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ABSTRACT 

Natural hedging is one possible method to reduce longevity risk exposure for an annuity 

provider or a pension plan. In this paper, we provide an assessment of the effectiveness of 

natural hedging between annuity and life products, using the correlated Poisson Lee-Carter 

model, Poisson common factor model, product-ratio model, and historical simulation. Our 

analysis is based on the mortality experience of UK assured lives, pensioners, and annuitants, 

and the national population of England and Wales. We consider a range of different 

scenarios, and find that the level of risk reduction is significant in general, with an average of 

around 60%. These results have important implications for those insurers, reinsurers, and 

pension plan sponsors who are seeking ways to hedge their unwanted risk exposures.  
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1. Introduction 

 

Continual improvement in life expectancy poses a significant challenge to annuity 

providers and pension plan sponsors. These financial entities encounter the so-called 

longevity risk, which is the risk of paying more than expected due to an unanticipated decline 

in mortality. In principle, there are three possible approaches to manage longevity risk. The 

first is traditional reinsurance, in which the risk is transferred to a reinsurer for a premium. 

This option, however, is practically non-existent, as reinsurers appear to have limited appetite 

for longevity risk (Creighton et al., 2005). The second is capital market solutions, which 

include insurance securitization (e.g. Cowley and Cummins, 2005) and mortality-linked 

securities and derivatives (e.g. Coughlan et al., 2007b). In 2010, the Life and Longevity 

Markets Association (LLMA) was established in the UK by several insurance companies, 

reinsurance companies, and investment banks to promote the development of a liquid ‘life 

market’, where longevity- and mortality-linked securities and liabilities could be traded 

amongst insurers, reinsurers, and investors who want to diversify across an uncorrelated 

market sector. For instance, total pension liabilities of about 14 billion pounds were covered 
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by longevity swaps during 2009 to 2011 in the UK (LCP, 2012). Despite these recent 

advances, the life market is still in its infancy stage and is far from reaching its full potential 

for providing diversification opportunities and enhancing market efficiency.  

 The third approach is natural hedging, which exploits the opposite movements in the 

values of annuities and life insurances when mortality changes. If mortality improves more 

than expected, an annuity book incurs losses while a life book makes profits. The situation is 

reversed if mortality improvement turns out to be lower than expected. This ‘natural’ 

offsetting effect allows an insurer to reduce uncertainty by selling both lines of products. For 

certain large insurance companies, it may be advantageous to adjust the business composition 

and utilise this hedging effect to lower the capital requirement. But for other institutions, this 

approach may be impractical and uneconomic, e.g. a pure annuity writer or a pension plan. 

Moreover, insurance companies in many countries have issued products with participation 

features (Cummins and Venard, 2007; Ernst & Young, 2013). For example, life insurers in 

Germany must distribute at least 90% of their annual profits to certain policyholders under 

the regulations. In the UK, bonuses are added to the policyholder accounts at the discretion of 

the insurers. For these cases, using the profits from one book to cover the losses from another 

book may not be feasible. Cox and Lin (2007) suggested that instead of implementing such 

an internal natural hedging scheme, different parties can enter into a mortality swap to 

perform an external hedge. Under this swap, an annuity provider (or a pension plan) pays 

floating cash flows to a life insurer based on the actual number of deaths in the life insurer’s 

portfolio. In return, the life insurer pays floating cash flows to the annuity provider based on 

the actual number of survivors in the annuity provider’s portfolio. Since this swap is not 

structured on a standardised index, it is an over-the-counter transaction and there is 

counterparty risk that one party may default.  

 A major concern about natural hedging is the existence of basis risk, which arises 

from mismatching between the characteristics of the two portfolios involved (e.g. Coughlan 

et al., 2011). Firstly, there is age basis risk, as the ages of an annuity portfolio are generally 

higher than those of a life insurance portfolio. Secondly, there is population basis risk, 

because the two groups of lives may come from different socioeconomic classes and may be 

subject to different underwriting requirements. Moreover, maturity basis risk is also present if 

the two portfolios have very different cash flow patterns, which depend on the types of the 

underlying products. Nevertheless, it should be noted that the presence of basis risk does not 

necessarily mean that natural hedging is ineffective. In fact, basis risk should be properly 
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assessed via joint modelling (see Section 2) and can be managed through careful structuring 

of the product mix (see Sections 3 and 4).   

 The feasibility of natural hedging has received some attention in the literature. 

Milevsky and Promislow (2001) proposed that the option to annuitise in US variable 

annuities can be priced by constructing a replicating portfolio consisting of insurance, 

annuities, and bonds. They argued that the risk in annuities can be hedged by life policies. 

Dowd et al. (2006) suggested that survivor swaps can be used to help insurers rebalance their 

positions and exploit natural hedging opportunities. Gründl et al. (2006) considered a 

shareholder value maximisation framework and showed that natural hedging is optimal when 

equity is scarce. Bayraktar and Young (2007) assumed the same hazard rate for all buyers and 

deduced that pure endowment serves as a hedge to life insurance. Coughlan et al. (2007a) 

presented a case study and used historical simulation to show that the level of risk reduction 

is sizable, assuming the two populations are similar demographically. They also found that 

the result is more pronounced for a longer horizon, as noise becomes less important and the 

association between ages tends to increase over time. Based on historical improvement rates 

and mortality shocks, Cox and Lin (2007) demonstrated that a more balanced business mix 

reduces cash flow volatility. They further discovered that annuity writers who have more 

balanced business tend to charge lower premiums. Tsai et al. (2010) proposed a conditional 

