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(i) 

ABSTRACT 

This thesis is concerned with the application of direct 

integration methods, particularly Dynamic Relaxation, to the non- 

linear formfinding and analysis of pretensioned networks supported by 

compression arches. The development and application of such 

methods is reviewed in Chapter 2. 

The automated control of Dynamic Relaxation is considered in 
I 

Chapter 3. and a modified kinetic damping procedure shown to be an 

efficient and simple alternative to viscous nodal damping that does 

not require prior determination of a damping constant. It is 

shown that Dynamic Relaxation may be interpreted as a dynamic 

implementation of a first order gradient method. 

A modification of Buchholdt's implementation of the Scaled 

Conjugate Gradient method to permit arbitrary ýcable strains is 

presented in Chapter 4. The efficiency of this method and 

Dynamic Relaxation is compared in Chapter 5 for a generalised test 

problem having variable design parameters. Dynamic Relaxation is 

shown to be more efficient in all cases. 

In Chapter 6 Dynamic Relaxation is applied to the non-linear 

analysis of plane and space frames. 'The effects of finite displace- 

ments, bowing and axial force on the moment-curvature relations 

are included in the analysis. The method presented is compared 

successfully with published solutions to planar and spatial problems 

000 exhibiting snap-through buckling and subsequent post-buckling 

response. 



( iii 

The development of numerical methods for formfinding is 

reviewed at the, start of Chapter 7. The suitability of kinetic 

damping for controlling Dynamic Relaxation formfinding is 

demonstrated and the generation of moment-free compression arches 

illustrated. 

In Chapter 8 the cable and spatial flexural elements are 

combined for unified Dynamic Relaxation of the -complete structure. 

This method, with full non-linear idealisation of the boundary 

structure, has demonstrated convergence at least twice as rapidly 

as the Scaled Conjugate Gradient method with linear boundary 

response. 

Dynamic Relaxation has been shown to be a simple and 

efficient analysis technique, retaining a clear physical analogy 

that facilitates the enderstanding, implementation and execution of 

non-linear response investigations. For the particular problem 

of pretensioned networks supported by compression arches it is 

a straightforward procedure to investigate the stabilising effect 

of the tension network on the boundary structure, thus enabling the 

use of lighter, more economic, compression members. 

I 
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CHAPTER I 

INTRODUCTION - DYNAMIC RELAXATION ANALYSIS OF PRETENSIONED NETWORKS 

SUPPORTED BY COMPRESSION ARCHES 
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Recent years have seen rapid developments in the field of 

cable and membrane tensile surface structures, encouraged both by 

the natural aesthetics of their equilibrium of form and function and 

by their ability to provide an economic solution to the problems of 

achieving long, clear, spans. As loads are transmitted to the 

bearing structure by purely tensile forces,. there are no problems of 

stability and the maximum use of the cross-sectional area of high 

tensile steel cable is possible. This efficient utilisation of 

structural elements becomes progressively more economical as spans 

are increased. 

The support system utilised to equilibriate the tension 

member forces forms a major component of the cost of this type of 

structure. The support may comprise tension anchors, compression 

masts, or flexural internal or external compression contours subject 

to both axial and bending forces. The latter, with which this thesis 

is principally concerned, may be either planar or spatially curved 

arches or ring beams. These boundary elements have traditionally 

been very stiff in comparison with the net surface, and permisssible 

deflections have been minimised in an attempt to recreate the fixed 

boundary condition. At the design stage this adoption of stiff 

boundary contours leads into the viscious circle of stiff members 

attracting bending moments, requiring additional stiffening to support 0 

these moments and thus attracting further moments. 

It is likely that future developments of such str-dctures 

will concentrate upon the use of increasingly flexible boundary contours 

baving significant permitted displacements and utilising the stabilising 
(I-) 

effect of the. tension network. 
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Analysis techniques in structural mechanics have developed 

in parallel with the availability of computing power. The 

displacement approach to finite element analysis was developed for 

linear structural problems and subsequently extended into non-linear 

applications involving multiple implicit solutions of sets of 

simultaneous equations and ever increasing program complexity and size. 

The present generation of computers have made substantial 

analysis potential available to the engineer, with linear analysis 

readily achieved on such systems. For non-linear techniques to be 

equally readily available it is important that the method used be 

easily understood as successful user control may be. an essential 

feature in path-dependent problems. In particular, for the analysis of 

tension systems, the necessary finite elements are simple and 

alternatives to conventional implicit methods may be considered in 

order to achieve efficiency of computer time, coding and core space 

together with ease of understanding and control. 

Both Dynamic Relaxation and the Scaled conjugate Gradient 

method are explicit non-linear techniques that have been established 

as suitable for the analysis of cable structures. Dynamic Relaxation 

(DR) in particular has proved highly suited to shape-findin'g 

investigations, coping naturally with structural mechanisms, cable 

slackening and gross out-of-balance forces. Difficulty in selection 

of the parameters controlling the viscously damped integration steps of 

DR may, however, have tended to preclude its wider application. The 

Scaled Conjugate Gradient (SCG) method has previously been extended to 

the analysis of the complete structure by the inclusion of spatial 

flexural elements for idealisation of the boundary system, for which 
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a linear load/deflection response was assumed. 

The aim of this thesis is the presentation of extended and 

fully automated explicit integration techniques for the full 
I 

non-linear formfinding and analysis requirements of pretensioned 

networks supported by compression arches. Such analyses will permit 

the numerical investigation of relatively flexible boundary contours, 

with full account being taken of the influence of the tension network 

upon the stability of the support 
-structure. 

In Chapter 2 the development, formulation and applications 

to date of Dynamic Relaxation and the Scaled Conjugate Gradient method 

are reviewed. 

The efficient control and implementaAon of DR is examined 

in Chapter 3. Kinetic damping and optimised fictitious mass 

components are presented as automatically assigned controls on the 

numerical integration. The efficiency of nodal residual calculations 

is examined for arbitrary finite element types. DR is shown to be a 

dynamic implementation of a first order gradient method. 

The convergence of the gradient minimisation methods is 

considered in Chapter 4. A modification of Buchholdt's method is 

presented that enables an exact analysis for cable members subject to 

arbitrary strains. 

In Chapter-5 a general test problem is presented for the 
I 

comparative analysis of pretensioned networks which enables the ready 

adjustment of network curvature, pretension,, idealisation and loading 

pattern. DR and SCG are compared for variations of the above 

parameters and also for the problem modified to include the 
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on-off non-linearities of cable slackening under load. 

In Chapter 6 rotational degrees of freedom are introduced 

into the DR analysis scheme to permit the inclusion of planar and 

spatial flexural elements. Finite displacements are treated 
I 

directly, with full non-linear effects incorporated in the member 

natural stiffness relations. The proposed method is applied to the 

analysis of published noir-linear frame problems. 

Formfinding is an integral and essential part of numerical 

investigations of network structures with compression boundary 

contours. Chapter 7 presents a brief review of the development of 

numerical formfinding techniques, followed by_examples of the 

utilisation of kinetic damping and the derivation of moment-free 

compression contours by Dynamic Relaxation. 
0 

In Chapter 8 the DR analyses for networks and rigid-jointed 

structures presented in preceding chapters are combined for the 

unified analysis of the complete structure. Previous approaches to 

this problem are reviewed, and a generalisation of the gradient method 

to include non-linear boundary structures is outlined. The explicit 

DR and SCG methods are then applied to published planar and saddle- 

shaped network problems. 
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CHAPTER 2 

REVIEW OF EXPLXCXT NETHODS OF STRUC7VRAL ANALYSIS 

An explicit solution technique is one that does not require 

the direct solution of an associated set of simultaneous equations. 

Two principal methods of this type have been employed for the 

analysis of linear and nonlinear structures, in particular to 

network structures and their support systems. In this chapter 

the development., formulation and applications of these methods, 

Dynamic Relaxation and Scaled Conjugate Gradients, are reviewed. 
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2.1 Dynairdc Relaxatýon 

The static solution of both linear and nonlinear 

structures subjected to either externally or internally applied 

loading may be regarded as the limiting equilibrium state of 

damped structural vibrations excited by that loading. The 

physical basis of Dynamic Relaxation as initially perceived by 

Day (60) is that of a step by step solution, ' for small time 

0 increments At, of Newton's second law of motion applied to a 

loaded structure subjected to an imposed viscous damping. This 

0. explicit solution technique originated from an anology with tidal 

flow computations previously reported by Day and Otter (180). 

The structure under consideration may be idealised by 

either finite element or finite difference discretisations. Since 

the equations of equilibrium and compatibility are separated, only 

'natural' finite element stiffnesses are required for the former 

idealisation, rather than transformed stiffnesses assembled into 

an overall matrix. To date, however, published applications of 

Dynamic Relaxation have predominantly centred on finite difference 

approaches. 

The trace of nodal displacements in DR is achieved by 

central difference numerical integration. Newmark (128) had 

previously suggested the possibility of obtaining static solutions 

from damped dynamic analyses, but had proposed the use of a, 

relatively inefficient implicit integration scheme. 



8 

2.1.1 Recurrence Relations 

The formulation of Dynamic Relaxation is based solely 

upon Newton's second law of motion and the stress-strain relations 

of the structural components under consideration. The former may 

be written, for motion in direction x at node i: 

I (2.1) 

At any time t the total force acting on the node in this 

direction, FL.. , comprises two parts.,, the current residual Rt- of 
ILX 

applied and member loads acting on the node, and an imposed 

viscous. damping force acting in the opposite sense to the nodal 

velocity vt 1: x 

b 
LX Ao 

%, 
x j- A. X 

(2.2) 

where C is the viscous damping constant at node i. For a small 

time interval, At, this equation may be rewritten in central 

finite difference form: 

t 1: + &/j t: - k/2. %t 
I-L t- 'k/., R LIX 

ML(v 
v+CA. 

(v + V. 

LIX AýW- -Et A--X L-X- 

I 

(2.3) 

Re-arranging equation (2-3), the recurrence relation for 

the nodal velocity is then: 
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M v j6-x 
v 

i'x 
C-J2 +R 

L-X \ -- (2.4) 
M-JAt + J2 M. /At + C. J2 Aý J Jý I- 

The damping factor C. L may be defined as constant for the 

whole structure or, conveniently, the damping per unit mass may be 

assumed constant: 

1% 

(C/At) 

Then: 

ý-- + 
vt- 

hrfi 1= 

L-X L-X 

(2.5) 

(2.6) 

where A constant for the structure 
1' 

1+ C/2 

and B At 1 constant for node i. 
m. L 

I+ C/2 

Nodal coordinates may then be updated for the structure: 

xX+ At .v (2.7) 
ý: x L-X ý-x 

The current nodal residuals R may now be calculated 

and the next stage of the analysis recommenced at equation (2.6). 

No assumptions have been made as to the residual calculations, and 

either constantg linear)or updated, non-linear, force displacement 

relations may be employed. These iterations proceed until, the 

required degree of convergence, as indicated by the magnitude of 

the current residuals, has been achieved. 
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For the first iteration of the analysis it is assumed 

that v 
ft/t 

I=.., 
v 

StI., 
(i. e. v0= 0) and consequently: LOX LIX L-X 

&- 17 0 

0 
If the structure is initially in equilibrium, then R. 

the applied nodal loading. 

2.1.2 Stability and Optimisation of the Numerical Integration 

(2.8) 

Instability of the numerical integration process outlined 

above will occur when the time interval, At, exceeds a certain 

critical value. 

The calculations may be regarded as a wave which must 

out'run the wave corresponding to the physical problem, and 

consequently At must be less than the minimum time taken by either 

pressure, shear or flexural waves to travel between any pair of 

adjacent nodes. 

For finite difference idealisations with orthogonal grids 

Otter, Cassel and Hobbs (135) refer to the expression due to 

Forsythe and Wasow (70) for a system having m cartesian coordinate 

directions: 

y 
z 2. 

At <1++(1) (2.9) 
Cv AXI) AX 
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where AX Io0o AX . are the respective mesh lengths and C.. is the 

maximum wave velocity. Cassel, Kinsey and Sefton (48) quote 

expressions for the pressure and flexural wave velocities in beams 

and plates. These expressions relate to orthogonal finite 

difference meshes, and a more general approach is necessary when 

complex meshes or finite element idealisations, are employed. 

If the basic DR recurrence relation (eqn. 2.6) is 

multiplied through by At, then: 

t. #, t+ kls ItCt Ax At. v At R+ (1- - Ax (2.10) 
LOX M (1+C) 2 

T (1+ C 

where Ax is the displacement increment between time points t 

and t+ At. This equation has been termed dynamic iteration by 

Otter et al (135), who noted its similarity to the recursion formula 

proposed by Frankel (181) and named the second-order Richardson 

process by him. The optimal form of Frankel's method (181) is: 

yt+ IpI vt YL 
Ax 2R+ Sa 

- 
lb Ax 

ýa + lb a+ lb k-I 
(2.11) 

Comparison of equations (2.10) and (2.11) yields: 

2 
At 4 
m 

and C 4Jab 
a+b 

(2.12) 

where a and b are the smallest and largest eigenvalues respectively 

of the stiffness matrix associated with the structural assembly 

under consideration. Cassel and Hobbs (49) have suggested that 
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an upper bound for b may be found from GershgBrin's theorem: 

VL 

b \< b 
Gr 

max LS 
(2.13) 

where S. - are the elements of the stiffness matrix, and the 

maximum value of the sum for each row i is taken. If the structure 

is such that a << b, and consequently ja + bi \< b 
Gr , which is 

frequently the case, then 

I 
At 4 (2.14) 
M. min b 

J- Gr 

and a safe estimate for At may be obtained. 

Barnes (13,21) has directly derived criteria for stability 

of the numerical integration by considering the relative motion of 

adjacent nodes,, and that derivation is reproduced here. 

Consider the x-axis components of vibration of node i 

having structural connections to adjacent nodes k, and from equation 

(2.6): 

t- ät/2 t hte 
=B 

Then, assuming that the motions of nodes k and i are 

0 
parallel to the x-axis, for the next Hme interval: 

7j t+ t: t+k t+bt 
; 

v+BRs AS (2.16) 
Px Lw: x- 
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t4 at 
where, S is the x-axis direct stiffness of node i 

relative to adjacent nodes k due to the 

structural elements connecting nodes i and k. 

is the increment of x-deflection of node i 

relative to adjacent nodes k during the time 

interval t t+At. 

If the time interval is large when the stiffness/mass 

ratio (Sý4. 
X/M 

)- is large, instability in the form of successive 

reversal and buildup in the amplitude of velocities and deflectiong 

may occur. 

Bounds to At may be obtained by considering adjacent nodes 
01 

I and K of a part of a structure at which the S/M ratio of the nodes, 

or of one of the nodes, is highest. The most critical structural 

configuration and state of motion will be such that all nodes 

k adjacent to I are different from all nodes i adjacent to K, with 

the relative vibrations of nodes i and k exactly out of phase. 

Substituting Rt from (2.15) into (2.16), for node I, 

one obtains: 

t*&t 
t+lo&tt. L Ic k1l. h- &t/2. 

v (A + 1)v + Av Bs (AS - 
Tox =X IZT- VM, TIX IZ-X. 

(2.16) 

I 

and similarly for node K: 

t+S&IC/7. t4 &tll 
(A + 1)v 

KIX WX 

L- - &t f., 
ýc 

Av s- 
. 

(AS - A8 
V»IY- rli: x KX izt)i 

(2.17) 
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For the most critical condition assume that the direct 

stiffness/mass ratios of all nodes i and k are equal, and for 

oscillations which are just stable : All ASýx = A6 
rx and all 

ä8 = Ad e' v.. z7 

Thus subtracting (2.18) from (2.17) 

(A + 1) v+ Av B (S 2A6 
-z T-14IX e. MIX 'MIlCIX 

1 (2.19) 

where v : EC-X 
is the veloLty of I relative to K 

six is the direct stiffness of node I relative to all 

adjacent nodes (assumed highest in the x-direction) 

The limiting case of stability is when v during : KMK 

one time increment produces relative deflection changes A6 
TKX 

such that v XT K 
in the next time increment is equal and opposite 

to the previous value. Hence: 

I: 

+ k/7 t4 At 

2 (A + 1)v .=-B. S ZA 6 
T Y. XI Xx IK Ix 

(A + 1) /B S At 
IlIx 

At 
2Ml 

CrLt. 

I LS 

: Ex 

Alternatively, assuming SwxjM v << S. 
ZzlMr when 

subtracting (2.18) from (2.17): 

At 
cri. t. 

f 
4-M I ýsm- 

xx 

(2.20) 

(2.21) 
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When calculating the permissible value for At, constant 

throughout the analysis for the whole structure, the highest ratio 

of S/M at any node in any co-ordinate direction must be considered. 

Barnes (21) has stated that the true critical time intervAl has 

always been found to lie within the above limits whilst analysing 

cable and space structures. 

In the preceding review of th6 stability criteria for the 

numerical integration it has been assumed that the true, lumped, 

mass has been specified for each node. As a consequence the 

resultant iteration bears some resemblance to the true dynamic 

behaviour of the structure, and engineering judgement may be used 

when estimating the critical viscous damping constant. However, 

as only the eventual static equilibrium solution is required, 

there is no reason why real masses should be employed. 

If a 'fictitious' mass is to be used for each degree of 

freedom of the structure, then equations (2.14) or (2.20) may be 

rearranged and utilised to ensure that the chosen time interval 

is the optimum for each of those degrees of freedom: 

M 
At 

S for degree of freedom i 
14 

or MS (2.22) 
2 

A unit time interval may then be conveniently chosen in order to 

reduce computational effort, and the number of iterations to 

convergence has been minimised by this use of fictitious masses. 
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Fictitious masses in Dynamic Relaxation were first 

suggested by Welch (135) and King (135) , and the f irst published 

results using this technique presented by Rushton (145) and 

subsequenýly Cassel (47). It is now standard practice in DR 

analysis. 

For non-linear problems Cassel and Hobbs (50) have 

updated the fictitious mass components at discrete intervals as 

the analysis proceeds. The Gershg8rin bounds were used for 
I 

calculating these masses, and separation of the linear and non- 

linear components ensured that only the latter need be updated. 

This technique has been applied by Turvey (167) and Frieze, Hobbs 

and Dowling (71), in both cases for large deflection analysis of 

plates. Subsequently Frieze (72), applying DR to the elastic- 

plastic buckling of thin walled rectangular sections, has shown 

that fictitious masses calculated on the basis of elastic 

rigidities alone provided satisfactory convergence even when 

deformations were well into the plastic region. It was concluded 

that the additional computation required for inclusion of the 

updated noný-Iinear components of the fictitious masses more than 

offset any gains in reduced time to convergence. 

As an alternative the possibility of continually updating 

iteration parameters has been investigated by Lynch, Kelsey and 

Saxe (116) for linear structures, although no comparisons of 

relative computational effort were given. 

For non-linear structures, with significant changes in 

stiffness, Barnes (21) has proposed that the above technique be 
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Figure 2.1 
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combined with an update of the associated fictitious mass components. 
This approach to the control of viscously damped Dynamic Relaxation 

has been examined in detail by Papadrakakis (183). 

2.1.3 iscous Damping 

For an ideal onedegree of freedom system, the critical 

damping factor, C may be expressed in terms of the stiffnes. s CII h. . 
and mass of that degree of freedom (30): 

cN=2S --m 
crik.. 

and the frequency, f, of 
iree 

vibrations is: 

thus: 

(2.23) 

fi 
FS 

TI 
(2.24) 

c 411 fM (2.25) 

and, for C 
arit. , the critical damping factor per unit mass, as 

defined by equation (2.5), is then given by: 

411f At (2.26) 

Figure 2.1 shows the displacement/time trace for the one 

degree of Jreedom case with varying degrees of damping. The use 

or critical damping ensures monotonic convergence to thestatic 

equilibrium state. However, slightly sub-critical damping will 
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enable more rapid convergence, and the oscillatory behaviour about 

the true displacement gives an indication of the current error 

bounds of the solution. 

For structural systems with many degrees of freedom the 

assessment of the viscous damping constant may be based upon the 

fundamental frequency of the system. Otter (132) takes the damping 

constant. to be 0.8 of the value determined from the fundamental 

frequency. When a regular structure is under consideratIon, and 

real masses are employed, then engineering experience may be used 

in the estimate of this frequency. Otherwise it may be assessed 

from the deflection traces of selected nodes from a trial undamped 

Dynamic Relaxation analysis. Separate damping factors may be 

applied to the principal components of displacement (71,124). 

For parametric studies of structural components this trial analysis 

need only be performed once, and Barnes (21) has suggested that it 

provides useful information for the preliminary design of tension 

structures. 

Rushton (144) has proposed that a trace be made of the 

total kinetic energy of the undamped system, with the first energy 

peak occuring at approximately 1/4 of the fundamental period, as 

opposed to the 1/2 of that period when deflection peaks are 

examined. In addition to this reduction in trial analysis time, 

Rushton suggests that this approach gives a clearer indication 

of the fundamental frequency. 

Chaplin (51,52) has outlined a scheme, termed 

metadynamic. relaxation by him, wherein damping close to the critical 
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value is maintained at every node throughout the analysis, with 
local eigenvalues used to smooth control. The method has been 

applied to soil-structure interaction problems, but has not, 

however, been generalised for arbitrary structures. 

2.1.4 Applications 

The majority of applications of Dynamic Relaxation reported 

to date have utilised finite difference idealisations of the problem. 

The initial impetus for the development of the method was provided 

by the need to analyse the prestressed concrete pressure vessels 

for nuclear reactors. Day's original paper (60) included an 

example of a thick cylinder subjected to pressure loading, and 

Otter (132), Welch (184) and Orr and Holland (185) have subsequently 

reported on the same problem. Holland (89) has also performed 

local-analyses of the stress distribution in anchorage zones 

and nozzle/shell intersections for pressure vessels. 

Day (1,4) also described the finite difference analysis 

of elastic plates with varying boundary conditions, and Rushton 

(144,, 145) has considered grooved flat plates and interaction with 

elastic foundations. Soil-structure interaction has also been 

considered by Galletly and Tuma (73) and Chaplin (51). Basu and 

Dawson have analysed rectangular isotropic and orthotropic 
f 

sandwich plates (23). Malvick and Pearson (186) analysed a solid 

quartz circular mirror of 4m diameter, considering the 

deformation of the optical surface for varying support systems. 



Malvick subsequently investigated a parabolic mirror of similar 

dimensions (187). 

Cassel (47), together with Kinsey and Sefton (48), 0 

describes the elastic analysis of cylindrical shells and shells 

of revolution, and Dowling and Bawa. (67) have prepared influence 

surfaces for stiffened steel bridge decks using DR and finite 

differences. 

Rushton (146)-introduced geometric non-linearity, 

investigating large deflection behaviour of variable thickness 

plates, and subsequently extended his plate analyses to include 

specified boundary stresses (147) and the post-buckling response of 

tapered plates (. 148). Turvey and Wittrick (166) extended the 

investigation of post-buckling behaviour to laminated plates. 

Large deflection plate analyses by DR have also been reported by 

Aalami (1), Alwar and-Ramachandra Rao (3,4), Murthy and Sherbourne 

(124) and Turvey (167). 

Extending the finite difference idealisation to cover 

combined material and geometric non-linearity, Lowe and Flint (115) 

studied the collapse behaviour of single-span composite bridge 
*I 

decks. Rushton and Hook (149) analysed the creep of beams and 

rectangular plates obeying non-linear stress-strain laws. Cundall 

(58). included the effects of particle contact when modelling 

granular material in geomechanics problems. Harding, Hobbs and 

Neal (81) and Frieze, Hobbs and Dowling (71) 'have investigated 

21 

the large deflection elasto-plastic behaviour of plates with initial 
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imperfections, whilst Frieze (72) has considered the buckling of 

short thin-walled beams and columns. 

Finite element structural idealisations in conjunction 

with DR have been utilised less frequently, even though Day (60) 

gave an example for a portal frame in his original paper. In a 

discussion on Dynamic Relaxation (135), both Zienkitwicz and King 

commented on the possibilities of combining the advantages of the 

two methods. 

Brew and Brotton (32,33) analysed the nonlinear behaviour 

of structural plane frames, accounting for the effects of bowing and 

stability within the individual element stiffnesses. Bunce and 

Brown (45) performed a similar large 
0 

deflection analysis, but used 

large numbers of simple bending elements rather than include stability 

functions. 

Plane stress triangular finite elements were employed by 

Lynch, Kelsey and Saxe (116) for the analysis of stress 

concentrations around circular, elliptical and square holes. 

Day and Bunce (62,63) first used pin-jointed elements 

with DR for the analysis of cable structures, and demonstrated its 

application to structural mechanisms by means of a simple 

pendulum problem. Barnes (13--4-19,21) has subsequently used DR 

for the formfinding and analysis of a wide range of network, 

membrane and pneumatic structures, including the effects oftcable 

slackening, membrane buckling and non-linear material properties. 
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Iwegbue and Brotton (92), using numerical integration (Newmark's 

method) for flutter investigations of suspension bridges, have also 

incorporated viscous damping in order to obtain the static solution. 

Barnes (21) has proposed the use of Dynamic Relaxation for 

optiMisation of the form of space trusses subject to a singlp, 

dominant, load case. Using a, modular ground structure, with 

generally def ined external boundaries containing all possible 

alternative structures compatible with the modular grid, member 

sizes are continuously modified during the process until the 

structure complies with criteria for a least weight optimum. 

physically the process of modification is such that, as loads are 

taken up and transmitted to supports,, members which do most work are 

increased in size and those that do least are decreased. In the 

limit, the majority of members have reduced to zero area whilst 

the remainder, forming the optimum, are stable in size and 

configuration. 

Topping (188) has investigated this design procedure 

further,. giving details of the stability and control of the method, 

extending it to the sizing of modular space structures of fixed 

topology (including deflection constraints), and comparing solutions 

and computation times with non-linear programming techniques. 

Multiple loading cases have also been considered for formfinding 

and sizing. 



24 

2.2 Gradient Minimisation Methods 

The determination of the equilibrium state for any 

structural assembly, subject to either internally ox externally 

applied loading, may be regarded as the process of minimising the 

total potential energy of that assembly with respect to all 

possible displacement-s. 

