City Research Online

City, University of London Institutional Repository

Citation: El Kaddah, N.H. (1983). Water wave-structure interaction for small amplitude structural oscillations. (Unpublished Doctoral thesis, City University London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/8234/

Link to published version:

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

WATER WAVE-STRUCTURE INTERACTION FOR
 SMALL AMPLITUDE STRUCTURAL OSCILLATIONS

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE DEPARTMENT OF CIVIL ENGINEERING AT THE CITY UNIVERSITY

BY

NASHAT HAMED EL KADDAH BSc, MSc

To My Parents

ABSTRACT

The water wave/structure interaction is a complex phenomenon, which affects the prediction of the dynamic response of offshore structures. The problem arises from the interdependence of the structural response and the wave force. This interdependence is usually represented by the effect of the relative velocity and relative acceleration used in the wave force formula.

This work is carried out to investigate the effect of the water wave/structure interaction on circular cylinder for small Keulegan-Carpenter numbers and structural amplitude of oscillation. In order to achieve this an extensive experimental program, in conjunction with theoretical study was undertaken.

The study indicates that the use of modified Morison's equation taking into consideration the velocity and acceleration of the structure is not needed to predict the structural deflection. But significant difference in the force coefficients for free and fixed structure have obtained experimentally.

ACKNOWLEDGEMENTS

During the course of the research the author received valuable advice and helpful suggestions from many persons. In particular the author wishes to express his gratitude to Dr. K. Arumugam, who supervised this work, for his constant encouragement, his valuable advice and his guidance throughout the duration of the research, without which the effective fulfilment of this work would not have been possible.

To Dr. K. S. Virdi and Mr. P. Carr for their generous help in many ways.

To the staff of The City University Civil Engineering Hydraulics Laboratory 1 whose effort is appreciated.

To my parents for providing financial and moral support. Last, but not least, to my family and friends for their love and encouragement.

CONTENTS

PAGE
Abstract III
Acknowledgement IV
Contents v
List of Figures x
List of Tables XV
Notation XVII
Chapter 1 Introduction 1
Chapter 2 Survey of Literature Related to Dynamic Response 7
2.1 Hydrodynamic Forces 8
2.1.1 Water Wave Theory 8
2.1.2 Hydrodynamic Force 12
2.1.2.1 Force on Large Bodies 14
2.1.2.1A Diffraction Theory 14
2.1.2.2 Force on Small Bodies 15
2.1.2.2A Morison's Equation 15
2.1.2.2B Transverse Force 29
2.1.2.3 Morison's Equation for Flexible Cylinder 30
2.2 The Idealization used to Model the Structure System 31
2.2.1 Foundation System 31
2.2.2 Structure System 38
2.2.2.1 The Mass Matrix 38
2.2.2.2 The Stiffness Matrix 44
2.2.2.3 The Damping Matrix 44
2.3 Numerical Procedures 49
2.3.1 Time Domain and Frequency Domain Description 49
2.3.1.1 Mathematical Formulation of the Dynamic Problem in Frequency Domain Description 50
2.3.1.2 Mathematical Formulation of the Dynamic Problem in Time Domain Description 51
2.3.2 Model Superposition and Direct Intergration 52
2.3.2.1 Mathematical Formulation of the Dynamic Problem by Mode Superposition 53
2.3.2.2 Mathematical Formulation of the Dynamic Problem by Direct Integration 54
Chapter 3 Theoretical Formulation 57
3.1 Introduction 57
3.2 Wave Dynamics 57
3.2.1 Wave Description 58
3.2.2 Wave Forces 62
3.3 Structural Dynamics 67
3.3.1 The Structure Modelling 67
3.3.2 Formulation of the Equation of Structural System Response 69
3.3.3 Solution of the System 85
3.3.4 Numerical Analysis 88
3.4 Theoretical Formulation of the Experiment 90
3.4.1 Modelling of the Tested Structure 90
3.4.2 Digitization of Data 92
3.4.3 Determination of the Measured Wave Force 93
3.4.4 Determination of the Velocity and Acceleration of the Structure at any Level 95
3.4.5 Evaluation of the Constant α_{0} and α_{1} for the Damping Matrix 98
Chapter 4 Experimental Technique 102
4.1 Experimental Facilities 102
4.1.1 Wave Tank 102
4.1.2 Tested Structures 106
4.1.2.1 Durapipe ABS Structures 106
4.1.2.2 Aluminium Structures 113
4.2 Description of Instrumentation 118
4.2.1 Measurement Instrumentation 118
4.2.1.1 Wave Probe 118
4.2.1.2 Strain Gauges at the Base of the Structure 120
4.2.1.3 Pressure Transducers 122
4.2.1.4 Displacement Transducer 125
4.2.2 Reading Instruments 125
4.3 Calibration of the Measuring Instrumentation 129
4.3.1 Strain Gauge
4.3.2 Displacement Transducer 130
4.3.3 Pressure Transducers 132
4.3.4 Wave Probe 134
4.4 Experiment 134
4.4.1 Water Wave Criteria 134
4.4.2 Structure Dynamic Properties 138
4.4.2.1 Stiffness Test 138
4.4.2.2 Natural Frequencies and Structural Damping 142
4.4 .3 Main Tstes 144
Chapter 5 RESULTS
5.1 The Dynamic Properties of the Structures 164
5.1.1 Determination of Damping
Coefficients and Natural
Frequencies 164
5.1.2 Determination of Stiffness Constants 168
5.2 DATA ANALYSIS 169
5.2.1 Wave Properties 178
5.2.2 The Forces on Structure 180
5.2.3 Structure Dynamic Response 182
5.3 The Results from the Experiments 183
5.3.1 Wave and the Corresponding Forces on the Structures 183
5.3.2 Structure's Response to the Wave Forces 217
Chapter 6 Summary and Conclusion 251
REFERENCES 258
APPENDICES A Pressure Transducer 277
B Preamplifier 281
C Sinusoidal Interpolation 283
D The Variation of the Relative
Displacement X/D with Time for One
Cycle of the Wave 285

LIST OF FIGURES

FIGURE NO PAGE
(2.1.1) The Range of Validity of Various Wave Theories 12 10
(2.1.2) Representation of Zones of Validity of Various Wave Theories 9 11
(2.1.3) Wave Force Theory 16 12
(2.1.4) Direction of Velocity and Acceleration at Various Points of a Wave Cycle 18
(2.1.5) C_{M} Versus Keulegan-Carpenter Number 27 19
(2.1.6)
C_{D} Versus Keulegan-Carpenter Number 27 19
(2.2.1) Gravity Structure 32
(2.2.2) Framed Steel Structure 32
(2.2.3) Soil Model for Gravity Structure 33
(2.2.4) Soil Model for Framed Steel Structure 33
(2.2.5) Foundation Modelling 35
(2.2.6a - Model 1 and Model 280 402.2.6b)
(3.3.1) Modelling of the Structures 68
(3.3.2) The Tangent Pipe Element 89
(3.4.1) Discretization of Response and Force 91
(3.4.2) Pressure and Shear Distribution about a Circular Cylinder 93
(4.1.1) Wave Tank 105
(4.1.2) The Parts of the Structures (A) and (B) before Assembly 108
(4.1.3) Dimension of Structures (C) and (D) 110
(4.1.4)
Structure (A) and (B) 111
(4.1.5) Structure (C) and (D) 112
(4.1.6) Dimensions of Structures (E) and (F) 114
(4.1.7) Structure (E) and the Four Masses 115
(4.2.1) Strain Gauge Installation 121
(4.2.2) The Mounting and Connection of the Pressure Transducer to the Structure 124
(4.2.3) Strain Gauge Amplifier, Preamplifier and Tape Recorder 128
(4.3.1) The Test Determining the Tip Deflection due to Horizontal Load 131
(4.4.1) Water Wave Profile 135
(4.4.2) Typical Reflected Wave 136
(4.4.3) Reflection Coefficient for the Wave Tank 137
(4.4.4) Schematic Diagram of Deformation Types for Durapipe ABS 139
(4.4.5) Typical Recording of the Strain Gauge 140
(4.4.6) Typical Record of the Natural Frequencies and Structural Damping 143
(4.4.7) Structure A under Test 146
(4.4.8) Structure B under Test 147
(4.4.9) Structure C under Test 148
(4.4.10) Structure D under Test 149
(4.4.11) Structure E under Test 151
(4.4.12) Structure F under Test 152
(5.2.1) Measured Data and the Calculated In-line and Transverse Local Force for Free Structure 172
(5.2.2) Measured Data and the Calculated In-line and Transverse Local Force for Fixed Structure 173
(5.2.3) Pressure Distribution across the Structure during the Wave Cycle for Free Structure 174
(5.2.4) Pressure Distribution across the Structure during the Wave Cycle for Fixed Structure 175
(5.2.5) F.F.T for the Wave Profile, the In-line Force and the Tip Displacement for Free Structure 176

(5.2.6)	F.F.T for the Wave Profile, the In-line Force and the Tip Displacement for Fixed Structure	177
(5.2.7)	The Measured and Calculated Wave Profile	179
(5.2.8)	The Calculated and Measured Bending Moment	182
$(5.3 .1 \mathrm{a}-$	Variation of C_{D} with Reynolds Number, 1/D - and of C_{M}	199
$\begin{gathered} (5.3 .2 a- \\ 5.3 .2 b) \end{gathered}$	Variation of C_{D} with Keulegan-Carpenter Number and of C_{M}	200
$\begin{gathered} (5.3 .3 a \\ 5.3 .3 \mathrm{~b}) \end{gathered}$	Variation of \% (C_{D} Free (R)/ C_{D} Fixed) with K-C Number for Structure A - and of C_{M}	201
$\begin{gathered} (5.3 .4 a- \\ 5.3 .4 b) \end{gathered}$	Variation of \% (C_{D} Free (R)/CD Fixed) with $K-C$ Number for Structure B - and of C_{M}	202
$\begin{gathered} (5.3 .5 a- \\ 5.3 .5 b) \end{gathered}$	Variation of \% (C_{D} Free (R)/ C_{D} Fixed) with $K-C$ Number for Structure C - and of C_{M}	203
	Variation of \% (C_{D} Free (R) / C_{D} Fixed) with $K-C$ Number for Structure D - and of C_{M}	204
$(5.3 .7 a)$ $5.3 .7 b)$	Variation of \% (C_{D} Free (R)/ C_{D} Fixed) with K-C Number for Structure E with no Mass at the Top and of C_{M}	205
$\begin{aligned} & (5.3 .8 \mathrm{a} \\ & 5.3 .8 \mathrm{~b}) \end{aligned}$	Variation of \% (C_{D} Free (R) / C_{D} Fixed) with K-C Number for Structure E with 1010 Grs at the Top and of C_{M}	206
$\begin{gathered} (5.3 .9 a- \\ 5.3 .9 b) \end{gathered}$	Variation of $\%$ (C_{D} Free (R)/ C_{D} Fixed) with K-C Number for Structure E with 2020 Grs at the Top and of C_{M}	207
${\underset{5}{5.3 .10 a}}_{5.3 .10 b)}$	Variation of \% (C_{D} Free (R)/ C_{D} Fixed) with K-C Number for Structure F with no Mass at the Top and of C_{M}	208
$\begin{aligned} & (5.3 .11 a \\ & 5.3 .11 b) \end{aligned}$	Variation of \% (C_{D} Free (R) $/ C_{D}$ Fixed) with $K-C$ Number for Structure F with 1010 Grs at the Top and of C_{M}	209
$(5.3 .12 a-$	Variation of \% (C_{D} Free (R)/ C_{D} Fixed) with K-C Number for Structure F with 2020 Grs at the Top and of C_{M}	210
(5.3.13)	Variation of \% (C_{D} Free (R)/ C_{D} Fixed) with $K-C$ Number for all Structures	211
(5.3.14)	Variation of \% (C_{M} Free (R)/C C_{M} Fixed with K-C Number for all Structures	212

5.3.15b)
Variation of \% (C_{D} Free (R)/ C_{D} Free) with K-C
Number for all Structures - and of C_{M} 213(5.3.16a - Variation of the Structures' Response (X/D)5.3.16b)with Reciprocal of Reduced Velocity - andwith Response Parameter232
(5.3.17a - Variation of the (Force Frequency/Natural5.3.17b)Frequency) with the Reciprocal of Reduced Velocity- and with Response Parameter233
(5.3.18a -5.3.18b)(5.3.19) Variation of (\% C_{D} Free (R)/C C_{D} Fixed) with the
(5.3.20) $\quad \begin{aligned} & \text { Variation of }\left(\% C_{D} \text { Free (} R\right) / C_{D} \text { Fixed) with the } \\ & \text { Response Parametef }\end{aligned}$ 236
(5.3.21) Variation of ($\% C_{M}$ Free (R)/ C_{M} Fixed) with the Reciprocal of Reduced Velocity 237
(5.3.22) Variation of $\left(\% C_{M}\right.$ Free (R) $/ C_{M}$ Fixed) with the Response Parameter 238
(5.3.23) Structure's Response (X/D) during the Wave Cycle for Structure A 240
Structure's Response (X / D) during the Wave Cycle for Structure B 241
Structure's Response (X/D) during the Wave Cycle for Structure C 242
Structure's Response (X/D) during the Wave Cycle For Structure D 243
(5.3.27) Structure's Response (X/D) during the Wave Cycle for Structure E with no Mass at the Top 244
(5.3.28) Structure's Response (X/D) during the Wave Cycle for Structure E with 1010 Grs at the Top 245(5.3.30) Structure's Response (X/D) during the Wave Cyclefor Structure F with no Mass at the Top247
Structure's Response (X/D) during the Wave Cycle for Structure F with 1010 Grs at the Top 248
FIGURE NO PAGE
(5.3.32) Structure's Response (X/D) during the Wave Cycle for Structure F with 2020 Grs at the Top 249
(1A) The Sensing Element 278
(2A) The Transducer Housing 280
(1B) The Preamplifier Circuits 282
(1D - 6ID) Structure's Response (X/D) during the Wave Cycle for all the Tests on Each Structure 286-346

LIST OF TABLES

TABLE NO PAGE
(4.1) Mechanical Properties of the Structures 117
(4.2) Digitized Electric Signal for One of the Calibration Tests 153
Digitized Electric Signal for One of the Tests 154-163
(5.1) Relative Damping Coefficients and Natural Frequencies 167
(5.2) Wave Characteristics and Wave Force Coefficients for Structure A 187
(5.3) Wave Characteristics and Wave Force Coefficients for Structure B 188
Wave Characteristics and Wave Force Coefficients for Structure C 189
(5.5) Wave Characteristics and Wave Force Coefficients for Structure D 190
(5.6) Wave Characteristics and Wave Force Coefficients for Structure E with no Mass at the Top 191
(5.7) Wave Characteristics and Wave Force Coefficients for Structure E with 1010 Grs at the Top 192
(5.8) Wave Characteristics and Wave Force Coefficients for Structure E with 2020 Grs at the Top 193
Wave Characteristics and Wave Force Coefficients for Structure F with no Mass at the Top 194
(5.10) Wave Characteristics and Wave Force Coefficients for Structure F with 1010 Grs at the Top 195
(5.11) Wave Characteristics and Wave Force Coefficients for Structure F with 2020 Grs at the Top 196
(5.12) Structure's Response to the Wave Force for Structure A 220
(5.13) Structure's Response to the Wave Force for Structure B 221
(5.14) Structure's Response to the Wave Force for Structure C 222
(5.15) Structure's Response to the Wave Force for
Structure D
(5.16) Structure's Response to the Wave Force for Structure E with no Mass at the Top 224
(5.17) Structure's Response to the Wave Force for

Structure E with 1010 Grs at the Top
(5.18) Structure's Response to the Wave Force for
Structure E with 2020 Grs at the Top
$\begin{array}{ll}\text { (5.19) Structure's Response to the Wave Force for } \\ & 227\end{array}$
(5.20) Structure's Response to the Wave Force for

Structure F with 1010 Grs at the Top
$\begin{array}{ll}\text { (5.21) Structure's Response to the Wave Force for } \\ & 229\end{array}$

NOTATION

$\phi \quad$ Velocity potential
$\eta \quad$ Wave surface
p Pressure
$\rho \quad$ Water density
$\dot{U} \quad$ Water particle velocity in x direction
v Water particle velocity in y direction
w Water particle velocity in z direction
g Gravitational acceleration
H Wave height
L Wave length
h Water depth
D Structure diameter
$\mathrm{F}_{\mathrm{m}} \quad$ Total force
$F_{D} \quad$ Drag force
$F_{I} \quad$ Inertia force
$C_{D} \quad$ Drag coefficient
$C_{M} \quad$ Inertia coefficient
U \quad Water particle acceleration
K-C Keulegan and Carpenter number Um T/D)
Re Reynolds number (Um D / γ)
$C_{L} \quad$ Transverse (lift) coefficient
X Structure displacement
$\dot{\mathrm{X}} \quad$ Structure velocity
$\ddot{\mathrm{X}} \quad$ Structure acceleration
(M) Mass matrix

IC 1 Damping matrix
K ! Stiffness matrix
\{F(t)\} Hydrodynamic force matrix
$\{X\} \quad$ Structure displacement matrix
$\{\dot{\mathrm{X}}\} \quad$ Structure velocity matrix
$\{\ddot{\mathrm{X}}\} \quad$ Structure acceleration matrix
[C_{S}] Damping in the free structure matrix
$\left[C_{f}\right]$ Damping in the foundation matrix
[K_{s}] Stiffness in the free structure matrix
[K_{c}] Stiffness in the foundation matrix
[C_{s}^{f}, Damping matrix for fixed based structure
$\left[C_{S}^{b b}\right]$ Damping matrix associated with the base degree of freedom
$\left[C_{S}^{b}\right.$; The coupling damping matrix
[$\left.M^{f}\right]$ Diagonal mass matrix including hydrodynamic added mass
$\left\{\phi_{J}\right\} \quad$ Mode shape vector
$W_{J} \quad$ Frequency of the J mode
${ }^{\xi_{J}}$ Damping ratio of the J Mode
$M_{j} \quad$ Generalized mass of the J mode
$\left[K_{S}^{f}\right]$ Stiffness matrix of fixed base structure
[K_{s}^{b}] Stiffness-coupling matrix
M Total mass
$M_{m} \quad$ Material structural and platform mass
$M_{a} \quad$ Hydraulics added mass
$M_{F} \quad$ Flooding and marine growth mass
$¥ \quad$ Volume of water displaced by structure
$\boldsymbol{\xi} \quad$ Damping coefficient

C	Structural damping
C_{c}	Critical damping
σ_{n}	Wave angular frequency ($2 \pi / T$)
k	Wave number ($2 \pi / L$)
c_{n}	Velocity of wave propagation $\frac{\sigma_{n}}{k}$
a	Wave amplitude
L_{s}	Structure length
z	Vertical distance from the still water level
$C_{\text {c }}$	Drag coefficient for free structure
C_{M}	Inertia coefficient for free structure
F^{\prime}	Force exerted on free structure
F_{m}	Measured force
S	Element length
\{Pt \}	Force matrix from the modified Morison's equation
[\widetilde{C}]	Equivalent linear damping matrix
$\left[\mathrm{C}^{\mathrm{W}}\right.$]	Damping matrix using the damping coefficient in water
[M*]	Generalized mass matrix
[K*]	Generalized stiffness matrix
[C*]	Generalized damping matrix
\{ P^{*} \}	Generalized force vector
[ϕ]	Eigen vector
$\left\{\omega^{2}\right\}$	Eigen value
[7]	Normal co-ordinate structural displacement
[$\dot{+}$]	Normal co-ordinate structural velocity
[$\ddot{\square}$]	Normal co-ordinate structural acceleration
$\{e(x)\}$	Error vector
$\alpha^{2} e_{n} e$	Ensemble average

α_{0}	Proportional factor multiplied by the mass matrix
${ }^{\alpha} 1$	Proportional factor multiplied by the
	stiffness matrix
f_{NY}	Nyquist frequency ($1 / 2 \Delta t$)
τ	Shear distribution
ψ	First mode shape of the structure
FN	Natural undamped frequency of vibration
FD	Natural damped frequency of vibration
W_{n}	Natural frequency of Nth mode $W_{n}=2 \pi \mathrm{FN}$
E	Modulus of elasticity
I	Second moment of area
W	Axial load
C_{DP}	Percentage ratio of the drag coefficient for
	a free structure to that for fixed structure
C_{MP}	Percentage ratio of the inertia coefficient
	for a free structure to that for fixed structure
$\mathrm{C}_{\text {DD }}$	Percentage ratio of the drag coefficient calculated
	by modified Morison's equation to that calculated
	by Morison's equation
$C_{M D}$	Percentage ratio of the inertia coefficient
	calculated by modified Morison's equation to that
	calculated by Morison's equation
VD	Reduced velocity ($\mathrm{U}_{\mathrm{m}} / \mathrm{D} F \mathrm{FN}$)
U_{m}	Maximum water partical velocity
\bar{M}	Effective mass
DM	Response parameter ($2 \overline{\mathrm{M}} \xi / \rho \mathrm{D}^{2} \mathrm{~L}_{\mathrm{S}}$) CD FN/ U_{m})

CHAPTER ONE

INTRODUCTION

At present, the exploration for energy resources has resulted in offshore structures being built in deep seas, where severe conditions of wind and waves exist; under these conditions the classical design process produces uneconomical and sometimes unsafe structures.

