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Abstract: The paper introduces the formulation of an exact algebrogeometric problem, the
study of the Determinantal Assignment Problem (DAP) in the set up of design, where
approximate solutions of the algebraic problem are sought. Integral part of the solution of the
Approximate DAP is the computation of distance of a multivector from the Grassmann variety
of a projective space. We examine the special case of the calculation of the minimum distance of
a multivector in ∧2(R5) from the Grassmann variety G2(R5). This problem is closely related to
the problem of decomposing the multivector and finding its best decomposable approximation.
We establish the existence of the best decomposition in a closed form and link the problem of
distance to the decomposition of multivectors. The uniqueness of this decomposition is then
examined and several new alternative decompositions are presented that solve our minimization
problem based on the structure of the problem.

1. INTRODUCTION

Systems and Control provide a paradigm that introduces
many open problems of mathematical nature. The De-
terminantal Assignment Problem (DAP) has emerged as
the abstract problem to which the study of pole, zero
assignment of linear systems may be reduced (Karcanias
and Giannakopoulos [1984]), (Hodge and Pedoe [1994]),
(Giannakopoulos, Kalogeropoulos and Karcanias [1983]),
(Giannakopoulos and Karcanias [1989]), (Leventides and
Karcanias [1995]). This approach unifies the study of
frequency assignment problems (pole, zero) of multivari-
able systems under constant, dynamic centralised, or de-
centralised control structure, has been developed. The
Determinantal Assignment Problem (DAP) demonstrates
the significance of exterior algebra and classical algebraic
geometry for control problems. The importance of tools
and techniques of algebraic geometry for control theory
problems has been demonstrated by the work of (Brock-
ett and Byrnes [1981]) etc. The approach adopted from
(Karcanias and Giannakopoulos [1984]), (Giannakopoulos,
Kalogeropoulos and Karcanias [1983]) (Giannakopoulos
and Karcanias [1989]) differs from that of (Brockett and
Byrnes [1981]) in the sense that the problem is studied in a
projective, rather than an affine space setting; the former
approach relies on exterior algebra and on the explicit
description of the Grassmann variety (Hodge and Pedoe
[1994]), in terms of the QPRs, and has the advantage of
being computational.

The multilinear nature of DAP suggests that the natu-
ral framework for its study is that of exterior algebra
Marcus, M., 1973. The study of DAP (Karcanias and
Giannakopoulos [1984]) may be reduced to a linear prob-

lem of zero assignment of polynomial combinants and a
standard problem of multilinear algebra, the decompos-
ability of multivectors (Marcus [1973]). The solution of
the linear subproblem, whenever it exists, defines a linear
space in a projective space Pt whereas decomposability is
characterized by the set of Quadratic Plucker Relations
(QPR), which define the Grassmann variety of Pt (Hodge
and Pedoe [1994]). Thus, solvability of DAP is reduced
to a problem of finding real intersections between the
linear variety and the Grassmann variety of Pt . This
novel Exterior Algebra-Algebraic Geometry method, has
provided new invariants (Plucker Matrices and the Grass-
mann vectors) for the characterisation of rational vector
spaces, solvability of control problems, ability to discuss
both generic and non generic cases and it is flexible as far
as handling dynamic schemes, as well as structurally con-
strained compensation schemes. The additional advantage
of the new framework is that it provides a unifying com-
putational framework for finding the solutions, when such
solutions exist. The multilinear nature of DAP has been
recently handled by a ”blow up” type methodology, using
the notion of degenerate solution and known as ”Global
Linearisation” (Leventides [1993]), (Leventides and Kar-
canias [1995]). Under certain conditions, this methodology
allows the computation of solutions of the DAP problem.

The approach defined by the DAP formulation is based on
polynomial matrix theory, exterior algebra and properties
of the Grassmann variety of projective space. The aim
of this paper is to introduce the basics that can turn
this methodology from an exact algebra based approach
to one that can handle issues of design. This may be
achieved by developing an analytic dimension based on
distance problems and optimization tools. In fact what we



propose here is the development of approximate solutions
to purely algebraic problems and thus expand the potential
of the existing algebraic framework by developing its an-
alytic dimension. The development of the ”approximate”
dimension of DAP involves a number of aspects that can
transform the existence results and general computational
schemes to tools for control design. There are many chal-
lenging issues in the development of the DAP framework
and amongst them are its ability to provide solutions even
for non-generic cases, as well as providing approximate
solutions to the cases where generically there is no solution
of the exact problem. The paper extends the formulation
of the approximate DAP developed in (Karcanias and
Leventides [2007]) by considering a more complex case
involving the computation of the distance of a point in
∧2(R5) from the Grassmann variety G2(R5).