The objective function of this minimisation, the total 

potential energy W,, may be expressed as: 

U+V (2.27) 

where U is the strain energy of the deformed assembly, and V the 

potential energy of the applied loading I Pj_ An arbitrarily 

defined initial configuration provides a zero-energy reference 

state. For an assembly of M elements, subject to loading t PI which 

remains constant in both magnitude and direction, and having f inite 

displacements 1 61, equation (2.27) may be written: 

uv" - 

where U,,, is the strain energy of the mth component. The 

equilibrium state is then that which satisfies the condition: 

lw 

(2.28) 

(2.29) 

which is necessary for the minimisation of the objective function. 

This first derivative is the gradient vector, denoted by 19 



Although direct minimisation techniques, such as random 

search or Monte-Carlo methods, which only make use of the 

objective function have been applied to non-linear structural 

analysis (189), it is the gradient techniques that have been 

employed most generally and successfully. 

For a system having n. degrees of freedom the objective 

function may be regarded as a surface in n-dimensional space. 

Provided. that this surf ace is convex, and the initial state lies 
I 

on the surface, a solution may be sought be following a specified 

descent direction, tdvj 
, in n-dimensional space until a local 

minimum of the objective function is located. The descent 

direction is then reset and the process repeated until the global 

minimum is reached. The displacement vector has thus been updated 

iteratively 

I 
dv (2.30) 

where S 
tz 

is a scalar factor, termed the steplength, applied to the 

descent direction vector to locate the function local minimum. 

Normalisation of the descent vector is not necessary, as it merely 
Iz 

has the effect of scaling the steplength S. 

The determination of the descent direction dv may be 

achieved by either first or second order gradient methods. First 

order methods, requiring. the gradient vector 
t 

91 , have been 

successfully applied by Buchholdt (34) to the analysis of pre- 

tensioned networks, and have the advantage of being explicit. 

25 
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As a consequence computer storage requirements are reduced as 

there is no need for the formation of an overall system of linear 

equations. The Newton-Raphson matrix method for noný-linear 

structural analysis, an implicit technique, can be shown to be 

a second order gradient method, requiring the second derivative of 

the objective function, and has been used as such with a steplength 

control by Buchholdt (40). 

It has been shown that the energy surface of a pin-jointed 

assembly is convex when all members of that assembly remain in 

tension (36). This is not, however, a necessary condition, and 

some members may go temporarily into compression during the descent 

process. 

2.2.1 The Gradient Vector 

As a precursor to any of the gradient methods the first 

derivativeýW/Hj = J91 must be obtained. For any node i of the 

assembly, to which there are J members connected (having node 

numbers it can be shown (section 4.2) that: 

aw T AX p (2.31) 
a 

len 
where the coordinate differences, 

[ LX x ýI ýI , gth L 

and tension T.. for the connecting members are all related to the 
A3 
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current deformed configuration of the assembly. Thus the gradient 

vector represents exactly the vector of out of balance forces in 

the global coordinate system for a displacement vector 
[51 

, where 
Nt X1 -x 

"I 
, and has the direction of greatest increase 

of the total potential. Clearly at -any stage: 

[g r 
(2.32) 

where 
[R I Iz 

is the- current vector of out of balance forces acting on 

the joints of the assembly. 

This exact expression f or the gradient vector was derived 

by Buchholdt and published in his earlier papers (36). More 

recent publications (37,42) have, however, presented an approximate 

expression: 

r 

JwT 
Ax (2.33) 

L* 
- A-d 

wherein the current member length L Lý has been replaced by the length 

at the initial state L0 on the assumption of small member strain. L3 

The reasons for the introduction of this approximation are discussed 

in. chapter 4, where an extension of Buchholdt's method accounting for 

arbitrary member strains is presented. 

2.2.2 The Descent Direction 

Having obtained the gradient vector, the descent direction 

must then be chosen. Buchholdt and McMillan (39) have reviewed 
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Figure 2.2 
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several suitable gradient minimisation methods. 

Initial investigations were based on the method of 
steepest descent: 

[ 
dv 

ý4 
aI 

ýz IR vz 
(2.34) 

and thus: 

vz 
S 

[R 
(2.35) 

Only the initial direction of each step is in the direction of 

steepest descent, and since the descent direction is followed until 

W is minimised locally then each successive step is orthogonal to 

the preceeding one. This zig-zag path of the steepest descent 

method (figure 2.2) results in very slow convergence, which may be 

improved by the adoption of a relaxed steplength: 

1,4 
+ X. SýZ 

tR 
(2.36) 

with a relaxation factor 1. <, ý<O. As X becomes smaller, the 

computed path folloT, ýs the true steepest descent more closely, but 

this advantage must be traded off against the reduction in progress 
L 

along that path to solution. It was therefore suggested that X 

be applied for 3 steps out of 4, with the full steplength being 

used every fourth step. For a small cable network analysis the 

use of relaxed. steepest descent, with 0.05<X<0.95, reduced the 

number of iterations to between 5% and 25% of those required when 

using the full steplength throughout. Optimum selection of X 

has not, however, proved possible. 
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The most efficient first order method proved to be 

that of conjugate gradients, as developed by Hestenes and Stiefel 

(86) f or the solution of sets of linear equations. . Convergence 

is improved as the conjugate gradient method enables accumulated 

knowledge of the local behaviour of the objective function to be 

taken-into account (figure 2.3). 

A pair of vectors are said to be conjugate provided 

that -. 

dv dvj 0 (i (2.37) 

and Fletcher and Reeves (69) have shown that, for [K] 
constant: 

-r 
[RI 

R 
IVZ+6 

(2.38) 

Rjýz. R ýz 

when the conjugate gradient incrementation of the descent direction 

is: 

dv R+ý. dv 
ýZ, ý I ýz ýz 

(2.39) 

Conjugate descent directions have been set without direct reference 

to the system matrix 
[K I- For a linear problem, exact 

convergence will be obtained within n steps (69), where n equalg 

the number of degrees of freedom. For nonlinear problems, however, 

where 
L KI is no longer constant, convergence may take longer as the 

directions are now only approximately conjugate. The process may 
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be restarted by returning to the steepest descent direction at 

regular intervals for highly non-linear problems. 

2.2.3 The Linear Search 

Several methods have been suggested for the linear search 

for the stationary condition of the objective function in the 

descent direction. Fletcher and Reeves (69) outlined one technique, 

based on that of Davidon (190), wherein a bracketing process is 

used to locate bounds to the minimum which are then used in a 

cubic interpolation refinement. Papadrakakis (183) has compared 

the relative efficiencies of this and other linear s. earch methods 

in conjunction with the conjugate gradient algorithm for tension 

structure analysis. Buchholdt (34) has derived an expression for 

the total potential in terms of the descent direction steplength 

which is then used to locate the stationary condition. This 

approach is reviewed here, and forms the basis of the revised method- 

presented in chapter 4. 

For any member m, having connecting nodes i and j, the 

current tension is given by: 

0 

TT+ EA 
iý L"jý 

(2.40) 

0i 

where e is the current extension from the length L.. associated 
; -s 1-3 

00 
with the pretension T. - and EA EA.. + T., The member 

11-3 1-3 . 1-3 

strain energy, based on the pretension reference state, can then 
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be expressed: 

L. - 

UT de =T%% (2.41) EA 

2L 

Then if the member strain e ký is associated with the assembly 

displacement state, 
tel 

at any point along the current descent 

direction: 

In = 

it can be seen that: 

a 

+S dv (2.42) 

0 (L + e) 
[AX'*l + [A 61 + S. [Adv) + 

[A 
61 +S 

ýAdvj 

(2.43) 

where AXOI 
4 

2 

[ 
Adv = 

[dvý 
- dv,. 

7. 

Expanding equation (2.43), and neglecting e.. on the assumption 
. 1-3 

that e.. << L.. e.., one obtains: 
1113 163 1-3 

e+ 
[A6yt A61 12) 

+ S. Advi + 
ýAdv 

+ ý'. ( ýAdvy[Advj J2) 

or: 
S+a. S )JL e (a +a 

t 

(2.44) 

(2.45) 



Backsubstituting this equation into the expression for 

member strain energy, Buchholdt obtained a quartic polynomial, in 

the steplength S, for the total potential: 

w=CIS+CIS+CSS+C4S+C5 (2.46), 

The total potential at any projected displacement state 

along the descent direction may be written: 

WUpsPf dv (2.47) 

For an assembly of pinjointed bar elements, the 

coefficients C1 1004. c 
Is of the potential polynomial are: 

% oz 
EA a, /2f C2 =JEA aIa3 

Cat 
3+ 

EA (a + 2a, a, 
1? 21? % 

1. c a,, + EA a, a, dv 4 
ýp 

ca+ EA a, 's ft 2f 1 
11 1- tpl"Tt6 I 

where the summation is f or each member of the assembly. 

The stationary position in the descent direction may then 

be found by differentiating the polynomial with respect to S, 

and solving the resultant cubic equation for the smallest 

positive'root: 

3% 
aW 4Ck S+ 3C 

7. 
S+ 2C 

*1 
S+C40 (2.49) 

as 

34 
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The displacement vector may then be incremented: 

[61 
VZ41 

-7-- 
ta Jýz 

+ Sýz -[ dv 
ý2 

and the minimistation process continued. 

2.2.4 Rigid Jointed Boundary Structures 

(2.50) 

The analysis of tension structures by the conjugate 

gradient method was extended by Buchholdt, Das and Al-Hilli (42) 

to include rigid jointed boundary structures. The behaviour of 

these support structures was assumed to be linear, and for such 

a system the total potential energy may be written: 

WI KI[SI 
12 

1 (2.51) 

where the displacement vector 
161 

now comprises both 

translational and rotational components. Differentiation with 
I 

respect to these displacements yields the gradient vector: 

a! *Sj =[K (2.52) 

The coefficients, B, ..... B., for the contribution of the 

boundary structure to the total potential energy polynomial, must 

now be assessed: 

3% 
S (C +BS+ (C +B)S+ (C +B 

IL IL %s4 

(C +B (2.53) 
15 Is 
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Equation (2.51) may be rewritten in member summation 
form for any projected displacement state on the descent 

direction: 

W's +S dvj KKI t6l 
+S 

tdvl' 

4 
1' ta I+S [dvj 

(2.54) 

I 
where 

I 
Kv%4] is the boundary member m's elemental stiffness matrix. 

On expansion of this equation and comparison with equation (2.53), 

the following polynomial coefficients are obtained: 

Bi = B2 0 

B= tdv 
Ký] 

B Kmj dvj 

B 61 K 

dv 

P dvj 

p61 (2.55) 

The introduction of boundary structures into the analysis, 

however, highlighted convergence difficulties with the application 

of the conjugate gradient method to problems with a large condition 

number. 

2.2.5 The Scaled Conjugate Gradient Method 

The convergence rate of the method is dependent on the 

condition number of the associated stiffness matrix, defined as the 
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ratio of the maximum and minimum eigenvalues of that matrix. 

These eigenvalues are inversely proportional to the squares of 

the lengths of the axes forming the total potential contours 

for a quadratic surface. When the condition number is large, 

the potential ellipses are long and narrow and the conjugate 

-gra, lent method converges slowly. This convergence rate increases 

as the condition number approaches unity and the total potential 

contours approach circularity. 

In an attempt to overcome these convergence problems, the 

concept of transformation of the total potential energy surf ace 

was introduced (42). In the minimisation process the true 

displacement vector is replaced by a scaled vector uI. such 

that: 

[61=L (2.56) 

where 
LH I is a square scaling matrix. Substituting this relation 

into the expression for the total potential of a nonlinear problem 

characterised by the current system of equations K.. 
r]., 

it can be 

seen that the effect is. the transformation: 

1% (2.57) K-r 
LH 

K HI 

and similarly for the-gradient vector: 

- 
aw LH Dw d (2.58) 
ýU ad 

Thus the introduction of scaling may be interpreted as 

either. the transformation of the gradient vector into another 
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direction, or as an overall transformation of the total potential 

surface. 

The condition number of the transformed problem would be 

reduced to unity if LHI 
could be established such that was 

equ3. Valent to the identity matrix, but in practice such optimal 

scaling has proved very difficult to achieve. 

Buchholdt'et al (42) have adopted a diagonal form for 
L 

H12 

with non-zero terms: 

tj 

(2.59) 

With this formulation the leading diagonal of the transformed 
E%I 

system matrix K 
Ir 

is unity, and convergence is then improved as 

the off-diagonal terms tend towards zero. In addition, the 

choice of a diagonal scaling matrix minimises the additional computer 

storage required, and is well suited to the explicit nature of the 

analysis. The individual scaling terms can be established on an 

element by element basis without the need to formulate the overall 

stiffness matrix of the assembly. Then, if: 
41 

611 hu 
I 

and dv hd 
I 

(2.60) 

where the individual coefficients of the scaled gradient, 
H 

). 

and descent, tdj 
, vectors have been multiplied by their associated 

scaling factorsý the modified coefficients for the total potential 
I 

obt polynomial can be Lained by direct substitution. 
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This scaled conjugate gradient method was initally 

applied to the boundary structure only by Al-Hilli (2) 
, whilst 

the pretensioned network was left unscaledg and these two segments 

were analysed alternately as substructures. This 'shuttling 

technique' was found to diverge in its basic form as relatively 

spall changes in edge cable forces produced significant 

displacements in the boundary structure, which were then reflected 

back as excessive cable force changes and a form of oscillatory 

instability developed. 'To ensure convergence an overall, 

optimised, reduction f actor was proposed f or the boundary structure 

displacements, this factor being established by total potential 

minimisation for the descent direction indicated by these current 

boundary displacements. 

Das (191), however, showed that the complete structure could 

be efficiently analysed simultaneously by application of scaling 

to both the boundary structure and the cable network. These 

initial investigations were confined to flat nets, but Buchholdt 

(43) has used scaled conjugate gradient analysis for design studies 

of saddle-shaped nets, circular in plan, supported by spatially 

curved reinforced concrete boundary arches. 
41. 

McMillan and Buchholdt (41) have shown that the total 

potential energy of a cable assembly subjected to uniformly 

distributed loading along the cables may be expressed as an eight 

order polynomialý Das (191) showed that convergence could, be 

significantly increased for this class of problem by use of the 

scaled conjugate gradient method. In order to estimate the 



40 

scaling terms, use was made of the element stiffness matrix 

derived by Mollmann (119) on the assumption of parabolic cable 

deformation between joints. 

h 

0 

J 
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CHAPTER 3 

EFFICXENT DYNAMXC RELAXATXON CONTROL AND XMPLEMENTATXON 

The efficient use of dynamic relaxation requires that 

optimised fictitious mass components be employed that ensure 

stability of the numerical integration and permit rapid convergence 

to the static solution through a suitable damping function. The 

automatic assessment of these fundamental controls on the iterative 

process is considered in this chapter. Overall efficiency is 

also highly dependent on the nodal residual calculations, which are 

examined here for arbitrary finite element types. Finally, the 

basis of the proposed analysis scheme is compared with that of the 

other commonly used explicit analyses, the direct gradient 

minimisation methods. 
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3.1 Kinetic Damping 

Viscous damping coefficients are generally determined 

from initial undamped or lightly damped trial analyses. The 

fundamental frequency is then estimated by tracing displacements, 

or, more efficiently, by tracing the kinetic energy which varies 

at twice the fundamental frequency and should also enable a 

clearer indication of that frequency. The same approach may be 

fQ1lowed when separate damping constants are applied to individual 

displacement components, with separate trial analyses for each of 

these components 

When dynamic relaxation is used for parametric studies 

of structural comiponents, - as is frequently the case with the finite 

difference formulations (71,72), the viscous damping constants 

do not generally change significantly as the investigations proceed. 

Initial trial analyses do not then represent a significant 

proportion of the overall computations. Barnes (21) has 

suggested that trial analyses provide useful design information 

for tension structures, and should not, therefore, be considered 

disadvantageous. 
W 

For some cases, however, the optimum viscous damping 

factor may prove difficult to estimate, such as the formfinding 

of funicular lattice shells (20) where the initial configuration 

is that of an unconfined mechanism. In the presence of gross 

geometric deformation and significant out of balance forces 

varying damping constants and fictitious member stiffnesses must 

be employed as the analysis proceeds in stages. Frieze et al (71) 



43 

reported the need for similar varying controls during buckling 

analyses of plates, where significantly different levels of 
damping were required f or varying levels of applied lodding. 

If dynamic relaxation is to be generally, and readily, 

used f or nonlinear structural analysis a method of iteration 

control is ideally required that does not incorporate trial analyses 

for parameters and copes naturally with gross deformation and 

residual forces, whilst. retaining the essential simplicity of the 

method. 

4 

Lynch, Kelsey and Saxe (116) suggested an automatic 

on-going adjustment of iteration parameters based on iterative 

determination of the minimum eigenvalue of the equivalent system 
a 

matrix. Barnes has outlined a similar treatment based on updated 

estimates of the asymptotic convergence rate from the incremental 

displacement vectors (21). 

A more radical alternative is to dispense with viscous 

damping. When an oscillating body passes through its static 

equilibrium position, the plot of total kinetic energy against 

time passes through a local maximum. Cundall, examining the 

application of explicit integration methods to problems in 

geomechanics (58), suggested that the total kinetic energy be 

traced as the undamped oscillations proceed, and that all current 

nodal velocities be reset to zero whenever an energy peak is 
I 

detected. For a linear elastic system oscillating in one mode 

the f irst peak achieved would represent the static equilibrium 

position, the displacement accuracy of which would depend on the 
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current nodal velocities and the integration time step. For 

practical problems, however, the process must be continued 

through further peaks, eliminating the kinetic energy from other 

modes, until the required degree of convergence is obtained. This 

. process, termed kinetic damping, requires no trial runs to 

determine iteration controls, of which only the fictitious mass 

components need to be established at the start of the analysis. 

The simplicity and readily understood physical analogy of the method 

remain. 

The iterative equations may be obtained directly from 

Newton's Second Law: 

ý Rl =H 
ýI t 

which is expressed in central difference form: 

I= 4 &ý,? t- &t:,, 
L 

vv (3.2) 
At 

on rearranging: 

t4&-f t-&t(l , t- 
v 

(3.3) 
oR 

and - 
Ir tk. 1: 4 (3.4) KE vv 

t* 
xt + At (3.5) 

where KE denotes the current kinetic energy of the system. 
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The initial application of this method to the formfinding 

of funicular structures was reported in reference (20). For an 
'C + t-ht energy peak detected at time t+At/2, (i. e. KE KE T the 

analysis was then restarted from the current nodal coordinates 
in store, x 

tI, 
with velocities such that the linearly interpolated 

values at time t 'would be zero: 

t+ 
-"0 

v (3.6) 

For this implementation, with time interval At = a. At 

a lower bound to the peak kinetic energy value was found before the 

required convergence level had been attained when a> ,,. 
9. At this 

limiting situation an energy peak was detected at each successive 

time step, with the structure effectively oscillating about the 

equilibrium state. Full convergence was obtained by reducing 

the time interval, with the effect of refining the displacement 

increments. For the example of reference (20), the use of a '/. 9 

ensured convergence, with the most efficient solution given by 

a= . 7, but subsequent problems indicated that this does not 

represent a global optimum. reduction factor. Investigating the 

form of a large funicular structure, Barnes (21) has reported 

slO`W final convergence of this formulation. The mass components 

used by Cundall (58) were not established critically, and this 

conservative assessment ensured eventual convergence for the same 

reasons as above. 

One way of overcoming this problem is to initiate the 

analysis using the critical time interval, which is then 
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automatically reduced when the number of steps between peaks is 

too few, indicating possible limited convergence. The full time 

interval is then restored when the peak has been satisfactorily 

located. Optimum values for this localised reduction factor 

and the minimum number of steps between peaks are problem 

dependent, although use of standardised values (say, At = 0.5 At, 

>3 steps between peaks) have ensured convergence whilst enabling 

the full time interval to be used for the majority of increments. 

A simple alternative procedure that ensures full convergence 

without adjustment of the time interval is proposed here. For a 

kinetic energy peak at time t-At/2, the analysis is restarted from 
p 

the nodal coordinates at that time. These are established by 

linear interpolation between the coordinates at times t-At and t, 

a 'bracketing' technique that permits convergence to any required 

level consistent with the accuracy of the initial data. 

If both velocities and coordinates are incremented 

within the same loop in the program, then xt and R 
II, 

vt "X, 
- 
ý 

are the variables currently in store when a peak is located, and 

Ll 
= 

[xv---bt 
the reinitialisation coordinates 

Ix 
I are then sought: 

x (3.7) 

On readjustment of the iteration equations (3.3) and (3.5) it can 

be shown that: 

Ix 

ý-l =[ 
lcj, &tl At 2 

t 4tt 4L Z. 
t 

ý, (3.8) 
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These reinitialisation coordinates may thus be obtained 
directly from variables currently in store when a peak is 

detected. 

In the central difference approximation to the dynamic 

analogy, nodal velocities are assumed to vary linearly between 

times t-At/2. and t+At/2. Consequently the variation of displacement 

increments is quadratic within that interval. An alternative 

expression for the reinitialisation coordinates may then be 

determined. At time t-At +t*: 
2 

t+ 
V t* vv+v (3.9) 

At 

and the required displacement increment ýS is given by: 

k 
z I: - 

6v 7- dt* + At. v 2. (3.10) 

0 

where: 

6xxxx 

Substituting equation (3.9) into (3.10) , evaluating the 

integral and rearranging one obtains: 

k 

x Ut 4vBR (3.12) 

Both equations (3.8) and (3.12) have been implemented in 

kinetic damping schemes, with no clear advantage in terms of 
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convergence for one or the other. The results presented in this 

thesis have all been obtained using the linear coordinate 
interpolation of equation (3-8), and a general flowchart for the 
iterative process is shown in figure 

An attempt was also made to locate the peak more 

accurately by fitting a quadratic polynomial through the kinetic 

energy values at, and either side of, the detected maximum. 

However the difference of several orders of magnitude between 

subsequent kinetic energies resulted in peaks being effectively 

located at the same time as nodal coordinates, with consequent 

limited convergence as previously found. 

3.2 Optimised Ficticious Mass Components 

The. only iteration control to be established for dynamic 

relaxation with kinetic damping is that of the ficitious mass 

components, which must be sufficient to ensure stability of the 

numerical integration. 
0 

As only the eventual static equilibrium solution is 

required, the form of the nodal mass matrix 
I M, ý] is arbitrary, 

and is initially assumed here to be square. The recurrence 

relation for the undamped velocities of node i is: 

L-. +ht t- 6t 1ý 
v 

IL 
-i 

IIvLI+RL 
(3.13) 
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where Bj = At* 
Im 

li-I 

I, 
as shown in the preceeding section. 

Barnes (13,21) has presented a direct derivation of the 

critical nodal mass components, in which it was assumed that the 

principal nodal direct stiffness components coincided with the 

global coordinate system. A vector treatment of that derivation 

is presented here that is ind&pendent of any assumptions regarding 

the direct stiffness components. 

Consider the spatial vibrations of a node i with 

structural connections to adjacent nodes k: 

t4 INt L- - 
ht L- 

V. + B. R (3-14) 
AO 

and for the next time interval 

Ic 4k 
R B;., 

,I Oz xyz 

(3.15) 

where 

S -direct stiffness of node i relative to adjacent 

node k due to the structural element connecting 

nodes i and k 

I ý-- -V t+k 
SA At VL 

ý, Vz kýz 
increment of node i deflection 

relative to node k during 

interval t--> t+ At. 
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Instability in the form of successive reversal and 

build-up in the amplitude of velocities and displacements may 

occur when the time interval and stiffness/mass ratios are large. 

For an optimised analysis the stiffness/mass ratios will be 

approximately equal throughout the structure, and the critical time 

interval may be obtained by considering adjacent nodes I and K. 

The most critical structural configuration and state of motiou will 

be such that all nodes k adjacent to I are different from all nodes 

-i adjacent to K, with the relative vibrations of nodes I and K 

exactly out of phase. 

Substituting R. from (3.14) into (3.15) for both 

I and K: 

1--+Ihl: lc+&t - 
i 

v 

I 

I 
-2 v+ 

I 
i 

v 
[B T 6A - 6A (3.16) S 

T T- I :r . vz I 

ý+706t + - 
v -2 v 7- + vI 

[Bv 

K1 t4 i 
6A 6A (3.17) S, 

Ic - V. V. 

Then for the optimised analysis and oscillations which are 

just stable, all 
I 6A = 6A 

-1 and 
16A 

ýz = 6A 
V. , and subracting 

(3.17) from (3.16): 
0 

L-4t L-+&t 
7- (3-18) 7- v -2 BS 6A 

v11 -2 vT V- 

where V., velocity of node I relative to node K 

S direct stiffness of I relative to all adjacent 

nodes. 
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The limiting case for stabilit7 of the integration is 

when 
IVT%(_ I during one time increment produces relative deflection 

changes 
[SA 

IV-1 such that v=,, 
ý 

in the next increment-is equal and 

opposite to the previous value. Thus: 

btf-L 

and for stability: 

-""'At/7. 
B. 

I] 

[S 

-1 

(v 
At 

1 

=4 

B 7,2. At 

m 
T. 

At 
1* 

2' 

For the particular case when the integration axes 

(3.19) 

(3.20) 

associated with the global coordinate system coincide with the nodal 
0 

principal stiffness directions then S-1] . and consequently 
LM 

-11 

and 
ýB,: ] 

are diagonal matrices. Equations (3.20) are then 

identical to those obtained by Barnes (13,21). In general these 

axes will not coincide, so consider, therefore, a modified analysis 

scheme with a localised integration coordinate system for each node. 

At any node i, the local coordinate system 
kýl 

that 

coincides with the principal direct stiffness directions is related 

to the global system 
[XI by, the transformation matrixý 

ILRXI 

The incremental relation for the integration is then: 
I 

t4k \, I 

(3.21) 

(3.22) 
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where B. is diagonal, with non-zero coefficients B, = 2JSj. At A. 

for stability, and Sj is the associated principal direct stiffness. 

Introducting the transformation matrix: 

Z. X+ 
[BL][X 

;. 

IRt 
(3.23) 

and on premultipliýation by its transpose: 

t 

RIcZ (3.24) 

the equivalent process in global coordinates is found, where: 

1 
(3.25) 

Z] 
=1;, Z 

xzl [�Z] 

Then: 

Bj_j 2 szl[ Xý-] 2s (3.26) 
At At 

The adoption of a square mass matrix, based on the square 

nodal direct stiffness matrix, can be seen to be directly equivalent- 

to the use of local nodal integration coordinates chosen so as to 

optimise analysis with diagonal mass matrices. In this case the 

effect of coupling of movement between the several degrees of 

freedom at each node is minimised, and a close to optimum time 

interval may be employed for efficient analysis. 