It has been shown in the inquiry into the collapse of Texas Tower No $4^{(1)}$ that dynamic analysis will have to be used for designing of such towers.

In deep water, the interaction of a time-dependent ocean environment with a dynamically responsive structure leads to complex resonance conditions and gives rise to larger stresses than would be predicted by a quasi-static analysis. For example, Brannon et al $1974^{(2)}$ have shown that the dynamic response can double the static wave load.

Laird 1962 and $1966^{(3,4)}$ has shown that the drag and inertia coefficients may vary rather widely when the structures are oscillating.

From the above it can be concluded that the investigation of the water wave/structure interaction is important for both the dynamic analysis and for the determination of the water wave force.

The existing knowledge in the fields of mechanical vibration and fluid mechanics can be used to determine the structural response. By knowing the system input of the wave profile and by applying the hydrodynamic theories, such as Airy's linear wave theory, the flow characteristics of the wave in the vicinity of the structure can be evaluated. Morison's semi-empirical force formula enables the hydrodynamic forces on the structure to be evaluated. The theory of mechanical vibration is used to compute the structural response due to these forces. The complication arises here due to the water wave/ structure interaction which is the interdependence of the fluid forces and structural response.

In general the problem of the interdependence of the fluid forces and structural response is caused by the structures significant velocity and acceleration only, This may be overcome by using the relative velocity and relative acceleration in the Morison's equation which is called the modified Morison's equation.

In this thesis an investigation of this interdependence, including the effect of the structure's vibration on the force coefficients (C_{D} and C_{M}) used in the force formula and the effect of this interdependence in the dynamic response (deflection), was carried out for the condition of low Keulegan-Carpenter numbers (1.87-10.69) and amplitudes of structure oscillation.

For this purpose extensive experimental work was done. Two sets of structures in different material were tested. The structures were circular cylindrical piles. The first set was PVC material and consisted of two groups. Each group had two structures with different heights. The first group was relatively stiff (the structure diameter was 0.11 metre), the second group was relatively flexible (the structure diameter was 0.0605 metre). The second set was aluminium and consisted of two structures of the same diameter (0.0574 metre), but with different height; in this set each structure was tested three times, once with no added load on top and later with different added loads on top, to give different flexibility properties of the sturcture. The dynamic properties of the tested structures, such as the damping coefficient, the fundamental natural frequency and the stiffness constant, were determined experimentally.

The above structures were tested for different wave conditions. At each wave condition and at each level of the structure where the pressure can be measured, the structure was tested twice, once when it was free to vibrate and once when it was prevented from vibrating. At each test, the wave profile, the pressure distribution around a certain level of the structure, the tip displacement and the bending moment at the base of the structure were measured.

The data obtained from the experiments were subjected to extensive analysis in order to predict the most appropriate wave theory for the tested wave condition and the method used for the determination of the average value of the force coefficients C_{D} and C_{M}. For the determination of the wave velocity and acceleration, the fast Fourier's analysis was utilized to obtain the free higher harmonic components in the tested wave. The least square method was used in the determination of the average value of the C_{D} and C_{M}.

For the analysis of the structural response, the structure system was idealized. The equivalent structure was assumed to be fixed at the base and the continuous member was assumed to consist of a series of pipe finite elements with discrete springs
of mass at the two end nodes. The vertical wave force was ignored and the horizontal wave force was discretized at the node point. The analysis was restricted to two dimensions.

Two methods were used in the formulation of the dynamic equation of structural response in order to find whether the water wave/structure interaction represents a significant contribution in the prediction for the case of the condition studied.

The first method included the water wave/structure interaction which will cause a nonlinear term in the partial differential equation of motion, the direct approach method was used to overcome this nonlinearity. In the second method, the water wave/structure interaction was ignored by assuming that the wave force is not modified by the motion of the structure and substituted for this assumption by using the value of the hydrodynamic damping obtained in still water for the dynamic analysis.

The numerical analyses were done by finite element method using computer program SAP IV.

The dynamic response was calculated by the mode superposition technique taking only the first three modes and using time domain description.

This work gives a clear insight into the relative influence of the structure vibration on the fluid force coefficients, (the inertia and drag coefficient). It also gives the possibility of substituting for the nonlinear hydrodynamic damping that arise from the terms of relative fluid-structure velocities by the damping coefficient in still water for obtaining the structural response.

CHAPTER TWO

SURVEY OF LITERATURE RELATED TO DYNAMIC RESPONSE

The flow induced vibrations are a relatively complex and diverse phenomena and heterogeneous body of research and analyses in related fields is available but is scattered through a wide variety of journals.

One of these phenomena is the water wave/structure interaction. The term, water wave/structure interaction, however, denotes only these phenomena in which an interdependence develops between the fluid dynamic forces acting on the structure and the structural response.

The inclusion of the dynamic response of an offshore structure to the water wave force complicates the determination of the structure's behaviour and water wave force.

In order to study the behaviour of these structures unaer dynamic loading and wave conditions, the following aspects of the problem will have to be understood and properly applied to the structure in question.
(1) The hydrodynamic forces on the structure caused by waves
(2) The idealization used to model the structure's system should simulate the system's response.
(3) The applicable numerical procedure must be used.

2.1 HYDRODYNAMIC FORCES

The determination of the hydrodynamic forces exerted by waves on structure is complex, even for slender members because of the assumptions and approximations required to predict the wave force. This requires the determination of the time histories of the loading corresponding to the design wave (i.e. velocity and acceleration time histories of wave particular with the region of each structure).

2.1.1 WATER WAVE THEORIES

If the flow field is assumed incompressible and irrotational, the flow field should satisfy the Laplace's equation

$$
\begin{equation*}
\nabla^{2} \phi=0 \tag{2.1.1}
\end{equation*}
$$

where ϕ is the velocity potential.

The flow field will have to satisfy the following boundary conditions

- A - at the surface
let $\quad \eta(x, y, z, t)$ describe the surface S
\therefore the kinematic boundary $u_{\eta_{x}}+V \eta_{y}+W \eta_{z}=-\eta_{t}$
free surface boundary $\frac{p}{\rho}=0$... (2.1.3)
where $P / \rho=$ Pressure at the free surface
then the generalized Bernoalli equation reduce to

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}+\frac{1}{2}\left(\dot{u}^{2}+v^{2}+w^{2}\right)+g Y=F(t) \quad \ldots \ldots \tag{2.1.4}
\end{equation*}
$$

- B - at the bottom

Let $G(x, y, z, t)$ represent the bottom surface

$$
\begin{equation*}
\cdot \cdot \dot{U} G_{x}+V G_{y}+W G_{z}=-G_{t} \quad \ldots \quad \ldots \tag{2.1.5}
\end{equation*}
$$

where the suffix mean differentiation with respect to the subscript.

All wave theories find close solution to the above equations by using certain assumptions to match with the physical condition of the wave ($5,3,7$).

The wave in the sea can be classified periodic, aperiodic and translatory. The regions of applicability of the various wave theories depend on the following parameters:
(a) The wave parameters, wave height, wave length and period (H, L, T)
(b) The position parameter water depth (h).

The limitation conditions for sinusoidal and stakes wave were shown by Laitone $1962^{(8)}$. Wilson $1957^{(9)}$, Dean ${ }^{(10,11,12)}$ and more recently Nishimuru and Isobe $1978^{(13)}$ have discussed the validity of these various theories. Figure (2.1.1) shows the relation between the validities of the theories to evaluate the kinematic properties for water wave with the relation to wave and position parameter after Dean ${ }^{(12)}$, also Figure (2.1.2) after Wilson.

Pigure (2.1.1) - The Range of Validity of Various Wave Theories.

In irregular random waves, the statistical properties will have to be determined. The random wave spectrum consist of waves having different wave-lengths and frequencies, Wiegel $1964^{(14)}$ and more recently $1978^{(15)}$ used several linear and non-linear representations of the ocean system.

The wave theory for the appropriate wave region is then chosen. From this, velocity and accelerations are calculated and related to the force.

$$
d / T^{2}-\left(f t \cdot / \sec .^{2}\right)
$$

Figure (2.1.2) - Representation of Zones of Validity of Various Wave Theories.

2.1.2 HYDRODYNAMIC FORCE

Several approaches have been developed for evaluation of the wave forces on offshore structures. The applicability of these methods depends on the relative magnitudes of the typical dimension of the structure, D, with respect to the wave-length, L, and wave height, H. The dimensionless ratios $H / 2 D$ (the wake parameter) and $2 \pi D / L$ (the scattering parameter) are key parameters which dictate the choice of the method used for wave force evaluation on offshore structure. See Figure (2.1.3) by Garrison and Rao 1977 ${ }^{(16)}$.

Figure (2.1.3) - Wave Force Theory.

The scattering parameter $2 \pi D / L$ controls the ratio between the incident wave and the reflected wave. For large value of $2 \pi \mathrm{D} / \mathrm{L}$ the structure is largely in a deflection regime. For smaller value of $2 \pi \mathrm{D} / \mathrm{L}$ the structure will be in the drag regimes where the incident wave plays a predominant part.

The following ratios of D / L give the approximate regime of flow

D/L > 1 pure reflection
$D / L \geqslant 0.2$ diffraction effects predominate
D/L <0.2 incident wave predominate

The wake parameter H/2D controls the flow regime of the wave round the body as H/2D becomes sufficiently large, flow separation and energy dissipation in eddys are important, where the viscous effects become important and the following ratios of D / H give approximate regimes, Verley ${ }^{(17)} 1975$.

D/H > O.3 inertia increasingly predominant
$D / H=0.6$ incipience of lift (and drag)
$\mathrm{D} / \mathrm{H}<0.3$ drag increasingly predominant

2.1.2.1 FORCE ON LARGE BODIES

2.1.2.1A DIFFRACTION THEORY

For the case of diffraction where viscous effects are not important, MacCamy $1954^{(18)}$ calculated the forces on cylinder subjected to regular wave using linear wave theory and Bessel function.

Spring and Monkmeyer $1974^{(19)}$ outlined an analytical procedure of solution for any number of cylinders (Linear Theory) and obtained results for the case of two cylinders. Chakrabarti $1978^{(20)}$ applied with slight modification, Spring and Monkmeyer (1974) method to the case of more than two cylinders.

Garrison 1974, 1978 ${ }^{(21-22)}$ presented the linear wave theory based on Green's function, for general structural geometries. Raman et al $1975{ }^{(23)}$ used a higher order theory to obtain analytical studies for circular cylinder. They used the perturbation method to obtain a solution for the second order theory. This resulted in a slight improvement when compared with the linear theory.

For the case of diffraction where viscous and diffraction effects were important, for the case of an isolated cylinder, Chakrabarti $1973^{(24)}$, used a fifth order waves theory. However there is an inconsistency in his solution as the fifth order wave theory was used without satisfying the free surface non-linear condition.

2.1.2.2 FORCE ON SMALL BODIES

For small values of the scattering parameter " $2 \pi \mathrm{D} / \mathrm{L}$ " and the wake parameter "H/2D" where Morison's equation and diffraction theory both apply, the problem can be treated as radiated waves.

2.1.2.2A MORISON'S EQUATION

As mentioned above that when scattering parameter is small Morison's equation is applied to evaluate the wave force, this equation has been formulated by Morison et al $1950{ }^{(25)}$ for the vertical cylinder The main assumptions were,
(a) the body has negligible effect on the waves (the wave field does not change due to the presence of the structure),
(b) the total force on the body has two independent components.

These two component of forces are:

The drag force which results from the flow separation induced by the relative velocity of the fluid around the structure, the drag force on the body is generally made up of two terms, one a viscous and the other a pressure term, In the vast majority of cases the viscous term is negligible compared to the pressure as the viscous drag is proportional to velocity and not to the velocity squared as for the pressure drag force.

The other component is the inertia force which is due to the pressure gradient associated with the relative acceleration of the ambient fluid and is proportional to the particle acceleration.

Therefore the total force on a vertical cylindrical structure is assumed to be

$$
\begin{equation*}
F_{T}=F_{D}+F_{I} \quad \cdots \quad \cdots \quad \cdots \quad \cdots \tag{2.1.6}
\end{equation*}
$$

Each of these time varying components has been formulated in terms of (i) Geometrical properties of the structure, (ii) fluid properties describing the flow field and (iii) some "variable coefficients"

$$
\left.\begin{array}{rl}
\cdot d F_{D}(t) & =C_{D} 1 / 2 \rho D \dot{U}(t)|\dot{U}(t)| d s \quad \ldots
\end{array}\right)(2.1 .7)
$$

where $D=$ diameter of the cylinder
$\rho=$ water density
$\dot{\mathrm{U}}=$ fluid particle velocity
$\ddot{U}=$ fluid particle acceleration
$C_{D}=$ drag coefficient
$C_{M}=$ inertia coefficient

In the above equations the geometrical properties of the structure appear as exposed area in the drag force term and as volume in the inertia term. But this geometry of the structure also affects the fluid flow field around the structure as shown in Blesvins $1977^{(26)}$.

The fluid properties represented in the wave velocity and acceleration in the above equations are calculated from the wave theories. Hence it is important to use the sequential wave theory in order to estimate accurately the wave force. They also affect indirectly the estimation of C_{D} and C_{M} as shown below.

The variable coefficients are the drag coefficient and the inertia coefficient. The drag force on structure is due to the pressure difference across the structure. This pressure difference is due to separation of the flow from some point on the structure creating a low pressure area behind the structure. The position at which separation occurs, the way in which it occurs and the resultant wake width all influence the pressure behind the structure. Thus the drag coefficient is used taking into account the unknown pressure difference across the structure.

The inertia force on the body is due to the fluid in the wave accelerating and as the fluid in the wave must move round the object additional accelerations are involved, related to the curvature of flow. The accelerations are dependent on the form of the wake. These accelerations induce a force field which is expressed in terms of the fluid mass it displaces.

It is clearly shown that the drag and the mass (inertia) coefficient is dependent on the geometrical properties of the structure and the fluid properties describing the flow field.

The experimental values of C_{d} and C_{m} obtained by Morison et al show some scattering and no trend as function of dimensionless parameter, Reynolds number ($U_{\max } D / V$), where " $U_{\max }$ is the maximum surface orbital velocity, D is the structure diameter and ψ is the kinematic viscosity of the fluid.

Because the wave flow reverses every half wave cycle as shown in Figure (2.1.4). This means that there is only a relatively short time for the wake to form before it is destroyed. Keulegan and Carpenter $1968^{(27)}$ formed a dimensionless parameter which compares the time for a wake to form with the time available for it to form.

Figure (2.1.4) - Direction of Velocity and Acceleration at Various Points of a Wave Cycle.

They carried out studies both theoretically and experimentally on the force acting on cylinders in an oscillating flow field. They observed that C_{D} and C_{m} varied over a wave cycle. They correlated the cycle averaged values of C_{D} and C_{m} with the period parameter $K-C=U_{m} T / D$ called the Keulegan-Carpenter number where ${ }^{\prime} U_{m}$ is the maximum orbital velocity, T is the wave period and D is the diameter of the cylinder."

The variation of the average of the inertia coefficient values per cycle with the period parameter is shown in Figure (2.1.5). Similarly for the drag coefficient is shown in Figure (2.1.6).

Figure (2.1.5) - C_{M} Versus Keulegan-Carpenter Number.

Figure (2.1.6) - C_{M} Versus Keulegan-Carpenter Number.

The period parameter $K-C$ is associated with the flow separation process and eddy formation around the cylinder. When $\mathrm{K}-\mathrm{C}$ is small, no separation occurs. As K-C increase, separation is initiated and eddies are formed.

In the work of Keulegan and Carpenter they did not correlate C_{D} and C_{M} with respect to Reynolds number R_{e}.

In order for Morison's equation to be applicable and be useful to engineers in the design of offshore structure, it was necessary to undertake a comprehensive laboratory and field tests for the purpose of determining the coefficient of drag and inertia which appear in the equation. Some of the data came from the measurements carried out in the actual sea condition (field test).

Wiegel, Beebe and Moon $1957^{(28)}$ made field measurements at Pacific Coast (Davenport, California) on various sections of a 6.625 inch cylinder. They used linear wave theory, average values of C_{D} and C_{M} were obtained. They calculated C_{M} at zero velocity and C_{D} at zero acceleration, the results show considerable variations in the mean values of C_{D} and C_{M} as well as scatter.

Agerschau and Edens $1965^{(29)}$ used the data obtained from Wiegel et al and used Stokes fifth-order theory. The values of C_{D} and C_{M} obtained were also scattered and show that the fifth order approach was not superior to the first order "linear theory."

Reid $1957^{(30)}$ measured force on a section of an 8.625 inch cylinder in water of 30 ft depth in the Gulf of Mexico. The kinematics of the flow were calculated from the wave profile and the drag and inertia coefficient were obtained through the use of the least squares technique. Measured wave force records and those calculated using constant mean C_{D} and C_{M} values were in good agreement. Structural vibration was observed and allowed for in the analysis.

Wilson $1965^{(31)}$ presented the results of wave force data from an experiment conducted with a 30 inch diameter pile in confused sea conditions in the Gulf of Mexico. He developed a numerical filter with which unwanted high frequency effects were removed from force records. Large scatter in C_{D} and C_{M} values from different wave force record analyses.

Two wave projects were undertaken at the Gulf of Mexico and the results were evaluated by several researchers; Aagaard and Dean $1970^{(32)}$ by using stream function theory in the estimation of C_{D} and C_{M} with $C_{M}=1.33$ and C_{D} varying with Reynolds number as obtained from the data, they found agreement between calculated and measured local force maximum within 50%.

Evans $1970^{(33)}$ performed his work in 100 ft depth of water with 3.7 ft diameter pile. The average pressure distribution was measured over a one foot section. The forces and their directions were calculated from it. The wave profile was recorded simultaneously with pressure. He used Stokes fifth order wave theory to calculate C_{D} and C_{M}. Calculated total forces were generally within 10% of the measured forces, and usually conservative. None of the evaluations of the data of the two projects considered the effect of currents.

Wheeler $1970^{(34)}$ used another technique to represent the data of the Gulf of Mexico by predicting the velocities and accelerationsby linear digital filter acting on the wave profile records. No correlation of C_{M} and C_{D} coefficient with critical parameter was reported; agreement between measured and calculated maximum local forces was within 40%.

Kim and Hibbard $1975{ }^{(35)}$ presented the results of data obtained from measurements in Australia. The test pile was 38 ft long and $12 \cdot 75$ inch in diameter, it was subjected to rather small amplitude waves, the agreement between the measured and calculated force was good in the drag dominated part of the wave cycle and fair in the inertia dominated region.

Heideman, Olsen and Johansson $1979^{(36)}$ used two methods to evaluate the drag and inertia coefficients from the large scale experiments of space frame structure in the Gulf of Mexico. The first was the least squared error procedure for each half wave cycle. The second method consisted of evaluation of C_{D} over short segments of wave where drag force was dominant and of C_{M} over short segments in which inertia force was dominant. The force coefficients exhibited large scatter particularly for $K-C$ 20. The current was taken into consideration.

Bretschneider $1967^{(37)}$ predicted the probability distributions of peak wave drag and inertia force from field tests carried out in California Coast at Devenport for vertical cylinder using linear wave theory, the probabilistic approach considering peak drag and inertia forces were unsatisfactory.

The reasons for discrepancies in the evaluation of C_{D} and C_{M} in field tests may be many; among the more important are:

1. Representation of the irregular wave
2. Turbulence around the structure by which the test structures are supported
3. Inaccuracy in measuring force
4. Vibration of test structure
5. Inability of wave theories to describe actual water particle motion especially if there is the possibility of a steady ocean current.

