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Abstract  
Fault tolerance is often the only viable way of obtaining 

the required system dependability from systems built out 

of “off-the-shelf” (OTS) products. We have studied a 

sample of bug reports from four off-the-shelf SQL servers 

so as to estimate the possible advantages of software fault 

tolerance - in the form of modular redundancy with 

diversity - in complex off-the-shelf software. We checked 

whether these bugs would cause coincident failures in 

more than one of the servers. We found that very few bugs 

affected two of the four servers, and none caused failures 

in more than two. We also found that only four of these 

bugs would cause identical, undetectable failures in two 

servers. Therefore, a fault-tolerant server, built with 

diverse off-the-shelf servers, seems to have a good chance 

of delivering improvements in availability and failure 

rates compared with the individual off-the-shelf servers or 

their replicated, non-diverse configurations. 

 

 

1. Introduction  
 

When systems are built out of “off-the shelf” (OTS) 

products, fault tolerance is often the only viable way of 

obtaining the required system dependability [23, 30, 12]. 

Fault tolerance may take multiple forms, from simple 

error detection and recovery add-ons (e.g. wrappers [22]) 

to full-fledged “diverse modular redundancy” [16]: 

replication with diverse versions of the components.  

Even this latter class of solutions becomes affordable with 

many OTS products and has the advantage of a fairly 

simple architecture. The cost of procuring two or even 

more OTS products (some of which may be free) would 

still be far less than that of developing one’s own.  

All these design solutions are well known from the 

literature. The questions, for the developers of a system 

using OTS components, are about the dependability gains, 

implementation difficulties and extra cost that they would 

bring for that specific system. 

To study the issues for a realistic category of OTS 

products we have chosen SQL database servers. These are 

complex products, with many faults in each release, and 

even features that imply an accepted possibility of an 

incorrect behaviour, albeit rare. An example of the latter 

is the known “write skew” [3] problem with some 

optimistic concurrency control architectures [7]. Further 

dependability improvement of OTS SQL servers seems 

only possible if fault tolerance through design diversity is 

used [11]. Given the many available OTS SQL servers 

and the standardisation of their functionality (SQL 92 and 

SQL 99), it seems reasonable to build a fault-tolerant 

SQL server from available OTS servers.  

The effort of developing an SQL server using design 

diversity (e.g. several of-the-shelf SQL servers and 

suitably adapted “middleware” for replication 

management) would require strong evidence of its 

usefulness: for example empirical evidence that likely 

failures of the SQL servers, which may lead to serious 

consequences, are unlikely to be tolerated without 

diversity. This paper starts to investigate such empirical 

evidence. We seek to demonstrate whether design 

diversity has a potential to deliver significant 

improvement of dependability of SQL servers, compared 

to solutions for data replication that can only tolerate 

crash failures. To this aim we are running experiments to 

determine the dependability gains achieved through fault 

tolerance.  

A preliminary evaluation step concerns fault diversity 

rather than failure diversity. By manual selection of test 

cases, one can check whether the diverse redundant 

configuration would tolerate the known bugs in the 

repositories of bugs reported for the various OTS servers. 

We have conducted a study on four SQL servers, both 

commercial and open-source. We collected known bug 

reports for these servers. For each bug, we took the test 

case that would trigger it and ran it on all four servers (if 

possible), to check for coincident failures. We found the 

number of coincident failures to be very low.      



  

We use the following terminology. The known bugs 

for the OTS servers are documented in bug report 

repositories (i.e. bug databases, mailing lists etc). Each 

bug report contains the description of what the bug is and 

the bug script (SQL code that contains the failure 

triggering conditions) required to reproduce the failure 

(the erroneous output that the reporter of the bug 

observed). In our study we collected these bug reports and 

ran the bug scripts in the servers (we will use the phrase 

“running a bug” for the sake of brevity). 

This paper is structured as follows: In Section 2 we 

describe the background and motivation of the study and 

related work from the literature. In Section 3 we describe 

how the study was conducted and the terminology for 

classification of faults. In Section 4 we present the 

quantitative results obtained. In Section 5 we describe the 

bugs that caused coincident failures. In Section 6 we 

discuss the possible reliability gains to be had from using 

diverse OTS SQL servers and in Section 7 we present 

conclusions and possible further work.  

 

2. Background and related work 
 

2.1. Fault tolerance in databases  
 

Software fault tolerance has been thoroughly studied 

and successfully applied in many sectors, including 

databases. For example, standard database mechanisms 

such as transaction “rollback and retry” and 

“checkpointing” can be used to tolerate faults that are due 

to transient conditions. These techniques can be used with 

or without data replication in the databases.  