2. THE APPROXIMATE DAP: BACKGROUND
RESULTS.

The development of the approximate DAP requires a
framework for approximation (provided by distance prob-
lems) which is equivalent to the formulation of an appro-
priate constrained optimization problem. The solvability
of the exact problem is equivalent to finding real intersec-
tions between the Grassmann variety and a linear variety
depending on the polynomial to be assigned. The need
for ”approximate” DAP solutions emerges when when
the exact problem has no solutions , or there is model
uncertainty that leads to a family of linear varieties. The
key problem we need to address in the development of
the ”approximate DAP” is defining the distance between
a linear variety and the Grassmann variety of a projective
space. Central to this investigation is studying the problem
of ”approximate decomposability” of multivectors that
has been considered for the first time in this context in
(Karcanias and Leventides [2007]).

A new framework for searching for approximate solutions
has been recently proposed based on the notion of ”ap-
proximate decomposability” of multi-vectors (Karcanias
and Leventides [2007]), which deals with the special case of
the G2(R4) Grassmann variety . This study is in its early
stages of formulation and it is based on the characteriza-
tion of decomposability by the properties of a new family
of matrices known as Grassmann Matrices (Karcanias and
Giannakopoulos [1984]) which has been introduced as an
alternative criterion to the standard description of the
Grassmann variety provided by the QPRs (Hodge and
Pedoe [1994]). The problem of decomposability of the mul-
tivector z ∈ ∧mU where U is a vector space , is equivalent
to the solvability of the exterior equation

v1 ∧ v2 ∧ ... ∧ vm = z, vi ∈ U (2.1)

The formulation of a distance problem emerges here as the
main task. The problem of approximate decomposability
is a very difficult problem of multi-linear algebra that has
not been completely solved (De Silva and Lim [2006]). Here
we consider the case G2(R5) which is the next step to the
previous one and we will develop a closed form solution to
the problem.

In its general form the distance problem is related to
several important general problems of multi-linear algebra,

such as:
a) Low rank tensor approximation (De Silva and Lim
[2006]) b) Multi-linear singular value decomposition (De
Lathauwer, De Moor and Vaulewalle [2000]),(De Silva and
Lim [2006]) c) Determination of the tensor rank (De Silva
and Lim [2006]). The main theme of these problems is to
decompose a tensor X as a sum of rank one or low rank
tensors , i.e

X =

r∑
i=1

Xi (2.2)

where Xi is a rank one or low rank tensor. The least r of
this decomposition is the rank of the tensor.

Our work deals with skew symmetric tensors, i.e. multi-
linear tensors X that arise from determinantal problems
and we will try to approximate them by decomposable
vectors, i.e. to find vectors a1, a2, ..., ar such that the norm
‖X − a1 ∧ a2 ∧ ...∧ ar‖ is minimized. This problem can be
viewed into two ways, either as a low rank approximation
of skew symmetric tensors, or as a distance problem
from the Grassmann variety embeded in a projective
space by the Plucker embedding. Here, we consider the
case of G2(R5) and thus we deal with skew symmetric
tensors x1 ∈ ∧2(R5) or points x2 of the projective space
P9(R). We aim to find decomposable vectors a1 ∧ a2 that
approximate x1 in the Euclidean metric or x2 in the gap
metric. In this form we use the spectral decomposition
of Tx1

corresponding to the skew symmetric tensor x1
and we prove that x1 can be written as a sum of two
perpendicular decomposable vectors, one of which is the
best decomposable approximation. The main result in this
paper is the calculation of the closest decomposable vector
x to a given vector z where z, x ∈ ∧2(R5) and the least
distance of z from the set of all decomposable vectors
and the Grassmann variety G2(R5) - the latter with the
use of the Gap metric. Also, we present two alternative
ways for the above calculations; one with the use of the
Grassmann matrix and the second via the Hodge- star
duality properties.