The physical significance of square nodal fictitious mass 
I 

matrices may thus. be readily visuallsed. However., although the. ir 

usage will minimise the number of steps required to solution, the 

additional computation involved may mean that a diagonal mass 
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matrix, suitably factored to account for coupling effects, will 

prove more efficient. Limitations on available computer storage 

will certainly favour diagonal operations. 

If 
[M-1 is the vector of diagonal mass components A- 

associated with node i, then, from equation (3.20): 

At (3.27) t 

2 

where the equivalent direct stiffness components S must be 
. 4. 

1ý1 
determined from the nodal direct stiffness matrix 

Q- 

One such determination is based purely on the diagonal 

terms of I Sý, ] , such that for the jth degree of freedom at the node: 

lw 
S. ct s.. (3.28) 

0.1 13 

When the nodal principal stiffnesses coincide with 

the global coordinate system, this will yield stable integration 

with factor aLO, = 1.0. In general, however, this will not be the 

case and an increased value of a" is necessary to ensure 

stability. 

Consider, for example, two unstressed pin-jointed 

truss elements inclined to the two global axes in the planar 

case, with intermediate node i as shown in figure 3.2. 
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Nodal loading P is applied normal to the elements, and 

the principal direct stiffness is in the Y direction, with zero X 

component. For the'most critical case, when ý= H/4, then all 

of the components of 
[Sjj have the same magnitude and a factor 

av". =2 is necessary to ensure stability if a diagonal mass matrix 

based on (3.28) is employed. For a node on such a series of 

elements equally inclined to the axes of the three dimensional case 

a value of a,,. =3 is theoretically required. 

In practice, however, this latter case is extreme as cable 

elements are generally pretensioned, with transverse direct stiffness 

components as a consequence. Similarly flexural elements exhibit 

transverse stiffness components. A value of a 0#% =2 has proved 

satisfactory when this formulation has been applied to a wide 

range of pin and rigid jointed planar and spatial structures. The 

mass components so determined are, however, considerably 

overestimated when the principal direct stiffnesses lie close to the 

global coordinate system., as is the case for shallow networks and 

reticulated shells. This effect may be overcome by an alternative 

approach. 

Diagonal mass components may be assessed from equation 

(3.27), where the equivalent diagonal stiffness components 
IS *1 

are the row sum of the absolute values of the corresponding row 

of the [SI 
matrix. 

SaS 

where f is the number of displacement components. 

(3.29) 

Coupling effects 
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are then accounted for on the assumption of equal residual forces 

for each degree of freedom. For cable elements, equation (3-29) 

yields identical mass components to those of the Gershg8rin bound 

assessment as reviewed in Chapter 2. The scaling factor a.. may 

be set to unity here, although in practice a slightly higher value 

may be chosen to ensure continued stability of the integration 

as deformation occurs under load. 

This problem of changing parameters under the effects of 

loading is especially critical in, for example, a flat region of a 

pretensioned network with low normal direct stiffness compared with 

the in-plane components. Although the mass components may be 

updated as the analysis proceeds using the above relations, it is 

generally preferable to make allowance for this problem prior to 

the analysis. 'This is. most readily achieved by the addition of an 

ladded mass component', M, equally to each of the nodal mass 

components calculated as above. 

The added mass component might be calculated as the 

difference between the maximum calculated component at a node and 

that based on the maximum principal direct stiffness. Alternatively, 

and more conveniently for simplified automatic mass calculations, 

a minimum value for the coefficients of S is set as a 

specified fraction, a 
f-t , of the maximum coefficient: 

** 
S. -. S (3.30) 

The same factor may be applied to the square mass matrix, 

where the absolute row sum values are compared and matrix coefficient 
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rows are scaled up proportionally as required. 

For the examples considered in this thesis, values of S 
ft 

between 0.05 and 0.1 have proved satisfactory for the analysis of 

both pin and rigid jointed structures. For formfinding applications, 

with gross deformations such as encountered when using a plane mesh 

as initial data, a may be increased up to 1.0, say, and a unified 

method of control is used for all situations. 

The three methods of control summarised below have been 

applied to a range of problems, and their efficiencies in terms of 0 

iterations and solution times to convergence are compared in 

subsequent chapters: 

(a) diagonal mass matrices, with coefficients based on leading 

diagonal direct stiffness terms (equation (3.28)). 

diagonal mass matrices, with coefficients based on the row 

sums of the direct stiffness matric (equation (3.29)). 

(c) mass matrices, defined by equation (3.20). 

For the diagonal mass formulation, the corresponding terms 

of the diagonal [B] matrices may be obtained directly: 

3.. = (3.31) 

When the mass matrix is square, the determination of B 

for node i involves the inversion of at most a (3x3) matrix for the 
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spatial case, as translation and rotation effects are considered 

uncoupled (see Chapter 6): 

m 
;L 

(3.32) 

This inversion may be readily achieved directly by, for 

example, Cholesky's method, or by transformation of the mass, or 

stiffness, matrix into diagonal form followed by application of 

equation (3-31) and retransformation back to global coordinates. 

The former process is the most efficient for static analyses, whilst 

the latter, though apparently long winded, may have an application 

in transient dynamic analysis of lightweight structures by central 

difference numerical integration. 

Consider, for example, the transient dynamic response of 

a spatially curved pneumatic structure. Interest may primarily 

be confined to the displacements normal to the structure surface, 

whilst the stability of the numerical integration is governed by the 

higher stiffness in the plane of the structure. The effective 

local integration coordinates of the square mass matrix enable 

in-plane motion to be 'damped' by the specification of artificially 

high principal mass components in that plane. The integration of 

the out of plane motion, with real mass values, may then be 

optimised without significantly disturbing that motion. 

In and out of plane motions have been decoupled by the 

normalised local. coordinate scheme associated with a square'nodal 

mass matrix. The integration time step is optimised for the out of 

plane motion with real mass components, whilst the stability of 

integration for the in plane motion is assured by the use of 



60 

fictitious principal mass components in that plane. The surface 

plane of the structure need not coincide with any of the global 

coordinate planes, but, for this application, the principal 

stiffness components and their associated coordinate transformations 

must be obtained explicitly to enable correct scaling of the principal 

mass components. These are then transformed back into square mass 

matrices for the global coordinate integration. With sepýrated 

translation and rotations at general nodes with six degrees of 

freedom, these operations involve only (3x3) matrices at most. 

The derivation of principal direct stiffness directions and values 

is given for 2 and 3 degrees of freedom in Appendix A. 

3.3 Natural Stiffness Relations for Residual Force Calculations 

At each stage of the iteration, the current vector 
[RI 

of nodal out of balance, or residual, forces must be determined. 

The equivalent nodal forces associated with the current element 

strain state must be established for each finite element type 

employed. For both transient dynamic anal-yses, and static analyses 

based on the damped dynamic analogy, the efficiency of this force 

calculation reflects critically upon their overall efficiency, in 

terms of both computer storage requirements and time to achieve a 

solution. 

Belyschko et al (26) utilised the concept of local, or 

convected, coordinates for efficient derivation of nodal forces for 
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nonlinear transient analysis. The origin of these local member 

coordinates being specified by one node of the element, with 

another used to define the axis directions. The local coordinates 

are thus free to translate and rotate with the element as the 

structure undergoes deformation. 

This approach had been adopted by Argyris (6), 

Mollmann (122) and as the basis for the derivation of stiffness 

matrices for geometrically nonlinear finite element analysis. 

Argyris has termed this the 'natural mode' technique, after the 

(q-b) natural modes which describe the independent pure deformations 

of an arbitrary element with q total degrees of freedom and b 

permissible rigid body motions. These basic displacements, or 

strain measures (122), are the smallest number of*geometric 

quantities necessary to completely determine the deformed 

configuration of an element, independent of rigid body mo-tion. 

A set of basic, or natural, member forces are associated with these 

displacements, these two quantities being related by the element 

natural stiffness. 

The pin jointed strut/cable element of figure 3.3 has one 

basic, displacement, the axial extension e. The constaiit strain 

triangular membrane element with natural modes defined by the three 

side extensions (figure 3.4) was first proposed by Argyris (6) as 

an intermediate stage in a direct stiffness element derivation. 

Barnes (13,21) has applied this element in its natural form,, with 

a (3x3) natural stiffness matrix, to the dynamic relaxation 

formfinding and analysis of prestressed membrane structures. 
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The angle 0 is generally specified as zero except for the case of 

anisotropic material properties. Belytschko et al (28) derived 

the same element in terms of the three independent relative nodal 

basic displacements for 0=0. 

In general the derivation of natural stiffness relations 

for any element takes three distinct stages: 

define the element local coordinates, basic displacements 

and associated natural forces. 

express the natural forces in terms of the basic 

displacements/ strains. 

(iii) establish the transformation matrix relating local and 

global coordinate systems, thus enabling calculation of 

basic displacements from nodal coordinates and transformation 

of natural forces back into the global system. 

For most elements, except complex higher order 

isoparametric varieties, this will result in the most efficient 

calculation of nodal residuals and minimise computer storage 

requirements (28). This residual calculation process may then be 

summarised for each element at every time step: 

establish the coordinate transformation matrix. 

calculate basic displacements from the global nodal 

coordinates. 

(iii) calculate natural forces from the basic displacements 

6 
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using either linear or nonlinear natural stiffness 

relations. 

sum transformed natural forces into the nodal residual 

vector. 

Detailed applications of these sequences are given for 

planar and spatial linear and nonlinear flexural elements in 

Chapter 

3.4 The Gradient Minimisation Analogy 

The idea of kinetic damping was conceived by Cundall (58) 

from the physical process of structural vibration, as the original 

concept of static solution from dynamic analysis by the method of 

dynamic relaxation was perceived by Day (60). 

An alternative derivation may, however, be obtained by 

reconsidering the first order gradient methods for minimising the 

total potential energy of a system. The operation of these methods, 

such as steepest descent and conjugate gradients, may, as reviewed 

in Chapter 2, be most readily visualised for a problem-with two 

degrees of freedom. In this case the total potential energy can be 

represented as a three dimensional surface, with the displacement 

components as the two horizontal axes. The equilibrium, minimum 

potential, position is then the lowest point on this surface. 

Starting from a higher, out of balance, position on the energy 
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surface, the standard gradient methods then seek a solution by 

successive steps in chosen directions, seeking always to 

minimise further the objective function, until the equilibrium 

position is attained. 

'Rather than a series of linear searches, a dynamic 

descerkt of the energy surface might be proposed. The problem may 

then be visualised as that of a marble, say, released from a point 

on the energy surface and descending towards the minimum potential 

point at the bottom of the valley. This marble represents the 

undamped motion of the structure through displacement space, which 

may be traced by central finite difference integration with 

fictitious nodal masses chosen to ensure numerical stability for a 

given time step. 

As with conventional gradient methods, any descent path 

should only be followed until the total potential is locally minimised 

along that path. The illustrative marble should, therefore, be 

halted as soon as its path stops descending, and allowed to restart 

from rest at that point until the sequence is repeated again. 

For this 'dynamic minimisation' the minimum total potential 

position along the descent path may conveniently be interpreted as 

the maximum kinetic energy position, since the total energy of a 

vibrating, undamped, system remains constant. 

The descent takes place in small increments governed by 

I 
the stability of the numerical integration, and the current kinetic 

energy is traced until a peak is detected. The current descent 

direction is fixed by the current nodal velocities, and the 
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Figure 3.5 
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similarity between the incremental equation for these velocities, 

and that in the conjugate gradient method, may be seen. In both 

cases experience gained in preceding steps is considered when 

updating the descent direction. For the dynamic minimisation this 

permits a curved descent path between reset stages, as- shown in 

figure 3.5. The first step after each reinitialisation, as 

defined by equation (3.6), is in the direction of steepest descent. 

From the above it is clear that dynamic relaxation with 

kinetic damping may be interpreted as a dynamic implementation of a 

first order gradient minimisation method. The use of optimised 

fictitious mass components is analogous to the scaling of the 

conjugate gradient method. 

The introduction of the time variable might seen an 

unnecessary complication of the gradient method, but for general 

nonlinear structural analysis it has several advantages, and no 

apparent disadvantages. 

The. 'exact' steplength calculation by local potential 

energy minimisation employed by Buchholdt (42) becomes more involved 

and time consuming as the complexity of the finite element increases. 

In contrast, the kinetic energy trace. of the dynamic minimisation 

is independent of the structural components, with geometric and 

material nonlinearity automatically accounted for. The number 

of small displacement increments between energy resets is such 

that the bracketing techniques for locating the reinitialisation 

point described in section 3.1 are sufficiently accurate to 

ensure rapid convergence. Although the scaled conjugate gradient 
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method will probably converge in fewer steps than dynamic 

relaxation, this advantage is offset by the relative complexities 

of the 1steplength' calculations. 

Dynamic relaxation will, however, exhibit fewer energy 

peak reset stages, as the curved descent path between these stages 

follows more closely the optimum descent. path. In addition, the 

small displacement increments should enable DR to cope more' 

readily with gross out of balance forces and the highly disturbed 

energy surfaces of significantly nonlinear problems. The 

occasional automatic recourse to the steepest descent direction 

enhances this control, and should permit natural treatment of on-off 

nonlinearities such as cable slackening. 

3.5 Summary 

In this chapter the automated control of dynamic 

relaxation has been considered, together with the implementation of 

arbitrary eleiýent types within the analysis and relationship of 

that analysis to the first order gradient minimisation methods. 

As an alternative to viscous nodal damping, the kinetic 

damping process suggested by Cundall (58), which does not require 

prior determination of a damping constant, has been examined. 

Initial problems with limited convergence of the method when near 

optimum mass components are employed have been overcome by a simple 
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modification that enables convergence to any required level. 

The fictitious nodal mass components must still be 

established prior to the analysis, to ensure the stability of the 

numerical integration, and the direct derivation of critical 

components proposed by Barnes (13) has been generalised to include 

the effects of coupled motion at the nodes. These relations provide. 

the basis for the proposed automatic establishment of e-ither 

diagonal or square nodal mass matrices. The adoption of the 

latter has been shown equivalent to the use of diagonal mass 

components in an optimised integration scheme with local integration 

coordinates that coincide with the nodal principal direct stiffness 

directions. 

The efficient calculation of nodal residual forces 

through the use of natural finite. element stiffness relations has 

been considered, and general schemes outlined for their derivation 

and implementation. 

In the final section a comparison has been made between 

the dynamic relaxation method, with kinetic dgmping, and gradient 

minimisation techniques. The former has been shown to be a 
a 

dynamic implementation of a first order gradient method, in whi. ch 
I 

the inherent simplicity of dynamic relaxation nonlinear analysis 

has been coupled with. the automatic control characteristic of the 

gradient method to provide an effective analysis procedure that 

retains a clear physical interpretation. 
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CHAPTER 4 

CONVERGENCE OF THE GRADIENT MINIMISATION METHODS 

An essential feature of all gradient minimisation methods 

is the linear search in the descent direction to determine the 

optimum distance to descent in that direction. Several approaches 

to this problem have been considered, as reviewed in Chapter 2. 

Direct solution of the total energy polynomial along the descent 

direction in order to optimise the steplength has been proposed 

by Buchholdt, and applied to a wide range of cable network 

problems. 

It is, therefore, the convergence of this widely published 

method that is examined in this chapter. As a consequence, a 

modification of Buchholdt's method is presented that enables an 

exact analysis for cable members subject to arbitrary strains. 
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4.1 Convergence of Buchholdt's Method 

The convergence to the correct solution by any gradient 

method is assured once the gradient vector is ef f ectively zero, and 

the overall minimum total potential position has been located on the 

rr-dimensional energy surface. 

In order to facilitate the calculation of the optimum 

steplength S in the descent direction at any stage of the iteration, 

Buchholdt has shown that the total potential energy of the system 
q 

may be expressed as a fourth order polynomial: 

W= CIS + C?. S+C3S+C 
Lý 

S+C5 (4.1) 

The distance S along the descent direction to a minimum 

potential value is then obtained by differentiation, and solution 

of the consequent cubic'equation: 

3W 4CIS + 3CzS + 2CLS + C4 
as 

The 'steplength' S so calculated should strictly be 

regarded as a scaling factor applied to the descent direction 

vector, which has not necessarily been normalised. 

(4.2) 

As the minimisation process approaches the global minimum, 

then the steplength S must tend towards zero and, from equation 

the polynomial coefficient C4. must likewise approach zero for 

this to be possible. This coefficient, C 
1+ , 

is the component of 

the gradient vector in the descent direction: 
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dv 
I=-R 

dvj (4.3) 

For successful convergence of any gradient method using 

this approach to the linear search in the descent direction, the 

derivation of both gradient vector and steplength polynomial 

coefficients must include identical approximations, if any should 

need to be made. Otherwise the minimum sought by solution of the 

cubic equation will not also satisfy the overall minimisation 

requirements for the objective function. 

This requirement explains the use of an approximate 

expression for the gradient vector (equation 2.33) by Buchholdt 

in his more recent publications (37,42) as opposed to the exact 

relationship applied previously (36). This was necessary to 

ensure convergence of the method, as the polynomial coefficients 

derived for cable elements were based on the assumption of small 

'1/, < LO. e) as reviewed in Chapter 2. Investigations have strain (e 

shown that the use of Buchholdt's coefficients in conjunction with 

an exact determination of the gradient vector may result either 

in unsatisfactorily high residual forces at 'convergence', or 

complete divergence, especially when the analyses include flexible 

boundary structures. 

one alternative approach would be to calculate a- 

modif ied C4 coefficient from equation (4.3), with exact values for 

the gradient vector, whilst the remaining coefficients were, as 

established by Buchholdt for small member strains. This should 

enable convergence to the correct solution, but, especially in 
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highly nonlinear cases, the only approximate compatibility of the 

polynomial coefficients may cause a reduction in the rate of 

convergence., and possibly even divergence through calculation of 

a negative steplength. 

To ensure convergence, and enable a realistic comparison 

with dynamic relaxation, Buchholdt's approach to the control of 
o* gradient minimisation methods has been extended to cater for 

arbitrary member strains. For completeness a derivation of the 

exact gradient vector, which is fully compatible with this 

arbitrary strain formulation, is also included in the following 

section. As the scaled gradient method has been shown to be the 

most efficient first order gradient technique, the notation used 

is directly compatible with that method, but the results are 

equally applicable to any alternative algorithm. 

4.2 Exact Gradient Minimisation for Arbitrary Cable Strains 

The total potential, W, of a structural assembly of M 
0- 

members, subject to applied loading t PI , may be 4ritten: 

uho% 
ýpl ls 

(4.4) 

mm1 

a the true where U. " is the strain energy of member m., and 

displacement vector. 
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Then for any node i the equilibrium state at the minimum 

total potential position is given by: 

36. 
(4.5) 

-2-W 1.01 

and, from equation 4.4 , the nodal gradient vector is: 

EW Lu p (4.6) 
H H. 

where the summation is for the J members connected directly to node 

i., having connecting nodes i and j. ' If the member tensile force 

is T,, and its associated extension e then: 

3UI T.. 9e 

and: 

-Luij _Le 
Eu 

Aj 

ae 
IL 

3e 
36 

(4.7) 

(4.8) 

Defining the differences in initial nodal coordinates 

and in displacements by: 

Zj i ;L AX X'o Ix" 0 

A6 ý-j 63 6; 1 

0 
and, if the initial member length is L'Lý t then: 

f. 1fM0. f 
mo 

i 

I 

(4-9) 

I 

(4.10) 
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T 
0 

e ; 6ý 
AX + A6 Axi + AS 

ILS* 1-3 A-3 

i 

therefore, on expansion and subtraction: 

0 2L 
A. 3 

.e 
Aý) +e2. A6. AX + A6.. As 

A_ý 

-Differentiation with respect to 
t 

A6 gives: 

010 2L je + 2e., 2. AX + 2. A6 Le 

1.3 

1 

3A6 

1 

0 
Thus: 3e AX + Ad.. 

L3 1-3 
aAd + e. ) 

Now: 
0 

ae aea A6 

therefore from the above definition of A6 

3e ae L3 
a6 aA6 i: j 

and: 

au - -' =- 

Thus at node i: 

T. - Aj 

+ e.. 

0 
Ax + A6 

/I 

aw TLj AX A6p 

a6L + eL3 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

and this gradient vector represents exactly the nodal out of balance 
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forces in the global coordinate system for a displacement 

vector [61, 
and has the direction of greatest increase of the 

total potential. 

At any stage of the analysis, therefore: 

-LW 
R (4.19) 

where 
tRj is the vector of residual forces acting on the nodes 

of the assembly. 

The scaled gradient vector may then be established: 

_LW 
j= [H] IW 

2u a8 
(4.20) 

with the diagonal scaling matrix [ HI as described in section 2.2.5 

and the scaled descent direction incremented: 

hd aw +ý. hd (4.21) 
Du 

The optimum-steplength S along this descent vector must 

then be determined before the scaled displacement vector 
t 

Ul may 

be updated and the next complete iteration commenced. 

S 
Consider the member projected extension e.. which is 

A-J 

associated with a projected coordinate vector 
IX 

for the nodes 

of the assembly: 

x xc, hu +s hd (4.22) 
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The smallest positive value of S that minimises the total 

potential energy of the system is sought. 

Let 

(4.23) 

where e .. is the member extension associated with the current 

length L and coordinates X+ hu 

L0 (4.24) 

and e is the change in extension due to movement along the 
1-4 

descent direction. The current length L. - has been calculated 1.3 

exactly by a square root operation whilst f orming the gradient 

vector, and is assumed to be retained in the computer program. 

-o denote the Then, using the A notation as before 1. 

difference between values at nodes j and i: 

L2 AX + Ahu AX + Ahu (4.25) 
1-3 

1 
ýs ý3f 4 Iýs 

2 
(L +e AX 

ý13 
+ Ahu 

L3 + SAhd.. AX + Ahu + SAM 

(4.26) 

Expansion and subtraction yields: 

2L e+e=2S Ahd Z AX 
; -3 

+ Ahu S Ahd 
1 

Ahd ii 
(4.27) 

Then, neglecting e 

e, obtains: j, one 

as very small compared to 



78 

T01. T 

s Ahd AX + Ahu +s Ahd Ahd T ij 2L 
(4.28) 

/I "L 
= aS +aS 2 

or: 

6f12 

e. =a, +aS+as 

where a, e; ý 

(4.29) 

(4.30) 

Note that, unlike that made by Buchholdt, the approximation 
'I 

made in neglecting e.. has no ef f ect on the eventual accuracy of the Ili 

solution obtained since e6 -j- e and e0 as convergence is 

reached. 

Equation (4.30) may then be substituted into the 

expression for member strain energy: 

UTA. 6 
(a + a,, S+a3S+ EA (a + a,. S+aIs 

2L" 
Lý (4.31) 

The total potential energy of the system may again be expressed 

as a fourth order polynomial in S: 

tt111 
C) 

13 14 15 (4-32) 

On expansion of equation (4.31), and suming for all the 

members, the following polynomial coefficients are obtained for 

cable elements subject to arbitrary straining: 



N 

Cl aa C% a ýa,. a 

C a. +a (a +2 a', a 3 

C4=+a 2a, a hd 

CIS =+aap hu- 

0 where: a EA (EA + T"iý T 
2L 0 2L 0 

(4.33) 

In the limit, as the true equilibrium state is approached, 

no approximations have been made in calculating either the gradient 

vector or the polynomial coefficients. Expanding C4 in full: 

79 

% 

AX.. + Ahu.. A AX- + Ahu Ahd 
CT 

AM +Ee0 
LL- 

A%) 

p hd (4.34) 

or: 
IT 

C aw hd (4.35) 
au 

I 

Consequently convergence to the true equilibrium state is 

ensured for arbitrary member strains. The only additional computer 

storage requiied compared with Buchholdt's small strain formulation 

is that of member current lengths, and in critical situations 

even these could be calculated afresh as required rather than 

stored. 

For the analysis of linear boundary structures, referring 

back to equations 2.51 and 2.55 , it can be seen that: 
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aw-a hd 
I 

au (4.36) 

and convergence to the correct solution is assured within the 

accuracy of the assumption of linear behaviour, an assumption that 

has been applied to the calculation of both gradient vector and 

polynomial coefficients. Consequently the B and C coefficients 

have been combined f or the analysis of pretensioned networks 

within rigid-jointed flexible boundary structures as considered 

in Chapter 8. 

4.3 Numerical Example 

The simple pretensioned cable example shown in figure 

4.1 has been chosen to clearly illustrate the comments of the 

preceding sections and demonstrate the convergence of the 

arbitrary strain formulation to the exact solution. 

Initially the test problem has been subjected to a range 

of vertically applied loads, thus producing varying degrees of 

nonlinearity for a problem that has effectively one degree of 

freedom. Scaling of the energy surface would have no effect on 

the convergence of this problem, and has not been applied. 

The performance of Buchholdt's coefficients, coupled 

tion of with both exact and approximate (but compatible) calcula z 

nodal residuals, is compared with those proposed in the 
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Pt 

EA =1 000 000 

100 

5.5, 

Figure 4.1 

ANALYSIS APPLIED LOAD P-z 

METHOD 10. 100. 1000. 

BUCHHOLDT 61 -. 0923684 - . 224893 -. 496650 

COEFFICIENTS 
n 1 1 1 

CL 
AND EXACT 

RESIDUALS R, -. 2244 E-02 -. 1469 - 7.2910 

BUCHHOLDT Sir -. 0923684 -. 224893 -. 496650 

COEFFICIENTS 1 1 1 n OL 
AND APPROX. 

RESIDUALS R, . 5821 E-10 . 4191 E-08 . 3353 E-07 

EXACT 61- -. 923775 -. 225011 -. 497886 

ARBITRARY 2 3 3 n OL 
, 

STRAIN 

FORMULATION R, 0. . 4796 E-07 . 7860 E-06 

Table 4.1 
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f 

arbitrary strain formulation. The results are presented in 

table 4.1, which gives the deflection, 61, in the direction of the 

applied load, the number of iterations, n,... to achieve that value 

to a6 significant figure accuracy, and the limiting residual 

orce, 

Both applications utilising Buchholdt's coefficients can 

be seen to converge to the same displacement values, in one step, 

for each of the load cases. The relatively high limiting out of 

balance forces for the analyses with exact residual calculations 

clearly illustrate the need for compatibility of derivation. Here 

the C it coef f icient has been minimised, and the analysis proceeds 

no further eve n though the overall minimisation requirement of 

f -9W --v 0 has not been satisfied. 
1 7x 

Application of the proposed arbitrary strain coefficients 

has resulted in successful overall minimisation of the exact nodal 

residuals, although the zero out of balance force obtained in one 

case is probably fortuitous. The number of steps to the specified 

degree of convergence has been increased. For this problem the 

modified coefficients are such that the Buchholdt solution is 

obtained at the first iteration, and subsequently corrected. 

