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Abstract 

 

In this paper we present the “R&W Simulator” (version 3.0), a Java simulator of 

Rescorla and Wagner’s prediction error model of learning. It is able to run whole 

experimental designs, and compute and display the associative values of elemental 

and compound stimuli simultaneously, as well as use extra configural cues in 

generating compound values; it also permits change of the US parameters across 

phases. The simulator produces both numerical and graphical outputs, and includes a 

functionality to export the results to a data processor spreadsheet. It is user-friendly, 

and built with a graphical interface designed to allow neuroscience researchers to 

input the data in their own “language”. It is a cross-platform simulator, so it does not 

require any special equipment, operative system or support program, and does not 

need installation. The “R&W Simulator” (version 3.0) is available free. 

 

Keywords: Java simulator; open-source; platform independent; prediction error 

learning; classical conditioning; compound stimuli; configural cue.  
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1. The Rescorla and Wagner Model 

In natural environments, there is a constant need for organisms to accommodate their 

behaviour to dynamic surroundings. Learning to predict the regularities in such sensory 

rich conditions is the key for adaptive behaviour and decision-making. Predictive 

learning studies in neuroscience have mostly been conducted within the context of 

associative learning. 

One of the basic principles of associative learning is that repeated pairings of two 

events will allow an individual to predict the occurrence of one of them upon 

presentation of the other, as consequence of the formation of a link between them.  

Typically, classical conditioning, a fundamental associative paradigm, involves 

the presentation of two stimuli, an originally neutral stimulus (e.g., a tone or a light), 

and an unconditioned stimulus (US), or reinforcer, that has biological relevance (e.g., 

food). Learning is conceptualized as the formation of an association between the mental 

representations of these two stimuli.  Once the association is formed, presentation of the 

first stimulus (the conditioned stimulus, or CS) will not only engender activation of its 

own mental representation, but will also activate the representation of the other stimulus, 

the US, by means of the link between them.  Behaviorally, the CS comes to elicit a 

conditioned response (CR), indicating that the US is anticipated, and hence predicted by 

the CS.  This simple idea is at the basis of many learning phenomena. Indeed, 

associative learning has proved to be relevant to human learning both theoretically 

(judgment of causality and categorization, e.g., [1]) and practically, as the core of a 

good number of clinical models  [2][3].  
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Rescorla and Wagner’s model of classical conditioning [4] is regarded by many as 

one of the most influential models of learning [5][6][7][8]. As any other model, it has 

its limitations; but since its publication in 1972 it has become probably the most widely 

known and cited associative learning model - not only in the field of learning, but also 

in the many related areas that exploit associative principles. It is still influential to the 

extent that, even when new models are developed to accommodate phenomena that it 

cannot explain, they are often based on the same underlying rules (see below).  The 

model assumes that learning occurs only if a US is surprising or, more precisely, 

unpredicted. The amount of growth in associative strength (V), a concept that represents 

the weight of the CS-US link on a particular CS-US pairing, is proportional to the 

degree to which the US is unexpected. With each CS-US pairing (trial) the discrepancy 

between the expected outcome, the US, and the outcome itself is reduced, increasing the 

associative strength between the elements, until the CS fully predicts the US, at which 

point the US is no longer surprising. Thus large error prediction during early 

conditioning trials produce large increases in associative strength, but these changes 

decrease in size as learning progresses, and the ability of the CS to predict the US 

grows, until it approaches asymptotic levels. 

Formally, learning on trial n is defined as ΔVn = αβ (λ − Vn-1(total) ), where α and 

β represent the salience of the CS and of the US respectively, λ is the maximum amount 

of learning that can occur for that given US, and Vn-1(total) the cumulative amount of 

learning up to trial n –1 −in other words the sum of associative strengths of all CSs that 

are present on trial n.  The associative strength of each of the CSs is determined on the 

last trial on which each CS occurred, ordinarily trial (n–1). This delta rule is also known 

as the error correction rule: the change in associative strength, learning, is proportional 

to the prediction error –the difference between the predicted and the actual 
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reinforcement –and the resultant change in strength reduces the error. Once the increase 

in associative strength has been computed, it is then used to calculate the new 

associative strength of the CS using the update rule Vn = Vn-1 + ΔVn. Obviously, as the 

prediction improves, the prediction error is reduced until there is nothing left to be 

learned. 	  