3. THE BEST DECOMPOSABLE APPROXIMATION
OF A MULTI-VECTOR IN ∧2(R5).

In this section we will examine the minimization problem
defined as follows:
Problem: Given a multi-vector z ∈ ∧2(R5) ' R10, find
the nearest decomposable vector to z.
In other words, for z ∈ R10 solve the minimization
problem:

min
x
‖x− z‖ when x ∈ ∧2(R5) is decomposable (3.1)

3.1 Decomposition via spectral analysis.

Let z ∈ ∧2(R5) ' R10. We now examine the approxima-
tion of z by a decomposable vector, i.e. find a ∧ b such
that the distance ‖z − a ∧ b‖ is minimum. If we write
a∧b = λ ·w1∧w2where‖w1‖ = ‖w2‖ = 1, < w1, w2 >= 0,
then

‖z − a ∧ b‖2 = ‖z‖2 − 2λ < z,w1 ∧ w2 > +λ2

which is minimized for λ =< z,w1 ∧ w2 > . In this case

‖z − w1 ∧ w2‖2 = ‖z|‖2− < z,w1 ∧ w2 >
2



Therefore, we are looking to find orthonormal vectors
w1, w2 such that the inner product < z,w1 ∧ w2 >2 is
maximum. To achieve this, we need the following results.

Lemma 3.1. If

T ≡ Tz =


0 z1 z2 z3 z4
−z1 0 z5 z6 z7
−z2 −z5 0 z8 z9
−z3 −z6 −z8 0 z10
−z4 −z7 −z9 −z10 0


is the skew symmetric matrix representing the multi-vector
z = (z1, z2, z3, ..., z9, z10), then

< z,w1 ∧ w2 >= wt1Tw2,∀w1, w2 ∈ R5.

Proof. This is evident, from the form of the matrix
T and that if w1 = (w1, w2, w3, w4, w5) and w2 =
(w′1, w

′
2, w

′
3, w

′
4, w

′
5), then w1∧w2 is equal to a vector with

coordinates the 2nd order minors of the matrix(
w1 w2 w3 w4 w5

w′1 w
′
2 w
′
3 w
′
4 w
′
5

)
2

Lemma 3.2. The skew symmetric matrix T of the multi-
vector z can be written in the form

(r, b1, b2, a1, a2) ·


0 0 0 0 0
0 0 σ4 0 0
0 −σ4 0 0 0
0 0 0 0 σ2
0 0 0 −σ2 0

 ·

rt

bt1
bt2
ata
at2


where, σ2 ≤ σ4 are the real parts of the respective
imaginary eigenvalues {0, iσ4,−iσ4, iσ2,−iσ2} of T and
{r, b1 + ib2, b1− ib2, a1 + ia2, a1− ia2 } their orthonormal
eigenvectors respectively.

Proof. This can be proved by the spectral analysis of the
skew symmetric matrix T (Bellmann [1996]). 2

Theorem 3.1. For any z ∈ R10 the following holds true :

z = σ2 · a1 ∧ a2 + σ4 · b1 ∧ b2 (3.2)

Proof. We take {r, b1, b2, a1, a2} ≡ {e1, e2, e3, e4, e5} be an
orthonormal basis of R5. Then the set

B = {ei ∧ ej , 1 ≤ i ≤ j ≤ 5}
is an orthonormal basis of ∧2(R5) ' R10. Therefore z can
be written in the form

z =
∑

1≤i<j≤5

λijei ∧ ej

Since the basis is orthonormal, in order to calculate the
coefficients λij we need to calculate the products < z, ei ∧
ej >. Now, from Lemma 3.1 we get:

< z, e4 ∧ e5 >= et4Te5 = σ2e
t
4e4 = σ2,

< z, e2 ∧ e3 >= et2Te3 = σ4e
t
2e2 = σ4,

< z, e1 ∧ ei >= 0, ∀i = 2, ..., 5 and < z, e2 ∧ e4 >=

=< z, e2 ∧ e5 >=< z, e3 ∧ e4 >=< z, e3 ∧ e5 >= 0.

Hence, z = σ2 · a1 ∧ a2 + σ4 · b1 ∧ b2. 2

The decomposition defined by (3.2) will be referred as the
prime decomposition of z.

