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Abstract. Fusai et al. (2006) employed the Wiener-Hopf technique to ob-

tain an exact analytic expression for discretely monitored barrier option prices

as the solution to the Black-Scholes partial differential equation (PDE). The

present work reformulates this in the language of random walks and extends

it to price a variety of other discretely monitored path dependent options.

Analytic arguments familiar in the applied mathematics literature are used

to obtain fluctuation identities. This includes casting the famous identities of

Baxter and Spitzer in a form convenient to price barrier, first-touch and hind-

sight options. Analyzing random walks killed by two absorbing barriers with

a modified Wiener-Hopf technique yields a novel formula for double-barrier

option prices. Continuum limits and continuity correction approximations are

considered. Numerically efficient results are obtained by implementing Padé

approximation. A Gaussian Black-Scholes framework is used as a simple model

to exemplify the techniques, but the analysis applies to Lévy processes gener-

ally.
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1. Introduction

The application of complex analytic techniques within probability theory has

a long and distinguished history. Yet, convenient probabilistic identities in their

modern formulation often hide deep analytic structure from which simple formulae

and computational methods can be developed. This work describes the application

of transform techniques and Wiener-Hopf type arguments to price a variety of dis-

crete path dependent financial contracts, including barrier, first-touch, hindsight

and double-barrier options. Auxiliary derivation of known identities and simple

asymptotic analysis show explicitly the relationship to other semi-analytical and

approximation techniques. For simplicity, the Black-Scholes model is used to ex-

emplify results throughout, though analysis applies equally well to Lévy processes.

The use of transformation techniques in financial mathematics is quite mod-

ern, see Carr and Madan (1998). Their introduction coincides with the increased

popularity of models for which the characteristic functions (Fourier transformed

probability densities) generally have simpler form than densities themselves and

efficient computation may be achieved using the Fast Fourier Transform. Such

models include Lévy processes, stochastic volatility models and affine models in

the interest rate literature. A recent investigation into the analytic properties of

characteristic functions, transformed payoffs and the calculation of ‘vanilla’ option

prices in Fourier space using Parseval’s identity is discussed by Lewis (2001).

The Wiener-Hopf technique was devised by Norbert Wiener and Eberhard Hopf

in 1931 to exactly solve certain integral equations where the domain of integration

is restricted to the half-line. By using the properties of analytic functions they

extended the applicability of Fourier transformation techniques. The Wiener-Hopf

method remains an enduring tool in analysis. Briefly, Fourier transformation results

in a Riemann-Hilbert equation defined in a strip in the complex transform param-

eter plane. The key step in the procedure is then to factorize the Fourier transform

of the integration kernel (transition density) into a product of two functions that

are analytic and algebraic above/below the strip in which the kernel is analytic. A

solution is then provided by a sophisticated and elegant function theoretic argu-

ment involving analytic continuation and Liouville’s theorem. For full details the

reader is referred to Noble (1988). There are few direct applications of the Wiener-

Hopf technique in the finance literature, but expressions for the prices of several
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path-dependent options under Lévy processes with continuous monitoring are ob-

tained in Boyarchenko and Levendorskii (2002) using Wiener-Hopf factorizations

and pseudodifferential analysis.

The contractual details for many path dependent options specify a contingency

upon the underlying assets at discrete times, often daily closing. The often sub-

stantial price discrepancies between options with discrete monitoring, and those

calculated assuming option payoffs are dependent on functionals of continuous time

paths, are well recognized. Many approximations and numerical approaches have

been proposed to overcome the misprising, for a review containing a list of relevant

articles, see Fusai and Recchioni (2007). Yet, fast reliable calculation of accurate

prices for these contracts continues to present a significant challenge.

The fluctuation of discrete time random walks is a natural framework to study

discretely monitored options. Using Bohnenblust’s combinatorial algorithm Spitzer

(1956) obtained a spectacular result connecting the distribution of the maximum

of partial sums of independent identically distributed random variables (a random

walk) to the distribution of their positive partial sums. The result was known

previously to Pollaczek (1952) in terms of the solution to a singular integral equa-

tion arising in his work in queueing theory. Subsequently, Baxter (1961) derived

Spitzer’s and other results (concerning a random walk’s exit from the half line) in an

algebraic manner closely related to the Wiener-Hopf technique. Further informa-

tive discussion on the relationship between fluctuation identities and Wiener-Hopf

factorization may be found in, for example, Borovkov (1973) or Feller (1971). The

exit of a random walk from a finite interval is analysed by a Wiener-Hopf type

technique in Kemperman (1963).

Fusai et al. (2006) solved Black-Scholes PDE to obtain an exact analytic ex-

pression for the prices of discretely monitored down-and-out European call options.

This involved reducing the PDE to a series of nested integrals expressed as a recur-

rence relation in the discounted price between successive monitoring dates. Taking

the z-transform (generating function) gave a Fredholm integral equation of the

second kind with convolution structure which was solved by employing Fourier

transforms and the Wiener-Hopf technique. The Fourier inverse was evaluated by

residue calculus. Utilizing the algorithm introduced by Abate and Whitt (1992) to
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approximate the inverse z-transform, good numerical accuracy and computational

efficiency were achieved.

The present work reformulates and extends the results of Fusai et al. (2006) by

first considering various probabilistic identities for random walks. These concern

their killing by barriers, when they cross barriers and their extrema. Included is a

derivation of Spitzer’s and Baxter’s identities in an analytically tractable form. The

modified Wiener-Hopf technique (commonly referred to as Jones’ method, see Noble

(1988)) provides a novel analytic expression for the (transformed) distribution of

a random walk killed by two absorbing barriers. Utilizing these results, pricing

formulae for discretely monitored barrier, first touch, hindsight and double barrier

options are then presented in Section 3. Working in Fourier space using Parseval’s

identity the method also extends results described in Lewis (2001) to price ‘exotic’

contracts. Simple asymptotic analysis in Section 4 gives analogous formulae in

continuous time and provides direct and explicit derivation of so called ‘continuity

correction approximations’. Numerical results are discussed in Section 5, where a

very accurate and efficient method employing Padé approximation is shown to be

superior to alternative methods. The closing discussion concerns ongoing work to

explore and extend this methodology.

2. Probabilistic Identities

2.1. Barrier Absorption. Consider a random walk Rn = Rn−1 + Xn, R0 = 0,

where Xn are given independent identically distributed random variables with law

k(x). This traces out a path where the transition probability that Rn+1 = x while

Rn = y has density k(x− y), i.e.,

(2.1) k(x− y)dx = P ({Rn+1 ∈ [x, x+ dx)}| {Rn = y}) ,

where P denotes a probability measure on path-space.

2.1.1. Lower Barrier. Denote by ℘(d)n (x) the (defective) probability density that

Rn = x is realized by a path that does not cross a barrier d < 0,

(2.2) ℘(d)n (x)dx = P ({Rn ∈ [x, x+ dx)} ∩ {ˉ
Rn−1 > d}) ,

where
ˉ
Rn = min06j6n {Rj}, then since

(2.3)
ˉ
Rn = min {

ˉ
Rn−1, Rn} = min {

ˉ
Rn−1, Rn−1 +Xn} ,
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(2.4) ℘(d)n (y) =

∫ ∞

d

℘
(d)

n−1(x)k(y − x)dx, ℘
(d)

0 (x) = δ(x).

Here δ(x) is the Dirac delta function. Taking the z-transform (generating function)

of ℘(d)n (y),

(2.5) f(y, q) = Z℘(d)n (y) =
∞∑

n=0

qn℘(d)n (y),

gives

(2.6) f(y, q)− δ(y) = q

∫ ∞

d

f(x, q)k(y − x)dx.

The z-transform exists within a disc D in the q-plane which, by Abel’s theorem for

power series with non-negative coefficients, has radius > 1.

A change of variables (ξ = x− d, ν = y− d) and defining g(ξ) = f(ξ+ d, q) gives

(2.7) g(ν)− δ(ν + d) = q

∫ ∞

0
g(ξ)k(ν − ξ)dξ.

With the Fourier transform (characteristic function) defined

(2.8) K(z) = Fk(x) =
∫ ∞

−∞
eizξk(ξ)dξ

and half-range transforms

(2.9) G−(z) =

∫ 0

−∞
eizξg(ξ)dξ, G+(z) =

∫ ∞

0
eizξg(ξ)dξ,

application of the convolution theorem gives

(2.10) G+(z)L(z) = e−izd −G−(z),

where

(2.11) L(z) = 1− qK(z).