In order to eliminate most of the above discrepancies, to obtain for a wide range of data and flow conditions and to segregate each parameter which can affect the calculation of C_{D} and C_{M}, laboratory experimental tests were conducted. In the laboratory tests several experimental methods have been used in the evaluation of the drag and inertia coefficient which include:
(a) Force measured on structure in laboratory wave
(b) Force measured on structure in an oscillating fluid, where the motion of the particle is in straight line rather than orbital
(c) Force measured on a cylinder constrained to move with an oscillatory motion in a stationary fluid.

The flow field characteristics of (a) are essentially different from that of (b) and (c).

Some of the experimental work which follow pattern (a) were carried out by Morison et al $1950^{(25)}$ using measured moments and using linear wave theory, in calculating C_{M} and C_{D} they did not correlate well with $\mathrm{d} / \lambda, \mathrm{D} / \lambda$ or R_{e} for linear sinusoidal waves.

Susbielles et al $1971^{(38)}$ used various methods of derivation of coefficients which included linear, stokes third and fifth order wave theory and stream function wave theory. The actual C_{M} and C_{D} range of values varied with the method of derivation. Several C_{M} and C_{D} pairs were shown to predict the same force. By using the values of the coefficients from Keulegan and Carpenter's curve the results obtained differed by 10% between the measured and the calculated.

Chakrabarti et al $1975^{(39)}$ found large scatter in C_{D} and C_{M} values using Morison's equation in threedimensional vector form with component normal to the axis of the cylinder. Measured and calculated mean forces agreed to within 10% using C_{D} and C_{M} values for individual waves. The tested structures were held at various inclinations in line with and normal to the waves.

Gaston and Ohmart $1979{ }^{(40)}$ measured the total wave force and overturning moment on a smooth and roughened 14 ft long, lft diameter, vertical cylinder under conditions of periodic and random waves. Drag and
inertia coefficients have been determined by the least squares method, using the measured in-line moment and predicted kinematics from the irregular stream function theory. Typical Reynolds number of the experiments were 2×10^{5} to 3×10^{5} based on the r.m.s water-particle velocity data. The results gave the average values of C_{D} and C_{M} as:

$$
C_{D}=0.77 \text { and } C_{M}=1.81
$$

for smooth cylinder.

Experiments which seem to have shed the most light upon the fundamental behaviour of C_{D} and C_{M} are those which have been conducted in straight line oscillatory motion. The best known early experiments were those of Keulegan and Carpenter $1958^{(27)}$ who utilized the linear oscillatory flow field under a node of standing wave. Their experiments showed that C_{D} and C_{M} are not constant throughout a motion cycle but, in fact, varied substantially with motion phase. More recently in a series of papers Sarpkaya et al have presented the results of an extensive series of oscillating fluid experiments using vertical U-shaped water tank. Sarpkaya (1976a, 1976b) ${ }^{(41-42)}$ conducted a series of experiments for smooth and sand-roughened cylinders to evaluate the drag and inertia coefficients introducing "frequency parameter " β in which $\beta=D^{2} / \nu T$ or β is equal to $R_{e} / K-C$ parameter to represent the data of C_{D} and C_{M}. The dependence of C_{D} and C_{M} on B has already
been noted in connection with the discussion of the Stokes 1851 ${ }^{(43)}$ sphere problem. Sarpkaya 1977a ${ }^{(44)}$ carried out his series of experiments for high Renolds numbers. Sarpkaya et al $1977^{(45)}$ expressed their results for C_{D} and C_{M} as function of Reynolds number, Keulegan-Carpenter number and relative roughness. For large KeuleganCarpenter number, they obtained a different trend than Keulegan-Carpenter ${ }^{(27)}$. In general the scatter in the data is small.

Maull and Milliner $1978^{(46)}$ examined the production and motion of vortices in a sinusoidally-oscillating flow in a small U-tube at Reynolds numbers smaller than about 4,000. They proposed that the variation of the drag coefficient during a cycle may be considered as the addition of two terms, the inertia term with $C_{M}=2.0$, and a further term which is a function of the movement of the vortices produced.

Bearman and Graham $1979^{(47)}$ measured the in-line force on several cylindrical bodies in plane oscillatory flow in a small U-tube over a range of $\mathrm{K}-\mathrm{C}$ number from 3-70 at relatively small Reynolds number. They had noted large cycle to cycle variations in computed values of C_{D} and C_{M} even though the bulk flow in the U-tube was closely repetitive.

Force measured on a structure constrained to move with an oscillatory motion in a stationary fluid (Pattern C) help to add insight into the role played time dependence.

Most of the work of unidirectional acceleration of a body in stationary fluid conducted to establish a single force coefficient combines the effects of drag and inertia. Kiem $1956^{(48)}$ showed that the single coefficient as a function of $(d \dot{U} / d t) D / \dot{U}^{2}$. This correlated the data fairly well. Also the experimental work of Laird and Johnson $1956^{(49)}$ and Laird et al $1959^{(50)}$ expressed the result in terms of total resistance coefficient.

Dalton et al $1976^{(51)}$ and Sarpkaya and Garrison $1963^{(52)}$ tried to use dimensional analysis to show that the single coefficient can be used to transform the results from the oscillating cylinder into the problem of a stationary cylinder in an oscillating fluid otherwise from Pattern C to Pattern A and B.

From the above we can see the differences in the test condition, methods of measurement and data evaluation do not permit a critical and comparative assessment of the drag and inertia coefficients obtained in each investigation. A comprehensive summary of the data on forcetransfer coefficients has been presented by Hogben et al 1977 ${ }^{(53)}$. The relationship between C_{D} and C_{M} has shown that there is not a unique relationship between them, independent of $K-C$ and R_{e}. Hogben $1976^{(54)}$ suggested
a conceptual modelling of the interaction leading to an explicit formula for the inter dependence of C_{D} and C_{M}, it is based on highly simplified and somewhat initiative reasoning.

2.1.2.2B TRANSVERSE FORCE (LIFT FORCE)

Although the transverse force is not concerned in these studies it is important to mention it because this phenomenon may cause increase in in-line force and it has an important effect closely related to drag forces. The transverse force can be calculated from the equation:

$$
\begin{equation*}
d F_{L}(t)=D_{L^{\frac{1}{2}}} \rho D \dot{U}_{m}^{2} d s \quad \cdots \quad \cdots \quad \cdots \tag{2.1.9}
\end{equation*}
$$

where $C_{L}=$ transverse or (Lift) coefficient. The rest of the symbols have been identified previously.

The phenomenon of the transverse force is caused by the eddy shedding and so it is likely to be influenced by the way in which the eddies are shed (this also applied to the drag force). Some of the work concern the transverse force in wave flow have been looked at by Bidde $1971^{(55)}$, Wiegel and Delmonte $1972^{(56)}$, Isaacson $1974^{(57)}$ and Zedan and Rajabi 1981 ${ }^{(58)}$. Some of the work concerning the transverse force in harmonically oscillating flows has been measured by Mercier $1973^{(59)}$, Sarpkaya 1975a, $\left.1976 \mathrm{a}^{(00}, 41\right)$ and Maull and Milliner 1978, 1979(46, 61).

2.1.2.3 MORISON EQUATION FOR A FLEXIBLE CYLINDER

The original Morison equation has been modified by several investigations to cover in some sense the effect on the in-line forces of the flexibility of the structure. In particular the absolute value of the fluid velocity has been replaced by the relative one with respect to the structure's velocity, and the added mass term associated with the acceleration of the structure has been included (see Berge and Penzien $1976^{(62)}$; Moan, Haver and Vinje $1975^{(63)}$).

The modified relation is:

$$
\begin{array}{r}
d F(t)=\left(\left(C_{n}-1\right) \frac{\pi D^{2}}{4} \rho(\ddot{U}(t)-\ddot{X}(t))+\frac{\rho \pi D^{2}}{4} \ddot{U}+\right. \\
+\frac{1}{2} C_{D} \rho D|\dot{U}(t)-\dot{X}(t)|(\dot{U}(t)-\dot{X}(t)) d s \\
\\
\ldots \quad \ldots \ldots(2.1 .10)
\end{array}
$$

where $\ddot{X}=$ The acceleration of the structure at the point under consideration
$\dot{X}=$ The velocity of the structure at the point under consideration.

The rest of the symbols have been identified previously.

Although Equation (2.1.10) is a reasonable extension of the original Morison equation, it requires experimental verification as the original form of Morison's equation has been used for the estimation of C_{D} and C_{M} in field studies.
2.2

In order to solve the static or dynamic response of any structure to the existing force it is necessary to model structure-foundation accurately to be able to establish the structure mechanism behaviour and the interaction between the superstructure and the supporting foundation.

As the offshore structure is a very complex structure and problem; Penzein and Tseng $1976{ }^{(64)}$ refer to separate the modelling of the structure foundation system into (a) a foundation system, (b) a structure system.

2.2.1 FOUNDATION SYSTEM

The foundation of offshore structure can be either raft foundation as those commonly used for the gravity type of structure; see Figure (2.2.1) or a piles foundation as those normally used for the framed steel type of structure, see Figure (2.2.2).

Figure (2.2.1) - Gravity Structure

Figure (2.2.2) - Framed Steel Structure

The foundation impedence function stiffness coefficient and the damping coefficient of the foundation must be derived by performing a steady state foundation substructure dynamic analysis under harmonic excitation at its interface boundary. For the gravity structure Veletsos and Wei $1978^{(65)}$, Luco and Westmann 1971 ${ }^{(66)}$ have obtained the foundation impedence assuming a uniform elastic half space. Luco $1974{ }^{(67)}$ obtained it assuming a layered viscoelastic half-space.

Due to the presence of piles, realistic model of the foundation subsystem for framed steel structure is more complicated. Novak $19744^{(68)}$ generate the foundation impedence for single pile in a uniform layer of soil founded in rigid rock. Kausel and Roessel 1975(69)
applied the finite element representation to obtain the impedence function. Tsai and Housner $1970^{(70)}$, Lysmer and Kuhlemeyer $1969^{(71)}$ developed the "exact" wave transmitting boundary element.

As the foundation impedence and damping which consist of rediation damping causing loss of energy of the motion due to the soil properties hence it is frequency dependent.

A type of the soil modelling of the foundation for gravity type and framed steel type are shown in (Figure 2.2.3) and (Figure 2.2.4) respectively.

The effect of the soil parameter on the mathematical model of the foundation subsystem for the dynamic response of the structure had two principal effect according to (Taylor $1975^{(72)}$ and Angelides and Conner $1979^{(73)}$).

Figure (2.2.3) - Soil Model for Gravity Structure.

Figure (2.2.4) - Soil Model for Framed Steel Structure.

1. Significant shifts in the response were observed for reasonable modification in the soil properties
2. Reduction in foundation stiffness due to soil degradation increases the foundation period of the structure and the dynamic amplification of the structure response

The first point has been investigated by Moan et al $1975^{(63)}$ for the shear modulus variation. The combination of the soil properties expressed in terms of damping and stiffness indicate that smaller soil damping will give higher dynamic amplification at resonnance (Bell et al 1976(74)). For the soil stiffness a higher dynamic amplification is found for a higher soil stiffness (Taylor $1974{ }^{(75,72)}$) and that is clear due to the small amount of energy absorped'by the soil.

The second point has been investigated (e.g. Walt 1978 ${ }^{(76)}$). It is important to represent the mathematical model for modelling the structure foundation interaction using the foundation impedence and damping. Figure (2.2.5) shows some of the modelling used.

As the foundation has been represented completely in the offshore structure the vital points now are to use the information from the foundation modelling in the analysis using the foundation structure-interaction, this point has been looked at by many professional investigators egg. (Penzin 1976 ${ }^{(77)}$, Taylor ${ }^{(75)}$). The interaction can be represented by forming the stiffness and damping matrix which are used in the equation of motion governing the dynamic analysis of the structure.

$$
\begin{gather*}
{[M]\{\ddot{X}\}+[C]\{\dot{X}\}+[K]\{X\}=\{F(t)\}} \\
\ldots \ldots \ldots \tag{2.2.1}
\end{gather*}
$$

where

$$
\begin{aligned}
& {[M]=} \text { Mass matrix } \\
& {[C]=} \text { Damping matrix } \\
& {[K]=} \text { Staffness matrix } \\
&\{\ddot{X}\},\{\dot{X}\} \text { and }\{X\}=\text { Acceleration, velocity and } \\
& \text { displacement of the structure respectively } \\
&\{F(t)\}= \text { Hydrodynamic force }
\end{aligned}
$$

by using the interaction between structure-foundation, the damping and the stiffness matrix will be

$$
\begin{align*}
& {[c]=\left[c_{s}\right]+\left[c_{f}\right] \quad . . \quad} \tag{2.2.2}\\
& {[K]=\left[K_{S}\right]+\left[K_{f}\right] \ldots \ldots \ldots} \tag{2.2.3}
\end{align*}
$$

$$
\text { where } \begin{aligned}
{\left[C_{S}\right] } & =\text { Damping in the free structure } \\
{\left[C_{f}\right] } & =\text { Damping in the foundation } \\
{\left[K_{S}\right] } & =\text { Stiffness in the free structure } \\
{\left[K_{c}\right] } & =\text { Stiffness for the foundation }
\end{aligned}
$$

One suitable method for evaluating $\left[C_{S}\right]$ is to use the dynamic properties of the fixed base structure along with the pseudo/static influence coefficient associated with its base degrees of freedom, i.e.

where $\left[C_{S}^{f}\right]$ is the damping matrix for the fixed base structure,
$\left[\begin{array}{c}\mathrm{bb}\end{array}\right]$ is the damping matrix associated with the base degree of freedom of the structure, and
$\left[C_{s}^{b}\right]$ is the coupling damping matrix,

Matrix $\left[C_{S}^{f}\right]$ can be formulated for the fixed base structure using the relation formulated by Clough $1975^{(78)}$

$$
\begin{equation*}
\left[\mathrm{c}_{\mathrm{S}}^{\mathrm{f}}\right]=\left[\mathrm{M}^{\mathrm{f}}\right]\left[\sum_{J=1}^{\mathrm{m}} \frac{2 \zeta_{J} W_{J}}{M_{J}}\left\{\phi_{J}\right\}\left\{\phi_{J}\right\}^{T}\right]\left[\mathrm{M}^{\mathrm{f}}\right] \tag{2.2.5}
\end{equation*}
$$

where $\left[M^{f}\right]$ is the diagonal mass matrix, including hydrodynamic add mass,
m is the number of normal modes to be considered and
$\left\{\phi_{J}\right\}, W_{J}, \zeta_{J}$ and M_{J} are the mode shape vector, frequency, damping ratio and generalized mass respectively of the $J^{\text {th }}$ normal mode.

Matrices $\left[C_{S}^{b}\right]$ and $\left[C_{S}^{b b}\right]$ can be formulated as follows:

$$
\begin{equation*}
\left[C_{s}^{b}\right]=-\left[C_{s}^{f}\right]\left[b_{s}\right] \ldots \quad \ldots \quad \cdots \quad \cdots \tag{2.2.6}
\end{equation*}
$$

$$
\begin{equation*}
\left[c_{s}^{b b}\right]=\left[b_{s}\right]^{T}\left[C_{s}^{f}\right]\left[b_{s}\right] \quad \cdots \quad \cdots \tag{2.2.7}
\end{equation*}
$$

where $\left[b_{s}\right]=$ pseudo-static influence coefficient matrix which is equal to

$$
\begin{equation*}
\left[b_{s}\right]=-\left[K_{s}^{f}\right]^{-1} \quad\left[K_{s}^{b}\right] \quad \cdots \quad \cdots \quad \cdots \tag{2.2.8}
\end{equation*}
$$

In which $\left[K_{S}^{f}\right]=$ Stiffness matrix of fixed base structure $\left[K_{S}^{b}\right]=$ Stiffness-coupling matrix expressing the force developed in the degrees of freedom of the fixed base structure caused by the pseudo-static displacement of the base degrees of freedom.

From the above we can conclude that the understanding and evaluating the dynamic analysis of the fixed base structure should be carried out before establishing the analysis of the offshore structure with its foundation.

2.2.2 THE STRUCTURE SYSTEM

The structure system must be idealized so that the dynamic analysis can be made with simple systems forming the dynamic properties Mass, Stiffness and Damping of the structure.

2.2.2.1 THE MASS MATRIX

The mass matrix can be formulated either by consistent mass matrix or by the lumped mass matrix, the simplest procedure for defining the mass matrix of any structure is to assume that the entire mass is concentrated at the points of which the translation displacement are defined.

The usual procedure for defining the point mass to be located at each node is to assume that the structure is divided into segments, the modes serving as connection points.

The mass matrix of the offshore structure can be represented as

$$
\begin{equation*}
M=M_{m}+M_{a}+M_{F} \ldots \ldots \tag{2.2.9}
\end{equation*}
$$

```
where }\mp@subsup{M}{m}{}=\mathrm{ Material structural mass and the platform mass
Ma}=\mathrm{ Added mass due to the displaced fluid replaced
    by the submerged part of the structure
MF}=\mathrm{ Flooding and marine growth mass
```

The part of M_{F} due to the flooding mass can be easily calculated and it is the mass of water occupying certain volume of structure element to make it flood. The part of M_{F} due to marine growth are not easy to predict due to uncertainties of the marine growth thickness over the whole structure. Heaf $1979^{(79)}$ shows the effect of increased marine growth on the mass matrix. This effect appears in two ways; firstly, the increase in mass of the structure and secondly, the increase in hydrodynamic added mass due to an increase in displaced volume.
M_{m} is the mass of the structure material plus the mass of the platform deck including all the machinery and equipment. It is easy to calculate and form the mass matrix for M_{m}. But the only problem associated with M_{m} is to choose the position and number of mass points to be taken in the analysis.

Maddox $19744^{(80)}$ has conducted a study to find the best position and number of discrete mass points to be considered by using two different representation of the mass points for the same structure, as shown in figures (2.2.6A and 2.2.6B) which represent model 1 and model 2 respectively.

A comparison between the two models has shown that model 1 can be considered to be an adequate representation of the structure to be accounted for.

Figure (2.2.6a) - Model 1. Figure (2.2.6b) - Model 2.

The number of discrete mass points must be considered in the analysis, because at each discrete mass point the dynamic equation of motion is set. By using a large number of discrete mass points we get a similar number of equations of motion to be solved simultaneously which requires too much computer time and a high computer capacity. This is not the only disadvantage of choosing too many lumped masses but also it gives an inaccurate solution because of the higher frequency modes which will be concluded in the solution while not being required.

From the above it is important to choose the exact number of lumped mass to be taken in the mathematical modelling of the structure. Nath and Harleman 1969 ${ }^{(81)}$ used one lumped mass at the platform for two massless leg structures, the experimental result shows that there is quite good agreement with the predicted analysis for deep water wave and with different space between structures. Harleman et al $1963{ }^{(82)}$ carried out experiments for four massless leg structures using one lumped mass at the platform. They show general agreement between experimental and analytical prediction. Experimental and analytical studies for one-degree of freedom of one, two and four massless towers subjected to regular and random water waves had been performed by Nath and Harleman $1967{ }^{(83)}$ taking into consideration the stress and the moment of the structures and the effects of the spacing of vertical supports on the platform deflection and also the effect of wave direction emphasis, the general agreement with the use of the one-degree of freedom. The above experiments used structure model fixed at the base and the wave structure interaction were ignored. It does not show whether the model represent any full scale real structure.

Nolan and Honsinger $1962^{(84)}$ found that for the single degree of freedom approximation for the structures assuming that all masses to be concentrated at the platform level, the ratio of the maximum theoretical to experimental displacement varied from 0.5-1.7.

Molhotra and Penzin $1970^{(85)}$ mentioned that the behaviour of a tower in water subjected to random wave forces can be represented fairly accurately by using the first and second mode or first, second and third lateral mode of vibration. Also Bege and Penzien $1974^{(62)}$ concluded that at least six normal modes of vibration should be included in the three-dimensional dynamic analysis.

Wu $1976^{(86)}$ concluded that the number of discrete mass points necessary to satisfy the displacement analysis is less than that required for the analysis of shear force and bending moment.

The use of a large number of lumped masses is unnecessary.
M_{a} represent the mass of water attached to the structure and move with it as one body. The evaluation of this mass of water represented by the equation

$$
\begin{equation*}
M_{a}=\left(C_{m}-1\right) \rho F \tag{2.2.10}
\end{equation*}
$$

where $¥=$ Volume of water displaced by structure
$\rho=$ Water density
$C_{m}=$ Mass coefficient (inertia coefficient)

Equation (2.2.10) has a numerical coefficient which attribute uncertainties to the evaluation of the added mass. Many works assumed that $C_{M}=2.00$ which means that the added mass will be equal to the mass of water displaced by the structure.