When the problem is extended to three degrees of freedom, 

by introducting loads P. Pv this ii screpancy in 

convergence rates is proportionally less critical. The results 

I 
for these unscaled analyses are given in table 4.2 
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ANALYSIS APPLIED LOAD P, 

METHOD 10. 100. 1000. 

BUCHHOLDT ss -. 0921123 -. 224198 -. 495350 

COEFFICIENTS 
ncL 28 29 59 

AND EXACT 

RESIDUALS R -. 2269 E-02 -. 1155 -. 5348 E-01 

BUCHHOLDT, v 61 -. 0921123 -. 224172 -. 495017 

COEFFICIENTS 
n 15 41 93 

CL - AND APPROX. 

RESIDUALS R . 5821 E-06 . 9659 E-04 . 2010 E-02 

EXACT- 6 -. 0921215 -. 224290 -. 496252 

ARBITRARY 
n 15 48 99 

CL STRAIN 

FORMULATION R, . 6550 E-04 . 1035 E-04 . 1801 E-02 

Table 4.2 
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4.4 Summary 

The converge-ace of Buchholdt's version of the conjugate 

gradient method has been examined, and it has been shown that, for 

the required minimisation to succeed, the derivation of energy 

polynomial coefficients and the gradient vector must be based on 

identi, cal'theoretical treatment. The coefficients proposed by 

Buchholdt. are limited to cable elements exhibiting small strains, 

and consequently approximations must also be made in the calculations 

of the gradient vector,, or nodal residuals. 

Buchholdt's method has been extended to enable compatibility 

with exactly determined nodal residuals and to permit arbitrary 

member strains. This modification is achieved withou. t the need for 

any additional computer storage. A simple numerical example has 

been used to illustrate the comments on convergence and the 

successful application of the proposed formulation. 

This extended version of Buchholdt's method has been used 

for all the subsequent comparisons with dynamic relaxation in this 

thesis. For pretensioned cable networks it ensures that both methods 

converge to identical solutions, where no approximations have been 

made in residual determinations, and comparisons may be made on an 

equal footing. 

The proposed method may be confidently applied in 

situations where significant strains may develop, such as ultimate 

load analyses. 
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CHAPTER 5 

COMPARATIVE ANALYSIS OF PRETENSIONED NETWORKS 

A general test problem is presented for the comparative. 

ana ysis. of piýetensioned networks which enables the ready 

adjustment of network curvature, pretension, idealisation and 

loading pattern. 

The performance of the dynamic relaxation and scaled 

conjugate gradient methods are then compared for variations of the 

above parameters. Comparisons are also made for the problem 

modified to induce the on-off nonlinearities of cable slackening. 

The test problem is also used to examine the relative 

efficiencies of the automatic mass component assessments proposed 

for dynamic relaxation in Chapter 3. 
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5.1 The Test Problem 

A generalised test problem, which admits simple CP 

adjustment of salient parameters without recourse to significant 

data re-preparation, is best suited to the comparison of analysis 

methods. Such a proble m is proposed here for the comparitive 

analysis of pretensioned cable networks with rigid boundaries which 

allows for ready adjustment of network curvature, pretension and 

idealisaeion. 

The test problem, as shown in figure 5.1, is square in 

plan with an orthogonal projected network and equal horizontal 

cable spacing throughout. The fixed boundary nodes lie on the 

surface of a hyperbolic parabaloid with high (H) and low (L) points 

as indicated in the figure. Various degrees of network curvature 

may then be obtained by adjustment of the rise/span ratio (h/d). 

By specifying a constant horizontal component of pre- 

tension throughout the structure, which is assumed to have 

negligible dead load, the orthogonal plan format of the network is 

retained at the pretension state. This assumption also has the 

effect of defining the vertical equilibrium coordinates such that 

all the nodes lie on the same hypar surface as the boundary points. 

The vertical coordinate zý of any node having plan coordinates 

xL I y. is then given by the expression: 
L. 

h+ 2h 
A. -i 

for the dimensions and coordinate system of figure. 5.1. 
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Thus no separate formfinding analysis is required for the 

pretension state, and the regular nature enables fully automatic 

definition of all nodal coordinates and of the node and element 

numbering systems and connectivity details. If the number of 

cables in each direction is a variable for this process, then 

varying mes sizes are rapidly obtainable for any specified rise/ 

span ratio. 

Although cable lengths vary through the structure, the 

hypar surface ensures a smooth distribution of cable forces, which 

are readily established from their geometry and specified horizontal 

force component. 

For the subsequent comparisons, the following dimensions 

and member properties have been assumed (unless specifically stated 

otherwise): 

Side dimension (d) = 10.0 m 

Horizontal pretension component (T. ). 50 kN/m 

Live load (P, ) 1.5 kN/m plan area. 

If the number of cables in each direction is k, , then the 

individual cable horizontal pretension component (t. ) is given by: 

t TH x d/(kc + 1) (5.2) 

The cable EA value, constant throughout the structure, is 

based on the assumption of a-strain of . 005 for loading equal 

to the horizontal force component: 

EA =t4/. 005 (5.3) 
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Two loading patterns have been specified, one symmetric 

and the other asymmetric. For the first, (case LF), the vertical 

live load is applied to all the active nodes of the structure. 

All these nodal components are equal, having been determined 

automatically according to the mesh size and specified load per 

unit plan area. For the second case, (LQ), these same individual 

loads are applied to all the nodes within one quadrant of the 

structure as defined by: 

x,, ,yk ýý 
d/2 (5.4) 

Six combinations of loading pattern and rise/span ratio 
4 

have been investigated in the following sections, and for convenience 

they have been assigned designatory letters, A to F, as shown in 

table 5.1. 

The smaller h/d ratio is typical of many roofing 

structure applications, whilst the two larger values have been 

selected for investigation of the effects of increasing curvature 

on the performance of the analysis methods. 

Similarly three mesh sizes have been selected for 

investigation. Mesh I is sufficiently fine to provide a basis for 

comparisons of the effects of load and pretension level, and also 

of cable slackening. Meshes II and III enable the analysis to be 

tested on problems having in excess of 1000 and 2500 degrees of 

freedom respectively. Table 5.2 gives full details of the' 

three chosen idealisations, which have been applied to each of the 

six load/curvature configurations. 
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RISE/SPAN RATIO 

.1L-51. 

LOAD IF ABc 

PATTERN LQ DEF 

Table 5.1 

a 

IDEALISATION 

NO. OF CABLES IN 9 - 19 29 
EACH DIRECTION 

NO. OF ELEMENTS 220 840 1860 

TOTAL NO. OF NODES 117 437 957 

NO. OF ACTIVE NODES 81 361 841 

NO. OF DEGREES 243 1083 2523 
OF FREEDOM 

Table 5.2 
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In order to enable a fair comparison to be made both 

dynamic relaxation and scaled conjugate gradient programs utilised 

identical data preparation and output segments and were written to 

perform as efficiently as possible. 

For all cases convergence has been defined as that state 

when the residuals of all active degrees of freedom are less than 

- 1% of the value of the applied noda: 'l live load. For the DR 

method this criterion has been checked at every energy peak. 

Rather than recalculate the residuals for the peak coordinates as 

reset by equation 3.8 , the residuals currently in store, which 

refer to the configuration at time At/2 after the peak, have been 

checked. Thus in some cases the convergence times quoted for 

DR may be slightly conservative. 

As the scaled conjugate gradient method has significantly 

more steps than DR has energy peaks, this full residual check has 

only been implemented every step once the current Euclidean norm 

of the residuals is less than . 1% of its initial value. These 

latter values having been obtained as an essential part of the 

conjugate gradient process. 

4. 

Thus the time taken by residual checks has been made as 

close as possible for each method, though tests have shown these 
I 

times to be negligible in comparison with the overall solution times. 

Similarly the automatic data preparation segment required only 

. 015 seconds CDC 7600 execution time for the largest mesh used. 
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5.2 The Influence of Load and Pretension on Convergence 

Using idealisation 1, both dynamic relaxation and scaled 

conjugate gradient methods have been applied to problem 

configurations A to F for the following load and pretension values: 

load (P, 
_) - . 152 1.5 and 15. kN/m2' plan area 

pretension component 10., 50. and 100. kN/m 

For each of the nine possible combinations of P, 
_ 

and T,, 

the cable EA value has been heid constant at 10000., the value 

associated with a strain of . 005 for PL. = 1.5 kN/m 2 and 

TH = 50. kN/m for this idealisation. 

0 

Member slackening has not been permitted, and consequently 

compressive forces are present in some of the solutions. 

The results of the analyses are presented in tables 5.3, 

5.4 and 5.5. where, at convergence: 

nc. - no. of iterations 

kc - no. of energy peaks (for DR only) 

t CDC 7600 execution time (secs. ). 

The fictitious mass components for the DR anal3rsis are 

based on the leading diagonal direct stiffness terms, with 

controlling factors a, = 2. and ý, = . 1, as described in sedtion3.2. 

For dynamic relaxation, referring to the results tables, 
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RISE/SPAN = .1: PROBLEMS A(LF) , D(LQ) 

METHOD' LOAD PRETENSION (kN/m) 

Z, (kN /m 10. 50. 100. 

(k, ) t C. n. (k, ) t n c, 
(k,. ) t e- 

. 15 105(11) . 918 95(11) . 845 74(11) . 698 

LF 1.5 217(12) 1.713* 91(12) . 829 76(12) . 721 

15 391(12) 2.931* 75(10) . 695 70(9) . 651 

DR 

. 15 229(12) 1.812 105(11) . 922 89(13) . 826 

LQ 1.5 229(12) 1.808 105(11) . 924 89(13) . 826 

15. 269(12) 2.092* 177(10) 1.425 131(11) 1.112 

. 15 60 1.254 35 . 772 31 . 694 

LF 1.5 244 4.846 37 . 809 33 . 734 

15. 174 3.479* 66 1.380 41 . 890 

- SCG - 

. 15 110 2.250 54 1.143 46 . 988 

LQ 1.5 149 3.021 61 1.274 46 . 987 

15. 440 8.748 102 2.087 59 1.244 

indicates compression members in the solution 

Table 5.3 
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-RISE/SPAN = .5: PROBLEMS B(LF) , E(LQ) 

METHOD LOAD )? RETENSION (kN/m) 

10. 5o. 1000 
l' (kn /M 

(k, ) n, (k, ) t 
G n (k 

C. C. 

. 15 96(9) . 834 86(10) . 772 63(10) . 611 

LF 1.5 115(10) . 975 86(10) . 777 63(10) . 611 

15. 321(15) 2.468 91(11) . 817 68(10) . 647 

DR 

. 15 414(12) 3.120 184(10) 1.491 114(10) . 989 

LQ 1.5 335(11) 2.551 184(10) 1.485 114(10) . 988 

15. 248(13) 1.550* 171(11) 1.407 131(11) 1.121 

. 15 70 1.457 53 1.122 36 . 788 

LF 1.5 86 1.771 55 1.151 40 . 866 

15. N/C 65 1.354 51 1.083 

SCG 

. 15 224 4.471 106 2.145 87 1.778 

LQ 1.5 285 5.663 114 2.340 87 1.776 

15. 251 
. 
5.002 140 2.808 91 1.855 

- indicates compression members in the solution 

N/C - no convergence obtained 

Table 5.4 
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RISE/SPAN = I. : PROBLEMS C(LF) , F(LQ) 

METHOD LOAD PRETENSION (kN/m) 

(kN/m7' 10. 5o. 100. 
(kc) t nC nr (kr) tc n (k )t 

. , c c 

. 15 134(10) 1.110 67(9) . 629 57(8) . 550 

LF 1.5 134(10) 1.108 83(10) . 752 57(8) . 551 

15. 391(12) 2.931* 75(10) . 695 70(9) . 651 

DR 

. 15 363(11) 2.751 171(10) 1.381 116(10) . 991 

LQ 1.5 370(11) 2.797 171(10) 1.395 116(10) . 991 

15. 269(12) 2.092* 177(10) 1.425 131(11) 1.107 

. 15 62 1.291 45 . 967 34 . 751 

LF 1.5 70 1.448 46 . 983 34 . 750 

15. NIC 51 1.083 38 . 831 

SCG 

. 15 174 3.503 99 2.025 80 1.652 

LQ 1.5 199 3.993 101 2.049 80 1.651 

15. 236 4.719* 1107 2.179 83 1.710 

- indicates compression members in the solution 

N/C - no convergence obtained 

Tabl e 5.5 
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it can be seen that the increase of pretension for any given load 

has improved convergence in all cases. This improvement is most 

marked for the more steeply curved networks, where the definition 

of pretension results in higher individual cable forces, and for 

the asymmetric loading case. Varying net curvature has little 

ef f ect on the convergence rate f or the symmetric loading pattern,, 

but this is po-ssibly due to the conservative assessment of mass 

components for the flattest net. 

The changes in loading magnitude for a given pretension 

have not had a significant effect on the dynamic relaxation 

convergence, but the load range was chosen to lie within 

realistic values and as such is only limited. 

Excepting problems B and C, when half of the members are 

in compression for PL. = 15. kN/m and T, 
_, = 10. kN/m, the DR 

solution times have not been adversely effected by the presence 

of compressive forces. 

As with dynamic relaxation, increase of pretension for a 

given load improves the scaled conjugate gradient solution times. 

The increase of load from . 15 to 1.5 kN/m has little effect, but 

the further increase to 15. kN/m has reduced the convergence rate 

in all cases. Increasing noulinearity appears to progressively 

reduce the convergence of the SCG method. 

The presence of compression members in the solution 

produces an adverse effect on SCG solution times, this effect 

becoming more marked as the number of such members increases and 
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RATIOS OF SOLUTION TIMES (CDC 7600) :t MA Jt Sce., 

PRE- 
TENSION LOAD PROBLEM CONFIGURATION 

(kN/m) (kN/M7) A B C D E F 

. 15 . 73 . 57 . 86 . 81 . 70 . 79 

lo. 1.5 . 35 . 55 . 77 . 60 . 45 . 7o 

15. . 18 * NS NS . 15 * . 39 * . 44 

. 15 1.09 . 69 . 65 . 81 . 7o . 68 

5o. 1.5 1.02 . 68 . 76 . 73 . 63 . 68 

15. . 52 . 60 . 64 . 44 . 50 . 65 

. 15 1.01 . 78 . 73 . 84 . 56 . 6o 

100. 1.5 . 98 . 71 . 73 . 84 . 56 . 6o 

15. . 80 . 6o . 78 . 64 . 60 . 65 

- solutions include compression members 

NS - no solution obtained by conjugate gradients 

Table 5.6 
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the convex nature of the energy surface is subject to increasing 

disturbance. For the problems B and C, where the DR solution 

indicated equal numbers of tensile and compressive members, no 

solution was obtained with the SCG method. 

In order to compare the relative ef f iciencies of DR and 

SCG, table 5.6 gives the ratios of CDC 7600 execution times 

(tDR/tSCG) for the above comparisons. Except for three 

symmetric loading cases on the flattest net, DR has proved faster 

than SCG throughout. In these three cases SCG is only marginally 

faster than DR. which has been handicapped by a conservative 

estimate of fictitious mass components. Automatic assessments of 

mass components which alleviate this problem were described in 

Chapter 3, and their application to this test data are detailed 

in a subsequent section. 

5.3 The Influence of Problem Size 

In this section the two analysis methods are compared for 

problems with increasing numbers of degrees of freedom and elements. 

The three idealisations detailed in table 5.2 are applied to the 

siX configurations of the standard problem as defined in section 

5.1. 

The numbers of iterations and computing times for 

convergence are given in table 5.7, and table 5.8 shows their 
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METHOD PROBLEM IDEAL ISATION 
CONFIG'N 

n (kc. ) t C. n c. 
(k 

c) t C, n. (k. ) tc 

A 91(12) . 829 166(11) 5.047 273(13) 17.550 

B 86(10) . 777 178(12) 5.483 264(12) 17.224 

c 83(10) . 752 179(13) 5.444 220(12) 14.331 
DR 

D 105(11) . 924 216(13) 6.529 312(14) 20.183 

E 184(10) 1.485 385(13) 10.938 600(14) 36.811 

F 171(10) 1.395 367(13) 10.606 556(14) 34.723 

A 37 . 809 84 6.473 137 22.886 

B 55 1.151 144 10.805- 227 37.198 

c 46 . 983 124 9.438 198 32.854 

SCG 

D 61 1.274 137 10.315 215 35.322 

E 114 2.340 249 18.748 378 62.468 

F 101 2.049 235 17.456 363 59.169 

DEGREES OF 243 1083 2523 
FREEDOM 

CABLE 
ELEMENTS 20 840 1860 

Table 5.7 



100 

RATIOS OF SOLUTION TDES :t Tiz 
/t 

SGC-v 

MESH 
SIZE 

PROBLEM CONFIGURATION 

A B C D E F 

1 1.02 . 68 . 76 . 73 . 63 . 68 

11 . 78 . 51 . 58 . 63 . 58 . 61 

111 . 77 . 46 . 44 . 57 . 59 . 59 

Table 5.8 

PROBLEM 

IID HE IIF 

n c. 
tc n tc_ n.. t 

C- 

25 213 15.946 851 62.743 779 57.448 

50 156 11.754 530 39.? 05 452 33.464 

loo 1ý8 10.434 342 25.410 338 25.108 

137 10.315 249 18.749 235 17.456 

Table 5.9 
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associated ratios of solution times (tDRItSCG)- 

The solution times for DR and SCG are effectively equal 

for problem IA, but DR shows to advantage for the more refined 

meshes of IIA and IIIA. Estimation of DR mass components on the 

row sum basis (with- a %0,. = 1. and a. = .. 1) produces time ratios of 

. 76, . 75 and . 67 for problems IA, IIA and IIIA respectively. 

Overall the relative efficiency of dynamic relaxation 

compared to scaled conjugate gradient analysis is increas-ed as the 

number of variables in the problem increases. For flat networks 

DR solution times are between .6 and .7 of those for SCG, whilst 

the ratio lies between . 45 and .6 for the more curved configurations. 

Both methods can, however, be seen to be capable of efficient 

analysis of large problems. 

In order to try and improve SCG convergence, the effect 

of restarting from the steepest descent direction every n,, L steps 

was investigated. No improvement in the convergence rate was 

obtained for a variety of values df n6dý . For example, table 5.9 

shows the effect on the analysis of problems IID, HE and IIF. 

This pro-cedure is only theoretically recommended (69) 

for n,,, L =f+1, where f is the number of degrees of freedom, when 

the equivalent system matrix remains constant. In this case the 

change in the nonlinear system matrix for a pretensioned network 

will all members remaining in tension is not significant enough to 

warrant a more frequent return -to the steepest descent direction. 
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5.4 Analysis in the Presence of Cable Slackening 

Although in earlier designs for prestressed networks 

pretension values were usually sufficiently high to preclude cable 

slackening under working loads, recent trends favour more lightly 

prestressed nets with a consequent reduction in foundation costs. 

In these cases cable slackening may occur in practice under 

normal loading conditions, and will almost certainly happen in 

special circumstances such as ultimate load or construction 

stage analysis. In the latter case particularly the form and 

mode of action of the structure may change significantly as cables 

become slack and retensioned. Any analysis method used for 

tension structures should be able to cope with this type of 

situation. 

To investigate the ability of dynamic relaxation and 

scaled conjugate gradients to cope with cable slackening, the 

general problem of this chapter has been subjected to increased 

loading and reduced pretension. Rather than provide realistic 

load and pretension levels, the aim here is to simulate cable 

slackening situations. For symmetric loading on the hypar 

structure the effect is to reduce tension in the 'tensioning' 

cables, whilst the 'hanging' cables carry the load. This pattern 

is less regular for the asymmetric loading case. 

For both DR and SCG, cable tensions are checked wýthin 

every iteration and reset to zero if found to be negative, this 

procedure being simpler than modifications to the member elastic 
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DYNAMIC RELAXATION 

Tý4 n,. (kr t NO. OF SLACK 
CABLES 

. 01 174(13) 1.437 86 

1. 202(15) 1. §54 46 

10. 145(16) 1.259 18 

Table 5.10 

SCALED CONJUGATE GRADIENTS 

T14 = . 01 T" 1. TH= 10. 

n. t n.. tc nc t 
c- 

267 5.364 403 8.072 368 7.381 

5 184 3.737 254 5.145 128 2.629 

10 305 6.162 286 5.779 142 2.192 

25 216 4.373 252 5.090 153 3.116 

50 206 4.176 173 3.513 184 3.735 

100 215 4.337 218 4.397 218 4.404 

co 266 5.359 615 12.317 1216 24.253 

Table 5.11 
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properties. For SCG the contribution of slack members to the 

steplength polynomial coefficients is also zero. As there are 

significant changes in the equivalent stiffness matrix when 

cables go slack, frequent recourse to the steepest descent 

direction is investigated as a. means of improving, or ensuring, 

convergence of the scaled conjugate gradient method. This function 

is f ulf illed automatically at the energy peak stages of the 

dynamic relaxation process with kinetic damping. 

Consider, then, problem idealisation I with a rise/span 

ratio of . 5, EA = 10000., and an initially symmetric load of 

30 kN/m . Analysis of this problem was carried out for three 

levels of pretension. The results for the DR analyses, with 

mass components based on leading diagonal direct stiffnesses 

are shown in table 5.10, which also indicates 

the number of slack elements detected. 

The results of the SCG analyses, with reinitialisation 

in the steepest descent direction every n., steps, are given in 

table 5.11. Clearly there is an advantage to be gained by this 

reinitialisation, but, as this example shows, selection of the 

optimum-reset frequency could prove difficult. However, in 

spite of this improvement, dynamic relaxation is at least twice as 

rapid as the optimum conjugate gradient solution for these examples. 

The above analysis was repeated for the asymmetric load 

I 
pattern, in which case only five cable members were found to go 0 

slack for a horizontal component of pretension of . 01 kN/m. The 

results for both DR and SCG for this case are presented in table 5.12. 
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MTHOD n n (k t 

5 
. 
963 19.241 

10 679 13.578 

25 363 7.297 

SCG 50 319 6.428 

100 305 6.146 

250 390 7.839 

500 573 11.463 

co 1099 21.922 

DR 237(15) 1.905 

Table 5.12 
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Here dynamic relaxation is more than three t -imes faster than the 

best conjugate gradient solution, which is perhaps surprising in 

view of the small number of slack members. 

The mass control factor a. = 2. has proved satisfactory 

for the above DR an4lsyes in the presence of cable slackening. 

Investigations of structures undergoing more serious changes in 

their mode of action because of slackening have indicated that the 

time interval may require further reduction in order to obtain a 

solution. This effective reduction in 'steplength' ensures better 

control of the descent of a severely distorted energy surface. 

When kinetic damping is employed it is possible to 

envisage a situation arising wherein the form alternates between 

two different,. but not yet fully converged, states at consecutive 

energy peaks. A further reduction in time interval may'be needed 

to escape this situation, or alternatively viscous over-damping 

might be introduced to provide an alternative path to a 

particular so ution. 

5.5 Nodal Mass Components for Dynamic Relaxation 

For the test problem results presented in this chapter 

the direct stiffnesses for both DR mass optimisation and the 

scaling terms for the conjugate gradient method have been 
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established from the cable element tangent stiffness relations 
in the initial, pretensiong state. 

0 

km 00 

K EA 
Mz nit mn +010 

L nZ = ri. L 0.0 1 

The stability of the numerical integration for a DR 

(5.5) 

diagonal mass system based on leading diagonal direct stiffnesses 

subject to varying values of a,,, (as defined in chapter 3) is 

illustrated in table 5.13. Considering mesh I only, stability 

is assured for all six load/structure configurations when a,,., A= 
2. 

On reduction of a,, _, 
to 1.5, and subsequently to 1.2, however, only 

the calculations for the flattest net (cases A and D) remain stable. 

In this case the principal direct stiffness axes are still 

sufficiently close to the global integration axes for continued 

numerical stability, but this is no longer the case for the more 

sharply curved arrangements. 

The three approaches to the fictitious mass component 

calculation outl-ined in section 3.2 , namely: 

diagonal masses and leading diagonal direct stiffness 

(ii) diagonal masses and nodal direct stiffness row sum 

square nodal mass matrix and nodal direct stiffness 

matrix (3x3), 
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DYNAMIC REIAXATION ANALYSIS IDEALISATION I 

LEADING DIAGONAL STIFFNESS MASS ESTIMATION 

a =2 =. l 
*4 0-t a =1.5 =. l a =1.2 I" 

n., (ko) n (k n, (k, ) 

A 91(12) 72(11) 80(11) 

B 86(10) NI NI 

C 83(10) NI NI 

D 105(11) 90(12) 86(11) 

E 184(10) NI NI 

F 171(10) NI NI 

NI - numerical instability 

Table 5.13 
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have been applied to the six 'Load/configuration combinations for 

each of the three problem idealisations. The number of iterations 

(n. ), energy peaks (kc. ) and CDC 7600 execution seconds (tj to 

convergence are drawn in table 5.14. 

As expected, the number of iterations to solution is 

least throughout when the block operations of the square nodal 

mass matrices are employed. Considering the diagonal mass 

matrices, the row sum approach is generally more efficient that 

the leading diagonal method for the f latter net and both loading 

conditions. For the more curved nets, the leading diagonal method 

is more ef f icient f or symmetric loading, whilst the row sum method 

is more efficient for the asymmetric case. The extra computation 

required initially for the row sum approach is not significant 

when compared with that of the other diagonal mass method. 