On the assumption e−ν∓ξg(ξ) → 0 (ν− < 0 < ν+) as ξ → ±∞, equation (2.10)

is valid in a strip S around the origin in which K(z) is analytic (for general an-

alyticity properties of characteristic functions see Lukacs and Szasz (1953)) and

1 − qK(z) 6= 0. The subscript notation ± refers here and henceforth to functions

which are analytic and converge to constant value as |z| → ∞ in and above/below S.

Introducing the product factorization L(z) = L−(z)L+(z) of L(z) = 1−qK(z) (set-

ting L±(z)→ 1 as |z| → ∞ in S) and the sum factorization P (z) = P−(z)+P+(z)

of

(2.12) P (z) = e−idz/L−(z)

where P±(z)→ 0 as |z| → ∞ in S, equation (2.10) becomes

(2.13) G+(z)L+(z)− P+(z) = P−(z)−G−(z)/L−(z).
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This equates (within S) a function analytic in and above S (i.e. a ‘+’-function) to a

function analytic in and below S (‘−’-function), so by analytic continuation defines

an entire function.

On the assumption g(ξ) = f(ξ+d) is bounded at ξ = 0, G±(z) ∼ 1/z as |z| → ∞,

so by Liouville’s theorem (2.13) equates to zero, giving

G+(z) =
P+(z)

L+(z)
(2.14a)

=
e−idz

L(z)
−
P−(z)L−(z)

L(z)
.(2.14b)

Explicit integral representations for the Wiener-Hopf factors are

(2.15) P±(z) = ±
1

2πi

∫ ∞

−∞

e−idζ

L−(ζ)(ζ − z)
dζ (=ζ ≶ =z) ,

and

(2.16) L±(z) = exp

{
±
1

2πi

∫ ∞

−∞

lnL(ζ)

ζ − z
dζ

}
(=ζ ≶ =z) .

The probability densities ℘(d)n (x) are recovered as

(2.17) ℘(d)n (x) = Z
−1
n g(x− d) =






Z−1n F−1eidzG+(z) for x > d,

Z−1n F−1eidzG−(z) for x < d.

On substitution, for x > d,

(2.18) ℘(d)n (x) = Z
−1
n F

−1
(
1

L(z)
− eidz

P−(z)L−(z)

L(z)

)
.

The first term in (2.18) may be identified as ℘n(x), the probability density without

barriers, defined in (2.4) with d→∞. Hence,

(2.19) ℘(d)n (x) = ℘n(x)−
Z−1n
2π

(∫ ∞

−∞

P−(z)L−(z)

L(z)
e−i(x−d)zdz

)
.

The inverse z-transform Z−1n is the Taylor coefficient of qn, which is given by

(2.20) Z−1n f(q) =

∮

Λ
f(q)q−(n+1)dq,

where Λ ∈ D is a simply connected contour enclosing q = 0.

The probability that the barrier has not been crossed is

(2.21) P ({
ˉ
Rn > d}) =

∫ ∞

d

℘(d)n (x)dx.

2.1.2. Upper Barrier. With analogous reasoning to that of the previous subsection,

denote by ℘(u)n (x) the probability density that Rn = x is realized by a path that

does not cross a barrier u > 0, that is

(2.22) ℘(u)n (x)dx = P
(
{Rn ∈ [x, x+ dx)} ∩

{
R̄n−1 6 u

})
,
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where R̄n = max06j6n {Rj}, then

(2.23) ℘(u)n (x) = ℘n(x)−
Z−1n
2π

(∫ ∞

−∞

Q+(z)L+(z)

L(z)
e−i(x−u)zdz

)
.

Here L+(z) is again given by (2.16) and

(2.24) Q+(z) =
1

2πi

∫ ∞

−∞

e−iuζ

L+(ζ)(ζ − z)
dζ (=ζ < =z) .

2.2. Barrier First-Crossing. The first hitting time τd of the barrier d < 0 is the

first occasion Rn < d:

(2.25) τd = min {j > 1 |Rj < d} ,

with associated overshoot d−Rτd .

The probability that n is the first hitting time is

(2.26) P ({τd = n}) =
∫ d

−∞
℘n(x)dx = G−(0).

Clearly

(2.27) P ({τd = n}) = P ({
ˉ
Rn > d})− P ({

ˉ
Rn−1 > d}) ,

that is, for x < d,

(2.28) ℘(d)n (x)dx = P ({Rn ∈ [x, x+ dx)} ∩ {τd = n}) .

2.2.1. Analytic Continuation For Rn < d. Referring back to (2.17) and (2.13),

analytic continuation for Rn < d provides

(2.29) G−(z) = L−(z)P−(z)

and, for x < d,

(2.30) ℘(d)n (x) =
Z−1n
2π

(∫ ∞

−∞
P−(z)L−(z)e

−i(x−d)zdz

)
.

2.2.2. Baxter’s Identity. The first (strict) ascending ladder epoch τ+ is the entrance

time into (0,∞), that is

(2.31) τ+ = min {j > 1 |Rj > 0} .

The associated first ascending ladder height is Sτ+ . Correspondingly, the first

(weak) descending ladder epoch is the entrance time into (−∞, 0], given by

(2.32) τ− = min {j > 1 |Rj 6 0} ,

and first descending ladder height is Sτ− .
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Notice that with d = 0, G−(z) is the Fourier z-transform of the joint probability

density of the first crossing time τ− into (0,−∞) and the first descending ladder

height Rτ− ,

(2.33) ZF
[
P
(
{Rτ− ∈ [x, x+ dx)} ∩

{
τ− = n

})/
dx
]
= G−(z).

The composition of G+(z) includes δ(x), but G−(z) remains bounded as x→ 0 and

so both sides of (2.13) (with P−(z) = 1/L−(z) and P+(z) = 0) are equal to 1, that

is,

(2.34) 1−G−(z) = L−(z).

This relation represents a famous Wiener-Hopf factorization in probability theory

implicit in Baxter’s identity,

(2.35) 1− E
[
qτ
+
eizRτ+

]
= exp

{

−
∞∑

n=1

qn

n
E
(
eizRn

∣
∣
∣Rn > 0

)
}

.

Given E
(
eizRn

∣
∣Rn > 0

)
is the half-range Fourier transform of the probability

density function for the random walk Rn, (2.35) must have the properties of a

‘+’-function. To confirm (2.35) as a Wiener-Hopf factor,

(2.36)
∞∑

n=1

qn

n

[
E
[
eizRn

∣
∣
∣Rn > 0

]
+ E

[
eizRn

∣
∣
∣Rn 6 0

]]
=

∞∑

n=1

qn

n
E
[
eizRn

]

and recalling Xj have independent identical distributions,

∞∑

n=1

qn

n
E
[
eizRn

]
=

∞∑

n=1

qn

n

n∏

j=1

E
[
eizXn

]
(2.37a)

=
∞∑

n=1

qn

n

(
E
[
eizXj

])n
(2.37b)

= − ln (1− qK(z)) ,(2.37c)

where the final step used the identity
∑∞
n=1 q

n/n = − ln(1− q).

2.3. Partial Maximum. Observing R̄n has the same distribution as Qn, where

(2.38) Q0 = 0 : Qn = (Qn−1 +Xn)
+ ,

the probability densities ℘(m)n (x) for R̄n must satisfy

(2.39) ℘
(m)

n+1(y) =

∫ ∞

0
℘(m)n (x)k(y − x)dx.

Repeating the previous Wiener-Hopf analysis yields an expression for H+(z) =

ZF℘(m)n (x),

(2.40) H+(z) =
1

L−(0)L+(z)
,

8



so that

(2.41) ℘(m)n (x) =
Z−1n
2π

∫ ∞

−∞

e−ixz

L−(0)L+(z)
dz.

Alternatively, since

(2.42) ℘(m)n (u) =
∂

∂u
P
({
R̄n < u

})
=

∂

∂u

∫ ∞

−∞
℘(u)n (x)dx,

using the identity
∫∞
−∞

[
F−1F

]
(x)dx = F (0), (2.40) may be obtained directly from

(2.23),

℘(m)n (u) =
∂

∂u

∫ ∞

−∞

(
℘n(x)−Z−1n F

−1
[
Q+(z)

L−(z)
eiuz

])
dx(2.43a)

= −Z−1n
∂

∂u

[
Q+(0)

L−(0)

]
(2.43b)

=
−Z−1n
L−(0)

1

2πi

∂

∂u

∫ ∞

−∞

e−iuz

L+(z)z
dz(2.43c)

= Z−1n F
−1
[

1

L−(0)L+(z)

]
.(2.43d)

Equation (2.40) represents the Wiener-Hopf factorization implicit in Spitzer’s iden-

tity

(2.44)
∞∑

n=0

qnE
[
eizR̄n

]
= exp

{
∞∑

n=1

qn

n
E
[
eizR

+
n

]
}

.