There are many solutions for data replication [4, 33, 

20], as a feature of many commercial SQL servers or as 

middleware that can be used with a variety of SQL 

servers. Typically, these replication solutions work with 

sets of identical servers. Jimenez-Peris et al [13] present a 

relevant discussion of the various ways in which database 

replication with OTS servers can be organised, namely 

treating the servers as white, grey or black boxes. All 

commercial offerings are of the white-box kind, where 

code necessary for replication is added inside the server 

product. The grey-box approach, as implemented in [14], 

assumes that servers provide specific services to assist 

with replication. The black-box approach uses the 

standard interfaces of the servers. Both the grey and black 

box approaches are implemented via middleware on top 

of the existing servers. To the best of our knowledge, a 

common assumption is made in the known replication 

solutions that the SQL servers will fail in a “fail-stop” 

manner [26], with detectable clean crashes, and leaving a 

copy of a correct state for use in recovery. Apart from 

simplifying the protocols for data replication, the 

assumption of crash failures also allows for some 

performance optimisation such as executing the 

modifying queries on a single server, which then 

propagates the updates to all other servers involved in the 

replication, a solution considered adequate by the 

standardising bodies [28].  

These approaches have shortcomings, i.e., they do not 

protect against failures that are not easily detectable (non-

fail-stop), and incorrect updates would be propagated to 

all the replicas. Using diverse SQL servers instead of 

servers of the same type would improve error detection 

and thus reduce the risk from incorrect results. 

Availability could also be improved because servers that 

are diagnosed as correct can continue operation while 

recovery is performed on the faulty server[s]. Elsewhere 

[21, 9] we describe some initial steps toward 
implementing middleware for data replication with 

diverse SQL servers. There, we also discuss some 

difficulties of data replication with diverse servers, such 

as the need to use the subset of SQL that is common to all 

servers used, and to translate all queries into the SQL 

“dialects” of these servers. 

 

2.2. Studies of faults and failures 
 

The usefulness of diversity depends on the frequency 

of those failures that cannot be tolerated without it. There 

have been comparatively few related studies.  

Gray studied the TANDEM NonStop system [10] and 

observed that over an (unspecified) measured period only 

one out of 132 faults caused failures deterministically, i.e. 

the same failure was observed on retry. Gray calls these 

“Bohrbugs”. The others, which he calls “Heisenbugs” 

only caused failures under special conditions (e.g. created 

by a combination of the state of the operating system and 

other software), difficult to reproduce artificially. 

Heisenbugs – so long as their failures are detected – can 

be tolerated by replication without diversity, as in the 

Tandem system. A later study, [17] of field software 

failures for the Tandem Guardian90 operating system 

found that 82 % of the reported field software faults were 

tolerated. However, 18 % of the faults did lead to both 

non-diverse processes in a Tandem process failing and 

therefore leading to a system failure. 

Related studies exist on determinism and fail-stop 

properties of database failures, but they, like our study, 

concern faults rather than failure measurements.  A study 

[5] examined fault reports of three applications (Apache 

Web server, GNOME and MySQL server). Only a small 

fraction of the faults (5-14%) were Heisenbugs triggered 

by transient conditions that would be tolerated by a 

simple “rollback and retry” approach. However the reason 

why there are few Heisenbugs here, and indeed in our 

study, might be that people are less likely to report faults 

that they cannot reproduce, and this is acknowledged by 

the authors in [5]. In another study [6] the same authors 

found (via fault injection) that a significant number of 



  

faults (7%) violated the fail-stop model by writing 

incorrect data to stable storage. Even though they report 

that this number falls to 2% when applying the Postgres95 

transaction mechanism, this number still remains high for 

applications with stringent reliability requirements.  

 

2.3. Diversity with off-the-shelf applications 
 

Other researchers have also considered the potential of 

diversity for improving the dependability of OTS 

software. Various architectures have been proposed that 

use diversity for intrusion tolerance: e.g. HACQIT [25], 

which demonstrates diverse replication (with two OTS 

web servers - Microsoft’s IIS and Apache web server) to 

detect failures (especially maliciously caused ones) and 

initiate recovery; SITAR [32], an intrusion tolerant 

architecture for distributed services and especially COTS 

servers; or the Cactus architecture [12], intended to 

enhance survivability of applications which support 

diversity among application modules. 

In another example, [2] uses diverse Java virtual 

machines for interoperability rather than for tolerating 

failures.      

 

3. Description of the study 
 

3.1. Bug reports   
 

Two commercial (Oracle 8.0.5 and Microsoft SQL 

Server 7 (without any service packs applied)) and two 

open-source (PostgreSQL Version 7.0.0 and Interbase 

Version 6.0), SQL servers were used in this study. 

Interbase, Oracle and MSSQL were all run on the 

Windows 2000 Professional operating system, whereas 

PostgreSQL (which is not available for Windows) was 

run on RedHat Linux 6.0 (Hedwig).  

We only used bugs that caused failure of a server’s 

core engine. We did not consider other bugs such as those 

that caused failure to a client application tool or various 

connectivity API’s (JDBC/ODBC etc.), because these 

functions in a future fault tolerant architecture would be 

provided by the middleware. 