This deceptively simple model (it represents a linear discrete system of the 1st 

order) predicts a good number of well-established conditioning results. Table 1 shows 

the full list of phenomena evaluated by Miller, Barnet and Grahame’s exhaustive 

assessment of the Rescorla and Wagner’s model [9] classified into 3 categories: 

Successful predictions, wrong predictions and prediction failures of the model. It is 

worth noting that this model was not only able to explain most of the conditioning 

effects known at the time of its publication, but it was able to predict critical and 

previously undiscovered phenomena, e.g., superconditioning and overexpectation. 

Some of the model’s initial shortcomings are easily dealt with by incorporating minor 

modifications, as in the case of negative patterning. Other limitations, however, such as 

the failure to correctly predict the conditions that result in extinction of inhibition, have 

proved resistant to an explanation in the specific terms of the model. These 

inadequacies of the Rescorla and Wagner’s model have spurred the development of new 

models that are nonetheless based on the same underlying principles. One critical 

problem, as Rescorla himself has acknowledged, is the notion that common error value 

will predict equal associative changes for equally salient stimuli in a given trial - but 

this is not always the case [10]. Later elemental models of conditioning, such as SGL 

and its subsequent modifications, make use of a “constrained” error correction-rule to 

overcome this flaw [11][12]. Other problems related to stimulus generalization have 

been addressed by the formulation of configural learning models [13]. Moreover, to 
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overcome the Rescorla Wagner model's inability to account for some temporal 

phenomena, real-time extensions, notably Temporal Difference [14], have been 

proposed. Models that incorporate the idea that attention modulates associative strength 

have also been developed on the basis of Rescorla and Wagner’s rule [15][16][17]. 

Similarly, further elaborations of the model include changes in the associative strength 

of associatively activated stimuli rather than exclusively of the stimuli physically 

present on a given trial [18]. 

 

Table 1 about here. 

  

In summary, many other classical conditioning models have been advanced since 

Rescorla and Wagner’s in an attempt to conquer its limitations. It is probably safe to 

say, however, that none of these more recent theories has achieved the universal appeal 

of their predecessor.  For example, predictions based on Rescorla and Wagner’s 

principles are also common in tangential areas of research ranging from drug-reward 

studies [19] to category learning [20] and geometry learning [21]. Thus, despite its age, 

the model is far from being obsolete; indeed a significant number of results support the 

model [22][23][24], others do not [25].  

Significantly, the Rescorla and Wagner’s model has recently attracted 

considerable attention in quite a range of brain sciences. There is increasing research 

that shows that dopaminergic neurons (DA) in several midbrain structures encode 

reward prediction error [26][27][28]. For instance, DA firing rates in the ventral 

tegmental area (VTA) parallel CR acquisition in associative learning –as learning 
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progresses, activation produced by predicted rewards diminishes, while reward-

predicting stimuli start generating activation [29]− and stimulus blocking [30].   

As an error correction model, Rescorla and Wagner’s account is central to reward 

based models of schizophrenia (e.g., [31][32]). These models suggest that patients with 

schizophrenia show impaired ability to form (or maintain) task-setting information.  

Biconditional discriminations are good examples of task-setting procedures and 

have been used to test these types of cognitive deficiencies in schizotypal populations 

[33]. In a biconditional discrimination [34] [35] reinforcement is conditional to 

particular combinations of stimulus, such that two compound stimuli AX and BY signal 

the US (AX+, BY+) whereas a different combination of the same stimuli, AY and BX, 

do not (AY−, BX−).  

It is well known, though, that the original version of Rescorla and Wagner’s 

model assumes that the associative strength of any compound stimulus is equivalent to 

the sum of the associative strengths of each component of that compound −the 

summation assumption. The application of this principle to a biconditional 

discrimination design would result in each compound stimulus having identical 

predictive value since individual stimuli are equally associated the US. Therefore, the 

Rescorla and Wagner model does not predict their discrimination. 

To account for the fact that such discriminations can, nonetheless, be solved, one 

useful adjustment of Rescorla and Wagner’s model is to assume that when two stimuli 

are presented together they create a stimulus compound that consists of the individual 

elements plus an additional configural cue, a stimulus which is unique to the 

combination of the elements [36].  This allows a negative patterning discrimination to 
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be represented as A+, B+, ABX−, where X represents this configural cue. This 

assumption results in X becoming inhibitory, as opposed to excitatory. It can therefore 

counteract the effect of A and B on compound trials, allowing the discrimination to be 

solved. A similar representation will allow the model to correctly predict biconditional 

discriminations. In summary, many current trends in neuroscience take Rescorla and 

Wagner’s predictions as working hypotheses.  