From table 5.14 it can be seen that the block operation 

technique frequently has the shortest computer time to solution, 

and is in no case the slowest of the three methods employed. The 

reduction in the number of iteration steps has been sufficient 

to offset the additional calculations, both initial and at each 

iteration. In this instance the required inversion of the (3x3) 

nodal mass matrices was performed directly by Choleski ts method (142). 
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DYNAMIC RELAxATION CONTROL 
DIRECT STIFFNESS ESTIMATION FOR MASSES 

z C 
�-4 

I 

ii 

III 

z 

PCI fX4 
0z 
1: 4 0 
0.4 u 

A 

B 

c 

D 

E 

F 

A 

B 

c 

D 

E 

F 

A 

B 

c 

D 

E 

F 

LEADING ROW SUM 
DIAGONAL 

I 
DIAGONAL 

BLOCK 
OPERATIONS 

ci. = 2. M.. = " 1. SM.. = 
.1 CtM=l"1 " 

ne (kc, t C. 0 
91(12) . 829 

86(10) . 777 

83(10) . 752 

105(11) . 924 

184(10) 1.485 

171(10) 1.395 

166(11) 5.047 

178(12) 5.483 

179(13) 5.444 

216(13) 6.529 

385(13) 10.938 

367(13) 10.606 

273(13) 17.550 

264(12) 17.224 

220(12) 14.331 

312(14) 20.183 

600(14) 36.811 

554(14) 34.723 

n, (ke t e- 
66(8) . 621 

91(10) . 827 

84(9) . 757 

85(10) . 789 

176(11) 1.432 

146(9) 1.214 

156(12) 4.834 

193(13) 5.941 

165(12) 5.073 

194(13) 5.992 

344(13) 9.960 

345(12) 10.028 

235(12) 15.285 

271(12) 17.662 

229(11) 14.853 

316(14) 20.579 

491(13) 30.569 

515(13) 32.346 

n. (k. ) tG 

32(11) . 628 

43(11) . 747 

43(11) . 752 

54(12) 

92(12) 

88(12) 

. 885 

1.305 

1.265 

66(14) 3.895 

89(13) 4.774 

95(13) 5.058 

104(14) 5.439 

174(14) 8.349 

190(14) 9.046 

107(14) 12.235 

119(14) 13.338 

132(14) 14.636 

141(14) 15.308 

302(15) 30.143 

300(15) 30.065 

Table 5.14 
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5.6 Sunmiary 

A generalised test problem for the comparitive analysis 

of pretensioned networks with rigid boundaries has been proposed 

which permits ready adjustment of network'curvature, pretension and 
idealisation. This problem has then been analysed by the scaled 

conjugate gra I ient method, with modified polynomial coefficients 

as presented in the last chapter, and. by dynamic relaxation with 

kinetic damping. 

Dynamic relaxation has been found to converge more 

quickly than scaled conjugate gradients for this problem with a 

range of network curvatures, pretension levels and loading cases. 

Both methods have been applied to increasingly large meshes, with 

up to 2523 degrees of freedom and 1860 elements. Dynamic 

relaxation has required between .4 and .8 of the time for SCG 

converg-ence, with an advantage increasing with problem size. 

By a reduction in pretension and increase in applied load, 

the test problem has been used to compare the relative merits of 

DR and SCG in the presence of cable slackening. The SCG analysis 

was performed with occasional recourse to the steepest descent 

direction. The optimum steepest descent reset frequency is 

difficult to locate automatically, and even for that situation 

DR converged at least twice as quickly f: or the symmetric load 

patterns and over three times faster for the asymmetric case. 

The three methods of automatic assessment of nodal 

fictitious mass components for dynamic relaxation, as outlined in 
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chapter 3, have been compared. In terms of time to convergence, 

the block operations involving square nodal mass matrices have 

proved most efficient. In practice, however, this advantage 

must be offset against the storage requirements of the additional 

mass components and the need for explicit retention. of the 

square nodal 
[B] 

matrices. The complexity of the program has been 

marginally increased, although the generality of application to 

arbitrary element types is -not restricted. In general, then, 

a diagonal mass matrix scheme will probably be adopted, with the 

row sum variant of equation offering the most rational mass 

assessment for varied structural configurations. 
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CHAPTER 6 

DYNAMIC RELAXATION NON-LXNEAR ANALYSIS OF RXGXD-JOXNTED STRUCTURES 

Prior to the investigation of complete lightweight 

structures, the method to be employed should be shown capable of the 

nonlinear analysis of the boundary structure to the same degree of 

accuracy as for the surface structure. 

In this chapter rotational degrees of freedom are 

introduced into the dynamic relaxation analysis scheme to permit 

the inclusion of planar and spatial flexural. elements. Finite 

displacements are treated directly, with full nonlinear effects 

readily incorporated into the natural stiffness relations of the 

members. A simplified flexural element is also proposed for planar 

problems, and the elements presented are applied to the analysis 

of published nonlinear frame analysis problems. 

a 
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6.1 Plane Frame Analysis by Dynamic Relaxation 

Rotational degrees of freedom must be introduced into 

9 

the DR iterative scheme to enable the inclusion of cubic 

displacement line bending elements. This presents no difficulties, 

and the assessment of diagonal or square nodal ficititious mass 

matrices follows the general sequence outlined in chaptei 3. 

However, whereas the current nodal translations are traced as the 

current global coordinates, t xj, the rotations 
[el 

are conveniently 

treated as displacements from an initially zero state at the start 

of the analysis. This section presents the implementation of 

planar flexural elements, following the general sequence proposed 

in chap ter 3. 

The bending element, with-connecting nodes i and j, is 

shown in figure 6.. 1 with its associated basic displacements 

a'L 
.9 Ot and ee /LC, Figure 6.2 shows the'related natural forces 

acting on the element, with IS I translational and [M rotational 

components, where: 

Iml m. 

m. 

- 
3-, 

and, for equilibrium: 

% I [ I 

I 

(6.1) 

S\I-[NI[\ . 
S, s (6.2) 

kJ 
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Figure 6.3 
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For linear moment curvature relations the member 

constitutive equations are then: 

x EI 42a 
L A. 

m24 

a3 (6.3) 

where tal refers to the differenc& between member current and 

initial end slopes, and 

s EA e 
L' 

s (m +Mý;. )/L (6.4) 

The transformation between current local coordinates [x 

and global coordinates I X1 is given by: 

(6.5) [ 'l 
= 

[x] ý 
xý 

- 
91 

-1 

tt 

where Z,, n are the current x,, z direction cosines respectively of 

the member ij. 

The sway angle shown in figure 6.3. must then be 

determined in order to allow for arbitrary member displacement in 

space when calculating, the relative rotational displacements ýaj 

from the overall nodal rotations 6. and 0.. The relative end A. 

displacement,, W3, in the z'-direction is given by: 

6w 
W. x 

z 
(6.6) 
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where Ix 
; -31 

ý 
ýx, 

- x,,, , etc, and it is necessary to retain the 
initial member position vector x The sway angle is then: 

% 
-1 

sin 
AW2 
L0 (6.7) 

for a clockwise positive angle as shown. 

The current relative rotations are then: 

,N% 

a. = &. -ý ;n (6.8) A. Aw 

The member natural forces must then be siiimmed into the 

nodal residual vector, taking account of the necessary change of 

sign. The moments M are subracted directly from the current 
II 

rotational residuals at the connecting nodes, whilst the direct 

forces must first be transformed into the global coordinate 

system: 

Isl Ixs (6.9) 

The dynamic relaxation scheme treats finite nodal 

displacements automatically, and other nonlinear effects may readily 

be included. The stability functions s'and c (114) may be directly 

included in equation 6.3 to account for the effect of axial 

force on the moment-curvature relations: 

Essc 
CX 

L 

scs 
5A- 

1 (6.10) 
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When kinetic damping is employed, it is convenient to 

reset the stability functions at the energy peak coordinate 

adjustment stage. This is efficiently achieved by utilising 

Livesley's power series 

s 3ý, 
z 

SC 3 

where: 

(64 - 60p + 5P t a. p 
(16-p)(4-p) 2 "" 

p 

12 (1-ý, 

P/P., the ratio of current and Euler compressive 

forces 

and: 

1.57973627 

a3 = 0.02748899 

0.00115281 

0.15858587 

0.00547540 

0.00024908 

0.00005452 

Alternatively, the nonlinear natural stiffness relations 

derived by Jennings (95) might be used. By assuming that the 

lateral deflection curve is cubic, these relations account for the 

nonlinearities due to axial force and to axial shortening through 

T bowing. An this case the axial force is given by: 
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e P EA 0+ L 30 
2a 

and the nonlinear constitutive equation is: 

m (4q + 4r) 

M3 i (2q - r) 

where q 
EI pe 
I? and r 3o 

(2q - r) 

(4q + 4r) 

(6.11) 

Again it is convenient to reset the 

natural stiffness relations at energy peaks. Clearly the nature 

of dynamic relaxation enables simple inclusion of nonlinear 

effects into the analysis scheme. 

On-off nonlinearities, such as the formation of plastic 

hinges might also be included. In this case, when the plastic 

moment is exceeded at the end of a member, a plastic hinge is 

imposed at that point and the member end moment held equal to the 

plastic moment as long as the hinge pontinues to rotate in the 

same direction. Elastic behaviour is restored if the sense of 

rotation is subsequently reversed, with some consequent permanent 

deformation of the member at the hinge position. In such an 

incrementally loaded, path dependent, process the use of crictical 

viscous damping might prove superior to that of kinetic damping. 

For the lattet, plasticity checks should be made at each step to 

ensure stability. The smoother displacement pattern of viscous 

damping should permit less frequent plasticity checks and a 

better control on the solution. 
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The desired boundary conditions associated with beam 

elements must also be incorporated. Encastre joints are 

implemented by holding the nodal rotational displacement to zero 

throughout the analysis. For a pinned connection at a member 

end, the natural stiffness relations may be summarised: 

M. 

ab ct 

mba Ot 

where, for M%. 0. b 
A. a 

b 
and for m 05, (x .=--a 

(6.13) 3aa L' 

and the ratio b/a must be updated every reset stage when nonlinear 

stiffness relations have been employed. 

6.2 A Simplified Planar Bending Element 

The separation of equilibrium and compatibility in 

dynamic relaxation makes it particularly suitable for the 

incorporation of a simplified bending element. The flexural 

member is idealised as a series of bar elements, which are permitted 

to deform axially but not in bending. The flexural stiffness 

is lumped at the nodes connecting these bar elements, and the 

associated rotation is established from the relative inclination 

of the adjacent elements. In this way only translational 

displacement variables are required, and the discretisation of the 



flexural member ensures that both stability and boving effects 

are automatically accounted for. Figure 6.4 shows a single bar 

element and the forces acting upon it, whilst two adjacent 

elements are shown in figure 6.5 together with the lumped 

rotation 6ýý at their interconnecting node j. This angle is 

shown greatly exaggerated, and in the subsequent derivation is 

assumed to be the-difference between current and initial rotations. 

This element was initially applied in finite difference 

form for the large displacement transient response analysis of 

beams and rings subject to impact loading (140,172) by central 

difference time integration. By idealising a section as a 

layered series of such elements, plasticity effects have also been 

included (82,176). 

If the normals to the element mid-points are constructed 

as in figure 6.5, then for the small angle 6ý.: 
j 

8ý3 = (La + Lb)/2 (6.14) 

Then, if it is assumed that Rý is the mean radius of 

curvature of deformation of the flexural member at node j, the 

bending moment, MS, at that point may be expressed: 

M3 EI .1 EI 28ýG 
R3 (L 

0. +L b) 

For Mý taken as a positive hogging moment, with 6ýý 

positive as shown, then: 

21 

N 

MýL Mý -M ývz (6.16) 
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The bending action has been effectively idealised as a 

series of constant moments between element mid-points. Axial 

and transverse forces must then also be obtained, the former 

from the elastic extension and the latter by resolution of 

the bending equilibrium of the element: 

S. 

+m+ e) (6.17) A. 

The direct and transverse forces acting on the element 

v 

are then resolved into the global coordinate system and added 

into the nodal residuals as usual. A full bending analysis has 

thus been obtained in terms of translational degrees of freedom 

only, as 5ý, is found directly from the element vectors. 

Before a solution is obtained, however, the boundary 

conditions to the problem must be imposed. Both pinned footings 

and free ends may be treated by holding the relevant nodal 

rotations at zero, with the consequent imposition of zero bending 

moment at those nodes. For an encastre footing the tangent to 

the flexural member at the fixed point remains constant, as 

shown in figure 6.6 Considering, then, the fictitious adjacent 

element shown that enables satisfaction of this condition, it can 

be seen that the total rotation at the node e is 26ý.. thus: 

EI2 . 26e 

For such cases the initial inclination of the member must be 

stored in order to obtain 6ý 
e. . 

(6.18) 
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For the nonlinear impact analysis of plane frames, 

Ni (129) has also used the above formulation with two degrees 

of freedom at each node, except at framework joints where a 

rotational degree of freedom was additionally introduced. 

These joints were then regarded as moving boundaries during the 

dynamic deformation process of the structural members. 

This introduction of an extra degree of freedom at the 

joints is not necessary, however, and an alternative is presented 

here for incorporation in a dynamic relaxation scheme. Consider 

a joint J connected to a number of elements with initial 

inclinations ýL to the z-axis, as shown in figure 6.7. The 

joint is assumed to remain rigid at all stages of the analysis. 

The current end moments are initially calculated assuming 

fixity against rotation at J (figure 6.8); for example: 

and (using 6.18) M -2EI 6ýOL (6.19) 
CL CL 

L 

where both moment and rotation are clockwise positive. 
A 

Then the current clockwise out of balance moment at 

joint J is given by: 

(6.20) AM: 7 
2 EI 4 

with summation for all the connected members. If 6M 
ýT 

is defined 

as, the out of balance moment due to a unit rotation of the joint: 

8m 
7= -2 EI (6.21) 
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and the equivalent joint rotation Ae 
:1 

for the current out of 

balance moment is. given by: 

A6, 
ýs = AMzJSMx (6.22) 

Thus in order to maintain moment equilibrium the joint 

is allowed to rotate by -Ae. 
.., 

this being achieved by updating the 

'initial' inclinations of the adjacent elements: 

A. 
4 => + (6.23) 

and the analysis then proceeds with the force determination stage. 

As these joint nodes may have any number of adjoining 

elements, then I the standard boundary conditions may be considered 

as special cases of the above formulation. An encastre footing 

may be treated as a joint with only one connecting member and 

AM-, held at zero so that no rotation occurs. Pinned member 

ends may be specified by resetting the member 'initial' 

inclination to always coincide with the current value, thus 

ensuring zero end moments. Combination pinned and rigid joints 
0 

are therefore possible. 

In addition, moments may be applied at any point in the 

frame structure by specifying a joint node at that point, and 

adding the applied moment M to the current out of balance value: 

LcL 
(6.24) 
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6.3 Space Frame Analysis by Dynamic Relaxation 

The nonlinear plane frame analysis presented in section 

6.1 may readily by extended to spatial analysis. Consider an 

initially straight beam element, arbitrarily orientated in space, 

as shown in figure 6.9 with the local element coordinate system, 
[11, 

x defined by the member chord and section principal axes. This 

spatial bending element has six basic displacement components, which 

are shown in figure 6.10, together with the associated natural 

forces acting on the element. These forces may be summarised: 

L 

m% 

L} = 
LS. 1 

== 

4 
The member constitutive relations are then: 

i. EI 

i. EI Ä. 

me 24 

(6.25) 

a 
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7- 
m 

x 
M. GJ 

L 

S S EA 
L 

Si s (M 
L + Mý )/L 

- 

S. S. -(M +M /L 

L L+e (6.26) 

[I 
The transformation between local x and global 

I 
X1 

axes is performed in two stages through the intermediate Ix I 

system (figure 6.9) used to define the angle of rotation ý in 

space. The z*-axis is perpendicular to the x-axis and parallel 

to the zx plane. 

The member is assumed to twist linearly along its axis, 

and the current rotation a is assumed to be the sum of the initial 

value a" and the mean axial rotation in the local coordinate system. 

++ eS )/2 (6.27) 

where 

m ,n 

and 
I O', j are the nodaý rotational displacements, Z, m, n the 

direction cosines of the member chord ij. 

With a thus established, the full orthogonal 

transformation X] is given by: 

x 
*' [XI (6.28) 
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where 
[XI 

may be conveniently subdivided: 

[ 
x] = 

9, 

1. X, 5 
11 

1 
X, 

51 = cosß siný -m/a 2, /a 

. -sinß cosß 

1 

-n£/a -nm/a .a1 

(6.29) 

For the particular case where the x and z axes are 

coincideilt, then: 

-n siO COO (6.30) 

-n cos$ -sina 

The full derivation of these transformations is given in 

Appendix C. 

As in the case of the planar finite displacement analysis, 

member sway angles must be otained prior to calculation of the 

rotational basic displacements. These are again obtained from 

the initial and current geometry by considering relative 

deflections, transformed into the current coordinate system, 

as given by Johnson and Brotton (98). The two sway angles, 

and are defined in figures 6.11 and 6.12, and the 

required relative deflections are: 
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Figure 6.11 
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6v 
V-vx 

%. 1% 

A 

aw 
W3 - Wý. Y-. 

4.13 

Aýi 

where xx etc. L3 L" 

0 
- 

Z 

The angles shown in the figures are both negative, 

thus -. 

sin 

s in- V IL 

(6.31) 

(6.32) 

The basic, or natural, displacements are then given by: 

(6.33) 
IL IL 

where: 

6L 6j 

The member twist is then obtained: 

x 7-1 % 

(e -e (6.34) 

and these values are then substituted into the constitutive 

equations to calculate the member natural forces. These forces 

must then be transformed into the global coordinate system, and 
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subtracted from the current nodal residual vector. For example, 

for moments at node i, for the element ij: 

Ad 

and R; 
_ 

[R; 
M" (6.35) 

with identical treatment for node j, and for the direct natural 

forces. 

As in the planar case, nonlinear effects may be readily 

incorporated. The s and c stability functions may be included in 

the constitutive relations, with separate functions and critical 

loads for each of the two bending planes. The corrections for 

planar bowing due to Saaf an (151) may be extended 'into the -spatial 

case (Appendix B). As an alternative, the Jennings nonlinear 

element discussed above has been generalised for space frame 

analysis by Dickie and Broughton (66). In this case the moment- 

curvature relations are: 

LE I PL ýIýý a+ 2a. 
me= (1 

li. EIý 4PL 'ö 
0.1 +--+ ctj 

li 
-- 

30 to 30 c 

% 2EI pe 4EI 4PL EIj' 
Mý + ct + 2a, + 4a. 

i to 30 L0 30 to A. 

(6.36) 

and similarly for M and M where: 
A. 



0 EA LL+q 
L* 

qL2++ a" 
30 

and: 

Ix 
m M. GJ 

L* 

/2AI? 

+P (I%+I\) (6.37) 

For sections with symmetry about either the y or z 

axes, the I-, term will be zero, and the above relations can 1ý 

therefore be simplified accordinly for most cases. 
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a 

The boundary conditions may then be imposed in the 

same way as for the planar case. 

6.4 Control of Dynamic Relaxation Analysis of Rigid Jointed 
Structures 

The automatic procedure presented in chapter 3 for the 

assessment of fictitious nodal mass components may be applied to 

rigid jointed structures, 

For the spatial framework analysis, with six degrees of 

freedom per node, a (6x6) square matrix of mass components is 

theoretically necessary for the optimised integration at each node. 
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As this would prove very inefficient, in terms of both 

computational effort and storage,., the translational and rotational 

components are considered here to be uncoupled, resulting in two 

(3x3) mass matrices for each node.. 

The elemental contributions to the nodal direct stiffness 

matrices are then: 

SS 

S 
Iz (6.38) LS 

V-1 =P 
]T I ý, I L" I 

for the translational and rotational stiffnesses respectively, 

where: 

S. r EA/L 00 

0 12E I='% /Iý 0 

00 12EI"%/O 

GJ/L 00 

0 4EI-ý/L 0 

L00 4EIB'/L (6.39) 

and. the member coordinate transformationF)L I is as defined earlier 

in this chapter. 

Mass components for flexural elements have been assigned 

purely on the basis of elastic stiffness, even for the prestressed 

boundary structures of tension networks. As these rigid jointed 

structures have a softening response curve under load, this is 

a reasonable assumption that has proved satisfactory in practice. 
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Row sum and leading diagonal mass components are 

assessed as before from the ý, 
-r] and ýS 

lZI matrices. For planar 

analyses, the relevant stiffness terms for the x, zý and e 

components are: I 

s 

11 EA/L 00 

0 12EI/Iý 0 

L00 4EI/L (6.40) 

where the rotational component is unchanged in the transformation 

into the global coordinate system,, and not required for the 

implementation of the simplified, 'constant moment' bending element. 

0 

6.5 Numerical Examples: Planar Problems 

The rigid jointed toggle problems shown in figure 6.13 

were initially proposed by Williams (170) for the investigation of 

nonlinear plane frame analyses accounting for finite deformations. 

This toggle was investigated with two sets of rise values 83, both 

of which result in highly nonlinear load-defledtion characteristics, 

the latter exhibiting the phenomenon of snap-through buckling for 

the given loading condition. Williams. included the effects of 

axial forces and flexural shortening on the moment curvatur, e 

relations, and compared the answers with experimental results for 

the two cases. The problems have subsequently been analysed by 
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Jennings (95) using nonlinear stiffness relations and a matrix 
iteration process, achieving identical results of those of 

Williams' analytic technique. 

These two toggles have both been reanalysed using dynamic 

relaxation with kinetic damping as described in the preceeding 

sections. The following idealisations have'been employed: 

(a) cubic displacement linear flexural element 

(3 degrees of freedom per node) 

Jennings nonlinear flexural element 

(3 degrees of freedom per node) 

(c) constant moment bending element 

(2 degrees of freedom per node) 

with varying number of equal length elements per toggle member. 

The load-displacement curves for these analyses are given in 

figures 6.14 to 6.19 inclusive. The curves for toggle (i) were 

obtained by successive load incrementation, with fictitious 

mass components updated prior to the application of each increment. 

In order to trace the snap-through behaviour of toggle (ii), the 

displacement 6 was specified, with the apex node restrained against 

vertical movement. The value of the nodal residual for this 

restrained degree of freedom at convergence was then the equivalent 

loading ass-ociated with the specified displacement. 
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For the linear element of idealisation (a), up to 10 

elements/toggle member are required to closely reproduce 

Williams' solution, with no effective displacement change upon a 

further doubling of the number of elements employed. Inclusion of 

the nonlinear terms of idealisation (b) enables a satisfactory 

solution to be obtained with 3 elements/member, with no improvement 

on increase to 5 elements/member. 

The ability of the constant moment element ot trace the 

nonlinear and snap-through buckling behaviour is demonstrated by 

figures 6.16 and 6.19 
. Here displacement results identical to 

those aehieved. by idealisation (b) are achieved by 20 elements/ 

member, although the behaviour under load has been closely 

represented by 10 elements/member. The nodal bending moments 0 for 

the latter case are all within 2% of those obtained from the same 

number of cubic displacement linear flexural elements. 

The semi-circular arch problem of figure 6.20 was used 

by Broughton (80) to illustrate the discussion of the paper by 

Happold and Liddell on the timber lattice roof for the Mannheim 

Bundesgartenschau (79). Broughton obtained a buckling load of 

1820 lb for the problem as idealised by 18 nonlinear flexural 

elements. 

This problem has been reanalysed by dynamic relaxation, 

with figure 6.21 showing the load-displacement curve of the apex 

node for the three element types used in the toggle reanalysis and 

an 18 element idealisation. 
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NODE ELEMENT 

LINEAR JENNINGS CONSTANT 
MOMENT 

3 dofJnode 3 dof/node 2 dof/node 

39.68 38.55 35.36 

2 13.21 12.75 10.97 

3 -12.07 -11.87 -11.96 

4 -31.23 -30.44 -29.03 

5 -38.23 -37.17 -34.90 

6 -30.17 -29.28 -27.17 

7 -10.35 - 9.93 - 8.93 

8 15.17 15.02 14.45 

9 41.57 40.75 38.75 

10 64.53 63.04 60.30 

Semicircular Arch Bending Moments x 10-3 ( (+)ve hogging) 

for specified apex displacement, 8= 50. 

Table 6.1 

4 
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The identical buckling load was obtained for the 

application of the Jennings nonlinear element with DR, and the 

linear three degree of freedom and constant moment idealisations 

are within +2% and -4% of this value respectively. The nodal 
bending moments for a specified apex displacement of 50 ins 

are given in table 6.1. Again the constant moment elements have 

yielded a satisfactory moment distribution considering the -gross 
deformation and rapidly changing moment pattern. These values 

would have been improved by further refinement of the idealisation, 

and post-buckling behaviour traced by the use of specified 

displacement increments. 

6.6 Numerical Examples: Spatial Problems 

Many papers have been written that ref er to the nonlinear 

analysis of plane frame problems, as reviewed by Baron and 

Venkatesan (2-2), but relatively few ref er to the general, three 

dimensional, case. Consequently there are few results available 

for physical or numerical investigations of spatial rigidly jointed 

frameworks subject to gross deformation. 

Johnson and ýrotton (98) have analysed a shallow dome 

with a single vertical load applied at the apex, as shown in 

figure 6.22. A linear flexural element was utilised, -in conjunction 

with a Newton Raphson iteration scheme, with subdivision of critical 
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members to account for bowing effects. This problem has 

subsequently been reanalysed by Dickie and Broughton (66), using 

a spatial derivation of Jenning's nonlinear element, who obtained 

effectively the same results. 

This shallow dome problem has been reanalysed by dynamic 

0 relaxation, using the following elements in the idealisations: 

(a) spatial flexural element with s and c stability 

functions 

(b) as for (a), with the addition of Sa-afaris bowing terms 

(C) with Dickie and Broughton's spatial extension of 

Jennings' nonlinear bending element. 

All joints of the dome lie on the surface of a sphere of 750 ft 

diameter, with an apex rise of 15 ft above the boundary joints. 

Each of the three idealisations above produced almost 

identical results, the apex load/def lection curve being shown 

in figure 6.23. These results agree closely with those obtained 

previously by Johnson and Brotton (98) and by Dickie and Broughton 

(66). The lack of any significant difference in results for 

idealisations (a) and (b) suggests that the effect of axial 

shortening due to member bowing is not significant for this problem. 

An inclined portal framework subjected to asymmetric 
i 

loading and exhibiting a high degree of nonlinearity was proposed 

by Tezcan and Mahapatra (162) to illustrate nonlinear space frame 
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analysis. Reanalysis by Broughton (80) yielded differing results, 

and the current results obtained here by DR suggests that the 

Tezcan and Mahapatra solution ref ers to one half of the stated 

loading, with consequent apparently overstiff solutions. The 
I 

problem data is given in figure 6.24. 