For each of these servers there is an accessible 

repository of reports of known bugs. We collected: 

Interbase bugs [27] reported in the period between August 
2000 and August 2001; PostgreSQL bugs [24] reported 
between May 2000 and January 2001; Oracle bugs [19] 

reported between September 1998 and December 2002. 

Bug reports for MSSQL [18] do not specify dates; we 

used all reports for both MSSQL 7 and MSSQL 2000, 

available as of August 2003, that included “bug scripts” 

and were core engine bugs. For Oracle and MSSQL we 

collected reports from longer periods, because for these 

two servers (both “closed development” servers) some 

reports do not include bug scripts and we could not check 

whether the bug was present in other servers. By 

extending the collection period we obtained reasonably 

large (though obviously imperfect) samples of bug 

reports. Despite this, the sample that we could use for 

Oracle contained only 18 bugs, since most reports omitted 

the bug scripts.      

For each reported bug we attempted to run the 

corresponding bug script. Full details are available in [8].  

  

3.2. Reproducibility of failures 
 

All these servers offer features that are extensions to 

the basic SQL standard, and these extensions differ 

between the servers. Bugs affecting one of these 

extensions thus literally cannot exist in a server that lacks 

the extension. We called these “dialect-specific” bugs. 

For example, Interbase bug 217138 [8] uses the UNION 
operator in views, which PostgreSQL 7.0.0 views do not 

offer, and thus cannot be run in PostgreSQL: it is a 

dialect-specific bug. 

Another “reproducibility” issue arises when a bug 

script does not cause failure in the server for which the 

bug was reported. We called these bugs Heisenbugs, 

borrowing Gray’s terminology [10]. We intend to run the 

Heisenbugs again in a more stressful simulated 

environment [21] (with multiple clients and large number 

of transactions) to see whether repeated trials will give 

incorrect results.  

 

4. Quantitative results  
 

4.1. Detailed results  

 
In total we included in the study 181 bug reports: 55 

for Interbase, 57 for PostgreSQL, 51 for MSSQL and 18 

for Oracle. Out of these 181 bugs, 76 were “dialect-

specific” (could be run in only one of the four servers); 47 

could be run in all four servers; 26 could be run in only 

two servers and 32 in only three servers.    

Each bug was first run on the server for which it was 

reported, and (after translating the script into the SQL 

dialect of the respective server) on the other servers.  The 

bugs were classified into dialect-specific and non-dialect-

specific bugs; the latter were then further classified into 

Bohrbugs or Heisenbugs as explained previously. The 

failures were also classified into different categories 

according to their effects, as different failure types require 

different recovery mechanisms: 

Engine Crash failures: crashes or halts of the core engine. 

Incorrect Result failures: incorrect outputs without engine 

crashes: the outputs do not conform to the server’s 

specification or to the SQL standard.  

Performance failures: correct output, but with an 

unacceptable time penalty for the particular input. 

Other failures. 



  

We also classified the failures according to their 

detectability by a client of the database servers:  

Self-Evident failures: engine crash failures, cases in which 

the server signals an internal failure as an exception (error 

message) and performance failures.  

Non-Self-Evident failures: incorrect result failures, 

without server exceptions within an accepted time delay. 

Table 1 contains the results of this step of the study. 

Each grey column lists the results produced when the 

bugs reported for a certain server were run on that server. 

For example, we collected 55 known Interbase bugs, of 

which, when run on our installation of the Interbase 

server, 8 did not cause failures (possible Heisenbugs). 

The 47 bugs that caused failures are further classified in 

the part of the column below the double vertical lines, 

after the “Failure observed” row. All the performance 

failures and all the engine crashes are self-evident. 

Incorrect Result failures and “Other” failures can be self-

evident or non-self-evident depending on whether the 

server gives an error message.  

The three columns to the right of the grey one present 

the results of running the Interbase bugs on the other three 

servers. For example, we can see that 23 of the Interbase 

bugs cannot be run in PostgreSQL (dialect-specific bugs). 

Then we have the bugs that “require further work”: this 

means that we have not managed yet to translate the bug 

script in the PostgreSQL dialect of SQL, or are listed as 

“performance bugs” but we could not decide whether 

performance improves by changing servers. We plan to 

resolve this uncertainty via a testing infrastructure [21] to 

measure the precise execution times of the queries. 

Out of 55 Interbase bugs we managed to run 27 in 

PostgreSQL; only one caused a failure in both Interbase 

and PostgreSQL. This particular failure was a non-self-

evident incorrect result as can be seen from the table.  

As for the failure types, we can see that most of the 

bugs cause incorrect result failures. This will be discussed 

further in the Section 6. 

We observed a higher number of Heisenbugs in 

MSSQL and Oracle than in the other servers. This was 

documented by some of the bug reports, which indicated: 

“may cause a failure”. 