King $1971^{(87)}$ support the idea of $C_{M}=2.00$ and also mentioned that the added mass is unaffected by streaming flow and vortex shedding, as well as the added mass function was seen to be independent of frequency, amplitude and model shape. Jenssen et al $1977^{(88)}$ observe that the above statement of King is not absolute as they found a variation in added mass near the surface. Sarpkaya 1981 ${ }^{(89)}$ dealt with the question of instantaneous value of inertia coefficient which lead to negative added mass in some parts of the wave cycle, which prove that the added mass is not a constant value during the wave cycle and also it varies due to wave and structure condition.

2.2.2.2 THE STIFFNESS MATRIX

The stiffness matrix is independent of the type of the structure whether offshore or inshore. It is also independent of the solution type i.e. whether static or dynamic, although some papers state that there are changes in stiffness matrix due to the difference in the dynamic Young's modulus. (See Nath and Harleman $1969^{(81)}$ and Hallam et al 1978 ${ }^{(90)}$).

2.2.2.3 DAMPING MATRIX

It is important to understand the general description of damping. Damping is basically a dissipation of energy due to motion. There are several possibilities for energy dissipation:
(i) MATERIAL DAMPING

The material damping is thought to be very small. This component may mathematically be represented as viscous damping. The damping coefficient may be assumed to be constant throughout the structure and only depend on the structure material.
(ii) STRUCTURAL DAMPING

The structural damping is caused by the way the structure is assembled (bracing, welding) and on the structure mechanism. The assessment of material damping is equally valid for structural damping.

For offshore structure the environmental damping is mainly of hydrodynamic origin. Damping forces due to movement of air above the water line are negligible compared with the hydrodynamic damping.

The above physical possibilities of damping summed together to represent and use of damping in computations. In calculations, the damping are represented by the damping coefficient which can be calculated from the equation:

$$
\begin{equation*}
\zeta=\frac{C}{C_{c}} \times 100 \quad \ldots \quad \ldots \quad \ldots \quad \ldots \tag{2.2.11}
\end{equation*}
$$

the damping coefficient is usually imagined to be constant throughout the structure which is not a good physical description (see Vugts and Hayes $1979^{(91)}$), the value of this coefficient is given in the form of a percentage of critical damping, as critical damping cannot be defined for a general N-degree of freedom, the natural period of vibration is important and to get the damping coefficient in the equation

$$
\begin{equation*}
C_{c}=2 M W_{n} \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \tag{2.2.12}
\end{equation*}
$$

where $M=$ mass of structure

$$
W_{n}=\text { natural frequency of structure }
$$

The most vital part is to establish the appropriate damping coefficient. Several papers have been published concerning this point, some used model structures (Skep et al $1976^{(92)}$ and King $1972^{(33)}$) and others used prototype structures.

The damping coefficient of the structure can be measured by one of the three possible methods
(a) Log-decrement measurements of decay vibration resulting from a free vibration due to tip displacement
(b) Response measurements under known imposed excitation
(c) Response measurements under natural excitation for offshore structure

For offshore structure methods (a) and (b) seem practical for establishing the damping coefficient, the snag in both methods has been pointed out (91), also in the mathematical representation of the physical realities Three main factors affect the choice of a preferable method: nonlinear effects, local damping effect and frequency dependent coefficients.

Ogilive 1964(94) found that the choice of a damping coefficient has strong effect upon forces and displacement but it had hardly any effect on the resonant frequency.

In reviewing the work done by some offshore professional in estimating the damping coefficient, Cherry and Brady $1965^{(95)}$ used the concept of outocorrelation technique for random vibration of experimental data as a method for predicting structure dynamic properties (Natural period and damping coefficient), the result concluded that reasonable estimation of structure period can be obtained from an analysis involving small amounts of data, relatively large sample sizes are required if meaningful estimates of structure damping coefficient are expected.

A method of measuring structural damping based on time delay correlation has been established by Jeary and Winney $1972^{(96)}$ for random vibration experiment data has shown that the results obtained with this method is in good agreement with the results obtained from the standard decay tests. Vanmarke $1971{ }^{(97)}$ outlines a new method based on power spectral density analysis for determining period and damping values of offshore structure from field measurements of their response to wave-induced random excitation. Ruhl and Berdahl 1979(98) carried out forced vibration tests to find the damping coefficient they found that the damping coefficient is less than two percent of the fundamental group of modes and is three to five percent range for the second group of modes. They used the steady state test which show that these tests are extremely useful for determination of coefficient of damping. Also Ruhl
$1976^{(90)}$ conducted free vibration tests and spectral analysis of random response data to find the fundamental periods and damping coefficient using the partial spectral moment method for the random vibration.

Another way of getting the damping of offshore structures is by separating it into two parts, first the material and structure damping and second the environmental "Hydrodynamic Damping. Skop et al 1972(92) evaluated a damping empirical formula for circular cylinder, but it had not been used or proven. King $1972^{(93)}$ tried the hydrodynamic damping in still water, concludes that it is pure viscous and may be described by Stokes element damping theory. His work also shows that the damping increases rapidly with water depth. Verley $1978^{(10)}$ compared between the independent flow fields, i.e. by taking the damping as being the still water and the hydrodynamic added damping due to the relative velocity, his result of the analysis confirms the suggestion of using the independent flow fields for low values of the reduced velocity $\left(U_{r}=U_{m} / f_{n} D\right)$ and low expected vibration amplitude as the relative velocity assumption for calculating the hydrodynamic damping will overestimate the damping, and underestimate vibration. Verley and Moe $1979^{(101)}$ carried out experimental investigation of oscillating cylinder in current and the results indicate the same conclusion of those of Verley $1978^{(102)}$ (100). Dean et al $1979{ }^{(103)}$ in his report tried to establish values to be added, called
(implied damping) to substitute the hydrodynamic damping but in their report they could not generalize the values for the sea state.

2.3 NUMERICAL PROCEDURE

A realistic dynamic analysis of the fixed offshore structure is complex. Hence approximation analogous to the single-degree of freedom system is adequate. But a full and comprehensive dynamic analysis appears to be the only satisfactory way of dealing with the problem.

Two general aspects of the problem must be briefly discussed.

2.3.1 TIME DOMAIN AND FREQUENCY DOMAIN DESCRIPTION

A distinction in time and frequency domain analyses is governed by the manner in which the excitation is handled; (The right hand side of the equation of motion). With a description in the time domain the full time history of every quantity is involved, certain initial conditions are specified and with the loading distribution over the whole structure known as a function of time, the response of the structure may be obtained at each and every instant.

- Constant and frequency depended coefficient can both simply and equally be handled. These coefficients may arise from e.g. hydrodynamic and soil interaction (added mass, damping coefficient). Time dependent coefficients are strictly not admissible.
- Non-linearities in system properties (stiffness, damping) or in loading wave force can only be modelled by linearization.
- The equation of motion have the appearance of differential equation but are in fact algebraic equations (see Ogilvie $1964^{(94)}$).
- The steady state solution only is obtained, and it is obtained directly.
- For N degree of freedom and harmonic excitation, a system of 2 N linear algebraic equations must be solved at each frequency. The response to a random excitation can be obtained through spectral analysis.
- An arbitrary though prescribed excitation over a short period cannot be handled in the sense that the response include transients but it can be analysed using Fourier series.

2.3.1.2 MATHEMATICAL FORMULATION OF THE DYNAMIC PROBLEM IN TIME DOMAIN DESCRIPTION

In the time domain with constant coefficients the equations are differential equations. Frequency dependent coefficients lead to the inclusion of retardation functions, the equations become integro-differential equations (see Ogilvie). Coefficients that are functions of time can be handled.

- The equations are differential or integrodifferential equations.
- Transient and/or steady state solutions can be obtained. Initial conditions have to be specified. Number of cycles required for steady state to be reached may be large depending on initial conditions and damping.
- For N degree of freedom and harmonic excitation of a linear system under certain assumptions the set of N second order differential equations may be replaced by N simultataneous equation for every time step response, to random excitation may be obtained directly through numerical integration.
- Any non-linearity can in principle be included provided that an adequate mathematical formulation and solution procedure is available.
- The differential equations must be solved numerically with small time steps, initial conditions and a criterion to define steady state condition have to be specified.
- Numerical integration under random excitation is a time consuming process. For different excitation the whole process must be repeated. In general the random loading distributions are required.
- Any prescribed excitation can be dealt with by direct numerical integration given appropriate conditions and a reliable integration technique.

2.3.2 MODEL SUPERPOSITION AND DIRECT INTEGRATION

The distinction between model superposition and direct integration techniques lies in the manner by which the equation describing the behaviour of the system are dealt with.

The model superposition technique makes use of the fact that the response of a complex multi-degree of freedom system can be described as the sum of the responses of a number of one-degree of freedom system. By appropriate coordinate transformations the degrees of freedom are uncoupled, so it improves the understanding of the system properties, also the excitation has also to be
transformed to refer to the same coordinate system. The system may be continuous or discretized.

The direct integration approach, the coupled equation which in practical cases would refer to a discretized system are integrated as they stand.

2.3.2.1 MATHEMATICAL FORMULATION OF THE DYNAMIC PROBLEM BY MODEL SUPERPOSITION

- The basic features of this technique is that N degree of freedom system are uncoupled into N equations each describing a single degree of freedom system. The technique is exploited when the eigenvalues of the coupled equation is real.
- The essential difficulty with model superposition is the number of modes that have to be considered.
- The system non-linearities cannot be included.
- The first requirement in an eigenvalue solution in order to find the undamped natural frequencies and mode shapes.
- The transformation to generalized coordinates is lengthy but needs to be done only once. Only the transformation of the loading function is to be represented.
- Relatively small computer can handle the problem.
2.3.2.2 MATHEMATICAL FORMULATION OF THE DYNAMIC PROBLEM BY DIRECT INTEGRATION
- The coupled equation is dealt with directly.
- There are no questions of truncation of a series, the full solution is obtained.
- Non-linearities can in principle be incorporated.
- Although not a part of the solution procedure, definition of damping may be facilitated by an eigenvalue solution of the first few natural frequencies. Knowledge of the principal mode shapes also improve physical insight.
- No transformation is required.
- Large computer is required.

Two practical examples of the way in which dynamic analysis have been incorporated into particular design problems in both the time and frequency domain had been carried out by Schumm $1978^{(104)}$ for steel jacket platform. It showed that the advantage of using time domain analysis are as follows:

1. The correct structure submergence for members in the region of the still water surface.
2. Drag force can be included without linearizations.
3. Relative velocity between wave and structure can be correctly accounted for.

Also in frequency domain it shows that despite the necessity to perform linearization, the frequency domain approach provides an extremely powerful tool for stochastic analysis for long term effects as it reduces the amount of data processing to a manageable size and significantly reduces computing cost over an equivalent time domain approach. It shows also that the best suited technique of the solution of mathematical model for steel platform is the model superposition technique in which case the major response of the structure can be adequately represented by the first ten or so mode shapes without a significant loss of accuracy.

Vugts 1979 (105) made a comparison between the solution of mathematical model, also alternative model superposition analysis using varying numbers of modes to account for dynamic effects, supplemented by the full static solution which replaces the corresponding static component contained in the solution of the truncated model series has been used. All calculations were performed in frequency domain for two derivatives of the structure:
the first is made artificially stiff in order to make it dynamically insensitive to the wave load and the second is made artificially flexible in order to produce significant dynamic response to the prescribed wave excitation. This work indicates that pure model superposition is unacceptable if a realistic prediction of detailed member end forces and moment (and hence stresses) is the primary objective. The comparison with exact direct solutions confirm that model analysis provides reasonably reliable estimates of gross platform behaviour, expressed in terms of global horizontal displacement even when relatively few modes are used.

A considerable improvement in accuracy observed when static response of higher modes, which were truncated in the model series, has a large influence upon the number force contribution and firmly recommended that however stress recovery is the primary objective of a dynamic analysis of an offshore structure a direct solution of the equation of motion in the physical coordinates should be performed. In the stiff structure it is not necessary to perform the direct dynamic solution as it more costly than model superposition.

CHAPTER THREE

THEORETICAL FORMULATION

3.1 INTRODUCTION

The problem of determining structural interaction of cylinders in periodic waves will be examined theoretically. The model posed is a circular cylinder fixed at the base and either free or fixed at the top (i.e. free to vibrate or not) subjected to periodic waves.

The periodic wave form will be assumed to be linear. The force on the structure due to these waves will be obtained by the Modified Morison's equation as well as Morison's equation.

The dynamic sturctural response to waves will be calculated using mode superposition in the time domain. A finite element method is used to solve the resulting dynamical equations.

3.2 WAVE DYNAMICS

The accuracy of the determination of the water wave force depends on the accurate description of waves. This is needed to obtain the appropriate wave velocity and accelerations necessary for the prediction of wave forces.

The wave flow field used in this study is assumed to be in two dimensions. Also it is assumed to be incompressible and irrotational which will satisfy Laplace's equation (2.1.1)
$\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0$

The bottom surface is assumed to be horizontal, rigid and impermeable and hence Equation (2.1.5) reduces to
$\frac{\partial \phi}{\partial y}=0$ at $y=-h$

The Equation (2.1.4) is linearized by neglecting the velocity components, also by assuming small amplitude wave

$$
\begin{equation*}
\therefore \quad \eta=\frac{1}{g} \frac{\partial \phi}{\partial t} \quad \text { at } y=0 \quad \ldots \quad \ldots \quad . . \tag{3.2.3}
\end{equation*}
$$

To satisfy the linearization of the boundary condition, the ratio between the neglected terms and terms which have been retained should be small. This is found to give:
ak < I, ($\tanh \mathrm{Kh}$ and $\cosh \mathrm{Kh} \ll 1$) ...
if the velocity potential is considered to be the first term ϕ_{11} in a perturbation expansion
$\phi=\phi_{11}+\phi_{12}+\phi_{13}+\ldots \phi_{\mathrm{n}} \quad \ldots \ldots$
where $\phi_{n-1}>\phi_{n}$ for all n

The ratio of ϕ_{12} / ϕ_{11} should be small where (ϕ_{12} is the Stokes second order term)
$\phi_{12}=3 / 8 \frac{a^{2} g}{C} \quad \frac{\cosh 2 k(h+z)}{\sinh ^{3} K h \cosh K h} \sin 2(k x-\sigma t)$

To satisfy the above requirement the following condition must hold
$a / K^{2} h^{3}<1 . . . \quad$.

The wave generated contained small amplitude of higher order free harmonic waves. The wave profile was periodic

$$
\begin{equation*}
\cdots n(t+\tau)=n(t) \quad \ldots \quad \ldots \quad \ldots \quad \tag{3.2.8}
\end{equation*}
$$

The experimental wave profile obtained for one wave cycle was analysed using the Fast Fourier Transfor to obtain the magnitude of each of the individual free harmonic waves

$$
\begin{align*}
& \eta_{\text {total }}=\sum_{n \ldots} a_{n} \cos \left(K_{n} x-\sigma_{n} t\right)+b_{n} \sin \left(K_{n} x-\sigma_{n} t\right) \\
& \therefore \eta_{\text {total }}=\sum_{n} A_{n} \cos \left(K_{n} x-\sigma_{n} t+\alpha_{n}\right) \quad \ldots \tag{3.2.10}
\end{align*}
$$

where $A_{n}=$ amplitude of the nth harmonic in the wave
$=\sqrt{a_{n}^{2}+b_{n}^{2}}$
$\alpha_{n}=$ the phase shift relationship between the various waves (nth harmonic) and the measured from the original ($k x$ - σt) and equal to $\tan ^{-1} \frac{a_{n}}{b_{n}}$

Since Laplace's equation is linear, the velocity potential of a wave system $\phi_{\text {total }}$ is given by the sum of the potential of the individual waves
$\phi_{\text {total }}=\phi_{1}+\phi_{2}+\phi_{3}+\ldots \phi_{n} \ldots \ldots$
in which
$\phi_{n}=\frac{A_{n} g}{\sigma_{n}} \frac{\cosh K_{n}(h+z)}{\cosh K_{n} h} \sin \left(K_{n} x-\sigma_{n} t+\alpha_{n}\right)$
...
and the dispersion relation
$C_{n}^{2}=\left(g / K_{n}\right) \tanh K_{n} h \quad \ldots \ldots \ldots$
where

$$
\begin{aligned}
g= & \text { gravitational acceleration } \\
\sigma_{\mathrm{n}}= & \text { the nth wave angular frequency }=2 \pi / T_{\mathrm{n}} \\
\mathrm{~K}_{\mathrm{n}}= & \text { the nth wave number }=2 \pi / L_{\mathrm{n}} \\
\mathrm{~h}= & \text { distance from the still water level } \\
& \text { to bottom } \\
\mathrm{C}_{\mathrm{n}}= & \text { velocity of the } \mathrm{nth} \text { wave propagation } \\
& \text { (phase velocity) }=\mathrm{L}_{\mathrm{n}} / \mathrm{T}_{\mathrm{n}} \\
\mathrm{Z}= & \text { vertical distance measured positive upward } \\
& \text { from the still water level }
\end{aligned}
$$

Since the fluid particle velocity and acceleration are first derivative of ϕ, they can be added because ϕ is linear

$$
\begin{equation*}
\dot{U}_{\text {total }}=\dot{U}_{1}+\dot{U}_{2}+\dot{U}_{3}+\ldots+\dot{U}_{n} \ldots \tag{3.2.14}
\end{equation*}
$$

where

$$
\begin{array}{r}
\dot{U}_{n}=\frac{\partial \phi_{n}}{\partial x}=\frac{A_{n} g K_{n}}{\sigma_{n}} \frac{\cosh K_{n}(h+z)}{\cosh K_{n} h} \cos \left(K_{n} x-\sigma_{n} t+\alpha_{n}\right) \\
\ldots \ldots \ldots \ldots(3.2 .15) \tag{3.2.15}
\end{array}
$$

and

$$
\begin{equation*}
\ddot{U}_{n}=\ddot{U}_{1}+\ddot{U}_{2}+\ddot{U}_{3}+\ldots+\ddot{U}_{n} \quad \ldots \ldots \tag{3.2.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\ddot{U}_{n}=\frac{\partial \dot{U}_{n}}{\partial t}=A_{n} g K \quad \frac{\cosh K_{n}(h+z)}{\cosh K_{n} h} \sin \left(K_{n} x-\sigma_{n} t+\alpha_{n}\right) \tag{3.2.17}
\end{equation*}
$$

3.2.2 WAVE FORCES

The wave forces on structure will be determining using Morison's equation. This force varies with time during the wave cycle. It also varies with the position of different element along the structure. The force on the element is calculated using the average values of the drag and the inertia coefficients during the wave cycle (over the cycle C_{D} and C_{M} are assumed constant).

$$
\begin{align*}
d F_{(t, z)} & =\left[\left.C_{D(z)} \frac{1}{2} \rho D\left(\dot{U}_{\operatorname{total}(t, z)} \mid \dot{U}_{\operatorname{total}(t, z)}\right) \right\rvert\,+\right. \\
& \left.+C_{M(z)} \frac{\rho \pi D^{2}}{4} \ddot{U}_{\operatorname{total}(t, z)}\right] d z \ldots \tag{3.2.18}
\end{align*}
$$

In the case where the structure is free to vibrate the force on the element will be represented by

$$
\begin{align*}
& d F_{(t, z)}^{\prime}=\left[\left.C_{\dot{D}(z)}^{\prime} \frac{1}{2} \rho D\left(\dot{U}_{t o t a l}(t, z)^{-} \dot{X}_{(t, z)}\right) \right\rvert\, \dot{U}_{\operatorname{total}(t, z)^{-}}\right. \\
&\left.\dot{X}_{(t, z)}\right|^{+\left(C C_{M}^{\prime}-1\right) \frac{\rho \pi D^{2}}{4}\left(\ddot{U}_{t o t a l}(t, z)^{-} \ddot{X}_{(t, z)}\right)+} \\
&\left.+\frac{\rho \pi D^{2}}{4} \ddot{U}_{t o t a l(t, z)}\right] d z \quad \cdots \quad \ldots \tag{3.2.19}
\end{align*}
$$

The corresponding bending moment at the base of the structure due to the wave force can be obtained by integrating of Equations(3.2.18) and (3.2.19) along the submerged part of the structure for the case of small structure's deflection.

For the case of free structure (cantilever)
$M_{B}=\int_{Z_{0}}^{h} d F(t, z)^{z d z}$
or
$M_{B}=\int_{z_{0}}^{h} d F_{(t, z)^{\prime}}^{z d z \quad \cdots \quad \cdots \quad \cdots \quad \cdots \cdot}$
For the case of fixed structure
$M_{B}=\int_{z_{0}}^{h} d F_{(t, z)} \frac{z\left(L_{S}-z\right)^{2}}{L_{S}} d z \quad \ldots \quad \ldots$
where $L_{S}=$ structure length.