The results of dynamic relaxation analysis, with linear 

and nonlinear flexural elements, are gi'ven in figure 6.25 for the 

translational displacement of node 12. The effect of the 

inclusion of nonlinear terms is clearly seen, but again the 

additional treatment of bowing had no significant effect on the 

displacements. The spatial Jennings' element produced identical 

results to the beam element with s and c functions when used in 

the DR formulation. However, the reasons for the differeilces 

between this result and those published for the Broughton (80) 

implementation of the Jennings' element are not clear. 

In addition the x-displacement solution obtained by 

Tezcan and Mahapatra for twice the stated solution has been shown, 

agreeing closely with the dynamic relaxation solution. 

Tables 6.2 and 6.3 indicate the number of steps to 

convergence and the corresponding computp-r execution time (CDC 7600) 

for the shallow dome and inclined portal frame problems. Each of 

the three methods for assessment of the fictitious nodal mass 

components suarmarised in section 6.4 have been utilised, namely those 

based on leading diagonal (LD), row sum (RS) and nodal square 

matrix (SM) direct stiffnesses. 
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SHALLOW DOME PROBLEM 

CONVERGENCE 

LOAD MASS STEPS EXECtN TIME 
ASSESSMENT (CDC 7600 secs) 

5. RS 39 . 444 
ý 

LD 2. 28 . 363 

SM 1. 21 . 344 

10. RS 1. 37 . 430 

LD 2. 30 . 377 

SM 1. 22 . 352 

15. RS 1. 47 . 510 

LD 2. 37 . 436 

SM 1. 25 . 385 

Table 6.2 

RS - row-sum 

LD - leading diagonal 

SM - square matrix 



1-0 0 

INCLINED PORTAL FRAME PROBLEM 

CONVERGENCE 

LOAD MASS STEPS EXEC'N TIME 
FACTOR ASSESSMENT (CDC 7600 secs) 

100. RS 274 . 919 

LD 2. 214 . 734 

sm 1. 143 650 

200. RS 1. 318 1.037 

LD 2. 273 . 914 

sm 1. 112 . 539 

300. RS 1. 484 1.537 

LD 2. 348 1.135 

SM. 1. 164 . 733 

400. RS 1. 413 1.327 

LD 2. 391 1.266 

sm 1. 160 . 724 

Tabl e' 6.3 
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The optimised block operation scheme has proved most 

efficient in all cases, with the additional computation necessary 

being offset by the reduction in iteration steps to convergence. 

The leading diagonal direct stiffness assessment of the diagonal 

mass ter msP with factor a,,., = 2 (chapter 3), has proved next most 

efficient for these problems, with the row sum technique the least 

ef f ic ient. 

k 

6.7 Summary 

As a precursor to the analysis of pretensioned networks 

with external or internal boundary structures, the method of dynamic 

relaxation has been extended to the analysis of framed structures. 

Rotational degrees of freedom have been introduced into 

the DR scheme and treated in the same way as the translational 

components, excepting that rotations are conveniently traced as 

displacements from the initial state rather than absolute values. 

Section 6.1 describes the implementation of planar 

flexural elements. Rigid body motion is treated naturally by the 

method, and the natural member stiffness relations are employed 
I 

for efficient calculation of residual forces. Livesley's s and c 

functions (114) are included to account for the effect of axial 

force on the moment curvature relations. These functions are 

updated at the energy peak reset stages. The alternative nonlinear 
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natural Stiffness relations due to Jennings (95) may also be 

included. 

A simplified, constant moment, bending element is 

presented in section 6.2 for planar analysis. The flexural member 

is idealised as a series of bar elements, which are permitted to 

deform axially, whilst the flexural stiffness is lumped at the 

nodes interconnecting those elements. As a consequence only the 

two translational variables are required at each node, with the 

lumped rotation obtained from the relative inclination of the 

adjacent elements. The treatment of boundary conditions and rigid 

joints is presented. Although a finer idealisation is necessary 

for a given accuracy by comparison with conventional cubic 

displacement elements., this element may still be useful for planar 

problems where such an idealisation is a geometric or topographic 

requirement. 

In the following section the full nonlinear DR analysis 

has been extended to the spaceframe problem. The member force 

calculation. procedure may be summarised (using the basic stages 

outlined in chapter 3): - 

establish the coordinate\transformation matrix (eqn. 6.29) 

calculate basic member displacements from global 

coordinates (eqns. 6.33 and 6.34) 

calculate natural forces from basic displacements using 

either linear (eqn. 6.26) or nonlinear (eqns. 6.10 or 

6.36) natural stiffness relations 
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Uv) sum transformed natural forces into the nodal residual 

vector (eqn. 6.35). 

The control of dynamic relaxation analysis of rigid 

jointed structures is then detailed in section 6.4, with comparative 

computation times presented subsequently for the numerical examples 

considered. The use of square nodal mass matrices with the 

associated block operations has proved most efficient for the 

structures investigated. 

The results of dynamic relaxation analyses are then 

compared with published solutions to nonlinear plane and spaceframe 

problems. The successful treatment of finite displacements, through 

to snapthrough and the post-buckling response, is demonstrated. 
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CHAPTER 7 

FORMFINDING 

Formfinding is an integral and essential part of numerical 

investigations of network structures supported by compression 

boundary structures. Dynamic Relaxation may be utilised at the 

conceptual stage for generating moment-free compression contours 

under dead loading, and subsequently for determination of the 

pretension geometry with the boundary idealised by rigid-jointed 

spatial flexural elements. The general topic of formfinding, 

and the application of Dynamic Relaxation, has been dealt with in 

detail elsewhere (20,21). This chapter is intended as a brief 

summary of the development of numerical formfinding techniques, 

followed by examples of the utilisation of kinetic damping and 

the treatment of moment-free compression contours in the 

Dynamic Relaxation method. 

( .j 
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7.1 Foxmfindj' 
, ýng -A Review 

In 1959 Bandel (11) derived a set of linear algebraic 

equations for the shapef inding and analysis of hyperbolic parabaloidal 

pretressed nets with orthogonal cable arrangements. Vertical joint 

displacements only were considered for applied temperature changes 

and vertical loading. This method of shapefinding for orthogonal, 

or projected, nets was generalised for arbitrary boundary configurations 

by Siev and Eidelman (157), and has subsequently been applied by 

Mýllman (121) and Thornton and Birnstiel (163). If T,,,, and T4y 

are the specified horizontal force components for the two cable 

sets, then for equilibrium of any node i connected to adjacent 

nodes j by members Mx , My 

T H. K 

Z WX 
, (ZýýL, - Zý )mx + R, ". f 

(Z L-Z) Mf =p SL 
(4.1) 

mx Mllf 

where P, ý is the nodal vertical load and Z,. p Zm, -f are the horizontal 

components of cable length in each direction. The full set of 

linear equilibrium equations may then be expressed in matrix form: 

0 

Pt (4.2) 

where 
[H] is square, 

ýZj is the vector of nodal vertical coordinates 

and 
(P": 

Lý 
is the load vector modified by the transfer of kn own 

boundary conditions from the left hand side of the equations. 

Iterative procedures for the shapefinding of geodesic nets 
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based on the above procedure have been proposed by Mollmann (121) 

and Siev (158). 

Dean and Ugarte (64) derived closed form trigonometric 
I 

series solutions for initially flat multiply threaded nets subject 

to vertical loading. This approach has been extended by Buchanan 

and Akin (34) f or elevated and spatially curved boundaries, and 

by Buchholdt (35) for a variety of boundary and net patterns 

with the Fourier series soluti ons expressed as matrix products. 

Schek (154) has extended the above method of Siev and 

Eidelman for three degrees of freedom at each node and thus obtained 

a general linear formfinding technique. 

Consider a network with N free and N; fixed noodes., 

having coordinates 
tXj and 

[Xýj 
, connected by M members in the 

pattern def ined'by the connection submatrices 
ýC I 

and 
[C 

ý] f or 

member j: 

C. - +1 for end 19 node 

1 for end 2a node 

= otherwise (4.3) 

The vector of element coordiiaate differences, 
t dXj , 

is then: 

[dXj Xj Cýj Xý (4.4) 

and for member forces [Tj 
, equilibrium of the free nodes is 

I 

satisfied provided: 
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[c ITI 
DX] 

[L I -ý tTI- 
(4.5) 

where 
I DX] is the diagonal matrix of 

I 
dXj and 

t 
P1 is the 

vector of applied loads. If the member force densities, or tension 

coefficients, are'defined by: 

[ 
q. = 

[LI-I 

then equation (4.5) may be rewritten: 

C 
Jr ýDX [qp 

or CQ 
[dX 

P 

(4.6) 

(4.7) 

(4.8) 

with diagonal matrices 
[Q] 

, 
ýL] for member tension coefficients 

and lengths respectively. Substituting equation (4.4) into (4.8) 

one obtains: 

cQIPýIf Xý p (4.9) 
Ix I+ Ic IQ I [c 

or 
[H 

X 
[P [Xý [P' 

(4.10) 

The square matrix 
[H] is positive definite for all q>0, 

and solution of the linear equations (4.10) yields the free node 

coordinates 
[XI for given load and boundary conditions, there being 

one equilibrium state for each prescribed set of tension coefficients. 

Although the above linear method, termed force densities 

method, produces approximately reta2ular nets when constant force 

densities are specified throughout (154), it still suffers from the 

same basic drawback of the earlier linear procedures. Their ability 
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to provide initial shapes rapidly and economically is tempered by 

the constructional impracticality of the solutions so found. 

Nonlinear methods must be employed for uniform mesh or geodesic 

networks, but the methods of this section are still highly suited 

to initial investigations of form and as starting points for 

subsequent nonlinear procedures., which are reviewed in the next 

section. 0 

The implicit Newton Raphson (NR) iterative procedure has 

been applied to the formfinding of funicular networks by several 

researchers. Using , sketches of the shape of the required 

structure as a-starting point for the iteration, Haug and Powell 

(83) have demonstrated the shapefinding of a variety of structural 

types. Possible convergence problems with the NR method for 

strongly nonlinear problems-were avoided by incremental loading 

and specification of a maximum permissible displacement increment 

for any degree of freedom, all increments being scaled down 

proportionally if this maximum was exceeded. Provided the 

intermediate convergence criteria are not too severe then a single 

iteration will suffice for the load step, resulting in an Euler 

type procedure, with updated tangent stiffness at each stage, until 

the final load increment when the full NR method provides the final 

required degree of convergence. By this stage the modified NR 

procedure with constant stiffness matrix may well be successfully 

employed. Constant force, or geodesic, members were introduced 

with purely geometric stiffness matrices. Formfinding of a 
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pretensioned net supported by a centralmast took 15 iterations 

(83), whilst that of a hexagonal mesh suspended net required 

33 iterations. In the later case fictitious pretensions were 

introduced for the first iteration only to avoid singularity of the 

stiffness matrix for the initially plane net. Cable slack lengths 

were modified during the formfinding of an adaptable net to simulate 

the effect of turnbuckles. The gross out of balance forces thus 

generated were successfully controlled by the above procedures, and 

an average of 30 NR iterations was required for each of the structure 

modifications. For this problem convergence was improved by allowing 

compressive forces in some of the cables during iteration. 

Argyris and Scharpf (8) used similar controls on the NR 

iteration for formfinding of prestressed networks, with the addition 

of a specified maximum nodal out of balance force at any stage of 

the process. For the formfinding of the Munich Olympic stadia 

an initial net was generated iteratively on the mathematical surface 

of the structure, which had been determined as a series of localised 

fourth order polynomials from photogrammetric measurements of the 

architect's model. Prescribed stress conditions were approximated 

in the subsequent NR iteration for net equilibrium by holding the 

forct constant in at least one end member of each cable. 

Additionally, reduced stiffnesses were assigned to boundary cables 

in order to increase the rate of convergence in edge regions. 

As a consequence of large initial out of balance forces 

and compression in some members the convergence rate o-. E NR 

formfinding based on initial data from sketches or models may be 
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very slow, or even divergent. Thus, as an alternative, Argyris, 

Angelopoloýis and Bichat (10) proposed a wholly mathematical model 

in which analytical shapefinding commenced from an initially flat 

net of linear elastic elements. A doubly curved equilibrium 

figure was then derived by incremental movement of specified nodal 

points, accompanied by iteration for equilibrium of the remaining 

free nodes. Again an Euler incremental procedure with tangent 

stiffness reset at every stage was initially suitable, with the 

full NR method then used for final convergence. The cable forces 

resulting from such an anlysis are generally excessively high and 

must then be modified by adjustment of member slack lengths, with 

equilibrium regained by further NR iteration. This process may 

be repeated as often as desired, with the end result representing 

the chosen compromise between geometric and force distribution 

requirements. A uniform mesh net will, however, not have been 

obtained and this must be generated on the model surface using 

the techniques of Argyris and Scharpf (8) or Knudson and Nagy 

(105). 

Schek (154) has imposed additional constraints on the 

linear force densities method to effect control over member forces 

or lengths as required. The linear solution of the initial 

specified force densities q 01 acts as the starting point for 

the subsequent adjustments. Since member end coordinates, and 

hence lengths, are functions of the force densities of the 

assembly these t constraints may be expressed vectorially: 

[g( tqj )= 
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These equations are nonlinear, and a solution is then 

sought for: 

Iq '* I 

such that,: 

t 
01 +I Aq 

() = 

Then if the iterations to solution are linearised: 

I&I( 

., 

I ) 
[Aq [qc 

which can be expressed in matrix form: 

[G]'T [Aql 
= 

[r. 

(4.12) 

(4.13) 

(4.14) 

where 
[G is a (t x M) matrix. Since the number of members M 

is frequently greater than the number of conditions t, these 

equations have (M - t) linearly independent solutions. A single 

solution may then be sought by a least squares minimisation. 

Schek suggests the solution of the (t x t) equation system: 

T 
[kj (4.15) 

for fk 
and hence 

[Aqý 
where: 

[ 
Aq 

ý [G 
k (4.16) 
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T 
This has the effect of minimising for the 

H [PI 

equation system; 

EG 
= + 

where r 
ýG 

which may be rewritten: 

Aq -p (4.17) 

on premultiplication by LG IT 
and substitution for I Aq I from 

equation (4.16). Schek has indicated that the solution of equation 

(4.15) has the effect of minimising 
I Aq I tLqj 

, whilst the above 

analysis suggests that is the lack of fit of 
f Lqý for the 

increment that is being minimised in order to optimise. the path 

to 

The force densities may then be incremented (equation 

(4.12)) and the iteration repeated until satisfactory convergence 

has been achieved. Schek derives the submatrices of 
[G I for 

geodesic, constant length, and elastically controlled members, 

and suggests several weighted least squares procedures with 

improved convergences over the basic method. 

Barnes (21) has successfully applied Dynamic Relaxation with 

viscous damping to a wide range c, f tension structue formfinding 

problems. The rapid initial convergence of the method makes it 

suitable for both initial form and final convergence studies, with 

realistic constructional restraints applied at all stages. In 

addition the dynamic nature of DR enables ongoing adjustment of 

design parameters without the need to reinitialise the analysis, 
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which, coupled with its relatively small computer storage 

requirements, makes it a very suitable method for interactive 

computer aided design of tension structures. 

No report has been made of the application of gradient 

minimisation techniques to the calculation of cable structure 

pretension geometry; Buchholdt has indicated verbally that 

convergence has only been obtained successfully when the initial 

geometry and tensions closely approximate the eventual equilibrium 

state. This may be a consequence of several factors. Convergence 

of the gradient methods depends on the true equilibrium state being 

located at the bottom of the 'valley' of the total potential energy 

surface on the side of, which lies the starting point of the 

analysis. This is the case when a load analysis commences from the 

pretension state, but may well not be so for the initial data of a 

shape finding analysis and its associated lack of equilibrium. The 

implementation of geodesically controlled members requires 

continuously variable, fictitious, member stiffnesses for the 

assessment of strain energy. As a consequence the potential energy 

surface is itself continuously variable, and no advantage can be 

made of the conjugate gradient method as information from the 

previous descent direction is no longer relevant. A reversion to 

the steepest descent method is then necessary, an approach that 

has given either very slow or no convergence for conventional 

load analyses. 
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7.2 Formfinding and Kinetic Damping 

The investigation of kinetic damping as a possible 

alternative to viscouA nodal damping for the control of Dynamic 

Relaxation was first considered when investigating hanging chain 

models for the shapefinding of lattice shells. The form of these 

structural mechanisms being dependent solely upon the funicular 

equilibrium of member forces and deadweight loading. It had been 

noted that viscous. damping proved less efficient for this problem 

than when applied to self-equilibriating tensile systems because of 

the sensitivity of the lattice structure to mechanical deformations 

and also because of gross initial out of balance forces (20). 

Subsequent investigations-reported-in this thesis have 

established kinetic damping as an efficient and automatic control 

on Dynamic Relaxation for a wide range of problems. Of particular 

relevance to interactive numerical formfinding is the ability of 

kinetic damping to cope successfully with significant local 

modifications to the structure without violent propagation of this 

disturbance throughout the structure. Thus a structure may be 

readily updated during formfinding without the need to return to the 

initial problem data. 

In reference (20) the shapefinding of a small star-shaped 

a. 

lattice shell was utilised as an example to illustrate the method. 

The initial configuration of the problem is shown in figure, 7.1. 

The uniform net is initially flat, with member lengths of 1.0, 

except for those elements connected to boundary point nodes. 

Initial out of balance forces were set by specifying all member strain 
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Fý gure 7.1 
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free lengths to be 1.2, thus inducing compressive forces in the 

surface members and tensile forces in the boundary links, whose 

initial length is approximately 3.4 times the slack length. An 

EA value of 10 (0 
was specified for all members, and vertical loads of 

100 were applied at all surface nodes. 

The progression of the analysis may be seen in figures 

7.2a to 7.2e, showing the form at-energy/coordinate reset stages 

1,2,3,5 respectively., and in the converged state. The numbers of 

iterations to each stage and the current kinetic energy value are 

tabulated in table 7.1. The figures illustrate how readily the 

form is obtained, with a close approximation to the final state 

being obtained after only a few reset stages. The smooth path to 

convergence presented here may be contrasted with that shown in 

reference (20). The revised method of kinetic damping achieves the 

desired form both more rapidly and more smoothly. 

Results are also given in table 7.1 for a repeat of the 

analysis with the flat net initially 100. above the boundary points 

rather than 4.. The method is shown to be capable of controlling out 
S, 

of balance forces of the order of 10 t es the converged member 

forces, with no apparent bounds upon any further increase of this 

factor. 

7.3 Formfinding and Analysis with Rigid Members 

In Dynamic Relaxation investigations, line elements are 

4 

readily controlled by the specification of elastic properties or 



ENERGY 
RESET 
NUMBER 

ITERATION KINETIC 
ENERGY 

ITERATION KINETIC 
ENERGY 

1 2 . 66eO8 3 . 65ell 

2 5 . 16eO8 5 . 20ell 

3 10 . 38eO7 9 . 64elO 

4 12 . 22eO6 11 . 14eO9 

5 16 . 85eO5 14 . 30eO8 

10 41 . 25eO2 35 . 37eO4 

20 537 . 20e-03 - 

24 - 655 . 86e-06 

INITIAL ZL 4. Z. 100. 
CONFIG'N 

A. 

* convergence to max. residual force = 0.1 

Table. 7.1 : Analysis Profile for Formfinding of Star-shaped 
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Lattice Shell 
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(a) (b) 

(c) (d) 

Figure 7.2 
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Figure 7.2 
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constant forces. The prime variables for formfinding, however, 

are those of force and length, with member properties frequently 

unknown at this stage. 

Specified member lengths may be achieved by the use of a 

very high member stiffness, thus achieving a stressed length that is 

as close as desired to the required value. When the stiffness of 

such members is much greater than others in the structure, then the 

increased nodal masses necessary to ensure stability of the numerical 

integration for a given time interval will reduce the funadamental 

frequency of the overall structure and hence also the rate of 

convergence of the analysis. This problem may arise in both 

analysis (cable girders with short, rigid, struts) and formfinding 

to a required member length. Barnes (14) proposed a force transfer 

procedure for the treatment of stiff members, but this was limited 

in application by the need for over-critical viscous damping to ensure 

convergence. 

A simple alternative approach may be considered for a line 

0 rent length Iý and force F element, of slack length L, having cur 

defined by: 

t0 
F EA (L L (4.18) 

1z 
Then if the required stressed length of the member is L, 

the slack length should be updated suc', Ii that: 

0 lz t 

L (4.19) 
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Any value of member elastic property EA may be employed, 

and for convenience this may be selected as approximately equal to 

the stiffness of adjacent elastically or geodesically controlled 

members, with the effect of reducing the convergence time of the 

analysis. 

I It then remains to determine the optimum frequency for the 

slack length reset of equation (4.19). Instability will occur if 

this reset occurs at every stage of the integration, and as final 

convergence is based upon the attainment of a specified maximum nodal 

residual, R,,, ax , then it would seem logical to reset slack lengths 

when all residuals are less than y. R..., where ý >,, 1.0. Optimum 

values of ý between 1 and 50 have been obtained for differing 

problems. Table 7.2 shows the numbers of steps to final convergence 

for the formfinding of the hypar network described in figure 7.3. 

Although it is not possible to give a general rule as to the selection 

of the optimum y factor, it has been found that 1.0 gives 

consistently good solution times. 

7.4 Formfinding and Compression Contours 

The formfinding of purely tensile surface structures may 

readily be achieved by both physical and numerical modelling techniques. 

Physical methods are, however, less suitable when considering moment 

free compression. contours, because of the inherently unstable nature 

of such structures. When derived under dead loading conditions, 

such contours provide the basic form for efficient rigid boundary 

structures. 
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w 

FACTOR 
ITERATION STEPS 
TO FINAL 
CONVERGENCE 

1 151 

5 164 

10 196 

20 131 

25 131 

50 214 

100 NO CONVERENCE 
BY 500 

Table 7.2 : Effect of Slack Length Reset Fac tor" y 4F 

on Convergence of Hypar problem 

(g 
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HYPAR PROBLEM INITIAL DATA 

0.6m o. 6m 

0.6m 

0.6m 

//1" 

0.9m 

TIME INTERVAL: At = . 0014 

EDGE CABLES: EA = 0.2 MN 

10 kN CONSTANT FORCE IN MIDDLE CABLE OF 

EACH EDGE 

I SURFACE CABLES: mlmm=mmmý CONSTANT LENGTH CABLES (0.2M) 

REMAINING SURFACE CABLES HAVE CONSTANT 

FORCE OF 0.5 kN 

NODAL MASSES: EDGE NODES - MXI M171 MX = "0 

SURFACE NODES - Mxý, M7 = 0.6, Mz = 0.5 

Figure 7.3 
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in the standard Dynamic Relaxation formfinding process, 

constant compressive forces are specified in edge links then the 

structural system will always become unstable. As a simple exampl(ý 

of this instabilitY consider the segment of a pin-jointed boundary 

structure shown in figure 7.4a, with specified compressive forces 

C, and C. 
- 

and a tensile force T exerted by the surface structure upon 

the boundary node A. The equilibrium state is that shown in 

figure 7.4a, whilst figure 7.4b shows the boundary node A moved a 

distance 6z from that -state. This results in a nett out of balance 

force acting upon node A in the same direction as the movement 6z, 
k 

which in turn induces further motion in that direction. Convergence 

towards the equilibrium state is not, therefore, possible for such a 

system of specified forces as these. 
0 

Barnes (21) has shown that, in order to derive moment-free 

compression contours, the boundary must be determined as a tension 

funicular to the reflected image of the surface structure. This is 

achieved by assigning either negative stiffness or negative member 

- force to the edge links, and by reversing the sign of boundary node 

residual forces at every stage of the analysis. As in the case of a 

tensile loop, a compressive outer boundary may only be controlled by 

specified compression forces provided that at least one element of 

that boundary is elastically controlled. The stable and convergent 

reflected equivalent of the example of figure 7.4b is shown in 

figure 7.4c. The treatment of specified length compression boundary 

Eor tensile members is identical to that outlined in the above section 

elements. 
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Planar and spatiall7 curved moment free compression 

contours have been derived by Barnes (18) as external boundaries 

to surface structures defined by constant stress membrane elements. 

Variation in the radius of boundary curvature was achieved by the 

introduction of traction forces in order to generate a force 

gradient in edge links. In practice such traction forces might be 

resisted by shear walls following the boundary. contour. 

Figure 7. -5 shows a mesh for the investigation of a 

compression arch within a diagonal pretensioned network. The mesh 

assumes an axis of symmetry along the arch members, numbered 1 to 12. 

The slack length of these arch members, having EA = 1000 000., are 

set equal to 5.5, and all cable elements have an assigned constant 

force = 100.. With all nodes having an initially zero vertical 

coordinate, the formfinding sequence depicted in figures 7.6a to 

7. fic& was initiated by resetting the vertical coordinate of the arch 

central node to 2.0. A moment-free compression arch stabilised 

within a pretensioned network results, and, utilising this as 

starting data, the effect of increasing the specified boundary element 

lengths may be seen in figures 7.7. and 7.8 . 

By returning to the initially flat net, and then resetting 

two non-zero vertical coordinates (z2, T = 2.0 and z..,, = -2.0) an 

alternative equilibrium state is obtained, as shown in figure 7.9 

The basic structural data has not been ýchanged, only the starting 

point of the analysis. Although the state shown has converged fully, 

the equilibrium state achieved is not stable and the application of 

any assymetric loading will precipitate a partial snapthrough to the 

more stable configuration derived initially. 
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Figure 7.5 
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INITIAL STATE 

Figure 7.6 (a) 

ENERGY RESET I 

Figure 7.6 (b) 
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ENERGY RESET 3 

Figure 7.6 (c) 

CONVERGED STATE 

Figure 7.6 (d) 
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Figure 7.7 

41. 
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Figure 7.8 
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Figure 7.9 
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In addition to the formfinding investigations above, in 

which a moment-free contour has been derived, rigid jointed boundary 

elements may be specified for a compression contour of known 

geometry and properties and the pretension configuration determined 

for the complete structure. Again using the mesh outlined in 

figure 7.5 , with a 12.5m high parabolic arch idealised by spatial 

flexural elements, the initial data for such a problem. is given in 

figure 7.10. For a 25 kN specified force in all cable elements, and 

all surface nodes initially flat, satisfactory and rapid convergence 

to the equilibrium position of f igure 7.11 was achieved. A subsequent 

increase of pretension to 1,00 kN in all cables proved less 

straightforward. By energy reset number 11 the arch appears visually 

converged, and the kinetic energy value has fallen steadily to that 

stage. The number of steps to reset 12 is then greater 

than the total required to reach stage 11, and the kinetic energy 

shows an increase in value. After this stage the next energy peak has 

yet to be detected after 1500 iterations. The reason is illustrated 

by figures 7.12ato 7.12cwhich show the intermediate form at 500,, 1000 

and 1500 iterations respectively. Snapthrough buckling of the 

encastre arch has occured, and this collapse after apparent 

convergence illustrates the importance of utilising nodal residuals 

as the final proof of convergence. 