 

Table 1. Results of running the bug scripts on all four servers. IB stands for Interbase, PG 
for PostgreSQL, OR for Oracle and MS for MSSQL 

 IB PG OR MS PG IB OR MS OR IB MS PG MS IB OR PG 

Total bug scripts 55 55 55 55 57 57 57 57 18 18 18 18 51 51 51 51 

Bug script cannot be run 

(Functionality Missing) 
n/a 23 20 16 n/a 32 27 24 n/a 13 13 12 n/a 36 32 31 

Further Work n/a 5 4 6 n/a 2 0 0 n/a 1 1 2 n/a 3 7 2 

Total bug scripts run 55 27 31 33 57 23 30 33 18 4 4 4 51 12 12 18 

No failure observed 8 26 31 31 5 23 30 31 4 4 4 3 12 11 12 12 

Failure observed 47 1 0 2 52 0 0 2 14 0 0 1 39 1 0 6 

T
y
p
es
 o
f 
fa
il
u
re
s 

 Poor Performance 3 0 0 0 0 0 0 0 1 0 0 0 6 0 0 0 

Engine Crash 7 0 0 0 11 0 0 0 3 0 0 0 5 0 0 0 

Incorrect 

Result 

Self-evident 4 0 0 1 14 0 0 1 3 0 0 0 10 0 0 6 

Non-self-evident 23 1 0 1 20 0 0 1 7 0 0 1 17 1 0 0 

Other 
Self-evident 2 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 

Non-self-evident 8 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 

 

4.2. Summary of observed fault diversity 
 

Table 2 contains a summary from the viewpoint of the 

probable effects on a fault-tolerant server. Of the 47 bugs 

that could be run on all four servers, 12 did not cause 

failures in any of the servers: they are Heisenbugs for the 

server for which they were reported, and non-existent or 

Heisenbugs for the other three servers. 31 of these only 

caused a failure in the server for which they were reported 

and not in the others; and 4 bugs caused a coincident 

failure in two servers.   

In addition to these 47, we have many bugs that could 

be run only on a subset of the four servers and thus on a 

fault-tolerant server built out of this subset. The following 

sections in the table show the number of bugs that could 

be run in each of these different combinations (4 three-

version combinations and 6 two-version combinations), 

and how many caused failures or coincident failures.   

The last four columns show the 76 dialect-specific 

bugs, which could only be run in the server for which 

they were reported and therefore affect functionality that 

would not be available on a fault-tolerant diverse server.



  

Table 2. The number of bug scripts run and the effects on different combinations of servers 

The server(s) in which the 

bug script was run 

IB, 

PG, 

OR, 

MS 

IB, 

PG, 

OR 

only  

IB, 

PG, 

MS 

only 

IB, 

OR, 

MS 

only 

PG, 

OR, 

MS 

only 

IB, 

PG 

Only 

IB, 

MS 

Only 

IB, 

OR 

Only 

PG, 

OR 

Only 

PG, 

MS 

Only 

MS, 

OR 

Only 

IB 

Only 

PG 

Only 

MS 

Only 

OR 

Only 

Total number of bug scripts 

run 
47 3 7 12 10 5 3 0 4 12 2 17 18 28 13 

Failure not observed in any 

server  
12 0 1 2 0 0 0 0 0 0 1 1 2 5 3 

Failure observed in one 

server only 
31 3 6 9 9 5 3 0 3 7 1 16 16 23 10 

Failure observed in two 

servers 
4 0 0 1 1 0 0 0 1 5 0 N/A N/A N/A N/A 

None of the bugs caused a failure in more than two servers 

 

4.3. Two-version combinations
 

We now look more closely at the two-version 

combinations of the four different servers in our study, to 

see how many of the coincident failures are detectable in 

the 2-version systems. We define: 

Detectable failures: self-evident failures or those where 

servers return different incorrect results (the comparison 

algorithm must be written to allow for possible 

differences in the representation of correct results, e.g. 

different numbers of digits in the representation of 

floating point numbers, padding of characters in character 

strings etc.). All failures affecting only one out of two (or 

at most n-1 out of n) versions are detectable.  

Non-Detectable failures: the ones for which two (or 

more) servers return identical incorrect results.  

Table 3 contains a summary of the results on each of 

the six possible two-version combinations. Here we only 

include bugs that could be run on both servers, i.e. we 

exclude dialect-specific bugs. Only four of the 12 

coincident failures we observed are non-detectable. We 

can see that diversity allows detection of failures for at 

least 94% of these bugs. 