Remark 3.1. It is obvious that every decomposable multi-
vector x can be written in the form

x = ‖x‖w1 ∧ w2

where w1, w2 are orthonormal by matching an orthonor-
mal selection {w1, w2} of a basis of the subspace corre-
sponding to x. 2

Theorem 3.2. For every decomposable multi-vector x ∈
∧2(R5) and z ∈ R10 we have that:

|< z, x > |≤ σ4 · ‖x‖

Proof. From Theorem 3.1 and the previous Remark, we
have

z = σ2 · a1 ∧ a2 + σ4 · b1 ∧ b2, x = ‖x‖w1 ∧ w2

where w1, w2 are orthonormal. Therefore,

| < z, x > | =< z, ‖x‖w1 ∧ w2 > | = ‖x‖ < |z, w1 ∧ w2 > |
(3.3)

Also, for w1, w2 orthonormal we have that

max| < |z, w1 ∧ w2 > | = max < wt1T,w2 >=

= max
‖w

1
‖=1

〈
wt1T,

wt1T

‖wt1T‖

〉
= max
‖w

1
‖=1
‖wt1T‖ = σ4 (3.4)

From the equations (3.3), (3.4) the result is established. 2

Theorem 3.3. Let z be a fixed multi-vector in ∧2(R5).
Then, the decomposable vector

x0 = σ4b1 ∧ b2 (3.5)

solves the minimization problem min ‖x − z‖ where x is
decomposable. Furthermore, the distance from the set of
all decomposable vectors is

‖z − x0‖ = σ2 (3.6)

Proof. Let x = w1∧w2 be any decomposable vector. Then

‖x− z‖2 = ‖σ2 · a1 ∧ a2 + σ4 · b1 ∧ b2 − x‖2 =

= σ2
2 + σ2

4 + ‖x‖2 − 2 < z, x >

But from Theorem 3.2 we have

| < z, x > | ≤ σ4 · ‖x‖
and as Remark 3.1 states we can consider w1 ⊥ w2,
therefore

‖x− z‖2 ≥ σ2
2 + σ2

4 + ‖x‖2 − 2σ4 · ‖x‖ ≥ σ2
2 + (σ4 − ‖x)‖)2

≥ σ2
2

for any decomposable multi-vector x. Thus

‖z − x0‖ = ‖σ2a1 ∧ a2‖ = σ2.2

3.2 Minimization of the gap metric.

In the previous section, we have calculated the best decom-
posable approximation of a multivector. One can solve the
same approximation problem in a different space, i.e. z ∈
P9(R) where the set of decomposable vectors is identified
by the Grassmann variety G2(R5). In the projective space
P9(R) a natural metric is the gap metric g and the previous
approximation problem becomes minx∈G2(R5) g(x, z).

Definition 3.1. (El-Sakkary [1985]), (Georgiou [1988]) The
gap metric g(z, x) between two multi-vectors z, x is the
absolute value of the sine of the angle they form, i.e.
g(z, x) = |sin( ˆz, x)|. 2

An equivalent definition is the following:

Definition 3.2. (El-Sakkary [1985]), (Georgiou [1988]) The
gap metric g(z, x) between two lines span{z}, span{x} in



the projective space P 9(R) is a function g : P 9(R) ×
P 9(R)→ R such that:

g(z, x) = min
λ

∥∥∥∥ z

‖z‖
− x

‖x‖
· λ
∥∥∥∥ 2

Lemma 3.3. For every z ∈ R10 and any orthonormal
decomposition z = σ2 · a1 ∧ a2 + σ4 · b1 ∧ b2, we have
that

σ2
2 + σ2

4 = ‖z‖2, ‖z ∧ z‖ = 2σ2σ4

Proof. Since the decomposition (3.2) is orthonormal (Bell-
mann [1996]) we have

(a1 ∧ a2)⊥(b1 ∧ b2)

Thus, from Theorem 3.1 we have

‖z‖2 = ‖σ2 · a1 ∧ a2 + σ4 · b1 ∧ b2‖2 = σ2
2 + σ2

4

and

‖z ∧ z‖ = ‖2σ2σ4a1 ∧ a2 ∧ b1 ∧ b2‖ = 2σ2σ4
2

Theorem 3.4. The gap metric between z and x0 is given
by

g(z, x0) =
σ2
‖z‖

Proof. From Definitions 3.1 and 3.2 we have

sin2( ˆz, x0) = min
λ

∥∥∥∥ z

‖z‖
− x0
‖x0‖

· λ
∥∥∥∥ =

= min
λ

(
1 + λ2 − 2 · < z, x0 >

‖z‖ · ‖x0‖
· λ
)