Normalizing the z-transform, the expectation of eizRn geometrically distributed

with parameter q is

Eq
[
eizRn

]
= (1− q)

∞∑

n=0

qnE
[
eizRn

]
(2.45a)

= (1− q)
∞∑

n=0

qn
n∏

j=1

E
[
eizXj

]
(2.45b)

= (1− q)
∞∑

n=0

qn
(
E
[
eizXj

])n
(2.45c)

=
1− q

1− qE
[
eizXj

] =
L(0)

L(z)
,(2.45d)

which makes clear the factorization

(2.46) Eq
[
eizRn

]
= Eq

[
eizˉ

Rn
]
Eq
[
eizR̄n

]
.

2.4. Double-Barrier Absorption. Now denote by ℘(ud)n (x) the probability den-

sity that Rn = x is realized by a path that crosses neither a barrier d < 0 nor u > 0.

Then

(2.47) ℘
(ud)

n+1(y) =

∫ u

d

℘(ud)n (x)k(y − x)dx, ℘(ud)0 (x) = δ(x).
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Once more, z-transform f(x, q) = Z℘(ud)n (x),

(2.48) f(y, q)− δ(y) = q

∫ u

d

f(x, q)k(y − x)dx.

Let ζ = y − d, η = x− d and j(ζ) = f(ζ + d, q), then

(2.49) j(ζ)− δ(ζ + d) = q

∫ u−d

0
j(η)k(ζ − η)dη.

Invoking the convolution theorem while Fourier transforming this equation yields

(2.50) J−(z) + L(z)J0(z) + e
i(u−d)zJ+(z) = e−idz ,

where

J−(z) =

∫ 0

−∞
j(ζ)eizζdζ,(2.51a)

J0(z) =

∫ u−d

0
j(ζ)eizζdζ = e(u−d)iz

∫ 0

d−u
j(ζ + u− d)eizζdζ,(2.51b)

J+(z) =

∫ ∞

0
j(ζ + u− d)eizζdζ.(2.51c)

Introduce the product factorization L(z) = L+(z)L−(z) and divide by L−(z) and

ei(u−d)L+(z) to give

(2.52)
J−(z)

L−(z)
+ L+(z)J0(z) +

ei(u−d)zJ+(z)

L−(z)
=

e−idz

L−(z)

and

(2.53)
e−i(u−d)zJ−(z)

L+(z)
+ L−(z)e

−i(u−d)zJ0(z) +
J+(z)

L+(z)
=
e−iuz

L+(z)

respectively. These are simplified by utilizing the sum factorizations

P̃ (z) = P̃+(z) + P̃−(z), P̃ (z) =
e−idz

L−(z)
−
ei(u−d)zJ+(z)

L−(z)
,(2.54a)

Q̃(z) = Q̃+(z) + Q̃−(z), Q̃(z) =
e−iuz

L+(z)
−
e−i(u−d)zJ−(z)

L+(z)
(2.54b)

and rearranging to give

(2.55)
J−(z)

L−(z)
− P̃−(z) = P̃+(z)− L+(z)J0(z)

and

(2.56)
J+(z)

L+(z)
− Q̃+(z) = Q̃−(z)− L−(z)e−i(u−d)zJ0(z).

As before these equate functions analytic and vanishing as |z| → ∞ in the upper

half-plane to functions with these properties in the lower half-plane, so by analytic

continuation define entire functions. Note that J0(z) is itself an entire function. By

application of Liouville’s theorem entire functions (2.55) and (2.56) are zero.
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Explicit integral representations for P̃−(z) and Q̃+(z) yield

(2.57)
J−(z)

L−(z)
−
1

2πi

∫ ∞

−∞

ei(u−d)ζJ+(ζ)

(ζ − z)L−(ζ)
dζ = −

1

2πi

∫ ∞

−∞

e−idζ

(ζ − z)L−(ζ)
dζ (=ζ > =z)

and

(2.58)
J+(z)

L+(z)
+
1

2πi

∫ ∞

−∞

e−i(u−d)ζJ−(ζ)

(ζ − z)L+(ζ)
dζ =

1

2πi

∫ ∞

−∞

e−iuζ

(ζ − z)L+(ζ)
dζ (=ζ < =z).

The interaction between the boundaries is resolved by finding values of J+(z) and

J−(z) from these coupled integral equations. In the Gaussian case, where 1/L(z) is

meromorphic with infinite sets of simple poles above and below the analytic strip, an

approximate solution is attainable. This is achieved by solving the system of linear

equations given by truncating the infinite sums of residues resulting from deforming

(see Appendix A3) the contours in (2.57) upwards and those in (2.58) downwards.

However, when either u or d become small, convergence of the sums becomes slow

and accurate approximation demands the inversion of large matrices. As detailed

in Section 5.1.3, this drawback may be avoided using rational approximations to

L±(z).

Re-arranging (2.50) to give ZF℘(ud)n (x) = e
idzJ0(z) for d < x < u,

(2.59) ZF℘(ud)n (x) =
1

L(z)
−
eidzJ−(z)

L(z)
−
eiuzJ+(z)

L(z)
.

This may be interpreted as a generalized form of Wald’s identify, see Miller (1961).

Taking the inverse transforms gives

(2.60) ℘(ud)n (x) = ℘n(x)−
Z−1n
2π

∫ ∞

−∞

(
eidzJ−(z)

L(z)
+
eiuzJ+(z)

L(z)

)
e−ixzdz,

where ℘n(x) is the probability density without barriers. Notice that as u → ∞,

J0(z) → G+(z), P̃ (z) → P (z), J−(z) → P−(z)L−(z) and, for =z > 0, eiuz → 0.

Thus the single barrier results are recovered as d→ −∞ or u→∞.

2.5. Double-Barrier First-Crossing. The Fourier z-transform of the probability

density for the random walk’s first crossing over either barrier x < d or x > u is

given by (the analytic continuation) eidzJ−(z) + e
iuzJ+(z), so that

(2.61) ℘(ud)n (x) = ℘n(x)−
Z−1n
2π

∫ ∞

−∞

(
J−(z)e

−i(x−d)z + J+(z)e
−i(x−u)z

)
dz.

for x < d or x > u.
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3. Pricing Formulae

Derivatives are priced as the discounted expected payoff under a specified risk-

neutral probability measure Q (equivalent to the statistical probability measure P).

Suppose claims are contingent upon an underlying asset St = S0e
Rt (t > 0). See

Appendix A1 for the formulae for vanilla option prices in Fourier space. For path

dependent options, monitored discretely at increments Δt the log price process is

effectively a random walk Rn ≡ RnΔt.

For simplicity, numerical examples (in Section 5) assume exponential Brownian

motion, making Q unique. The random walk Rn then has normally distributed

increments N
[(
r − σ

2

2

)
Δt, σ2Δt

]
for risk free rate r, volatility σ and intermoni-

toring time Δt. The transition probability density is

(3.1) k(x) =
1

√
2πσ2Δt

exp




−

(
x−

(
r − σ2

2

)
Δt
)2

2σ2Δt




 ,

so that the Fourier transform (characteristic function) of the price increments in

the underlying asset is

(3.2) K(z) = exp
{
iz
(
r − σ2/2

)
Δt− z2σ2Δt/2

}
,

valid for all z.

3.1. Barrier Options.

3.1.1. Down & Out Formula. The payoff of a discrete down-and-out barrier (level

D), also known as a point-barrier, European call option with strike K and moni-

toring times T = {0,Δt, . . . , NΔt = T} is

(3.3) v (RN ,
ˉ
RN ) = S0

(
eRN − ek

)+
χ[d,∞) (ˉ

RN )

where
ˉ
RN = mint∈T Rt, k = ln (K/S0), d = ln (D/S0). Here χA(x) denotes the

characteristic function of A ⊆ R, i.e., χA(x) = 1 if x ∈ A, otherwise, χA(x) = 0.

