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ABSTRACT 

The general purpose of this thesis is to focus on a particular industrial process (from 
the beer industry) which serves as a guidance example for optimal control using 
different algorithms/methods. At the same time, the aim is to demonstrate the 
capabilities/features of MATLAB and SIMULINK as tools used in programming 
algorithms and simulation for optimal control of non linear systems. The thesis 
shows how to approach an optimisation problem with different techniques and to 
compare them on the same basis. 

The main reasons for carrying out research on a beer fermentation process can be 
summarised as follows: this kind of industry represents an up-to-date example of 
industrial processes in general, the need to compare and evaluate optimisation 
methods (well established and "modern") on similar circumstances using the sanle 
process model and finally, give a good foundation for the control engineer to follow
up this work with different optimisation techniques and/or any other industrial 
process. 

The fundamental features of the methods used involve the viability of known 
previously tested algorithms for optimal control of beer processes with high non
linearity and constraints; thus testing the flexibility of some of the known MA TLAB 
Toolboxes for the optimal control of a particular simulated mathematical model. 

An important aspect of the experimentation that has been carried out, is the creation 
of a simulated model of a selected beer process by means of including the 
mathematical equations, parameters and initial conditions into an s-function block. 
This SIMULINK model also incorporates the particular objective function that can 
be calculated directly after the simulation of the process for a particular input 
temperature profile. Together with the use of some available MA TLAB functions 
for the formulation of particular optimal control techniques, this facilitates the 
creation of program routines that can be interfaced with the simulated process. 

The final results using different optimisation methods such as: the gradient method in 
function space, DIS OPE algorithm, Genetic Algorithms and Sequential Quadratic 
programming; show substantial improvement in the perfomance index obtained. The 
optimised temperature profiles found can be implemented for industrial application 
to provide a maximised ethanol production under particular restrictions, i.e. final by
products concentration, contamination risk and brisk changes in temperature. 
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CHAPTER I 

INTRODUCTORY TERMS AND BASIC CONCEPTS 

Beer fermentation including some basic concepts is going to be the main focus of 

this chapter. Definitions of some introductory terms will help to understand the 

parameters related to this work. Optimal control techniques are also a main point of 

discussion and will be introduced for an initial understanding on how optimisation 

techniques work. 

1.1 AIMS AND OBJECTIVES OF THE THESIS 

The main aims and objectives of the research can be summarised as follows: 

• To improve the results obtained previously by Andres-Toro et al (1997a) 

concerning the optimisation of the beer process model, herewith obtain an even 

superior objective function value. Together with this, show how other 

optimisation techniques can provide a better understanding of the process 

behaviour. 

• To present a useful introduction on the importance of selecting an appropriate 

mathematical model as the starting point for optimal control, this without 

considering a too complicated (that cannot be properly optimised) or a too simple 

one (that does not follow the real behaviour closely). 

• To design general MA TLAB scripts for different optimisation techniques that are 

simple, flexible and adaptable for the optimal control of any industrial process 

simulated from a mathematical model. 

• To obtain an implementable optimised temperature profile that can be used in the 

beer making industry. This can be achieved by applying a smoothing technique 

when needed to make the profile functional. 

• To n1ake a comparison of some known (also considering new and/or modified 

approaches) optin1isation methods and techniques under similar conditions and 

15 



give some advice on how to choose the most suitable algorithm for a particular 

process. 

A list of the literature reviewed from previous work related to this thesis has been 

included as an initial reference to some background infonnation: 

• The main beer fennentation model considered for optimal control has been 

created from previous work by Andres-Toro et al (1998). 

• The book "Optimal Control in Fennentation Processes" by Leigh (1986) has 

been used for consultation and review at the beginning of this research. 

• Other mathematical models of fennentation processes have been considered 

useful in the first stages of the research as an insight on different approaches 

to model real industrial processes. A review on these papers has been 

included in the MPhil to PhD transfer report (Carrillo-Ureta, 1999). 

• For every particular optimisation technique/method, papers on the different 

algorithms used and its application to particular cases have been reviewed: 

the principles behind the Gradient Method in Function Space have been 

considered from the book by Noton (1972); for the case of the DISOPE 

algorithm, work by Roberts (1993) and Becerra and Roberts (1995); the use 

of the Genetic Algorithms Toolbox by Chipperfield et al (1999) has been 

reviewed from work by Chishimba (1998); and finally, the Sequential 

Quadratic Programming algorithm under MA TLAB has been examined from 

the Optimization Toolbox Manual (Coleman et aI, 1999). 

16 



1.2 INTRODUCTION TO BEER FERMENTATION 

In order to produce beer, water and barley are mixed together to generate a s\\eet 

infusion, the wort; this is then blended with hops and later fermented with yeast. 

This may look as a simple procedure but in practice it can be extremely complicated. 

Yeast is a single celled microorganism that transforms the sugar in the wort into 

alcohol and carbon dioxide (it reproduces by maturing). There are actually hundreds 

of varieties and strains of yeast and in general each brewery has its own variety. 

which principally determines the particular beer character. 

The term "fermentation" is derived from the Latin verb fervere, that means to boil, 

thus describing the appearance of the action of yeast on extracts of fruit or malted 

grain (Stanbury et aI, 1995). For some yeast varieties, the cells go up to the top at the 

end of the fermentation, giving the name of top fermentation (ales are brewed like 

this). On the other hand, when at the end of fermentation the yeast cells fall to the 

bottom, bottom fermentation is achieved (used for lager or pils). Earlier, there were 

just two types of beer yeast: ale yeast (the top-fermenting type: Saccharomyces 

cerevisiae) and lager yeast (the bottom-fermenting type: Saccharomyces uvarum. 

previously known as Saccharomyces carlsbergensis). Nowadays, as a result of 

recent reclassification of Saccharomyces species, both ale and lager yeast strains are 

considered to be members of Saccharomyces cerevisiae. 

Fermentation has come to have different meanings to biochemists and to industrial 

microbiologists. Its biochemical meaning relates to the generation of energy by the 

catabolism of organic compounds, whereas, its meaning in industrial microbiology 

tends to be much broader. Brewing and the production of organic solvents may be 

described as fermentation in both senses of the word but the description of an aerobic 

process as fermentation is obviously using the term in the microbiological context. 

Even though beers are brewed from related resources. beers throughout the \vorld 

have their own individual styles. Their distinctiveness comes from the mineral 

content of the water used. the types of ingredients employed, and the difference in 

bre\\ing lnethods. Nonetheless. it can be said that there are two established beer 

stvles: ales and lagers. Ho\n:ver. in addition to ales and lagers, there are other 
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classical beer styles such as wheat beers, porters, stouts, and Iambics that are worth 

mentioning. Albeit most of the classical beer styles originated in Europe (Belgium. 

British, Czech Republic, French, German and Irish just to mention the most 

important), many of them are brewed effectively all over the world. With any beer 

technique there are no unbreakable policies and variations within flavour. 

ingredients, and methods of brewing for different styles are to be expected. 

Brewmasters each have their own explanation of what they consider suitable for the 

style. 

According to Goldammer (2000), malt influences the flavour of beer more than any 

other ingredient: the malt types selected for brewing will determine the final colour, 

flavour, mouth feel, body, and aroma. As regards on the style of beer desired and the 

type of malt, it takes from 15 to 17 kg of malt to produce a hectolitre of beer. There 

is no general structure used for classifying malts since "maltsters" classify and 

advertise their products in their own way. Though regularly malts are classified as: 

base malts (Pilsner malt, Pale Ale malt and Mild Ale malt), specialty malts (light

coloured: Vienna malt and Munich malt; dark-coloured: Amber malt and Brown 

malt), caramelised/crystal malts (Dextrin malts), roasted malts (Chocolate malt and 

Black malt), unmalted barley (Roasted barley), and other malted grains (Wheat malt 

and Rye malt). 

Wheat malt, understandably, is essential in making wheat beers. Wheat is also used 

in malt-based beers for the reason that its protein gives the beer a pleasant mouth 

sensation and improves beer head stability. As a negative aspect, wheat malt 

contains significantly more protein than barley malt, around 13 to 180/0 more, and 

consists primarily of glutens that can result in cloudy beer. European wheat malts 

have generally a smaller amount of enzymes than American malts, perhaps because 

of the malting methods or the varieties of wheat used. 

The conventional way for beer fermentation is to add yeast to the worth and wait for . . 

some time. letting the yeast consume substrates and produce ethanol (without 

stirri ng). According to the industry, lager yeast strains are best used at temperatures 

ranging from 7 to 15°C. Here\vith. lager yeasts develop slower than ale yeasts. and 

\vith less surt:lCe fOaIH they tend to settle down to the bottom of the fermentor clu~e 
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to the end of the fermentation (referred to as bottom yeasts). The ultimate flavour of 

the beer depends significantly on the strain of lager yeast and the temperatures at 

which it was fermented. Thus, fermentation can be accelerated with an increase of 

temperature but, however, some contamination risks (Lactobacillus, etc.) and 

undesirable by-products (diacetyl, ethyl acetate, etc.) could appear. 

Defining the flavour and aroma of beer can be very difficult, this arises as a result 

from a large selection of parameters that come up from a number of different 

sources. Malt, as mentioned before, hops, and water have a great impact on the beer 

flavour, the decomposition of yeast which forms by-products during fermentation 

and maturation, is in addition essential (Goldammer. 2000). The most distinguished 

of these by-products are certainly ethanol and carbon dioxide; however additionally. 

a great amount of other flavour compounds are also formed: 

a) Esters are among the most significant aroma components in beer, regarded of 

imparting a fruity quality to beer. As indicated by the production companies, 

esters are more desirable in ales than in lagers. Ester production can be 

increased by several factors including: high fermentation temperatures; 

restricting wort aeration; increasing the attenuation limit; and also increasing 

the wort concentration. Additionally, the type of yeast has an effect on ester 

concentration. 

b) Diacetyl can be classified as a ketone and has also an important significance 

to beer flavour and aroma. Together with another ketone 2,3-pentanedione. 

these are described as the vicinal diketone (VDK) content of beer, which is 

the primary flavour in differentiating aged beer from green beer. Even so, 

diacetyl is critical because it is produced in larger quantities and also having a 

larger influence in the beer flavour than 2,3-pentanedione. The existence of 

diacetyl manifests with a buttery flavour typically, whereas 2,3-pentanedione 

has more of a honey taste. The flavour of diacetyl can firstly be confused 

with the taste of caramel malts. but afterwards it can be distinguished: 

diacetyl frequently tends to be unbalanced in most beers. re\"caling a rough 

fla\"our; the fla\"ouring inlparted hy caramel malts con\"crscly. is likely to hL' 

stable. 
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c) More than a few active aldehydes can affect the beer flavour. Aldehydes in 

beer can be produced during brewing at different periods by means of the 

oxidation of alcohols and various fatty substances. They are reduced to 

ethanol by the end of the primary fermentation. If oxygen is introduced back 

into the process, then the ethanol is oxidized back into acetaldehyde. Kunze 

(1996) affirms that the production of acetaldehyde can be increased by 

different factors: a fast fermentation; rise of the temperature throughout the 

fermentation; low wort ventilation; and infected worts (particularly by 

varieties of Zymomonas anaerobia). Just like with diacetyl, the incidence of 

active yeast in the maturation stage is a requirement for adequately little 

aldehyde levels in the final product. By means of a warmer maturation phase, 

aldehydes can be avoided with ease. 

d) Organic and inorganic sulphur volatiles for instance hydrogen sulphide, 

dimethyl sulphide, sulphur dioxide, and thiols can have an effect on the beer 

flavour. Sulphur compounds can be tolerable or still desired if present in 

lesser amounts, but can increase to distasteful off-flavours (rotten egg 

flavour) in larger concentrations. Three important basic ingredients of 

sulphur in beer are: untreated resources (malt and/or hops), yeast metabolism, 

and spoilage organism. 

e) Another wanted flavour compound in lager beer (not desirable in ales) and 

accountable for malty/sulphuric taste is the dimethyl sulphide (DMS). DMS 

can, in addition, improve the malt integrity of the beer. It is known in the 

industry that malting process itself have more repercussion on beer DMS 

quantities than the conditions surrounding the fermentation. It is also 

acknowledged that reduce fermentation temperatures and increasing wort 

gravity help DMS production. 

f) Fusel alcohols are another kind of by-products that playa part directly to beer 

flavour (sometimes referred to as higher alcohols). Also important because 

of their involvement in ester formation. They enclose strong flavours. 

producing an "alcoholic" or "solvent-like" scent (known to kave a \varming 

20 



effect on the palate). According to its production, the yeast strain seems to be 

very significant, some being able to produce up to three times as much fusel 

alcohols as others. Another factors that increase the production of fusel 

alcohols are: high fermentation temperatures, mutant yeasts, high wort 

gravities, intensive aeration of the pitching wort, and low amino acid 

concentration in wort. 

g) Organic acids can be derived from malt and are present at low leyels in \\·ort. 

nonetheless, their concentration increases during the beer fermentation. 

Some other acids are produced exclusively as a consequence of yeast 

metabolism. They can directly affect the flavour of beer by decreasing its pH 

level. 

h) Fatty acids are low-grade components of wort but can increase in 

concentration during fermentation and maturation. They lead to goaty, 

foamy, or fatty flavours and are renowned as ordinary flavour features in both 

lagers and ales; however, they are well established in lagers because of the 

predisposition of some lager yeast strains to generate greater quantities of 

fatty acids than do strains of ale yeast. 

i) Yeast also produces some nitrogen compounds during fermentation and 

maturation such as amino acids and lower peptides, with this contributing to 

shape the flavour and provides an increase in palate roundness. F or that 

reason, collecting the yeast too soon can yield empty, dry beers even if 

lagered afterwards for a extended period. 

The right selection of yeast with the basic brewing characteristics needed is essential 

from a product quality and economic point of view. The criteria for yeast selection 

can be different in accordance to the requirements of the brewing facilities and the 

beer style, but they are expected to incorporate the follo\\"ing aspects: 

• fast fermentation~ 

• Ycast stress tolerance: 

• tlocculation; 
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• rate of decrease at the temperature wanted; 

• flavour of the final product; 

• superior yeast storage features; 

• stability against mutation; and 

• stability against degeneration. 

Fermentation time/temperature profiles vary extensively throughout the industry for 

beer lagers. Conventional lager brewing comprises pitching the yeast between 5 and 

6°C letting the temperature to increase between 8 and 9°C. This usually results in a 

beer with improved quality since low fermentation temperature slows down the 

development of by-products, esters, fusel alcohols, and diacetyl, all of which can be 

inappropriate in lagers (as mentioned before). On the other hand, the lag period is 

normally longer at lower fermentation temperatures. At the end of primary 

fermentation the temperature can be reduced by one to one and a half degrees Celsius 

per day and relocated to a lager cellar where kept between 4 and 5°C. Although 

frequently the yeast is pitched between 7 and 8°C and after a few days the 

temperature is increased to 10 or 11°C. Other breweries tend to use the same initial 

temperature but then increased to 14 and 15°C. A number of brewers are 

acknowledged to pitch between 12 and 14°C and then raise the temperature to 18°C. 

Microorganisms causing spoilage during brewing and beer processing are limited to 

a few varieties of bacteria, wild yeasts, and molds. This is thanks to the beer being a 

somewhat hostile growth medium for most beer spoilage microorganisms. The 

alcohol content, low pH, and the presence of hop constituents are inhibitory, while 

the lack of nutrients limits the development of those cells that do survive. 

Nevertheless, these can interfere with the fermentation itself or have damaging 

effects on beer flavour and shelf life. 
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1.3 OPTIMAL CONTROL AND OPTIMISATION ALGORITH\lS 

The ancient Egyptians were the first to brew beer. The earliest true large-scale 

breweries date from the early 1700s when wooden vats of 1500 barrels capacity \yere 

introduced. Even some process control was attempted in these early breweries. as 

indicated by the recorded use of thermometers in 1757 and the development of 

primitive heat exchangers in 1801. During the late 1800s Hansen started his 

pioneering work at the Carlsberg brewery and developed methods for isolating and 

propagating single yeast cells to produce pure cultures and established sophisticated 

techniques for the production of starter cultures (Seborg et aI, 1989). 

Biotechnological processes, as the fermentation one, may be conveniently classified 

according to the mode chosen for process operation: either batch, fed-batch or 

continuous (Johnson, 1987). During batch operation of a process, no substrate is 

added to the initial charge nor is product removed until the end of the process. 

Nevertheless, continuous operation is more economic, where substrate is continually 

added and product continually removed. Fed-batch processes introduce the greatest 

challenge since the feed rate may be changed during the process but no product is 

removed until the end. 

The heuristic method of trial and errOL which is used to find an optimal or pseudo

optimal operating regime by manipulating the process technological parameters, is 

one of the oldest optimisation methods. According to Stengel (1994), there are in 

general three reasons for process control: to ensure or enhance process stability, to 

suppress the influence of disturbances and finally to optimise the process 

performance. The formulation of an optimal control problem requires the following 

components (Stanbury et aL 1995): 

i) A l110del of the system to be controlled: this is the constitutiye equations. 

together where applicable with end-state conditions and response transformation. 

It characterises the system and enables the effect of all iteratiYe controls on the 

systen1 to be predicted. 



ii) The constraints upon the design: they limit the range of permissible solutions 

and fix many systems properties. 

iii) The demands presented to the system as a design goal (objective. criterion or 

index): is derived from a design value statement. The problem is to decide the 

control that gives the least or greatest value of this index. 

Many control design problems are based on two phases: choosing a control structure 

and choosing an optimal set of parameters given the control structure, although a 

design process may pass repeatedly through these two phases (Queeinec et al, 1992). 

The parameters are chosen to satisfy a set of inequalities specifying design objectives 

or to minimise a criterion subject to those inequalities. 

The control of a fermentation process is based on the measurement of physical, 

chemical or biochemical properties of the fermentation broth and the manipulation of 

physical and chemical environmental parameters such as temperature, dissolved 

oxygen tension and nutrient concentrations (Omstead, 1990). The microorganisms 

or biomass concentrations are the central feature of fermentation affecting the rates 

of growth, substrate consumption and product formation. 

Czyzyk et al (1997) state that numerical optimisation methods can be divided in two 

major sub fields according to the problem they addressed: 

(Unconstrained or Constrained) and Discrete. 

• Continuous unconstrained optimisation techniques 

Continuous 

1. Non-linear equations: Systems of non-linear equations come up as 

constraints in optimisation problems, but also arise, when differential and 

integral equations are discretized. Newton's method, modified and 

enhanced, forms the basis for most of the software used to solve systems 

of non-linear equations. Nearly all the computational cost of Ne\\10n's 

method is linked \yith two operations: evaluation of the function and the 

Jacobian matrix. and the solution of the linear system. Convergence of 

Newton's nlethod can be assured if the initiation is sufficiently close to 

the solution and the Jacobian at the solution is non-singular. The 

24 



following known commercial software attempts to overcome these t\\"o 

disadvantages of Newton's method by allowing approximations to be used 

in place of the exact Jacobian matrix and by using two basic strategies

trust region and line search-to improve global convergence behaviour 

(More and Wright, 1993): GAUSS, IMSL, LANCELOT, MATLAB. 

MINPACK-1, NAG (in FORTRAN), NAG (in C), NITSOL. and 

OPTIMA. Other methods used to solve these kind of problems include: 

Trust Region and Line-search Methods, Truncated Newton Method, 

Broyden's Method, Tensor Methods and Homotopy Methods. 

ii. Non-linear Least Squares: Least squares problems often take place in 

data-fitting applications. From an algorithmic point of view, the feature 

that characterizes least squares problems from the general unconstrained 

optimisation problem is the structure of the Hessian matrix. Some 

methods used for solving this kind of problems are the Gauss-Newton 

Method, Levenberg-Marquardt Method, Hybrid Methods and Large Scale 

Methods. 

iii. Global Optimisation: One of the greatest complications in Non-linear 

Programming is that some problems show what is called "local optima"; 

that is, false solutions that merely satisfy the requirements on the 

derivatives of the functions. Algorithms that propose to overcome this 

difficulty have been branded Global Optimisation. Techniques for 

solving this kind of problems include: Dynamic Programming, Branch 

and Bound (Mixed Integer Programming, Constraint Satisfaction 

Techniques, DC-Methods, Interval Methods and Stochastic Methods), 

Simulated Annealing, Genetic Algorithms, Other Stochastic Methods, 

Continuation Methods and Other Heuristics. Additional information on 

the Genetic Algorithms technique can be found in Chapter 4. 

• Continuous constrained optimisation techniques 

I. Linear Programming: The basic problem In linear programming is to 

minimise a linear objecti\'e function of continuous real variables, subject 

to linear constraints. Software for linear programming (including 
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network linear programming) commonly requires more computer cycles 

than software for all other kinds of optimisation problems combined. The 

simplex algorithm, named like that because of the geometry of the 

feasible set, motivates the extensive majority of available sofuvare 

packages for linear programming. However, this situation can change in 

the future, as more software for interior-point algorithms becomes 

available. However, since most models of fermentation processes are of a 

non-linear nature, the use of these techniques for process optimisation 

purposes is not very common. 

ii. Non-linear Constrained Optimisation: The general constrained 

optimisation problem is to minimise a non-linear function subject to non

linear constraints. The main techniques that have been proposed for 

solving constrained optimisation problems are reduced-gradient methods, 

sequential linear and quadratic programming methods, and methods based 

on augmented Lagrangians and exact penalty functions. One of these 

methods, Sequential Quadratic Programming is the main focus of 

research in Chapter 5. 

iii. Bound Constrained Optimisation: Bound-constrained optimisation 

problems play an important role in the development of software for the 

general constrained problem because many constrained codes reduce the 

solution of the general problem to the solution of a sequence of bound

constrained problems. It is also important in applications because 

parameters that describe physical quantities are often constrained to lie in 

a given range. Newton Methods and Gradient-Projection Methods are the 

basic tools for this sort of optimisation problems. The Gradient Method 

of Function Space and the DISOPE algorithm (Dynamic Integrated 

System Optimisation and Parameter Estimation) employ this technique in 

Chapter 3. 

1\'. Net\vork Programming: As the name designates, network problems arise 

in applications that can be represented as the flow of products in a 

net\vork. Hen?\vith. the resulting programs can be linear or non-linear and 
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can cover a large number of applications such as: Transportation 

Problems, Assignment Problems, Maximum Value Flow, Shortest Path 

Problem and Minimum Cost Flow Problem. Commercial software such 

as NETFLOW and RELAX-IV deal with this kind of problems (More and 

Wright, 1993). 

• Discrete optimisation techniques 

1. Stochastic Programming: For many actual problems, the problem data 

cannot be identified precisely for at least two reasons: the first reason is 

due to simple measurement error, the second and more fundamental 

reason is that some data represent information about the future and simply 

cannot be known as a fact. Thus, the solutions obtained may perhaps be 

optimal for the specific problem but may not be optimal for the situation 

that actually occurs. Being able to take uncertainty into account is critical 

for many problems where the essence of the problem is dealing with the 

doubt in some optimal path. Stochastic programming enables the 

modeller to create a solution that is optimal over a set of scenarios. 

MSLIP (More and Wright, 1993), for example, is a software technique 

that uses a nested Bender's decomposition approach to solve multistage 

problems. 

ii. Integer Programming: In many applications, the solution of an 

optimisation problem only makes sense if the variables are integers. 

Integer programming problems, such as the fixed-charge network flow 

problem and the famous travelling salesman problem are frequently 

expressed in terms of binary variables. Although a number of algorithms 

have been proposed for the integer linear programming problem, the 

branch and bound technique is used in almost all of the software 

nowadays. This technique has demonstrated to be reasonably efficient on 

practical problems, and it has the additional advantage that it solves 

continuous linear programs as sub problems, that is. linear programming 

problems without integer restrictions. The CPLEX, FortLP, L:\0.1PS. 

LINDO, MIP III, OSL, and PC-PROG soft\\are packages us~ the branch 
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and bound technique to solve mixed-integer linear programs ('\lore and 

Wright, 1993). 

With regard to fermentation, dynamic optimisation of batch processes attempts to 

find the best initial profiles during a batch run. The methods for this optimisation 

can be classified in three categories (Bonvin, 1997): 

1. One time optimisation: an optimal control problem is formulated based on 

a dynamic model of the process. The solution provides the required input 

trajectories. 

ii. Batch to batch optimisation: the additional information available with the 

completion of each batch run is used to improve future operations. The 

calculations required by these methods are normally carried out in the 

intermediate period between two consecutive batch runs. 

111. Online optimisation: these methods try to compensate for the presence of 

modelling errors and disturbances when input profiles computed offline 

become sub-optimal. It is accomplished by repeating online model-based 

optimisation accompanied by system identification several times during a 

batch run using real time measurements, introducing feedback in the 

calculation of the input profiles. 



1.4 SUMMARY 

The basics concepts of beer fermentation for industrial processIng haye been 

reviewed in this chapter. An initial introduction on related terms for fennentation 

and beer processing is included. The history of beer control have been also 

integrated, trying to notice how fermentation has changed with time. A brief 

description on different ways for beer processing has been discussed; including the 

different kinds of beers according to the preliminary constituents used and the 

attributes of the by-products present at the end of the fennentation. 

Optimal control techniques and a general description of the known optimisation 

methods are also subject of attention in this chapter. After that, old and new 

optimisation algorithms (and some software packages used at the moment) have been 

presented with some information on the basics of every technique. 



CHAPTER II 

MODELLING AND SIMULATION OF BEER FERMEJVTATI01Y 

PROCESSES 

The modelling of fermentation processes is a basic part of any research in 

fermentation process control. Since all the optimisation work to be done is based on 

the reliability of the model equations, they are important for the right design. 

Alcoholic brewery fermentation is the main objective of this work. 

2.1 MODELLING OF FERMENTATION PROCESSES 

In fermentation, an accurate mathematical model is a prerequisite for the controL 

optimisation and the simulation of a process. Models used for on-line control and 

those used for simulation will not generally be the same, even if they pertain to the 

same process, because they are used for different purposes. In a quite general 

approach to modelling, a priori knowledge is the basis for a set of mathematical 

equations with unknown parameters (Roux et aI, 1996). Estimating algorithms, if 

properly chosen, yields the parameter values after processing of data coming from 

measurements on the system. Validation as a continuing exercise could develop the 

best model equations. 

An investigation into causes of the problems, associated with a system-theoretic 

approach to control of fermentation, has shown that it is not yet clear which 

Inathen1atical framework is best fitted for modelling. Generally, in batch or fcd 

batch fern1entation processes there is no steady state. Gro\\1h and product formation 

rates vary \\'ith time due to a dependence on the present state of the batch as 

characterised hy bion1ass, substrate and product concentrations, dissolved oxygen 

tension. nutrient feed rates and also on the condition of the culture (Johnson, 1987). 