In this paper we present a Java simulator of Rescorla and Wagner’s model that 

incorporates configural cues. 

 

2. Why a Java Simulator 

A number of simulators of Rescorla and Wagner’s model can be found in the literature 

or on-line. Most of them have become obsolete, because of their system requirements or 

because the programming languages with which they were developed are outdated, or 

inaccessible: For instance, [37] [38] [39] [40]. Others are only of limited use as they 

were designed to fulfill specific tasks [41]. 

Renner presents a simulator in Excel, a useful tool for teaching undergraduate 

students the basics of the model [42]; however, Excel is just a spreadsheet application: 

Even simple programming routines require the definition of VBA macros that are not 

always intuitive. We have kept Excel for what is effective −to facilitate data processing 

for statistical analysis, as detailed below. 

More recently, Rescorla and Wagner’s model has been simulated using MATLAB 

[43]; indeed, MATLAB is becoming a widespread tool in building simulators of 
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associative learning models [44] [45] [46]. 

From the point of view of a programmer, both Java and MATLAB are relatively 

easy to learn and to use (at least, for simple applications). Speed-wise they are also 

rather similar, no matter whether they compile or interpret. We believe that the choice 

between MATLAB and Java is a matter of preference: At the end of the day, having two 

simulators of Rescorla and Wagner’s model at our disposal, one in Java another in 

MATLAB, can only benefit the associative learning community. 

However, as a user, the “R&W Simulator” offers a tool that is already compiled to 

work in different platforms and does not need any other program to run. The program 

only requires the user to download and save the executable file (“R&W Simulator.exe” 

or the “R&W Simulator.app”) for their computer platform, PC or Mac respectively.  In 

addition, the Java executable file (“R&W Simulator.jar”) is also available and can be 

run in Linux or any other platform provided that the Java Runtime Environment is 

installed in the computer. That is, our simulator is a truly platform-independent software 

that can be used in almost any computer and java-based devices. 

In short, we have developed our Rescorla and Wagner simulator in Java because it 

meets the following requirements best: generality, user-friendliness, scalability, fully 

integrated GUI, Excel export, professional graphical display, free, and platform-

independence.  
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3. The R&W Simulator 

The “R&W Simulator” has been built to allow the user to simulate a wide range of 

procedures, and can compute whole experimental designs at once. It is thus versatile 

and general. It is not only capable of simulating well-known tasks such as acquisition, 

extinction, blocking, overshadowing, etc., but it also permits the computation of 

associative values for elemental stimuli, compound stimuli and configural cue 

compounds in a single design and display. The user can, moreover, run designs with 

different US across phases and simulate phenomena such as unblocking [47]. In 

addition, the simulator allows one to set negative values to non-US λ, that may be useful 

in simulating categorization experiments in humans involving symmetrical outcomes -

that is, for experiments in which outcomes are rated as positive, neutral or negative 

(e.g., [48]).  

The “R&W Simulator” generates both numerical and graphical outputs with a 

single click. In addition, the user can export the results to a data processor spreadsheet 

for better manipulation and analysis of data.  Its design includes a graphical interface in 

which the experimental procedure can be entered in a way that resembles standard 

associative learning designs, so that learning experts can write the program in their own 

“language”. 

 

3.1. Installation 

The “R&W Simulator” is available to download at “http://www.cal-

r.org/index.php?id=R-Wsim”.  
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Those who just want to use the simulator would need to select "PC" or "MAC", 

depending on which platform they use, and the program will download. Once the file is 

saved, it is ready to run –it does not require any additional installation. Users of other 

platforms should select the “JAVA” button to download the “RW_Simulator.jar” file, 

which will run on any platform provided that the Java Runtime Environment (JRE) is 

installed in their computer. Most popular Linux distributions such as Fedora, Debian, 

Ubuntu, Arch, and CentOS already include JRE. 	  

Users who wish to access the code should also download the “RW_Simulator.jar” 

file, and uncompress it. A folder named "R&W Simulator.jar" containing the “.class” 

files will appear. The content of these files can be accessed using a Java editor such as 

Eclipse or NetBeans, and the Java Development Kit (JDK).  

 

3.2. Starting the simulator and creating a new experiment1	  

To start the simulator the user needs to navigate to the directory in which the file was 

stored and double click on the file's icon. The opening screen should look like in Figure 

1 (PC version, Mac’s GUI differs slightly). 