With a risk free rate r, the option price at time t = 0 is given by

CD(S0;K,D) = e−rTEQ [v (RN ,
ˉ
RN )](3.4a)

= e−rT
∫ ∞

−∞

∫ ∞

d

v(ξ, ζ)Q ({RN ∈ [ξ, ξ + dξ)} ∩ {
ˉ
RN ∈ [ζ, ζ + dζ)})(3.4b)

= e−rT
∫ ∞

−∞
w(d)(ξ)℘

(d)

N (ξ)dξ(3.4c)

where ℘(d)N (ξ) = Q ({RN ∈ [ξ, ξ + dξ)} ∩ {ˉ
RN−1 > d}) /dξ is the (defective) prob-

ability density of the random walk Rn at time N starting at R0 = 0 and absorbed
12



at boundary d < 0. The amended payoff is

(3.5) w(d) (RN ) = S0

(
eRN − ek

)+
χ[d,∞) (RN ) .

Taking the Fourier z-transform, employing Parseval’s relation and substituting the

random walk result (2.17),

CD(S0;K,D) =
Z−1N
2π

∫ ∞+iv

−∞+iv
F∗w(d)(ξ)ZF℘(d)N (ξ)dξ(3.6a)

=
Z−1N
2π

∫ ∞+iv

−∞+iv
ŵ(d)(−z)G−(z)eidzdz(3.6b)

=
Z−1N
2π

∫ ∞+iv

−∞+iv
ŵ(d)(−z)

[
1

L(z)
− eidz

P−(z)L−(z)

L(z)

]
dz.(3.6c)

The transformed payoff,

ŵ(d)(z) =

∫ ∞

d

S0

(
ex − ek

)+
eizxdx(3.7a)

= −S0

[
e(1+iz)max(d,k)

1 + iz
−
ek+izmax(d,k)

iz

]

,(3.7b)

is valid for =z > 1.

Typically, for financial application, K(z) is analytic for −1 < =z < 0. In the

Gaussian case, since K(z) is entire, an arbitrarily wide strip about the origin can

be made free of the zeros of L(z) = 1 − qK(z) by making |q| sufficiently small. In

such circumstances the integral in (3.8) is defined for any contour in the analytic

strip with v = =z < −1.

Recognizing the first term integral in (3.6) as the vanilla option price C̃D =

C̃D(S0;K,D) with payoff w
(d) (RN ) gives

(3.8) CD(S0;K,D) = C̃D −
Z−1N
2π

∫ ∞+iv

−∞+iv
ŵ(d)(−z)

[
eidz

P−(z)L−(z)

L(z)

]
dz,

which is exactly analogous to the continuous time formula.

3.1.2. Alternative Down & Out Formula When D > K. For D > K the condition

that the price at expiry be above the barrier is redundant. In such situations it

is useful to exploit the alternative representation of the killed probability densities

obtained from (2.14a). This yields

(3.9) CD(S0;K,D) =
Z−1N
2π

∫ ∞+iv

−∞+iv
ŵ(d)(−z)

[
eidz

P+(z)

L+(z)

]
dz.

Now observing the exponential terms in ŵ(d)(−z) cancel exactly with eidz, since

d − max (d, k) = 0, the integration path may be deformed upwards where the

integrand is analytic except at the poles of ŵ(d)(−z) at z = −i and z = 0. Thus,
13



by residue calculus

(3.10) CD(S0;K,D) = D
P+ (−i)

L+ (−i)
−K

P+ (0)

L+ (0)
.

It is easy to verify that (3.10) may be re-expressed as

(3.11) CD(S0;K,D) = S0Q? ({SN > D})−KQ ({SN > D}) ,

where Q? is a probability measure equivalent to the risk-neutral measure, Q corre-

sponding to taking the stock price as numeraire. For the Gaussian this amounts to

increasing the process drift by σ2/2.

3.1.3. Up & Out Formula. The value of a discrete up-and-out barrier (level U) call

option with strike K and monitoring times T = {0,Δt, . . . , NΔt = T} is

(3.12) CU (S0;K,U) = C̃U −
Z−1N
2π

∫ ∞+iv

−∞+iv
ŵ(u)(−z)

(
eiuz

Q+(z)L+(z)

L(z)

)
dz,

where

(3.13) ŵ(u)(z) = S0

[
e(1+iz)u

1 + iz
−
ek+izu

iz

]

− S0

[
e(1+iz)k

1 + iz
−
ek+izk

iz

]

(=z < 0),

u = ln (U/S0) > 0 and C̃U = C̃U (S0;K,U) is the corresponding vanilla price. The

integration path must lie within the analytic strip with v = =z > 0.

An option which is knocked-in when a barrier is crossed may be calculated as

the difference between corresponding knock-out and vanilla options.

3.2. First-Touch Options.

3.2.1. Digitals. A first-touch digital, equivalent to the rebate offered on many bar-

rier options, pays $1 if and when St is observed below level D for the first time τd,

before it expires worthless at time T . Discretely monitored, it has price

FFT (S0;D) = EQ
[
e−rτd

]
(3.14a)

=
N∑

n=1

e−rnQ ({τd = n}) .(3.14b)

Using (2.26) and (2.29), Q ({τd = n}) = G−(0) = P−(0)L−(0), and so

(3.15) FFT (S0;D) =

N∑

n=1

e−rnZ−1n P−(0)L−(0).

3.2.2. Overshoot Option. A claim paying the overshoot if and when St is observed

below level D for the first time τd, before it expires worthless at time T , can be
14



priced as

FO(S0;D) = EQ
[
e−rτd (D − Sτd )

+
]

(3.16a)

=

N∑

n=1

e−rn
∫ d

−∞
S0

(
ed − ex

)+
℘(d)n (x)dx.(3.16b)

Using the random walk result (2.30) for FZ℘(d)n (x) = e
idzG−(z),

(3.17) FO(S0;D) = −
N∑

n=1

De−rnZ−1n

∫ ∞+iv

−∞+iv

P−(z)L−(z)

z2 + iz
dz,

with =v > 0. Deforming the integration contour downwards yields

(3.18) FO(S0;D) =
N∑

n=1

De−rnZ−1n [P−(−i)L−(−i)− P−(0)L−(0)] .

The corresponding option in the Black-Scholes model with continuous monitoring

is always worthless due to the Brownian motion having continuous trajectories.

3.3. Hindsight Options. A hindsight call option, also known as a look-back, with

strike K has payoff
(
S̄T −K

)+
. Monitored discretely, w(h)

(
R̄N
)
=
(
S0e

R̄N −K
)+

has Fourier transform

(3.19) ŵ(h)(z) = −K
eizk

z2 − iz
,

valid for =z > 1, where k = ln (K/S0). Thus, the hindsight price is

(3.20) CH(S0;K) = e−rT
∫ ∞+iv

−∞+iv
w(h)(x)℘(m)n (x)dz.

The Fourier z-transform of the probability density of R̄n is given by FZ℘(m)n (x) =

H+(z), (2.40), and so

(3.21) CH(S0;K) = −
e−rTZ−1N
2π

∫ ∞+iv

−∞+iv
K

e−izk

z2 + iz

[
1

L−(0)L+(z)

]
dz,

where v = =z < −1.

In the special case S0 > K, i.e. k < 0, the integration contour may be deformed

upwards to pick up the residues at z = −i and z = 0, so that

(3.22) CH(S0;K) = e−rTZ−1N

[
S0

L−(0)L+(−i)

]
−K.

3.4. Double-Barrier Options. A double-barrier call option is equivalent to a

vanilla call option, but rendered worthless if on any monitoring date St is observed

above an upper barrier U or below a lower barrier D. It has price

(3.23) CDB(S0;K,D,U) = e−rT
∫ ∞

−∞
w(ud)(x)℘

(ud)

N (x)dx,
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where the payoff w(ud)(x) is written as

(3.24) w(ud)(x) = S0

(
ex − ek

)+
χ[d,u](x).

Using (2.59) and identifying a term C̃DB = C̃DB(S0;K,D,U) equal to the vanilla

price with payoff w(ud)(x),

(3.25) CDB = C̃DB −
e−rTZ−1N
2π

∫ ∞+iv

−∞+iv
ŵ(ud)(−z)

[
eidzJ−(z)

L(z)
+
eiuzJ+(z)

L(z)

]
dz.

where the transformed payoff

(3.26) ŵ(ud)(z) = S0

[
e(1+iz)u

1 + iz
−
ek+izu

iz

]

− S0

[
e(1+iz)max(d,k)

1 + iz
−
ek+izmax(d,k)

iz

]

is entire, so the restriction on the integration path is simply to be within the analytic

strip.