I 
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Figure 7.11 
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Figure 7.12 (a) 

Figure 7.12 (b) 
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0 

Figure 7.12 (c) 
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7.5 Summary 

The first section of this chapter reviews the development 

of linear and non-linear techniques for numerical formfinding. 

Dynamic Relaxation with viscous nodal damping has been successfully 

applied by Barnes (21) to the formfinding of a wide range of 

problems. Conjugate grýa'dient analysis, the other explicit 

integration method widely utilised for the analysis of network 

structures, is, however, fundamentally unsuited for formfinding 

because of its inability to cope with significant out of balance 

forces. 

In section 7.2 an example is given of kinetic damping control 

of formfinding by DR for a hanging chain network whose form is 

dependent upon the funicular equilibrium of member forces and deadweight 

loading. In particular this analysis combination is shown to converge 

rapidly and satisfactorily when some initial member forces are of the 

order 10 greater than their final converged values. There appear 

to be no bounds on this ability to control out of balance forces. 

The elastic and geodesic control of members is well 

established, and a simple technique for the treatment of specified 

length members is considered in section 7.3. This technique is 

equally applicable in increasing the rate of convergence of analyses 

involving members that are extremely stiff, such as struts in cable 

beams. 

The generation of moment-free compression arches is 

demonstrated in section 7.4. Alternative, stable,, forms are derived 
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from the same basic data by varying only the initial coordinates of 

the analysis. Formfinding of the pretension geometry is then 

illustrated with the boundary structure idealised by spatial flexural 

elements. In one example the collapse of an internal arch, 

idealised in this way, after apparent convergence emphasises the 

importance of utilising nodal residuals as the only reliable proof of 

convergence. 
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CHAPTER 8 

ANALYSIS OF PRETENSIONED NETWORKS WITH FLEXIBLE BOUNDARIES 

The Dyz2amic Relaxation analyses for network and rigid- 

jointed structures presented in preceeding chapters are here 

combined for the unified analysis of the complete structure. 

Previous approaches to this problem are reviewed and a generalisation 

of the gradient method to include non-linear boundary structures 

is outlined. The explicit Dynamic Relaxation and Scaled Conjugate 

Gradient methods are then applied to published planar and 

saddle-shaped network problems. 
_ 

4- 
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8.1 Introduction 

The use of compression boundary structures to support 

pretensioned networks has become increasingly popular, enabling 

the construction of large span tensile structures without the 

need for tension anchorages. The spatially curved boundary 

structures, circular in plan, of the Scandinavium in Gothenburg (101), 

108 m in diameter and the Milan Palasport (153), 130 m diameter, 

are examples of this trend. 

MýIlmann (122 and Samuelli-Ferretti (153) have noted that' 

the flexibility of the support system must be taken into account 

in analysis of the structure,, as the differences in results between 

flexible and rigid boundary analyses are suffl*cient to negate the 

use of the latter even for initial, approximate, calculations. 

The tension system provides elastic support to the boundary structure, 

enabling the use of slender compression members. Consequently the 

analysis of the complete structure should include the effects of 

both finite boundary displacements and non-linear moment-curvature 

relations for the boundary elements. 

An implicit finite element displacement analysis for the 

complete structure has been proposed by M611mann (122). The 

derivation of the stiffness relations for the flexural member 

in space was based upon the natural stiffnessjbasic strain expressions, 

which were subsequently transformed into the global coordinate 

system with the addition of sufficient degrees of freedom to 

define rigid-body movement. It was., however, assumed that boundary 
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displacements were small., and the effect of axial force on the 

bending stiffness was neglected. This latter assumption was 

made on the grounds that any improvement in accuracy was 

questionable because of approximations made in the treatment of 

torsioii and the neglect of torsion/flexure interaction. Samuelli- 

Ferretti and Zingali (153) have, however, reported minimal effects 

of torsion on the analysis of structures of this class, and 

Mýllmann himself noted the need for examination of the stability 

of the support structure. 

A mixed method of analysis was also outlined by 

M611mann (123), in which it was assumed that cable strains were 

small, as were the horizontal components of surface node 

displacements in comparison with their vertical counterparts. 

Good agreement was reported between the results of the finite 

element mixed and displacement formulations. A mixed finite element 

approach was also adopted by Karrholm and Samuelsson (101), who 

considered the cables and their support system to be separate 

sub-structures which were analysed alternately. 

Buchholdt, Das and Al-Iiilli (42) extended the conjugate 

gradient method to include the analysis of linear boundary structures, 

and the details of this work are reviewed in Chapter 2. Scaling 

of the potential energy surface was introduced to facilitate 

convergence of this ill-conditioned problem, and favourable solution 

times were reported in comparison with the Newton-Raphson approach. 

Buchholdt (43) has used this method for a parametric study of the 

effect of the main design variables (curvature, ring-beam stiffness, 
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cable size and magnitude of pretension) on the behaviour of 

circular saddle-shaped nets with flexible boundaries. He 

concluded that economy in design and structural efficiency . 1: or 

this type of structure were achieved by shallow curvatures, 

slender ring beams and high pretension in the cables. Stability 

effect, however, clearly play an important role in the analysis of 

such structures. 0 

8.2 Explicit Analysis of the Complete Structure 

Analysis of the combined tensile system and rigid-jointed 

boundary structure may be readily achieved by Dynamic Relaxation. 

The full non-linear analysis of rigid jointed spatial structures 

presented in Chapter 6 requires minor modifications to permit the 

inclusion of cable elements. The principles of optimisation of 

nodal masses and application of kinetic damping remain unchanged. 

The developed program is equally applicable to formfinding, as 

discussed in the preceeding chapter. 

In the conjugate gradient approach to the analysis of 

the complete structure (42) it was assumed that the behaviour of 

the boundary structure was linear. This assumption is not, however, 

essential, and details for the inclusion of non-linear boundary 

response are presented here. 

The strain energy, U, of a structural element or 

assemblage of elements having a current displacement t6j from a 

9 
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reference state, and internal reactions ýRj to that displacement, 

is equal to the work done in moving from the reference to the 

current state and may be written: 

U =- 
[RI 

-d 
ýd 

where the negative sign is due to the opposing sense of 
IR 

and 6 

'For a linear structure; 

tR=- [KI 
6 

and, on substitution into equation (8.1) and integration, one 

obtains: 

(8.1) 

(8.2) 

UaK6 (8.3) 

For non-linear analysis by the conjugate gradient method 

it is assumed that the element tangential stiffness matrices of 

the assembly are updated periodically as the analysis proceeds 

in a series of linearised steps. 

Consider then the current reaction 
tRI due to 

displacements A6, ý 
relative to the displacement state 

when the tangent stiffness was reset to K 

[RI IR31[ 
Ko 

[ 
A63 (8.4) 
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where tR 
ýl are the reactions associated with 

current strain energy, U, then: 

Au. 
")-4 j 

and: 

.1 %ý 
AU. = 11 

-IRA, ý 

d 

A6 

ýd 31. 

(8.5) 

(8.6) 

The tangent stiffness matrix for a full non-linear analysis 

may be updated at each step of the gradient analysis, or less 

. 
frequently. As is the case with the modified Newton-Raphson 

method, the latter will probably prove to be the more efficient 

approach. 

Although there is apparently no inherent difficulty in 

including non-linear boundary response in a conjugate gradient analysis, 

the subsequent investigations presented in this chapter all assumed 

a linear response. The initial, unstressed, stiffness matrix was 

used throughout, with displacements f6j 
measured from that 

unstressed state, although the pretension geometry was utilised to 
I 

provide initial coordinate data for the load analyses. In this 

way it was intended that the numerical significance of the two 

alternatives be seen, and comparisons of computation times be 

made between the simplest conjugate gradient and most complex 

For the 

DR formulations. 
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8.3 Numerical Example: Planar Network 

Figure 8.1 shows a flat rectangular network within a 

flexible boundary having full translational (but not rotational) 

restraints at the four corner nodes. This problem was investigated 

-, both numerically and experimentally by Al-Hilli (2). All cable 

elements are subject to a pretension of 889.6 N, with cable 

intersections clamped together after this initial tensioning. 

A uniform out of plane loading is then applied at these 

intersections. 

The following analyses of this problem have been 

performed: 

(i) Dynamic Relaxation formfinding analysis with non-linear 

beam, eldment idealisation of the boundary and all cable 

forces held constant at 889.6 N (utilising the mesh Of 

Figure 8.1), 

(ii) Scaled Conjugate Gradient linear analysis of the boundary 

structure along, with nodal loads of 889.6 N applied in 

the direction of the cable members, 

(iii) Dynamic Relaxation analyses of the pretensioned network 

subject first to 30 N and then 20 N loads applied at 

all network nodes (utilising the equilibrium state 

from state (i)) as initial data), 

(iv) Scaled Conjugate Gradient analysis of the network as- 

for (4-ii) above. 
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RECTANGULAR NETWORK PROBLEM 

Y 

22 

5 9 13 

-2 6 10 14 

-3 7 15 

23 -4 8 12 16 

x 

ALL MEMBER INITIAL LENGTHS = 0.5 

MEMBER PROPERTIES: 

EDGE BEAM: A= 17.06 cM2 
E= 20.076 x 10 6 N/CM2 

izi = 50.37 cm4 

Iy= 477.0 cm4 

J 3.29 cM4 

CABLES: A=3.243 x 10- 2 
CM2 

E= 19-03 x 106 N/CM2 

Zý 

17 

18 

19 

20 

Figure 8.1 



208 

The Scaled Conjugate Gradient network analyses have all employed 

the modified polynomial coefficients derived in Chapter A. 

The analyses above have been compared with the published results 

of Al-Hilli: 

(v) An experimental investigation of the full size structure, 

Conjugate Gradient analysis, unscaled and employing 

Buchholdt's coefficients for the energy polynomial, 

Newton-Raphson analysis. 

Boundary node displacements due to pretension only in 

the plane of the net and normal to the edge beam are given in 

Table 8.1 for both the present and Al-Hilli analyses. The 

conjugate gradient analyses both assume a lLnear boundary structure, i 

and the difference between the present SCG and Al-Hilli CG (scaled 

from results presented graphically) is probably due to the different 

degrees of convergence specified. The Al-Hilli results were 

deemed converged when the Euclidean norm of the residual had 

reduced to 1% of its value at commencement of the analysis. The 

present analysis,, both. DR ancl SCG,, are presented for convergence 

of the residual force at every active degree of freedom to less 

than. 1% of the minimum applied nodal load. 

The difference in boundary displacements of up to 2 mm 

between the results of the present DR and SCG analyses are due 

entirely to the inclusion of finite boundary displacements in the 

inherently non-linear DR formulation, contrasting with linear 

boundary analysis of the SCG approach. In the latter, as the 
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BOUNDARY PRESENT INVESTIGATION 

NODE EXPTw CG SCG DR DR & REDUCED EA 
EA=1000 EA=10 

4 1.96 1.98 2.05 1.80 2.05 2.05 

8 1.76 1.79 1.85 1.63 1.85 1.85 

1-2 1.23 1.27 1.32 1.15 1.32 1.32 

16 . 55 . 58 . 61 . 53 . 61 . 61 

17 . 296 . 276 . 288 . 181 . 286 . 289 

18 . 298 . 280 . 293 . 197 . 291 . 294 

19 . 251 . 243 . 251 . 192 . 251 . 252 

Table 8.1 Boundary node displacement, in-plane and 

normal to the edge beam, for the pretension case. 

Displacements (cms) positive in the positive 

X and Y directions (Figure 8.1) 
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edge beams are initially straight, the effect of axial forces 

in the edge beams is ignored. For this problem, where the beam 

ends are restrained against translation, this catenary effect under 

normal loading is important, and as a consequence SCG deflections 

are overestimated relative to those of DR. This effect may be 

demonstrated by repeating the DR analyses with reduced axial 

stiffness (EA) values in order to simulate the SCG idealisation 

employed. As can be seen in table 8.1 the resultant displacements. 

are then effect-ively identical. The present Dynamic Relaxation 

analysis predicts boundary displacements less than those reported 

by Al-Hilli from his experimental investigation. These latter 

are closer to the present SCG results, suggesting that the ball 

and socket arrangements used for the boundary corners in the 
p 

experiments did not fully restrain the translational degrees of 

freedom at those nodes. 

Thý full network structure with flexible boundary was 

then analysed subjected to avertical loading of 30 N at each 

surface node. The results obtained for the deflection of the 

cable net., together with those obtained by Al-Hilli, are shown 

in table 8.2. The unloaded pretension form determined by DR 

was used for both of the present analyses. 
I 

Al-Hilli reported significant differences between his 

Newton-Raphson and Conjugate Gradient solutions, as may be seen 

from table 8.2. The present SCG analysis yields results which 

give very close agreement with the NR displacements of Al-Hilli. 

The difference between present and previous SCG analyses confirms 
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NODE AL-HILLI PRESENT 

. 
NUKBEPý, EXPT. NR. CG SCG. 

, 
DR 

1 5.00 5.06 4.73 5.06 5.03 

2 4.45 4.54 4.22 4.54 4.51 

3 2.83 2.88 2.73 2.89 2.88 

5 4.73 4.83 4.48 4.82 4.80 

6 4.28 4.31 4.04 4.33 4.31 

7 2.65 2.75 2.60 2.77 2.76 

9 3.99 4.01 3.75 4.04 4.03 

10 3.58 3.66 3.43 3.65 3.64 

11 2.31 2.38 2.25 2.38 2.37 

13 2.45 2.55 2.38 2.55 2.55 

14 2.23 2031 2.17 2.33 2.32 

15 1.56 1.57 1.49 1.58 1.57 

Table 8.2: Surface Node Displacements (cms) 

- 30 N load on all surface nodes 
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that the utilisation of the revised polynomial coefficients 

presented in Chapter 4 rather than those due to Buchholdt 

(Chapter 2) enables full convergence to a true equilibrium 

solution when calbe elements are employed. The close agreement 

between present SCG and DR analyses suggests that the nonlinear 

response of the edge beam is not significant under this level 

of loading of the network. The catenary ýffect of edge 

beam axial forces is now included in the SCG boundary analysis 

as the initial beam profile is that from the pretension state. 

The results plotted in table 8.3 for-a reduced surface load 

of 20 N per joint yield conclusions identical to those given 

above. 

The in plane displacements of the boundary nodes, when all 

the surface nodes are subjected to the 30 N vertical load, are 

given in table 9.4. These displacements, normal to the edge 

beam, are quoted relative to the unloaded, pretensioned, state. 

There is close agreement between the present DR and SCG analyses 

and Al-Hilli's experimental results. This agreement between the 

former confirms the linear response of the boundary structure at 

this level of loading. The difference between the two Conjugate 

Gradient analyses again illustrates the effect of the modified 

energy poynomial coefficients. 
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NODE Al--rHILLI PRESENT 

NUMBER EXPT. NR CG SCG DR 

1 3.50 3.54 3.33 3.54 3.53 

2 3.12 3.18 2.97 3.17 3.16 

3 1.97 2.02 1.90 2.01 2.01 

5 3.31 3.40 3.18 3.37 3.36 

6 2.98 3.02 2.84 3.02 3.02 

7 1.82. 1.95 1.81 1.93 1.93 

9 2.81 2.84 2.68 2.83 2.83 

10 2.49 2.56 2.43 2.55 2.55 

11 1.6o 1.68 1-. 58 1.66 1.66 

13 1.72 1.80 1.71 1.79 1.79 

14 1.59 1.65 1.55 1.63 1.63 

15 1.13 1.13 1.04 1.10 1.10 

Table 8.3: Surface Node Displacements (cms) 

- 20 N load on all surface nodes 
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NODE AL-HILLI PRESENT 

NUMBER EXPT. CG SCG DR 

4 0.10 0.07 0. . 10 0.10 

8 0.09 0.06 0.09 0.08 

12 0.06 0.04 0.05 0.06 

16 0.03 0.02 0.02 0.02 

17 0.039 0.022 0.045 0.045 

18 0.030 0.020 0.035 0.035 

19 0.1011 0.013 0.011 0.012 

Table 8.4: _ Boundary node displacements, in-plane and 

normal to the edge beam for 30 N vertical 

load at all surface nodes. 

Displacements (cms) relative to the 

pretension state and positive in the 

positive X and Y directions. 
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8.4 Numerical Example: Saddle Shaped Structure 

Figure 8.2 illustrates a pretensioned network within a 

spatially curved compression boundary. This problem configuration 

was utilised by Mýllmann to demonstrate the application of the 

Newton-Raphson method to the analysis of the complete structure (123). 

A similar problem has been investigated by Buchholdt (43) who 

examined the effect of varying the principal design parameters on 

the performance and efficiency of the structure. 

The reinforced concrete ringbeam is approximately circular 

in plan, comprising a combination of circular and parabolic 

segments as described in figure 8.3, with the aim of minimising 

boundary structure bending m6ments in the pretension state. The 

spatial coordinates of the boundary structure are defined by the 

intercept of a cylinder, having the plane of figure 8.3 as its 

section, and the surface of a hyperbolic paraboloid having a 14 m 

rise between its lowest and highest points. The full boundary 

coordinates are tabulated in table 8.5 for the unstressed state 

of the boundary structuree All of the 28 boundary nodes are 

restrained vertically, with lateral restraint imposed additionally 

at nodes 1 and 15 in the Y-direction and at node 22 in the 

X-direction. The section of reinforced concrete ringbeam twists 

about the perimeter such that all the beam element y -axes lie 

in the plane of the network surface (in its prestressed state) 

adjacent to that element. 

The defined prestressed state is that in which all cable 

elements have a horizontal tension component of 260 t, whilst all 
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NODE 

NUMBER 

COORDINATES 

xyz 

1 104.0 52.0 14.0 

2 102.844 41.6 13.412 

3 99.378 31.2 11.691 

4 93.6 20.8 8.960 

5 83.2 10.4 5.040 

6 72.8 4.622 2.309 

7 62.4 1.156 0.588 

8 52.0 0. 
. 

0. 

BOUNDARY NODE COORDINATES (INITIAL STATE PRIOR 

TO CABLE TENSIONING). 

REMAINING BOUNDARY COORDINATES OBTAINED BY 

SYMIETRY. 

0 

Table 8.5 1 

I 
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surface nodes are subject to a dead load of 6.49 t due to a 

cable and cladding. selfweight of 60 kgjm . Millmann (122) 

suggests that the selfweight of the ringbeam was also tak&n into 

account, but as all boundary nodes are restrained vertically it 

is not clear how this was achieved. 

In the absence of specific data for the axial twist of 

the boundary elements,, these were obtained from an initial computer 

analysis. 
_The 

form of the network surface was determined 

assuming rigid boundary nodes, the Dynamic Relaxation program 

being simply modified to permit the inclusion of cable membeýs 

having constant horizontal force components. From this generated 

surface the required boundary element twist was determined from 

the adjacent normal as outlined in Appendix D 

The Dynamic Relaxation formfinding was then repeated for 

the complete structure with elastic properties assigned to the 

spatial flexural elements idealising the boundary structure. The 

initial edge geometry was as defined above, whilst the network was 

assumed flat with surface nodes having a zero initial vertical 

coordinate. Thus the network prestressed configuration and 

boundary stresses were determined by a single DR analysis, an 

approach that compares favourably with the iterative process adopted 

by M011mann (122) which entails successive separate analyses of 

the surface and boundary structures. 

Having obtained the pretensioned state by DR, the proOlem 

was then analysed for its behaviour under load by both DR and the 

Scaled Conjugate Gradient method. For the latter approach the 
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linear boundary stiffness matrix was calculated from the unstressed 

configuration and held constant throughout the subsequent analysis. 
The pretensioned beam geometry was, however, utilised as starting 

data for the minimisation. The various loading cases considered 

'are reviewed in figure 8.4. In the following comparison of results 

the tabulated values reported by Mýllmann (122) have been scaled 

from small scale graphical plots. 

When comparing the present DR formfinding results with 

those of Mýllmann, significant differences are apparent in the 

ringbeam in plane bending moments and radial displacements. 

, The maximum DR bending moment is 1.1 tm, whilst the maximum 

reported by Mýllmann is 115 tm. This latter value represents 

approximately 25% of the maximum moment obtained during 16ad analyses, 

and as such seems high for a boundary structure shape that has been 

deliberately adopted so as to minimise these moments at the 

pretension stage. The same DR program was used for both formfinding 

and load analyses, and the latter achieved results close to those 

of the SCG analyses, with any small differences being attributable 

to the assumption of linear boundary structure response in the SCG 

program. Thus an independent check had been made between the 

non-linear natural stiffness relations, held in separated form, 

of DR and the linear, assembled global stiffness relations of the 

SCG method. The level of agreement achieved indicates thatthe 

DR program utilised for both stages of the investigation of this 

problem is functioning satisfactorily. 

The discrepancies between the results presented in 

table 8.6 may be due to the incorrect interpretation of the relatively 



221 

LOAD 
CASE 

DESCRIPTION 

SNOWLOAD ON WHOLE ROOF 
PLUS SELFWEIGHT 

SNOWLOAD ON HALF ROOF (x>52) 
PLUS SELFWEIGHT 

SNOWLOAD ON HALF ROOF (y>52) 
PLUS SELfWEIGHT 

IV WIND SUCTION ON WHOLE ROOF 
PLUS SELFWEIGHT 

V ZERO LOAD 

Vi UDL = 200 kg/M2 ON WHOLE ROOF 

vii UDL = 300 kg/m2 ON WHOLE ROOF 

SELFWEIGHT 

SNOWLOAD 

WIND SUCTION 

= 60 kg /M2 

= 75 kg /m 2 

= -40 kg/m 

ALL SURFACE NODES ASSUMED TO TAKE LOAD EQUIVALENT 

TO 10.4 x 10.4 = 108.16 m2 SURFACE AREA 

Fi gure 8.4 



NODE/ 
NODAL IN-PLANE 
BENDING MOMENT 

NODAL RADIAL 
DISPLACEMENT 

ELEMENT AXIAL 
FORCE 

ELEMENT MOLLMANN DR MOLLMANN DR MOLLMANN DR 

8 115 . 031 -. 11 -. 0139 1180 1179 

9 105 -. 443 -. 10 -. 0138 1230 1248 

10 65 . 625 -. 08 -. 0134 1386 1373 

11 40 . 452 -. o4 -. 0132 1325 1332 

12 -20 . 671 . 01 -. 0130 1360 1373 

13 -45 1.105 o5 -. 0130 1230 1248 

14 -85 e341 . 07 -. 0131 1177 1179 

15 -77 0900 . 08 -. 0132 - - 

Table 8.6 Pretension Analysis for ringbeam bending 

moments (tm), radial displacements (m) 

and axial forces (t). 

222 
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sparse structure setting-out information or the nodal fixity 

specification. It should, however, be noted that the ringbeam 

axial forces established by Mýllmann and the present formfinding 

differ by a maximum of 1%. 

The example structure has then been subjected to the 

various load analyses detailed in figure 8.4. Because of the 

apparent discrepancy in pretension state results discussed above, 

the boundary structure in-plane bending moment results quoted 

by Mýllmann for Newton-Raphson implicit matrix analysis have been 

adjusted to values relative to the pretension state rather than 

the initial unstressed state. The Mýllmann values for radial 

displacement have been similarly adjusted, and again both sets of 

results have been scaled from a graphical presentation. 

In tables 8.7 to 8.10 the response of the boundary 

structure to load cases I to IV is tabulated for in-plane bending 

moments, radial displacement of the nodes and member compressive 

force. The results given for DR and SCG are relative to the initial 

state of the structure. 