The appropriate drag and inertia coefficients are obtained using either Equation (3.1.15) or (3.1.16) in conjunction with the measured wave force. The method of obtaining the measured wave force, the parameter $\dot{x}_{(t, z)}$ and $\ddot{x}_{(t, z)}$ will be shown later in this chapter.

The average values of the drag and inertia coefficients during the wave cycle can be calculated by one of the following methods:

1. Fourier analysis
2. Cross point (calculated of the drag coefficient at zero inertia force and calculating of the inertia coefficient at zero drag force)
3. Least square method

The Fourier analysis for an oscillating flow represented by
$\dot{\mathrm{U}}=\dot{\mathrm{U}}_{\mathrm{m}} \cos \sigma_{\mathrm{t}} \quad \ldots \quad \ldots \quad \ldots \ldots$
the average value of C_{D} and C_{M} are given by Keulegan and Carpenter (27)
$C_{D}=-0.75 \int_{0}^{2 \pi}\left(F_{m} \cos \sigma t / \rho \dot{U}_{m}^{2} S D\right) d t \quad \ldots$
and
$\left.C_{M}=\left(2 \dot{U}_{m} T / \pi^{3} D\right) \int_{0}^{2 \pi} F_{m} \sin \sigma t / \rho \dot{U}_{m}^{2} S D\right) d t$
in which F_{m} is the measured force and S is the length of the segment over which the force was measured. This method yields the same value of C_{M} as that of the least square method but with slight difference in
the value of C_{D}. This method is not applicable if there are free higher order harmonic waves present in the wave. The omission of the second harmonic wave will affect the value of the force coefficients (see D. I. Maull and M. G. Milliner 1979(61)).

The cross point will give discrepances due to the difficulty in determining the region of the zero drag and zero inertia during the wave cycle.

The least square method is more applicable, as it can deal with higher harmonic component in the wave. The least square method used is as follows

$$
\begin{equation*}
\mathrm{F}_{\mathrm{m}}=\left(\mathrm{f}_{\mathrm{I}}\right) \mathrm{C}_{\mathrm{i}}+\left(\mathrm{f}_{\mathrm{D}}\right) \mathrm{C}_{\mathrm{D}} \quad \cdots \quad \cdots \tag{3.2.25}
\end{equation*}
$$

where
$\left(f_{I}\right)=\frac{\rho \pi D^{2}}{4} \ddot{U}_{\operatorname{total}}(t, z)^{S} \quad \cdots \quad \cdots \quad \cdots$
$\left(f_{D}\right)=\frac{1}{2} \rho D \dot{U}_{\text {total }(t, z)}\left|\dot{U}_{\text {total }(t, z)}\right| S$
$\Sigma\left(f_{D}\right)^{2} C_{M}+\Sigma\left(f_{I}\right)\left(f_{D}\right) C_{D}=\Sigma\left(f_{I} F_{m}\right) \quad \ldots$
$\Sigma\left(f_{I}\right)\left(f_{D}\right) C_{M}+\Sigma\left(f_{D}\right)^{2} C_{D}=\Sigma\left(f_{D} F_{m}\right) \quad \ldots$

$$
\begin{align*}
& \therefore C_{D(z)}=\frac{\Sigma\left(f_{I}\right)^{2} \Sigma\left(f_{D} F_{m}\right)-\Sigma\left(f_{I} F_{m}\right) \Sigma\left(f_{I}\right)\left(f_{D}\right)}{\Sigma\left(f_{I}\right)^{2} \Sigma\left(f_{D}\right)^{2}-\Sigma\left(\left(f_{I}\right)\left(f_{D}\right)\right)^{2}} \\
& \text {... } \tag{3,2,30}\\
& C_{M(z)}=\frac{\Sigma\left(F_{m} f_{I}\right) \Sigma\left(f_{D}\right)^{2}-\Sigma\left(f_{D} F_{m}\right) \Sigma\left(f_{I}\right)\left(f_{D}\right)}{\Sigma\left(f_{I}\right)^{2} \Sigma\left(f_{D}\right)^{2}-\Sigma\left(\left(f_{I}\right)\left(f_{D}\right)\right)^{2}} \tag{3.2.31}\\
& \text { where } F_{m}=\text { measured force for the case either (fixed } \\
& \text { or free). }
\end{align*}
$$

In the case of the modified Morison's equation is used Equation (3.2.25) becomes

$$
\begin{equation*}
F_{m}=\left(F_{I}\right)+\left(f_{\mathrm{I}}^{\prime}\right) C_{\mathrm{m}}^{\prime}+\left(f_{\mathrm{D}}^{\prime}\right) C_{\mathrm{D}}^{\prime} \cdots \cdots \tag{3.2.32}
\end{equation*}
$$

where

$$
\begin{align*}
& F_{I}=-\frac{\rho \pi D^{2}}{4} \ddot{X}_{(t, z)} S \quad \ldots \quad \ldots \quad \ldots \quad \ldots \\
& \left(f_{\dot{I}}^{\prime}\right)=\frac{\rho \pi D^{2}}{4}\left(\ddot{U}_{\operatorname{total}(t, z)}-\ddot{X}_{(t, z)}\right) S \ldots \\
& \left(f_{\dot{D}}^{\prime}\right)=\frac{1}{2} \rho D\left(\dot{U}_{\text {total }}(t, z)-\dot{x}_{(t, z)}\right)!\ddot{U}_{\text {total }}(t, z)- \\
& \dot{x}_{(t, z)} \mid S \tag{3.2.35}
\end{align*}
$$

by arranging Equation (3.2.29)

$$
\begin{equation*}
F_{m}^{\prime}=\left(f_{\mathrm{I}}^{\prime}\right) C_{M}^{\prime}+\left(f_{\mathrm{D}}^{\prime}\right) C_{D}^{\prime} \quad \cdots \quad \ldots \quad \ldots \tag{3.2.36}
\end{equation*}
$$

```
the values of \(C_{D(z)}\) and \(C_{M(z)}\) can be obtained from Equations (3.2.30) and (3.2.31) using these new values of \(F_{m}^{\prime}, f_{I}^{\prime}, f_{D}^{\prime}\).
```


3.3 STRUCTURAL DYNAMICS

The problem of vibrating structure is solved by equilibrating the externally applied force with the inertia forces resulting from the acceleration of the structure, the elastic resistance to displacement and the energy-loss due to the structure mechanism (damping). The difficulties arises in the prediction of structural dynamic of offshore structure is due to the dependence of external applied force on the structure oscillation.

The prediction of the dynamic response of offshore structure will depend upon the idealization used to model the structure system, the formulation of the equation of structure system response and the method of solution of the structural system equations with its numerical analysis.

3.3.1 THE STRUCTURE MODELLING

The structural system used in this study is modelled as follows:

- The continuous member is assumed to be series of discrete masses connected by springs (with no mass)
- The continuous wave forces are represented by point loads acting at the mass centres

Figure (3.3.1(a)) shows the actual structure and the wave force while Figure (3.3.1(b)) shows the modelled structure

(a) Actual Structure

(b) Idealized Structure

Figure (3.3.1) - Modelling of the Structures.

Further idealizations upon which the analysis is based are (a) stress is proportional to strain, (b) small deflection theory, (c) all motion is measured from the position of static equilibrium.

In this study, it is assumed that the waves travel in the positive x direction. All structural and loading variations in the y direction are therefore neglected. Thus, the number of degrees of freedom at each node is reduced to three; namely, translational displacements in the horizontal x direction and in the vertical direction, and rotational dizplacement about the y-axis.

3.3.2 FORMULATION OF THE EQUATION OF STRUCTURAL

SYSTEM RESPONSE

The force on the structure including the interaction effect and noting that $\dot{U}_{0} \simeq \dot{U}_{x}$ and $\ddot{U}_{0} \simeq \ddot{U}_{x}$, where substript 'o' indicates that these quantities are taken at the undeflected structure location, the complete dynamic equation for the idealized structure shown in Figure (3.3.l(b)) may be written as follows

$$
\begin{align*}
& {\left[\begin{array}{ccccc}
M_{1} & 0 & 0 & 0 & 0 \\
0 & M_{2} & 0 & 0 & 0 \\
\vdots & & & & \\
\dot{0} & 0 & 0 & 0 & A_{n}
\end{array}\right]\left\{\begin{array}{c}
\ddot{x}_{1} \\
\ddot{x}_{2} \\
\vdots \\
\dot{\dot{x}_{n}}
\end{array}\right\}+\left[\begin{array}{ccccc}
c_{11} & c_{12} & c_{13} & \ldots & c_{1 n} \\
c_{21} & c_{22} & c_{23} & \ldots & c_{2 n} \\
& & & & \\
c_{n 1} & c_{n 2} & c_{n 3} & \ldots & c_{n n}
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\vdots \\
\dot{x_{n}}
\end{array}\right\}} \\
& +\left[\begin{array}{lllll}
K_{11} & K_{12} & K_{13} & \ldots & K_{1 n} \\
K_{21} & K_{22} & K_{23} & \ldots & K_{2 n} \\
\cdot & & & & \\
\vdots & & & & \\
K_{n 1} & K_{n 2} & K_{n 3} & \ldots & K_{n n}
\end{array}\right]\left\{\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right\} \\
& =\left\{\begin{array}{l}
P_{1}(t) \\
P_{2}(t) \\
\vdots \\
\vdots \\
P_{n}(t)
\end{array}\right\} \tag{3.3.1}
\end{align*}
$$

where the column matrix $\{P(t)\}$ can be obtained from modified Morison's equation (3.2.19)

$$
\begin{aligned}
& \left\{\begin{array}{l}
P_{1}(t) \\
P_{2} \\
\vdots \\
\cdot \\
P_{n}(t)
\end{array}\right\}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & F_{m 2} & 0 & 0 & 0 \\
0 & 0 & F_{m 3} & 0 & 0 \\
0 & & & & \\
0 & & & & \\
0 & 0 & 0 & 0 & F_{m n}
\end{array}\right]\left[\begin{array}{ll}
0 & -\ddot{x}_{1} \\
\ddot{U}_{o 2} & -\ddot{x}_{2} \\
\ddot{U}_{o 3} & -\ddot{x}_{3} \\
0 & \\
\cdot & \\
\ddot{U}_{o n} & -\ddot{x}_{n}
\end{array}\right\}+ \\
& +\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & F_{m 2}^{\prime} & 0 & 0 & 0 \\
0 & 0 & F_{m 3}^{\prime} & 0 & 0 \\
. & & & & \\
\cdot & & & & \\
0 & 0 & 0 & 0 & F_{m n}^{\prime}
\end{array}\right]\left\{\begin{array}{l}
0 \\
\ddot{U}_{o 2} \\
\ddot{U}_{o 3} \\
0 \\
0 \\
\ddot{U}_{o n}
\end{array}\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{mn}}=\frac{\rho \pi \mathrm{D}^{2}}{4}\left(\mathrm{C}_{\mathrm{Mn}}-1\right) \mathrm{S}_{\mathrm{n}} \\
& \mathrm{~F}_{\mathrm{Mn}}^{\prime}=\frac{\rho \pi \mathrm{D}^{2}}{4} \mathrm{~S}_{\mathrm{n}} \\
& \mathrm{~F}_{\mathrm{Dn}}=\frac{1}{2} \rho \mathrm{D} \mathrm{C}_{\mathrm{Dn}} \mathrm{~S}_{\mathrm{n}}
\end{aligned}
$$

Here and thereafter, the agreement t of these time dependent quantities is dropped for convenience, except when a time dependent quantity first appears.

Equations (3.3.1) and (3.3.2) can be written as
$[\sim M-]\{\ddot{X}\}+[C]\{\dot{X}\}+[K]\{X\}=\left[-F_{m}\right]\left\{\ddot{U}_{o}-\ddot{X}\right\}+\left[-F_{m} \rightarrow\left\{\ddot{U}_{0}\right\}+\right.$ $+\left[-\mathrm{F}_{\mathrm{D}} \longrightarrow\right]\left\{\left(\dot{\mathrm{U}}_{\mathrm{O}}-\dot{\mathrm{X}}\right)\left|\dot{U}_{\mathrm{O}}-\dot{\mathrm{X}}\right|\right\}$

By rearranging the above equation

$$
\begin{aligned}
{\left[-M+M_{m}\right]\{\ddot{X}\} } & +\left[[C]+\left[-2 \dot{U}_{0} F_{D}-\right]\right]\{\dot{X}\}+[K]\{X\}+ \\
& +\{E(\dot{X})\}=\{F(t)\}
\end{aligned}
$$

where

$$
\begin{align*}
\{F(t)\} & =\left[\left[F_{m}\right]+\left[F_{m}^{\prime}\right]\right]\left\{\ddot{U}_{0}\right\}+ \\
& \left.+\left[F_{D}\right] \quad\left\{\dot{U}_{o}\left|\dot{U}_{0}\right|\right\}\right\} \ldots \tag{3.3.5}
\end{align*}
$$

From Equation (3.3.4) it can be seen that the water wave/structure interaction produces a hydrodynamic damping due to the drag force, which is $\left[-2 \dot{U} F_{0}-\right]\{\dot{X}\}$ and a nonlinear vector $\{E(\dot{X})\}$ which has the form

$$
\{E(\dot{x})\}=-\left[\begin{array}{lllll}
- & F_{D}- \tag{3.3.6}
\end{array}\right]\{\dot{x}|\dot{x}|\} \quad \cdots \quad \cdots \quad \cdots
$$

The nonlinear nature of Equation (3.3.4) necessitates an examination of solution methods for systems of nonlinear differential equation. The following methods are used for the solution of nonlinear differential equation

1. Perturbation method
2. Semilinear method

The above methods depend upon the condition that the nonlinearity in the system is small.

PERTURBATION METHOD

In this method the nonlinear term $\{E(\dot{X})\}$ expressed $\{E(\dot{x})\}=\varepsilon\left\{E^{\prime}(\dot{x})\right\} \quad \ldots \ldots \ldots$
where $\{E(X)\}$ is the nonlinear damping function and
$\left\{E^{\prime}(\dot{X})\right\}$ described the shape of the nonlinearity
and the relative magnitude is indicated
by the parameter ε
when $\varepsilon=0$ the Equation (3.3.4) reduces the equation to linear oscillations. The perturbation method is based on the assumption that, the solution of the Equation (3.3.4) permits an expansion in power of ε. It is only expected to be valid for motions in which the nonlinear part of the damping force remain small in comparison with the linear part.

$$
\because\left\{\begin{array}{l}
x_{1} \\
x_{2} \tag{3.3.8}\\
\dot{\bullet} \\
\dot{x_{n}}
\end{array}\right\}=\left\{\begin{array}{r}
x_{10}+\varepsilon X_{11}+\varepsilon^{2} x_{12}+\ldots \\
x_{20}+\varepsilon X_{21}+\varepsilon^{2} X_{22}+\ldots \\
x_{n O}+\varepsilon X_{n 1}+\varepsilon^{2} X_{n 2}+\cdots
\end{array}\right\}
$$

Equation (3.3.8) can be written as
$\left\{X_{n}\right\}=\sum_{I=D}^{N P} \varepsilon^{I\left\{X_{n I}\right\} \ldots \ldots} \ldots \ldots$
where $N P=$ an arbitrarily large integer
$\mathrm{n}=$ number of node point

The Ith term of the quantity represents the Ith order correction to the (I-1)th order solution for that quantity . The expansion of the shape function $\left\{E^{\prime}(\dot{X})\right\}$ by using the truncated Taylor series with respect with ($\varepsilon \Delta \mathrm{X}$) is
\cdots equation (3.3.10) can be written as
$\left\{E^{\prime}(\dot{X})_{n}\right\}=\sum_{I=0}^{N P} \frac{\left(\varepsilon \Delta \dot{X}_{n}\right)^{I}}{I!}\left\{\frac{d^{I} E^{\prime}(\dot{X})_{n}}{d(\dot{X})_{n}^{I}}\right\} \ldots \ldots$
where
$\Delta \dot{X}_{n}=\dot{X}_{n 1}+\varepsilon \dot{X}_{n 2}+\varepsilon \dot{X}_{n 3}+\ldots \quad \ldots$
Therefore insert Equation (3.3.11) into Equation (3.3.8)
and substitute in Equation (3.3.4) with collecting terms having the same power of ε.

The first four of these would appear as

$$
\begin{aligned}
& {\left[\left[-M+M_{a}-\right]\{\ddot{\mathrm{X}}\}_{o}+\left[[C]+\left[-2 \dot{U} F_{D}-1\right]\{\dot{X}\}_{0}+\right.\right.} \\
& \left.+[K]\{x]_{0}-[F(t)\}\right]+ \\
& \varepsilon\left[\left[-M+M_{a}-\right]\{\ddot{\mathrm{X}}\}_{1}+\left[[\mathrm{C}]+\left[-2 \dot{U} \mathrm{~F}_{\mathrm{D}}-\right]\right]\{\dot{\mathrm{X}}\}_{1}+[\mathrm{K}]\{\mathrm{X}\}_{1}+\right. \\
& \left.+\left\{E^{\prime}(\dot{X})_{0}\right\}\right]+ \\
& \varepsilon^{2}\left[\left[\mathrm{M}+\mathrm{M}_{\mathrm{a}}-\right]\{\ddot{\mathrm{X}}\}_{2}+\left[[\mathrm{C}]+\left[-2 \dot{\mathrm{U}} \mathrm{~F}_{\mathrm{D}}-\right]\right]\{\dot{\mathrm{X}}\}_{2}+[\mathrm{K}]\{\mathrm{X}\}_{2}+\right. \\
& \left.+\left\{(\dot{X})_{1} \quad \frac{\mathrm{dE}^{\prime}}{\mathrm{d} \dot{x}}(\dot{\mathrm{X}})_{0}\right\}\right]+ \\
& \varepsilon^{3}\left[\left[M+M_{a}-\right]\{\ddot{X}\}_{3}+\left[[C]+\left[-2 \dot{U} F_{D}-\right]\right]\{\dot{X}\}_{3}+[K]\{X\}_{3}+\right. \\
& \left.+\frac{1}{2}\left(\left\{(\dot{X})_{1}^{2} \frac{d^{2} E^{\prime}}{d \dot{X}^{2}}(\dot{X})_{o}\right\}+2\left\{(\dot{X})_{2} \frac{d E^{\prime}}{d \dot{X}}(\dot{X})_{o}\right\}\right)\right]+\ldots=0 \\
& \text { (3.3.13) }
\end{aligned}
$$

If Equation (3.3.12) is to be satisfied identically in ε, each square bracket must separately vanish. This provides a chain of linear problems in which $X_{I+1}(t)$ may be considered as a linear response to an excitation that is a nonlinear function of the previously determined $X_{I}(t)$.

Applying the perturbation method to the given problem leads to difficulty of deciding how many terms the solution, (3.3.9) should retain in order to fully represent the nonlinearity by a series of the type (3.3.11). Also it is necessary to establish how the computation for higher-order terms is to be executed, and what the permissible values of ε should be.

SEMILINEAR METHOD

This method of analysis involves replacing the actual nonlinear system equation of motion (3.3.4), by a system of linear differential equation. It is possible to have the linear system to be an equivalent system by selecting the constants such that the errors arising from its use are minimal. The efficiency of this method depends, as did the perturbation method, upon the nonlinear strength of the system. If a highly nonlinear system were to be replaced by a linear one with constants selected to minimize the mean-square errors, the minimized errors might be large enough
to cast doubt upon the results. However, if the system is weakly nonlinear in the sense that its equations of motion possess linear portion which dominate the nonlinear portions (as anticipated in Equation (3.3.4)), the minimized replacement errors can be much smaller.

This method was applied to a nonlinear system with deterministic inputs by Krylov and Bogaliubov 1947(106). The semilinear approach for the problem of offshore structure is developed as follows.

The equation of motion (3.3.4) shows that the nonlinear effects are velocity-dependent which implies that the linear replacing system of equations should be of the form

$$
\begin{equation*}
\left[-M+M_{a}-\right]\{\ddot{x}\}+[\check{C}]\{\dot{X}\}+[K]\{x\}+\{e(\dot{X})\}=\{F(t)\} \tag{3.3.14}
\end{equation*}
$$

In Equation (3.3.14) [$\tilde{C}]$ is an equivalent linear damping matrix and $\{e(\dot{x})\}$ is the vector of velocity dependent errors introduced by having the linear system. It is the objective of the semilinear approach to minimize the elements of $\{e(\dot{x})\}$ in some manner.