3.5. Double First-Touch Options. A double first-touch pays out if and when

St is observed outside the finite interval [D,U ] for the first time, say $A above U ,

$B below D, before it expires worthless at time T . Monitored discretely it can be

priced using (2.61):

(3.27) FDFT (S0;U,D) =
N∑

n=1

e−rnZ−1n [AJ+(0) +BJ−(0)] .

4. Asymptotic Analysis

Discretely monitored results are now considered as monitoring frequency in-

creases, Δt → 0. This provides continuous time formulae and is important in the

derivation of continuity correction approximations.

4.1. Continuum Limits. Firstly, without limiting the discussion to any particular

Lévy process, deduction of continuous-time formulae is presented.

4.1.1. Relationship Between z-Transform and Laplace Transform. Expressing the

Laplace transform as its Riemann sum limit,

Lf(t) =

∫ ∞

0
f(t)e−λtdt(4.1a)

= lim
Δt→0

∞∑

n=0

(tn+1 − tn) e−λtnf (tn)(4.1b)

= lim
Δt→0

Δt

∞∑

n=0

qnfn(4.1c)

= lim
Δt→0

ΔtZfn,(4.1d)

where increments tn+1−tn = Δt are fixed, tn = nΔt, q = e−λΔt and fn = f (nΔt).
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4.1.2. Limit of Wiener-Hopf Factors L±(z) as Δt → 0. The Lévy characteristic

function on an interval Δt is generally of the form

(4.2) K(z) = exp {−ψ(z)Δt} ,

where ψ(z) is known as the characteristic exponent. Setting q = e−λΔt, the limit

l(z) is defined as

l(z) = lim
Δt→0

[L(z)/Δt](4.3a)

= lim
Δt→0

[(
1− e−(λ+ψ(z))Δt

)/
Δt
]

(4.3b)

= λ+ ψ(z).(4.3c)

The limit Wiener-Hopf factors

(4.4) l±(z) = lim
Δt→0

[
L±(z)/

√
Δt
]

must then satisfy

(4.5) l−(z)l+(z) = λ+ ψ(z).

Provided λ+ψ(z) presents an analytic strip free from zeros and the integrals defining

l±(z) converge, the factorization proceeds in a similar manner to the discrete case.

4.1.3. Continuous-Time Formulae. The continuum limits for the results given in

Section 2 and Section 3 are realized by substituting l(z) for L(z) (and so l±(z)

for L±(z)) and taking the inverse Laplace transform L
−1
t instead of the inverse

z-transform Z−1n . Also, for continuous-time first-touch options,
∑N
n=0Z

−1
n f(q) is

interpreted as
∫ T
0
L−1t f(λ)dt.

Expression (4.5) in combination with (2.41) give the factorization implicit in

Baxter-Donsker formulae (Baxter and Donsker (1957)), while with (2.30) relates to

Pecherskii-Rogozin formulae (Pecherskii and Rogozin (1969)).

A formula for the price of continuous-time barrier options under jump-diffusion

processes in the Laplace transform domain is discussed in Lewis (2003), see also Bo-

yarchenko and Levendorskii (2002). For the continuous-time double-barrier options

pricing problem, Pelsser (2000) and Hui et al. (2000) take an analytic approach,

while Geman and Yor (1996) a more probabilistic one to provide a solution in the

Gaussian (Black-Scholes) case using the Laplace transform. Both approaches rely

on the provision of transformed probability densities (for example, a Fourier series)

corresponding to the continuum limit of the coupled integral equations (2.57) and
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(2.58) for Brownian motion. Recently Grudsky (2007) provided a formal solution

to the continuousely monitored double-barrier problem by solving the continuum

limit of the modified Wiener-Hopf equation (2.50) using Toeplitz operator theory.

4.2. Continuity Corrections. Now, focusing on Gaussian processes, further ex-

amination of asymptotic behaviour relates results to adjusted continuous-time for-

mulae which better approximates discrete-time values by the so called ‘continuity

correction’ approach.

4.2.1. Behaviour of Wiener-Hopf Factors L±(z) as Δt→ 0. Consider the random

walk with normally distributed increments N [0,Δt], making the characteristic

exponent ψ(z) = z2/2. The factorization components of

(4.6) M(z) =M(z, λ) = 1− e−(λ+ψ(z))Δt

are given by

(4.7) ln (M±(z)) = ±
1

2πi

∫ ∞

−∞

ln
(
1− e−(λ+ψ(ξ))Δt

)

ξ − z
dξ (=ξ ≶ =z) .

Notice, by symmetry,M−(z) =M+(−z). Separating out the logarithmic singularity

as Δt→ 0 gives

(4.8) ±
1

2πi

∫ ∞

−∞

ln ((λ+ ψ(ξ))Δt)

ξ − z
dξ = ln (m±(z)) +

1

2
ln(Δt),

where

(4.9) ln (m±(z)) = ±
1

2πi

∫ ∞

−∞

ln (λ+ ψ(ξ))

ξ − z
dξ (=ξ ≶ =z) .

It remains to examine the behaviour of the integral

(4.10) κ(z) =
1

2πi

∫ ∞

−∞
ln

[
1− e−(λ+ξ

2/2)Δt

(λ+ ξ2/2)Δt

]
dξ

(ξ − z)
.

By symmetry of the integrand,

(4.11) κ(z) = 2z

∫ ∞

0
ln

[
1− e−(λ+ξ

2/2)Δt

(λ+ ξ2/2)Δt

]
dξ

(ξ2 − z2)
,

then making the substitution η2 = ξ2Δt,

κ(z) = −
iz
√
Δt

π

∫ ∞

0
ln

[
1− e−(λΔt+η

2/2)

(λΔt+ η2/2)

]
dη

(η2 − z2Δt)
(4.12a)

= −
iz
√
Δt

π

∫ ∞

0
ln

[
1− e−η

2/2

(η2/2)

]
dη

η2
+O (Δtα)(4.12b)

= izβ
√
Δt+O (Δtα) ,(4.12c)
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where β = −ζ (1/2) /
√
2π ≈ 0.5826 (with ζ (x) the Riemann-Zeta function) and

α > 1 to agree with the Taylor expansion of (4.6).

Recombining (4.8) with (4.12) and exponentiating gives

(4.13) M±(z)/
√
Δt = m±(z)e

±izβ
√
Δt +O (Δt) .

This is related to the random walk with normally distributed incrementsN
[
μΔt, σ2Δt

]
,

whose characteristic exponent is ψ(z) = −iμz+σ2z2/2, by completion of the square,

(4.14) L(z, λ) =M
(
σz − iμ/σ, λ+ μ2

/
2σ2

)
,

that is

(4.15) L±(z)/
√
Δt = l±(z)e

±i(σz− iμ/σ)β
√
Δt +O (Δt) .

4.2.2. Approximate Formulae. Approximations for killed distributions and first cross-

ing probabilities, and so single/double barrier and first touch option prices, are ob-

tained by observing that theWiener-Hopf factors always combine as eidzL−(z)
/
eidξL−(ξ)

or eiuzL+(z)
/
eiuξL+(ξ) (see, for example, (2.24) in (2.23)). The constant coeffi-

cients of
√
Δt clearly cancel. Thus, replacing d with d + σβ

√
Δt and/or u with

u − σβ
√
Δt entirely eliminates the

√
Δt behaviour. The explanation of this phe-

nomenon is that displacing the discretely monitored barrier towards the diffusion

proportionately to
√
Δt compensates for price paths crossing barriers between mon-

itorings.

This implies that displacing the continuous-time barriers to De−σβ
√
Δt and

Ueσβ
√
Δt provides an approximation to discrete-time probability densities with an

O (Δt) error. The same level approximation is achieved for option prices where

the terminal payoff does not explicitly involve the barrier position. If, however, the

payoff does involve the barrier position, barrier movement spuriously re-introduces

a small O
(√
Δt
)
error.

The hindsight option also admits an approximation, since replacing k with k +

σβ
√
Δt eliminates the

√
Δt behaviour of the discrete-time results as Δt→ 0. The

implied continuous-time approximation to discrete-time prices which is achieved by

substituting S0e
σβ
√
Δt for S0 in the continuous-time formula has O (Δt) error.