Value-at-Risk (VaR) minimisation approach to optimise the product mix. Wang et al. (2010) 

set forth an immunisation model for determining the optimal product mix and devised 

mortality duration and convexity measures. Gatzert and Wesker (2012) included assets and 

liabilities in a dynamic framework and computed the optimal product mix with respect to 

default risk measures. Zhu and Bauer (2012) considered a non-parametric mortality model 

and found that higher order variations in death rates may affect the effectiveness of natural 

hedging. Cox et al. (2013) applied the ‘MV+CVaR’ approach to optimise the mean-variance 

trade-off of a portfolio of annuities and life insurance. Lin and Tsai (2013) and Tsai and 

Chung (2013) derived closed-form formulae of mortality duration and convexity to determine 

the weights of life insurance and annuity products in a portfolio. Chan et al. (2014) suggested 

that natural hedging often cannot work perfectly in practice because a certain part of 

longevity risk remains. 

Despite these interesting findings, none of the work above models the mortality of 

annuitants (or pensioners) and assured lives jointly in an explicit manner and takes full 

account of basis risk. Without proper co-modelling of the two populations, it is difficult to 

produce a reasonable estimate of the hedging effectiveness. Recently, Wang et al. (2013) 
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used dependent standard Brownian motions to co-model the Lee-Carter mortality indices of 

the two populations, in order to find the optimal allocation. However, they took the observed 

death rates of Taiwan life insurance policies with heavy principal repayment as a proxy for 

annuitants’ rates, which may not be truly reflective of actual annuity experience. They also 

considered only one way of joint modelling while the hedging effectiveness may depend 

considerably on the model assumed. In this paper, we attempt to fill these gaps in the current 

literature. First, we test a number of choices for modelling the two populations jointly, 

including the correlated Poisson Lee-Carter model, Poisson common factor model, product-

ratio model, and historical simulation. This comparison is made to see if the performance of 

natural hedging varies significantly under different simulated environments. In particular, to 

our knowledge, we are the first one to adopt the product-ratio model in actuarial applications. 

Second, we use actual mortality experience of assured lives, pensioners, annuitants, and 

general population in England and Wales. The corresponding results are thus expected to be 

more reflective of the real situations insurers and pension plans are actually facing. 

Furthermore, we examine a range of scenarios and product features, in order to find out how 

sensitive our results are with respect to certain changes in the settings and assumptions. It is 

important to check the robustness of the results and implications. 

This paper is organised as follows. In Section 2, we provide an outline of some 

mortality models for handling annuity and life portfolios jointly. In Section 3, we discuss the 

effectiveness of natural hedging in terms of the level of risk reduction, based on industry 

mortality data and different ways of joint modelling. In Section 4, we make a number of 

changes to the initial settings and assumptions and investigate the resulting effects on the 

hedging performance. Finally, we state our concluding remarks in Section 5. 

 

2. Joint modelling 

 

Hitherto, most of the mortality modelling work has either treated each population 

separately (e.g. by gender, country) or simply considered the whole population in aggregate. 

There has been relatively little attention paid to modelling two related populations 

simultaneously in a systematic manner. In order to allow for (age and population) basis risk 

properly, we experiment with the following joint modelling techniques. A more detailed 

study of joint mortality models can be found in Li et al. (2014). 

The first one we consider here is the first approach proposed by Carter and Lee 

(1992), in which the Lee and Carter (1992) model is fitted to each population separately and 



6 

 

then dependence between the two mortality indices is measured in some way. Since the Lee-

Carter mortality index is modelled by a random walk with drift in many applications, a 

bivariate random walk with drift can be similarly assumed for the case of having two 

concurrent indices. Mathematically, this approach can be expressed as 

itixixitxm ,,,,,  ln   ; (Lee-Carter model)  

ttt  1 ,  (bivariate random walk with drift)    (1) 

in which 2 ,1i  refer to the two populations under study, itxm ,,  is the central death rate at age 

x  in year t , ix,  is the overall mortality schedule, it ,  is the mortality index with ix,  as the 

sensitivity measure,   '  , 2,1, ttt  ,   is the vector drift term, and t  is the vector error 

term of the random walk. Alternatively, the third approach in Carter and Lee (1992) is to 

model the two mortality indices jointly as a co-integrated process (e.g. Li and Hardy, 2011). 

In a similar vein, Cairns et al. (2011) and Dowd et al. (2011) co-modelled the period and 

cohort parameter series of the age-period-cohort (APC) model between a large population 

and a small subpopulation, using time series models and gravity models respectively. Yang 

and Wang (2013) treated the Lee-Carter residual terms as correlated between several 

countries and also fit a vector error correction model (VECM) to the multiple mortality 

indices. Zhou et al. (2013, 2014) assumed the same age-specific sensitivity for two 

populations and co-modelled the two Lee-Carter mortality indices with time series processes. 

Since these alternatives apply similar procedures, i.e. fitting the same model to each 

population and co-modelling the two (or more) associated parameter series, we adopt only the 

Lee-Carter model with bivariate random walk for analysing the hedging performance. Note 

that instead of assuming homoscedastic error terms as in the initial Lee-Carter method, we 

estimate the parameters by treating the number of deaths as a Poisson variable and following 

the iterative updating scheme in Brouhns et al. (2002). We refer to this choice as the 

correlated Poisson Lee-Carter model (cPLCM) below. 