This is a second order degree polynomial in terms of λ that
is minimized for

λ =
< z, x0 >

‖z‖ · ‖x0‖
Thus, the distance is

sin2( ˆz, x0) = 1− < z, x0 >
2

‖z‖2 · ‖x0‖2
Now, from Definition 3.1 and for x0 = σ4b1 ∧ b2 and
z = σ2a1 ∧ a2 + σ4b1 ∧ b2 we have

sin2( ˆz, x0) =
‖z‖2 · ‖x0‖2− < z, x0 >

2

‖z‖2 · ‖x0‖2
=

=
‖z‖2 · σ2

4 − σ4
4

‖z‖2 · σ2
4

=
σ2
2

‖z‖2
due to Lemma 3.3. This proves the result. 2

Corollary 3.1. The multi-vector x0 = σ4b1 ∧ b2 minimizes
the gap between z and any decomposable vector x1.

Proof. This is evident due to the previous theorem. 2

3.3 Uniqueness Criteria.

In this section we examine the conditions under which
(3.2) is unique. It is obvious that under no assumptions,
(3.2) is not unique since we can get an infinite number of
decompositions for z, i.e.

z = σ4(a1 + b1) ∧ (b2 + b1)︸ ︷︷ ︸
x
1

+ a1 ∧ (σ2a2 − σ4b1 − σ4b2)︸ ︷︷ ︸
x
2

or

z = (a1 + 3b1) ∧
(
a2 − b1

2

)
︸ ︷︷ ︸

x1

+ (a1 − 3b2) ∧
(
a2 + b1

2

)
︸ ︷︷ ︸

x2

Definition 3.3. Let

z = x1 + x2 (3.7)

a (rank-2) decomposition of z. If x1 = a1 ∧ a2, x2 =
b1 ∧ b2 where a1, a2, b1, b2 are orthonormal, i.e. if U :=
[a1, a2, b1, b2] then U · U t = I5, then the decomposition
(3.7) is called orthonormal. 2

Definition 3.4. We say that two orthonormal decomposi-
tions

σ2 · a1 ∧ a2 + σ4 · b1 ∧ b2, σ′2 · a′1 ∧ a′2 + σ′4 · b
′
1 ∧ b

′
2

are equivalent if

σ4 = σ′4, σ2 = σ′2, b1 ∧ b2 = b′1 ∧ b
′
2, a1 ∧ a2 = a′1 ∧ a′2

for σ4 ≥ σ2 ≥ 0, σ′4 ≥ σ′2 ≥ 0. 2

Theorem 3.5. The decomposition z = σ2·a1∧a2+σ4·b1∧b2
is unique if σ4 > σ2 > 0.

Proof. The existence of the decomposition z = σ2 · a1 ∧
a2 + σ4 · b1 ∧ b2 has been proved in Theorem 3.1. Assume
there is another decomposition,

z = σ′2 · a′1 ∧ a′2 + σ′4 · b
′
1 ∧ b

′
2.

Then from Lemma 3.3 we have that

‖z ∧ z‖ = 2σ2σ4 = 2σ′2σ
′
4

and
‖z‖2 = σ2

2 + σ2
4 = σ′22 + σ′24

Therefore,
σ2 = σ′2, σ4 = σ′4

Also, we have that

colspan[b1, b2, a1, a2] = colspan[b′1, b
′
2, a
′
1, a
′
2]

since they both are perpendicular to the same vector
(z ∧ z)∗ . We now consider matrix U such that

[B,A] · U = [B′, A′], U = [U1, U2],

where B = [b1, b2], A = [a1, a2], B′ = [b′1, b
′
2], A′ = [a′1, a

′
2.]

Then by taking compounds we have that

b′1 ∧ b
′
2 = C2[B,A] · C2[U1], a′1 ∧ a′2 = C2[B,A] · C2[U2],

where C2[U1], C2[U2] ∈ ∧(R4) and if x := C2[U1], then
x∗ := C2[U2]. Therefore,

σ′2 · a′1 ∧ a′2 + σ′4 · b
′
1 ∧ b

′
2 = C2[B,A] (σ4x+ σ2x

∗)

and

σ2 · a1 ∧ a2 + σ4 · b1 ∧ b2 = C2[B,A] (σ4e1 + σ2e6)