 

Table 3. Summary of results for the two-version combinations 

Pairs of 

servers  

Total number 

of bug scripts 

run 

Failure observed 

(in at least one 

server) 

One out of two servers failing Both servers failing 

Self-

evident 

Non -self-

evident 

Non – 

Detectable 

Detectable 

Self-evident Non-self-evident 

IB + PG 62 43 17 25 1 0 0 

IB + OR 62 29 8 21 0 0 0 

IB + MS 69 35 11 21 2 1 0 

PG + OR 64 30 13 16 0 0 1 

PG + MS 76 46 18 21 1 6 0 

OR + MS 71 14 7 7 0 0 0 

 
 

5. Common faults 
  
We now discuss the bugs that caused coincident 

failures, listed in Table 4. We give some details about the 

functions affected and conjectures about the probable 

severity and frequency of failure as a function of the 

environment of use of the server. 

There were 13 bugs in total that were originally 

reported for one server but caused failure in another. 12 

caused a failure in both the server for which they were 

reported and another server. One bug (MSSQL bug 

report 56775) was reported for MSSQL, did not cause 

failure in MSSQL (possible Heisenbug) but did cause 

failure in PostgreSQL. 

 

 

 

 



  

Table 4. Bugs that cause coincident 
failures. The table should be read 
horizontally to know for which server the 
bug was reported, and vertically to know 
in which other server it caused a failure. 

 IB PG OR MS 

IB N/A 1  - (Bug ID 223512) 0 
2– (BugID’s 
217042(3), 

222476) 

PG 0 N/A 0 
2 – (BugID’s 
43 and 77) 

OR 0 
1 –  

(Bug ID 1059835) 
N/A 0 

MS 
1- 
(BugID 

58544) 

5 – (BugID’s 54428, 
56516, 58158, 58253, 

351180) 

0 N/A 

 

Arithmetic-related bugs 

PostgreSQL bug report 77 and Oracle bug report 

1059835 [8] describe arithmetic precision problems, 

causing incorrect result failures. The Oracle bug 1059835 

affects the MOD (modular arithmetic) operator, probably 

causing higher consequence failures.  The failure rates for 

these bugs would only be expected to be high in 

applications with high use of mathematical functions, not 

a typical use of SQL servers.  

Bugs affecting complex queries 

PostgreSQL bug 43 [8] causes a failure in both 

PostgreSQL and MSSQL. The complex SELECT 

statement below, with nested sub-queries, causes the 

failure:  
SELECT   P.ID AS ID, P.NAME AS NAME FROM PRODUCT 
P WHERE P.ID IN   
(SELECT ID FROM  PRODUCT WHERE  PRICE >= '9.00' 
AND  PRICE <= '50' AND  ID NOT IN  
((SELECT PRODUCT_ID FROM PRODUCT_SPECIAL 
WHERE START_DATE <= '2000-9-6' AND END_DATE >= 
'2000-9-6')  
UNION  
(SELECT PRODUCT_ID AS ID  FROM PRODUCT_SPECIAL 
WHERE PRICE >= '9.00' AND PRICE <= '50' AND 
START_DATE <= '2000-9-6' AND END_DATE >= '2000-9-6'))) 

Interestingly, for this same bug the two servers fail with 

different patterns. PostgreSQL fails returning a parsing 

error. MSSQL does not, but subsequently gives an 

incorrect result, probably because it built an incorrect 

parsing tree. 

MSSQL Bug 58544 [8] causes failures in both MSSQL 

and Interbase. Using a LEFT OUTER JOIN on a VIEW 

that uses the DISTINCT keyword causes the failure. A 

left outer join is a special type of outer join where if you 

have a join between tables T1 and T2 then the joined table 

unconditionally has a row for each row in T1 (as opposed 

to a Full Outer Join where the joined table has a row for 

each row present in both tables T1 and T2). The 

DISTINCT keyword subsequently eliminates all the 

duplicate rows from the joined table. Complex queries 

would be common on large databases with many tables, 

leading probably to a comparatively high failure rate, with 

possibly high failure severity, especially for incorrect 

result failures.   

Miscellaneous bugs 

Interbase Bug 223512(2) causes a failure in the Data 

Definition Language (DDL) part of SQL which is used to 

create/modify database objects (i.e. tables, views, users, 

procedures etc). It causes failures in both Interbase and 

PostgreSQL: both incorrectly allow a client to drop Views 

using the Drop Table statement. This violates the SQL-92 

standard, which allows Views to be dropped only via the 

Drop View statement. This bug would seem to cause 

infrequent failures in operation and it would normally 

require an error by an administrator. The severity of 

failures would also be expected to be low since a view is 

just a ‘virtual table’ (or a stored SELECT statement), 

which represents the data from one or more tables. No 

data are lost by dropping a view, although a runtime error 

will be generated each time a client attempts to access the 

dropped view. 

Interbase bug 217042(3) causes both Interbase and 

MSSQL to fail to validate the default values upon 

creation of tables. Therefore a statement like: 
CREATE TABLE TEST (A INT DEFAULT ‘ABC’) 

is allowed in both Interbase and MSSQL, even though an 

error should be raised since a string value (ABC) cannot 

be stored in an Integer type attribute. The DEFAULT 

attributes are used often in operation but it is not clear 

how often database users will define DEFAULT values of 

the wrong type. The failure to detect that an incorrect type 

default value is being assigned to a particular column at 

table creation time is non-detectable. However, a runtime 

error will occur, generating an error message, every time 

an attempt is made to insert the default value into the 

table: the failure will be detected, albeit with high 

latency
1
. 