These equations are generally non-linear. 
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The formulation of mathematical fermentation process models, from the perspecti\'e 

of system analysis, is usually realised in three stages: 

1. Qualitative analysis of the structure of a system, usually based on the 

knowledge of metabolic pathways and biogenesis of the desired 

product, 

ii. Formulation of the model in a general mathematical form. This stage 

is sometimes called the structure synthesis of the process functional 

operator; 

111. Identification and determination of numerical values of model 

constants and/or parameters, which is based on experimental or other 

operating data from a real process. 

The process of creating the mathematical model of fermentation starts usually from a 

simplified scheme of reactions derived from knowledge of metabolic pathways 

involved. Each metabolic reaction step is characterised by the reaction stoichiometry 

on one hand and by the flux (represented by the reaction velocity or rate) on the 

other. Reactions are usually approximated by using one of the relationships derived 

from the theory of enzymatic or chemical reactions. The most frequent relationships 

employed suitable for this purpose are summarised by Volesky and Votruba (1992) 

as in the following equations. Table 2.1 shows the description of the parameters 

used in these equations. 

Parameter Description 

k Rate of change of the phenomenon 

K Active site 

n Natural number 

r Relationship being considered 

S Substrate concentration 

Table 2.1 Nonlenclature used for the different relationships 
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kS 
r =---

3 K+S 

kS" 
r = 

4 K + S" 

( -),/K) 
1'6 = k exp . 

Linear relationship between the rate of the 

phenomenon and the reaction Substrate 

concentration. 

Derived from the Freundlich absorption 

isotherm, characteristic for most hydrol)1ic 

reactions. 

Typical relationships used in fermentation, 

represents the rate of change of a phenomenon 

controlled by chemisorption of the Substrate 

onto one active site such as the molecule of an 

enzyme. 

Modification of the preceding case where 

more than one active site is present on 

each bio-catalytic molecule. 

Not usual type of rate relationship 

recommended for describing the process 

dynamics, based on a purely physical 

interpretation derived from equations for 

movement of a mass point in an 

environment characterised by dissipation 

forces. 

The substance with concentration S is 

considered as directly participating in the 

dissipation of kinetic energy during the 

course of the reaction. 

-', 
-'-



kK r = - --~ 

7 K+S 

kK r ---
8 - K + sn 

Based on the principle of hypothetical 

reversible blocking of the active reaction 

site by chemisorption of a substance \\-ith 

concentration S. 

Derived from inhibition of a larger number 

of active reaction sites of a certain 

biochemical process bottleneck. 

Frequently, the use of these rate relationships is made by combination between them 

based on superimposition of several phenomena in the given sub-system. Sometimes 

this aspect becomes relevant only when it comes to model identification. This is 

usually accomplished either by plotting the derived numerical relationships for rates 

against concentrations of the substrate or of the product. The plot and correlation of 

the rates against each other enables estimation of local yield coefficients or 

eventually of their mutual relationships. 

The determination of numerical values of the mathematical model parameters IS 

based on an appropriate method as an important part of modelling. According to 

Volesky and Votruba (1992); these methods can be divided into: 

i) linear and non-linear regreSSIOn: based on conventional methods of 

mathematical statistics, 

ii) momentum analysis of experimental data: using techniques derived from 

momentum analysis for expressing numerical values of model parameters 

and 

iii) adaptive identification and estimation of model parameters: in which the 

computer continuously re-evaluates model parameters so that the 

behaviour of the process can be predicted and controlled, 

In the simulation application, model equations are soh'ed for different initial and 

boundary conditions according to a certain scenario based on the planning of 
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simulation experiments. Simulation studies make possible testing of no\'el or 

alternative technological variants of the process such as the change from a batch to 

continuous-flow cultivation~ or to the use of an immobilised-cell technology, 

The understanding and study of any process, requires a mathematical representation 

or model of the process. The process may have an input-output representation or a 

time series. The model is based on the prior physical or subjective knowledge about 

the process itself, the measured data on the inputs and the outputs, and the physical 

and engineering laws governing the working of the process. 

If the model is a complete and exact representation of the process, it is called a 

deterministic model, and the process is then called a deterministic process. The 

parameters of such a model are precisely known, and the model can be used to 

produce exact prediction of the process response from the past data. Nevertheless, 

most real life processes cannot be represented by this kind of model, because of the 

dynamic nature of the process and the lack of information and other uncertainties 

being associated with the available data. A model that incorporates noise or 

disturbance terms to account for such imprecision in the knowledge of the process is 

in that case called a stochastic model. 

The design of a control system is usually based upon a linear model of the plant to be 

controlled, for the good reason that the assumption of linearity makes the dynamical 

behaviour much easier to analyse. In practice, however, all systems are usually non

linear and, therefore, may exhibit forms of behaviour that are not at all apparent from 

the study of the linearised versions. The model is not expected to be a reconstruction 

of the process, rather it is intended to serve as a set of operators on the identified set 

of inputs. producing sin1ilar output as expected from the process. The problem is 

that in real life the process output is usually contaminated \\"ith noise and other 

disturbances, \\"hereas ideally the model should follo\\" the true output of the 

underlying representatiye process. \\"hich is unknO\\TI. There can be different models 

for the SaIne process. although no model can be said to be the best. 



According to previous research about fermentation processes, three different modes 

can be distinguished (Ferreira, 1997): 

1. Batch fermentation refers to a partially closed system in which most of the 

materials required are loaded onto the fermentor, decontaminated before the 

process starts and then removed at the end. Conditions are continuously 

changing with time, and the fermentor is an unsteady-state system. although 

in a well-mixed reactor, conditions can be assumed to be consistent 

throughout the reactor at any instant of time. 

2. Continuous culture is a technique involving feeding the microorganism used 

for the fermentation with fresh nutrients and, at the same time, remoying 

spent medium plus cells from the system. A time-independent steady state 

can be attained which enables one to determine the relations between 

microbial behaviour and the environmental conditions. 

3. Fed-batch processes are commonly used in industrial fermentation. Fed

batch fermentation is a production technique in between batch and continuous 

fermentation. They improve control possibilities, such as computer based 

fermentation systems. A fed-batch is useful in achieving high concentrations 

of product because of high concentrations of cells for a relative large period 

of time. 

Fermentation processes are used for producing many fine substances such as amino 

acids. antibiotics, baker' s yeast enzymes, etc. Among the modes of operation 

(batch, fed-batch and continuous). the fed-batch technique is often used in industry 

due to its ability to overcome the catabolic repression or glucose effect, \vhich 

usually occurs during production of these fine chemicals (Vanichsriratana et aL 

1997). 

Fed-batch fernlentation can be the best option for some systems in which the 

nutrients or any other substrates are only sparingly soluble or are too toxic for adding 

the whole requirement for a batch process at the start. In the fixed \'olume fed-batch 



process, the limiting substrate is fed without diluting the culture. The culture yolume 

can also be maintained practically constant by feeding the gro\\1h limiting substrate 

in undiluted form. 

Two cases can be considered in fed-batch fermentation: the production of a gro\\ 1h 

associated product and the production of a non-growth-associated product. In the 

first case, it is desirable to extend the growth phase as much as possible. minimising 

the changes in the fermentor as far as specific growth rate, production of interest and 

avoiding the production of by-products. For non-growth associated products. the 

fed-batch would have two phases: a growth phase, in which the cells are grown to the 

required concentration, and then a production phase, in which carbon source and 

other requirements for production are fed to the fermentor. 

A variable fed-batch is one in which the volume changes with the fermentation time 

due to the substrate feed. The way this volume changes is dependent on the 

requirements, limitations and objectives of the operator. A proper feed rate. with the 

right component constitution, is required during the process. The production of by

products, which are generally related to the presence of high concentrations of 

substrate, can also be avoided by limiting its quantity to the amounts that are required 

solely for the production of the biochemical. When high concentrations of substrate 

are present. the cells get overloaded, in that, the oxidative capacity of the cells is 

exceeded, and due to the Crabtree effect (Reynders et aI, 1997) products other than 

the one of interest are produced, reducing the efficacy of the carbon flux. Moreover, 

these by-products have shown to even contaminate the product of interest, such as 

ethanol production in baker's yeast production, and to impair the cell growth 

reducing the fermentation time and its related productivity. 

The optimal strategy for the fed-batch fermentation of most organisms is to feed the 

growth-limiting substrate at the same rate that the organism utilises the substrate: that 

is, to match the feed rate \"ith demand for the substrate. Regardless of the type of 

control. both mathematical model a\'ailability and measurement possibilities 

intlul'nce the design. The subsequent mathematical model has the follo\\'ing 

assuI11ptions: the feed is provided at a constant rate. the production of mass ot' 
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biomass per mass of substrate is constant during the fermentation time: and a very 

concentrated feed is being provided to the fermentor. 

Table 2.2 shows the description of the parameters used for the fed-batch fermentation 

equations: 

Parameter Description 

alpha Constant yield 

beta Constant yield 

F Substrate feed rate 

G Constant value defined by experimental data 

Kd Specific death rate 

Ki Inhibition constant 

Km Inhibition constant 

P Product concentration 

Pm Maximum product concentration 

qp Specific production rate of product 

R Constant value defined by experimental data 

r p Product formation rate 

S Substrate concentration in the fermentor 

So Substrate concentration in the feed 

t Time 

T Constant value defined by experimental data 

u Specific growth rate 

Umax Maximum growth rate 

V Volume of the fermentor 

X Biomass concentration 

Xo Biomass at the beginning of the fermentation 

fa Initial value of the yield factor 

YyiS Yield factor 

Table 2.2 Description of the parameters used in fed-batch fermentation 
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Thus, the parameter equations related to fed-batch fermentation are: 

(FYx/l ) 
u =---

X 

q pFYxl .J
2 

p=p +q X t+~ ---
f P 0 2 

Specific Growth Rate 

Biomass (as a function of time) 

Product Concentration (non-growth associated) 

Product Concentration (growth associated) 

In variable fed-batch fermentation, an additional element should be considered: the 

feed. Consequently, the volume of the medium in the fermentor varies because there 

is an inflow and no outflow. For the next mathematical development, the 

assumptions are: specific growth rate is uniquely dependent on the concentrations of 

the limiting substrate; the concentration of the limiting substrate in the feed is 

constant; the feed is sterile; and the yields are constant during the fermentation time. 

Accordingly, the differential equations for the components for fed-batch 

fermentation are: 

dX X(uV - KdV - F) 
-

dt V 

dS F(So - S) uX 

dt 1 ' 

dP _ r _ PF 
df - q p~ r 

Y x I., 

Overall component 

Biomass 

Substrate 

Product 



A list of growth models that can be found in bio-transformations is included in Table 

2.3 (Agrawal et aI, 1989): 

Model 

Monod 

Constant yield 

Substrate inhibition 

Constant yield 

Substrate inhibition 

Variable yield 

Substrate and product inhibition 

Inhibitions 

Constant yields 

Form 

UmaxS 
U = -----

Km +S 

UmaxS 
U=~-----

S2 
K +S+---

m K. 
I 

umaxS(l- TS) 
U= ~ 

S2 
Km +S+ 

Ki 

Yo (1- TS) Y =-~ --- ~ 
x / s 1 + RS + GS 2 

U= 
UIII(n S 

q p = alpha· U + beta 

alpha, beta and Y xis 

Table 2.3 Growth models found in biotransformations 

One of the most used approach for process optimisation of fed-batch fermentation is 

to calculate an optimal feed-rate profile, which will optimise a given objecti\i.~ 

function. Temperature, speed of agitation, flo\\' rates, pH, dissolved oxygen. redox 

potential of broth are examples of other commonly controlled \'ariables~ these 

sensors usually respond quickly enough and so, proportional feedback controllers are 

often suitable for these yariables. The choice of each paranleter is system dependent 



and the decision should be based on ease and experimental data. Given that many 

state variables in fermentation processes, such as biomass, substrate and product 

concentration, are difficult to measure on-line, many methods have therefore been 

developed for on-line estimation of these state variables. 

Substrate, on the other hand, is a particularly important parameter to control due to 

eventual associated growth inhibitions and to increase the effectiveness of the carbon 

flux, by reducing the amount of by-products formed and the amount of carbon 

dioxide evolved. The production of these by-products is undesirable because it 

reduces the efficacy of the carbon flux in fermentation (see Chapter 1 for more 

information). The production of these components takes place whenever the substrate 

is provided in quantities that exceed the oxidative capacity of the cells. This 

approach has been used in the fermentation of Saccharomyces cerevisiae, in which 

acid production rate is used to provide on-line estimates of the specific growth rate 

(Leigh, 1986). 

The feeding mode influences fed-batch fermentation by defining the growth rate of 

the micro-organisms, the effectiveness of the carbon cycle for product and 

minimisation of by-product formation. Inherently related with the concept of fed

batch, the feeding mode allows many variances in substrate or other components 

constitution and provision modes and consequently, better controls over inhibitory 

effects of the substrate and/or product. 

Overall, the control of a fed-batch fermentation process can implicate many 

difficulties (Ferreira, 1999): low accuracy of on-line measurements of substrate 

concentrations, limited validity of the feed schedule under a variety of conditions and 

prediction of variations due to strain modification or change in the quality of the 

nutrient medium. These aspects indicate the need of a fed-batch fermentation plan 

which is model independent, identifies the optimal state on-line, includes negatin? 

feedback control into the nutrient feeding system and considers a saturation kinetic 

n10del, a variable yield model. variation in feed substrate concentration and product 

inhibited tCrn1entation. 
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In an open-loop operation system, a predetermined feed schedule is used (Agrawal et 

aI, 1989). This approach considers that the system can be exactly converted into a 

set of mass balance equations that contains the specific growth rates. Yet, it is easy 

to presume that due to a non-identified physiological problem of the cells, the 

specific growth rate can be either higher or lower than the one that was previously 

established. The open-loop feed policy, as a result, does not always result in an 

optimal operation. 

The feedback control algorithm requires a reliable on-line estimate of the specific 

growth rate. Since the objective of the algorithm is to optimise the cell-mass 

production by controlling the specific growth rate (u) at an optimum value Uopt, a 

feedback law can be defined as below (Ferreira, 1999). This relation can be used to 

manipulate the feed flow rate (Fin) to the fermentor in a specific time (tn), where Kc is 

a controller constant which is assumed to be positive. When u is different from Uopt, 

either S < Sopt or S> Sopt. Then, the positive sign in the equation applies to the first 

case and, similarly, the negative sign applies to the second case: 

Feedback law 

The use of fed-batch culture by the fermentation industry takes advantage of the fact 

that the concentration of the limiting substrate may be maintained at a very low level, 

in consequence: avoiding repressive effects of high substrate concentration, 

controlling the organism's growth rate and as a result controlling the oxygen demand 

of the fermentation (McNeil and Harvey, 1990 & Neway, 1989). 

The degrees of freedom for the determination of the optimum conditions in batch 

processes, maximum product with minimum cost and time, are often a combination 

of the initial conditions, the set-point profile and the time allowed for the 

transformation phase. The procedure used for determining an acceptable set-point 

profile is called dynamic optimisation. but the profile obtained with this method will 

only be optill1al for the specific model and parameter values used in the optimisation 

(Becerra and Roberts, 1998a). 
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2.2 A BEER FERMENT A TION MODEL 

The mathematical model chosen to be part of the simulation (and subsequently the 

optimisation process) is the kinetic model by Andres-Toro et al (1998) since it ha 

been obtained from many experimental studies at laboratory scale showing good 

results. It takes into account realistic aspects of the process such as characteristics of 

the wort and yeast, and also two important by-products of the fermentation: ethyl 

acetate and diacetyl (see Chapter 1 for more information on by-products effect). 

A batch fermentation process such as on the beer fermentation process is complex 

because of the biological phenomena taking place and the dynamic nature of the 

process itself (Andres-Toro et aI, 1997b). When formulating a model of a microbial 

process, feasibility is a guiding principle. A very frequent mistake committed is the 

creation of a very complex model including different approaches available in the 

literature, disregarding their relevance to the overall goal, which should always be 

the simplest and yet adequately accurate way of describing the real process that 

would enable its simulation by calculations. Such a model can then be conveniently 

used for the prediction of optimal operating conditions of a technological process. 

With data obtained experimenting in the laboratory by Andres-Toro et aI, (1998) 

developed a new model of the fermentation dynamic behaviour based on the activity 

of suspended biomass. The model was obtained from many experimental studies at 

laboratory scale with the necessary equipment as can be seen in Figure 2.1. The 

model has shown good results, and it should be noted that it takes into account 

realistic aspects of the process, such as the characteristics of wort and yeast. 

Pump 
ChiDer Fermentor 

Coolin Circuit 

Water Tank 

Heatin& 
Circuit 

P lim nlal et-up (Andre -T r et al 1998) 



Thus, some equations of the model are devoted to the biomass behaviour: part of it 

settles slowly and is inactive, while the active biomass awakes from latency to start 

growing and producing ethanol, etc. An important effect of the temperature over the 

process acceleration was recorded. A scheme of the process with its main variables 

is presented in Figure 2.2. Table 2.4 describes the nomenclature used for this 

mathematical model. 

/~ 
/ FERMENTATION PHASE 

Figure 2.2 Process scheme for the kinetic model (Andres-Toro et aI, 1998) 

Parameter Description Unit 

f.1a Ethanol production rate h- I 

f.1D Specific yeast settling down rate gil 

f.1ea.1 Ethyl acetate coefficient rate gil 

f.1lag Specific rate of latent formation h- I 

f.1s Substrate consumption rate h- I 

f.1x Specific yeast growth rate h- I 

ace! Ethyl acetate concentration ppm 

diac Diacetyl concentration ppm 

e Ethanol concentration gil 

f Fermentation inhibitor factor gil 

kelc Diacety I appearance rate h- I 

kellll Diacet\'l reduction rate h- I 

kill Yeast growth inhibition parameter 0 / \ :=-' 

k Sugar inhibition parameter (), I 
\ :=-



S Concentration of sugar gil 

So Initial concentration of sugar gil 

t Time h 

T Temperature °C 

Xactive Suspended active biomass gil 

Xdead Suspended dead biomass gil 

Xlag Suspended latent biomass gil 

Table 2.4 Nomenclature in the mathematical model 

Biomass is segregated into three different types of cells: lag, active and dead. The 

whole process can be divided in two successive phases: a lag phase and a 

fermentation phase. Herewith, the enunciation of the model is as follows: 

Lag Phase 
dX

'ag 
dt = - J.ilag . x 1ag (2.1) 

Fermentation Phase dXaclive k 
-d=t=-=- = J.ix . Xac/il'l! - 11/. Xactive + J.ilag . x 1ag (2.2) 

dxdead k 
dt = 11/. Xac/il'e - J.iD . Xdead (2.3) 

ds 
dt = - J.i.1 . X active (2.4) 

de 
dt = J.ia . f· xactil'e (2.5) 

To describe the evolution of the by-products that have an important impact (ethyl 

acetate contributes with a fruity odour and flavour, and diacetyl makes beer heavy 

and sweet flavoured), the following equations are established: 

d(acet) 
dt = J.iea.\ . J.i\ . X aetil'e (2.6) 

d(diac) ., . 
I = k"c .. \ .. X (le/iI'e - kdll/ . dzac . e 

( t 
(2.7) 

Th~ renlaining parameter equations can be calculated as follows: 



X 10lal = X aClive + X lag + X dead 

Jlxo . S 
Jlx = 

0.5·so +e 

0.5· So • JlDO 
JlD = 

0.5· So + e 

Jlso . S 

Jl.\' = ks +s 

Jlao . S 
Jl = 

a k.\. +s 

/=1- e 
0.5· So 

(2.8 ) 

(2.9) 

(2.10) 

(2.11 ) 

(2.12) 

(2.13) 

Since the process depends on temperature, the value of all parameters of the model is 

B 

calculated by exponential equations of the Arrhenius type (Jl = A . e RT ) as follows: 

-63720 
Jlxo = 1.095 x 1047 . e 1.99536·(T +273.15) 

-76450 
kill =3.373x1056 ·eI.99536-(T+273.15) 

-53056 
Jleas = 1.129 x 1039 . e 1.99536·(T +273.15) 

-20020 
JlDO = 4.889 X 1014 . eI.99536.(1'+273.15) 

23254 
Jlso = 6.232 x 10-19 . e 1.99536·(1'+273.15) 

-2528.6 
= 26 3865· e 1.99536·(7'+273.15) Jlao . 

-18959 
= 2.2041 x 10 13 • e 1.99536·(T+273.15) 

Jllax 

68~-19.~ 

k = 1 1081 x 1 0~5~ . e 1.99536·(7'+273.15) 
\ . 

(2.14 ) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21 ) 

The non-linearity of the model can be observed particularly \\"ith these Arrhenius 

functions of temperature that include exponential \'alues \\"ithin. 



The diacetyl formation and reduction constants have been calculated and simplified 

for different temperature values by non-linear approximations from previous work by 

Garcia et al (1994); and are included in the model as follows: 

kdc = 0.000127672 

kdm =0.00113864 

(2.22) 

(2.23) 

The objective function defined intends to reach the required ethanol level in the 

industrial fermentation without quality loss or contamination risks and also 

maintaining a good implementable profile for the industry. The following sub 

functions are defined including penalty parameters to obtain an approximation of an 

objective function to be maximised: 

(2.24) 

Measures and weights up the final ethanol growth to be used. 

(2.25) 

Limits the diacetyl concentration at the end to be less than 0.2 ppm. 

Limits the level of ethyl acetate at the end to be less than 15 ppm. 

If 

14 =- f9.91xlO-7 ·e(2.31-T)dt 

o 

(2.26) 

(2.27) 

Limits the temperature under 16°C along the entire process to avoid the 

spoilage risk by Lactobacillus Plantarum. 

2:
160 1I:+1 - I: I 

1 --
~-
- 1=1 /)./ 

(2.28) 

Penalises brisk changes In temperature for eyery step along the \vhole 

process. thus obtaining a smoother profile . 
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These terms combine to obtain an overall cost function of the process: 

(2.29) 

A temperature profile that maximises this function in a fixed time is required. As an 

initial reference, the same temperature profile used by the industry, according to 

Andres-Toro et aI, (1997b), was taken for a solution along 200 hours (see Figure 

2.4). It is significant to note that some parameters and equations have been taken 

from the original research literature and some others have been slightly modified in 

order to follow the industrial patterns in relation to the beer fermentation behaviour 

of the byproducts. In particular, the diacetyl and ethyl acetate parameters (equations 

2.22 and 2.23) have been obtained, as previously mentioned, from work by Garcia et 

al (1994), instead of a set of polynomial equations as it can be found on the original 

work by Andres-Toro et aI, (1998). The sub functions J2 and J3 (corresponding to 

equations 2.25 and 2.26) have also been adjusted in order to appropriately limit the 

final concentration of these byproducts within a specific range of 0.2 and 15 ppm 

respectively used in practice by the beer industry~ as it was found in the literature by 

Gee and Ramirez (1994) and also specified for beer production according to other 

sources (Kunze, 1996). 

The use of this objective function grouping all the aspects of the problem together 

makes easier the application of an optimisation control technique since it can be used 

as the fitting function. 

In addition to achieve a maximum for the objective function described, the process 

can also be accelerated. This could be done by including another objective function 

to the process that minimises the total fermentation time. Taking this into 

consideration, the task becomes a multi-objective optimisation problem that can also 

be solved by optimal control techniques, however, this approach is beyond the aim of 

this research. 
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The mathematical model has taken basic principles of beer fermentation from \\"ork 

by Gee and Ramirez (1994) on the development of a new representation of beer 

processes based upon known biochemical pathways, the main aim of this research 

being to focus in on-line optimisation, control studies and process optimisation 

purposes. Other research work by Garcia et al (1994) has brought into consideration 

the ability to predict some of the by-product's concentration by means of kinetic 

equations. More recently, Andres-Toro et al (1999) has used this model yet again to 

illustrate the benefit of a genetic optimisation technique developed for the 

optimisation of non-linear processes. 
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2.3 COMPUTER SIMULATION OF THE SELECTED FER~1E:\TA TIO~ 

PROCESS 

SIMULINK and MA TLAB have been chosen to simulate the selected mathematical 

model of the beer fermentation process. All the differential equations of the 

mathematical model have been integrated in a MAT LAB file (m-file) and included 

as an S-function block in SIMULINK. The initial parameters and all the other 

required functions have also been included in the S-function script. 

The temperature is the only input of the model and is included in SIMULINK by 

means of a MATLAB two dimensions linear look-up table that allows x (time in 

hours) and y (temperature in degrees centigrade) vectors to be included together. 

Both interpolation between coordinate points and/or a simple set of steps profile can 

be used with this look-up table. The value of the model equation variables is 

extracted from the S-function with a Demux block that splits the output signal into 

the seven vectors that correspond to the differential equations variables of the 

mathematical beer process. These output vectors can then be analysed and its 

behaviour monitored and controlled. 

Latent Biomass 

~ +----0---'1 BEERFUN ~ emux+--------, 

Clock Gain Temperature S-Function Active Biomass 

Profile B 6 
Dead Biomass 

~ 

~ Sugar 

c::::J Ethanol 

Acetate 

EJ Dyacetll 

Figure 2.3 SIf\1ULINK ~lodel of the Beer Fermentation Process 



For the initial temperature reference for the simulation, the temperature profile used 

in the beer company investigated by Andres-Toro et al (1998) has been selected. To 

represent this profile, a vector that includes the coordinate temperature values and 

other one with its corresponding time values have been used. Interpolation has been 

selected and performed between these two vectors with the assistance of the look-up 

table that includes the values. This temperature profile can be seen in Figure 2.-1-. 

Temperature Profile 
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Figure 2.4 Temperature Profile used in the Beer Industry 

With this temperature profile, the output variables of the process can be obtained and 

plotted directly from the SIMULINK model. It is important to note that the total 

time for the fermentation process to be modelled has been set to 160 hours, in spite 

of the maximum time allowed by the industry that can be seen in Figure 2.4 (200 

hours). This reduction of the fermentation time has been carried out after 

experimentation applying different temperature profiles to the mathematical model, 

noticing that between 120 and 200 hours the sugar consumption and ethanol 

concentration tend to achieve a nearly unchanged value. Herewith, an average time 

of 160 hours has been selected to be the total time for the beer fermentation 

«(120+ 200)/2 = 160). With this, a reduction in the overall time while attaining the 

same outcome can be pursued as seen in the literature by Andres-Toro et al (1999) 

using a multi-objective function. For the particular case of this thesis, a minimisation 
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of time has not been included as part of this research, lea mg the possibility of 

further work in this area. 

The behaviour of the output variables is shown in the subsequent figures 2.5-2.9. 