Thus if,

C2[B,A] (σ4x+ σ2x
∗) = C2[B,A] (σ4e1 + σ2e6) ,

by taking the left inverse matrix of C2[B,A] we have that

σ4x+ σ2x
∗ = σ4e1 + σ2e6

Therefore, by applying the Hodge star operator we obtain

σ4x
∗ + σ2x = σ4e6 + σ2e1

Hence,

(x, x∗) ·
(
σ4 σ2
σ2 σ4

)
= (e1, e6) ·

(
σ4 σ2
σ2 σ4

)
Since σ4 6= σ2 the matrix

(
σ4 σ2
σ2 σ4

)
is invertible, therefore

x = e1, x
∗ = e6. Hence, the representation is unique. 2

4. ALTERNATIVE DECOMPOSITIONS.

Having developed the prime decomposition of a multi-
vector, studied the optimization problem (3.1) and inves-
tigating the uniqueness of the prime decomposition, we



are now concerned with deriving alternative methods for
the computation of the decomposition, without the use of
skew-symmetric matrices or SVDs as in the original prime
decomposition.

4.1 Minimum distance from G2(R5) via the Grassmann
matrix.

The Grassmann matrix (Karcanias and Giannakopoulos
[1984]) for the Grassmann variety G2(R5) has been defined
as:

Φ =



a23 −a13 a12 0 0
a24 −a14 0 a12 0
a25 −a15 0 0 a12
a34 0 −a14 a13 0
a35 0 −a15 0 a13
a45 0 0 −a15 a14
0 a34 −a24 a23 0
0 a35 −a25 0 a23
0 a45 0 −a25 a24
0 0 a45 −a35 a34


If

z = (z1, z2, z3, z4, z5, z6, z7, z8, z9, z10) ≡
≡ (a12, a13, a14, a15, a23, a24, a25, a34, a35, a45)

then the singular values of Φ can be calculated as the
eigenvalues of ΦtΦ.

Lemma 4.1. (Karcanias and Giannakopoulos [1984]) For
every z ∈ Rn, w ∈ Rm where n > m, n,m ∈ N, the
Grassmann matrix Φ ∈ Rn×m satisfies the equation:

Φ · w = z ∧ w
i.e, matrix Φ is a matrix representation of the operation
z ∧ (·). 2

Theorem 4.1. The singular values of Φ for a multi-vector
z are

‖z‖ =
√
σ2
2 + σ2

4 , σ4, σ4, σ2, σ2

and the right singular vectors are r, a1, a2, b1, b2 as these
were established in Lemma 3.2. Thus, the minimum dis-
tance of z from G2(R5) coincides with the smallest singular
value of Φ.

Proof. From Lemma 4.1 we have:

wtΦtΦw = ‖z ∧ w‖2 (4.1)

We can now set:

w = κ1 · a1 + κ2 · a2 + κ3 · b1 + κ4 · b2 + κ5 · r
and z = σ2 · a1 ∧ a2 + σ4 · b1 ∧ b2. Then

z ∧ w = σ2(κ3a1 ∧ a2 ∧ b1 + κ4a1 ∧ a2 ∧ b2+

+ κ5a1 ∧ a2 ∧ r)σ4(κ1b1 ∧ b2 ∧ a1+

+ κ2b1 ∧ b2 ∧ a2 + κ5b1 ∧ b2 ∧ r)
Therefore,

‖z ∧ w‖2 = σ2
2(κ23 + κ24 + κ25) + σ2

4(κ21 + κ22 + κ25) = uΣut

where u = (κ1, κ2, κ3, κ4, κ5) and

Σ =


σ2
2 + σ2

4 0 0 0 0
0 σ2

4 0 0 0
0 0 σ2

4 0 0
0 0 0 σ2

2 0
0 0 0 0 σ2

2


Thus, from (4.1) the proof of the theorem is complete.
2

4.2 Decomposition via Duality Properties.

In this section we will see how the Hogde star duality
properties help us simplify the prime decomposition.

Proposition 4.1. If z ∧ z 6= 0 and rz :=
(
(z ∧ z)∗

)
/‖z ∧ z‖

then
(
z ∧ rz

)∗
= σ4 · a1 ∧ a2 + σ2 · b1 ∧ b2

Proof. We have that(
z ∧ rz

)∗
=
(

(σ2 · a1 ∧ a2 + σ4 · b1 ∧ b2) ∧ rz
)∗

=

= σ4

(
b1 ∧ b2 ∧ rz

)∗
+ σ2

(
a1 ∧ a2 ∧ rz

)∗
=

= σ4 · a1 ∧ a2 + σ2 · b1 ∧ b2
2

The above leads to the following result.