On the other hand, the second approach in Carter and Lee (1992) is to estimate a 

single, common mortality index for both populations. While this way may give greater 

consistency between the two populations and is parsimonious, it does not appear to be a 

suitable option for measuring the hedging effectiveness, as it implicitly assumes that the two 

groups’ mortality levels are perfectly associated and will lead to an underestimation of basis 

risk. As an extension, Li and Lee (2005) proposed the augmented common factor model, 
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which is composed of a common factor for both groups of lives as a whole, as well as an 

additional factor specifically assigned for each group. The overall approach is stated as 

itixtxixitx KBm ,,,,,   ln   ;  (augmented common factor model) 

ttt eKK  1 ;   (random walk with drift)      

ititiiit ,,1,1,0,     ,  (AR(1) process)     (2) 

where tx KB   is the common factor for both groups, itix ,,    is the additional factor for group 

i , tK  is the mortality index of the common factor with xB  as the sensitivity measure, and 

it ,  is the time component of the additional factor with ix,  as the sensitivity measure. The 

mortality index tK  is assumed to follow a random walk with the drift term   and the error 

term te . The time component it ,  is assumed to follow an autoregressive model of order one, 

AR(1), with i,0  and i,1  as the parameters and it ,  as the error term. (The terms itxm ,,  and 

ix,  have the same meanings as before.) The use of weakly stationary AR(1) processes 

ensures that the projected (central estimate) ratio of death rates ( i  = 1 vs. i  = 2) tends to a 

constant at each age, i.e. the forecasts are ‘coherent’. This model explicitly differentiates 

between the joint effect and specific effect, and we include it in our hedging assessment. We 

follow Li (2013) and use the Poisson assumption to estimate the parameters, and call this 

Poisson common factor model (PCFM). Delwarde et al. (2006) and Debón et al. (2011) also 

incorporated a common factor for the combined population and specific factors for each 

population. In a similar way, Hatzopoulos and Haberman (2013) constructed a common 

model for a number of countries in aggregate together with a sex difference (age-period) 

model and a residual model for each sex and country. Alternatively, Russolillo et al. (2011) 

adopted a three-way structure which multiplies the common factor above with a group-

specific or country-specific parameter. 

 Finally, we test the product-ratio model (PRM) proposed by Hyndman et al. (2013) in 

the field of demography. This model exploits the fact that the sum of and the difference 

between two random components will roughly be uncorrelated if the two components have 

approximately equal variances. For example, suppose A  and B  are two random variables, 

and it can be deduced that  BABA   , Cov    BA VarVar  0  if    BA VarVar  . We 

apply the PRM to the central death rates as 

2,,1,,,  txtxtx mmp  ;     (square root of product of death rates) 
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2,,1,,, txtxtx mmr  ;     (square root of ratio of death rates) 

           ggp txtxtxxtx   ...2 21 1ln ,  ; (product model)    

           hhr txtxtxxtx   ...2 21 1ln ,  ; (ratio model)    

         jjjjj ttt   110  ;    (AR(1) process)   

         jjjjj ttt   110  .    (AR(1) process)  (3) 

The quantities txp ,  and txr ,  are the square roots of the products and ratios of the central death 

rates. Assuming the two groups’ log death rates have roughly equal variances, which is often 

the case when the two sets of data have about the same volume, txp ,ln  and txr ,ln  are more or 

less uncorrelated. We can then apply principal component analysis (PCA) to each of them 

separately to estimate the parameters ( x ,  jx ,  jt  of product model; x ,  jx ,  jt  

of ratio model). Otherwise, if the two data volumes are very different, treating the product 

and ratio models separately would be imprecise and serve at best as a rough approximation. 

We follow Hyndman et al. (2013) in setting g  = h  = 6, as they found that having more than 

six factors makes almost no difference to the resulting forecasts but having too few reduce 

forecast accuracy. In our analysis, the parameter  11  is set to one, i.e.  1t  is assumed to 

follow a random walk with drift. The other time components  jt  for 2j  and  jt  for 

1j  are assumed to be AR(1) processes, with  j0 ,  j1 ,  j0  and  j1  as the parameters 

and  jt  and  jt  as the error terms. Using weakly stationary AR(1) processes for the ratio 

model makes sure that the projected ratio of death rates ( i  = 1 vs. i  = 2) converges at each 

age. Note that when only one set of data is available for a certain age range, the product 

model is applied directly to the death rates available while the ratio model is dropped for that 

age range. Earlier, Plat (2009) took a fairly similar approach, in which the ratio of death rates 

(portfolio vs. population) is expressed as a function of age-time factors. Jarner and Kryger 

(2011) also modelled the log ratio of death rates (small population vs. reference population) 

with a number of age-time factors. Ngai and Sherris (2011) applied a simple linear model to 

the ratio of death rates (annuitants vs. population). In a recent work, Hatzopoulos and 

Haberman (2013) formulated the log ratio of death rates (females vs. males) in terms of age 

and time effects. Villegas and Haberman (2014) used age and period parameters for the log 

ratio of death rates (modelling the experience of socio-economic groups relative to reference 

population). 
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 There are a few more things to note before we present our results in the next two 

sections. Firstly, all the error terms above are assumed to be uncorrelated with one another 

and across time. Secondly, the length of our industry data is not very long and an AR(1) 

process would suffice in general. Other time series models with higher orders or more 

complicated structures may be used if there is more data. In the Appendix, we provide further 

analysis on the various time series produced from the three models using the data as 

discussed in the next section. Moreover, while we focus on discrete-time mortality models, 

there are a couple of continuous-time models that have been tested for modelling related 

populations jointly. Cox et al. (2006) described each population’s mortality as a combination 

of a Brownian motion and a compound Poisson process and assumed the Brownian motions 

of different populations are correlated. Barbarin (2008) adopted the Heath-Jarrow-Morton 

(HJM) framework to model longevity bond prices and allow for basis risk. Dahl et al. (2008, 

2011) used Cox-Ingersoll-Ross (CIR) processes for modelling mortality intensities of an 

insurance portfolio and a large population. Lastly, historical simulation (e.g. Coughlan et al., 

2011) can also be used for analysing the hedging performance. Although the data volume is 

limited, we apply this method in Section 4. 