Development of these approximations is described in Broadie et al. (1999), How-

ison and Steinberg (2006) and references therein, where they display good accuracy

for frequent monitoring and a configuration where there is substantial separation
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between barrier and strike. The connection with less direct derivations of the con-

tinuity correction is given as a supplementary result in Appendix A2, calculating

the asymptotic behaviour of the expected maximum of a Gaussian random walk.

5. Numerical Results

In this section a range of numerical results are offered based on the formulae

derived in Section 3. The Black-Scholes model is assumed for all results presented

herein.

5.1. Comparison of Computational Techniques. The results of experiments

pricing down-out barrier options using Mathematica for the techniques presented

below (in addition to continuous-time prices, prices obtained by continuity cor-

rection and simulated prices) are presented in Table I. Common to all numerical

procedures is an efficient method for the inverse z-transform. This is discussed first.

Barrier Numerical Truncated Padé Continuous Continuity Trajectory
Level Integration Summation Approximate Price Correction Simulation
90.0 6.24292 6.24292 6.24292 5.97724 6.24813 6.24000
95.0 5.67111 5.67110 5.67111 4.39750 5.64562 5.66326
99.0 4.48917 4.31896 4.48917 1.17079 4.04952 4.50257
99.5 4.29702 4.32696 4.29702 0.60480 3.73716 4.30592
99.9 4.13824 6.67852 4.13824 0.12408 3.46577 4.14153
Time (s) 1800 120 0.2 <0.01 <0.01 60

Table I: Comparison of Down-Out Barrier Option Prices Calculated by Different Techniques†

† Process and payoff parameters are set to N = 5, S0 = K = 100, r = 0.1, σ = 0.3 and T = 0.2.
The z-transform parameter size is set using γ = 5. The summation involves 200×100 terms, but,
as in Fusai et al. (2006), L±(z) is calculated by numerical integration, this being more efficient

than using the exact expression. The Padé approximation of K(z) used is [24/36]. Simulations

sample 106 price trajectories.

5.1.1. Inverse z-Transform. Choosing a circular (radius ρ < 1) integration contour,

the inverse z-transform (2.20) expressed in polar coordinates is

(5.1) Z−1N f(q) =
1

2πρN

∫ 2π

0
f(ρeiθ)e−iNθdθ.

This may be evaluated by numerical integration (using e.g. Mathematica routine

NIntegrate[]), but for large N this becomes extremely slow.

Abate and Whitt (1992) propose an alternative method based on approximating

(5.1) using the trapezoidal rule with step size π/N :

(5.2) Z−1N f(q) ≈
1

2πρN





f(ρ) + (−1)Nf(−ρ) + 2

N−1∑

j=1

(−1)j<
[
f
(
ρejπi/N

)]




.
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This has an error bound ρ2N/(1 − ρ2N ), so practically, to have an accuracy of

at least 10−γ requires ρ = 10−γ/2N . It is important to adjust ρ in this way so

calculation of ρN = 10−γ/2 in the denominator of (5.2) does not introduce error.

The evaluation of first touch and overshoot options involve sums of inverse z-

transforms which are efficiently calculated by observing Z−1n f(q) = Z−1N q(N−n)f(q),

that is, only a single inversion is required.

5.1.2. Numerical Integration. All integrals can be computed numerically. For the

down-out barrier example, the convergence of (3.8) and in turn (2.15) are improved

by splitting integrands using 1/L(z) = qK(z)/L(z) + 1 and observing that the

parts involving the second term vanish due to analyticity. The explicit q2 factor

introduced (due to nested integration) also allow a reduction by 2 of the number of

terms necessary to approximate the inverse z-transform. Yet, for practical purposes

numerical integration remains too slow to be effective.

5.1.3. Truncated Summation. For the Gaussian case, 1/L(z) is meromorphic and so

option prices may be evaluated using residue calculus. This gives rise to a solution

in terms of infinite multiple sums as demonstrated for the down-out barrier option

in Appendix A3. For this option, when d << k (i.e. D << K), the exact sums

converge rapidly due to the exponential terms. These must be truncated to obtain

numerical values, so as d → k and convergence becomes slow, maintenance of

accuracy becomes time consuming.

The up-out and double barrier call options, with an extra discontinuity in their

payoffs, are additionally challenging for most numerical and approximate pricing

techniques. Clearly, in the pricing formulae (3.12) and (3.25) the exponential terms

associated with the upper barrier exactly cancel. For summation type solutions,

this manifests itself in slow convergence even when u >> 0. To achieve accurate

prices truncated sums must retain many terms, which renders the technique slow

and impractical.

5.1.4. Padé Approximation. Accurate results are achieved most efficiently by ob-

taining a symmetric rational approximation to L(z), which is the quotient of two

polynomials of equal degree, say M . This may be realized by a Padé [L,M ] ap-

proximation to K(z) (using e.g. Mathematica routine Pade[K(z),{z,0,L,M}]). If
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it exists, a Padé approximant [L,M ] is uniquely determined from the Taylor ex-

pansion of K(z) about any given point. The approximate factorization of L(z) into

non-zero analytic functions in =z ≷ 0 from 1− q [L,M ] follows by inspection after

polynomial factorization (using e.g. Mathematica routine NSolve[]). For particu-

lars on the approximation of Wiener-Hopf kernels by Padé approximants the reader

is referred to Abrahams (2000).

Subsequent calculations involve summation of a small number of residues alge-

braically calculated, as in the exact summation case where residues are calculated

by numerical integration at a truncated infinite set of exact poles; now, using the

approximation, the residues at a relatively small finite set of artificial poles are

immediately available. An additional step in the double barrier case is to solve

(2.57) and (2.58). Deforming the integration contours to pick up the residues at

the artificial poles results in implicit linear approximations to J±(z), i.e. expressed

as a linear combination of J∓(z) evaluated at the artificial poles, which may be

solved over the set of artificial poles by simple linear algebra. The procedure is

outlined in Appendix A5.

The use of Mathematica routines Pade[]and NSolve[]constitute an efficient

calculation of prices to around 4-5 decimal places, but root-finding algorithms are

notorious for being computationally burdensome and lack precision with high degree

polynomials. Furthermore, the optimized algorithms implemented by Mathematica

are not easily ported to compiled programming languages such as C++ or Java.

This drawback is overcome (at least in the Gaussian case) by using the algorithm

described in Appendix A4, where rational approximations to L(z) = 1 − qK(z)

are obtained from saved list of zeros and poles of an approximation to 1 − e−z

(which may previously be calculated using high-precision arithmetic) for all process

parameters and values of q. Requiring neither numerical integration nor numerical

solutions to equations at run-time, this approach is, obviously, very efficient and

trivial to implement in, for example, C++.

In addition to the computational advantage gained using rational approxima-

tions, errors in prices calculated by the method described are insensitive to the

configuration of barrier levels and strike prices. This is thanks to prices being cal-

culated exactly in terms of approximated characteristic functions, which depend on
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the process alone. Thus, the method does not rely in the convergence of integrals

or sums parameterized by option payoff parameters.

5.2. Benchmarking Calculated Option Prices. The comparison of prices cal-

culated by the Padé approximation method (using [24/36] and [40/60] approximants

to K(z) which ensure rapid decay at infinity) with other results in the literature is

based on C++ implementation of the procedure described in Appendix A4. The

z-transform parameter size is set using γ = 5.75. Table II gives calculated prices

for down-out barrier options compared with those found in Broadie and Yamamoto

(2005). Table III compares calculated double-barrier option prices with those in

Fusai and Recchioni (2007). A search in the option pricing literature for discretely

Number of Padé [24, 36] Padé [40, 60] B&Y

Monitorings Approximation† Approximation Result
5 4.4891749110 4.4891724312 4.4891724312
25 2.8124392593 2.8124392982 2.8124392982
50 2.3363869060 2.3363868958 2.3363868958

Table II: Calculated Down-Out Barrier Option Prices Compared

With Broadie & Yamamoto (B&Y)?

? Process and payoff parameters are set to D = 99, S0 = K = 100,
r = 0.1, σ = 0.3 and T = 0.2.

† Computational times less than 0.02 seconds.

Number Padé [24, 36] Padé [40, 60] F&R

Monitorings Approximation† Approximation Result
50 0.1639413201 0.1639410637 0.163941
100 0.1189380004 0.1189381452 0.118938
150 0.1016929798 0.1016929046 0.101692

Table III: Calculated Double Barrier Option Prices Compared

With Fusai & Recchioni (F&R)?