Suspended Biomass 
7 

6 Total 

5 

/ Active 
4 / --.J -0) 

/ 3 

/ , 
2 / 

/ 

I 
Dead 

Latent 
0 ~~~--~~~----------------------~--~160 
o 20 40 60 80 100 120 140 

Hours 

Figure 2.5 Suspended Biomass behaviour (x) 
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The suspended biomass behaviour in Figure 2.5 includes the active, latent, dead and 

also the total biomass that is the result of the preceding three values added together. 

It can be distinguished from this plot of the biomass concentration and also from 

most of the remaining variables, shown in Figures 2.6 to 2.9, the difficulty of trying 

to linearise the development of the model. This should be considered as an important 

matter in the optimisation approaches to be applied to the beer fermentation process. 
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Figure 2.7 Ethanol behaviour (e) 
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The ethanol concentration in any fennentation process is one of the most important 

features to be considered concerning the outcome of the process. The behaviour of 

this parameter is closely related to the sugar consumption and these can be seen from 

the two plots if placed one next to the other in order to show their evolution. 

The two by-products considered in the model can be seen in Figures 2.8 and 2.9. It 

is important to note that only the final concentrations of these parameters affect the 

value of the objective function defined. 
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Figure 2.9 Diacetyl behaviour (diac) 

In order to obtain the value of the objective function to be maximised by different 

optimisation techniques, the penalty sub functions previously defined have been 

included in another SIMULINK model of the process. With this an online evaluation 

of the objective function can be achieved. This SIMULINK model that contains the 

objecti ve function value to be maximised is shown in Figure 2.10. Consequently, 

Table 2.5 summatises the results obtained for the different parameters related to the 

objecti ve function. 

As it can be seen from Table 2.5, the final values of 12 and 1-:, (which restrict diacetyl 

and ethyl acetate respecti\'cly) are almost negligible compared with the overall merit 
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of the ethanol production. This outcome have significant meanIng because the 

exclusion of these two parameters of the objective function represent a considerable 

simplification of the optimisation problem. 
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Figure 2.10 SIMULINK Model with the Objective Function 

J 
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With this temperature profile, a value cost function of J = 518. 90 has been obtained. 

This value will need to be optimised with the help of the optimisation techniques in 

the next chapters. The industry's temperature profile will serve as a starting point for 

some optimisation routines and the objective function value obtained with it will 

provide a good comparison evaluation. 

Parameter Initial value Final value 

Total Biomass (gil) 3.75 0.5259 

Sugar (gil) 130 26.68 

Ethanol (gil) 0 55.19 

Ethyl Acetate (ppm) 0 7.327 



Diacetyl (ppm) 0 0.05236 

11 (ethanol weight) 0 551.9 

h (restricts diacetyl) -5.73x 10-8 -8.29x10-6 

h (restricts ethyl acetate) -1.16x 10-29 -5 .03x 10-15 

14 (avoids spoilage risk) 0 -10.38 

15 (penalises brisk changes) 0 -22.6 

1 (overall value) -0 518.90 

Table 2.5 Results after the simulation of the beer model 
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2.4 SUMMARY 

General fermentation concepts, not just batch fermentation but fed-batch and 

continuous fermentation as well; have been considered in this chapter. An 

introduction of techniques been used to model these processes is also included. 

Some basic models for fermentation are included in order to show how simple or 

complicated fermentation processes could be. Emphasis was made on beer 

fermentation with batch processes; typical relationships that are part of basic 

modelling approaches are presented. 

The use of mathematical models for real fermentation processes and different ways 

to implement them is included. The batch fermentation model developed by Andres

Toro et aI, (1998) has been chosen among many others to become part of the 

sinlulation and optimisation research. Therefore, this model has been replicated in 

SIMULINK under MA TLAB environment to be part of the optimisation techniques 

to follow in the next chapters. Simulation results have been compared with the real 

process results in order to be as accurate as possible and follow a real approximation 

of the industry's fermentation. 
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CHAPTER III 

APPROACH TO OPTIMAL CONTROL 

The initial considerations for the optimal control of the beer fermentation process 

presented in the previous chapter are presented below. The first section is an 

introduction to the DISOPE (Dynamic Integrated System Optimisation and 

Parameter Estimation) algorithm. Then, a concise explanation of the fermentation 

process itself, including the application of the Minimum Principle is made. The 

Gradient Method in Function Space and the DIS OPE Algorithm for batch processes 

are introduced afterwards as valuable tools for the optimal control of the beer process 

selected. Then, the results obtained for different cases using these two methods are 

included and compared with the original values of the performance index function 

used by the authors of the mathematrical model. 

3.1 INTRODUCTION TO THE DIS OPE ALGORITHM 

In practice, an exact model representation of a real process is almost unattainable; 

learning to cope with these discrepancies can help the control designer to achieve an 

optimal solution for a particular case. The ISOPE (Integrated System Optimisation 

and Parameter Estimation) algorithm developed by Roberts (1995) is capable of 

producing the true optimum regardless of model-reality differences. It takes into 

account the interaction between the two problems of system optimisation and 

parameter estimation by introducing a modifier into the model based optimisation 

problem. 

In essence, the ISOPE technique can sol\'e a nonlinear optimal control problem by 

111CaI1S of iterations on a succession of properly modified reduced problems (i.e. 

linear quadratic problems) that include dynamic modifiers and parameters which are 

updated at eact iteration. One application of this kind of methods is to establish and 
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maintain an optimal steady-state operation of an industrial process, via the selection 

of regulatory controller set-point values (Roberts, 2001). 

In further research, uSIng variational calculus, the ISOPE algorithm has been 

extended to develop an iterative technique for solving continuous time dynamic 

optimal control problems, giving rise to the continuous time DISOPE algorithm 

(Roberts, 1993). Moreover, there are also processes in the industrial practice, which 

are discrete in nature and can only be controlled by using a discrete formulation of 

this algorithm, this has been developed, analysed and implemented by Becerra and 

Roberts (1996). 

In the original problem formulation (Roberts, 1993), an unconstrained real optimal 

control problem (ROP) with specified initial and terminal conditions can be defined 

as follows: 

'::tt~ {tp(X(tj»)+',[nX(t),U(t»)dt} 

s.t.: x(t)=f*(x(t),u(t)); x(to)=xo 
(3.1 ) 

XJtf)=Xif ,iE[l,q] , q<n 

where t E [to , tf] is the fixed time interval; u(t) E 9{m and x(t) E 9{n are the 

continuous control and state vectors respectively; q; : 9{n-
q ~ 9{ is a scalar valued 

terminal measure; L * : 9{n X 9{m ~ 9{ is the real performance function; and finally f*: 

9{n X 9{m ~ 9{n represents a set of equations describing the process. 

Nevertheless, instead of solving the previous ROP of equation 3.1, the subsequent 

perhaps simplified model based problem (MOP) can be taken into account: 

'::tt~ {tp(x(t I »)+ } L(x(t). u(t). y(t»)<:it } 

(3.2 ) 

s. t.: .r (t) = f (x (t ), u (t ), a (t )) : x (t 0) = x 0 

.\ (tf ) = .\, ' i E [1. q] . q < n 
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where f(t) E 91 and a(t) E 91r are continuous paremeters; L : 91n x 91m ---+ ~ is the 

model performance function; and correspondingly f: 91n x 91 m x 91 r ---+ 91n represents 

an approximated dynamic model. 

By using a two-step method, the solution of the MOP from equation 3.2 provides the 

control u(t) as a function of the existing parameter estimates a(t) = a(u(t)) and ,:{t) = 

f(u(t)). These estimates can be attained by matching model and real states and the 

performance at the current calculated control u(t) = u( a(t), f(t)). Herewith, the t\\O 

problems of optimisation and parameter estimation can work together to obtain (in 

several iterations because the model is an approximation of reality) convergence to 

the final solution. Even with this, in most of the cases the simple iteration between 

successive solutions do not lead to the right solution of the ROP. 

The DISOPE technique for continuous time integrates system optimisation with 

parameter estimation in order to define an expanded optimal control problem (EOP). 

which is equivalent to an unconstrained real optimal control problem (ROP). 

~:t~ { q>(x( If ») + }[r(X( I), u(l), y(l») + li r '1Iu(l) - v(l)II' + li r'llx( t) -z( t)II']dt} 

s.t.: x(t)=f(x(t),u(t),a(t)); x(to)=xo 

XI (t f) = X if ' i E [1, q] 

f(z(t), v(t),a(t)) = f* (z(t), v(t)) 

L(z(t), v(t), r(t)) = L* (z(t), v(t)) 

u(t) = v(t) 

x(t) = z(t) 

(3.3) 

where \'(t) E 91 m and z(t) E 91 n have been included to differentiate between the 

control and states in the optimal control from the relevant signals in the parameter 

estimation problem and the application to reality. The con\'exification terms 

Ilu(t) - \'(1)11 2 and Ilx(t) - .:(1)11 2 
ha\'e been incorporated to con\'exify the perfornlance 

index to facilitate con\'ergence. 



By means of Lagrange multipliers, all the equality constraints and the performance 

index from equation 3.3 can be added together. Consequently. an augmented 

Hamiltonian function can be defined as follows: 

H(t) = L(X(t),U(t),A(t)) + pT (t)f(x(t),u(t),a(t))- A(t)U(t) - flT (t)x(t) (3.4) 

where p(t) E mn is a multiplier function called the costate vector; as well as A(t) E 

mm and fl(t) E mn are modifier functions. Applying calculus of variations to 

equation 3.3 and by means of equation 3.4 and some algebraic manipulation, the 

following subsets of the necessary optimality conditions can be created: 

\7HuC·) + 1J(u(t))-v(t) = 0 

\7 H x ( • ) + jJ ( t) + r2 (x ( t ) ) - z ( t) = 0 

VHp(.)+x(t) = 0 

With this, the boundary conditions can be defined as: 

x(to) = Xo 

xi(t.r) = xi.r ' i E [l,q] 

Pi(t.r)=\7¢(x(t.r))' iE[q+l,n] 

(3.5) 

(3.6) 

The equality constraints previously stated in the formulation of the EOP have to be 

considered: 

{
f(z(t), v(t),a(t)) - j*(z(t), v(t)) = 0 } 

L(z(t), v(t), y(t)) - L* (z(t), v(t)) = 0 

{ 

v(t) = u(t) } 

z(t) = x(t) 

And thus, the multiplier function equations A(t) and fJ(t) are as follows: 

A(t) = [8f (.) _ 8f* (.)]1 p(t) + (V ,L' (.) - V,L(.») 
C1' C1' 
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The augmented Hamiltonian equation 3.4 and the optimality conditions from 

equation 3.5 can be fulfilled by solving a modified model based optimal control 

problem (MMOP) that can be described in this way: 

mIn 
u (t) 

S.t.: 

{ 
( ) 

IRL(X(t),U(t),Y(t))- A(t)u(t) - f3T (t)x(t)l } 
qJ x(t f) + 2 2 dt 

10 + ~ r1I\u(t) - v(t)11 + ~ r21Ix(t) - z(t)11 

x(t) = f(x(t),u(t),a(t)) x(to) = Xo 
(3.10) 

x/(tf)=xif ' iE[l,q] 

where the parameters in this equation have previously been specified. In relation to 

the optimality conditions in equation 3.7, it can be said that they describe the 

parameter estimation problem and the ones in equation 3.8 the association constraints 

between the parameter estimation problem and the MMOP. Meanwhile, equation 3.9 

defines the calculations required for computing the modifiers. 

The previous reasoning leads to the consequent description of the DISOPE algorithm 

whose iterations, assuming convergence, reach the solution of the ROP by means of 

recurring solutions of the MMOP (Roberts, 1993): 

Data: j(.), L(.), xo, xif (i E [l,q]), q:(.), to, tf, r], r2, and means for calculating/(.), 

* L (.). 

Step 0: initialisation: Compute or assume a nominal solution u(t)o, x(t)o and p(t)o. 

Step 1: application to reality: Set iteration counter i = 0, v(t)o = u(t)o, z(t)o = x(t)o: 

t E [to, tf]' 

Step 2: parameter estimation: Compute a(tY and J{tY to satisfy equation 3.7. 

Step 3: modifiers: Compute A(ty and f3(t)i from equation 3.9. This requires finding 

the derivatives with respect to v and z, ofj(.),/(.). L(.) and L *c.). 
Step 4: system optimisation: With specified a(tY, J{tY, A(tt v(tY, j3(tY and :UY: 

solve the MMOP defined in equation 3.10 to obtain zi(tY, x(tYand p(tr. 

Step 5: update: Test con\'ergence and update the estimate for the optimal solution 

of the ROP. Additionally to the convexification terms from equation ~.~ 
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and regulated by choice of '1 and '2; a simple relaxation method is used to 

satisfy equation 3.8. With this: 

V(t)'+1 = V(t)' + kv (U(t)' - V(t)' ) 

Z(t)'+1 = Z(t)' + kz (X(t)' - Z(t)' ) 

p(t)'+1 = p(t)' + k p (p(t)' - p(t)') 

(3.11 ) 

where kv, kz, kp E [O,l] are scalar gains. If v(t)'+! = v(t/ within a defined 

tolerance then stop, else set i = i + 1 and continue from Step 2. 

For some problems in practice, reaching the equality v(t)'+! = v(t)' with t E [tn, tj], can 

be evaluated by using the following 2-norm (control variation norm between 

iterates): 

(3.12) 

where ~t is the numerical integration step and this value can be compared with a 

given small tolerance &v defined a priori. 

It is important to note that the required derivatives from equation 3.9 may be difficult 

to measure in practice. For this reason, it might be necessary to opt for perturbation 

and finite difference calculations in order to obtain these values at every titeration. A 

different way is to approximate them iteration by iteration using Broyden' s method 

as described by Roberts (2000). 

The DISOPE Algorithm has effectively been applied to fed-batch control processes 

(Becerra and Roberts, 1998a); incorporated in the receding horizon optimal control 

strategy of model predictive control (Becerra and Roberts, 1998b); and most recently 

the ISOPE approach has been used to design a DISOPE technique for optimal control 

of differential and algebraic equation (DAE) systems (Roberts and Becerra, 2000). 
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3.2 OPTIMISATION OF THE BEER FERMENTATION PROCESS 

The optimisation of the beer fermentation process selected in the previous chapter is 

now pursued. With this in mind, the mathematical model of the fermentation process 

is included with a description of each of the parameters used in Table 3.l. 

Parameter Description 

/1D 

/1eas 

/1lag 

/1s 

/1x 

acet 

diac 

e 

f 

k\. 

S 

So 

t 

T 

XaC1il'e 

Xlag 

Ethanol production rate 

Specific yeast settling down rate 

Ethyl acetate coefficient rate 

Specific rate of latent formation 

Substrate consumption rate 

Specific yeast growth rate 

Ethyl acetate concentration 

Diacetyl concentration 

Ethanol concentration 

Fermentation inhibitor factor 

Diacetyl appearance rate 

Diacetyl reduction rate 

Yeast growth inhibition parameter 

Sugar inhibition parameter 

Concentration of sugar 

Initial concentration of sugar 

Time 

Temperature 

Suspended active biomass 

Suspended dead biomass 

Suspended latent biomass 

Table 3.1 Nomenclature used 

The beer fermentation process can be defined by the subsequent mathematical 

equations: 

J..ixo . s 
J..i, = 0 5 ' + ) . . "u £. 

0.5· So . J..iDO 
J..iD = 0.5. So + e 

(3.13) 

(3.14) 



where 

J=l-_e-
0.5 ·so 

dXlag 
dt = - J1lag . X lag 

dx. 
active k = II ·X . - ·X + /I ,X 
dt rx acllve m active rlag lag 

dXdead k = 'X - /I 'X dt /II aclive r D dead 

ds 
dt = - J1s . X aclive 

de 

dt = J1a . J . xaclive 

d(acet) 

dt = J1ea.\· . J1.\ . XaC1il'e 

d (diac) = k ., _ .'. 
dt de S X aclive k dm dzac e 

-63720 

J1xo = 1.095 X 1047 ·eR'(T+1~) 

-53056 

J1eas = 1.129 X 1039 . e R·(T+Ta) 

23254 

J1so =6.232xl0-19 
·eR-(T+Ta) 

-18959 

II = 22041 X 1013 ·e R
'(7'+Ta ) 

rlag . 

kdc = 0.000127672 

R = 1.99536 

Hence, the state space n10del can be defined: 
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(3.15) 

(3.16) 

(3.1 7) 

(3.18) 

(3.19) 

(3.20) 

(3.21 ) 

(3.22) 

(3.23) 

(3.24) 

-76450 

k/ll = 3.373 X 1056 • e K(T+Ta) 

-20020 

J1DO = 4.889 x 1014 
• e K(T+Ta) 

-2528.6 

J1aO = 26.3865· e R·(T+Ta) 

68249.2 

k\ =1.1081xl0-52 ·eR.(T+1~) 

kdm =0.00113864 

Ta = 273.15 



dx'ag 
dt = - Ji'ag (T)x'ag 

dXaClive Jixo (T)s k 
dt 

- 0 5 xaClil'e - m (T)xaC1il'e + Ji'ag (T)x'ag 
• So +e 

dXdead = k (T)x . _ 0.5SoJiDo (T) x 
dt m active 0 5 dead 

. So +e 

ds = _ Jiso(T)s X . 
dt k (T) + acllve 

s S 

de = Jiao (T)s (1- e J x . 
dt ks (T) + s 0.5so aclll'e 

d(acet) = T JisoCT)s x . 
dt Jieas ( ) ks (T) + S acl/ve 

d (diac) = k x _ . 
dcS aClive kdm (dzac)e 

dt 

Once again, the performance index can be defined as follows: 

maXImIse 

where 

If 

J
4 
=- f9.9IxI0-17 ·e(2.31J)dt 

o 

with Nl1t = tj 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

Following the simulation of the industrial profile in the previous chapter. and after 

several experimentation with the SIMULINK model of the process: the terms J2 and 

/, ha\'~ been found to be negligible compared \\'ith J,. The last term J5 has been 
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ignored at this stage in order to simplify the optimal control formulation and as a 

result, there is a significant reduction to the objecti\'e function and number of state 

equations. These conditions can be considered a special case for the optimisation 

where J 2 = J 3 = J 5 = 0 . 

A new performance index Jr is described as follows: 

mInImIse 

1/ 

J
r 

=-lOe(tj)+ J9.91xlO-17 ·e(2.31T)dt 
o 

subject to 

dX'ag 
dt = - Jilag (T)x'ag 

dxaClive _ Jixo (T)s _ k (T) + (T)x 
d 

- 0 5 xaclive 111 Xaclil'e Jilag lag 
t . So + e 

ds Jiso(T)s 
-=- X . 
dt k\ (T) + S acllI'e 

de _ JiaO(T)s (1- e J 
dt - k\ (T) + s 0.5s

0 
XaClil'e 

With this, the reduced state and control signals (Xi and u) are defined: 

X-x X=X x=sx=eu=T I - - lag' 2 aclive' 3 '..j , 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

Subsequently, replacing these variables in equations 3.38-3.42 for the special case: 

'/ 

J r =-10x..j(tj)+ fee t/lidt 
o 
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(3.43) 

(3.44 ) 

(3.45) 



dx3 = _ ,u\0(U)X3 X
2

' X
3
(0) = 130 

dt ks(u) + X3 
(3.46) 

dx4 = ,uaO(u)x3 (1- x4 JX
2

' x
4
(0)=0 

dt ks(U)+X3 0.5so 
(3.4 7) 

where the given initial conditions are stated and 

-18959 

,ulag(U) = 2.2041x1013 e R(u+Ta) 

-76450 

k
m 

(U) = 3.373 xl 056 eR(u+T,,) 
68249.2 

k.\.(u) = 1.1081 x 10-52 eR(u+Ta) 

c=9.91x10-17 

-63720 

,uxO (U) = 1.095 x 1047 eR(II+Ta) 

23254 

,usO (U) = 6.232 xl 0-19 eR(u+Ta) 
-2528.6 

,uaO(U) = 26.3865e R(II+Ta} 

d = 2.31 

The optimisation problem can at this time be written in the form: 

mInImIse 

If 

J r =cD(x(tj))+ fcedUdt (3.48) 
o 

subject to 

x = I(x, u), x(O) = Xo (3.49) 

where 

-"1.2.1. Optimal Steady-State Solution 

For this optimisation problem. an optimal steady-state solution can be attained when 

the input U is held constant. In this case. the optimal stedy-state solution problem is: 
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mInImIse 

J ss = <l> ( x(t f) ) + ce
du 

t f 

subject to 

x = I(x, u), x(O) = x() 

(3.50) 

(3.51) 

This optimal steady-state problem can readily be solved uSIng a non-linear 

programming technique. For this purpose, the MA TLAB routine fminbnd, based on 

golden section search and parabolic interpolation, has been employed (Coleman et aL 

1999). The model differential equation were solved using ode23, which is a variable 

step explicit Runge-Kutta method of Bogacki and Shampine (1989). The result is: 

uss = 14.6211 °C with a performance index of Jss = -597.8082 

The resultant state response signals are shown in Figures 3.1 to 3.4. 

Latent Biomass 

2 ~ 
1.8 i' 

I 
I, 

I' 
1.6 L' 

1.4 : 

1.2 

::::::::: 
0> 1 .......... 
x'-

0.8 ~ 

0.6 1 

i 

0.41 

0.2 ~ 
0 ~.-.--

0 20 40 60 80 100 120 140 160 

t (hrs) 

Figure 3.1 State response Xl for the optimum steady-state profile 

Accordingly, this result of llss= 14.6211 °C has then been applied as the temperature 

input profile of the full SIMULINK model of the fermentation process. This has 

been done in order to \'eri t~· the perforn1ance \'alucs obtained for each one of the 
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parameters of the objective function (JI , J2, ... ~ J5); the outcome is included in Fig. 

3.5 and summarised in Table 3.2. 

Active Biomass 
10 

40 60 80 100 120 140 160 
t (hrs) 

Figure 3.2 State response X2 for the optimum steady-state profile 
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><' 60' 
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Figure J.J State response X3 for the optimum steady-state profile 
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Figure 3.4 State response X4 for the optimum steady-state profile 
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InpuCPro1ile 

States 

Ethoinol 

0.05261 

Substrate 

605.19 

J1 

Figure 3.5 SIMULINK Model for the steady-state case 
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The SIMULINK model for the optimum steady-state profile including the final 

values of the equation variables and performance sub functions can be seen in Figure 

3.5. 

Parameter Final value 

Total Biomass (gil) 0.0861 

Sugar (gil) 0.0526 

Ethanol (gil) 60.52 

Ethyl Acetate (ppm) 10.92 

Diacetyl (ppm) 0.0024 

J 1 (ethanol weight) 605.19 

h (restricts diacetyl) -7.22xl0-8 

J3 (restricts ethyl acetate) -7.56xl0-8 

J4 (avoids spoilage risk) -7.38 

J 5 (penalises brisk changes) 0 

J (overall value) 597.80 

Table 3.2 Results corresponding to optimum steady-state control profile 

As it can be observed from this result with the optimum steady-state control profile, 

an increment in the performance index from the original 518.90 with the industry's 

temperature profile has been reached to a new 597.80 value. This means a 

percentage increase of more than 15% by making the problem formulation simpler. 

3.2.2. Application of Calculus of Variations 

The standard necessary optimality conditions for an unconstrained optimal control 

problen1 can be found by means of calculus of variations. This principle is now 

applied to the optimisation problem (Lewis and Syrmos, 1995) and thus. the 

Hamiltonian (H) can be defined as: 
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Therefore, the Hamiltonian Gradient can be represented as follows: 

Hu = dH = cdedu +[a/]T p 
du au 

Which equals to zero to obtain a minimum when: 

[:r p 
10 ge - =------=-

cd 

u = ------'----------'-
d 

(3.53 ) 

(3.54) 

It is important to note that since c and d are both positive, the equation 3.54 will only 

give a valid (real) result for u when: 

[:]'p<o (3.55) 

The co-state equations are: 

(3.56) 

which gives as a result: 

(3.57) 

In equations 3.57 and 3.53, [8/ ] and [8/ ] are the Jacobian (A and B) matrices 
ex au 

giycn by 
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all (u) 0 0 0 

A(x,u) = [!J = 
a2,1(u) a2,2(x,u) a2,3 (x, u) a2.4(x,u) 

(3.58) 
0 a3,2(x,u) a3,3 (x, u) 0 

0 a4,2(x,u) a4,3 (x, u) a4,4(x,u) 

bl (x, u) 

B(x,u) = [:J = 
b2 (x, u) 

(3.59) 
b3 (x, u) 

b4(x,u) 

Then, the value of the different terms of these matrices can be defined: 

al,1 (u) = -f.1lag(U) 

a2 2(X,U) = f.1xO(U)X3 -krn(u) 
, O.Sso + x4 

a (x u) = _ f.1so(u)ks(U)X2 
3,3' (ks(u) + X3)2 

.llao(U)kJU{ 1- 2s:' JX2 

a43 (x,u)= 2 

, ( k\ (u) + X3 ) 

(JL.:.o (u) (k.\. (u) + x3) - f.1.\'o (u)( (u) ) 
b." (x, 11) = - X 2 X 3 ( . ) 2 
- k\(u)+x3 

\\'here 
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-18959 
, ( ) _ aJllag(U) 2.2041xl013 x1895geR(u+l~) 

Jllag U - au - R(u + Ta)2 

-63720 

Jl~o(U) = aJlxo(u) = 1.095xl047 x63720eR(u+7~) 
au R(u + Ta)2 

-76450 

, akm(u) 3.373xI056 x 76450e R(u+Ta) 
k (u)- -----------------
m - au - R (u + Ta)2 

23254 
, aJlso(u) 6.232xlO-19x23254eR(11+7~) 

Jlso(U)= au =- R(u+Ta)2 

68249.2 
k' u = akJu) = _1.1081xlO-52 x 68249.2e R(u+Ta) 

s () au R (u + Ta ) 2 

-2528.6 
, aJlao(u) 26.3865x2528.6e R(u+Ta) 

JlaO(u) = au = R(u+Ta)2 

By replacing these expressions in its corresponding places, the matrices A and Bare 

defined. 
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3.3 GRADIENT METHOD IN FUNCTION SPACE 

In order to find the numerical computation of optimal control of both continuous and 

discrete-time systems there are mainly two approaches, according to Noton (1972): 

indirect and direct methods of minimisation of a performance index (objecti\'e 

function). In the direct approaches to minimisation, the state equations are 

influenced only by the control u(t) and the minimisation of the objective function 

J(u) by direct adjustment of u(t) is sought. For the particular case of the continuous 

process that the beer fermentation presents, a direct method known as the Gradient 

Method in Function Space has been selected. 

A method of first order gradients is the simplest approach to a direct method in 

which the state and co-state equations remain separated. The logical and convenient 

approach is to regard continuous time systems as the limiting case of discrete 

systems as the subinterval of time tends to zero. 