It may be observed that there is close agreement between 

the three methods considered when calculating the in-plane bending 

moments. This is as expected since the DR pretension moments are 
I 

relatively very small. There is also close agreement between 

radial displacements. Although this Js to be expected for-the DR 

and SCG analyses, in which results are tabulated relative to the 

initial state, the Mýllmann results (relative to the pretension 

state) also agree closely. In particular it may be noted that the 
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NODE/ 

ELEMENT 

NODAL IN-PLANE 
BENDING MOMENT 

mo DR SCG 

NODAL W IAL 
DISPLACEMENT 

mo DR SCG 

ELEMENT AXIAL 
FORCE 

mo DR SCG 

8 -442 -443 -429 -. 221 -. 221 -. 213 1480 1499 1484 

9 -405 -401 -387 -. 200 -. 201 -. 194 1570 1590 1576 

10 -285 -251 -243 -. 140 -. 142 -. 137 1759 1753 1741 

11 15 17 9 -. 055 -. 051 -. 049 1700 1721 1713 

12 190 198 189 . 060 . 064 . 062 1720 1760 1757 

13 205 209 203 . 130 . 135 . 131 1580 1596 1596 

14 225 232 233 . 175 . 176 . 171 1493 15Q7 1508 

15 226 244 247 . 188 . 189 . 184 - - 

Table 8.7 Load Case I- analysis for ringbeam bending 

moments (tm), radial displacements (m) 

and axial forces 

*- results of M011mann analyses given 

relative to the pretension state, DR and SCG 

relative to the initial state 
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NODE/ 

ELEMENT 

NODAL IN-PLANE 
BENDING MOMENT 

Mo DR SCG 

NODAL RADIAL 
DISPLACEMENT 

Mo DR SCG 

ELEMENT AXIAL 
FORCE 

mo DR SCG 

8 -366 -367 -353 -. 158 -. 165 -. 158 1336 1343 1332 

9 -343 -329 -316 -. 144 -. 149 -. 143 1410 1425 1414 

10 -228 -200 -193 -. 100 -. 101 -. 097 1560 1571 1561 

11 -4 22 16 -. 030 -. 029 -. 028 1525 1534 1528 

12 233 237 227 . 059 . 059 . 057 1576 1576 1574 

13 327 311 301 . 104 . 105 . 102 1420 1433 1433 

14 289 295 290 . 117 . 119 . 115 1350 1354 1354 

15 138 148 149 . 104 . 106 . 104 1350 1350 1350 

16 -24 -23 -2o . 078 . 079 . 077 1440 1430 1429 

17 -87 -84 -8o . 045 . 045 . 044 1570 1578 1576 

18 -49 -33 -31 . 014 . 011 . 011 1530 1541 1539 

19 -33 -16 -16 -. 028 -. 029 -. 028 1588 1581 1577 

20 -84 -75 -74 -. 050 -. 057 -. 055 1440 1436 1432 

21 -119 -108 -107 -. 072 -. 074 -. 072 1350 1356 1352 

22 -112 -116 -115 -. 078 -. 079 -. 078 - - - 

Table 8.8 Load Case II - analysis for ringbeam bending 

moments (tm), radial displacements (m) and 

axial forces (t) 

results of Xýllmann analysis given relative 

to the pretension state, DR & SCG results 

relative to the initial state. 
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NODEJ 

ELEMENT 

NODAL IN-PLANE 
BENDING M014ENT 

Mo DR SCG 

NODAL RADIAL 
DISPLACEMENT 

MO DR SCG 

ELEMENT AXIAL 
FORCE 

mo DR SCG 

1 -77 -77 -58 . 031 0 31. . 034 1310 1331 1325 

2 -54 -57 -41 . 033 . 032 . 035 1321 1411 1405 

3 16 14 18 . 037 . 036 . 037 1550 1557 1549 

4 143 147 136 . 035 o35 . 034 1500 1522 1515 

5 245 243 221 . 015 . 014 . 011 1540 1566 1559 

6 188 197 179 -. 025 -. 026 -. 0277 1420 1426 1419 

7 52 44 37 -. 075 -. 075 -. 074 1340 1346 1339 

8 -232 -234 -227 -. 110 -. 119 -. 115 1330 1341 1333 

9- -478 -471 -451 -. 142 -. 143 -. 136 1400 1422 1414 

10 -480 -472 -445 -. 125 -. 129 -. 122 1550 1572 1566 

11 -224 -236 -221 -. 070 -. 070 -. 065 1540 1545 1543 

12 64 62 64 . 033 . 034 . 033 1593 1593 1595 

13 215 217 206 . 105 . 111 . 106 1440 1448 1453 

14 297 314 298 . 152 . 159 . 151 1365 1369 1374 

15 330 348 331 . 172 . 175 . 167 - - - 

Table 8.9 Load: Case III - analysis of ringbeam 

bending moments (tm), radial displacements (m) 

and axial forces (t) 

*- results of Millmann analyses given 
I 

relative to the pretension state, DR & SCG 

results relative to the initial state. 
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NODE/ 

ELEMENT 

NODAL IN-PLANE 
BENDING MOMENT 

Mo DR SCG 

NODAL RADIAL 
DISPLACEMENT 

mo DR SCG 

ELEMENT AXIAL 
FORCES 

Mo DR SCG 

8 318 320 311 . 176 . 173 . 167 1040 1045 1053 

9 287 292 283 . 158 . 158 
. 153 1095 1104 1113 

10 210 200 193 115 . 114 . 110 1227 1212 1220 

11 40 40 - 41 . 054 . 044 . 043 1150 1167 1172 

12 -120 -114 -110 -. 045 -. 050 -. 047 1200 1209 1211 

13 -180 -176 -170 -. 110 -. 112 -. 108 1095 1100 1101 

14 -232 -222 -217 -. 145 -. 149 -. 144 1041 1038 1038 

15 -224 -238 -234 -. 164 -. 161 -. 155 - - 

Table 8.10 Load Case IV - analysis for ringbeam 

bending moments (tm), radial displacements (m) 

and axial forces (t). 

*- results of M611mann analyses given 

relative to the pretension state, DR and SCG 

results relative to the iinitial state. 
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small differences in these displacements as tabulated are 

significantly less than the displacement increment between initial 

and pretension configuration. Good correspondence is also 

achieved for the axial forces in the boundary members. For the 

levels of loading considered. the effect of introducing non-linearity 

into the support structure response is not significant. It may 

be concluded that there is satisfactory agreement between the_ 

present DR and SCG load analyses for the ringbeam, and those 

reported by Mýllmann for the Newton Raphson method. 

4 
There remains, however, the discrepancies between the 

formfinding analyses. The close agreement between all load 

analyses and the fact that the present DR formfinding and analysis 
0 

employ the same program suggests that incorrect results may have 

been presented by M611mann for the formfinding. The fact that the 

discrepancies have been consistently simned into the load analysis 

results suggests that any error may have occurred at the transfer 

between the separate formfinding and analysis programs. The close 

agreement between load analysis results makes it less likely that 

the problem specification has been incorrectly interpreted in the 

present work. It also implies that the inclusion of non-linear 

terms in the bending elements is not significant at the level of 

loading involved in cases I to IV. 

Table 8.11 gives the vertical displacement of the central 

node of the network surface when the whole of that surface is 

subjected to uniformly distributed loading. Close agreement 

at all levels of loading is noted for the SCG and Newton Raphson 
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UDL 

(kg/m2) 

LOAD 

CASE 

DISPLACEMENT 

Mo DR SCG 

0 V . 1.50 1.527 1.477 

20 IV . 95 . 950 . 922 

60 DL .0 .0 .0 
135 1 -1.15 -1.172 -1-143 

200 vi -1.85 -1.866 -1.820 

300 VII -2.60 -2.665 -2.598 

Table 8.11 Network central node vertical 

displacement for uniformly distributed 

loading 
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analyses which both as-sume a linear boundary structure response. 

As the load is increased then the displacement calculated by the 

DR analysis becomes up to 2.5% greater than that of the other 

methods when the current u. d. l. is 5 times the magnitude of the 

dead load alonp-. 

Comparitive cable forces for the DR and SCG analyses 

of load cases I and III are given in table 8.12 for both hanging 

and bracing cables. Again there is close agreement between the 

tabulated results, with the consistent small difference being due 

to the differing boundary displacements of the linear and 

non-linear discretisations. For comparison results are also 

presented f or the analysis repeated assuming a rigid boundary 

with fully fixed boundary nodes, and the fact that this 

simplification grossly underestimates the forces in the bracing 

cables is clearly-illustrated. 

Computer program execution times on a CDC 7600 are 

presented in table 8.13 for the load cases I to IV which show a 

clear advantage in favour of Dynamic Relaxation. DR is here between 

1.9 and 2.8 times faster than SCG, with the relative lack of 

efficiency of the latter primarily due to the complexity of 

the energy polynomial coefficient calculations for the boundary 

structure. The programs utilised for the comparison were as 

similar as possible, with identical input and output segments, and 

convergence deemed to have been achieved when all act4ve nodal 

residuals were less than . 1% of the maximum applied nodal load. 

The DR formulation utilised the purely diagonal stiffness derivation 

of mass components. 
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ELEMENT 

DR 

LOAD CASE 

SCG 

I 

RIGID 
BDY. 

LOAD 

DR 

CASE 

SCG 

III 

RIGID 
BDY. 

A 336.3 333.4 207.3 302.2 300.5 236.3 

pq 
B 335.1' 332.2 206.3 301.0 299.2 235.2 

C 334.1 331.1 205.4 299.9 298.1 234.4 
ý-4 

D 333.4 330.4 204.8 299.0 297.3 233.8 

E 333.1 330.1 204.5 298.3 296.6 233.5 

F 334-. 5 335.5 341.3 298.3 298.7 301.2 
cn W 
ý4 pq G 336.4 337.4 342.8 299.8 300.2 302.5 
. 09 

H 340.2 341.2 346.0 302.8 303.2 305.2 

345.8 346.8 350.7 307.3 307.6 309.2 

K 353.1 354.1 357.2 313.2 313.2 314.7 

Table 8.12, Element axial forces (t) for 

Load Cases I and II 
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LOAD DYNAMIC RELAXATION SCG 

CASE STEPS ENERGY TIME STEPS TIME 
RESETS 

1 251 13 3.709 172 7.230 

11 295 15 4.282 296 12.178 

111 278 15 4.102 

k 

168 7.136 

IV 190 12 2.944 164 6.939 

9 

Table 8.13 Comparitive CDC 7600 execution times (secs. ) 

for the Mýllmann problem. 
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8.5 Suzmmry 

This chapter opens witha brief review of published 

methods for the analysis of pretensioned networks with rigid- 

jointed boundary structures. Although the importance of including 

the support flexibility in an overall analysis has been clearly 

recognised, to date the full non-linear response of the boundary 

structure has been neglected. This has proved a reasonable 

approximation as the boundary contours utilised for these 

structures have traditionally been very stiff, especially when 

compared with the lightweight surf ace structures they support. 

Dynamic relaxation may readily be applied to the full 

non-linear analysis of the complete structure by a combination of 

the network and rigid jointed space frame analyses outlined in 

previous chapters. A generalisation of the strain energy 

expression necessary for full non-linear analysis by the Conjugate 

Gradient methods is presented on the basis of periodic updates of 

the associated tangent stiffness matrix. 

Two numerical investigations of previously studied 

problems are described, demonstrating the close agreement between 

explicit DR and SCG analyses and the implicit Newton-Raphson 

matrix approach for- load analyses of this class of structure. 

The suitability of Dynamic Relaxation for the unified 

L boundaries formfinding and analysis of tension systems with flexible 

has been demonstrated, and significant improvements in convergence 
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time over SCG noted. For the latter analyses the revised 

energy polynomial coefficients were successfully employed. 

When Buchholdt's coefficients were utilised for the same problems 

in conjunction with exact Calculation of nodal out-of-balance 

forces, convergence was not achieved. 

A likely future-development is the employment of more 

flexibl6 compression contours which permit boundary displacements 

and utilise the stabilising effects of the tensile system. This 

will necessitate the full non-linear idealisation of the boundary 

structure. The Dynamic, Relaxation approach presented here is 

well placed to f ulf ill this. role, being simple to implement, having 

low computer storage requirements and proving here to be at least 

twice as fast as the Scaled Conjugate Gradient analysis with linear 

boundary repponse. 

For problems where linear boundary analysis is adequate 

it is likely that the convergence rate of the Dynamic Relaxation 

method may be further improved by the adoption of a constant, 

linear, representation of the boundary structure. 
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CHAPTER 9 

GENERAL SUMMARY AND CONCLUSIONS 
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This thesis is concerned with the application of direct 

integration methods, particularly Dynamic Relaxation, to the 

non-linear formfinding and analysis of pretensioned networks 

supported by compression arches. 

The development, formulation and application of the Dynamic 

Relaxation and Scaled Conjugate Gradient methdds are reviewed in 

Chapter 2. These are the two principal exp. - licit integration 

techniques currently in use for the numerical investigation of tension 

structures. 

In Chapter 3 the automated. control of Dynamic Relaxation is 

considered, together with the efficient implementation of arbitrary 

element types. A modified kinetic damping procedure is shown to be 

an efficient alternative to viscous nodal damping that does not 

require prior determination of a damping constant. A generalised 

derivation of critical fictitious nodal mass components is presented as 

the basis for automatic establishment of either diagonal or square 

nodal mass matrices. In addition it is shown that Dynamic Relaxation 

with kinetic damping may be interpreted as a dynamic implementation 

of a first order gradient minimisation technique. The inherent 

v0 simplicity of DR nonlinear analysis has been coupled with the automatic 

control characteristic of the gradient method to provide an effective 

analysis procedure. that retains a clear physical interpretation. 

The implementation of the Scaled Conjugate Gradient method due 
f 

to Buchholdt is limited to cable. elements emThibiting small strains. 

A modification of Buchholdt's approach which permits arbitrary member 

strains. A modification of Buchhholdt's approach which permits 
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arbitrary member strains is presented in Chapter 4, and utilised 

for subsequent comparisons with Dynamic Relaxation. Indeed 

convergence was not obtained for analyses of the complete structure 
including boundary arches unless the current modification was 
6 incorporated. 

In Chapter 5a generalised test problem is proposed for the 

comparative analysis of pretensioned networks with rigid boundaries. 

Dynamic Relaxation with kinetic damping is shown to converge more 

quickly than the Conjugate Gradient method in all cases for a range 

of network curvatures, pretension levels and loading patterns 

idealised by increasing mesh si--es up to 2523 degrees of freedom 

and 1860 elements. DR requires between 0.4 and 0.8 of the time to 

converge by SCG, with this advantage increasing with problem size. 

As a precursor to the complete analysis of tension systems 
I 

plus boundary structure., a strategy for the non-linear analysis of 

space frames by Dynamic Relaxation is outlined in Chapter 6. 

Rotational degrees of freedom are introduced, with rotations treated 

as displacements from the initial state. The implementation of both 

planar and spatial flexural elements is described, with natural 

treatment of finite and rigid-body motion and the effect of axial 

force on the-moment-curvature relations included. The latter 

stability functions are conveniently updated at the energy peak 

stages of the kinetic damping procedure. A simplified constant 

moment bending element is also presented for planar analysiý- 

Flexural members are idealised as a series of bar elements, which 

may deform axially, whilst flexural stiffness is lumped at the 
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inter-connecting nodes. Although a finer idealisatiQn is necessary 

f or a given accuracy compared with conventional cubic displacement 

elements, this element may still be of use where such an idealisation 

is a geometric or topographic requirement. Results of Dynamic 

Relaxation investigations are compared with published solutions to 

non-linear planar and spatial problems. The successful treatment 

of finite displacements through snap-through and into- post-buckling 

response is emonstrated. 

In the first section of Chapter 7 the development of linear 

and non-linear techniques for numerical formfinding is reviewed. 

In subsequent sections the suitability of kinetic damping for 

controlling Dynamic Relaxation formfinding is demonstrated, in 

particular its ability to cope with gross out of balance forces and 

with structural mechanisms. The generation of moment-free compression 

arches within tension networks is illustrated, and alternative, 

stable, boundary forms derived from the same basic data. 

Chapter 8 opens with a summary of published methods for 

the analysis of pretensioned networks with rigid-jointed boundary 

structures. Although the importance of including support flexibilitY 

in an overall analysis has been clearly recognised, the full 

non-linear response of the boundary structure has not been 

included to date. The various elements of preceeding chapters are 

combined here to achieve such an analysis by Dynamic Relaxation. Two 

numerical investigations of previously reported problems are described, 

demonstrating close agreement between DR, SCG and Newton-Raphson 

analyses for working loads and relatively stiff boundary structures. 
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The Dýmamic Relaxation method with non-linear boundary representation 

has proved to converge at least twice as fast as the SCG approach 

with linear boundary response. 

It is concluded that Dynamic Relaxation is a simple and 

efficient analysis technique, retaining a clear physical analogy 

that'facilitates the understanding, implementation and execution 

of non-ý-linear response investigations. The numerical control 

parameters necessary f or an optimised yet stable direct numerical 

integration have been fully automated, with consequent elimination 

of the need for trial analyses. 

Dynamic- Relaxation has proved equally suited to both the 

formfinding and analysis of the class of tension structures 

considered in detail in this thesis, with t; he explicit formation 

making is particularly suited to the interactive implementation of 

these processes. The generation of a wide range of moment-free 

compression contours may be readily achieved numerically using DR, 

and this is especially relevant in the light of the dif f iculty in 

physical investigation of this problem. When the complete 

structure is subsequently analysed under load the full non-linear 

DR idealisation of the boundary permits the investigation of the 

stabilising effects of the surface tensile system on that boundary. 

Thus the way- is open to the future use of more flexible, and 

economic, compression contours that are more closely allied to the 

4 
p 

lightweight ideal of the surface structure. 
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APPENDIX A 

PRINCIPAL STIFFNESS DXRECTIONS IN TWO AND THREE DIMENSIONS 

A. 1 Planar Case 

Consider any node n having stiffness terms in the global 

coordinate system: 

S )CA S )CY (A. 1) 

S 
YX 

S yy 

The axis transformation angle that will maximise the 

transformed S., stiffness component such that the diagonal principal 

stiffness matrix 
[s, ]. is obtained: 

1 
S7 

1s 
X)c 

N sV 

(A. 2) 

The full transformation of the nodal stiffness is given by: 

cosý s lný SWI S'K4 COSý 

-sino 
L- 

COSO 
.1 

S yyý S. 

-j 

sino 

- 

'1 
-siný sxx S)CY 

cosý s 
yyl 

s 
(A. 3) 
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thus Syx SYX coszý + S,,,, sin2ý + 2S,. 
y si# cosý 

-dSx. ýc -S,,,, sin2ý + S,,, sin2ý + 2S,,, cos2ý 

Then for S Yl% to be a maximum or minimum: 

(Sxx - S*yy ) sin 2ý 
7= 

2Sxf cos2o-r 

tan 2ý-. =2S xi 
( SK'% -S Yl 

) 

A. 2 Three Dimensional Case 

(A. 4) 

It has been shown above that the derivation of principal 
0 

stiffnesses for the planar case is analogous to a Mohr Circle 

for sti. 
A. 

' 

-ftness. The three dimensional case may then be investigated 

with this analogy in mind. 

Consider the transformation of the nodal. direct stiffness 

terms: 

I 
Sr 

]= [T. 
V, 

][ 
S 

][ 
T7 

where S SX14 S, 4: 'f S ýCl nodal direct 

S YX S %#'If S I'M stiffness in 

ISa, 
% S? 

-II 
S 11- global coords. 

. 
S, S 0 0 nodal principal 1 
0 SIT 0 

j 

direct 

0 0 1S Is stiffness 

(A. 6) 
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T 4% m n transformation 

7. mI n matrix 

3 mS n 

Premultiplication of equation (A. 6) gives: 

T tT 
-F S-P STT. (A. 7) 

which may be written in full. - 

zkzzzS S10 0 SXX S 
XY 

S 
Yz_ 

zIz 
7- 

z3 
I 

MmM I%S 0S 7. 0 S SIf SmmM 
'If; 

-L 7. 
iI 

n. n L00 
S 

Ij LS 
S S 1-t] Ln, n-, n,, 

(A. 8) 

Then for the principal stiffness term Sj (i = 1,2,3) 

having direction cosines Zjý mL9 n;, consider the individual coeffi- 

cient equalities of equation (A. 8): 

AO + M. )CX 

s+M. 

Icly A. 

s 
ýC: 6 JL 

S"+n; S -A, - 
S -y +ns4: 11 

S, j *,: +ns zi 

which yields three homogenous equations: 

(S. 
M- 

s 

s 

s0 

sm0 
JL 

cs S. ) nL 0 
A. 

-j 4- 

(A. 9) 

(A. 10) 
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These equations will give a non-trivial solution 

provided that the determinant of coefficients is zero: 

,4 
S 

OL 
0 (A. 11) 

Expansion of this determinant results in the following cubic 

equation whose three real roots are the principal-stiffness 

comporfents: - 

S. ++s+ (A. 12) 

where Ot (SXX + SYY +S 11 
t%1 

S 
XK 

S 
yy 

+S 
xx 

sS 
%N 

sss 
xi 

s 
z: -1 

ý. =S X*( 
s 

lz 
+S 

IK-e 
S 

yy 
+S 

-11- 
Sxx - 2S 

Xik 
S 

lef 
S 

-ilf 
-S 

Mc 
S 
*'IN 

S 

Solution of this cubic equation may be achieved by the 

following standard method: 

put: SL=x -a/3 

ZP I 't 

giving: x+ 0-a) X+(j-a$ +2a) =0 
33 27 

or: x- qx -r0 

For three real roots (27r7- <*4q 
I) this equation has the solution: 

cos-I 3r 
q2 

X1 =2q cos 

, 
F3 

I ft 
Cos 

X3 -2 cOs 

-F3 
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and hence S-=X. -a for i= 1923,3. A& A. -T 

If, in the solution of the cubic equation (A. 12), j- = 

then one of the principal stiffnesses is zero and the problem 

reduces to that of soliving a quadratic f or the non-zero components: 

(A. 13) 

. Similarly if both ý and ý are zero there are two zero 

principal stiffnesses, and S A- = -a yields the non-zero value. 

In this case one of the principal stiffnes&directions associated 

with a zero value must be assigned aribrarily in order to ensure a 

unique coordinate system. 

The principal stiffness direction is generally obtained by 

backsubstituting for S 
IL 

into equation (A. 10) and using the 

additional relation: 

11t 

- A, $- A- 

which results in the equations: 

n. 

a 

b 

A. 

where S 

=ý 
(1/(i 

aL + ý) I 

S'L% s 
il 

--lk- 
s 

T7. 

-SIL a S13 

S%% SO., 
11 %1 

N% %% NN 

s 

Ts 

1- SLl S %-L , 
S"' Sý 

bn and m. =an i- A- 

are coefficients of equation (A. 10). 

(A. 14) 

(A. 15) 
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In practice only the directions of S, and S., need be 

found in this way, with the third set of direction cosines then 

determined from the vector cross-product. 

It is, however, possible for n to be zero in the above 

equations en the principal stiffness direction does not follow one 

of the global axes if: 

s sil 

it XIL 

and no solution is obtained for a. As only the directions of 

S, and S, are determined in this manner, then, if on checking 

the above factor n. S 
(j =1 or 2) is zero, a simple expedient is to 

exchange the principal stiffness values Sý and S.. As the principal 

stiffness directions are mutually perpendicular the revised n. 
13 

cannot be zero and the process continues satisfactorily. 
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APPENDIX B 

CORRECTIONS FOR BOWING OF SPATIAL FLEXURAL ELEMENTS 

Saafan (151) has derived a correction factor for the effect 

of bowing on the axial displacement of a planar member. For the 

member illustrated in figure B. I. the axial displacement may be 

defined as: 

SL -L- LC 

PL + (B. 1) 
EA 

where 6. is the difference between the arc length LA and the 

chord length Lc.. 

Lc 

6 (ds - dx) (B. 2) 

0 

where ds 
1(dy"+ 

dx 

therefore 61,1 + 
dy) 1 dX (B. 3) (dx 

on binomial expansion of equation (B. 3), neglecting 4th and 

higher order terms, one obtains: 

Lc 

as II dx (B. 4) 

2 
ddyx 

0 
Solution of this equation (reference (151)) yields: 

L 
it 

0L 

s(i + c)(sc - 
811 
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Figure B. 1 
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b2 Ic 
8 (1 

When the three dimensional case is considered: 

(d s- dx) 

where dx is again a small increment along the member chord 

ds (dx + dy + dz 

ILC. 
17. 

therefore 6, y+ + (qdx 
ýd-x 

and approximating as before: 

x 
1 (dy + dzý 
2 TX -dx 

-1 

dx 

dx 

(B. 5) 

(B. 6) 

(B. 7) 

Bowing of spatial members may therefore be incorporated by 

considering two in-plane effects separately (for the local xz and 

xy planes) and simming the results to obtain 6 The member axial 

force may then be obtained from equations (B. 1). 
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APPENDIX C 

COORDINATE TRANSFORMATIONS IN THREE DIMENSIONS 

Consider the coordinate transformation necessary for the 

arbitrary orientation of a flexural element in space. The 

coordinate axes are as shown in f. igure C. 1, with initial 

transformation for global axes ýxj to intermediate stage 
I 

X1 

[ -&I and subsequent rotation through angle ý to the final x state. 

The global coordinate system is denoted Ixyz 
and the 

intermediate stage, Ixyz defined such that x lies in the 

line of the member chord and z lies in the plane defined by x 

and the global z-axis. The transformation between the two systems 

is given by: 

xx 

: Ilx 

Let the unit vector along the 

Xx 
-XI 

y (C. 1) 

z 

Kis, in global terms, be: 

p 

x 
A' 

x a: 

xlx 

% (C. 

% 

vector in the y -direction may be erected by considering the 

cross product of the x unit vector and a unit vector in the 

global z irection: 
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Figure C. 1 
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0 

=0X ni = 

1n0 

thus: 

loe-+ 

-m 

0 

Similarly for a vector in the z direction: 

x -M -n 

mx -n 

n0 

and again vector length + 

m 

+m 
mn giving: 

x 4% 

-n 

-n m 

n 

(C. 3) 

(C. 4) 

(C. 5) 

(C. 6) 

Thus the intermediate transformation matrix of equation (C. 1) 

may be written: 

aman 

0 

-n m 1-n 

a- n) 

(C. 7) 

where Z, m. and n are the direction cosines of the member. 
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The second stage of the transformation represents the 

'A %% rotation through angle ý about the common x jx axis of the true 
N local coordinate system xyJ, z from x9yz 

xLx100x 

0 Cosa sinal y 

0 -sina Cosa z (C. 8) 

The complete transformation is then: 

L 
'I 

(C. 9) 

which may be written in full: 

00 

Cos$ sina 
nZ 

-sina Cosa a 

ý ý(, 
_ 

mn 

z0x 
a 
nm 
aa (G. 10) 

Some modification is necessary for members with t=m= 

and n= -1, as the general divisor a becomes zero. For the angles 

as defined in figure C. 2, then: 

ýx 0000x x 

cosß sinß 00 

-sinß cosß -n 

00nx 

-nsina Cosa 0 

-nCosa -siný 0 
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APPENDIX D 

BOUNDARY STRUCTURE CURVATURE FOR SADDLE-SHAPED NETWORKS 

Consider an automated procedure for determining the angle 

of twist3, $,, of boundary elements when one of their principal cross- 

seetional axes is parallel to the adjacent surface of the tension 

network. 

Figure D. 1 shows a section through such a boundary element, 
[ -. \ I 

with s an adjacent surface node. The vector z is perpendicular 

to the boundary element vector bI, connecting nodes i and j, and 

lies in the plane formed by Ib and the global z-axis (figure D. 2). 

= xo 
1 

Z 
N\ 

b li 

-bx 

0 

-bX b:? 

-b 10 b1 
7.7. 

b 
lb 

+bx 

11 

Hence the direction cosines of z 

lz 

Then from figures D. 3 and D. 4: 

-T [v 

xx-x- 
A- 

ys -Y 

z-Z. 

S& 

(D. 1) 

(D. 2) 

(D. 3) 
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IN 

sin Sz 
q 

q 2A iý, s (D. 4) 
z )o 

where A. - is the area of the triangle formed by nodes i, j and s. 4ý)S 

Summarising: 

. 
-1 z. 

-r 

sin x-[V ztý 
. 

ý-A-- 

IIZ, 

A-ýIl. 

This procedure may readily be automated on assignation 

(D. 5) 

of local nodes s adjacent to each boundary member ij. 
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