 

3. Hedging effectiveness 

 

In this section, we provide an assessment of the potential effectiveness of natural 

hedging based on empirical mortality data. These data include the experience of male assured 

lives, pensioners of insured pension schemes, and annuitants collected from the Continuous 

Mortality Investigation (CMI). These three groups are subject to different underwriting 

requirements and represent three distinct sets of experience. The pensioners and annuitants 

data are only available for the period of 1983-2006, so we take this as our sampling period. 

We use the age ranges of 30-95 for assured lives, 60-95 for pensioners, and 65-95 for 

annuitants, as the data outside these ranges are sparse and unsuitable for modelling and 

projection. Figure 1 plots the central death rates of three age groups over the period. In 

general, the assured lives have the lowest mortality, followed by the annuitants and then the 

pensioners. Because the annuitants data volume is much smaller, their death rates appear to 

be more volatile. It can be seen that the declining trends of assured lives, pensioners, and 

annuitants are roughly in line with one another, which suggests some degree of statistical 

dependence between them. In particular, for ages 65-74, the correlations in the rates of 

change of death rates are 0.13 between the assured lives and pensioners and 0.04 between the 
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assured lives and annuitants; for ages 75-84, these correlations are 0.10 and 0.12; and for ages 

85-94, the correlations are ‒0.11 and 0.08. Half of these figures are statistically significant at 

the 10% significance level and one is significant at the 5% level. It appears necessary to co-

model these populations in a systematic fashion and take basis risk into account properly.      

Consider a pension plan sponsor or an insurer selling annuities who wants to reduce 

its risk level by implementing either an internal or external hedge. Suppose there are only two 

products: a whole-life pension payable from age 65 or a life annuity issued at age 65, and a 

life insurance written at age 35, all on 1 January 2007. The pension (annuity) size is $1,400 

p.a. ($1,300 p.a.) payable at the end of each year, and the sum assured of the life insurance is 

$100,000 payable at the end of the year of death. These amounts are set in such a way that the 

expected present values on 1 January 2007 of the two ‘offsetting’ products are approximately 

equal, so that the effects of different portfolio compositions can readily be compared, given a 

fixed total number of policies. All the premiums are paid at the inception of the contract and 

so there are no future contributions outstanding. The interest rate is assumed to be 3% p.a. 

flat. The limiting age is set as 95, based on the age ranges of the CMI data being investigated. 

This simplifying assumption is adequate for our purposes and avoids the necessity of 

choosing a realistic limiting age and introducing a corresponding ‘topping out’ technique for 

interpolating between age 95 and the limiting age (e.g. Renshaw and Haberman, 2003). We 

set up this rather hypothetical situation in order to highlight the hedging effect between a pure 

survival benefit and a pure death benefit for the whole age range. In reality, there is a 

growing number of centenarians; also, term life insurance and endowment assurance are 

more popular than whole life insurance in several countries.   

 To start with, we fit the cPLCM, PCFM, and PRM (models (1) to (3)) discussed in 

Section 2 to the CMI data. We find that the mean absolute percentage error (MAPE) values 

of the fitted log death rates are all less than 5%, and that there are no significant effects 

present in the residuals along age, calendar year, and cohort year. These results indicate that 

the three models provide a reasonable description of the CMI data. For the assured lives and 

pensioners data, the Bayesian Information Criterion (BIC) values for the three models are 

22,603, 23,256, and 28,592 respectively. For the assured lives and annuitants data, the BIC 

values are 19,281, 19,753, and 24,804. These values suggest that the cPLCM provides the 

best fit (in terms of goodness-of-fit and also parameter parsimony) to the data. One should 

note, however, that the BIC is only one of the many statistical criteria, and that a good fit to 

past data does not necessarily mean that the corresponding projections into future are 

sensible. Figures 2 to 5 illustrate the parameter estimates of these models for the assured lives 
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and pensioners data. As shown, the major time components are highly linear, which suggest 

that a random walk with drift is suitable for projection. The other time components 

demonstrate some cyclical or irregular patterns and can be modelled and projected with an 

AR(1) process. For the combination of assured lives and annuitants data, the time 

components (not shown here) have similar characteristics. (See Appendix for more details.) 