This method is probably the easiest and most stable computation of optimal control, 

because if the system state equations are stable in forward time then the co-state 

equations are stable when integrated in reverse time. Convergence is not usually 

critically dependent on a first approximation. 

The method of steepest descent (first order gradients) consists therefore of applying 

the iterative correction: 

8H 
~u(t) = -e = -eHu 

8u(t) 
(3.60) 

where e is an arbitrary constant provided to regulate convergence (stability). Since H 

depends on the co-state variables, the fit) have to be generated by an iterative 

process. 

Thus, the algorithm can be described as follows: 
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Data: t1, e 

Step 0: initialisation: Set iteration counter k = 1, and guess u(t)o for the interval 

[0,t1] . 

Step 1: Compute x(t) and Jr from equations 3.49 and 3.48. 

Step 2: Compute the co-state vector p(t) by solving equation 3.57 in reverse time. 

Step 3: Compute the Hamiltonian gradient Hu from equation 3.53. 

Step 4: Update u(t) using equation 3.60. That is: 

U(t)k+l = U(t)k - eHu (3.61 ) 

Set k = k+ 1 and repeat from Step 1 until convergence is achieved. 

Note that because equation 3.54 IS not solved explicity, the associated validity 

condition is not an issue. 

The following three cases have been taken into consideration: 

Case 1: u(t) has been initialised at the optimum steady-state solution, that is: 

u(t)=14.6211, tE[0,160] 

Case 2: u(t) has been initialised at an arbitrary steady-state solution, that is: 

u(t)=10, tE[0,160] 

Case 3: u(t) has been initialised at the industrial profile. 

For each of these cases e = 1 was set initially. Adaptation of this parameter was 

required during the optimisation routine by means of two regulating parameters kJ 

and k2 (set a priori to 1.1 and 0.75 respectively) which regulate at every iteration, the 

value of e by multiplying either kJ to increase or k2 to decrease it. This adjusting 

procedure depends on the convergence of the real performance value obtained for 

every iteration. The MATLAB routine ode23 (low order method) was used to sol\'e 

the state and co-state differential equations. The iterations were considered to ha\'e 

converged when an increase in the value of Jr was observed. The SIMULINK model 

was finally used to investigate the final individual performance components. The 

results are summarised in Table 3.3 and Figures 3.6 to 3.17 (using an 800l\lHz CPl· 

PC with 256MB RAM). 
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Case 

1 

2 

3 

601.8149 

601.9525 

601.9667 

Iterat. 

48 

253 

273 

609.34 

609 .13 

609.25 

12 13 

-7.08xlO-8 -3.71x10-6 

-6.96x10-8 -3.09x10-6 

-7.02x10-8 -3.44xlO-6 

14 15 1 

-7 .53 -2.794 -599.01 

-7.18 -6.602 -595.34 

-7 .29 -8 .831 -593.13 

Table 3.3 Performance results from Gradient Method in Function Space 

For Case 1, the total time spent for the optimisation was 39.166 seconds. The alue 

of e was fixed to 1. 

G 
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For Case 2, a constant initial temperature profile of 10°C has been used. The total 

time spent in the optimisation was 276.267 seconds. With this, the final alue set for 

e was 0.09. 
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For Case 3, the industrial temperature profile used for the simulation of the 

fermentation model of Chapter 2 has been set as the initial temperature profile. As a 

result, the total time spent in the optimisation was 278.761 seconds. The final alue 

set for e was 0.4127. 
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With the help of an adaptation technique for the value of e. the optimisation results 

using the Gradient Method in Function Space have been satisfactory after seyeral 

tests. It is significant to mention that little computational effort (overall process 

time) has been required to acquire the previous results. 

Accordingly, the value of the performance index obtained for all three cases studied 

has been greater than the original value. An important increase has been attained for 

Case 1, using the optimal steady state profile as the initial profile, despite the 

excellent outcome (a percentage increase of nearly 160/0 compared with the industrial 

profile) that the solution of the steady state case from the previous Section 3.2 

provided. Convergence problems were reasonably few, given that to obtain the 

optimised solutions testing was not extensive. It is important to mention that the 

termination criterion for all cases considered, has been the variation of the value of 

the performance index from iteration from iteration (in the order of 1 x 10-3
), together 

with trying to maintain a smooth optimised temperature profile. 

However, it has to be said that the optimised temperature profiles obtained are not 

easily implemented in the industry because of the difficulty in modelling the brisk 

changes in the temperature values from iteration to iteration. 

83 



3.4 THE DISOPE ALGORITHM 

According to Becerra and Roberts (1998a), the DIS OPE algorithm is capable of 

handling nonlinear optimal control problems with terminal state equality consraints. 

non-quadratic performance indexes, multiple control inputs, control magnitude 

constraints and continuous time dynamics in an exact way. 

In order to apply the DISOPE Algorithm developed by Roberts (1993) for the 

optimisation of the beer fermentation process; the original principles of the DISOPE 

algorithm has been taken into consideration in order to derive an appropriate 

procedure rather than following strictly the modus operandi described earlier in this 

chapter (this due to the complex nonlinearities of the equations included in the 

mathematical model). Herewith, the Real Optimal control Problem (ROP) has been 

considered and it is described from equations 3.48 and 3.49 as: 

min {<l> ( x(t f) ) + rl 
cedu(t) dt} 

u(t) 1 (3.62) 

S.t.: x(t) = f (x(t), u(t)) ; x(O) = Xo 

Instead of using this ROP. the DISOPE algorithm considers the Model based 

Optimal control Problem (MOP). This MOP can be described as follows: 

min {<l> ( x(t f) ) + r / cedu(t) dt} 
u(t) . ~ (3.63) 

s.t.: x(t) = Ax(t) + Bu(t) + aCt) x(O) = Xu 

Accordingly. an Expanded Optimal control Problem (EOP) which is equivalent to 

the ROP can be defined: 

min {<t> ( x(t f ) ) + r / cedl/(t) dt 
u(l) ~ 

s.t.: .,-(t)=Ax(t)+Bu(f)+a(t) ~ x(O)=xo 

. .t::(t) + Bv(t) + a(l) = f (::(1). "(1)) 0·6-+) 

,.(t) = u(l) 

::(1) = x(t) 
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The Hamiltonian function fI(.) has been defined as: 

if (.) = cedu(l) + pT (t) (Ax(t) + Bu(t) + aCt) ) - A(t)U(t) - j37(t)X(t) (3.65) 

Then, by means of adjoining the constraints from equation 3.64. the Augmented 

Performance Index can be obtained: 

J = <I> (x(t f) ) 

+ Xf {cedU(t) + pT(t)[Ax(t) + Bu(t)+a(t)-x(t)] 
() 

+A(t) [v(t) - u(t)] + pT (t) [z(t) - x(t)] 

+ ,l/' (t) [ Az(t) + Bv(t) + aCt) - f (z(t), v(t)) ] 

This equation 3 .66 can be re-written as: 

J = <I> ( x(t f ) ) 

+ if {Ii(.)- pT(t)X(t) + A(t)V(t) + f3T(t)Z(t) 

+,l/(t) [ Az(t) + Bv(t)+a(t)- f(z(t),v(t),t)]}dt 

(3.66) 

(3.67) 

At this moment, the assessment of the increment in J due to increments in all the 

variables is pursued. Assuming that the final time is fixed and according to the 

Lagrange-multiplier theory at a constrained minimum, this increment 5] should be 

zero (Lewis and Syrmos, 1995). Thus, the 15t variation with fixed initial conditions 

can be represented as: 



8J = (V x<1>(·) f 8Xl 
If 

+ f lVU H(.)5U+[ VJ!(.) r 5x 

-pT(t)8x(t)+[ V pH(.)-X(t)J' 8p 

+[ VaH(.) + Jl(t) JT 8a 

+[ V>lH(.)+v(t)J8A+[ VpH(.)+z(t)J
T 

8fJ 

+[ A(t) + (B - fv(·) f Jl(t) J 8v 

+ [fJ(t) + (A - fz(·) f Jl(t) JT 8z 

+ [Az(t) + Bv(t)+a(t)- f(.)r 8Jl}dt 

If If 

(3.68) 

Now f pT (t)c5Xdt = pT (t)8xl
lf 

- pT (t)8xl/o - f j/' (t)8xdt gIvIng, SInce for a fixed 
o 0 

If If 

initial condition 8x(O) = 0 , f pT (t)8xdt = pT (t)&t
f 

- f pI' (t)8xdt. This gives: 
o 0 

8J = (V x<1>(.) - p(t))1' 8xl 
If 

+ f lVuH(.)5U+[ VxHx(.) + p(t)T 5x 

+[ V pH(.) - x(t) JT 8 P 

+[VaH(.)+Jl(t)J
T 

8a 

+[ V>lH(.)+v(t)J8A+[ VpH(.)+z(t)J
T 

8fJ 

+ [ A (t) + ( B - 1:, ( .) f Jl( t) J 8 v 

+ [fJ(t) + (A - fz (.) f Jl(t) J' 8z 

+[Az(t)+Bv(t)+a(t)- f(·)Y 8Jl}dt 

(3.69) 

Consequently, for ;{j = 0 the following necessary optimality conditions can be 

attained: 
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" 
\1uH(.) =0 

x(t) = \1 pH(.) 

p(t) = -\1 x H(.) 

Az(t) + Bv(t) + aCt) - f (z(t), v(t), t) = 0 

{

A(t) = (B - Iv (.))1' P(t)} 

/let) = (A - fz (.) f pet) 

{
Vet) = u(t)} 
z(t) = x(t) 

Thus, the optimal control is given from the Hamiltonian gradient: 

gIvIng 

() 11 (A(t)-B1'p(t)] u t = - oge 
d cd 

(3.70) 

(3.71 ) 

(3.72) 

(3.73) 

(3.74) 

(3.75) 

(3.76) 

which, noting c and d are positive, has a real solution, called the validity solution, if: 

(3.77) 

Note that if the previous inequality 3.77 is not satisfied, applying the Minimum 

Principle to minimise the Hamiltonian of equation 3.65 requires u(/} to be chosen to 

111111I111ISC: 
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H (.) = cedu(l) + (pT (t)B - A(t) ) u(t); pT (t)B - A(t) ~ 0 

which is minimised when u(t) takes on its smallest value, that is when: 

u(t) = u . 
mm (3.79) 

Hence, the optimal control is: 

u(t) = 
-.!..loge (A(t) - BT p(t) J if A(t) - BTp(t) > 0 
d cd (3.80) 

umin if A(t) - BTp(t) S 0 

The two point boundary value problem is then: 

x(t) = x(t) + Bu(t) + a(t) , x(O) = xo (3.81) 

(3.82) 

It is important to observe that the co-state equation can be solved independently of 

x(t) and u(t). In addition, the state equations and the co-state equations can be solved 

analytically because they are both linear. This gives computational advantages over 

the gradient method in function space technique described in the previous Section 

3.3. However, the optimal control given by equation 3.80 introduces a discontinuity. 

The following algorithm reduces the effect of the discontinuity by employing a 

gradient method to apply a correction to each iteration of control u(l) along the 

portion of the profile when the inequality 3.77 is not satisfied. Then, a correction to 

the final solution is applied using equation 3.80. This is a batch type algorithm 

(Roberts and Becerra. 1997). 

The algorithn1 can be described as follows: 
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Data: tf, e, ku, kp~ Umin, A, B. 

Step 0: initialisation: Set iteration counter k = 1. and guess v(t)o for the interyal 

[0, tf]. Also find p(t)o by solving equation 3.82 backwards in time from ( = 

tfwith f3(t) = 0. Set p(t)0 = p(t)o . 

Step 1: application to reality: Compute z(t) and Jr from equations 3.49 and 3.48 

with z(t) replacing x(t), V(t)k replacing u(t). 

Step 2: parameter estimation: Compute aCt) from equation 3.72. 

Step 3: modifiers: Compute A{t) and f3(t) from equation Set 3.73 with 

p(t) = p(t)k . 

Step 4: optimisation (two-point boundary value problem): 

(i) Compute the co-state vector p(t) by solving equation 3.82 in reverse 

time. Then compute the Hamiltonian gradient Hu from equation 3.75 

with v(t)k replacing u(t). 

(ii) Over the interval [0, lj]. when the inequality 3.77 is satisfied. use 

equation 3.76 to compute the predicted optimal control u(t): when 

the inequality is not satisfied compute u(t) by the gradient technique: 

u(t) = V(t)k - eHII (3.83) 

(iii) Compute x(t) using equation 3.8l. 

Step 5: update: Use the following relaxation technique to update v(t) and p(t) 

(3.84) 

Set k = k+ 1 and repeat from Step 1 until convergence is achieved. 

Step 6: after convergence: Correct the final solution for u(t) using equation 3.80. 

The subsequent three cases have been taken into consideration: 

Case A: u(t) has been initialised at the optimum steady-state solution: 

u(t) = 1~.62l L t E [0.160] 

Case B: u(t) has been initialised at an arbitrary steady-state solution: 

u(t) = 10, t E [0,160] 

Case C: u(1) has bccn initialised at the industrial profile. 

89 



The MATLAB implementation used ode23 for solving the differential equations in 

Step 1, and the linear differential equation solver lsim in Steps 0, .f (i) and .f (iii). In 

all three cases, the Jacobian matrices A and B were determined by linearising about a 

nominal solution u = 14 , x = [0.2 1 10 50 r eventhough they can also be 

obtained with the help of the System Identification Toolbox from MATLAB as it is 

shown in Appendix B. This due to the fact that the results obtained with both of 

these techniques have been very similar, and the linear differential equation solver 

method can be applied within the MATLAB script file. An additional novel 

approach for System Identification can be found in Appendix C. this time using 

Neural Networks. 

The termination criterion for all cases considered with the DISOPE algorithm has 

been again the variation in the value of the performance index from one iteration to 

another (in the order of 1 x 10-3
). The results are summarised in Table 3.4 and Figures 

3.18 to 3.29 (using an 800MHz CPU PC with 256MB RAM). 

Case J, Iterat. J1 J2 J3 J4 Js J 

A 600.6426 65 606.96 -7.28 x l0-8 -3.65xl0-7 -6.31 -l.78 598.87 

B 60l.9361 444 608.54 -7.02xl0-8 -l.72 x 10-6 -6.61 -6.809 595.12 

C 601.5659 175 607.95 -7.55x 10-8 -l.OOx 10-6 -6.44 -6.219 595.29 

Table 3.4 Performance results from the DISOPE Algorithm 

In Case A, an initial profile u(t)o set at the optimal steady-state profile was 

considered. The subsequent results were obtained using these set values: e=0.5. 

ku=0.0075, kp=O.l, Umin=O, umax=20. Convergence was achieved after just 65 

iterations in a total time of 41.429 seconds with final Jr=600.6426. 

The final corrected control profile is shown in Fig. 3.18 and 3.19 (full scale). Fig. 

3.20 shows the convergence of u(t) for every iteration and also the variation in the 

perfornlancc index. The corresponding state response is given in Fig. 3.~ 1. 
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Furthermore, it was observed that each iteration of the DISOPE algorithm took Ie 

time that a single iteration of the Gradient Algorithm according to the ratio 1/1._9. 
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For Case B, an initial profile u(t)o set constant at 10°C has been used. The parameter 

values considered for this situation are: e=0.25 , ku=O.O 1, kp=0.2, Llmin=O , llmax=_O. 

Convergence was achieved after 444 iterations in a total time of 341.429 econd 

with final 1,.=601.9361. The final control profile is shown in Fig. 3.2_-3 ._3 full 

scale ). 
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Fig. 3.24 shows the convergence of u(t) and the variation in the perfonnance inde 

along the optimisation process. The corresponding state response is gi en in Fig. 

3.25. 
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The temperature profile used by the industry has been selected as the initial profile 

u(t)o for Case C. The parameter values considered for this situation: e=2 ku=O.O-, 

kp=0.5, Umin=O, umax=20. An appropriate optimised profile was achie ed in 175 

iterations, in a total time of 92.122 seconds with final 1,.=601.5659. The final control 

profile is shown in Fig. 3.26 and Fig. 3.27 (full scale). 

16 

15 

14 

13 

U 12 
~ 

; 11 

10 

9 

Comparison of Initial and Final Control Signal 

I 
I 

- Final Profile 
Initial Profile 

20 40 60 80 100 120 140 160 
t (Hours) 

Figure 3.26 Initial and Final Temperature profiles for Case C 

Final Control Signal 
16 

14 

12 

10 

0 
~ 8 
S 
::J 

6 

4 

2 

0 
0 20 40 60 80 100 120 140 160 

I (Hours) 

Flour 3._7 Optimi d T mp ratur pr fil f r a 

5 

al 



Fig. 3.28 shows the convergence of u(t) and the variation in the performance inde 

along the optimisation process. The corresponding state response is gi en in Fig. 

3.29. 
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The results obtained with the batch version of the DISOPE algorithm are considered 

to be very important for optimising the simulated model. Nevertheless. further 

studies need to be carried out in order to see the viability of this algorithm \vith this 

kind of process. Convergence problems were noticed as large number of tests had to 

be performed in order to obtain the right initial parameters (e, ku, kp ) for a suitable 

temperature profile to be achieved. Additionally, for the best case among all the tests 

carried out, a performance index value of just 598.87 was obtained: which is slightly 

less if compared to the one obtained for the best profile using the Gradient Method. 

All of these should be taken into account when other optimisation methods become 

part of the research since the main objective is to obtain the highest possible value in 

this performance index. 

In addition, although the results obtained show some improvement in the objectiye 

function, industrial application will be rather difficult since the temperature profiles 

are inappropriate for practical implementation (breweries normally use profiles with 

few temperature changes along the fermentation time). Obtaining implementable 

profiles is going to be an essential aspect of the research to be carried out in this 

work. 
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3.5 SUMMARY 

This chapter comprises an attempt to optimise the mathematical model of the beer 

fermentation process selected from the work done by Andres-Toro et al. (1998) and 

reviewed in the second chapter. In order to try to obtain similar responses using the 

same model, some parameters have been changed and adapted so they follo\\" the 

industry's behaviour. A representation of the SIMULINK version of the process 

modelled is included in this chapter; this model incorporates an M-File (S-Function) 

that comprises the differential equations as well as the initial values of the 

mathematical model. 

The SIMULINK model itself has been adapted to evaluate the objective function J in 

order to identify the initial value to be optimise (for a 160 hours fermentation time): 

this was done taking into account the original objective function developed in the 

original work. 

An introduction to the DISOPE algorithm developed by Roberts (1993) and later 

revised by Becerra and Roberts (1998a) has been included in the first section. The 

fermentation process itself has been reviewed in detail in the next section and this 

includes also some special considerations that have been made to it. The optimal 

steady state solution can be considered the primary effort to optimised the process 

and it is a good starting point for the optimisation techniques to follow. 

After the application of the Minimum Principle, a solution using a Gradient Method 

in Function Space has been achieved. Results for three particular cases has been 

included and illustrate in some detail how good this optimisation technique is for the 

fermentation process considered. 

With the help of the continuous version of the DISOPE algorithm (modified from 

original \\"ork by Roberts, 1993) and some other considerations made to adjust it to 

the simulated process; the optimisation of the fermentation process has also been 

accomplished. The maximisation of the objective function for threc cases has bccn 

presented and it also includes some comparison notes with pre\'ious sections. 
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CHAPTER IV 

GENETIC ALGORITHMS 

This chapter introduces Genetic Algorithms as an optimisation technique for non

linear processes. A brief preface on the history and development of Genetic 

Algorithms in the field of Evolutionary Computation is reviewed; emphasis has been 

made in optimal control applications. The relevance of random search techniques 

finding the global optimum for non-linear problems without the need of an initial 

guess has been discussed. The Genetic Algorithms Toolbox by Chipperfield et al 

(1994) has been used for the optimisation of the beer fermentation process and the 

results obtained are included for several different cases. The benefits of 

parameterising the temperature profile using a few linear segments in order to obtain 

a smoother profile are considered with an additional smoothing procedure. Some 

other modifications to the original procedure for the optimisation from the previous 

chapter are also incorporated. 

4.1. INTRODUCTION TO GENETIC ALGORITHMS 

Genetic Algorithms (GAs) are search algorithms based on the mechanics of natural 

selection and natural genetics (Goldberg, 1989). GAs combine "survival of the 

fittest" among string structures with a structured, but still randomised, information 

exchange to form a search algorithm with some of the innovative style of human 

search. In every generation, a new set of artificial individuals (the strings) is created 

using bits and pieces of the fittest of them all; an occasional new part can be tried for 

good measure. They efficiently exploit historical information to speculate on J1c\\ 

search points with expected improved performance. 

Eyolution strategies, eyolutionary programmmg and genetic algorithnls fornl the 

backbone of the field of evolutionary computation (Yao. 1999). In the 1950s and the 

1960s. seyeral conlputer scientists independently studied e\"olutionary systems with 
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the idea that evolution could be used as an optimisation tool for engineering 

problems. Later in the 1960s, evolution strategies were introduced. a method used to 

optimise real-valued parameter for devices such as airfoils (these idea \\"as further 

developed in the 1970s). The field of evolution strategies has remained an actin~ 

area of research, mostly developing independently from the field of genetic 

algorithms. Also in the 1960s, evolutionary programming was developed, a 

technique in which candidate solutions to given tasks were represented as finite-state 

machines, which were evolved by randomly mutating their state-transition diagrams 

and selecting the fittest. 

With this, Genetic Algorithms were invented and developed at the University of 

Michigan in the 1960s and 1970s (Mitchell, 1998). In contrast with evolutionary 

strategies and evolutionary programming, the original goal was not to design 

algorithms to solve specific problems, but rather to formally study the phenomenon 

of adaptation as it occurs in nature and to develop ways in which the mechanisms of 

natural adaptation might be imported into computer systems. 

Biologists have been intrigued with the mechanics of evolution SInce the 

evolutionary theory of biological change gained acceptance. Many people, biologists 

included, are astonished that life at the level of complexity that can be observed 

nowadays could have evolved in the relatively short time suggested by the fossil 

record. The mechanisms that drove this evolution are still not fully understood, but 

some of its features are known. Evolution takes place on chromosomes (organic 

devices for encoding the structure of living beings). A living being is created partly 

through a process of decoding chromosomes. The specifics of chromosomal 

encoding and decoding processes are not completely comprehended either but here 

are some general features of the theory that are generally accepted (Davis. 1 991 ): 

• 

• 

Evolution is a process that operates on chromosomes rather than on the liying 

beings they encode. 

i\'atural selection is the link between chromosomes and the performance of their 

decoded structures. Processes of natural selection cause those chromosomes that 

encode successful structures to reproduce nlore often than those that do not. 
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• The process of reproduction is the point at which evolution takes place. 

Mutations may cause the chromosomes of biological children to be different from 

those of their biological parents, and recombination processes may create quite 

different chromosomes in the children by combining material from the 

chromosomes of two parents. 

• Biological evolution has no memory. Whatever it knows about producing 

individuals that will, function well in their environment is contained in the gene 

pool (the set of chromosomes carried by the current individuals) and in the 

structure of the chromosomes decoders. 

Holland (1992) began to work on algorithms that manipulated strings of binary digits 

(1 's and O's) that he called chromosomes and carried out simulated evolution on 

populations of such chromosomes. Like in nature, his algorithms solved the problem 

of finding good chromosomes by manipulating the material in the chromosomes 

blindly and they knew nothing about the type of problem they were solving. The 

only information they were given was an evaluation of each chromosome they 

produced, and their only use of that evaluation was to bias the selection of 

chromosomes so that those with the best evaluations be likely to reproduce more 

often than those with bad assessment. 

These algorithms, using simple encoding and reproduction mechanisms together with 

operators such as crossover, mutation and inversion, displayed complicated 

behaviouL and they turned out to solve some extremely difficult problems. In this 

case: crossover exchanges subparts of two chromosomes, roughly imitating 

biological recombination between two single-chromosome organisms; mutation 

randomly varies the allele values of some locations in the chromosome: and 

in1'ersion reverses the order of a nearby section of the chromosome. as a result 

rearranging the order in which genes are displayed. 

In the last several years there has been widespread interaction among researchers 

studying \'arious evolutionary computation methods, and the boundaries between 

GAs. evolution strategies, c\'olutionary programming, and other evolutionary 

approaches ha\'c broken do\\'n to some extent. In order to unit~· concepts. Table 4.1 

shows son1e frequently used tem1S in GAs: 
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Term 

Chromosome 

Gene 

Allele 

Selection 

Individual 

Population 

Representation 

Vector which represents solutions of application task 

Each solution which consists of a chromosome 

Different possible settings for a trait 

Cho<?sing parents or offsprings chromosomes for the next 

generation 

Each solution vector which is each chromosome 

Total individuals 

Population size The number of chromosomes 

Fitness function A function which evaluates how each solution is suitable to the 

given task 

Diploid Organisms whose chromosomes are arrayed in pairs 

Haploid Organisms whose chromosomes are unpaired 

Recombination Same as crossover 

Gamete A single chromosome 

Phenotype Expression type of solution values in task world 

Genotype Bit expression type of solution values used in GA 

Table 4.1 Technical terms used in GA literatures 

With this, there is not a unique accurate definition of "genetic algorithms" accepted 

by everyone in the evolutionary computation population that differentiates GAs from 

other evolutionary computation methods. Nevertheless, it can be said that most 

methods called GAs have at least the following elements in common: populations of 

chromosomes, selection according to fitness, crossover to produce new offspring, 

and random mutation of new offspring. Inversion is rarely used III toda\'s 

implementations, and its advantages, if any, are not well established. 

SOlne applications of genetic algorithms that come from variations of the basic 

schen1e, have been used in a large number of scientific and engineering problems and 

models (tvlichak\\icz, 1992). 
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The location of the Genetic Algorithms technique with respect to other deterministic 

and non-deterministic procedures is shown in the following hierarchy diagram. 

Figure 4.1 outlines the situation of natural techniques among other well kno\\,TI 

search procedures. 
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CAL CUL US BASED RANDOM 

~ 
DIRECT INDIRECT 

~----
CTUIDED NON CTUIDED CTUIDED NON CTUIDED 

Fibana.c ci Newtan Qree d;y 
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SEQUENTIAL GAs 
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Figure 4.1 A possible classification of Search Techniques (Alba and Cotta, 1999). 
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4.2. OPTIMISATION USING GENETIC ALGORITHMS 

In the case of linear programming, a global optimum can always be attained. l\on

linear programming solvers generally use some form of gradient search technique to 

move along the steepest gradient until the highest point (maximisation) is reached (as 

seen in Chapter 3). However, these models may be subject to problems of 

convergence to local optima, or in some cases, may be unable to find a feasible 

solution (largely depends on the starting point of the solver). A starting point outside 

the feasible region may result in no feasible solution being found, even though 

feasible solutions may exist. Other starting points may lead to an optimal solution, 

but it is not possible to determine if it is a local or global optimum. Hence, the 

modeller can never be sure that the optimal solution produced using the model is the 

"true" optimum (Mardle and Pascoe, 1999). 