  Interbase bug 222476 causes a failure in MSSQL as 

well. Both servers give empty field names for avg 

(average) and sum SQL functions, although they return 

correct results in these fields. This would be a serious 

problem for client applications that construct their output 

from the field names and results returned by the server.  

Five of the MSSQL bug scripts also caused failure in 

PostgreSQL, but with the difference that PostgreSQL fails 

at the beginning of the bug script. This implies that the 

causes are probably different for the two products, and the 

“failure regions” (sets of demands that would trigger the 

bug) identified by such scripts for the two servers only 

partially overlap: there are variations of the script for 

                                                           
1 If we classify the database as part of the server system, the common 
terminology recommended in [15] would imply that assigning the wrong 

type is an internal error, which only becomes a failure and is detected 

when the attempt is made to insert the default value. 



  

which PostgreSQL fails but MSSQL does not. For 

example, MSSQL bug 54428 causes an incorrect  

“primary key constraint” failure in MSSQL. The same 

bug causes failure (at the beginning of the bug script) 

when an attempt is made to create a clustered index in 

PostgreSQL. The latter is a known bug for PostgreSQL, 

and its correction in the later release 7.0.3 causes 

PostgreSQL not to fail on any of these five scripts. 

    

6. Discussion 
 

6.1. Extrapolating from the counts of common 

bugs to reliability of a diverse server 

 
These numbers are intriguing and point to a potential 

for serious dependability gains from assembling a fault 

tolerant server from two or more of these off-the-shelf 

servers. But they are not definitive evidence. Apart from 

the sampling difficulties caused e.g. by lack of certain bug 

scripts, it is important to clarify to what extent our 

observations allow us to predict such gains. 

For brevity, we consider the simplest case: suppose 

that users of a certain database server product A try to 

obtain a more dependable service by using a fault-

tolerant, replicated, diverse server AB, built from product 

A plus another product B (for discussion of the feasibility 

and design problems, see [21]). The number of bugs 

reported over a certain reference period (say one year) for 

product A is mA. Our study then finds that of these mA 

bugs, only mAB also caused failure of B. We may then 

expect that, had these users been using AB instead of A, 

only those failures of A that were due to those mA bugs 

could have caused complete service failures. How much 

more reliable would this have made the AB server, 

compared to the A server?  

Before proceeding, we introduce some more 

simplifications. The possible effects of individual server 

failures on system failures have been discussed in 

Sections 4.1 and 4.3, under the definitions of “self-

evident” and “detectable” failures. Here, for the sake of 

brevity, we use a simplified scenario: failures of both 

servers A and B on the same demand are “system 

failures”, and failures of a single one of them are not
2
. In 

addition, we only consider the effects on reliability of the 

factor that we have studied: the diversity between faults 

of the two products A and B. We thus ignore any effects 

of the middleware needed in the AB server, which adds 

complexity and thus possibly faults; and of added 

                                                           
2 This simplified model is still realistic if either: i) we are only 

concerned with interruptions of service, and all failures of A and/or B 

are detectable (crashes, self-detected errors, or different erroneous 
results if both A and B fail); or ii) we are concerned with undetected 

erroneous results, and all failures of both A and B on the same demand 

are pessimistically assumed to produce such results. 

complexity in client applications that used complex 

vendor-specific features of server A, if they must be 

adapted to use the more restricted feature set of server 

AB. With these simplifications, the AB server is certain to 

be at least as reliable as the single A server because it 

only fails if both A and B fail. We still need to assess the 

size of the probable reliability gain. To this end, we need 

to take into account various complications: the difference 

between fault records and failure records; imperfect 

failure reporting; variety of usage profiles. 

We can start with a scenario in which our data would 

be sufficient for trustworthy predictions, and then discuss 

the effects of these assumptions not holding in practice. 

This ideal scenario is as follows:  we are interested in the 

reliability gains for a database installation using server A, 

if it were to switch to a diverse server AB, assuming that 

this installation has a usage profile (probabilities of all 

possible demands on the server) similar to the average of 

all the bug-reporting installations of server A
3
. We 

assume that users neither change their patterns of usage of 

the databases (demand profile) nor upgrade to new 

releases of the database servers
4
; that all failures that 

affected installations of A during the reference year were 

noticed and reported; and that there is exactly one bug 

report for each failure that occurred.  