This window is headed by the main menu (“File”, “Settings”, and “Help”), and 

consists of two input panels and one output panel. The experimental design is specified 

in a matrix of groups and phases in the top panel; in the bottom left panel the values of 

the parameters are entered; the output data is displayed on the right. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Step-by-step instructions to use the simulator are available as a “Guide” in the “Help” 
menu. 
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The user can choose to create a new experiment, or to load one that they may have 

previously saved. Assuming that this is the first time one uses the simulator, we are 

creating a new experiment: We are using a design similar to the one used by Haddon et 

al. [33] for testing setting-task deficiencies in schizotypal populations. Our design is 

between groups rather than within subjects to better show the simulator's capabilities. 

Group BICOND describes a biconditional discrimination (AX+, AY−, BX−, BY+), and 

Group SIMPLE a compound simple discrimination in which cues A and B are 

uninformative (AX+, AY−, BX+, BY-).    

 

Figure 1 about here. 

 

The experimental design is entered describing each trial type as follows: Number 

of trials followed by stimuli followed by reinforcer. Different trials should be separated 

by a slash symbol without spaces between the characters. Thus the biconditional 

discrimination depicted above would read “60AX+/60AY−/60BX−/60BY+” in “Group 

BICOND” and “60AX+/60AY−/60BX+/60BY−” in “Group SIMPLE”. The order of the 

trials is by default defined by the order in which they are entered in each phase; thus, in 

the example, 60 AX+ consecutive trials will be followed by 60 AY− trials and so forth. 

Alternatively, if the design requires that the different types of trial occur in a random 

order, the user only needs to tick the “Random” box. 

To overcome order bias, the simulator runs a number of different random 

combinations and generates a mean value per stimulus and trial. By default this number 
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is set to 1,000, but it can be changed in the “Settings/Number of Random Combinations” 

menu.  

The values of the fixed parameters, α, β and λ, are entered by first pressing the 

“Set Parameters” button. CS α values are entered at the top. The bottom area contains a 

set of default values given to the US, which the user can modify at will. In addition the 

user can set different US values per phase using the “Settings/Set Different US per 

Phase” menu.  Ticking this option will allow the user to set different US parameters for 

each phase in the Set Parameters table. 

Pressing the “Run” button will produce a text output on the right hand side. Cue 

mean stimulus V values per trial will be displayed for each group in each phase; in other 

words, for each elemental and compound stimulus a list of Vi values will be displayed 

in which i represents the trial number for which V is calculated.  

 

3.3. File menu 

Experimental designs can be saved and opened using the “File” menu. These files will 

have a “.res” extension. The simulator includes the option to export the results in “.xlsx” 

type spreadsheets, like the ones used by Excel; a workbook is created with a different 

sheet for every group as shown in Figure 2. For the sake of clarity, each sheet contains 

the name of the file followed by the CS and US parameters. Each phase is presented on 

a different table, and the phase tables are preceded by the experiment design. This 

functionality allows the user to prepare the data as required for analysis. It should be 

noted that exporting results from designs with a large number of trials may take some 
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time, and attempting to open the exported file before is fully saved will result in an error 

message. 

 

Figure 2 above here. 

 

3.4. Figures display 

A graphical representation of the output is obtained by pressing the “Display Figures” 

button. A number of figures will pop up, one per phase. Each figure shows the stimulus 

mean V values per trial. The stimulus and group to be displayed can be enabled or 

disabled as required. Figures can also be saved, copied, printed, zoomed and modified 

by right-clicking (Ctrl+Click in Mac) the graph. The window can remain open while the 

user chooses to run a new experiment so they can compare the figures.  

	  

3.5. Compounds and configural cue compounds 

The “R&W Simulator” includes the possibility of computing both standard stimulus 

compounds and configural cue compounds as proposed by [36].  

To calculate standard compound associative values “Show Compound Results” 

must be selected in the “Settings” menu. Running the simulator will produce individual 

trial values for each stimulus compound (e.g., AX) described in the design, as well as 

for each of the elemental stimuli. Likewise, compound data will be shown in the figures 

and in the exported spreadsheets. 
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For example, we are running a simulation for the design described above for 

Group BICOND and Group SIMPLE using the following parameters: 240 trials, 60 of 

each compound, α= 0.35 for each CS, β = 0.35, λ(+) = 1, and λ(−) = 0. This 

simulation produces the graphical output shown in Figure 3 (we have deselected the 

stimulus V to show only the more relevant compound stimulus data). The simulation 

predicts that discrimination should develop quickly in Group SIMPLE. That is, the 

associative value of the reinforced compound stimuli (AX+ and BX+) should increase 

promptly and remain higher than the associative value of the non-reinforced compound 

stimuli (AY− and BY−). In contrast, the Rescorla and Wagner model wrongly predicts 

that there will be no discrimination in Group BICOND, and that all compound stimuli 

should acquire equal associative strength value. 