Conventional search techniques are often incapable of optimising non-linear 

multi modal functions. In such cases, a random search method might be required. 

Ultimately, the search procedure finds a set of variables that optimises the fitness of 

an individual and/or of the whole population. With this, the GA technique has 

advantages over traditional non-linear solution techniques that cannot always achieve 

an optimal solution. 

GA are most appropriate for complex non-linear models where location of the global 

optimum is a difficult task. It may be possible to use GA techniques to consider 

problems which may not be modelled as accurately using other approaches. 

Therefore, it appears to be a potentially useful approach. They do not use much 

knowledge about the problem to be optimised and do not deal directly with the 

parameters of the problem, GAs work with codes which represent parameters. The 

parameters to be optimised are usually represented in a string form since genetic 

operators are suitable for this type of representation (binary or integer representation 

method). 

Some ne\\ 1110dified models of genetic algorithms ha\'e been inn~stigated recently 

(PhaITI aIld Karaboga, 2000): these include: Hybrid Genetic ,\lgorithm, Cross 
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Breeding in Genetic Optimisation, GA with the Ability to Increase the 0:umber of 

Alternative Solutions and GA with Variable Mutation Rates. 

Additionally, in order to make the search operator more efficient, some modifications 

have been suggested (Davis, 1987): 

• Two Crossover Points: The chromosome can be perceived as a circle with the 

first gene immediately obvious that there can be in fact two crossover points: one 

fixed at position zero and the other randomly selected. An immediate 

generalisation to the present crossover operator is to allow both crossover points 

to be randomly selected. 

• Improved Crossover Implementation: The performance of a GA can be 

improved if the crossover is constrained to always produce variations whenever 

possible. This constraint can be implemented by simply restricting the location 

of crossover points. Crossover points are randomly selected for these reduced 

strings, and then mapped back into the original strings. 

• Variable Crossover Rate: The idea is to go steady with crossover until variation 

has been absorbed, and then introduce more variation by increasing crossover 

again. A good measure for predicting allele loss is percent involvement. It is 

possible that by changing the crossover rate in response to changes in percent 

involvement, performance is improved. 

When several criteria represented by the objective function are present 

simultaneously, the problem is said to be a Multi-Objective (MO) or multi-criteria 

optimisation problem (Goldberg, 1989). The majority of the engineering design 

problems are Multi-Objective, for the reason that there are several conflicting design 

aims which need to be simultaneously accomplished (Fonseca and Fleming, 1998 & 

Fleming and Chipperfield, 1998). 

A Multiple-Objective optimum design problem is solved in a sin1ilar way to the 

Single-Objective (SO) problem. In a SO problem, the idea is to find a set of val Lll'S 

for the design variables that yield (\\"hen subject to a nun1ber of constraints) an 
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optimum value of the objective/cost function. In MO problems. the designer tries to 

find the values for the design variables which optimise the objective functions at the 

same time, in this manner the solution is chosen from the so called Pareto optimal 

set; these solutions are generally in the boundary of the design region, or in the locus 

of the tangent points of the objective functions. 

In general, for Multi-Objective problems the optimal solutions obtained by individual 

optimisation of the objectives (SO optimisation) are not a feasible solution to the 

Multi-Objective problem. Nonetheless, Multi-Objective optimisation as a computer 

aided design technique is able to watch over all the various conflicting design goals 

individually, but still compromising them simultaneously. Some computer tools 

(like the MOPS Toolbox for MAT LAB Software) solve the problem by transforming 

the set of criteria into a weighted min-max optimisation problem, where the weights 

are chosen according to the demands (loos, 1999). 
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4.3. GENETIC ALGORITHMS APPLIED TO THE BEER FERMENTATIO?\ 

PROCESS 

In order to optimise the SIMULINK beer fermentation process modelled preyiously 

in Chapter 2, a new script file for MA TLAB containing the necessary instructions 

from the Genetic Algorithm Toolbox (Chipperfield et aI, 1994) haye been created. In 

this m-file some initial parameters needed in the GAs toolbox have to be defined, i.e.: 

number of individuals per subpopulations, maximal number of generations, bounds 

on decision variables, crossover and mutation rate, etc. Some specific routines can 

also be chosen andlor changed here, such as: selection, recombination and mutation 

function for individuals. Is important to note that for this optimisation no initial 

profile had been used as a starting point. An extended description of the functions 

from this Genetic Algorithm Toolbox has been included in Appendix A. 

The main objective function value (performance index) is obtained through the 

simulation itself by iterations between the SIMULINK model and the MA TLAB 

script. This process can slow down the acquisition of the results of the optimisation, 

but it has to be done in this way to be compared with the previous results obtained 

with the Gradient Method and the DISOPE algorithm. It includes the following 

terms: 

(2.24) 

(2.25) 

(2.26) 

If 

J.t = - f9.91 X 10-7 
. e(2.3l

oT)dt (2.27) 

o 

160 IT - TI 
J

5
=-L 1+1 I 

;=1 !J.t 
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These tenus combined to obtain a cost function of the process, which is included in 

the SIMULINK model of Figure 4.2: 

(2.29) 

r---------.I~~ 
In1 l-r----+II BEERFlJ'.J ~ mu Sum1 Xtotal 

S-Function '----__ .~ 

~ J1 

Ethanol 

g 
J4 ~ 

SumTotai J 

Diacetyl J3 

r--------+I~ - ~--------~ 
Spoilage Risk 0 II 

J2 

~0--+ ~ 1---+1 

Sum Gain Abs Dis::rete-Time 
Integrator 

lklit I::elay 
J5 

Figure 4.2 SIMULINK model "beernew" for the fermentation process 

A reduced SIMULINK model named "beer" has also been created, this model does 

not include the last term of the cost function (J5); this have been done trying to 

accelerate the optimisation with GAs and also see the effect on the temperature 

profile obtained. 

First tests have been completed with a low number of individuals and generations. 

The bounds of the decision variables have been set from 0 to 16°C according to 

previous experiences in the industry. The aim is to achieve a good value of the 

objective function and a good/smooth temperature profile, \\"ithout incurring in too 

much tilne involved for the optimisation. 
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No initial temperature profile has been used for the optimisation and different input 

parameter values have been used to see the effect that any change may produce. 

With this in mind, several runs have been made and good results have been obserYed 

in obtaining the input temperature profile desire for industrial application. 

The termination criteria for the optimisation of the simulated beer model using the 

GA Toolbox has been set by the total amount of generations required for every case 

considered. Thus, the total time required for every optimisation will depend 

basically on the number of individuals and generations allowed. This total time is 

considered to be an important factor in order to be used as a measure of comparison 

with the other techniques/methods used. With this, although GAs benefits are known 

to involve more computational effort than other techniques; it has been chosen 

appropriate due to the off-line nature of the optimisation required for the beer 

fermentation process. 

Every case considered using the same initial parameters has been optimised not one 

but three times; this has been done with the aim of selecting the best candidate 

temperature profile that provides the maximum objective function value from these 

three runs. Herewith, results have changed slightly (as expected) from one run to the 

other in the order of approximately 2-30/0 but nonetheless, the more significant 

improvements have been observed when these initial parameters are altered 

(different cases). 

These results are included with some of the initial parameter values used in Table 

4.2; in that order: Case number, number of Individuals, number of Generations, 

Generation Gap, SIMULINK Model used for the optimisation, Maximum 

performance index J value obtained and Total ime required. 

The final plots resulting from the application of the l1e\Y input profile obtained 

(Figures 4.3 to 4.14). Some functions and parameters remained unchanged for all 

cases: The Selection function used was roulette wheel selection, the Recombination 

function chosen \\'as double point crossover. the .\!u{u{ion rate was set by one 

divided by the number of decision variables (IINVAR), the Crosson'!' rate was fi\cJ 
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to 0.8 and the Minimum and Maximum boundaries were set to 0 and 16°C 

respecti vel y. 

Case Individual Generation Generation Model used Max. } Total time 

Gap value (hour ) 

1 200 200 0.7 beer 579.38 3.87~ 

2 300 200 0.8 beer 583.14 5.784 

3 300 250 0.7 beer 582.20 7.112 

4 500 250 0.8 beer 587.59 11.855 

5 600 200 0.8 beer 596.18 11.826 

6 750 250 0.8 beer 599.47 18.538 

7 1000 300 0.8 beer 601.06 29.731 

8 600 200 0.7 beemew 397.85 12.145 

9 800 250 0.7 beemew 460.62 21.375 

10 1000 300 0.7 beernew 457.28 29.411 

11 1500 350 0.8 beernew 528.99 53.590 

12 2000 400 0.8 beemew 541.77 89.324 

*Using a 800MHz CPU with 256MB RAM 

Table 4.2 Results obtained with GA for Cases 1 to 12 
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In order to show how the optimal profile is attained and the GA de elopment 

Figures 4.15 to 4.26 are included. For this purpose, the twelve cases ha e been 

presented to demonstrate how the maximum value of the Objective Function ha 

been achieved. 
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After analysing the initial results, further analysis has been made increasing the 

number of individuals. With this, it can be seen from the previous figures that an 

increment in the number of generations is not going to make a major improyement in 

the final performance value and can incur in a very long optimisation procedure. 

The need for a smoother solution in the optimised temperature profiles of the fIfst 

seven cases is also evident. After applying once more the penalty sub-function J5. 

for Cases #8 to #12, the new temperature profiles obtained show better silhouette but 

never reached a superior final cost function value. It is important to note that the 

computational time needed for the optimisation of these cases was considerably 

higher in order to achieve a good objective function value (in the order of days) and 

it will probably take weeks before a similar result (in value) to the one in Case #7 is 

achieved. This is the main reason why the optimisations with new and increase 

initial parameters have been concluded after Case #12. 

With the results obtained after the application of GAs for the optimisation of the 

fermentation process it can be seen that with more time spent in the simulation better 

results are reached. However, a large amount of time will be required in order to 

find an implementable input temperature profile to be used in the industry, 

consequently a different smoothing process should be used to improve and make 

them suitable for implementation. This has been done by means of average 

calculations for every 40 hours of the initial temperature profile obtained (fOUf in 

total). With these results, four new temperature values are obtained and placed in the 

midpoint of every average range. Horizontal lines from the previous point and 

straight lines to the next one have been linked to obtain a piece-wise linearisation. 

Another MATLAB script has been developed to achieve this purpose. 

Applying this method to the temperature profile obtained in Case #7 (Figure -L9). a 

new initial temperature profile for the beer simulation process can be found. Figure 

4.::27 shows the temperature profile obtained after smoothing the original from the 

optin1isation process. This improved profile can now be implemented for industrial 

application and the behayiour of the model paran1eters of the fermentation pnxcss 

achic\'cd can be seen in Figures 4.28 to 4.31. 
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With this new temperature profile the maximum objective function value obtained 

for Case #7 (601.06) has decreased to a new value of 589.7745: but still gi\'es and 

increment of nearly 14% if compared with the original value obtained in Chapter 2 

for the industrial temperature profile (518.90). 

However, even with these results a new approach to obtain a smoother temperature 

profile in less time without requiring an extra procedure after the optimisation is 

pursued. This has been achieved by means of changing the step size used for the 

fermentation time; this is, instead of one step/evaluation per hour, the total 

fermentation time is divided between the number of Decision Variables chosen (i.e. 

10 decision variables in a 160 hour fermentation provides one step/evaluation every 

16 hours). Table 4.3 summarises the scenarios for the cases considered. Once again 

the functions and parameters not included remain unchanged as in Cases 1 to 12. 

Case Indi viduals Generations Generation Decision Maximum Total time 

Gap Variables J value 
. ... 

(mInutes) 

A 100 50 0.6 5 596.94 28.721 

B 100 50 0.6 8 592.83 29.008 

C 100 50 0.6 10 588.12 28.930 

D 200 50 0.7 5 597.63 59.342 

E 200 50 0.7 8 596.03 59.8'+3 

F 200 50 0.7 10 596.58 59.135 

G 300 100 0.8 5 600.09 178.777 

H 300 100 0.8 8 600.11 176.1.+2 

I 300 100 0.8 10 596.77 175.933 

J 500 150 0.8 5 600.13 .+.+.+.007 

K 500 150 0.8 8 599.99 '+'+3.180 

L 500 150 0.8 10 599.18 '+'+0.389 

'Using an 800MHz CPU with 256MB RAM 

Table 4.3 New results obtained with GA for Cases A to L 

In order to assess the new obtained temperature profiles with the development of the 

petformance index, Figures 4.32 to 4.55 show the Objective Value (1) beside the 

T Profile attained for the best chromosome found for each Optimised emperature 

case. 
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Figure 4.48 J values for Case I 
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The temperature profile obtained from Case J gIves the mruumum alue of the 

objective function overall (600.13)~ this profile can then be used to repre ent the 

model equation state responses. Figures 4.56 to 4.60 represent the beha iour of the 

seven output parameters from the fermentation process modelled. 
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It can clearly be seen in this optimised temperature profile that no smoothing 

technique is required. This profile does not includes abrupt changes so that the 

industry can implement it in practice. This has been achieved thanks to just fiye 

decision variables (one step/evaluation every 32 hours) that produce small changes in 

the temperature profile. Thus, this makes the sub-function 15 small enough not to be 

so influential in the overall performance index value. 
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4.4 SUMMARY 

Genetic Algorithms have proved to be suitable in the optimisation of fermentation 

processes and no previous knowledge, such an initial temperature profile. has been 

necessary to obtain a satisfactory result. 

Previous work by Andres-Toro et al (1997b) in order to achieve a better profile for 

implementation have been acceptable and encouraging. The SIMULINK 

implementation described in this Chapter appears to be a useful and accurate 

representation of the model that was easy to interface with the Genetic Algorithnl 

Toolbox by Chipperfield et al (1994). In addition, a better objective function \'alue 

has been obtained with the Genetic Algorithm Toolbox for the optimisation of the 

beer process. Also a softer profile by parameterising and calculating average 

temperatures made results suitable for implementation in practice. 
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CHAPTER V 

SEQUENTIAL QUADRATIC PROGRAMMLYG (SQP) 

Optimisation by means of a Sequential Quadratic Programming routine is the main 

objective of this chapter. Constrained Optimisation of non-linear processes is 

introduced as part of understanding the principles surrounding this technique. 

MATLAB's Optimization Toolbox (Coleman et aI, 1999) is explained briefly and in 

particular how it deals with SQP. SQP is then applied to the fermentation process 

selected (with some changes to the original optimisation problem) and the results 

obtained are also presented. 

5.1 NON-LINEAR PROGRAMMING WITH CONSTRAINTS 

Non-linear optimisation problems have applications in chemical engineering, 

trajectory optimisation, mechanical structure design and many other areas. 

Optimisation problems with non-linear constraints are significantly more difficult to 

solve than unconstrained or linearly constrained optimisation problems. For 

instance, algorithms to solve inequality constrained non-linear problems may take 

many iterations and function evaluations, with each function evaluation being an 

expensive operation in some cases. Performance in practice can be measured by 

counting iterations, function evaluations, gradient evaluations and the computational 

cost of determining an iterate. 

The general aim in constrained optimisation is to convert the problem into an easier 

sub problem that can then be solved and used as the basis of an iterative process. A 

characteristic of a large class of early methods is the translation of the constrained 

problem to a basic unconstrained problem by using a penalty function for constraints. 

which are near or beyond the constraint boundary (Coleman et aL 1999). A \vide 

variety of mdhods haye been proposed for soh'ing constrained optimisation 

problems: these include reduced-gradient methods. penalty and barrier function 
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methods, methods based on augmented Lagrangians or projected augmented 

Lagrangians and SQP methods (Goldsmith, 1999). Some of these methods form 

quadratic approximations to composite functions of the objecti\'e function and 

constraints, this being the Lagrangian in the case of SQP methods. 

Quadratic Programming (QP) is the name given to the procedure that minimises a 

quadratic function of n variables subject to m linear inequality or equality. or both 

types, of constraints. A quadratic programming problem is the simplest form of non

linear programming problem with inequality constraints (Edgar and Himmdblau. 

2001). Each inequality constraint must either be satisfied as an equality or it is not 

involved in the solution of the QP problem, so that once the binding constraints are 

identified, the QP technique can reduce to a vertex-searching procedure examining 

the intersection of linear equations as in linear programming. 

A general Nonlinear Optimisation Problem (NLP) with inequality and equality 

constraints can be written as follows: 

mInImIse j(x) 

subject to glx) ~ 0, 

h/x) = 0, 

XEC 

iEI={I"",m} 

jEJ={l, .. ·,p} (5.1) 

where x E 91 n, C c 91n is a certain set andj, gI, "', gm, hI, .... hp are functions defined 

on C (or on an open set that contains the set C). I and J are index sets. The set of 

feasible solutions will be denoted by 3, consequently: 

3 = { X E C I glx) < 0, i = 1, .. ·. m and h/x) = O,j = 1. .... p } 

There is a large literature on necessary conditions for constrained optimisation 

problems, given in terms of various generalized derivatives, usually in the presence 

of additional constraint qualifications (Borwein et aL 1996; Coleman et al. 1999 and 

Ross ct aL 1997). 
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Methods for solving constrained nonlinear problems are based on seeking a point 

satisfying conditions that hold at a local minimiser. Essential to the understanding of 
~ 

these conditions is the Lagrangian L, a function in the variables x and the Lagrange 
..... '-

multipliers A, defined as: 

P m 

L(x,J-l,A) = I(x) + LJ-ljhj(x) + LA;g;(x) 
j=1 ;=1 

= I(x) + J-lT hex) + AT g(x) (5.2) 

The Lagrangian is used to express first-order and second-order optimality conditions 

for a local minimiser. The first-order optimality conditions are also known as the 

Karush-Kuhn-Tucker (KKT) conditions. The KKT theorem states that under certain 

constraint qualification conditions, the solution x * of the NLP is a stationary point of 

the NLP (known as a KKT point). The KKT point of the NLP is the point x for 

which there exist A E 9tm
, J-l E 9tP such that: 

(i) VLx(x,j.1,A) = 0 

(ii) hex) = 0 

(iii) * g(x ) ~ 0 

(iv) (A)T g(x·) = 0 

In general, the solution of the KKT equations forms the basis to many non-linear 

programming algorithms that attempt to compute directly the Lagrange multipliers. 

Constrained Quasi-Newton methods guarantee super-linear convergence by 

accumulating second order information regarding the KKT equations using a quasi

Newton updating procedure. These methods are commonly referred to as Sequential 

Quadratic Programming (SQP) methods since a QP sub problem is soh'ed at each 

111ajor iteration. SQP is also known as Iterative Quadratic Programming. Recursi\'e 

Quadratic Programming, and Constrained Variable Metric Methods. 

Sequential Quadratic Programming is one of the most effecti \'c methods for 

nonlinearly constrained optimisation; it can be used both in line search and trust

regIOn fran1eworks. and it is appropriate for small or large problems. l 'nlike 
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sequential linearly constrained methods, which are effectiye when most of the 

constraints are linear, SQP methods show their strength when solying problems with 

significant non-linearities. 

Most SQP methods are normally infeasible methods, meaning that neither the initial 

point nor any of the subsequent iterates need to be feasible (Nocedal and \\'right. 

1999). This can be advantageous when the problem contains significantly non-linear 

constraints, because it can be computationally expensive to stay inside the feasible 

region. In some applications, however, the functions that make up the problem are 

not always defined outside of the feasible region. 
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5.2 SEQUENTIAL QUADRATIC PROGRAl\I~II0;G 

The following general constrained non-linear programming problem 

considered: 

mInImIse I(x) x = [XI X2 
... Xn Y 

IS now 

subject to hj(x) = 0 j = 1,.··, p (5.3) 

g;(x) ~ 0 i = 1··· m , , 

The Lagrange function (from Equation 5.2) includes the objective function and 

equality and inequality constraints with the additional multipliers: 

p m 

L(X,J-i,A) = I(x) + LJ-ijhj(x) + LA;g;(X) 
j=1 1=1 

An optimal solution to the general problem must satisfy the Karush-Kuhn-Tucker 

(KKT) conditions for optimality described in the previous section. These conditions 

serve as the basis for the design of some algorithms and as termination criteria for 

others (Edgar and Himmelblau, 2001). Table 5.1 shows these optimality conditions. 

The necessary conditions for x' to be a local minimum of/ex) are: 

a) / (x), h) (x), gi (x) are all twice differentiable at x· 

b) The so-called "second-order constraint qualification" holds; the sufficient conditions for this 

requirement are that the gradients of the binding constraints (gi (x·) = 0), Vgi (x"), and thc 

equality constraints, V h) (x·), because h) (x") = 0, are linearly independent. 

c) The Lagrange multipliers exist; they do if b) holds 

d) The constraints are satisfied at x· 

I. ") (x") = 0 

2. gi (x·) ~ 0 

e) The Lagrange multipliers A/ (at x·) for the inequality constraints are not negati\c (Jij call be 

positi\e or negati\e) 

Ai" ~ 0 

f) The binding (acti\'e) inequality constraints are zero; the inacti\c inequality constraints all' > O. 
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and the associated A/ s are 0 at x * 

Ai*gi(X) = 0 

g) The Lagrangian function is at a stationary point 

VLx (x*, 1-/' A') = 0 

h) The Hessian matrix of L is positive semi-definite for those v's which ,.TV gi (x*) = 0, and 

i) vTV hj (x*) = 0, that is, for all the active constraints 

V
TV 2 [L (x*, ,./, A*)]V ~ 0 

The sufficient conditions for x* to be a local minimum are: 

j) The necessary conditions a), b) by implication, c), d), e), f), and g) 

k) Plus a modification of necessary condition h): 

The Hessian matrix of L is positive definite for these vectors v such that 

vTV gi (x*) = 0 } for the binding constraints 

v TVhj (x*) = 0 

vTVg; (x*) ~ 0 for the inactive constraints 

V
TV 2 [L (x*, 1-/' i,)]v > 0 

Table 5.1 The necessary and sufficient conditions for x* to be a local minimum of 

the general constrained non-linear programming problem. 

If the Newton's method for solving equations is applied to satisfy the Karush-Kuhn

Tucker necessary conditions for a non-linear programming problem containing only 

equality constraints, the Lagrange function is: 

L(x,,u) = f(x) + L,ujhj (x) 
j 

and accordingly, the Karush-Kuhn-Tucker necessary conditions are: 

V'L=V'f(x)+ L,ujV'hj(x) =0 
j 

(5.4) 

(5.5 ) 

Newton's method applied to the abo\'t: two equations (Eqs. 5.-+ and 5.5.) produces: 
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(5.6) 

In this case, J stands for the Jacobian matrix of the equality constraints. This system 

of linear equations is solved for Llx and !J.j.J. Powell (1978) showed that if ~y and J.,u 

satisfy the two linear equations, then they satisfy the necessary optimality of the 

following quadratic-programming problem to determine the search direction s: 

mInImIse 

subject to 

F(s) = sTVf(x) +~ST Bs 
2 

gj(X)+STVgj(X) < 0 

hj(x) + sTVhj(x) = 0 

i = 1, .... m (5.7) 

j = L ... ,p 

where B is a positive definite approximation of the Hessian matrix of the Lagrange 

function L(x}. The constraints are linearised constraints and the objective function is 

quadratic. If B is used instead of V2f(x} , super-linear convergence can be achieved. 

By including the inequality constraints in the Lagrange function these restrictions can 

be treated. However, the Hessian Matrix of the Lagrange function may not be 

positive definite; in this case B is used instead via a suitable updating formula such as 

the BFGS formula (developed by Broyden, Fletcher, Goldfarb and Shanno: and 

included in Powell, 1978) that requires only the first derivatiyes so that second 

derivatives do not have to be computed. 

In relation to the SQP implementation, two ways of applying the SQP method for 

solving the general non-linear programming problem can be taken into consideration 

(Nocedal and Wright, 1999). The first approach solves at every iteration the 

quadratic subprogram, taking the active set at the solution of this sub problem as a 

guess of the optimal active set. This approach is referred to as the IQP (Inequality 

constrained Quadratic Programming) approach, and has proyed to be quite successful 

in practice. Its main disadvantage is the cost of solying the general quadratic 

progran1, \\'hich can be high \\'hen the problem is large. As the iterates of the SQP 

l11ethod conycrge to the solution, however. soh'ing the quadratic sub prohlem 
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becomes very economical if information is been carried from the previous iteration 

to make a good guess of the optimal solution of the current sub problem. This is the 

case considered in Equation 5.7. 

The second approach selects a subset of constraints at each iteration to be the so 

called working set, and solves only equality-constrained sub problems where the 

constraints in the working sets are imposed as equalities and all other constraints are 

ignored. The working set is updated at every iteration by rules based on the 

Lagrange multiplier estimates, or by solving an auxiliary sub problem. This EQP 

(Equality constrained Quadratic Programming) approach has the benefit that the 

equality-constrained quadratic sub problems are easier to solve and require less 

sophisticated software: 

mInImIse 

subject to 

STV!(X) + ~sTBs 
2 

gj(x) + sTVgj(X) = 0 

hi ( X ) + S T V h j ( x) = 0 

(5.8) 

j = 1, ... ,q 

where q is the number of active inequality plus equality constraints (linearised at 

x(k)). 

The main difference in the two procedures is that in the EQP solution the set of 

active constraints is unknown so that an active set strategy must be determined by an 

additional procedure. Usually, the active set of the IQP predicts correctly the actiYe 
• 

set of the non-linear programming problem itself in the vicinity of x for any 

bounded positive definite B. Also, the Lagrange multipliers move towards the 
• 

multipliers of the non-linear programming problem as x ~ x . 

A relationship exists between the EQP sub problem to get s and a penalty function P. 

The essential idea of this penalty function P is to transform Equation 5.3 into a 

problen1 where a single unconstrained function is minimised (Edgar and 

I Iil11111elblau, 2001): 
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mInImIse 

subject to 

I(x) 

hex) = 0 

g(x) < 0 

~ minimise P(! h, g) 

For the particular case of the EQP considered, this penalty function can be redefined 

including a scalar weight r as the penalty factor. As long as the value of the penalty 

is zero at the solution x *, the solution is P (x *) = I (x *) as wanted. Hence Equation 5.9 

can be defined as: 

~ 

1 ~ "-
P(x,r) = I(x) +_h T (x)h(x) 

r 
(5.9) 

where h( x) designates the vector of all the equality constraints plus the acti \'c 

inequality constraints. As a result of the relationship, the zeros of the set of 

constraints in Equation 5.8 might be replaced by (-Y2rAj), where the AJ are 

approximations of the Lagrange multipliers; similarly the zeros of the set of 

constraints in Equation 5.7 might be replaced by (-Y2rAj)' Tests on problem sets 

indicate that this replacement improves the performance of the EQP algorithms. 