 Suppose there are a total of 100,000 policies. We consider 101 portfolio compositions 

of pension (or annuity) and life products, in which the weight of life policies w  increases by 

1% each time from 0% to 100%. For each product mix, we use the fitted models to generate 

5,000 scenarios of future death rates, and adopt the binomial distribution to sample the 

number of survivors in each future year, which determine the cash flows of the portfolio. We 

then compute 5,000 samples of the total present value of the portfolio for each case. Similar 

to Coughlan et al. (2011), we define the level of longevity risk reduction as 1 – Risk ( jw  ) / 

Risk ( %0w ) for j  = 0% to 100%, in which the risk metrics considered include the 

standard deviation, variance, and 95% and 99% Value-at-Risk (VaR) (minus the mean) of the 

total present value of the portfolio.   
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Fig. 1. Central death rates of male assured lives, pensioners, and annuitants in UK, 1983-2006. 
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Fig. 2. Parameter estimates of ix,  (top), ix,  (middle), and it ,  (bottom) of cPLCM for assured lives 

(left) and pensioners (right). 
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Fig. 3. Parameter estimates of ix,  (top), xB   or ix,  (middle), and tK  or it ,  (bottom) of PCFM for 

common effect (left), assured lives’ effect (middle), and pensioners’ effect (right). 
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Fig. 4. Parameter estimates of x  (top),  jx  (middle), and  jt  (bottom) of product model of 

PRM for j  = 1, 2, 3 (left to right of last two rows). 
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Fig. 5. Parameter estimates of x  (top),  jx  (middle), and  jt  (bottom) of ratio model of PRM 

for j  = 1, 2, 3 (left to right of last two rows). 
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Table 1 

Maximum levels of longevity risk reduction for a portfolio of 100,000 policies at 3% interest rate. 

Pension and life products 

Model SD Variance 95% VaR 99% VaR 

cPLCM 49% 74% 44% 45% 

PCFM 62% 86% 61% 59% 

PRM 62% 85% 58% 59% 

Annuity and life products 

Model SD Variance 95% VaR 99% VaR 

cPLCM 64% 87% 56% 53% 

PCFM 53% 78% 54% 54% 

PRM 54% 78% 49% 48% 

 

Table 1 lists the maximum levels of longevity risk reduction for different models and 

risk metrics, based on the simulated samples of the portfolio compositions under 

consideration. There are a number of insightful observations. First, the risk reduction is 

clearly less than 100%, because basis risk exists between the two lines of products. The level 

of maximum reduction ranges from 44% to 87%. In this study, the ages, mortality experience, 

and cash flow patterns of the two groups are different, which reflect the likely situation in 

reality. Second, the risk reduction is larger for the variance than the other risk metrics. This 

result has an important implication about the construction of a hedge in practice. As the 

choice of risk metric has a significant impact on the assessment of the hedging effectiveness, 

one has to be careful in choosing an appropriate risk metric when setting the hedging 

objectives, which in turn directs the selection, structuring, and calibration of hedging 

instruments. Third, the results of the PCFM and PRM are quite close to each other, but those 

of the cPLCM are somewhat different. This effect may arise from the fact that both the 

PCFM and PRM involve stationary time series processes and produce coherent forecasts in 

the long run, whereas the cPLCM works with a bivariate random walk with drift and has a 

tendency to generate divergent values. The necessity of having coherent forecasts depends on 

the time horizon. While there can be some extent of divergence or fluctuation in the short 

term, it is natural to expect that the death rates of different groups will move more 

consistently in the long term. Our projection period is 60 years and hence it seems that the 

PCFM and PRM are more suitable in this sense. Lastly, though the level of risk reduction 

varies for different models and risk metrics, it is around 60% overall, which is still a sizable 

amount. The natural hedging strategy is feasible if the benefits of risk reduction outweigh the 

costs of implementing it, such as adjusting the business composition, entering into mortality 

swaps, and employing expertise to design the hedging programme. It can be used 
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simultaneously with traditional reinsurance and other longevity-linked securities. Even if this 

strategy turns out to be too costly for a particular institution, the effect of the existing 

business composition still needs to be taken into account properly in the reserving and capital 

calculations, e.g. under Solvency II requirements. 

Figure 6 shows the coefficient of variation, and the 95% and 99% VaR (minus the 

mean) as a percentage of the mean, of the total present value of each portfolio composition of 

pension and life products. Under the PCFM and PRM, the ‘optimal’ product mix is to have a 

weight of about 45% in life policies; under the cPLCM, the optimal proportion of life policies 

is around 65%. These results give some important insights into the calibration exercise. First 

of all, the optimal mix is model-dependent, and the similarities and differences in the results 

between the three models are in agreement with the fact that both the PCFM and PRM 

furnish coherent forecasts while the cPLCM does not. Although the model choice can be 

subjective to some extent, it may be argued (as above) that the PCFM and PRM are more 

appropriate for a long projection period. Moreover, it is interesting to see that even when a 

‘wrong’ model is selected to determine the optimal mix, the resulting hedging effectiveness 

may still be considerable. For example, if the optimal proportion is ‘incorrectly’ taken as 65% 

based on the cPLCM but the real situation is actually reflected by the PRM, it can be seen 

from Figure 6 that the risk level is still reduced by about 40%. Overall, the major implication 

in this hypothetical study is that an optimal allocation does exist under some fairly realistic 

conditions and assumptions. It suggests that a financial institution with a more balanced 

business mix would be subject to lower variability in its liabilities compared to one with less 

diversified compositions. In practice, it is advisable to test several different models with 

varying features and obtain a more comprehensive view of the matter; and as noted above, 

one has to examine carefully the benefits and various costs of building such a hedge. Similar 

patterns are observed for the portfolios of annuity and life products (the detailed results of 

which can be provided upon request). 