Prior to discussing the manner in which elements of $\{e(\dot{x})\} \quad$ will be minimized, it is necessary to study [$\tilde{C}]$ in more detail to establish the parameters of this matrix which affect $\{e(\dot{x})\}$. Selection of
$\left[[C]+\left[-2 \dot{U}_{0} F_{D} \backslash\right]\right]$ is aided by examining Equation (3.3.4) and substituting for $\{E(\dot{X})\}$ from Equation (3.3.6) to obtain an alternative expression of Equation (3.3.4) as

$$
\begin{align*}
& {\left[-M+M_{a}-\right]\{\ddot{X}\}+\left[[C]+\left[-2 \dot{U}_{o} F_{D}-\right]+\left[-F_{D}\right][\sim \dot{X},]\right]\{\dot{X}\}+} \\
& \quad+[K]\{X\}=\{F(t)\} \quad \ldots \ldots \ldots \tag{3.3.15}
\end{align*}
$$

where the matrix $\left.\left[-F_{D}-\right][-\dot{X}\rangle\right]$ will produce a diagonal matrix. Equation (3.3.15) shows that, the diagonal element of the damping matrix(premultiplying $\{\dot{X}\}$) is a function of \dot{X}_{n} while the off-diagonal element is a constant, namely C_{mn}. Accordingly, it becomes sensible to take [$\widetilde{C}]$ to be given by

$$
\tilde{\mathrm{C}}_{\mathrm{Mn}}=\left\{\begin{array}{lllll}
\mathrm{C}_{\mathrm{Mn}} & \mathrm{~m} \neq \mathrm{n} & & & \tag{3.3.16}\\
\widetilde{\mathrm{C}}_{\mathrm{Mn}} & m \neq n & \ldots & \ldots & \ldots
\end{array}\right.
$$

where the diagonal element $\widetilde{\mathrm{C}}_{\mathrm{mn}}$ remain to be determined such that $\{e(\dot{x})\}$ is minimized.

By equating Equations (3.3.4) and (3.3.14) and solve for $\{e(\dot{x})\}$

$$
\begin{equation*}
\{e(\dot{x})\}=\left(\left[[C]+\left[\alpha 2 \dot{U}_{0} F_{D}-\right]-[\tilde{C}] \mid\right)\{\dot{X}\}+\{E(\dot{X})\}\right. \tag{3.3.17}
\end{equation*}
$$

As a consequence of Equation (3.3.16) at the nth node point the $\left\{e_{n}(\dot{x})_{n}\right\}$ depends only upon $\dot{X}_{n}, C_{n n}, 2 \dot{U}_{o n} F_{i n}$, $E_{n}(\dot{X})_{n}$ and the unknown constant of $\tilde{C}_{n n}$

$$
\begin{equation*}
\cdot e_{n}(\dot{x})_{n}=\left(C_{n n}+2 \dot{U}_{o n} F_{D n}-\tilde{C}_{n n}\right) \dot{x}_{n}+E_{n}(\dot{x})_{n} \tag{3.3.18}
\end{equation*}
$$

Taking the ensemble average of $e_{n}^{2}(\dot{x})_{n}$, given as
$\sigma_{e_{n}}^{2} e_{n}=\left\langle e_{n}^{2}(\dot{X}(t))_{n}\right\rangle \ldots \ldots \ldots$
provides N mean-square expressions of the nth node point $\left\{e_{n}(\dot{x})_{n}\right\}$ which can be minimized by N expressions of the form
$\frac{\partial \sigma_{e_{n}}^{2} e_{n}}{\partial C_{n n}}$
Since Equation (3.3.18) shows that $\tilde{\mathrm{C}}_{\mathrm{nn}}$ is the only unknown parameter affecting $e_{n}(\dot{x})_{n}$, substituting from Equations (3.3.18) and (3.3.19) into (3.3.20) leads to N equation for $\tilde{C}_{n n}$ by performing the operations

$$
\begin{equation*}
\frac{\partial}{\partial \widetilde{C}_{n n}}\left\langle\left(\left(C_{n n}+2 \dot{U}_{o n} F_{D n}-\tilde{C}_{n n}\right) \dot{X}_{n}+E_{n}(\dot{X})_{n}\right)^{2}\right\rangle=0 \tag{3.3.21}
\end{equation*}
$$

Differentiating inside the < > operator is permissible, given that the ensemble average exists, and provides the N optimizing equations for $\tilde{C}_{n n}$ as
$\tilde{C}_{n n}=C_{n n}+2 \dot{U}_{o n} F_{D n} \frac{\sigma^{2} E_{n}(\dot{X})_{n}}{\sigma^{2} \dot{X}_{n} \dot{X}_{n}} \quad \ldots \ldots$
with
$\sigma^{2} E_{n}(\dot{X})_{n}=\left\langle\Psi_{n}(\dot{X}(t))_{n} \cdot(\dot{X}(t))_{n}\right\rangle(a)$
$\sigma^{2} \dot{X}_{\mathrm{n}} \dot{\mathrm{X}}_{\mathrm{n}}=\left\langle\left(\dot{\mathrm{X}}^{2}(\mathrm{t})_{\mathrm{n}}\right\rangle\right.$

That the coefficients $\widetilde{C}_{n n}$ define a true minimum is apparent in the computation leading to
$\frac{\partial^{2} \sigma^{2} e_{n} e_{n}}{\partial \tilde{\mathrm{C}}_{n n}^{2}} \quad=\left\langle 2 \sigma^{2} \dot{\mathrm{X}}_{\mathrm{n}} \dot{\mathrm{X}}_{\mathrm{n}}>\quad 0 \quad \ldots\right.$
The value of $\sigma \dot{X}_{n} \dot{X}_{n}$ should be provided in order to obtain the new parameter for [$[$ c]. Obviously this cycle must have a beginning point, however, the selection of it is arbitrary.

The process initiates with a selection of the N diagonal terms ${ }^{\circ} \tilde{\mathrm{C}}_{\mathrm{n}}$ of the equivalent damping matrix ${ }^{\circ}[\stackrel{\sim}{C}]$ the pre-superscript o indicates the initial approximation of a quantity, the second approximation value of ${ }^{1} \tilde{C}_{n n}$ will be
${ }^{\prime} \tilde{\mathrm{C}}_{\mathrm{nn}}={ }^{\mathrm{O}} \tilde{\mathrm{C}}_{\mathrm{nn}}+\sqrt{\pi} \mathrm{F}_{\mathrm{D}}^{\mathrm{O}} \sigma \dot{\mathrm{X}}_{\mathrm{n}} \dot{\mathrm{X}}_{\mathrm{n}} \quad \ldots \ldots \ldots$

The nonlinear hydrodynamic damping force $\{E(\dot{X})\}$ is a monotonically increasing function of \dot{X}, which means that if the initial value of ${ }^{\circ} \tilde{C}_{n n}$ underestimates the true value of $\tilde{C}_{n n},{ }^{o_{\sigma}} \dot{x}_{n} \dot{x}_{n}$ will be in excess of its true value so that provides ${ }^{1} \tilde{C}_{n n}$ as a magnitude overestimate of the true value of $\tilde{\mathrm{C}}_{\mathrm{nn}}$. The reverse would be true. This process continues until convergence is defined, for all the N main-diagonal members of $[\tilde{C}]$. The number of cycles requires to establish convergence depends upon the initial value of ${ }^{\circ} \tilde{C}_{n n}$ and the strength of the nonlinearity.

This method requires changing of damping matrix at each step of solution until the convergence is defined.

For the present study, the investigation was done for small amplitudes of vibration so that nonlinearity in Equation (3.3.4) is very small. Therefore the problem is solved by the following two methods.

METHOD A

In this method the governing nonlinear equation of motion is solved by the direct approach method. This method is as follows:

1) The governing equation of motion (3.3.4) can be rearranged as follows:
$\left[-:\left\{+M_{\mathrm{a}}-\right]\{\ddot{\mathrm{x}}\}+\left[[\mathrm{C}]+\left[-2 \dot{\mathrm{U}} \dot{\mathrm{O}}_{\mathrm{D}}-7\right]\{\dot{\mathrm{x}}\}+\right.\right.$

$$
\begin{equation*}
[K]\{X\}=\{F(t)\}-\{E(\dot{X})\} \quad \cdots \quad \cdots \tag{3.3.26}
\end{equation*}
$$

2) Neglecting the nonlinear terms $\{E(\dot{X})\}$ for the first estimate. A set of linearized equations are solved.
3) Use first solution and calculate the nonlinear $\operatorname{term}\{E(\dot{X})\}$
4) Resolve Equation (3.3.26) with the calculated nonlinear term obtained from the first solution. Obtain a second solution and recalculate the nonlinear term $\{E(\dot{X})\}$ using the second estimate of \dot{X}
5) Repeat the process until convergence of successive iteration is obtained.

The value of C_{D} and C_{M} obtained from the test of free structure were used in forming of Equation (3.3.26).

METHOD B

This method is based upon the assumption that for small displacement of the structure, whether the object moves in still water or the water moves about the object does not affect the value of the hydrodynamic damping.

The equation (3.3.4) will be

$$
\begin{gather*}
{[-M-]\{X\}+\left[C^{w}\right]\{\dot{X}\}+[K]\{X\}} \\
\left.=\left[{ }^{n} F_{m}^{\prime \prime}\right\rangle\right]+\left[-F_{m}^{\prime}-\right]\{\ddot{U}\}+\left[-F_{D}^{\prime \prime} \rightarrow\right\}\{\dot{U} \mid \dot{U}\} \\
 \tag{3.3.27}\\
\ldots \ldots \ldots
\end{gather*}
$$

where $\left[C^{W}\right]$ is the damping matrix obtained by using the damping coefficient measured in water
> $\left[-F_{m}^{\prime \prime}-\right]$ and $\left[<F_{D}^{\prime \prime}-\right]$ are calculated by using the value of C_{M} and C_{D} obtained from the test of fixed structure.

3.3.3 SOLUTION OF THE SYSTEMS

The solution of the linearized system (Method (A) and Method (B)) is based upon the possibility of treating the system as having linear input-output characteristic in the sense that the principle of superposition is valid. The normal mode superposition approach is used to calculate the response of the structure. The response of the structure is given by

$$
\begin{equation*}
\{\mathrm{X}\}=[\phi] \quad\{\mathbb{Y}\} \quad \ldots \quad \ldots \quad \ldots . \tag{3.3.28}
\end{equation*}
$$

where the modal matrix $[\phi]$ is deduced for the undamped free vibration given by the eigen value problem.

$$
\begin{align*}
& {\left[M+M_{a} \rightarrow\right]\left\{-\omega^{2} X\right\}+[K]\{X\}=\{0\}} \\
& {\left[ـ_{-} \omega^{2}-\right]\left[-M+M_{a}-\right][\phi]=[K]\{\phi\} \ldots} \tag{3.3.29}
\end{align*}
$$

Equation (3.3.26) or (3.3.27) is premultiplied by the transpose of the modal matrix, and the displacement \{x\} ~ e x p r e s s e d ~ i n ~ t e r m s ~ o f ~ t h e ~ n o r m a l ~ c o o r d i n a t e ~ vector $\{\Psi\}$, to yield the relations

$$
\begin{equation*}
\left[-M^{*}\right]\left[\{\ddot{y}\}+[\underset{\sim}{C}]\{\dot{y}\}+\left[-K^{*}\right]\left\{\{\dot{y}\}=\left\{P^{*}\right\}\right.\right. \tag{3.3.30}
\end{equation*}
$$

Since the system equations comprise a self-adjoint eigen value problem and orthogonality property of the normal modes exists, where

$$
\begin{align*}
& {\left[M^{*}\right]=[\phi]^{T}\left[a_{i}+M_{a}\right][\phi] \text { (For method } \dot{A} \text {) }} \\
& \text { or }[\phi]^{\mathrm{T}}[-\mathrm{M}-] \text {. }[\phi] \text { (For Method } 3 \text {) iss Matrix } \\
& \text {... (3.3.31) } \\
& {\left[K^{*}\right]=[\phi]^{T}[K][\phi] \text { (For Both methods) }=\underset{\substack{\text { Stiffness } \\
\text { Ulatrix }}}{\text { Generalized }}} \\
& \text {... } \tag{3.3.32}\\
& {[C]=[\phi]^{T}\left[[C]+\left[2 \dot{U}_{0} F_{D}\right]\right][\phi] \text { (For Method A) }} \\
& \text { or }[\phi]^{\mathrm{T}}\left[C^{w}\right] \quad[\phi] \\
& \text { (For Method B) }
\end{align*}
$$

$$
\begin{align*}
\left\{P^{*}\right\} & \left.=[\phi]^{T}\left(\left[\left[F_{m}\right]+\left[F_{m}^{\prime}\right\}\right]\right]\left\{\ddot{U}_{0}\right\}+\left[-F_{D}\right\}\right]\left\{\dot{U}_{0}\right\} \\
& \left.\left.+\left[\alpha F_{D}\right]\{\dot{x}|\dot{x}|\}\right) \quad \text { (For Method } A\right) \\
\text { or } & =[\phi]^{T}\left(\left[\left[-F_{m}^{\prime \prime}\right]+\left[\sim F_{m}^{\prime}-\right]\right]\left\{\dot{U}_{o}\right\}+\right. \\
& \left.\left.+\left[\alpha F_{D}^{\prime \prime}\right\rangle\right]\left\{\dot{U}_{0}\right\}\right) \quad(\text { For Method } B) \tag{3.3.34}
\end{align*}
$$

$\left\{\mathrm{p}^{*}\right\}=$ Generalized Force vector.

The coupled damping matrix [c] is symmetric but is not a diagonal matrix. The coupled damping matrix is decoupled by assuming that the damping matrix [C] satisfied the modal orthogonality condition

$$
\begin{equation*}
[\phi]^{\mathrm{T}}[\mathrm{C}] \quad[\phi]_{\mathrm{m}}=0 \quad(\mathrm{n} \neq \mathrm{m}) \quad \ldots \ldots \tag{3.3.35}
\end{equation*}
$$

.\quad Equation (3.2.27) become

$$
\begin{equation*}
\left[-M^{*}\right]\left[\{\ddot{Y}\}+\left[-C^{*}\right\}\right]\{\dot{Y}\}+\left[-K^{*},\right]\{\tilde{Y}\}=\left\{P^{*}\right\} \tag{3.3.36}
\end{equation*}
$$

Equation (3.3.30) therefore represents N uncoupled linear second order differential equations. These equations can also be put in the familiar form.

$$
\begin{equation*}
\ddot{Y}_{n}+2 \omega_{n}^{\prime} \xi_{n} \dot{Y}_{n}+\omega_{n}^{2} \ddot{I}_{n}=\frac{P_{n}^{*}}{M_{n}^{*}} n=1,2, \ldots, N \tag{3.3.37}
\end{equation*}
$$

where
${ }^{\prime} \xi_{n}=\frac{C_{n n}^{*}}{2 M_{n}^{*} \omega_{n}} \quad \ldots \quad \cdots \quad \cdots \quad \cdots$

In this derivation of the normal- coordinate equations of motion it has been assumed that the normal-coordinate transformation serves to uncouple the damping forces in the same way that it uncouples the mass and stiffness.

The conditions under which this uncoupling will occur is the Rayleigh damping matrix, that is, the form of damping matrix in which Equation (3.3.35) applied.

Rayleigh showed that a damping matrix of the form

$$
\begin{equation*}
[C]=\alpha_{0}[M]+\alpha_{1}[K] \quad \cdots \quad \cdots \quad \cdots \quad \cdots \tag{3.3.39}
\end{equation*}
$$

in which α_{0} and α_{1} are arbitrary proportionality factors, will satisfy the orthogonality condition. The method of determination of α_{0} and α_{1} will be shown later in this chapter.

The solution of Equation (3.3.37) can be obtained in the time domain or the frequency domain. Having determined $Y_{n}(t), n=1,2,3, \ldots, N$ the displacement $\{X\}$ can be found through Equation (3.3.28).

3.3.4 NUMERICAL ANALYSIS

The analysis of the structures which used in this study, were carried out by using finite element method. The computer program SAPIV was available to analyse the dynamic response of the structures in the time domain. The structure's response was calculated by the mode superposition technique, using the first three modes only.

The structural system was analysed by using the tangent pipe element. The tangent pipe element (Figure (3.3.2) can represent a straight segment; the elements require a uniform section and uniform material properties. The member stiffness matrix account for bending, torsional, axial and shearing deformations. The types of structure loads contributed by the pipe elements include gravity loading in the global directions, forces and moments acting at the member ends (i, j).

Figure (3.3.2) - rine Tançent Pipe Element.

3.4

The parameters required in the analysis of the problem were obtained experimentally. The theory and assumption behind the analysis of experimental data are shown below.
3.4.1 MODELLING OF THE TESTED STRUCTURES

All the tested structures were divided into six elements. The first element had the length from the still water level to the tip of the structure and the other five elements were obtained by dividing the length from the still water level to the base of the structure. The element mass was lumped at the element ends equally. Each of these lumped mass has two degrees of freedom: (1) horizontal translation and (2) rotation. The response of the element is discretized in step-wise fashion, i.e. the response of each lumped mass represents the response of the element half way to the upper and lower lumped masses (see Figure (3.4.1)).

Figure (3.4.l) - Discretization of Response and Force.

The fluid orbital velocities and acceleration are discretized in the same stepwise manner as the response. Morison's equation and the modified Morison's equation are used for the evaluation of the wave force which are discretized at the lumped mass positions. Each force is evaluated for the real structure configuration and represent the contribution from half of the panels below and above that position. The net moment created by the forces about a lumped mass centre is neglected, as it will be relatively small.

The experimental data obtained were recorded in analog format. For numerical solutions this data need to be digitized in a way that it simulate the obtained analog data.

In order to maintain a proper relationship between the phase and amplitude of a given variable a suitable frequency of digitization or digitization interval had to be chosen. Otherwise aliasing could occur which is a potential source of error in an analog to digital data conversion (see Bendat and Piersol 1971 (107)). The maximum frequency reasonable is called Nyquist frequency and is defined as
$f_{N Y}=\frac{1}{2 \Delta t} \quad \ldots \quad \ldots \quad \ldots \quad \ldots$
where Δt is the interval of digitization. The frequencies in the original data above this cut off frequency are folded back into the frequency range from zero to $f_{N Y}$. Therefore, in order to choose a suitable Δt the maximum frequency encountered in the experiments had to be known. The observation of the analog records showed that the highest frequencies in the range of $3-4 \mathrm{~Hz}$.

In general, it is a good rule to select $f_{N Y}$ to be greater than the maximum anticipated frequency. Therefore a Nyquist frequency of 25 Hz was chosen from which an interval of digitization of 0.02 seconds resulted. Any digitization below this value would have given correct results. The smaller of this interval will require more computing time.

3.4.3 DETERMINATION OF THE MEASURED WAVE FORCE

At any time t, the force acting on the measured level of the structure can be obtained by integration of the pressure and the shear distribution on the object surface (see Figure (3.4.2)).

Figure (3.4.2) - Pressure and Shear Distribution about a Circular Cylinder.

$$
\begin{align*}
d F_{m}= & {\left[\int_{0}^{2 \pi} \frac{D}{2}\left(P_{0}+\delta P\right) \cos \theta d \theta\right.} \\
& \left.+\int_{0}^{2 \pi} \frac{D}{2} \tau(\theta) \sin \theta d \theta\right) d s \\
d F_{m}= & {\left[\frac{D P_{o}}{2} \int_{0}^{2 \pi} \cos \theta d \theta+\int_{0}^{2 \pi} \frac{D}{2} \delta P(\theta) \cos \theta d \theta\right.} \\
& \left.+\int_{0}^{2 \pi} \frac{D}{2} \tau(\theta) \sin \theta d \theta\right] d s \\
d F_{m}= & {\left[z e r o+\int_{0}^{2 \pi} \frac{D}{2} \delta P(\theta) \cos \theta d \theta\right.} \\
& \left.+\int_{0}^{2 \pi} \frac{D}{2} \tau(\theta) \sin \theta d \theta\right] d s \tag{3.4.2}
\end{align*}
$$

As the structure has a smooth surface the force attributed to the shear distribution is negligible
$\therefore d F_{m(t, z)}=\int_{0}^{2 \pi} \frac{D}{2} \delta P(\theta) \cos \theta d \theta d s \quad \ldots$

3.4.4 DETERMINATION OF THE VELOCITY AND ACCELERATION

 OF THE STRUCTURE AT ANY LEVELThe velocity and acceleration of the structure at any level (the level where the pressure were measured) were required for the determination of the force coefficients C_{D}^{\prime} and C_{M}^{\prime} when the modified Morison's equation was used.