Consequently, the equality quadratic-programming sub problem for one stage k (the 

superscript k is suppressed) becomes: 

mInImIse 

subject to 
r "-

AS=--A-h(x) 
2 

where A = [2 . . . Am y, X = [XI ]{ [ ... xn . S = s) 

(5.10) 

... S J', and A is the 

Jacobian matrix of the active constraints (the row a 1 = \,jTg lor \;T h)). The \ector of 

estimates of the Lagrange multipliers is given by the solution of m equations (equal 

to the nun1ber of active constraints): 
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(5.11) 

and the solution can be written explicitly as: 

1 [ l' ] s=B- A A-Vf(x) (5.12) 

An especially useful feature of formulation of Equation 5.10 is that for r > 0, the 

Lagrange multipliers A and the search direction s are defined e\'en if linear 

dependence exists among the rows of A. The recursi\'e EQP algorithm just requires 

for satisfactory search that r at each stage k satisfy the following inequality 

(Bartholomew-Biggs, 1982): 

r "1' "/''' 
--h x(/L) - h (x)h(x) ~ 0 

2 
(5.13) 

" The inequality Equation 5.13 means that h(x)As ~ 0 because of the constraints in 

Equation 5.1 0, and therefore s is in a direction along which the active constraint 

violation is not increasing. 

When the search direction has been established by solving the quadratic 

programming sub problem, a minimisation algorithm must be used to calculate a step 

size in the search direction. Various kinds of line searches have been employed in 

which a quadratic-loss penalty function is the objective function, others use the exact 

penalty function, while others use the Lagrange function or an approximation (Edgar 

and Himmelblau, 2001). 

To ensure that the SQP method converges from remote starting points, it is common 

to use a merit function to control the size of the steps (in line search methods) or to 

determine whether a step is acceptable and whether the trust region radius needs to 

be modified (in trust region methods). It plays the role of the objecti\"l~ function in 

unconstrained optimisation. since each step pro\'ides a sufficient reduction in it. 



Although the merit function is needed to induce global convergence, interfering with 

the "good" steps (those that make progress toward a solution) is not wanted. 

Some merit functions can delay the rapid convergence performance of SQP methods 

by rejecting steps that make good progress toward a solution. This undesirable 

phenomenon is often called the Maratos effect (Nocedal and Wright. 1999). If no 

measures are taken, the Maratos effect can dramatically slow down SQP methods. 

Not only does it interfere with good steps away from the solution, but it can also 

prevent super-linear convergence from taking place. 

Three important considerations when choosing an appropriate merit function for an 

algorithm are: 

1. Choosing step lengths based on the merit function should lead to global 

convergence. 

2. It should be possible to achieve sufficient decrease in the merit function gi\'en 

the search direction defined by the sub problem. 

3. The merit function should not inhibit the rate of convergence. 

Popular choices for the merit function with the SQP method include the absolute 

value merit function (which can be considered an exact penalty function) and the 

augmented Lagrangian merit function (created by augmenting the Lagrangian with a 

new term that disappears at x *). Both of these use penalty parameters, and the choice 

of a particular penalty parameter can have a substantial effect on efficiency. 

SQP methods, under suitable assumptions, show favourable local con\'t~rgence 

properties. When B closely approximates V 2xL(x,.,.i) , the QP sub-problem generates 

the Newton direction (Goldsmith, 1999). If unit steps are taken and the method 

converges, a quadratic asymptotic rate of convergence arises. If approximations are 

used in place of exact second derivatives, the steps taken are no longer \:ewton steps, 

and the convergence rate may deteriorate. \\'hen an inexact Hessian approxi mations 

is used, the infeasibilities tend to zero faster than the reduced gradient converges to 

zero (ll1caning that feasibility is reached faster than optimality). 
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To assure a unique minimiser for the sub-problem, some SQP methods require the 

QP Hessian to be positive definite. This requirement interferes with the effective use 

of exact second derivatives. A further difficulty with exact second deriyatiYes is that 

in many cases they are either unknown or too computational expensiye. In practice 

the Hessian of the Lagrangian is often approximated from the first deri Yati yes using a .... 

quasi-Newton approach that produces a positive-definite matrix. 

Problems for real applications are often large, but sparse in terms of the number of 

variables appearing in any single constraint or the number of variables appearing in 

any single constraint or the number of constraints involving any single yariable. 

Methods have been developed to reduce the storage and effort required to handle 

large-scale problems, including limited-memory methods, reduced Hessian 

approximations, sparse quasi-Newton approximations, and partial separability. 

Most SQP algorithms have been developed for positive-definite Hessian 

approximations as previously defined. Nonetheless, some recent research allows 

indefinite Hessian approximations but terminates QP sub-problems at the first 

stationary point with a descent direction formed from negative multiplier estimates 

(Gill et aI, 2002). Some other research by Goldsmith (1999) proposes disaggregation 

of the Hessian approximation, by means of individuals Hessians and form the 

weighted sum. This last approach is an application of the partial separability to 

quasi-Newton approximation of the Hessian of the Lagrangian; it has shown several 

advantages for sparse problems. 
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5.3 SQP IMPLEMENTATION IN :"1:-\ TLAB 

In SQP, Newton's method for constrained optimisation is simulated just as it is done 

for unconstrained optimisation (Biggs, 1975 and Han, 1977). The rvlATLA.B SQP 

implementation comprises three main stages, which are discussed in the Toolbox 

User's Guide (Coleman et aI, 1999) and are briefly introduce in the next sub sections. 

5.3.1. Updating The Hessian Matrix of the Lagrangian function 

It is known that the quasi-Newton approach was originally developed for 

unconstrained and linearly constrained optimisation. Thus. for nonlinear constrained 

problems, the Hessian of a composite function including the objective function. 

constraint functions and Lagrange multipliers needs to be estimated. F or this 

purpose, at each iteration, a positive definite quasi-Newton approximation of the 

Hessian, H, is updated using the BFGS method (PowelL 1978) mentioned in the 

previous section. It can be seen that this update depends on the gradient difference 

of the Lagrangian qk, which is a function of Xk; in addition, Ai is an estimate of the 

Lagrange multipliers and Sk is the search direction. 

(5.1'+) 

where 

To calculate qk accurately, it is necessary to decide which multiplier estimates to use 

at each iteration. Powell (1978) emphasized the importance of maintaining positi\\.~ 

definiteness in quasi-Newton methods for constrained optimisation e\en if it may he 

positive indefinite at the solution point. \\"ith this in mind. a positive defini1l' 

Hessian is maintained providing qkTsk is positive at each update and that II is 

initialised with a positi\'e definite matrix. COI1\·ersely. \\'hen qJcT\Jr. is not positi\\.~. (jk 

is n10dified on an elen1ent by element basis Sl) that q/\'~ > O. 
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Accordingly, for the initial stage of the variation, the most negati\c element of q kS ,,- is 

continually halved. This course of action carries on until qkTsk is greater than or 

equal to a set value of lxlO-
5 

(considered to be a sufficiently small parameter). The 

second stage initiates if after this method, q/Sk is still not positiye. Then, qk is 

modified by adding a vector v mUltiplied to a constant scalar 11' that is anal)1ically 

increased until qkTsk becomes positive. As a result, the following equations can be 

formulated: 

if (q k)i . W < 0 and (q k)1 . (s k)i < 0 (i = 1, ... , m) 

then Vi =Vg/(Xk+I)·g,(Xk+I)-Vg/(Xk)·g;(Xk) 

or else Vi = 0 

(5.15) 

The functions in MAT LAB that use SQP (in Version 5.2: fmincon, fminimax, 

fgoalattain and fseminj) and thus this procedure for updating the Hessian matrix~ can 

display information on whether the Hessian has to be modified using the first or the 

second stage of the procedure to maintain it positive definite (by displaying Hession 

modified and/or Hessian modified twice respectively). It is also possible to obtain a 

message of no update meaning only that q/Sk is almost zero. 

5.3.2. Quadratic Programming Problem Solution 

The general Nonlinear Optimisation Problem (NLP) from Equation 5.2 can now been 

simplified as an Inequality constrained Quadratic Program (IQP) (considering bound 

constraints expressed as part of the inequality constraints). Once more L is the 

Lagrangian in the variables x, Ai are the Lagrange multipliers,f and gj, "', g"" are all 

defined functions and m is the total number of constraints. 

III 

L(x. A) = f(x) + L>i; . gi (x) (5.16) 
1=1 
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Herewith, this approximation is used to generate a QP sub problem \yhose solution is 

used to form a search direction for a line search procedure. The main idea is the 

formulation of a QP sub problem based on a quadratic approximation of the 

Lagrangian function. 

By means of linearising the non-linear constraints the QP sub problem can then be 

attained. This QP sub problem can be defined as follows: 

mInImIse 

mInImIse (5.1 7) 

subject to i = 1 ... . ,me 

. - + 1 1 - me , .. . ,m 

where d E 91n and is the search direction from the QP sub problem, Hk is the positive 

definite approximation of the Hessian matrix of the Lagrangian function and C=vj(Xk) 

is the gradient of the function! evaluated at Xk. Ai is an element of matrix.-i which is 

an estimate of the active constraints and hi are the constraint boundaries. Ultimately, 

me is the number of equality constraints and m is the total number of constraints 

(equality and inequality constraints collectively). 

The method used in MATLAB's Optimization Toolbox is the projection method 

similar to the one described by Gill et al (1991). This active set strategy has been 

modified for both Linear Programming (LP) and QP problems. The also called null

space active set methods are an efficient way of solving positive definite QP 

problems when the dimension of the null-space is not too large (:S 1000). It can he 

described as follows: 

(i) A linear programming problem is soh'ed to determine an initial feasibk 

point. If the CUITent point from the SQP method is not feasible. then a point can 

be found by soh'ing the linear programn1ing problem: 
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mInImIse r 
A.x=b. 

1 1 i = 1, ... ,me (5.18) 

A.x-r<b. 1 - 1 i = me + 1, .. . ,m 

where Y E 91, x E 91
n

.. A feasible point (if one exists) to the previous equation 

can be found by setting x to a value that satisfies the equality constraints. This 

can be achieved by solving an under-or-over determined set of linear equations 

formed from the set of equality constraints. If there is a solution to this problem. 

then the slack variable ris set to the maximum inequality constraint at this point. 

(ii) An iterative process is then started whereby at each iteration, a step is taken 

from the current position toward the optimal solution. With this techniqut? an 

active set Ak is kept, which is an estimate of the active constraints and bounds at 

the solution point. This active set is updated at each iteration, k, and this is used 

" 
to form a basis for a search direction d k' Variables whose bounds are in the 

active set are called fixed and the others are called free. The method proceeds to 

move to a constrained stationary point of the QP by holding the fixed set of 

variables constant and temporarily ignoring the other bounds. 

" 
(iii) In each of these iterations, the search direction dk is calculated to minimise 

the cost function while remaining within the active constraint boundaries. The 

feasible subspace for d k is calculated from a Z k which is basis for the null space 

of the rows of the active set A k. In consequence, a search direction which is 

formed from linear summation of any combination of the columns of Z k' is 

guaranteed to remain on the boundaries of the active constraints. Having found 

Zk' a new search direction dk is sought that minimises q(d) where dk is in the 

null space of the active constraints, that is. dk is a linear combination of the 

colunlns of Zk : dk = ZkP for some vector p. The quadratic can be seen as a 

function of P substituting for dk in Equation 5.17. so that: 
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(5.19) 

This equation can differentiated with respect to p to obtain: 

(5.20) 

In this Equation 5.20 Vq(p) is the projected gradient of the quadratic function 

because it is the gradient projected in the subspace define by Zk' The term 

Z k T HZ k is then called the projected Hessian. Subsequently, the minimum of the 

function q(P) in the subspace defined by Z k occurs when V q(p) = 0, \\hich is 

the solution of the system of linear equations. 

(iv) The active set of constraints is updated at every iteration. A step is then taken 

according to the following formula: 

" T 
where dk = Zk P (5.21) 

Because of the quadratic nature of the objective function, at every iteration there 

" 
are only two choices of step length a. If the solution of d k to the EQP problem 

in equation 5.1 7 is feasible with respect to all the bounds, the full step of length 

one is taken and a stationary point is reached for the QP. If not the maximum 

" 
feasible step with respect to the bounds is taken along the search direction dk • 

This sequence repeats until the full step is taken. At the stationary point if for 

any bound there exists a negative Lagrange multiplier, the associated bound is 

dropped from the working set and the procedure starts over. If all the multipliers 

are positive, then the algorithm stops. On the other hand, if the QP is feasible 

and has no degenerate vertices, this process terminates in a set number of 

iterations. 
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5.3.3. Line Search and Merit Function Calculation 

Line search methods attempt to maintain a fast local convergence by limiting the size 

of the step taken from the current point to the next iterate (see Equation 5.21). 

Nevertheless, maintaining feasibility at every iteration becomes difficult for 

nonlinear constraints and it is not inmediately obvious how to choose the step length 

parameter ak. The aim is that the next iterate minimises the objective function and 

also reduces the infeasibilities of the constraints. To ensure that improvement is 

made towards the solution, a merit function can be used to measure whether one 

point is better than another. In MATLAB, a merit function If{x) used by Han (1977) 

and Powell (1978) has been implemented and it is defined by: 

l1Ie III 

fj/(x) = f(x) + Lrj . gj(x) + Irj . max{ O,gj(x) } (5.22) 
j=1 

Then the penalty parameter ri can be calculated as: 

(5.23) 

This penalty parameter allows positive contribution from constraints that are inactive 

in the QP solution but were recently active. For this purpose, the penalty parameter 

ri is initially set using the Euclidean norm IHI as follows: 

r = 
I 

(5.2'+) 

Thus, larger contributions to the penalty parameter from constraints with smaller 

gradients can be assured. 
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5.4 SQP FOR OPTIMAL CONTROL OF BEER FERMENTATIO?\ 

The selected beer fermentation mathematical process modelled in SI\lGLr\K. has 

been modified in order to be part of the optimisation using SQP \\"ith the help of th~ 

Optimisation Toolbox from the MATLAB Software (Coleman et aI, 1999). It is 

important to note that MA TLAB' s Optimisation Toolbox offers a range of 

possibilities for optimal control. Other optimisation methods ha\'e been implemented 

by using different functions from the Optimisation Toolbox and consequently 

changing the mathematical model to incorporate the particular algorithnl 

requirements. This has been done in order to optimise the fermentation process 

using an appropriate and beneficial technique. 

In order to deal with the bound constraints that the beer fermentation problem 

requires, a simple transformation mentioned by Noton (1972) has been used. This in 

order to convert from a constrained to an unconstrained optimisation problem and 

thus, being able to use the functions from the MATLAB Software. Considering 

simple boundaries of the form: 

where Li and Vi are vectors that include the lower and upper boundaries respectively 

and Xi is the vector of variables to be optimised. 

These boundaries can now be included into a new optimisation variable Xi using the 

following equation: 

This optimisation variable has been included in the optimisation routine (script tile) 

and the optimisation of an unconstrained problem can be pursued. 

Herewith. t\\"o different script files ha\'e been created to include the unconstrained 

nonlinear maxinlisation functions: /millsearch and /111iIlIlIlC. The jinin\ellrch 
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function, attempts to find the maximum of an unconstrained multiyariable function 

starting at an initial estimate, by means of the simplex search method (does not uSe 

numerical or analytical gradients). The next functionfininunc uses an initial estimate 

too, but also requires the gradient of the objective function to be defined: this is a 

subspace trust region method based on the interior-reflective Newton method. 

Nonetheless, the experimentation with these functions did not proyide any 

satisfactory results so it was disregarded as an appropriate tool for optimising the 

fermentation model simulated. Presumably the reason for this due to the high non 

linearities of the process equations and the algorithms not been suitable for this 

process optimisation. With this, the computer always presented an error after just a 

few iterations of the optimisation run. 

Another MATLAB function for scalar nonlinear minimisation with bounds,/minblld 

(also used in Chapter 3), has been tested for the optimisation of the complete 

problem. This function aims to find the minimum of a function of one variable on a 

fixed interval; for this purpose upper and lower bundaries of 0 and 16°C have been 

included. Once again, no satisfactory results were obtained using this technique. 

The complete justification of this behaviour is still not completely understood but the 

use of these other functions was stopped since the results using the SQP function 

jmincon were very optimistic. 

Subsequently, a MATLAB script file (m-file) that includes the necessary instructions 

for the optimisation algorithm to identify the objective function and also that obtains 

the final objective value is created. The simulated model includes the five terms of 

the objective function to be maximised. Lower and upper boundaries of 0 and 16°C 

correspondingly have been set for the temperature values. The preset duration of the 

fermentation process formulates the equality constraints: initial time to (0 hours) and 

final time tf ( 160 hours). The remaining inequality constraints have been added so 

the coordinate points for the time values are ahvays greater than the pre\ious nne but 

smaller than the next one. To achieye this. three intermediate times (t /, (2 and I J) 

have been set in order to be found by the SQP optimisation routine. The reason 

being that a smooth profile is pursued and selecting three parameters has been a 

sufficient choice in earlier chapters. 



maXImIse 

If 

J = lO'eend -5.73xIO-8 ·e(95.diaceIJd ) -1.16xlO-29 ·e(46.acelend ) _ f9.91xlO-7 .e(~31.T)dt_ I'T,-I -Ti 
o ;=1 J.! 

subject to 

to =0 

The SIMULINK model includes an input port that allows the optimisation algorithm 

to interact and change the input temperature profile; thus, reaching a maximum value 

of the objective function that is already included in the SIMULINK model. It is 

important to note that interpolation between coordinate points can be selected inside 

this input port. Figure 5.1 shows this model. 

Inport 

000 

SumTotal 

Unit Delay 

Figure 5.1 SIMULINK model used for the SQP optimisation 

Subsequently, a new MATLAB script file called "simfunsqp.m·' that includes the 

necessary instructions for the optimisation algorithm to identify the objL,cti\e 

function and also obtains the final objecti\'e \'alue is created. :\l1other m-fik 

"beersqp.m" including the optimisation script some initial and function parameters 

is also formed: this file is the responsible to call the "fmincon.m" m-file from 

MA TLAB's Optin1ization Toolbox that performs the SQP optimisation and calb 

uther required n1athen1atical functions/resources. 
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Different tests have been performed in order to see the effect of changing the default 

parameters of the minimisation function to the output variables of the fermentation 

process. Table 5.2 shows the default values used by the SQP algorithm under the 

MA TLAB toolbox. 

Parameters 

MaxIter 

TolCon 

TolFun 

TolPCG 

TolX 

DiffMaxChange 

DiffMinChange 

Value 

400 

IxIO-6 

Ixl0-6 

0.1 

IxlO-6 

1 xl 0-1 

IxIO-8 

Description 

Maximum number of iterations. 

Termination tolerance on the constraint violation. 

Termination tolerance on the function value. 

Termination tolerance on the PCG iteration. 

Termination tolerance on X. 

Maximum change in variables for finite difference gradients. 

Minimum change in variables for finite difference gradients. 

Table 5.2 Default parameters used by the Optimisation Toolbox 

Some of the most relevant parameters needed for the optimisation function have been 

changed from its original values in the SQP algorithm after some experimentation. 

These new values included in Table 5.3, provide a solution that can be reached in 

less time and still maintain a good performance value of the objective cost function. 

Parameters 

LB 

UB 

MaxIter 

TolCon 

TolFun 

TolPCG 

TolX 

DiffMaxChange 

DiffMinChange 

Value 

0 

16, 160 

100 

1 x 1 0-4 

1 xl 0-4 

0.01 

1 x 1 0-4 

1 xl 0- 1 

1 x 1 0-5 

Description 

Lower boundary vector for the temperature profile and time. 

Upper boundary vectors for the temperature profile and time. 

Maximum number of iterations. 

Termination tolerance on the constraint violation. 

Termination tolerance on the function value. 

Termination tolerance on the PCG iteration. 

Termination tolerance on X. 

Maximum change in \ariables for finite difference gradients. 

Minimum change in variables for finite differcncc gradients. 

Table 5.3 Changed parameters used for the SQP optimisation 
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In order to obtain a better optimisation with SQP and after several tests with different 

combinations of parameters, five temperature values corresponding to five different 

times have been set to be optimised. The first and the fifth of these time parameters 

have been fixed to the initial and final times of the fermentation process (0 and 160 

respectively), and also used as boundaries for the remaining time values. 

Ten initial values have been selected as the initial guess for the optimisation 

algorithm. The industry's temperature profile has been chosen for the first test; 

hereafter, different constant temperature profiles have been used. 

In order to show a summary of the optimisation and simulation with SQP, the 

following Table 5.4 is presented; it includes respectively: the Case examined 

(Industrial Profile first and then constant temperature values), the total amount of 

iterations required for the optimisation, the final cost function J value obtained, the 

final step size used in the last iteration and the total computational time required for 

the optimisation. 

With these results it can be said that even without any previous knowledge of the 

simulated process itself, by means of an assumed initial temperature profile; the SQP 

algorithm performs a satisfactory optimisation of the process reaching a good level 

of maximisation in not many iterations. The computational time used varies 

depending on the first guess included for the algorithm, however, the optimisation 

still achieves approximately the same performance index value at the end regardless 

of which initial temperature profile have been used. 

Total 
J value Final Step size 

Computational Time 
Case 

Iterations required" 

1 (J.P.) 36 599.207 0.5 3.009 

2 (3°C) 59 599.632 4.654 

3 (.t°C) 56 600.2 1 3.968 

.t (7°C) 45 600.199 0.0156 3.338 

5 (8°C) 71 600.201 5.036 

6 (9°C) 28 600.20.t 2.047 
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7 (11 °C) 29 600.204 1 2.19 

8 (12°C) 34 600.201 1 _.513 

9 (14°C) 40 600.197 1 3.303 

10 (16°C) 53 600.194 -6.10E-05 4.049 

' Computational time in minutes using an 800 MHz CPU peed and 256MB RAM PC 

Table 5.4 Results of the optimisation with SQP for Cases 1-10 

The next results are a review obtained for the best situation considered, Ca e #6: 

The initial temperature profile has again been set constant to 9° Centigrade along th 

entire fermentation process and interpolation is required to obtained the optimi ed 

profile. Figure 5.2 illustrates these temperature profiles. 

Initial Profile (dotted) and Optimised Profile (solid) 
16 -----
14 -----
12 

10 
- - - t +- .. 

() 8 
0 

6 

4 

2 

0 60 80 100 120 140 160 
0 20 40 

Hours 

Figure 5.2 Initial and Optimised Temperature Profile for C e #6 

The final results of the optimisation are included in Tabl 5.5: 

Table 5.5 Re ult fr m th ptimi ati n f th a c # 
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In this occasion, the Hessian was modified once only in one instance during iter ti n 

26th during the optimisation of Case #6; the maximum alue for the dire ti nal 

derivative reached was -326 at the 1 Sl iteration and six different step- ize \\ere u ed 

along the entire optimisation, with the final one being 1. 

The development of the SQP algorithm shown in Figure 5.3 include the iterati n 

number (Iter) versus the objective function value (f(x)). 

f(x) vs. Iter 

-430 

\ -450 
Q.I \ ::J 

-470 «l 

\ > 
c: -490 
0 - -510 () 
c: 
::J 

----u. -530 
Q.I 1 > - -550 

~ ~ 
:c -570 
0 \ -590 • • .. • • .. .. • • .. .. .. .. .. • .... -. • • .. .. 

-610 -

'1.- ~ <0 co ,<::> ,'1.- ,~ ,<0 ,co ~ c{Y ~ ~ I ~ 
I ~'lj 

Iteration 
~ 

Figure 5.3 Development of the SQP algorithm for Ca e #6 

With the new temperature profile applied to the simulated model of the f nn ntati n 

process, the behaviour of the differential equation ' parameter can b r d in 

Figures 5.4-5.7. 
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Figure 5.4 Suspended Biomass behaviour for Ca e #6 
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Figure 5.5 Sugar and Ethanol Concentration f r C e #6 
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Figur 5.6 th 1 n ntratl n r r J # 
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Figure 5.7 Diacetyl Concentration for Case #6 

With the industrial temperature profile a maXImum objective function value of 

518.90 has been attained in chapter 2: this value compared with the ma.ximum 

achieved after the optimisation with the SQP algorithm of 600.:20 .. 1-, gl vcs an 

increment in excess of about 16% in the objective function value after thc 

optimisation using the SQP algorithm. 

After these results and knowing that the initial profile for Case #6 (a constant 

temperature of 9°C) has demonstrated to be a suitable initial guess for thc SQP 

algorithm; the same procedure can be carried out using different number of 

intermediate points. Seven new cases have been considered: zero, one, two, four, 

five, six and seven intermediate points (in that order). It can be said that more than 

seven intermediate points has not been considered given that the temperature profile 

obtained would be very discontinuous to be implemented in practice and hencc no 

improvement is expected from this. 

A summary of the optimisation results for Cases A-G using the SQP algorithm can 

be seen in the following table 5.6: it includes respecti\cly: the Case c.xarnincd. the 

number of intermediate points required (to produce the inequality con\tr~l111ts 

considered), the total amount of iterations used in the optimisation. the final (U"t 
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function J value obtained, the final step size used l'n the last ' t t' d h 
1 era IOn an t e tot 

computational time for the optimisation. 

Case Intennediate Total Final Step Computational Time Points Iterations J value 
Slze Required 

A 0 8 599.174 1 O. 6 
B 1 21 599.875 1 1.4_6 
C 2 33 600.201 0.5 _.51 
D 4 45 600.201 1 5.145 
E 5 40 600.203 -6. lOE-05 5.4 5 
F 6 53 600.204 1 7.964 

G 7 53 600.204 0.125 6.914 

*Computational time in minutes using an 800 MHz CPU peed and _56MB RAM P 

Table 5.6 Results of the optimisation with SQP for Ca e A-G 

Together with this, the best results obtained with case F ha e been included a 

follows: 

For Case F the initial temperature profile has once again been et on t nt to 9° 

along the entire fermentation. Nonetheless, in this ca e six intermediate point ar 

needed. Figure 5.8 shows the initial and final temperature profile. 