Then, we can state that the bug reports describe a one-

year sample of operation of the system, and our best 

reliability prediction is that the same set of users, during 

another year of operation, would experience a mean 

number mA of system failures if they used A, but only 

mAB if they used AB.  With the numbers we observed, 

the ratio mAB / mA is quite small, so the expected 

reliability gain would be large. Given that the reports 

come from millions of installations, each submitting 

many demands
5
, we might even trust that the true failure 

probability per demand is close to the observed frequency 

of failures. 

The first difficulty with this analysis is that reports 

concern bugs, not how many failures each caused. They 

                                                           
3  Or, from a market-assessment viewpoint, we may consider the average 

reliability gains for the population of all database installations which 
depend on server A, if they switched to using AB. 
4 Because we wish to reason about the reliability effects of diversity 

alone. This scenario also has practical interest, though. Usage patterns 
vary over time, but periods of very slow variations must exist; users do 

upgrade to new versions, but upgrades bring expense and new problems, 

so that it is interesting to see whether diversity would be a more cost-
effective way of achieving good average dependability over a system’s 

lifetime than frequent upgrades. 
5 How to define a “demand” to a state-rich system like a database server, 
for the purpose of inference about reliability, is a tricky theoretical and 

practical issue. For this informal discussion of other difficulties in 

inference, we ask the reader to accept that a practical solution can be 
found, somewhere between a single command and the whole sequence 

of commands over the lifetime of an installation. (cf e.g. [29]for 

examples of useful compromises). 



  

do not tell us whether a bug has a large or a small effect 

on reliability, although the faults that did not cause 

failures would tend to have stochastically lower effect on 

reliability than those that caused failures. Thus, the mAB 

bugs which still cause the fault tolerant server AB to fail 

may account for a large (perhaps close to 100%) or a 

small fraction (perhaps close to 0) of the failures observed 

in A’s operation. The actual reliability gain may be 

anywhere between negligible and very high.  

Software is often assessed in terms of number of bugs 

remaining. But it is easily seen that the bug reports do not 

give us any information on this number: the mA bugs 

reported may be the only bugs in the products, or they 

may be a fraction of them (perhaps minimal), which 

happened to be the ones causing failures during the 

reference year. 

Another difficulty is not knowing how many of the 

failures that occur are actually reported. This fraction is 

certainly less than 100%. If all failures had the same 

probability of being reported, the ratio between our 

predicted failure counts for AB and A would still be the 

ratio mAB / mA, although both terms in the ratio would be 

larger and affected by wider uncertainty. Reporting is 

probably biased, for instance towards bugs that cause 

higher frequency or higher severity of failures. Some 

failures – like crashes – are more noticeable than others, 

like storing incorrect data in some data fields, which may 

not produce visible effects for a long time (also making it 

more difficult to trace the visible problem back to its 

cause). Some users are more assiduous at producing 

failure reports, so the bugs that affect them more are also 

more likely to be reported, even if not so important for 

other users. 

In the end, we do not know in detail how failure reporting 

differs between different bugs, but bug reports are likely 

to be better evidence about bugs that cause blatant failures 

than about subtle (arguably more dangerous) failures. 

This prompts another consideration: as reported bugs are 

corrected and products mature, more of their failures are 

likely to be of the subtler types, unlikely to be reported. 

Therefore failure underreporting probably causes a bias 

towards underestimating the frequency of failures for 

which diversity would help. This makes diversity a more 

attractive defence, but it also means that bug reports will 

become a less and less accurate representation of the set 

of failures actually occurring.  

Last, we have the problem of usage profiles. A single 

user organisation needs predictions about the 

dependability of its specific installation of server AB or A 

(i.e., with or without diversity), which depends on its 

specific usage profile, which differs – perhaps by much – 

from the aggregate profile of the user population which 

generated the bug reports.  Installations that manage 

different databases, with different user needs, are 

subjected to different usage profiles. It is then plausible 

that different bugs are important for different 

installations; this conjecture is also supported by a 

possible interpretation of Adams’ findings [1] about the 

surprisingly small average failure rates of many bugs, 

when averaged over many installations. Then, the number 

of bugs whose effects can be tolerated (what we have 

counted here) gives little information about the resulting 

dependability gains. The actual effect can only be 

determined empirically. The user organisation may seek 

indirect evidence from the publicly available bug reports: 

if they generally match the failures experienced locally, 

the local effects of tolerating those bugs can be assessed. 

However if it does not, little insight is gained, and the 

exercise is time-consuming. 

 

6.2. Decisions about deploying diversity 
 

We have underscored that these results are only prima 

facie evidence for the usefulness of diversity.  

A better analysis would be obtained from the actual 

failure reports (including failure counts), available to the 

vendors, especially if they use automatic failure reporting 

mechanisms (users are biased towards under-reporting of 

failures from bugs they have reported before, or for which 

they have successful workarounds or recovery 

mechanisms), and even better if they also have indications 

about the users’ usage profile (from rough measures like 

the size of the database managed, to detailed monitoring 

as proposed in [31]). However, vendors are often wary of 

sharing such detailed dependability information with their 

customers.  