? Process and payoff parameters are set to D = 90, U = 110
S0 = 100, K = 95, r = 0.05, σ = 0.1 and T = 1.

† Average computational time circa 10 seconds.

monitored first-touch options (or barrier rebate) failed to provide any price data

with which the Padé approximation method could be compared. Consequently,

calculated first overshoot option prices rely on the simulation of 108 price trajecto-

ries using Mersenne twister random number generation with antithetic variates for

comparison in Table IV.

The computational cost for the Padé approximation method increases at most

linearly with monitoring frequency. Single barrier calculations in this section com-

plete within a fraction of a second, while double barrier calculations are slightly

slower because of the multiple matrix inversions required. Calculations using Padé
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Number of Padé [24, 36] Padé [40, 60] Simulated

Monitorings Approximation† Approximation Result†

5 2.7069262554 2.7069260783 2.7069±0.0003
25 1.3762929854 1.3762930537 1.3764±0.0002
50 0.9830350268 0.9830348953 0.9829±0.0001

Table IV: Calculated Overshoot Option Prices Compared With Sim-

ulated Results?

? Process and payoff parameters are set to D = 99, S0 = K = 100,
r = 0.1, σ = 0.3 and T = 0.2.

† Computational times less than 0.5 seconds. Simulations circa 5
minutes.

[24/36] usually give around six-seven digits accuracy after the decimal point in ap-

proximately a third the computational time of Padé [40/60], which usually give an

accuracy of around ten decimal places. With model error and the difficulty inher-

ent in parameter estimation, such a level of accuracy is only really of theoretical

interest.

5.3. Frequent Monitoring Behaviour. No exact investigation of relatively fre-

quent monitoring has been found in the literature. With only a linear increase

in computational burden it is possible to calculate the exact price for discretely

monitored options with good precision for up to a million monitoring times, ap-

proximately every second of the working day. In some cases the convergence of

discrete prices to continuous prices is very slow, with significant discrepancy even

with what may have been considered sufficient for the continuity assumption. Table

V gives the price of discretely monitored down-out options and compares these to

the prices obtained with the continuity correction approximation.

Number of Padé [24, 36] Padé [40, 60] Continuity

Monitorings Approximation† Approximation Correction
10 3.6728067772 3.6728077261 3.3813685612
100 1.9905218699 1.9905218655 1.9685666052
1000 1.4334240504 1.4334240496 1.4334835904
10000 1.2549191300 1.2549191298 1.2549196172
100000 1.1975021599 1.1975021598 1.1975023139
1000000 1.1792498404 1.1792498404 1.1792498768
∞ 1.1707930349 1.1707930349 1.1707930349

Table V: Calculated Down-Out Option Prices Compared With Re-

sults Obtained By Continuity Correction†

† Process and payoff parameters are set to D = 99, S0 = K = 100,
r = 0.1, σ = 0.3 and T = 0.2.

† Computational times are less than 0.01, 0.03, 0.33, 3.3, 33 and
330 seconds.

6. Conclusion

The substantial difference between the prices of options where the underlying

asset is discretely monitored and those calculated assuming a continuous model are
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well known. This work provided various probabilistic identities, some new, others

very famous, but cast here in an analytically convenient form which gives a simple

and coherent framework for the calculations of discretely monitored path dependent

option prices. Furthermore, not only are discrete-time pricing formulae easily re-

lated to those in continuous-time, but the discrete-time prices are explicitly shown

to be asymptotically closer to continuous-time results with adjusted parameters.

This work also examined the numerical evaluation of prices. Padé approximants

provide for fairly effortless calculations which exhibit good accuracy and efficiency.

Results for barrier and hindsight options compare well with numerical techniques

avaliable in the literature. Discretely monitored double barrier and first touch op-

tions are priced by analytic methods for the first time, but agree well with prices

obtained by simulation. It is also worth noting that at monitoring times the hedging

factors Δ = ∂C
∂S
and Γ = ∂2C

∂S2
(for contract priced C(S)) may be obtained directly

by differentiation at no extra computational cost.

In addition to standard traded contracts, a novel option based on the overshoot

of a barrier between monitoring times was introduced and priced. Although not

common, this contract would have obvious practical utility in insuring against large

intermonitoring losses. Moreover, it provides insight into the intrinsically discrete

nature with which assets underlying derivative contracts are monitored.

The convergence of prices to their continuous-time limit is in some situations

extremely slow. Even for what may be considered continuous monitoring (e.g.

every second), if the discrete nature is not accounted for, significant misprising can

ensue. The plausibility of ever monitoring at such high frequencies, that markets

actually operate in a continuous-time framework is highly questionable. Certainly,

the discrete nature of monitoring is a necessary consideration for all path dependent

options. Work is currently ongoing to perform a rigorous asymptotic analysis to

provide higher order approximates to prices when the intermonitoring time is not

small enough for Broadie’s continuity correction approximation to be sufficiently

accurate.

The distribution of market prices are known to deviate from the Black-Scholes

model in a number of ways, e.g. ‘fat tails’ and skewness. Models with jumps (or Lévy

processes) are one attempt to simply improve market fit. The price of discretely

monitored options contingent upon an asset driven by a Lévy process fit into the
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pricing framework described here with substitution of the appropriate characteristic

function, which is generally available, though in some cases there are technical issues

concerning their rational approximation. A comparison of prices under different

models is in progress. The method is also currently being extended to price a

variety of more esoteric contracts.

APPENDICES

A1. Formulae for Vanilla Option Prices in Fourier Space. Using the no-

tation in the main text, ℘N (x) is the probability density of RT = ln (ST /S0),

T = NΔt. The payoff function for an European call is w(c)(x) = S0
(
ex − ek

)+

and for a put w(p)(x) = S0
(
ek − ex

)+
, where k = ln (K/S0). Employing Parseval’s

identity, the value of the call option is

(A1.1) CV (S0;K) =
e−rT

2π

∫ ∞+iv

−∞+iv
ŵ(c)(−z)φ(z)dz,

where ŵ(c)(z) = Fw(c)(x) is the Fourier transform of the call payoff,

(A1.2) ŵ(c)(z) = −S0
e(1+iz)k

z(z − i)
,

valid for =z > 1, and φ(z) = F℘N (x) = E
[
eizRT

]
is the Fourier transform of the

distribution. The integration path v = =z must lie where both ŵ(c)(−z) and φ(z)

are well defined. For the (Gaussian) Black-Scholes model, φ(z) is entire, so any

v = =z < −1 suffices.

The vanilla put has the same transform ŵ(p)(z) = ŵ(c)(z), but different region of

validity =z < 0.

Normalization requires φ(0) = 1 and the martingale property requires φ(−i) =

erT , so the residue of the integrand at its simple poles z = 0 and z = −i are −Ke
rT

2πi

and S02πi respectively. Moving the integration contour in (A1.1) to v = =z > 0 picks

up the residues to give CV (S0;K) = PV (S0;K)+S0−Ke−r(T−t), where PV is the

value of the vanilla put, i.e. put-call parity is recovered.

Using partial fractions the call price can be cast in Black-Scholes form,

CV (S0;K) =
Ke−rT

2πi

∫ ∞+iv

−∞+iv
e−ikzφ(−z)

(
1

z − i
−
1

z

)
dz(A1.3a)

= S0Π1 −Ke−rTΠ2.(A1.3b)

The integral Π1 can be interpreted as the option delta Π1 = Δ =
∂CV
∂S0

(since

∂Π1
∂k
= eke−rT ∂Π2

∂k
) and Π2 as the probability that the option expires in the money

Π2 = Q (XT > −k) = Q (ST > K).
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This formalism for other common vanilla options and various popular Lévy mod-

els is discussed in Lewis (2001). The work of Bakshi and Madan (2000) is also

relevant.