The final results of the optimisation are included in Table 5.7: 

Table 5.7 Results from the optimi ation of the ea F 

For Case F, the Hes ian was modified nc in f ur a i n dun n th nll r 

optimi ation (iterati n 41 t 50th
, 51 t and 5 rd): th rna irnurn valu r a h d h th 

directi nal deli ati e wa -367 at th 1 literati n and a t tal f t n i 1'1' r nt l p-

ize w re udal ng the entir ptimi ati n, in ludino th fInal \ alu 1. 
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Figure 5.8 Initial and Optimised Temperature Profile f rea F 

The development of the SQP algorithm shown in Figure 5.9 include the ilerati n 

number (Iter) versus the objective function value (f(x». 
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It can be seen from these results that the best optimised temperature profile is still 

Case #6 from Table 5.4. This due to the fact that although the maximum J yalue 

reached in Table 5.6 is equivalent to the previous value obtained~ the temperature 

profile itself cannot easily be implemented in practice because of the uneYen 

characteristics that it presents. 
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5.5 SUMMARY 

The SQP Toolbox from MATLAB which makes use of the Sequential Quadratic 

Programming Optimisation Algorithm, has proved to be a practical and useful tool 

for the optimisation of the mathematical model of the beer fermentation process 

selected. The results obtained in this chapter with the SQP optimisation. have 

surpassed the perfomance index valuess and computational time previously achieved 

with the other optimisation procedures. 

The optimised temperature profiles obtained with the Sequential Quadratic 

Programming algorithm are suitable for implementation in practice according to 

previous knowledge in the literature. The computational time used by the 

optimisation algorithm varies depending on the first guess used for the algorithm. 

however, the SQP algorithm still reaches approximately the same J value at the end 

despite the initial temperature profile applied. 

Further work can to be carried out using different non-linear optimisation techniques 

to see the feasibility of similar and/or more advanced algorithms to solve this or 

similar mathematical models of fermentation processes. 



CHAPTER VI 

FINAL REMARKS 

Optimal control techniques and different optimisation algorithms for batch beer 

fermentation processes are the motivation of this thesis. 

Fermentation processes in general have been examined in chapter 1 but focus has been 

made to beer fermentation and the factors that affect this kind of procedure. :\ 

comprehensive foreword in relation to the by-products of beer fermentation has abl) 

been included. A brief introduction about the history of beer control has been re\iewed 

as well, trying to notice its progress with time. After that, old and new optimisation 

algorithms have been presented with detailed explanation of the methods and techniques. 

Some approaches been used to model different kind of fermentation processes have been 

included in chapter 2. Together with this, a few basic mathematical equations aiming to 

model the fermentation behaviour have been included in order to show how simple or 

complicated fermentation processes could be. Hereafter, emphasis has been made on 

beer fermentation for batch processes; and the typical relationships that are part of basic 

modelling approximations are presented. The use of mathematical models for real 

fermentation processes and the different ways to implement them has been incorporated. 

The kinetic model developed by Andres-Toro et al (1998) has been introduced and 

simulated. Some parameters and equations have been taken from the original research 

and some others have been changed in order to obtain effective performance. Thus. this 

model has been replicated in SIMULINK under the MA TLAB environment to be part 0 r 
the optimisation techniques to follow in the next chapters. Simulation results have been 

compared against the original/real process state responses in order to obtain a model that 

behan~s as accurately as possible following a real estimate of the industrial fermentation 

process. 

\Vith the help of the basic principles of the DISOPE algorithm. originally Crom work by 

Roberts (1993). and some other modifications made to adjust it to the simulated prl)\.·es~ 
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the optimisation of the process has been pursued in chapter 3. The ~linimum Principle 

has been applied to a reduced situation of the fermentation process in order to obtain the 

Hamiltonian as an alternative for optimal control. An associated technique, the Gradient 

Method 1n Function Space, which 1S essentially a direct method of 

minimisation/maximisation of the Hamiltonian, has been applied. The maximisation of 

the defined objective function, for three different cases has lastly been presented using 

these two optimisation algorithms. 

The Genetic Algorithms as a stochastic technique have proved to be suitable in the 

optimisation of fermentation processes and no previous knowledge, such an initial 

temperature profile, has been necessary to obtain a satisfactory result. The SIMULINK 

implementation described in chapter 4 is a flexible way to represent the mathematical 

model and was easy to interface with the Genetic Algorithm Toolbox by Chipperfield et 

al (1999). With this, a superior cost value function and a softer profile have been 

obtained by means of calculating average temperature values between specific time 

steps; thus making the results suitable for practical implementation. Hereafter. a 

decrease in the number of the decision variables for the optimisation algorithm has 

meant a reduction in the computational cost and has also made the resulting temperature 

profile useful for industrial applications. 

The optimised temperature profiles obtained with the Sequential Quadratic 

Programming algorithm in chapter 5 are considered to be suitable for implementation in 

practice, without much time required for the optimisation procedure. Herewith, the 

computational time used by the optimisation algorithm varies depending on the first 

guess used for the algorithm. Nonetheless, the SQP algorithm reaches approximately the 

same performance index value J at the end, despite the initial temperature profile 

applied, and also incorporates the overall maximum value achie\'ed if compared to the 

other optimisation techniques. 
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6.1 COMPARISON OF THE METHODS REVIE\\TED 

With all these in mind, a more exhaustive companson of these techniques for the 

optimisation of the beer fermentation process selected is pursued. As a starting point. a 

summary of the best results obtained with each optimisation algorithm have been 

integrated in Table 6.1. With this, the temperature profiles for each technique can be 

seen in Figures 6.1-6.6 and Table 6.2 has been created. 

Table 6.1 shows a summary of the results obtained with the different optimisation 

techniques considered in the thesis. Only the parameters that may have a strong 

influence in the selection criteria have been included in the table. 

The first column comprises the case considered within the specific Chapter (second 

column); then, the optimisation algorithm used for the specific case is in the third 

column; the number of decision variables can be seen in column four: the total amount 

of iterations required for the particular algorithm is incorporated in column fin~: column 

six confirms the maximum performance index (.1) value reached and finally, column 

seven presents the total time (in minutes) required by each algorithm to reach the 

optimised profile. 

Included in 
Optimisation 

Decision 
Total 

Case Chapter Iterations J reached • algorithm variables time 

J.P. 2 NIA 5 518.90 

3 Golden Section 
1 15 597.808 0.0686 

Search 
3 Gradient Method 160 48 599.01 0.6)28 

in Function Space 

A 3 DISOPE 160 65 598.87 0.690) 

J .+ GAs 5 150 600.13 --l--l--l.OO"" 

6 5 SQP 5 28 600.20--l 2.0--l7 

lIn minutes using an 800MHz CPU PC with 256MB RAM 

Table 6.1 Summarised results with the optimisation algorithms considered 
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Figures 6.1 to 6.6 show the final six temperature profiles that have been applied to the 

fermentation process modelled. The same temperature and time scales have been used 

to facilitate the assessment of the profile obtained and its value in practice for industrial 

purposes. 

It is important to note that any judgment for the selection of the most suitable of these 

temperature profiles is very subjective and cannot be considered absolutely right for this 

same reason. The decision is based on the personal criteria of the control engineer and 

also in this case the previous knowledge of the industrial requirements in practice. 

Industrial Temperature Profile 
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Figure 6.1 Industrial Temperature profile used in practice 
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Figure 6.3 Temperature profile obtained with the Gradient Method in Function Space 
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Figure 6.4 Temperature profile obtained with the DISOPE Algorithm 
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Figure 6.5 Temperature profile obtained with Genetic Algorithms 
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Figure 6.6 Temperature profile obtained with Sequential Quadratic Programming 

With the intention of comparing the different optimisation techniques and by means of 

measuring and assessing the results obtained; different criteria used for selecting a 

valuable optimisation algorithm for the beer fermentation process have been considered. 

The main five factors include the following: 

1. Cost function value obtained: the total value of the objective function 

(performance index J) can be considered the most important parameter in this 

assessment. This is because it is the real quantity "maximised" throughout the 

investigation and the main objective of every specific algorithm routine 

employed. 

! Variation in the Performance index: change in percentage between the initial 

value of the performance index J (with an initial "guess" profile) and the final 

measure obtained after the optimisation. In the case of no initial profile been 

used, the variation of the performance index has been fixed to 1000/0. 

3. Usefulness of the profile acquired: a subjective parameter trying to go along \\"ith 

the industrial requirements in order for the temperature profile obtained to be 

ilTIplementable in practice. A smooth and even outline is required by the bL'LT 

industry according to the literature and follo\\"ing the profile used at the time of 

the study. 
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4. Time per iteration ratio: the calculation of the total time required by a sin~le 

iteration to be completed. Estimated by means of the total optimisation time 

divided by the total number of iterations. 

5. Computational cost: the total time required by the optimisation algorithm to 

reached the maximum value of the performance index J. For this parameter to be 

legitimate the same PC has been used for all the algorithms. 

Table 6.2 includes an abstract of the results obtained with each optimisation algorithm 

for every factor to be considered. With this, it includes in this order: the optimisation 

algorithm in question, the page number where the particular result can be found in this 

thesis, the maximum performance index value J obtained with the objective function 

(Factor 1); the percentage increase by the final J value obtained compared \vith the 

measure from the initial assumption (Factor 2); the convenience of the profile in practice 

according to the industrial requirements and with the help of Figures 6.1-6.6 presented 

earlier (Factor 3); the time in seconds required by one iteration to be completed (Factor 

4) and at last the total time of the optimisation (Factor 5). It has to be mentioned that 

both of the last two factors can be compared for the different algorithms because the 

same personal computer have been used during the entire study. 

Page Maximum Variation 
Useful in 

Time per 
Total Optimisation 

Number " time 
. 

algorithm Jvalue in J (%) practice? iteration 

Golden Section 69 Yes 
0.2744 

0.0686 597.808 100.00 
Search 

Gradient Method 78 Maybe 
0.816 

0.6528 599.01 0.201 
in Function Space 

DISOPE 91 598.87 0.178 Maybe 0.637-+ 0.6905 

GAs 124 600.13 100.00 Yes 177.603 -+-+-+ .007 

SQP 163 600.204 29.476 Yes -+.386 2.0-+ 7 

xTime per iteration in seconds "Total time in minlltc~ 

Table 6.2 Overall contrast of the optimisation techniques 

The value of the overall criteria can be considered an important assessment of the 

general perforn1ance of every algorithn1. Herewith. conclusions can be made on the 

. bl I ·thm c: the optl·misation of the fermentation process I11l)dL'lkd. most SUI ta e a gon lor 
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6.2 CONCLUSIONS AND FURTHER WORK 

A simple approach in the selection of a helpful optimisation technique has been 

confirmed to be a valuable principle. The Golden Section Search by means of an 

optimal steady state solution (using MATLAB' s fminbnd function) has achie\"t~d an 

excellent value and has been chosen as a good measure for an initial (starting point) 

temperature profile that can be used for the proposed algorithms. 

Together with this, a robust nonlinear constrained optimisation technique such as 

Sequential Quadratic Programming have proven to perform well according to the 

particular factors discussed before. The flexibility of SQP to handle constraints is a 

decisive feature that can make the difference in the selection of this algorithm abo\'e the 

rest. Herewith, if any of these algorithms is to be applied to a different fermentation or 

industrial process in general, adaptability and convergence to the global optimum 

becomes an important issue. In this context, SQP provides excellent possibility for 

modification and also obtaining a maximum value of the objective function. The 

termination criterion for the cases considered is the variation in the objectin:: function 

value from iteration to iteration: this because the number of iterations was set to 100 but 

was never reached, as included in the intial parameters used table in chapter 5. 

Furthermore, the implementation of the SQP algorithm with the help of the MA TLAB 

Software can be performed by any control engineer with a reasonable good knowledge 

of the MA TLAB programming language. 

Genetic Algorithms have demonstrated to be very helpful for the optimisation of the 

mathematical model of the process, although the computational effort needed is ah\'ays 

the main concern. In the context of this thesis, since all the optimisation \\ork 

completed involve an "off-line" approach, the total time required can not necessarily be 

a great influential parameter. Together with this, the adaptability and robustness of this 

stochastic n1ethod in finding a global optimum for the objectin:: function defined without 

the need of providing an initial profile, can be a crucial factor for a specific application 

\\'ith another process. For this algorithm, the termination criteria applied has been the 

total number of }2.enerations allL)\\"ed. With this, different amount of generations ha\'e ... 
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been used for every different case in order to obtain a suitable optimised temperature 

profile. 

The remaInIng two methods used, the Gradient Method in Function Space and the 

DISOPE algorithm, can be considered an intermediate point between a comple\: 

technique and a simplistic approach. By means of using the Golden Section Search 

method's optimised temperature profile as an initial profile. they are able to obtain a 

satisfactory optimal solution in a desirable time that translates in the computational cost 

considered to be minimum. Nonetheless, a disadvantage has been the prerequisite for an 

appropriate initial guess in order to perfom sufficiently well. The termination criteria for 

these methods, have been based on the actual improvement from one iteration to the 

other but also considering that the optimised profile still maintains a useful outline for 

practical application. With this, better results can be obtained in further work with these 

techniques by means of a smoothing technique applied after the optimisation. allowing 

the algorithm to work with more iterations. 

It is important to note, that even though the termination criterion differs slighlty 

depending on the optimisation technique used, the best profile has been obtained among 

every case considered, thus giving a good representation of the capabilities of the 

algorithm in question. 

In general, further work can be focus on the validation of these methods for the 

optimisation of other industrial processes. The techniques presented in this thesis can 

then be tested in different circumstances and a more general evaluation been made. 

Herewith, depending on the particular process to be optimised, different results may be 

obtained using these methods since they may performed better or worse for other 

process models. 

New and/or revised optimisation methods can also be used for the optimisation of the 

fern1entation process selected in this thesis; this in order to continue with the comparison 

under a similar situation. Neural Networks and Fuzzy Logic are only a few of these 

techniques since ne\\" deyelopments towards optimal control ha\e been de\'l~loped 

1 . d :\11 l'ntrodllctl'on on 1\eural ~et\\orks for SYstem recently and can be exp Olte. . 
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Identification of the selected beer process has been included in Appendix C as a starting 

point to pursue further research on this particular area. 
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APPENDIX A 

THE GENETIC ALGORITHMS TOOLBOX FUNCTIONS DESCRIBED 

The major elements of the genetic algorithm toolbox are described as follo\\ s 

(Chipperfield et aI, 1994 and Chishimba, 1998): 

A. Creating Populations: The GA Toolbox supports binary. integer and floating

point chromosome representations. Binary and integer populations may b~ 

initialised using the Toolbox function to create binary populations. 

1. crtbase: Builds a vector describing the integer representation used. 

2. 

E.g. To create a vector containing the first fi\'e elements in base 6 and the last 

three elements in base two: 

pop = crtbase ( [ 5 3 ], [6 2 ] ) 

pop = 6 6 6 6 6 2 2 2 

crtbp: Creates an initial population consisting of random chromosomes. E.g. 

To create a random population (matrix) of size 5 x 6 in base -l: 

pop = crtbp ( 5, 6, 4 ) 

pop = 3 3 2 1 0 0 

0 1 3 3 1 0 

2 0 3 3 3 2 

1 3 2 1 0 1 

3 1 0 3 0 0 

3. crtrp: Creates a real valued initial population consisting of random 

individuals. 

E.g. To create a real-valued random population of size 3 x -l wh~rc the 

variables in the first, second and third columns are in the ranges of 1 to 5. --l 

to 1 and 8 to 13 respectively: 

rang~ = [ 1 -4 8: 5 1 13] 

pop = crtrp ( -l. range) 

pop = 1.0611 -1.6700 9.0132 
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3.9871 -1.9068 11.3607 

2.7804 0.2311 12.l906 

4.7273 -1.3742 8.0982 

B. Fitness Assignment: Is normally used to transform the objecti\-e function yalue 

into a measure of relative fitness. The toolbox supports both linear and non

linear ranking methods and includes a simple linear scaling function for 

completeness. 

1. ranking: Ranks individuals according to their objective values and returns a 

column vector containing the corresponding individual fitness values. This 

function ranks individuals for minimisation. 

E.g. To evaluate the fitness with linear ranking, given the objectiYe values of 

a population of 8 individuals: 

values 1 = [ 3 ; 6 ; 7 ; 2 ; 8 ; 10 ; 1 ; 5 ] 

fitness = ranking ( values 1 ) 

fitness = 1.4286 

0.8571 

0.5714 

l.7143 

0.2857 

0 

2.0000 

1.1429 

2. scaling: Converts the objective values of a population into a fitness measure 

with a known upper bound, such that: F(xi) = af(xJ + b 

E.g. To convert the objective values of 6 individuals into a fitness measure 

with upper bound of 2: 

values2 = [ 1 ; 5 ; 3 ; 2 : 8 : 7 ] 

function = scaling ( values2 ) 

delta = 3.6667 

a = l.1818 

b = -0.7879 
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function = 0.3939 

5.1212 

2.7576 

1.5758 

8.6667 

7.4848 

C. Selection Functions: 

1. reins: Performs insertion of offspring into the current popUlation, replacing 

parents with offspring and returning the resulting population. 

E.g. To produce a new population from a population of 7 parents and a 

population of 5 offspring: 

populI = [ 1 ; 3 ; 5 ; 7 ; 9 ; 11 ; 13 ] 

offspr = [ 21 ; 22 ; 23 ; 24 ; 25 ] 

newpop 1 = reins ( populI, offspr ) 

newpopi = 21 

3 

22 

23 

25 

1 1 

24 

2. rws: Probabilistically selects individuals for reproduction according to their 

fitness in the current population using roulette wheel selection. 

E.g. To select the indices of 4 individuals considering a population of 7 

individuals with the assigned fitness values: 

asgfit2 = [ 2.5 ; 0.4 : 4.7 ; 1.1 : 0.9 : 3.2 ] 

newpop2 = rws ( asgfit2 . 4 ) 

newpop2 = 1 

3 

6 

6 
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3. select: Performs selection of individuals from a population and returns the 

selected individuals in a new population. Each row corresponds to one 

individual. 

E.g. To select 4 individuals by stochastic universal sampling (sus). 

considering a population of 5 individuals with the assigned fitness values: 

popu13 = [ 3 23 43 ; 5 25 45 ; 727 47 ; 92949 ; 11 31 51 ] 

asgfit3 = [ 3.5 ; 2.7 ; 7.5 ; 6.4 ; 12.9 ] 

newpop3 = select ( 'sus' , popu13 , asgfit3 ) 

newpop3 = 11 31 51 

7 27 47 

9 29 49 

11 31 51 

3 23 43 

4. sus: Probabilistically selects individuals for reproduction according to their 

fitness in the current population using stochastic universal sampling. 

E.g. To select the indices of 4 individuals considering a population of 6 

individuals with the assigned values: 

asgfit4 = [ 3.2 ; l.6 ; 2.5 ; l.3 ; 5.4 ; 8.6 ] 

newpop4 = sus ( asgfit4 , 4 ) 

newpop4 = 3 

1 

6 

5 

D. Mutation Operators: 

1. mut: Takes the representation of the current population and mutates each 

element with a given probability using a discrete mutation operator. It is a 

low-level mutation function normally called by mutate. 

E.g. To mutate with default probability (O.7/Iength of chromosome) a binary 

population with 5 individuals each of length 6: 

pop 1 = [ 0 1 0 1 0 0 : 1 1 1 0 0 0 : 0 0 0 1 1 0 : 1 0 0 1 0 1 : 1 1 0 0 0 0 ] 
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newpop 1 = mut ( pop 1 ) 

newpopl = 0 1 0 1 1 0 

1 1 1 0 0 0 

0 1 0 1 1 0 

1 0 0 1 1 1 

1 1 0 0 0 0 

2. mutate: Performs mutation of individuals from a population and returns th~ 

mutated individuals in a new population. Each row corresponds to one 

individual. This is a high-level mutation used in conjunction with mutbga and 

mut. 

3. mutbga: Takes the real-valued population. mutates each variable with gi\'en 

probability and returns the population after mutation. It is a lo\\"-level 

mutation function normally called by mutate. 

E.g. To mutate a population of 3 real-valued individuals with length 4. with 

certain bounds with a mutation probability 1/5 and no shrinking of the 

mutation range: 

pop3 = [35865022; 33 99419; 23 101 65 -7] 

bound3 = [ 0 75 40 -20 ; 50 125 80 40 ] 

newpop3 = mutbga ( pop3 , bound3 , [115 l.0 ] ) 

newpop3 = 35.0000 86.0000 50.0000 22.0000 

33.0000 99.0000 4l.6251 9.9377 

23.0000 94.7500 65.0000 -7.0000 

E. Crossover Operators: 

1. recdis: Performs discrete recombination between pairs of indi\iduals in the 

current population and returns a n~\\' population after mating. It is a 10\\

level recombination function normally called by recomhin. 

E.g. To perform discrete recombination considering a population \\ith 4 real-

value indi\'iduals of length 3: 

inpopl = [834820: 6331 -9: 52 -15 -37: 10265 -7] 

nwpop 1 = recdis ( inpop 1 ) 
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nwpopl = 83 31 -9 

63 31 20 

102 -15 -7 

102 65 -7 

2. recint: Performs intermediate recombination between pairs of indiyiduals in 

the current population and returns a new population after mating. It is a low

level recombination function normally called by recombin. 

E.g. To perform intermediate recombination considering a population with .+ 

real-value individuals of length 3: 

inpop2 = [5328 12; 3715 -28; -2351 -7; 4258 -22] 

nwpop2 = recint ( inpop2 ) 

nwpop2 = 39.1685 12.9240 -6.1987 

55.6035 22.3633 -29.3118 

24.2061 57.9944 -17.4220 

13.6133 58.3124 -13.8758 

3. reclin: Performs line recombination between paIrs of individuals in the 

current population and returns a new population after mating. It is a 10\\

level recombination function normally called by recombin. 

E.g. To perform line recombination considering a population with 3 real

value individuals of length 4: 

inpop3 = [34 -25 18 -66; 38 -16 -48: -122452 -23] 

nwpop3 = reclin ( inpop3 ) 

nwpop3 = 33.9052 -25.2132 18.5212 -67.7531 

37.1874 -17.8284 0.4694 -7.0333 

-12.0000 24.0000 52.0000 -23.0000 

4. recmut: Performs line recombination with mutation features bet\\ccn pairs of 

individuals in the current population and returns a 11,-'\\ population aftcr 

mating. It is a low-level recombination function normally called by mulull'. 

E.g. To perform line recombination \\"ith mutation features considering a 

population \\"ith 3 real-yalued indiyiduals of length 3: 

inpop4 = [.+150 -28: 33 64 -8: 29 55 3] 
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bound4 = [ 1025 -40 ; 50 10020 ] 

nwpop4 = recmut ( inpop4 , bound4 ) 

nwpop4 = 41.1573 49.4840 -27.4103 

32.8427 64.5160 -8.5897 

29.0000 55.0000 3.0000 

5. recombin: Performs recombination of individuals from a population and 

returns the recombined individuals in a new population. This high-lt'\el 

function checks the consistency of the input parameters and calls the 10\\

level recombination function. 

6. xovdp: Performs double-point crossover between pairs of indiyiduals 

contained in the current population according to the crossover probability and 

returns a new population after mating. It is a low-level crossover function 

normally called by recombin. 

E.g. To perform double-point crossover considering a population with -+ real

valued individuals of length 3 and a crossover rate of 0.9: 

inpop6 = [ 13 9 -18 ; 31 23 -15 : 19 35 11 ; 5 67 32 ] 

nwpop6 = xovdp ( inpop6 , 0.9 ) 

nwpop6 = 13 9 -15 

31 23 -18 

19 67 11 

5 35 32 

7. xovdprs: Performs double-point reduced surrogate crossover between pairs of 

individuals contained in the current population according to the crossover 

probability and returns a new population after mating. It is a lo\\'-len~l 

crossover function normally called by recombin. 

E.g. To perform double-point reduced surrogate crosso\'er considering a 

population \vith 4 binary individuals of length -+ and a crosso\er rak of 0.7: 

inpop 7 = [ 1 0 1 1 : 1 1 1 0 ; 0 1 1 0 ; 0 0 0 0 ] 

11\\'pop7 = xovdprs (inpop7 ) 

nwpop7 = 1 0 1 0 

1 111 
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o 1 0 0 

001 0 

8. xovmp: Performs multi-point crossover between pairs of indiyiduals in the 

current population and returns a new population after mating. Number of 

cross-points and the use of reduced surrogate can be specified. It is a low

level crossover function normally called by all other crossover functions. 

E.g. To perform single-point crossover with no reduced surrogate considering 

a population with 6 real-valued individuals of length 3 and a crosso\'er rate of 

0.7: 

inpop8 = [32 19 83 ; 15 38 -51 ; 90 50 16 : 9 73 23 ; 13 21 66 ; 11 25 88] 

nwpop8 = xovrnp ( inpop8 , 0.7 , 1 ,0) 

nwpop8 = 32 38 -51 

15 19 83 

90 50 23 

9 73 16 

13 21 88 

11 25 66 

9. xovsh: Performs shuffle crossover paIrs of individuals contained in the 

current population according to the crossover probability and returns a ne\\ 

population after mating. It is a low-level crossover function normally called 

by recombin. 

E.g. To perform shuffle crossover considering a population with 6 binary 

individuals of length 4 and a crossover rate of 0.4: 

inpop9 = [ 1 0 1 1 ; 1 1 1 0 ; 0 1 1 0 ; 0 0 0 0 ; 1 1 0 0 : 1 1 1 1] 

nwpop9 = xovsh ( inpop9 , 0.4 ) 

nwpop9 = 1 1 1 1 

1 0 1 0 

0 0 0 0 

0 1 1 0 

1 1 0 0 

1 1 1 1 
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10. xovshrs: Performs shuffle crossover with reduced surrogates betv;een pairs of 

individuals contained in the current population according to the crosson~r 

probability and returns a new population after mating. It is a low-Ieyel 

crossover function normally called by recombin. 

E.g. To perform shuffle crossover with reduced surrogates considering a 

population with 5 real-valued individuals of length 3 and a crossover rate of 

0.8: 

inpopl0 = [229032; 6962; 123428; 31 11 67: 195187] 

nwpop 10 = xovshrs ( inpop 1 0 , 0.8 ) 

nwpopl0 = 6 9 32 

22 90 62 

31 1 1 28 

12 34 67 

19 51 87 

11. xovsp: Performs single-point crossover between paIrs of indiyiduals 

contained in the current population according to the crossover probability and 

returns a new population after mating. It is a low-level crossover function 

normally called by recombin. 

E.g. To perform single-point crossover considering a population with 6 binary 

individuals of length 4 and a crossover rate of 0.6: 

inpop 11 = [ 0 0 0 1 ; 1 0 1 1 ; 0 0 1 0 ; 0 0 0 1 : 1 0 0 1 : 1 1 1 0] 

nwpopll = xovsp ( inpopl1 ,0.6 ) 

nwpopll = 0 0 0 1 

1 0 1 1 

0 0 1 0 

0 0 0 1 

1 0 1 0 

1 1 0 1 

12. xovsprs: Performs single-point reduced surrogate crosso\er bet\\~xn pairs of 

indiyiduals contained in the current population according to the crossu\er 

probability and returns a new population after mating. It is a low-le\cl 

crossover function normally called by r('combin. 
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E.g. To perfonn shuffle crossover with reduced surrogates considering J 

population with 6 real-valued individuals of length 3 and a crosso\'er rate of 

0.5: 

inpop12 = [21 4 13; 169925; 194481 : 12 18 72 : 92 3.+ 80 : 7 -9 15 ] 

nwpop12 = xovsprs (inpopl2 , 0.5 ) 

nwpop12 = 21 99 25 

16 4 13 

19 44 81 

12 18 72 

92 34 80 

7 -9 15 

F. Subpopulation Support: 

1. migrate: Perfonns migration of individuals between subpopulations in the 

current population and returns the population after migration. The number of 

subpopulations, rate of migration, the migration selection method and the 

structure of the subpopulations for migration can be indicated. 