 Note that the PRM requires an assumption that the two populations’ log death rates 

have approximately equal variances, so that the product and ratio models can be treated 

separately. We find that the variances of the log death rates are 0.81, 0.82, and 1.38 

respectively for the assured lives, pensioners, and annuitants data, for ages 65-95 during 

1983-2006. (In particular, for ages 65-74, the variances are 0.15, 0.18, and 1.00; for ages 75-

84, the variances are 0.13, 0.12, and 0.29; for ages 85-94, the variances are 0.07, 0.07, and 

0.14; during 1983-1994, the figures are 0.75, 0.69, and 0.92; and during 1995-2006, the 

figures are 0.84, 0.90, and 1.77.) The annuitants data have a larger variance because the 
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volume is much smaller. As such, the PRM is suitable for modelling the assured lives and 

pensioners data, but treating the product and ratio models independently for the combination 

of assured lives and annuitants data would represent an arbitrary assumption and serve 

instead as a practical approximation. Note also that the values of the risk metrics produced by 

the cPLCM are larger than those by the other two models when the proportion of life policies 

is small, while the situation is opposite when the life product dominates the portfolio (see 

Figure 6). Moreover, despite the similarity in the risk reduction results between the PCFM 

and PRM as discussed above, the values of the risk metrics obtained from the former are 

consistently smaller than those from the latter. These differences highlight the presence of 

model uncertainty and the necessity to compare results from a range of models in practical 

work.  
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Fig. 6. Coefficient of variation (top) and 95% (middle) and 99% (bottom) VaR of total portfolio 

present value for different compositions of pension and life products (0% to 100%) under cPLCM 

(left), PCFM (middle), and PRM (right). 
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4. Sensitivity analysis 

 

In this section, we consider a number of changes in the initial settings and 

assumptions and examine the resulting effects on the hedging performance. These changes 

include the portfolio size, interest rate, population experience, product features, and 

simulation procedure. Through these sensitivity testings, we can have a better idea of how 

robust the hedging results are under different circumstances.  

If the portfolio size is small, there is a risk that the overall portfolio experience turns 

out to be too different to the underlying true mortality levels. This discrepancy may have a 

material impact on the hedging effectiveness. Table 2 shows that when the number of policies 

is reduced from 100,000 to 10,000, the risk reduction is generally not much smaller; but 

Table 3 demonstrates that when there are only 1,000 policies, the average risk reduction is 

lowered from 60% to less than 40%. These results suggest that when the portfolio size is too 

small (say, below 1,000 policies), the effect of natural hedging can be rather limited.  

 Next we consider two other interest rates of 2% p.a. and 4% p.a. The pension and 

annuity sizes are adjusted to ensure that the expected present values of the two hedging sides 

are roughly equal. Tables 4 and 5 present the levels of risk reduction for these two new 

interest rates. At 2% p.a., the risk reduction is clearly larger and the average level is above 

70%. The situation is reversed at 4% p.a. and the risk reduction is about 50% on average. 

This phenomenon may be due to the fact that the cash flows of both sides are discounted less 

at a lower interest rate and so are more variable, under which the offsetting effect becomes 

more obvious. 

 As mentioned earlier, Cox and Lin (2007) proposed a mortality swap to construct an 

external hedge, in which the pension plan sponsor or annuity provider pays floating cash 

flows linked to the number of deaths in the life portfolio, and the life insurer pays floating 

cash flows linked to the number of survivors in the pension plan or annuity portfolio. This 

swap is not a standardised contract, and so there is counterparty risk that one side may 

default. As the life market develops and becomes more mature, it may be possible to build a 

special purpose vehicle (e.g. Cairns et al., 2008) that transacts with each party separately 

without the two parties dealing with each other directly. For example, on one side, the 

pension plan sponsor pays floating cash flows to the special purpose vehicle based on the 

number of deaths of the reference population, and the special purpose vehicle returns floating 

cash flows based on the number of survivors in the pension plan. On the other side, a similar 

transaction is conducted between the life insurer and the special purpose vehicle. To explore 
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this possibility, we replace the assured lives data with England and Wales population data 

(taken as reference population) collected from the Human Mortality Database (HMD, 2013) 

and repeat the simulations. Table 6 shows that the corresponding risk reduction is on average 

8% smaller than the figures in Table 1. This decrease implies higher population basis risk, 

which appears to arise from the heterogeneity of the population data. In reality, the payments 

made by the pension plan sponsor to the special purpose vehicle may be simplified as 

observed death rate minus forward death rate (like a q-forward), in which proper calibration 

is necessary.  

 

Table 2 

Maximum levels of longevity risk reduction for a portfolio of 10,000 policies at 3% interest rate. 

Pension and life products 

Model SD Variance 95% VaR 99% VaR 

cPLCM 47% 71% 45% 42% 

PCFM 55% 80% 54% 52% 

PRM 58% 83% 55% 56% 

Annuity and life products 

Model SD Variance 95% VaR 99% VaR 

cPLCM 63% 86% 55% 52% 

PCFM 46% 71% 44% 46% 

PRM 51% 76% 46% 45% 

 

Table 3 

Maximum levels of longevity risk reduction for a portfolio of 1,000 policies at 3% interest rate. 

Pension and life products 

Model SD Variance 95% VaR 99% VaR 

cPLCM 34% 57% 32% 31% 

PCFM 27% 47% 26% 24% 

PRM 34% 56% 30% 31% 

Annuity and life products 

Model SD Variance 95% VaR 99% VaR 

cPLCM 53% 78% 45% 41% 

PCFM 21% 37% 17% 19% 

PRM 40% 64% 34% 32% 
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Table 4 

Maximum levels of longevity risk reduction for a portfolio of 100,000 policies at 2% interest rate. 