The calculation of the velocity and acceleration of the structure at any level by knowing the tip displacement is based upon the assumption that, if the load distribution is similar to the deflected shape of the first mode shape and if the load frequency is smaller or equal to the first mode frequency of the structure, then only the first mode of vibration exists.

Timoshenko 1956(108) shows a solution for elastic curve, ψ as an approximation formed from a truncated series of the sum of sinusoidal shapes, each contributing to ψ for the first mode shape. The result is

$$
\begin{equation*}
\psi=\frac{P L_{S}^{3}}{3 E I} \quad \frac{1}{1-\beta^{\circ}}\left(1-\cos \frac{\pi S}{2 L_{s}}\right) \ldots \ldots \tag{3.4.4}
\end{equation*}
$$

$$
\begin{aligned}
& \text { where } I=\text { sectional moment of inertia } \\
& \beta^{\prime}=\frac{4 \mathrm{WL} S_{S}^{2}}{\pi^{2} E I} \\
& \text { when } S=L_{S} \\
& \psi=\frac{P L_{s}^{3}}{3 E I} \frac{1}{1-\beta^{\prime}} \quad \begin{array}{l}
\text { which represent the tip } \\
\psi=X\left(1-\cos \frac{\pi S}{2 L_{S}}\right)
\end{array} \quad \cdots \quad \cdots \quad \cdots
\end{aligned}
$$

Equation (3.3.5) represent the deflection at any level of the structure. As the tip displacement of the structure due to the wave forces is periodic function, it is possible to represent X by the fast Fourier transforms.
$\dot{x}=\sum_{n} \quad a_{n}^{\prime \prime} \sin \left(\frac{2 \pi n}{T} \Delta t\right)+b_{n}^{\prime \prime} \cos \left(\frac{2 \pi n}{T} \Delta t\right)$

The velocity \dot{X} at any level of the structure can be obtained by differentiation of the displacement with respect to the time
$\dot{X}=\frac{\partial X}{\partial t}$
$\dot{x}=\left[\sum a_{n}^{\prime \prime} \frac{2 \pi n}{T} \cos \left(\frac{2 \pi n}{T} \Delta t\right)-b_{n}^{\prime \prime} \frac{2 \pi n}{T} \sin \left(\frac{2 \pi n}{T} \Delta t\right)\right]\left(1-\cos \frac{\pi s}{2 L_{s}}\right.$
...
(3.4.7)

Also the acceleration \ddot{X} will be obtained by
$\ddot{X}=\frac{\partial \dot{X}}{\partial t}$
$\ddot{X}=\left(\Sigma-a_{n}^{\prime \prime}\left(\frac{2 \pi n}{T}\right)^{2} \sin \left(\frac{2 \pi n}{T} \Delta t\right)-\right.$
$\left.-b_{n}^{\prime \prime}\left(\frac{2 \pi n}{T}\right)^{2} \cos \left(\frac{2 \pi n}{T} \Delta t\right)\right)\left(1-\cos \frac{\pi s}{2 L_{s}}\right)$
(3.4.8)

3.4.5 EVALUATION OF THE CONSTANT α_{0} AND x_{1}

FOR THE DAMPING MATRIX

The Rayleigh damping matrix (Equation (3.3.39)) should satisfy the orthogonality condition. This can be demonstrated by applying the orthogonality operation which is
$[\phi]_{\mathrm{m}}^{\mathrm{T}}[\mathrm{M}][\phi]_{\mathrm{n}}=0 \quad \mathrm{~m} \neq \mathrm{n} \quad$ (a) $[\phi]_{\mathrm{n}}^{\mathrm{T}}[K] \quad[\phi]_{\mathrm{n}}=0 \quad \mathrm{~m} \neq \mathrm{n} \quad$ (b) $\quad \cdots$
in both side of the equation
$[\phi]^{\mathrm{T}}[\mathrm{C}][\phi]=\alpha_{0}[\phi]^{\mathrm{T}}[\mathrm{M}][\phi]+\alpha_{1}[\phi]^{\mathrm{T}}[\mathrm{K}][\phi]$
as each term at the right hand side of the above equation satisfy the orthogonality condition, therefore the left hand side satisfy the orthogonality condition.

However it can be shown that an infinite number of matrices formed from the mass and stiffness matrices also satisfy the orthogonality condition:
$[\phi]_{\mathrm{m}}^{\mathrm{T}}\left[[\mathrm{Xi}][\mathrm{A}]^{-1}[\mathrm{~K}]\right]^{\mathrm{b}}[\phi]_{\mathrm{n}}=0-\infty<\mathrm{b}<\infty$
where $[M]^{-1}=\frac{1}{[M]}$

The two basic relationships Equations (3.4.9a) and (3.4.9b) are given by exponents $b=0$ and $b=1$ in Equation (3.4.11).

Thus the damping matrix can also be made up of combination of these. In general, then, the orthogonal damping matrix may be of form

$$
\begin{equation*}
[C]=[M] \underset{b}{\sum_{b}} \alpha_{b}\left[[M]^{-1}[K]\right]^{b}=\underset{b}{\Sigma}\left[C_{b}\right] \ldots \tag{3.4.12}
\end{equation*}
$$

With this type of damping matrix it is possible to compute the damping influence coefficients necessary to provide a decoupled system having any desired damping ratios in any specified number of modes. For each mode n, the generalized damping is given by Equation (3.3.8).

$$
\begin{equation*}
\left[C_{n}^{*}\right]=[\phi]_{n}^{T}[C][\phi]_{n}=2 \xi_{n} \omega_{n}\left[M^{*}\right]_{n} \quad \cdots \tag{3.4.13}
\end{equation*}
$$

but if [C] is given by Equation (3.4.12), the contribution of b in the series to the generalized damping is
...
therefore

$$
\left[c_{b}\right]_{n}=\alpha_{b}\left[\omega_{n}^{2}\right]^{b}\left[M^{*}\right]_{n}
$$

on this basis, the damping matrix associated with any mode n is
$\left[C_{n}^{*}\right]=\sum_{b}\left[C_{b}\right]_{n}=\sum_{b}\left[\omega_{n}^{2}\right]^{b}\left[M^{*}\right]_{n} \quad \cdots \cdots$
Equating the right hand side of Equations (3.4.13)
and (3.4.16)
$\therefore \xi_{n}=\frac{1}{2 \omega_{n}} \sum \alpha_{b} \omega_{n}^{2 b}$
Equation (3.4.17) in matrix form with the first two modes only is
$\left\{\begin{array}{l}\xi_{1} \\ \xi_{i 2}\end{array}\right\}=\frac{1}{2}\left[\begin{array}{cc}1 / \omega_{1} & \omega_{1} \\ 1 / \omega_{2} & \omega_{2}\end{array}\right]\left\{\begin{array}{l}\alpha_{0} \\ \alpha_{1}\end{array}\right\} \quad \ldots \quad \ldots . \quad \ldots$

$$
\begin{aligned}
& {\left[C_{b}\right]_{n}=\{\phi]_{n}^{T}\left[C_{b}\right][\phi]_{n}=\alpha_{b}[\phi]_{n}^{T}[M]\left[[M]^{-1}[K]\right]^{b}[\phi]_{n}} \\
& \text {... } \\
& \text { (3.4.14) } \\
& \therefore[\phi]_{n}^{T}[M]\left[[M]^{-1}[K]\right]^{b} \quad\left[\phi_{n}\right]=\left[\omega_{n}^{2}\right]^{b}\left[u^{*}\right]_{n}
\end{aligned}
$$

$. \quad \alpha_{1}=\frac{\frac{\omega_{1}}{\omega_{2}} \xi_{1}-\xi_{2}}{2}$

$$
\frac{1}{2}\left(\frac{\omega_{1}}{\omega_{2}}-\omega_{2}\right)
$$

$\because \alpha_{0}=\frac{\frac{\omega_{2}}{\omega_{1}} \xi_{1}-\xi_{2}}{\frac{1}{2}\left(\frac{\omega_{2}}{\omega_{1}^{2}}-1 / \omega_{2}\right)}$
The parameter required to solve the above equations for α_{1} and α_{0} are known except ξ_{2} (the damping coefficient of second mode). ξ_{2} was assumed to be equal to ξ_{1} (see Wilson and Pensica $1972^{(109)}$):

CHAPTER FOUR

EXPERIMENTAL TECHNIQUE

The formula used in the estimation of the hydrodynamic forces on structure with relative small diameter has empirical parameters C_{D} and C_{M} which vary with the flow field and structure characters, any investigation dealing with water wave-structure interaction involves extensive experimental work before a concrete solution can be obtained.

The aim of this experimental work is to find the relation between the force coefficients when the structure is prevented from vibration and when it is free to vibrate, under different wave and structure characteristics.

4.1 EXPERIMENTAL FACILITIES

4.1.1 WAVE TANK

The experiments were preformed in a rectangular water tank. The dimensions of the cross section are 0.75×0.75 metre and 18.0 metre long. The side walls are 0.0095 metres thick glass which is suitable for visually observing the model. The water tank had a regular wave generator installed at one end with a sloping beach wave observer at the other end. At this end an extension of dimension 3.00 metre 1 ong and 1.25×1.25 cross section connected to the tank. This extension was built in order to help the beach to absorb the waves.

This regular wave generator is a wedge type, the wedge is connected to a 0.75 horse power motor with different speeds of rotation. The motor has a digital counter to control the speed of rotation. By changing the speed of rotation, the frequency of the displaced water by the wedge changes giving a different wave period and length. Also the wedge arm can be adjusted to give a different submerged volume of the wedge which effects the volume of displaced water, consequently effecting the wave amplitude.

From the above and also as the water depth in the tank can be changed, the wave characteristics (d, L, T, H) can be changed in order to produce waves of differing characteristics for the tests.

It is desirable to eliminate cross-waves at all times and all frequencies of the tests; so two-dimensional analysis can be carried out without discrepancies, there is a good case for mounting fins against the face of the wavemaker. The fin was a mesh, in the shape of Λ placed at a distance 1.00 metre from the wavemaker the width of the channel, the angle between the Λ shape is adjustable to give the best elimination for each wave frequency. This fin improve the efficiency in eliminating the cross-waves for the range of wave frequency $0.75-1.25$.

Reflected waves also prove undesirable though they are often not detected or allowed for. Their energy tends to increase in time to a limiting state, allowing them to exert a corresponding influence on the experimental results. The function of the beach is simply to absorb all wave energy incident upon it as reflections will produce problems. The fact that no beach is a fully efficient absorber implies that the beach design must be related to the wave climate required for the experimental programme, and the amount of reflection that can be tolerated. The beach used in the tank was made of wood sheet having the width of the tank and maximum slope of 9.925°. The beach was efficient in absorbing the waves as defined by a "reflection coefficient", this being the ratio of the amplitudes of the primary reflected and primary incident waves.

The position of the tested structure was half way between the wave generator and beach, approximately 8.5 metre away from either of them to minimize any disturbance caused either by wave generator or the beach.

Figure (4.1.1) shows the wave tank dimension and the position of the beach and wavemaker.

Figure (4.1.1) - Wave Tank.

4.1.2

Two sets of single circular cylinder cantilever structure were tested. A cantilever was chosen because it represents the structure mechanism of the prototype structure, the cross-sectional shape of the structure was chosen to be circular in shape as it is the most common shape in the offshore structures.

The first set consists of two group of structures. The structures of this set were plastic Acrylonitril Butadiene Styrene (Durapipe ABS) tube material. This material was chosen because it afforded a cylinder that could be fixed at the bottom and also has a low modulus of elasticity which decreases the natural frequency of vibration.

The second set consists of one group of structures. The structures were made of Aluminium tube material. This material was chosen to compare between the behaviour of the first and second sets i.e. to compare the behaviour of two different dynamic properties.

4.1.2.1 DURAPIPE ABS STRUCTURES

Four different structures were tested. These structures can be divided into two groups according to the structure diameter and modulus of elasticity i.e. relatively stiff and relatively flexible.

Group one consists of two structures (A) and (B), the structures consist of a 0.11 metre outside diameter tube. The tube was glued at the bottom end to a cap which was rested and glued to a heavy pipe flange with a leader. The pipe flange has six 0.0125 metre bolt holes, equally spaced to fit the imbedded six 0.0125 metre bolts in the heavy perspex sheet of a dimension of 0.75×1.5 metre with 0.0125 metre thickness placed on the tank floor at the mid part of the tank. Silicone vacuum grease was applied between the contact surfaces to obtain a watertight fit.

At one level of the structure eight 0.006 metre diameter holes at equal space of the cross section $\left(\theta=45^{\circ}\right)$ were made. At each of these holes a plastic PVC (hard) tube having L shape of 0.03×0.01 metre in dimension where the short leg were fixed to the cylinder wall and filed to give smooth surface while the long leg of the tube were connected to one end of 0.75 metre long rubber tube of 0.005 metre inside diameter, the other end of the rubber tube come out from the structure top so it can be connected to pressure transducer.

A perspex top cap with eight holes to pass the rubber tubes was placed in the top of the structure. It was used to prevent the structure from vibrating by the use of the clamp. The parts of the structure before assembly were shown in Figure (4.1.2).

Figure (4.1.2) - The Parts of the Structures (A) and (B) Before Assembly.

Group two consists of two structures (C) and (D). The structures consist of 0.0605 metre outside diameter tube and similar parts as in group one with difference in dimension. See Figure (4.1.3).

At two levels of the group two structure were eight O.OO4 metre diameter holes. A plastic PVC (soft) tube instead of the rubber tube was used as there is smaller space inside the tube structure than those of group one.

Figures(4.1.4) and (4.1.5) show the structures of groups one and two after they have been assembled.

Figure (4.1.3) - Dimension of Structures (C) and (D).

Figure (4.1.4) - Structures (A) and (B).

Figure (4.1.5) - Structures (C) and (D).

4.1.2.2 ALUMINIUM STRUCTURES

A third group consists of two aluminium structures. Structure (E) and structure (F) each has 0.0574 metre diameter, structure (E) was 0.735 metre high and structure (F) was 0.835 metre high. A circular PVC (hard) top cap having a mass of 520 grammes was mounted at the top of the structure. It was used as a concentrated mass above the water line so that the structure would behave like a one-degree-of-freedom system when subjected to the wave, thus representing the platform of the offshore structure.

Four masses were made of steel balls contained in a plastic bag each having a mass of 505 grammes. These four masses provided two possible combinations of masses in increments of 1010 grammes. The mass was put in the top cap, the top cap was rigidly fixed by four 0.0125 metre screws to the structure so that the top cap would not wobble with respect to the tube. The top of the cap was level with the structure top.

The eight 0.004 metre diameter holes were made at three different levels of the structure. Figure (4.1.6) shows the parts and dimensions of the structures of this group. The masses and also structure (E) after assembly are shown in Figure (4.1.7).

Figure (4.1.6) - Dimensions of Structures (E) and (F).

Figure (4.1.7) - Structure (E) and the Four Masses.

The mechanical properties of the structures tested are shown in Table (4.1).

Group	Structure designate	Material	Length meter	Diameter meter	Inside Diameter meter	Second Moment of area m 4	```Modulus of Elasticity kN/m```
One	A B	$\underset{\text { ABS }}{\text { Durapipe }}$	$\begin{aligned} & 0.608 \\ & 0.808 \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 0.102 \\ & 0.102 \end{aligned}$	$\begin{aligned} & 1.7048 \times 10^{-6} \\ & 1.7048 \times 16^{-6} \end{aligned}$	$\begin{aligned} & 1509174.8 \\ & 1509174.8 \end{aligned}$
Two	C D	$\underset{\text { DBS }}{\text { Durapipe }}$	$\begin{aligned} & 0.735 \\ & 0.835 \end{aligned}$	$\begin{aligned} & 0.0605 \\ & 0.0605 \end{aligned}$	$\begin{aligned} & 0.0517 \\ & 0.0517 \end{aligned}$	$\begin{aligned} & 0.2777 \times 10^{-6} \\ & 0.2777 \times 10^{-6} \end{aligned}$	$\begin{aligned} & 1509174.8 \\ & 1509174.8 \end{aligned}$
Three	E	Aluminium	$\begin{aligned} & 0.735 \\ & 0.835 \end{aligned}$	$\begin{aligned} & 0.0574 \\ & 0.0574 \end{aligned}$	$\begin{aligned} & 0.0515 \\ & 0.0515 \end{aligned}$	$\begin{aligned} & 0.0822 \times 10^{-6} \\ & 0.0822 \times 10^{-6} \end{aligned}$	58022298.0 58022298.0

4.2

Abstract

All the instrumentation used in this work was electrical, some of which was commercially available and the rest was designed and built especially for this work.

The instrumentation used may be divided into the measuring instrumentation and the reading instrumentation. The instrumentation used for measuring each parameter needed in the analysis and results was designated as the measuring instrumentation, while the reading instrumentation was connected to the measuring instrumentation to give the final measured data.

4.2.1 MEASUREMENT INSTRUMENTATION

The measuring instrumentation was designed and placed to give the most reliable measurement without seriously affecting the characteristics and the environment of the test.

4.2.1.1 WAVE PROBE

The wave probe was used to measure the wave profile. The measurement was done by detecting the change of voltage due to the change of resistance of the wire probe following the equation

$$
\tilde{I} \times \tilde{R}=\tilde{V}
$$

where $\tilde{I}=$ the constant alternative current
$\tilde{V}=$ the variable D.C Voltage
$\tilde{R}=$ the variable resistance of the probe wire
due to the change of the wave profile

Alternating current was used at the tips of the probe to avoid the polarisation of waver.

Two stainless steel wires having a diameter of 0.002 metre and a length of 0.5 metre with a resistance of 0.006 ohms per metre were used as the probe. The two wires were stretched 0.025 metre apart and fixed to a perspex plate; the perspex plate was suspended over the tank by means of an adjustable boom. This mounting facilitated the daily calibration of the probe and also aided in maintaining the probe in the proper position relative to the still water level.

There are certain disadvantages in the use of the resistance type probe. The relationship between water surface position and the electrical signal output is non-linear. Furthermore, the calibration of the system is dependent upon the conductivity of the water between the two wires. These difficulties have been overcome satisfactorily by always adjusting the position of the probe to the still water level existing in the tank and also by adding a resistance to the electrical circuits before the electrical current reaches the probe.

4.2.1.2 STRAIN GAUGES AT THE BASE OF THE STRUCTURES

The bending moment at the base of the structure was measured with strain gauges. They were Tokyo Sokki strain gauges, type FLA-6-11, the gauges lengths were 0.006 metre and resistance of 120 ohms. For each structure two sets of gauges were used with four gauges in each set. The gauges were placed and connected as shown in Figure (4.2.1), one set was fixed to measure the bending moment in-line with the wave direction and the other perpendicular to the wave direction.

The strain gauges for the Durapipe (ABS) structures were placed outside of the cylinder and covered with watertight paint while the wires from the strain gauges were carried inside the cylinders. The reason for placing the strain gauges outside is to keep them at a constant temperature throughout the test (water temperature). For the aluminium structures the strain gauges were placed inside.

The strain gauges were connected so that only the bending moment was measured. The direct load, such as that form the concentrated mass, did not influence the strain gauge reading.

The strain gauges were aligned with respect to the tank by. a vertical mark inscribed throughout the length of the cylinder and its base.

Plan view of strain gauge installation

Full Wheastone briage of strain gauge

Figure (4.2.1) - Strain Gauge Installation.

A more accurate method for measuring the force of the waves at any level of the structure is one in which the pressure is measured at equal intervals around the circumference of the structure at that level by use of pressure transducers. The total pressure force on a unit height of the cylinder may then be obtained by integrating the pressure on the individual surface elements around the circumference.

The general description of design of the pressure transducers was desirable to incorporate the following features:

1. The pressure transducers should be capable of measuring pressures from 0.01 psi to 0.5 psi
2. The output of the transducers versus the applied pressure should be linear
3. The output traces should be clean "no noise", this could be obtained by the high natural frequency of the transducer sensing element. This feature reduces the error in reading the output
4. The pressure transducers should be easily attached and removed to read the pressure at any point along the pile

Because no known commercial transducer met the requirements listed above, a special transducer shown in Appendix (A) was developed.

During the development of the transducer, a number of different types of sensing element were considered, fabricated and tested. Based on the experience obtained during these tests, the final design of the sensing element was arrived at.

Eight pressure transducers were built so that eight individual pressure readings around the circumference of the structure at the level required can be obtained at the same time.

The pressure transducers were mounted on the top of the tank. To measure the pressure at any particular points on the structure several soft tubes were connected from the various points on the structure to the transducers.