E.g. To perfonn migration of 200/0 of the individuals of one subpopulation 

and replace them with uniformly chosen individuals from all other 

subpopulations: 

popul = [ 13 9 -18 ; 31 23 -15 ; 19 35 11 ; 5 67 32 ; 3 45 50 ; 88 1022] 

newpop = migrate ( popul , 6 ) 

newpop = 88 10 22 

19 35 1 1 

31 23 -15 

88 10 22 

13 9 -18 

3 45 50 

G. Utility Functions: 

1. bs2rv: Decodes the binary representation of the population into \ccturs of real 

\'alues. The chron10somes are seen as concatenated strings of gi\ \"'n length. 
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and decoded into real numbers over a specified interval using either standard 

binary or Gray coding. 

E.g. To convert the Gray code binary representation created using the crtbp 

function representing a set of single decision variables in the range [-3 . .20]. 

to real-valued phenotypes using arithmetic scaling: 

popul = crtbp (6, 8 ) 

popul = 1 1 0 1 1 1 1 1 

0 1 0 0 1 0 1 1 

0 0 0 1 0 1 0 1 

0 0 1 1 1 1 0 0 

1 1 1 0 1 0 1 0 

1 1 1 1 0 0 1 1 

repres = [ 8 . -3 . 20 . 1 . 0 . 1 . 1 ] , , , , , , 

phenot = bs2rv (popul , repres ) 

phenot = 10.4392 

7.2824 

-0.7451 

0.6078 

13.1451 

11.6118 

2. rep: Performs replication of a matrix specified and returns the replicated 

matrix. It is a low-level replication function normally called by a number of 

functions. 

E.g. To perform replication of a given matrix size 3 x 4 including :2 n~rtical 

and 3 horizontal replications: 

inimat = [ 2 4 6 8 ; 9 7 5 3 ; -1 -3 -5 -7 ] 

newmat = rep (inimat , [ 2 3 ] ) 

2 4 6 8 2 4 6 8 
, 

.f 6 8 newmat = -

9 7 5 
-, 9 7 "'\ 

-, 

9 7 5 3 -' -' 

-1 
-, -5 -7 -1 -, -5 -7 -1 -3 -) -7 --) - -) 

, 4 6 8 1 .f - - 6 8 
, .f 6 8 -

9 7 5 3 9 7 "'\ 
..., 

9 7 5 
..., 

-' -' 

-1 
..., 

-5 -7 -1 
..., 

-"'\ -1 -, -5 -7 --' - -) --' 
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The main data structures included in the Genetic Algorithm Toolbox are as follow 

(Chipperfield, 1994): 

• Chromosomes: Stores an entire population in a single matrix \yith the number of 

individuals in the population in the column vector and the length of the genotypic 

representation of these individuals in the row vector. This representation does 

not force a structure on the chromosome structure; the only requirement is that all 

chromosomes are of equal length. 

g\,\ g\,2 g\,Lind individual 1 

Chromosome= 
g2,\ g2') ,- g2,Lind individual 2 

gNind,\ gNind,2 gNind,Lind individual N 

• Phenotypes: The also called decision variables are obtained by applying some 

mapping from the chromosome representation into the decision variable space. 

Each string contained in the chromosome structure decodes to a row vector 

(Nvar) according to the number of dimensions in the search space and 

corresponding to the decision variable vector value. 

xI,l X L2 Xl,,\' var individual 1 

Phenothype= 
x:u x:u X') \' _,' var individual 2 

X Nind,\ X ,'\'lI1d,2 X SlI1d"V var individual S 

• Objective Function Values: An objective function IS used to e\aluate 

performance of the phenotypes in the problem domain. Values are stored in a 

numerical matrix where Nob} as the number of objectives. 

yI,l indi \'idual 1 

Objective= 
Y2,l )',') 

r _,_ 
1', \' . _,' var indiyidual :2 

I' l'y I' . SlIld,l '. 1/1(,_ 
,1' SlIld. S \3r individual Y 
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• Fitness Values: Are derived from the objectiYe function yalues through a scaling 

or ranking function. Fitnesses are non-negatiye scalars and are stored in column 

vector. For multiobjective functions, the fitness of a particular indiyidual is a 

function of a vector of objective function values. 

~ individual 1 

Fitness = 
1; individual 2 

fNind individual J.Y 

The GA Toolbox provides support for multiple populations using high-Ie\'el gcnetic 

operator functions and a routine for exchanging individuals between subpopulations. 

The use of a single population divided into a number of subpopulations by modi t\ing 

the use of data structures such that subpopulations are stored in contiguous blocks 

within a single matrix. 

Chromosome= 

Ind1Subpop1 

Ind2Subpop1 

Ind NSubPOP1 

Ind1 SUbPOP2 

Ind2Subpop2 

Ind.v SUbPOP2 

Ind1 SubpoPsl 'BPOP 

Ind2SubpoPsl'BPop 

Ind,\' SubpoPsl 'BPOP 
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To allow the routines to operate independently on subpopulations. a number of high

level functions are provided that accept an optional argument that determines the 

number of subpopulations contained in a data structure. 
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APPENDIXB 

SYSTEM IDENTIFICATION USING MATLAB 

In order to perform the system identification, the input and output vectors of the 

process model are required. With the help of the SIMULf\K model pre\-iouslv 

created and tested in Chapter 2, and by means of adding some \vhite noise to the 

initial profile, an output of the process can be achieved. This model can be seen in 

Figure B.l. 

Wlite Noise 

Clock 

~1~1 
T em perature 

Profile 
S-Function 

t--------+O-'~ 
emux Sum1 Xtotal 

~~ 
Substrate 

Ethanol 

Sum2 

Figure B.l SIMULINK Model used for System Identification 

In this SIMULINK model. X and Y are the input and output vectors respecti n~ I y. 

They are used as data in the System Identification toolbox in order to get the state 

space model matrices with the help of the System Identification Toolbox from the 

MA TLAB Software (Ljung, 1995). System Identification is the art and science of 

building mathematical models from measured input-output data. Tasks such as 

examining the measured data, and creating new data sets from the original one b~ 

various pre-processing are required. Estimation of models using the data follo\\s_ 

The models are estimated within certain classes of candidate descriptions (model 

structures). typically by choosing that model that gin~s the hest output tit to thl' 
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measured data. Quite a few models are normally estimated, and their propertic5 are 

scrutinised and analysed in different model views. 

ident is the graphical user interface to the System Identification Toolbox that helps 

with these tasks (Coleman et aI, 1999). The ident window conducts all data 

handling, model estimation, and model analysis and also keeps a detailed recl)rd of 

all data sets and models. The process of system identification using idell! invol\es 

the following six steps: 

Importing data into IDENT: In order to create a data set from input and output 

signals available in the workspace (x and y), Import (from the Data pop-up menu) is 

selected. Earlier created models in the Toolbox's THETA-format can be imported 

from the MAT LAB workspace using the Models pop-up menu. If the model 

originally was exported from ident, it will be imported together with an * info 

variable that contains relevant information. 

Examining data: There are two views to examIne data sets: double clicking the 

corresponding check boxes in the ident window opens these vie\\ \\indo\\s. Time 

Plot shows the time plots of inputs and outputs of the selected data sets and Data 

Spectra gives the spectra (periodograms or estimated spactra) of inputs and outputs 

of the selected data sets. 

Pre-processing data: The pop-up menu Pre-process provides several options for 

creating new data sets by modifying the Working Data set. The new data sets are 

inserted into the Data board. Select channels option allows selecting a subset of the 

input and output channels of the data set; the numbering of the inputs and outputs 

will be consistent throughout all data sets created from an original set. The Select 

range option allows selecting portions of the data set to be used for estimation and 

validation purposes. Remove means removes the mean values from hoth the input 

and output sequences. Remove trends estimates and remO\l?S a linear trend from the 

input and output signals. Filter pre-filters the data set. Resample allo\\s to change 

I b · I' d d . t'on J:l·nall)'. Quick stal1 creates the sanlpling interva, y Interpo atlOn an eClma I. , -

three new data sets fronl the Working Data set: First the mean values are removed. 
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then the new data is split into two halves, the first half becomes the new \\-orkin~ 

Data set, and the second half becomes the new Validation Data set. 

Estimating models based on data: The pop-up menu Estimate provides varIOUS 

methods for estimating models based on the Working Data set. The models will be 

inserted into the Models board. Parametric models that opens a dialog. \,yhich allows 

to generate dynamic linear models with different structures, orders. and delays. :\ 

model structure characterises the relationship between input and output data and 

between unknown noise sources and the output data. Supported model structures 

include ARX, ARMAX, Output Error (OE), Box-Jenkins (BJ). State-Space, and 

others. Spectral model which, directly estimates the system's frequency response 

from the data using either Fourier Transform techniques or the Blackman-Tukey 

approach. The Correlation model directly estimates the system's transient response 

(impulse response) by correlating filtered versions of the input-output data. And the 

Quick start that performs correlation analysis and spectral analysis~ computes a 

default ARX model with a delay heuristically determined based on the estimated 

impulse response of the system. 

Analysing the models: The choice of text information and access to the model 

parameters or visual information by means of the six views to analyse and examine 

model properties. Checking the corresponding check boxes in the ident windl)\\ 

opens these view windows. Model Output shows the simulated or predicted output 

of the selected models together with the actually measured output. Model Residuals 

shows the result of residual analysis for the each of the selected models. The 

residuals (prediction errors) are computed using the validation data set, and then their 

correlation functions are also shown. Transient Response presents the transiL'nt 

response (impulse or step response) of the selected models. Frequency Response 

shows the frequency functions of the selected models. Zeros and Poles demonstrates 

the Zeros and Poles of the selected models. Noise Spectrum shows the spectrum of 

the additive noise of the selected models. L TI Viewer invokes the Control System 

Toolbox's LTl Vie\ver. 

E)..porting resulting models for jilrt/zer lise: The data sets and models created by 

IDENT are normally not MA TLAB workspace \'ariables- To further work with them 
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in command line mode, exporting them to the workspace by dragging and dropping 

their icon to the To Workspace icon in the ident window is necessary. :dodels ar~ 

coded into the THETA format; THETA is a packed matrix containing information 

about both a model structure and its nominal or estimated parameters. it also contains 

other relevant information about the identification result. This model format is the 

basic format with the System Identification Toolbox. It is used by all parametric 

identification methods and it can be transformed to many oth~r model 

representations. 

After introducing the initial data from the identification SIMULINK model to the 

toolbox, a "quick start" is selected in the operations box in order to pre-process the 

information. The estimation of the model is accomplished choosing an .\RX 

parametric model of order one (common poles, zeros and delay are one). Figures B.2 

to B.9 show a comparison of the different state variable's profiles for the 

identification model pursued. 

After the identification of the system the step responses (Figures B.1 0 to B.17) sho\\ 

how well the convergence of the parameters of the model is achieved. In all the 

Figures the blue line represents the Input Signal to he identified (original signal) and 

the red and light blue represents the Output Identified Signal. 
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The matrices A and B and also the corresponding standard deviations that define the 

ARX structure are extracted from the THETA format model (resulting after the USc 

of the ident function in MATLAB) using the th2arx function of the System 

Identification Toolbox. Then, after some mathematical operations the matrices can 

be acquired. 

The state space model matrices (A and B) obtained from the system identitication 

with MATLAB's System Identification Toolbox are as follows: 

0.9405 0.0017 0.0026 0.0015 0.0043 -0.0401 -0.0351 -0.0000 

0.0946 1.0299 -0.0130 0.0088 0.0516 -0.8107 -0.3978 -0.0013 

0.0816 0.1637 0.8621 -0.0002 0.0155 -0.3975 -0.535'+ -0.0001 

A= 1.4733 0.7454 -0.1807 0.8915 -0.0764 -l.7931 -2.0919 -0.0026 

-0.4569 -0.0665 0.0563 0.0360 1.0972 -0.8743 -0.1763 -0.0027 

-0.0048 0.0266 0.0182 0.0015 0.0099 0.8451 -0.1536 -0.0003 

-0.0396 -0.0118 0.0056 0.0033 0.0 III -0.1127 0.9510 -0.0003 

-1.0513 -10.3621 -6.7555 2.0997 4.0186 -6.0051 24.8758 0.9877 

-0.0025 

-0.0056 

0.0030 

B= 0.0150 

0.01'+6 

0.0004 

-0.0026 

-1.1793 
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APPENDlXC 

SYSTEM IDENTIFICATION WITH NEURAL NETWORKS 

Using the Neural Networks System Identification Software by :\orgaard et at 2000: 

a new model representation of the process can be achieved. 

The procedure used to identify a model of a dynamic system is represented in Figure 

C.l. The different stages of the diagram are briefly discussed below. 

---------------
Experiment 

1 
Select model 

~---------------
structure 

1 
Estimate model 

~---------------

1 
Not accepted 

Validate model 

1 Accepted 

Figure C.l The basic system identification procedure (Norgaard et aL 2000), 

The experiment stage's idea is essentially collecting a set of data that describes ho\\ 

the system behaves during the whole process. It is extremely important. because nf 

the non-linear black-box modelling considered, to collect a set of data that descrihl''

ho\\' the system beha\'es over its entire range of operation. 
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F or the experiment, SIMULINK models of the beer process have been created with 

two different designs of input signals in order to observe the effect they haye on the 

output. Input signals consisting of level changes at random instances haye been 

used. These models are shown in figures C.2 and C.3. 

rmrn. • '--------'1"' Err---~ 
PUI~tor r~'--~"I BEERFUN ----. emux-------, Sum1 Xtotal 

j~?'&" + "' S·Food;o" I I'---~~e r;::!I<--=_ =_ ::;_3:92~9= 
l~, C10 J1 

VVhite Noise ~ 
\1 I Ethanol 

~ f1 
i Scope 

1
0374e-028 r I 

~ ____ ~= 10 .1 19656 
J4 ,-----~ _ I I 

~--~~~------~ - L J 
I "-, S,mTot" II I 

1000065261 16175e-0051 

Diacetyl J3 Scope1 

~~~~~~----~ 
Spoilage Risk tn9:.~2478 • 

J2 

r_ -.F-.... ·\ Z:1 ----.J-K- >----. 
Sum Abs Discrete-Time 196 3 

Integrator L.--.....F J5 
Unit Delay 

Figure C.2 SIMULINK model with input data "uC, resulting in output data "yC 

~r·+~~ "". 
S';-mTot" LII I J 

Diacetyl 

\5766eOO05 1 

J3 

~--~~~~~------~ 
Spoilage Risk CS~-~ 0 

J2 

I.-------~r_ ---'F ~I Z:1 ---i"~' -K- "'>----10 

Sum Abs Discrete-Time 

L.----.F 
Unit Delay 

Inlegrator 

Scope1 

1028 

J5 

Figure C.3 SIMULINK model with input data "Uy". resulting in output data ": \0" 
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With these two different signals applied to the beer process and its corresponding 

outputs, deducing a model of the system can be accomplished. The first sets of 

input/outputs have been included in figures C.4 and C.5 eC vs sample number and J 

value vs sample number). 

Input sequence 1 
15r----.----~----,---~----~----._--~----, 

10 

5 

°0L----5~0----~10~0----1~50~--2~0-0----25~0--~~~--~~~0--~4oo 
Sample 

Output sequence 1 
300~---.----~----,---~----~----._--~--~ 

200 

J 100 

o 

-1 00 oL---5-L0----~1 0-0----1-1-50-----:2:.--:0--=-0 --~25~0------:30-:::0::----::~~0 --~4oo 
Sample 

Figure C.4 Graphs representing Input/Output Sequence 1 (ut and yt) 

Input sequence 2 

15 

10 

5 

00~--2-L0----4~0---6~0--~80~~10~0~~1~20~~1~4~0--~16~0~11~80~:i<200 
Sample 

Output sequence 2 
600 ~--.-_---r---,----~--.---'----r------'---'--I 

400 

J 200 

o 

-200~---L---~--~~~80~-:100~~1~20n-~1~4~0--~16~0~11800o-:2<200 
o 20 40 60 

Sample 

Figure C.S Graphs representing Input/Output Sequence 2 (uv and yv) 
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For the second stage, selecting a model structure implies choosing a set of regressors 

(inputs) specifying how to combine them into a one-step ahead prediction. It 1s not 

possible to determine the optimal model structure, so instead a strategy. reasonabl: 

effortless, should be chosen that finds a structure that is sufficiently close to optimal. 

The NNARX (Neural Network AutoRegressive, eXternal input) model structure, the 

first choice among the structures, has the advantage that none of the regressors 

depend on past outputs of the model, which ensures that the predictor remains stable. 

This not only facilitates training, but also in general will result in more robust 

models. 

Since the knowledge about the system is limited, the method based on Lipschitz 

quotients is considered. A wrong choice of lag space may have a unsuccessful 

impact on some control applications, so it is necessary to detennine both a 

sufficiently large lag space and an adequate number of hidden units (Norgaard et al. 

2000). With this, figure C.6 illustrates the method applied to the data set obtained 

from the simulated beer experiment. The number of past inputs and outputs are 

increase simultaneously from n=m=l to n=m=7. 

x 
Q) 

-g 4 
";: 10 
Q) 

'E 
o 

Order index w. lag space 

I 
I I 1 1 I 

__ .1 _______ 1 _______ L ______ .J - - - - - - -:- - - - - --
I 1 1 1 

1 1 1 

1 
1 
1 

I I ,I ! 
__ ~ _______ 1_ - - - - - - ~ - - - - - - ~ - - - - - - -1- - - - - - -1 

, I I ! : 

I I 
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1 
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1 1 
---- --------------,------ - - - - - - -1- - - - - - -

1 0° L--__ ~ __ ______L_ - _--L ___ -L-__ 

1 2 3 4 5 6 7 

Number of past inputs and outputs 

Figure C.6 The order index criterion evaluated for different lag spal'cs 

d d t" I t'on in red in a 3D graph Figure C.7 shows the lag space recommen e or sc Cl' 1 

using the "knee-point" of the curve as a reference. 
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Order index \S . lag space 

7 Number of past inputs 
Number of past outputs 

Figure C .7 The order index vs lag space and the recommended choice 

It can be seen clearly that the criterion recommends USIng a Jag spac n=m=2. 

Herewith the NNARX model structure is shown in Figure C.8. 

yet -1) 
..... 
JIll"'" 

Neural yet - 2) .... Network ..... 
yet) 

---.... 
u(t -1) ~ 

... 
JII'" 

u(t - 2) 
.... 
JII'" 

Figure C.8 The NNARX model structure used for the be r model 

For the next stage, estimate mode], a1 0 caIJed training th data t i U d t pi k. 

the "best" model among the candidates contained in th m tru tur . h 

purpose of the training i to determine a mappino fr m th data t t f III 

candidate model 0 that a model i obtained whi h pr n that ar In 

me en 10 e t th true output f th t m. Thi d n in t rm ram In 

quar rror type litelion, al 0 id to b a Pr di ti n IT r th d 
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the objective is to minimize a sum over some nonn of the prediction error . \ ·hen 

the criterion is quadratic in the prediction error, training i a o-called ordinar n n

linear least squares problem, which is a special case of uncon tr ined optimi n. 

Non-linear least squares problems occur within quite di er e field, nd m nl 

methods exist for solving them; for this case, the Le enber-Marquardt meth d i 

used (Norgaard et aI, 2000). This method is a tru t region meth d de ign d 

specifically for non-linear least squares; however, it goes again t the tru t r oi n 

philosophy since the step size in some sense is adjusted automatically al ng \\ ith th 

trust region radius. The method has an attracti e side effect in the impr v d 

numerical conditioning obtained by adding a positive diagonal matrix to th H Ian . 

After several tests with different possibilities, the optimal trade-off b tw n bia and 

variance error is achieved for a network containing fi e hidden unit . If th n tw rk 

has more hidden units, the variance error dominate and 0 r fitting wh n th 

network not only models the features of the system, but to an und ir d 

the noise in the training set) corne into view. The expre ion under filling i u d 

when the bias error is dominating. The number of iteration elected i 30 aft r 

several tests (considered to be suitable for this case), with this the i train d nd 

the following results, included in figures C.9 and C.lO can be obtain d (J alu 

samples and prediction error vs. samples, respecti ely). 
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How the new model adjusts to the original can also be een In the fi gur . Th 

prediction error between the output signal ' yt' and the one tep ahead predi ti n 

also incorporated in Figure C.IO. The test error and the e timate f 

generalization error measure the accuracy of the prediction in term f alar 

quantity. A simple plot that compares predictions to actual mea urement in tramin", 

and test can provide a better understanding of these ariation and unle th 

to-noise ratio is very poor, it can show the extent of 0 er fitting a well a p ibl 

systematic errors. 
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carried out for both of the combinations previously discus ed and are in luded in 

Figure C.II for Input/Output Sequence I (ut and yt) and Figure C.l_ f r 

Input/Output Sequence 2 (uv and yv). 
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After these tests, if the model is not accepted immediately it will be necessary to go 

back in the procedure. The main reasons for stepping back in the procedure are two: 

displeasure with the network model that was just trained or simply the wish to 

explore if it is possible to find a better model. For solving this task in a highly 

automated fashion, a class of methods known as pruning algorithms \\ ill be 

presented. 

The common strategy in the pruning algorithms is initially finding a fully connected 

network architecture, which in principle, is large enough to describe the system. 

With this architecture, the weights are then eliminated one at a time until the optimal 

design has been reached. For this strategy it is necessary to start with a large 

network and then reduce it in size because the statistical analysis for ranking 

different candidate architectures usually requires that the previous condition (the 

architecture being large enough to describe the system) can be supposed to be 

fulfilled. 

The principle of the Optimal Brain Surgeon (OBS) (Hassibi and Stork, 1993) 

technique is used to eliminate the weight that gives a maximum decrease in the Final 

Prediction Error (FPE) estimate. The OBS does not only remove weights but it also 

suggests new values for the remaining weights. This re-estimation is satisfactory and 

there is no reason for retraining the network until the pruning session has been 

completed. Thus, as long as the gradient (in terms of some norm) remains 

sufficiently close to zero, retraining is not necessary. Figures C.13 and C.l-l include 

the results after pruning the selected Input/Output Sequences. 

Model structure selection is much more involved than just a matter of selecting a 

number of hidden units; the network need not to be fully connected, actually. it is 

likely that it will be helpful to leave out weights connecting certain inputs with 

certain hidden units or certain hidden units with certain inputs. 

196 



°C 

error 

15 

10 

5 

0 
0 

0.2 

0.15 

0.1 

0.05 

Input sequence 1 

r 

lJ-(J 
\ 
~ ..J 

r 

50 1 00 1 50 200 250 300 

t 
. . Sampl.es 

x = raining error, + = FPE, 0 = test error 

o 
o 

350 400 

0 ~----"Ob'-------"I~-¥------...L-,~----',,)·J...-'-\'M :H I-' ' - " - . - llt - - . - 10 . 

0 5 10 15 20 25 30 

Parameters 

Figure C.l3 Input Sequence 1 and Error Value after pruning 

Input sequence 2 
20 --r ~ 

15 
\. ~ 

... 

°C \ \ r 

1 
10 

l J 

5 

0 
0 20 40 60 80 100 120 140 160 180 200 

SqmtleS 
Network after ha'v1n pruned 29 weights 

: ~-~--
--,/ -....... 

2 0 /~ ~ 

1 0 / 

Figur C.14 Input Sequen - and Pruned ural tvv r~ nn t1 n 

With the r ult after prumno th n w m d I f II \\ th li .... inal In ut! utput 

.1 n rr r hu\ i ur t I 

S quen a Fiour 
b 

th n wappr imati n 1 al 10 Iud d in th ora h b I \\'. 

197 



J 

Output (solid) and one-step ahead prediction (dashed) 
300 ~--:----.----~~~ __ ~~~~~~ __ ~ 

200 
, 

- - - - - ,- - - - - -I--
1 1 

--~-----~-----~-----
1 

100 _ __ _ _ 1_ 1 1 
- - - - -1- - - - - - - - - - - -1- - - - - -1- - - - - - - - --

I I 

o - - -:- - - - - -:- - - - - -:- - - - - -:- - - - - - - - - - - - - - - - - - - - - - -

-100~--~~--~----~----____ ~ ____ L-__ ~ __ ~ 
o 50 100 150 200 250 300 350 400 

tim.e (sampl~ ) 
Predict ion error ly-yhat) 

15 ~---'----1I----r----.----.-----~--~--~ 

10 

5 

error 0 

-5 - - - - - 1- - - - - - 1- - -

-10 L-----L---~----~----~-----L-----L----~-
o 50 100 150 200 250 300 350 400 

time (samples) 

Figure C.15 Output Sequence 1 and the one tep ahead prediction 

600 

400 

J 200 

0 

-200 
0 

20 

10 

0 
error 

-10 

-20 
0 

Output (solid) and one-step ahead prediction (dashed) 

, 
~- , 

1 - - - - 1- - - - - - -

I 
I I I 

,.. ,... +.,.-1 

- - - - I - - - -I 

I 

1 I , -------- ---------------, , 
, 

, , 
1 , 

___ J ___ _ , 1 , , 1 , , I 1 
_ _ _ , _ _ _ _ ~ ____ 1 ____ 1 _____ , ____ J ____ L - - - -' 

" I" 1 , 

20 40 60 

, 
I I 

I I 

80 100 120 
time (sampl~s) 

Prediction error ly-yhat) 

140 160 

1 ' - -1- - - - -,- - - - - - - - - I' - - - - - - -
h ' , , 
I ~ I ~ 1 I , 

- - - - ~I- - _.! - ~\- - / - - - - -
I - ~-It L Ir i , 

____ 1 __ __ J _ ___ L _ - - _1- - - --
, I I , 

20 40 60 80 100 120 140 160 

time (samples) 

180 200 

- ---4 

180 200 

Figure C.16 Output Sequence 2 and th n t p ah 'ld pr di ti n aft r pruntnh 

19 



The evaluation of the residuals for every case is also included in Figur C.l 

C.l8 in order to be compared with the previous graph before pruning nd the ff t 

of this procedure to the final model. With the system identification re ult d 

by means of the Neural Networks Toolbox it can be een the benefit that thl 

technique can offer. 
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