 

Figure 3 about here. 

	  

 

In order to compute configural cues, “Use Configural Cues” must be chosen and 

the parameters redefined to set α values for the configural cues –by default, the product 

of the α values of the component elements of the corresponding stimulus compound. 

Configural cues are represented as “c(AX), c(AY), …”. Running with these settings will 

produce associative values for each configural cue compound [AX], which will be 

displayed in the output and in the figures instead of the standard compound stimuli 

values.  



	   16	  

Figure 4 shows the results of a simulation of the previous design with identical 

parameters but using configural cues (α	  = 0.12). As before, the simulation predicts that 

there would be a good discrimination in Group SIMPLE. Now, however, the 

introduction of configural cues allows the Rescorla and Wagner model to correctly 

predict the development of a discrimination between the reinforced (AX+ and BY+) and 

the non-reinforced (AY− and BX−) compound stimuli in Group BICOND.  

 

Figure 4 about here. 

 

3.6. Test 

The simulator has been thoroughly tested against phenomena that the Rescorla and 

Wagner model successfully accounts for, and also against some it notoriously does not. 

In this we have followed an exhaustive review of the model by Miller and collaborators 

[9]. For example, the simulator accurately predicts extinction and acquisition curves, 

blocking, overshadowing, conditioned inhibition and positive patterning discrimination; 

and, without choosing the configural cue option, fails to predict biconditional 

discriminations (Figure 3) −because, as is well-known, the Rescorla and Wagner model 

can only solve non-linear discriminations by including configural cues (Figure 4). 

Negative patterning [49] is another prototypical case of non-linear discriminations that 

are not correctly predicted by the model without assuming configural cues. In negative 

patterning procedures, two stimuli A and B are reinforced when presented alone, but 

nonreinforced when presented in compound (i.e., A+, B+, AB−); solution of this 

discrimination requires the organism to withhold responding to the compound of A and 
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B while responding to A and B alone.  According to the summation assumption, if A 

and B predict the US individually, a compound of A and B must predict the US even 

more –the opposite of what is found.  A simulation of a negative patterning 

discrimination without configural cues is shown in Figure 5. The simulation was run for 

a total of 600 trials, 200 each type, α = 0.35 for each stimulus, β = 0.35, λ(+) = 1, λ(−) = 

0.  

An inspection of the simulation results clearly shows that the Rescorla and 

Wagner model wrongly predicts more responding to the compound stimulus AB.  

 

Figure 5 about here. 

 

An identical negative patterning discrimination design was simulated next using 

the same parameters, but including configural cues (α = 0.12). Figure 6 displays the 

results of this simulation. As can be seen, the model now predicts a correct solution for 

the negative patterning discrimination: that is, the individual stimuli predict the outcome 

better than the stimulus compound.  

 

Figure 6 about here. 
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4. Conclusions 

The “R&W Simulator” (version 3.0) provides an easy-to-use yet specialized, fast and 

free tool to test the predictions of the original Rescorla and Wagner model, as well as 

modifications involving configural cue compounds. Users will be able to enter whole 

designs, save figures, and export the data for further analysis and manipulation. The 

simulator runs in all computer platforms and does not require installation. 
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Table and Figures Captions 

 

Table 1. Predictive power of the Rescorla and Wagner’s model. 

 

Figure 1. Main GUI of the “R&W Simulator” showing a design with two groups 

(BICOND and SIMPLE) for a biconditional and a simple discrimination, respectively. 

 

Figure 2. Screenshot of the “.xlsx” spreadsheet containing the experimental data and 

the design of the biconditional and simple discrimination simulation. 

 

Figure 3. Mean compound stimulus associative strength values across discrimination 

training for Group BICOND and Group SIMPLE. 

 

Figure 4. Mean configural cue compound associative strength across discrimination 

training for Group BICOND and Group SIMPLE. 

 

Figure 5. Mean stimulus and compound stimulus associative strength across a negative 

patterning training discrimination.  

	  

Figure 6. Mean stimulus and configural cue compound associative strength across a 

negative patterning training discrimination. 	  


	Binder1
	COMM3349-Figure1
	COMM3349-Figure2
	COMM3349-Figure3
	COMM3349-Figure4
	COMM3349-Figure5
	COMM3349-Figure6

	COMM3349-Alonso