Theorem 4.2. If z = σ2 · a1 ∧ a2 + σ4 · b1 ∧ b2, σ4 > σ2 > 0
then

σ4 =

√
‖z‖2 + ‖z ∧ z‖+

√
‖z‖2 − ‖z ∧ z‖

2
,

σ2 =

√
‖z‖2 + ‖z ∧ z‖ −

√
‖z‖2 − ‖z ∧ z‖

2
,

b1 ∧ b2 =
1

2

 z +
(
z ∧ rz

)∗
√
‖z‖2 + ‖z ∧ z‖

+
z −

(
z ∧ rz

)∗
√
‖z‖2 − ‖z ∧ z‖

 ,

a1 ∧ a2 =
1

2

 z +
(
z ∧ rz

)∗
√
‖z‖2 + ‖z ∧ z‖

−
z −

(
z ∧ rz

)∗
√
‖z‖2 − ‖z ∧ z‖


Proof. 1) As we have already proved: σ2

2 +σ2
4 = ‖z‖2, ‖z∧

z‖ = 2σ2σ4. Therefore,√
‖z‖2 + ‖z ∧ z‖+

√
‖z‖2 − ‖z ∧ z‖

2
= σ4

since σ4 > σ2 > 0. Similarly,√
‖z‖2 + ‖z ∧ z‖ −

√
‖z‖2 − ‖z ∧ z‖

2
= σ2

2) In Proposition 4.1 we saw that(
z ∧ rz

)∗
= σ4 · a1 ∧ a2 + σ2 · b1 ∧ b2

Thus, using the prime decomposition (3.2) and the fact
that σ4 > σ2 > 0 again, we have that

1

2

 z +
(
z ∧ rz

)∗
√
‖z‖2 + ‖z ∧ z‖

+
z −

(
z ∧ rz

)∗
√
‖z‖2 − ‖z ∧ z‖

 =

=
σ2 · a1 ∧ a2 + σ4 · b1 ∧ b2 + σ4 · a1 ∧ a2 + σ2 · b1 ∧ b2

2σ4 + 2σ2
+

+
σ2 · a1 ∧ a2 + σ4 · b1 ∧ b2 − σ4 · a1 ∧ a2 − σ2 · b1 ∧ b2

2σ4 − 2σ2
=

=
b1 ∧ b2

2
+
b1 ∧ b2

2
= b1 ∧ b2

Similarly, we obtain that

1

2

 z +
(
z ∧ rz

)∗
√
‖z‖2 + ‖z ∧ z‖

−
z −

(
z ∧ rz

)∗
√
‖z‖2 − ‖z ∧ z‖

 = a1 ∧ a2



Remark 4.1. The formulae derived in the previous theo-
rem give us the terms of the prime decomposition (3.2)
without applying any SVD or spectral analysis of the skew-
symmetric matrix of z. Every term is a function of z, which
means that the calculations for the best approximation of
z, i.e. the minimum distance from the Grassmann variety,
are easier and faster. 2

5. CONCLUSIONS AND FUTURE WORK.

In this paper we have considered a key problem in the
development of the ”approximate” DAP, which is the
computation of the distance of a point in a projective
space from the Grassmann variety. This is equivalent
to the problem of decomposing and approximating a
multi-vector by a decomposable one. Equivalently, we
found a vector’s minimum distance from the set of all
decomposable vectors and from the Grassmann variety
G2(R5). This was achieved by the spectral analysis of the
related skew- symmetric matrix of the multi-vector. The
existence of the prime decomposition (3.2) also helped
us examine the uniqueness of the decomposition and
have provided alternative methods for defining the prime
decomposition and calculating the minimum distance.
This was achieved via the Grassmann matrix and the
calculation of the terms of (3.2) as functions of the
coordinates of the given point, thus avoiding the spectral
analysis of the respective skew symmetric matrix or the
singular value decomposition method which have been
used up until now in this field of research. Finally, the
current research was based on the special case of the
Grassmann variety G2(R5). The interest of this case is
due to the fact that closed form solutions may be derived.
The extension to the G2(Rn) case is the next challenge
and it is an issue under investigation. Of special interest
is the derivation of closed form solutions rather than the
numerical approach that is an alternative way of looking at
the general case. The current research provides the basics
required for finding solutions to the central problem of the
approximate DAP which is determining the distance of
parameter dependent linear varieties from the Grassmann
variety of the projective space.
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