Pension and life products 

Model SD Variance 95% VaR 99% VaR 

cPLCM 66% 89% 64% 63% 

PCFM 72% 92% 69% 69% 

PRM 71% 92% 68% 68% 

Annuity and life products 

Model SD Variance 95% VaR 99% VaR 

cPLCM 78% 95% 72% 71% 

PCFM 65% 87% 63% 64% 

PRM 65% 88% 58% 60% 

 

Table 5 

Maximum levels of longevity risk reduction for a portfolio of 100,000 policies at 4% interest rate. 

Pension and life products 

Model SD Variance 95% VaR 99% VaR 

cPLCM 36% 58% 29% 31% 

PCFM 57% 81% 56% 55% 

PRM 57% 81% 53% 53% 

Annuity and life products 

Model SD Variance 95% VaR 99% VaR 

cPLCM 52% 77% 43% 39% 

PCFM 45% 69% 44% 43% 

PRM 45% 70% 41% 42% 

 

Table 6 

Maximum levels of longevity risk reduction for a portfolio of 100,000 policies at 3% interest rate. 

Pensioners vs England & Wales population 

Model SD Variance 95% VaR 99% VaR 

cPLCM 41% 65% 36% 33% 

PCFM 50% 75% 48% 45% 

PRM 59% 83% 55% 55% 

Annuitants vs England & Wales population 

Model SD Variance 95% VaR 99% VaR 

cPLCM 50% 75% 40% 38% 

PCFM 46% 71% 47% 49% 

PRM 51% 76% 46% 47% 

 

 As discussed previously, there are three types of basis risk present: age basis risk, 

population basis risk, and maturity basis risk. We now attempt to ‘reduce’ the first two risks 

by adjusting the product features and examine the corresponding effects. First, suppose all the 

life policyholders are currently aged 65, the same as the starting age of the pensions and 
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annuities. Second, assume the pensioners (or annuitants) follow the experience reflected by 

the assured lives data instead (i.e. joint modelling is not needed; and simply the Poisson Lee-

Carter model is used). For the first case, Table 7 illustrates that setting the same age range 

leads to an increase in the risk reduction of around 17% on average, compared to the figures 

in Table 1. For the second case, Table 8 reveals that the average risk reduction is about 7% 

larger than previously. These results suggest that age basis risk seems to have a more 

significant impact than population basis risk for the data and products being considered here.  

 We also consider the case where premiums are charged periodically for the life 

policies. Suppose the premiums are payable annually in advance as long as the policyholder 

is alive for a maximum of 10 years, calculated based on the principle of equivalence. 

Comparing Table 9 with Table 1, it can be seen that there is basically not much difference in 

the risk reduction results between charging the premiums in instalments and outright.  

 

Table 7 

Maximum levels of longevity risk reduction for a portfolio of 100,000 policies at 3% interest rate. 

Pension and life products (current age = 65) 

Model SD Variance 95% VaR 99% VaR 

cPLCM 68% 90% 66% 65% 

PCFM 89% 99% 88% 88% 

PRM 88% 99% 88% 88% 

Annuity and life products (current age = 65) 

Model SD Variance 95% VaR 99% VaR 

cPLCM 79% 96% 75% 73% 

PCFM 73% 93% 75% 75% 

PRM 54% 79% 41% 39% 

 

Table 8 

Maximum levels of longevity risk reduction for a portfolio of 100,000 policies at 3% interest rate. 

Pension and life products (based on assured lives data only) 

Model SD Variance 95% VaR 99% VaR 

PLCM 63% 86% 61% 62% 
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Table 9 

Maximum levels of longevity risk reduction for a portfolio of 100,000 policies at 3% interest rate. 

Pension and life products (periodic premiums) 

Model SD Variance 95% VaR 99% VaR 

cPLCM 48% 73% 44% 43% 

PCFM 62% 86% 61% 62% 

PRM 62% 85% 58% 59% 

Annuity and life products (periodic premiums) 

Model SD Variance 95% VaR 99% VaR 

cPLCM 64% 87% 57% 54% 

PCFM 53% 78% 53% 52% 

PRM 55% 79% 49% 49% 

 

So far, we have adopted model-based approaches to perform simulations. On the other 

hand, one can also take a model-free approach such as historical simulation, which does not 

assume any model setting but uses repeated sampling from the historical data (e.g. Liu and 

Braun, 2010; Coughlan et al., 2011; Li and Ng, 2011; D’Amato et al., 2012). One such 

technique we test here is the block bootstrap method, which divides the data into overlapping 

(or non-overlapping) blocks of equal size, draws random samples of blocks (with 

replacement), and then sequentially lines up these sampled blocks to form pseudo data (e.g. 

Liu and Braun, 2010). By sampling data blocks instead of individual data points, the 

underlying serial dependence can be preserved in the simulation. Moreover, to allow for the 

mortality experience of the two populations simultaneously, we group together the two 

populations’ rates of change in death rates at each age-time cell as an individual (bivariate) 

data point for resampling, so that the relationships between the populations can be 

incorporated into the simulated samples. Regarding sample autocorrelations and cross-

correlations, we find that while most statistically significant correlations are within the first 

two lags, some significant ones are spread over much longer lags. Hence we experiment with 

two block sizes of 5 (i.e. no significant correlations beyond lag 5) and 10 (i.e. no significant 

correlations beyond lag 10), the results of which are given in Table 10. The data period is too 

short for this bootstrap method to produce extreme percentile measures, so only the standard 

deviation and variance are computed. It is interesting to see that by using the bootstrap 

method instead of the three models, the risk reduction is about 20% smaller for the pensions 

but 10% larger for the annuities. These differences re-emphasise the importance of examining 

different modelling approaches in practice, so as to acquire a more balanced assessment of 

the hedging effects. 
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Table 10 

Maximum levels of longevity risk reduction for a portfolio of 100,000 policies at 3% interest rate. 

