of these derivatives are assumed to exist; j is a free
variable to indicate a vector component, so that for example Aj

refers to the jth component of the output of the action network;
and where the subscripted t indicates that a function is to
be evaluated at the state ~xt (and action ~ut, where relevant),
so that, for example J̃t+1 ≡ J̃(~xt+1, ~w) and

(
Df
D~x

)
t

is the

derivative Df(~x,~u)
D~x evaluated at (~xt, ~ut).

Equations (6), (7) and (8) define the GDHP algorithm. See
[6], [7] for further details.

In GDHP, the function J̃(~x, ~w) would be the output of a
neural network with one single output node, i.e. the function
J̃ takes the role of y in the descriptions of the rest of this paper.
Consequently the appearance of ∂2J̃

∂ ~w∂~x in (6) is a requirement
for a calculation of the second order gradients described by this
paper. To use our method for GDHP, we would run Algorithm
2 with ~k = ~Et according to (7).

2If the problem is such that the trajectory is not guaranteed to terminate,
then to prevent an infinite total cost, γ should also satisfy γ < 1.

The other gradients of J̃ appearing in (6) and (7), i.e. ∂J̃
∂ ~w

and ∂J̃
∂~x , can be found by Algorithm 1 (in lines 13 and 15,

respectively). The derivatives of f(~x, ~u) and U(~x, ~u) should
be available from the environment, since in the GDHP method
we assume these functions are known and differentiable.

Once the critic function has been learned (or during con-
current learning of both the critic and the action network), the
weight vector for the action network A(~x, ~z) can be updated
by the following weight update:

∆~zi = −β
∑
j

(
∂Aj

∂~zi

)
t

((
∂U

∂~uj

)
t

+ γ
∑
k

(
∂fk

∂~uj

)
t

(
∂J̃

∂~xk

)
t+1

)
(9)

where β is a separate learning rate for the action network.
The multiplications by ∂A

∂~z and ∂A
∂~x , in equations (9) and (8)

respectively, can be done quickly and exactly by ordinary
backpropagation.

B. DHP algorithm and its relationship to GDHP
The DHP algorithm is almost identical to GDHP, but the

scalar critic J̃(~x, ~w) is removed, and instead a new neural
network of input and output dimension dim(~x) is used, which
we call the vector critic, ~λ(~x, ~w). The purpose of this vector
critic is to simulate the gradient ∂J̃

∂~x . Hence the DHP weight
update is similar to (6), but all occurrences of ∂J̃

∂~x are replaced
by ~λ, and the constant η1 must be fixed at zero (since J̃t is
not defined). Hence the DHP critic weight update is:

∆~wi =η2
∑
j

(
∂~λj

∂ ~wi

)
t

(
~Et

)j
(10)

where both instances of ∂J̃∂~x in (7) are replaced by ~λ. A similar
replacement is done for the DHP actor weight update (9).

The DHP weight update (10) is a much simpler weight
update than the GDHP one of (6), since there is no requirement
for second order differentiation. This is why DHP has so
far always been simpler to program than GDHP. Another
advantage of DHP over GDHP is that training a neural network
to learn target values can be easier than training one to learn
target gradients (as discussed at the end of section III-B).
However GDHP is possibly advantageous over DHP in that
its critic function is a true scalar field, just like its intended
target, the cost-to-go function J(~x); although it remains to be
seen whether GDHP is advantageous in practice.

C. GDHP Experiment

We now provide an extremely simple quadratic optimisation
experiment using GDHP.

We define an environment with ~x ≡ x ∈ < and ~u ≡ u ∈ <,
and model and cost functions:

f (x, t, u) =

{
x+ u if t = 0

x if t = 1

U (x, t, u) =

{
0 if t = 0

(x)2 if t = 1

Each trajectory is defined to terminate at time step t = 2, so
that exactly two costs are received by the agent (i.e. with the
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final cost being received on transitioning from t = 1 to t = 2).
In these model function definitions, action u1 has no effect,
so the whole trajectory is parametrised by just x0 and u0. The
total cost for this trajectory is (x0+u0)2, so the optimal action
to choose is u0 = −x0.

The action network A(~x, ~z) was a layered neural network
with two inputs, one output and one hidden layer of 4 nodes,
shortcut connections from the input layer to the output layer,
and with activation function g(x) = tanh(x) on all nodes.
The weights ~z were initially randomly chosen from [-0.1,
0.1] uniformly. The critic network J̃(~x, ~w) was identically
dimensioned to the action network, with a weight vector ~w
randomised initially in the same way. The activation function
used for the critic was g(x) = tanh(x) on all nodes except
for the output node, which used g(x) = x. The input vector
to each neural network was (x, t), since in this problem the
optimal cost-to-go function depends on both of these inputs.

We applied the GDHP and action network learning equa-
tions (6) and (9) concurrently, using learning rate constants
η1 = 0, η2 = 0.1 and β = 0.1, and discount factor γ = 1.
Each iteration of training consisted of the application of these
two weight updates accumulated over all non-terminal time
steps of the trajectory, t ∈ {0, 1}. Each trajectory started
from x = 0.8. Experimental results, for both GDHP and DHP,
averaged over 10 trials are shown in Fig. 3. The graph shows
that both algorithms can solve this problem in similar time.
DHP is slightly faster, but with this being such a simple test
problem the slight difference between the two algorithms is
not significant.

0
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0.3
0.4
0.5
0.6
0.7

1 10 100

To
ta

l
C

os
t

Iterations

GDHP
DHP

Fig. 3. Results for GDHP and DHP in solving the problem described in
section IV-C. Both GDHP and DHP manage to reduce the total cost to almost
zero within 100 iterations.

V. CONCLUSIONS

We have presented a very clear and straightforward algo-
rithm to find the product ~kT ∂2y

∂ ~w∂~x exactly in time O(dim(~w)).
We have found that using a forward accumulation of the
derivatives leads to an extremely easy way to derive the
algorithm, in comparison to a backward accumulation that
GDHP practitioners have relied upon until now.

We have made the appropriate modifications to the R
method of [18] enabling us to derive the algorithm quickly.
We have provided an empirical demonstration of the problem
of learning target gradients in a neural network, and we have
placed emphasis on the applicability to GDHP, giving an

example. It is the intention of this paper that implementing
GDHP should be as straightforward as implementing DHP,
while having an equivalent (O(dim(~w))) running time too.
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