A2. Asymptotic Expansion of Gaussian Random Walk’s Expected Max-

imum. Consider the driftless Gaussian random walk Rn with increments dis-

tributed as N
[
0, σ2Δt

]
. The Fourier z-transform of the density of the maximum

R̄n is H+(z), given by (2.40). Recognising the relationship between the z-transform

and Laplace transform given by (4.1), the behaviour of the expected maximum as

Δt→ 0 is given by

E
[
R̄n
]
= L−1t

[
−iΔt

∂

∂z
H+(z)

]

z=0

(A2.1a)

= L−1t

[

−iΔt
L′+(0)

L(0)L+(0)

]

.(A2.1b)

From the representation of L+(z) given by (4.15),

iΔt
L′+(0)

L(0)L+(0)
=

1

λ

[
1

2π

∫ ∞

−∞

ln
(
λ+ σ2η2/2

)

η2
dη − βσ

√
Δt

]

(A2.2a)

=
σ

√
2λ2/3

−
βσ
√
Δt

λ
+O (Δt) .(A2.2b)

Hence, taking the inverse transform,

(A2.3) E
[
R̄n
]
= σ

√
2t

π
− βσ

√
Δt+O (Δt) .

The first term is the expected maximum of a Brownian motion, the second becomes

the continuity correction.

A3. Exact Solution by Summation of Residues. The Gaussian characteristic

function given by (3.2) is entire, so the integrand of the integral in (3.8) is analytic

in the lower-half plane (=z < −1) except at the zeros of L(z) = 1− qK(z). It also

vanishes as |z| → ∞. Deforming the integration contour downwards gives

(A3.1) CD(S0;K,D) = C̃D + iZ
−1
N

∞∑

n=−∞

(
P−(γ

−
n )L−(γ

−
n )R

(
γ−n
)
ŵ(d)

(
−γ−n

)
eidγ

−
n

)
,

where the sum is over all the poles γ−n of 1/L(z) in =z < 0, R(γ
−
n ) being their

residues. Similarly, from (2.15),

(A3.2) P−(z) =

∞∑

n=−∞

e−idγ
+
n L+

(
γ+n

)
R
(
γ+n

)

γ+n − z
.

The solutions of L(γn) = 1− qK(γn) = 0 are given by

(A3.3) γ±n =
i
(
r − σ2Δt/2

)

σ2Δt
±

1

σ
√
Δt

√

2 ln q + 4nπi−
(r − σ2Δt/2)2

σ2Δt
(n ∈ Z) .
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The residue R(γ±n ) at the simple pole γ
±
n of 1/L(z) is calculated as

(A3.4) R
(
γ±n
)
= lim
z→γn

z − γ±n

L(z)− L
(
γ±n

) =
1

L′
(
γ±n

) =
1

γ±n σ2Δt− i (r − σ2Δt/2)
,

where qeiγ
±
n (r−σ

2Δt/2)−(γ±n )
2
σ2Δt/2 = 1 has been used.

An exact representation can also be given for L±(z) by writting

(A3.5) L(q, z) =M

(

q exp

{
−
1

2

( r

σ
−
σ

2

)2
Δt

}
, σ

√
Δt

2
z − i

( r

σ
−
σ

2

)√Δt

2

)

,

where

(A3.6) M(q, z) = 1− qe−z
2
,

whose factors can be expressed as

(A3.7) M±(z) = exp

{
1

2

∞∑

n=1

qne−nz
2

n

(
1± erf

(
i
√
nz
))
}

.

This representation of the Wiener-Hopf factors can be obtained most directly from

Spitzer’s identity (2.44).

A4. Rational Approximation of L(z) = 1− qK(z). The following is a two part

procedure for calculating rational approximations. The first part of the procedure

finds the Padé approximation to e−z, then the zeros and poles of the resulting

approximation to 1− e−z. This may demand high precision arithmetic, but it need

only be completed once for a given choice of Padé number. An approximation to

L(z) is then obtained by tracing all its zero and poles from those of 1 − e−z.

The Padé approximation to a function W (z) of order m/n is a rational function

(A4.1) [m/n]W (z) =
U(z)

V (z)
=

∑m
k=0 ukz

k

1 +
∑n
k=1 vkz

k
,

where the coefficients uk and vk are chosen so that its Taylor series agrees with the

Taylor expansion of W (z) to the highest possible order. In other words

(A4.2)
∂k

∂zk
[m/n]W (z)

∣
∣
∣
∣
z=0

=
∂k

∂zk
W (z)

∣
∣
∣
∣
z=0

,

for k = 0, . . . ,m+ n+ 1. It the [m/n]W Padé approximant exists then the uk and

vk are uniquely determined.

For example, if W (w) = e−z, solving

(A4.3) u0 + u1z =
(
1− z + 1

2
z2
)
(1 + v1z)

28



-100 -50 50 100

-150

-100

-50

50

100

150

Figure I: Smallest exact zeros (F) and plot of zeros (�) and poles (N) of approximation to L(z) = 1 − qK(z)
(q = 0.1) with [24/36] Padé approximant to K(z).

by equating coefficients of powers of z, gives

(A4.4) [1/1]W (z) =
1− z

2

1 + z
2

.

Such approximations usually give better approximation than the truncated Taylor

series itself. Moreover, they often give a good approximation far outside the region

in which the Taylor series converges. Effectively, a Padé approximant gives an ana-

lytic continuation of the power series beyond its radius of convergence by localizing

singularities in the extended domain.

For any value of m 6 n, obtaining the roots of V (z) as {pk}
n
k=1 and those of

V (z)− U(z) as {rk}
n
k=1 yields an approximation of order n/n in factorized form,

(A4.5) 1− e−z ≈
n∏

k=1

z − rk
z − pk

.

A rational approximation of order 2n/2n to

(A4.6) L(z) = 1− exp
{
ln q + iμz − σ2z2/2

}
,

with arbitrary q ∈ C, μ, σ ∈ R, is then given with roots

(A4.7)

{
i

σ2

(
μ±

√
μ2 − 2σ2 (ln q + rk)

)}n

k=1

and poles

(A4.8)

{
i

σ2

(
μ±

√
μ2 − 2σ2 (ln q + pk)

)}n

k=1

.

An example of the exact zeros given by (A3.3) closest to the real line plotted against

the corresponding zero and poles of the approximation to L(z) = 1− qK(z) (using

q = 0.1) with [24/36] Padé approximant to K(z) is given in Figure I.
29



A5. Approximation of Modified Wiener-Hopf Factors J±(z). Suppose the

Padé approximation procedure results in approximation La±(z) to L±(z) with a

finite set of zeros Ξ∓ and poles Υ∓ (in lower/upper half-plane =z ≶ 0), that is

(A5.1) L±(z) ≈ La±(z) =
∏

ri∈Ξ∓

∏

pj∈Υ∓

z − ri
z − pj

.

Using these approximations, deformation of the integration contours in (2.57) up-

wards and those in (2.58) downwards results in the summation of the residues

associated with the zeros in Ξ∓. This yields an implicit approximation Ja±(z) to

J±(z) expressed as follows:

(A5.2)
Ja−(z)

La−(z)
−
1

2πi

∑

rj∈Ξ+

ei(u−d)rjJa+(rj)

(rj − z)
R−(rj) = −

1

2πi

∑

rj∈Ξ+

e−idrj

(rj − z)
R−(rj),

(A5.3)
Ja+(z)

La+(z)
−
1

2πi

∑

rj∈Ξ−

e−i(u−d)rjJa−(rj)

(rj − z)
R+(rj) = −

1

2πi

∑

rj∈Ξ−

e−iurj

(rj − z)
R+(rj),

where R±(rj) is the residue of 1/L
a
±(z) at z = rj ∈ Ξ∓. Considering (A5.2) at

the points z = rk ∈ Ξ+ and (A5.3) at the points z = rk ∈ Ξ−, the equations

may be solved by simple linear algebra to give Ja±(rk) for rk ∈ Ξ
∓. An approxi-

mation to J±(z) at other points (z 6= rk ∈ Ξ∓) can be obtained by interpolation,

i.e. substituting Ja±(rk) back into (A5.2) and (A5.3). That said, approximation of

double-barrier option prices from (3.25) using this approximation La±(z) to L±(z)

and the corresponding approximation Ja±(z) to J±(z) does not require this inter-

polation. Deformation of the integration contour in (3.25) (downwards for the part

of the integrand involving Ja−(z) and upwards for that involving J
a
+(z)) results in

a sum of terms involving Ja±(z) evaluated at the zeros of L
a
±(z), that is

(A5.4) CDB ≈ C̃DB +
e−rTZ−1N
2π




∑

rj∈Ξ−

ŵ(ud)(−rj)
eidrjJa−(rj)

La−(rj)
R+(rj)

−
∑

rj∈Ξ+

ŵ(ud)(−rj)
eiurjJa+(rj)

La+(rj)
R−(rj)



 .
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