Pension and life products 

Bootstrap SD Variance   

Block size = 5 38% 61%   

Block size = 10 37% 60%   

Annuity and life products 

Bootstrap SD Variance   

Block size = 5 76% 94%   

Block size = 10 62% 85%   

 

 In summary, we demonstrate that there is an optimal composition for each case being 

considered. Based on this simulation study, under certain realistic conditions of the mortality 

experience, interest rate, and basis risk, and when the portfolio size is reasonably large, the 

maximum variance reduction ranges from around 60% to 95%, with an average of about 

80%. For reduction in the standard deviation and extreme measures, the range is about 30% 

to 80% and the average is above 50%. It is clear that the potential natural hedging effect can 

be significant and it is important to have a proper allowance for this effect in reserve and 

capital calculations. A financial institution with a more diversified portfolio would be subject 

to lower variability in aggregate under random movements in mortality levels. 
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5. Concluding remarks 

 

In this paper, we assess the potential effectiveness of natural hedging between annuity 

and life products. We apply the correlated Poisson Lee-Carter model, Poisson common factor 

model, product-ratio model, and historical simulation to actual mortality experience of 

assured lives, pensioners, annuitants, and general population in England and Wales. 

Particularly, this is the first attempt to adapt the product-ratio model from the demographic 

literature to an actuarial issue. Besides the initial settings, we also consider a variety of 

scenarios and product features and perform sensitivity analysis. In general, we find that there 

is an optimal mix for each case under consideration, and our simulations suggest that the 

level of risk reduction would be too significant to be overlooked in practical work such as 

reserving and capital allocations. Financial institutions with mortality-linked liabilities would 

benefit from holding more diversified portfolios. Nevertheless, our numerical results appear 

to be model-dependent, which pinpoints that an actuary should use a number of different 

models in order to obtain a better view of the hedging effects. 

Finally, there are a few more things to note. First, while we have focused on static 

hedging, it would be interesting to study dynamic hedging in future research and investigate 

how maturity basis risk can be addressed. Second, the participants of the CMI data may have 

changed over time, which could lead to more heterogeneity and so higher basis risk than 

otherwise. Third, the data used are for the industry in aggregate, whereas an individual 

insurer or pension plan may have very different mortality experience. Fourth, though we have 

considered different models and conditions, it would be useful to test other joint modelling 

techniques as well as other kinds of products in future work. Some important financial 

concepts such as mortality duration and convexity, multivariate risk-neutral valuation (e.g. 

Kogure et al., 2014), and counterparty risk can also be further explored for natural hedging. 

Lastly, as the life market continues to develop and becomes more liquid, it can be expected 

that natural hedging would gradually become more economic and feasible, especially for 

smaller financial entities. 
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Appendix 

 

As discussed earlier, the major time components computed from the three models appear to 

be highly linear, which imply that a random walk with drift is suitable for projection. We 

further apply the augmented Dickey-Fuller test to the major time components, in which the 

null hypothesis of unit root is not rejected at the 5% significance level. These results provide 

further support on using the random walk. We also apply the Engle-Granger test to the two 

mortality indices of the cPLCM. For the assured lives and pensioners data, the test results 

suggest that the two indices are not cointegrated. For the assured lives and annuitants data, 

however, the test results are mixed regarding the presence of cointegration, which calls for 

future research to compare modelling the two indices as cointegrated and as a bivariate 

random walk.  

 

Under the Box and Jenkins (1976) approach, the partial autocorrelation function (PACF) can 

be used to identify the order of an AR process. The tables below use the symbols +, ‒, and • 

to indicate whether the sample PACF value at a certain lag is larger than twice the estimated 

standard error, smaller than negative twice the standard error, or is statistically insignificant. 

Considering there are only 24 years of data and ensuring the convergence of the projected 

ratio of death rates, these statistics suggest that a weakly stationary AR(1) process would 

largely be appropriate for the various parameter time series generated from the PCFM and 

PRM. Although there are a few significant values at higher lags, the corresponding AR 

processes are either non-stationary or leading to highly unstable central projections, and do 

not suit the purpose of our analysis. 
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Assured lives and pensioners 

lag 1 2 3 4 5 6 7 8 

kappa1 • • • • • • • • 
kappa2 + • • • • • • • 

lambda2 • • • ‒ • • • • 
lambda3 • • • • • • • • 
lambda4 • • • • • • ‒ • 
lambda5 ‒ • • • • • • • 
lambda6 • • • • • • • • 
gamma1 • • • • • • • • 
gamma2 + • • • • • • • 
gamma3 • • • • • • • • 
gamma4 • • • • • • • • 
gamma5 • • • • • • • • 
gamma6 • • • ‒ • • ‒ • 

 

Assured lives and annuitants 

lag 1 2 3 4 5 6 7 8 

kappa1 • • • • • • • • 
kappa2 + • • • • • • • 

lambda2 • • • ‒ • ‒ • • 
lambda3 • • • ‒ • • • • 
lambda4 • • ‒ • • • • • 
lambda5 • ‒ • • • • • • 
lambda6 • • • • • • • • 
gamma1 • • • ‒ • • • • 
gamma2 + • + • • • • + 

gamma3 ‒ • • • • • • • 
gamma4 • ‒ • • • • • • 
gamma5 • • • • • • • • 
gamma6 • • • • • • • • 
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