How can then individual user organisations decide 

whether diversity is a suitable option for them, with their 

specific requirements and usage profiles? As usual for 

dependability-enhancing measures, the cost is reasonably 

easy to assess: costs of the software products, the required 

middleware, difficulties with client applications that 

require vendor-specific features, hardware costs, run-time 

cost of the synchronisation and consistency enforcing 

mechanisms, and possibly more complex recovery after 

some failures. The gains in improved reliability and 

availability (from fewer system failures and easier 

recovery from some failures, set against possible extra 

failures due to the added middleware), and possibly less 

frequent upgrades, are difficult to predict except 

empirically. This uncertainty will be compounded, for 

many user organisations, by the lack of trustworthy 

estimates of their baseline reliability with respect to subtle 

failures: databases are used with implicit confidence that 

failures will be self-evident.  

We note that for some users the evidence we have 

presented would already indicate a diverse server to be a 

reasonable and relatively cheap precautionary choice, 

even without good predictions of its effects. These are 



  

users who have: serious concerns about dependability 

(e.g., high costs for interruptions of service or undetected 

incorrect data being stored); applications which use 

mostly the core features common to multiple off-the-shelf 

products (recommended by practitioners to improve 

portability of the applications); modest throughput 

requirements for updates, which make it easy to accept 

the synchronisation delays of a fault-tolerant server.  

 

7. Conclusions 
 

To estimate the possible advantages of modular-

redundant diversity in complex off-the-shelf software, we 

studied a sample of bug reports from four popular off-the-

shelf SQL database server products. We checked whether 

more than one product exhibited bugs that would cause 

common-mode failures if the products were used in a 

diverse redundant architecture. It appears that such 

common bugs are rare. We found very few bugs that 

affected two of the four servers, and none that affected 

more than two. Moreover only four of these bugs would 

cause identical, undetectable failures in two servers. 

Fault-tolerant, diverse servers seem to have a good chance 

of improving failure rates and availability. 

These preliminary results must be taken with caution, 

as discussed in Section 6, but are certainly interesting and 

indicate that this topic deserves further study. Their 

immediate implications vary between users, but there are 

classes of database server installations for which even 

these preliminary results seem to recommend diversity as 

a prudent and cost-effective strategy. Decisions would of 

course involve many other considerations which we could 

not discuss here: performance, total cost of ownership 

including updates, risks of dependence on one vendor, 

etc. 

The practical obstacle would be the need for 

“middleware”: most users would need an off-the-shelf 

middleware package, which in turn is not likely to be 

developed until there are enough users. On the other hand, 

a dedicated user could develop a middleware package in 

the hope of seeing his investment amplified through the 

creation of an open-source community of user/developers. 

But once the diverse server is running, the dependability 

changes due to diversity could be directly assessed. The 

user could decide on an ongoing basis which architecture 

is giving the best trade-off between performance and 

dependability, from a single server to the most pessimistic 

fault-tolerant configuration (with tight synchronisation 

and comparison of results at each query). 

Some other interesting observations include: 

- it may be worthwhile for vendors to test their servers 

using the known bug reports for other servers. For 

example, we observed 4 MSSQL bugs that had not 

been reported in the MSSQL service packs (previous 

to our observation period). Oracle was the only server 

that never failed when running on it the reported bugs 

of the other servers;  

- the majority of bugs reported, for all servers, led to 

“incorrect result” failures (64.5%) rather than crashes 

(17.1%) (despite crashes being more obvious to the 

user). This is contrary to the common assumption that 

the majority of bugs lead to an engine crash, and 

warrants more attention by users to fault-tolerant 

solutions, and by designers of fault-tolerant solutions 

to tolerating subtle and non fail-silent failures. 

Future work that is desirable includes: 

- repeating this study on later releases of the servers, to 

verify whether the general conclusions drawn here 

are repeated, indicating that they are the 

consequences of factors that do not disappear with 

the evolution of the software products;  

- statistical testing to assess the actual reliability gains. 

This is already under way. We have run a few million 

queries with various loads including experiments 

based on the TPC-C benchmark. We have not 

observed any failures so far (however, with the TPC-

C load we found that a significant gain in 

performance can be obtained with diverse servers 

[9]).  We plan to continue these experiments with 

more complete test loads. These are important for 

their own sake, as evidence for decision-making, but 

also for the side benefit of checking how far the data 

confirm the impressions gained from this study, and 

thus how accurate a picture fault reports paint for 

these products; 

- studying alternative options for software fault 

tolerance with OTS servers, e.g. wrappers rephrasing 

queries into alternative, logically equivalent sets of 

statements to be sent to replicated, even non-diverse 

servers [9];  

- developing the necessary components for users to be 

able to try out diversity in their own installations, 

since the main obstacle now is the lack of popular 

off-the-shelf “middleware” packages for data 

replication with diverse SQL servers. 
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