Figure (4.2.2) shows the mounting and the connection of the pressure transducers to the structure.

An inductive type of displacement transducer was attached to the tip of the structure to measure the tip displacement of the structure caused by the wave action.

This displacement transducer utilises the well proven linear variable differential transformer principle. A transducer with a free unguided armature assembly was used so that the movement of the structure will not be affected by the stiffness of the spring loaded armature. This is especially so because the wave loading on the structure is small and consequently the movement of the structure was also small.

The working range of the transducer is ± 0.0125 metre.

4.2.2 READING INSTRUMENTS

The reading instruments were used in conjunction with the measuring instruments. The reading instruments were used to drive, amplify the magnitude of the electrical signal coming out from the sensing element and purify it from any noise interference in order to be able to record and digitalize it without any alteration of the actual electric signal measured.

Ten channels out of the fourteen strain gauge bridge amplifier units of the basic Sensonic amplifier were used to drive and pick up the electric signals from the two sets of the strain gauges which were fixed at the base of the structure, and also from the strain gauges of each of the pressure transducers.

Two channels of inductive amplifier units were used with the wave probe to measure the wave profile.

A RDP transducer amplifier type D7M was used to drive and amplify the electrical signal of the displacement transducer.

The low level signals "output" from the measurement instrumentation drive amplifier were converted into higher level signals and also filtered with low output impedence by using a preamplifier. The preamplifier was designed and manufactured to satisfy the necessary requirements of the signals level to be recorded. For the electric circuit of the preamplifier see Appendix (B).

The amplification and the phase shift due to filtration in the preamplifier were tested by using the output from a signal source type 471 which generates a sinusoidal waveform of 100 MV at frequency ranges between 1 Hz to 10 Hz as an input to the preamplifier. Both the output from the preamplifier and the signal source were fed into a
two channel oscilloscope type DlOll which attenuated the signal from the amplifier so that both signals of similar amplitude were displayed on the screen, the attenuation inside the oscilloscope was equal to the gain of the preamplifier. The phase shift from the two signals was negligible.

All the outputs from the preamplifier channels were recorded simultaneously by one fourteen channel RACOL tape recorder store 14D5. The electric signals were recorded at a speed of $1 \frac{7}{8}$ and at the window of recording ± 2 volt peak to peak.

Figure (4.2.3) shows the strain gauge Sensonic amplifier, preamplifier and the tape recorder.

The electric signals analogue recorded were fet to an Intercole Transmitter/Receiver model HS6202C which was connected to a PDP Compulog Intercole system in order to be digitalized at regular intervals to be saved on a floppy disc.

For the calibration tests of the measuring instrumentation the structure was first located and fixed in the tank. The displacement transducer was attached to the structure and the pressure transducers were mounted, so the structure was ready for the main test. The calibration tests were done twice each day; once before and once after the main tests.

All the electric equipment was switched on and left for half an hour before the first calibration tests start in order to achieve a stable electrical signal.

4.3.1 STRAIN GAUGES

The strain gauges at the base of the structure for measuring the bending moments were calibrated by applying a known horizontal load equal to 4.45 N at the top of the cylinder with a wire and pulley arrangement. This horizontal load had three increment of loading each equal to 4.45 N . For the in-line bending moment the tests were done once where the horizontal load was in the direction of the wave propagation and once in the opposite direction in order to obtain the positive and negative bending moments reading. Similar tests were carried out for the strain gauges in the transverse direction.

The bending moments at the base of the structure were calculated by multiplying the horizontal force by the distance from the top of the structure to the strain gauge. For the cases where added mass was applied at the top of the structure (third group of structures) the bending moment was calculated as the above plus the moment due to the concentrated mass at the top of the structure when the structure is in a deflection position. The deflection of the tip of the structure was determined in a previous test where a dial guage was attached to the top of the structure on theother side and on the same line with the wire so that the tip displacement due to the horizontal load were known. This test was useful also in the calibration of the displacement transducer as shown below.

Figure (4.3.1) shows the arrangement of the test determining the tip deflection.

4.3.2 DISPLACEMENT TRANSDUCER

The displacement transducer was calculated at the same time as the strain gauge. The horizontal displacements were known due to the horizontal applied loads. A mark on the transducer armature was made in order to correct the relative positions between the armature and the body of the transducer.

The relationship between the horizontal displacement and the electrical signal recorded was linear.

Figure (4.3.1) - The Test Determining the Tip Deflection due to the Horizontal Load.

The pressure transducers were calibrated for a positive gauge pressure by connecting the pressure transducers at the top of the tank with the eight holes around the circumference of the structure by the tube assembly in each structure. For that purpose the water level in the tank decreased to the level of these holes. This gave a zero gauge pressure reading. The electric signals from the pressure transducers were recorded. The water level in the tank increased by 0.025 metre which gave a gauge pressure equal to the head of water above the holes, the electric signals were recorded, the water level in the tank was again decreased to the level of these holes, again giving zero gauge pressure and the electric signals were recorded. By repeating this process with increments in the water level of 0.025 metre $u p$ to the maximum water level of 0.1 metre, the pressure transducers were calibrated for the positive pressure gauge readings.

The negative gauge pressures were obtained by disconnecting the pressure transducers from the tubes and connecting them again when the water level was 0.11 metre above the holes which give zero gauge pressure. The procedure of positive gauge pressure was reversed in order to calibrate the pressure transducers for the negative pressure gauge reading.

The calibration of the pressure transducers was done with the uppermost holes in the cases of structures with more than one holes level.

The following test was previously made in order to find the pressure losses along the length of the tube from the hole on the structure to the pressure transducer at the top of the water tank. The pressure transducer was connected to a single bore at the bottom of a graduated measuring cylinder with a single bore stopcock by 0.04 metre long rubber tube in the case of testing for 0.025 metre head of water. This was in order to keep the pressure transducer away from the water as it is not waterproof. The electric signals were recorded, water was poured down to the level 0.025 metre in the measuring cylinder then electric signal was recorded. The water was emptied from the measuring cylinder by the stopcock. A 0.75 metre long rubber tube of the same length as those used in the tests, replaced the 0.04 metre tube and the test was repeated.

The above test was repeated with different head of water pressure and different lengths of the short tube. The difference between the electric signals recorded from the short tubes and from the long tube were negligible.

4.3.4 WAVE PROBE

After the position of the wires of the probe had been adjusted to the still water level the electric signal gave a zero reading. The probe was lowered by means of an adjustable boom by 0.01 metre which was equivalent to raising the water level by the same amplitude and the electric signal was recorded. This test was carried out by lowering the probe in stages of 0.01 metre until a distance of 0.1 metre was reached.

Similar tests were carried out by raising instead of lowering the wave probe to give the calibration in the case of lowering of the water level.

4.4 EXPERIMENT

To achieve the main objective of the investigation, it was decided to carry out experiments in order to determine all the parameters required in the analysis, which are the water wave criteria and the structure dynamic properties.

4.4.1 WATER WAVE CRITERIA

The first test was carried out to see how close small amplitude harmonic waves conformed to sinusoidal shape, and how their characteristics varied with time.

The test was done by adjusting the wedge arm and the speed of the driving motor of the wave generator. The wave profile was measured by the wave probe which was located at the position of the tested structure. The test was carried out for 45 minutes.

For conformation of sinusoidal shape a typical case is shown in Figure (4.4.1).

The variation of the wave characteristic during the test was insignificant.

Figure (4.4.1) - Water Surface Profile.

It was necessary to check the degree of wave reflection from the beach. The amount proved to be quite small.

Eagleson and Dean $1966^{(110)}$ show that a portion of a wave impinging on a sloping surface will reflect upon itself. The magnitude of the reflected wave can be expressed as a coefficient of reflection times the magnitude of the incident wave. The reflected wave will disturb the regularity of the wave surface. The crests and troughs of the resulting wave will describe an envelope as shown in Figure (4.4.2).

Figure (4.4.2) - Typical Reflected Wave.

It is shown in the above reference that the reflection coefficient can be obtained from:

$$
\begin{equation*}
K_{r}=\frac{H_{\max }-H_{\min }}{H_{\max }+H_{\min }} \quad \cdots \quad \cdots \quad \ldots \ldots \tag{4.4.1}
\end{equation*}
$$

where $K_{r}=$ Reflection coefficient
$\mathrm{H}_{\text {max }}=$ Maximum wave height
$H_{\text {min }}=$ Minimum wave height

Waves of various characteristics were tested. From the results it can be concluded that reflection was minimal, and thus it was ignored in all analysis. Figure (4.4.3) shows the result of the reflection coefficient verse wave period.

Figure (4.4.3) - Reflection Coefficient for the Wave Tank.

As the determination of certain structural parameter such as stiffness, natural frequencies and damping coefficients are important to be obtained, the following experiments were carried out.

4.4.2.1 STIFFNESS TEST

In the determination of the stiffness of the structure it is vital to know the rate of the deformation of the structure material, especially the Durapipe ABS structure. The Durapipe ABS is not a truly elastic material. Maxwell and Harrington $1952^{(111)}$ show that the strain of this material depends on the time rate of deformation. That is, if the velocity of deformation is high enough the stress-strain curve will be linear. When the velocity of deformation becomes small or negligible, then a plastic flow takes place which is recoverable when the load is removed. There is a limit of strain however, beyond which plastic deformation is not recoverable. This can be called deformation types I, II and III and can be illustrated schematically as in Figure (4.4.4).

Figure (4.4.4) - Schematic Diagram of Deformation Types
for Durapipe ABS.

For this work it will be shown that type I deformation occurred for the Durapipe ABS cylinders under dynamic loads.

The experimental procedure of this test was exactly as that of the calibration of the strain gauges at the base of the cylinder structure except that the output signal was taken to the Oscillograph instead of the tape recorder.

Typical records of the test procedure are shown in Figure (4.4.5), it was noted that the strain started at zero and ended at zero, indicating that type III deformation did not take place. The load was applied fairly suddenly so that a few oscillations occured in the record. It can be seen that strain did not decrease

Figure (4.4.5) - Typical Recording of the Strain Gauge.
with time for constant load. If decrease showed in the strain under static load condition type II deformation would occur.

The stiffness of the cylinders was determined by the following test. The cylinder was mounted vertically as in the case of the main test and a series of weights were applied at the free end. The free end deflection corresponding to each weight was measured using a dial gauge. Graphs of load against the deflection were plotted, the slope yielding the equivalent stiffness.

4.4.2.2 NATURAL FREQUENCIES AND STRUCTURAL DAMPING

For convenience, measurements of the natural frequency and damping were made simultaneously. Essentially, the scheme was to force the oscillation of the structure by means of an impulse load and then to take the reading of the strain gauge at the base of the structure. The signals were recorded on an oscillograph from which the structural damping and natural frequency in the fundamental mode could be measured.

Care was taken to make the amplitude of vibration during an impulse load test about the same as the amplitude of vibration during the experiments with waves.

In the second approach, the structures were deflected with a steady load and then released.

The natural damped frequencies of the structures were obtained from the same test records as those from which the damping coefficient were obtained.

Typical records of the test results are shown in Figure (4.4.6).

The structures were tested in air and water.

4.4.3 MAIN TESTS

After the structure was installed in the water tank and all the measurement instrumentation was calibrated the tests were started by adjusting the water level in the tank. The wave generator arm was fixed at the position required and then switched on; the speed of the motor which controlled the frequency of the wave was set up by the digital counter. The records were taken after a few waves passed the structure in order to establish a steady state wave and structure motion. This was approximately five minutes after the operation of the wave generator.

First the structure was acting as a cantilever "free to vibrate" the signals from the eight pressure transducers connected to one level of the structure, from the wave probe located beside the structure, from the strain gauges at the base of the structure and from the displacement transducer at the top of the structure were recorded simultaneously for 15 minutes. Then the structure was clamped from the top "Fixed Structure" by screwing a stiff shaft fixed on the top of the water tank to the top cap of the structure. The effectiveness of the clamp at the top was tested by monitoring the signal of the displacement transducer. If the signal was zero throughout the wave cycle then the structure was fully clamped. After the structure was fully fixed the signals from the measurement instrumentation were recorded for 15 minutes. The stiff
shaft was released, returning the structure to the initial condition and the signals were recorded for 15 minutes.

This process was repeated for waves of other characteristics.

For the first group of the Durapipe ABS, structures A and B which had only one level in which the pressure could be measured; for this case the above test procedure was complete for testing this group.

Figure (4.4.7) and Figure (4.4.8) show structures A and B when they were under test, respectively.

The second group of Durapipe ABS, structures C and D which had two levels at which the pressures could be measured. For that reason after the above test procedures were carried out then the second level of pressure was recorded by locking the connection between the pressure transducers and first level and by opening the connection to the second level and repeating the procedure.

Figure (4.4.9) shows structure C when it was under test and also it shows clearly the position of the wave probe. Figure (4.4.10) shows structure D under test and it also shows the way of the mounting of the displacement transducer and the stiff shaft used for clamping the top of the structure.

Figure (4.4.7) - Structure (A) under

Figure (4.4.11) - Structure (E) under Test

For the group of the Aluminium structures, structures E and F the test was carried out without any added mass for the highest level where the pressure can be recorded. The test was repeated for each increment of added mass for the same level of the pressure. For the other two levels which the pressure could be measured the same test procedure as used for the first level was repeated.

Figures (4.4.11) and (4.4.12) show the structure (E) and structure (F) while they were under test.

Table (4.2) shows the reading of the digitize electric signals of one of the calibration test, column one to eight are the eight pressure transducers, column nine is the strain gauge reading for the in-line bending moment while column ten is the reading of the transverse bending moment, column eleven is the reading of the displcaement transducer and column twelve is the reading of the wave probe.

Table (4.3) shows the digitize electric signals reading for one of the test.

Table (4.2) - Digitized Electric Signal for One of the

$1 i$	$\because: \%$	-77	-36	-9	35	28	32	-13	575	144)	-1
$3:$	\therefore	-93	$\dot{8}$	-8:	3i	45	38	600	03.	1440	$\dot{\text { ¢ }}$
97	33	-112	-4?	- 3	is	67	-33	504	655	1443	-1?3
135	$\bigcirc 6$.	-129	$\therefore 2$	-5	5?	if	-75	cit	¢ 1	14t4	24;
1is	114	-143	-19	- 5	30	123	-118	549	-44	1442	-3:3
133^{-}	$1+8$	-166	-5	-14	- 3	153	-198	542	57 :	$1+4$.	-3:3
192	157	-197	27	- 7	-24	195	-214.	520	543	144*	408
2.24	314	-213	4.	+	-53	233	-258	502	512	$1+4$	5-9
215	252	-235	59	33	-32	220	-305.	495	443	1441	-523
236	291	-258	$?$	$5 ?$	- : 12	309	-350	4,3	37.	$1+90$	-4d
260	302	-2\% 5	86	-3	-135	324	-377	470	324	1441	-6:\%
279	3) 1	-270	105	3%	-1.9	342	-197	+35	25:	$1+30$	-7:
291 :	323	-275	112	113	-124	こ5!	-403	433	214	1437	-?:6
298	? 3	-290	151	113	184	349	-420	$+25$	154	$1+51$	-7.?
301.	337	-291	124	134	-200	564	-429	417	111	1437	-76.
$306=$	340	-293	129	137	-2.33	369	-132	390	55	1+30	-7.5
39?:	339	-290	-131	133	-205	557	-428:	354	-3	1438	-751
3939	$34+$	-292	130	145	-316	370	-439	351	-60	1439	-7.
3¢?	345	-296	133	144	-220	373	-446=	330	-129	1438	-763
309	340	-297	131	1+1	-215	36%	-444	$3: 6$	-195	14+4	75?
3i?	346	-301	141	133	-214	365	-449	270	-27!	144?	-746
308	351	-305	135	144	-225	378	-464	280	-352	1440	-710
$305=$	347	-309	$1+1$	135	-218	365	-457	258	-431	144?	-694
29\% $=$	344	-303	127	145	-224	373	-460	253	-51?	1443	-653
297:	347	-305	130	138	-218	368	-452.	24.3	-595	1439	-613
271°	$3+9$	-309	176	135	-219	370	-455	243	-586	1453	-5i6
252	349.	-308	130	145	-225	372	-441	234	-757	1438	-510
228	325 -	-307	132	144	-229	372	-422	256	-339	1436	-452
209	311.	-299:	120	143	-221	372	-377.	205	-909	1442	-388
135	235	-238*	117	134	-205	325	-331	294	-975	1438	-319
$160-$	255	-268	101	121	-181	309	-284.	303	-1036	1439	-244
125	227	-251	35	170	-156	273	-241	334	-110?	1451	-174
93	183,	-227	-6	79	-126	247	-291.	359.	-1148	1439	-93
54	146	-216	54	53	-98	215	-147	389	-1190	1449	-27
17.	$109=$	-194	35	33	-71	189	-89	422	$=1230$	1448	59
-19	$+7$	-172	5	25	-53	169	-28.	449	-1253	1442	50
-53	-19.	-151:	-10	-2	-28	161	45%	466	-1265	1439	237
-35	-43	-137	-24	-23	-2	112	110	493	-1276	1449	327
-116.	-84	-120.	-40	-53	- 28	-85	$155-$	519	-1262	1446	411
-11i	-112	-104.	- 58	-74	- 54	. 52	196	540	-1234.	1448	491
-164:	-158	-83.	-is	-93	- 71	. 27	225.	556	-1187.	1441	8
-132	-189	-63.	-76	-1.97	- $\% 7$	- 7	254	574	-1120.	1444	624
-192-	-208	-57	-110	-123	. 102	- - 3	284.	594	-1043.	1438	is 6
-212	-217	-52	-119	-137	124	-23	305	612	-958	1447	094
-224=	-230	-47	-125	-147	146	?3F	3245	633.	-967:	1452	713 726
-223	-239	-41	-143	-15:	161	-43	345 :	638	-740	1441	725
-229	-253.	-. 33	-155	-152	156	-4 4	$336=$	655.	-i32	1435 1450	717 689
-226	-243*	-39	-145	-160	133	-53	347	667	-331	1450	689
-219	-240	-25	-158	-154	179	-52	$340=$	671	-408 -287	1441 1438	662 669
-210	- 238	-34	-155	-157	178 175	-56	330 :	688	-287	1438 1450	669 341
-193.	-226.	-33	-147	-15\%	175 175	-53.	315\%	677 662	-187 -62	1450 1449	541 469
-176 -159	-216	-42	-153	-161	175	-65	312 277		-62 48	1438	406
-158 -137	-210 -191	-36	-148 -130	-145 -144	154 153	-54	$277{ }^{\circ}$	$665=$	498	1438 1440	323
-137 -108	-171 -178 -14	-51.	-130 -129	-144 -127	158 158	-86 734		648.	260	1446	258 170
- 79	-142	-63	-107	-123	130	-20	192	646	365	1449	170
-43%	-111:	$=-72$	-92	-112	118	1-8	15%	632%	460 535	1449 1445	9
-7^{2}	-is	-76	- 38	-93	90	23.	98.			1445	-69
39\%	-33:	-96	-74	-23	93	34.	50%	595	593	1438	-68
31	13	-105	-59	-54	53	69	-13	549	632		144
$122:$	69	-131-	-31	-62	60	99	- 58 :	566.	643	1448	-236
FREE!						:					
$1 \overline{1}$	128	1	0	0	0						
12	107	-196	29	32	-77	189	-57		-1259	166	149
-27	58	-171	3	24	- 58	166	+	443	-1286 -1294	165 200	145
- 5	-1.	-143	-18	1	-23	134	79	438	-1294 -1304	200	259 352
-93	-47	-123	-39	-19	-2	107	133	489	-1304 -1300	214 240	352 435
-123	-87	-113	- -30	- 48	36	75.	165	519:		240 245	935
-152	-120	$=-102$	-67	-72	59	46	195	535.	-1263 -1236	259	556
	-150	- 84 :	- 81	-89	? 9	35	216!	569 382	-1236 -1162	259 265	S59 654
-195	-183	-64	-105	-101	98	9	248.	582 592	-1162 -1081	271	698
-212:	-204-	: -58-	-111 -1	-126 -133	126 131	-18 -20	2921 318	593 618	-1081 -993	271 274	698 71
-225	-221	-47.	-131	-133	131	-20 -38	318	618.	-993	296	74
-240:	-238.	. -43	-143.	-149	145 158	-38	317\%	625.	-896 -785	326	733
-247 -248	-244	-39	-141.	-190	158 159	-68 -46	346 \%	657	-672	316	. 724
-248	-294 $-24 i$: -32:	-149 -146	-195 -157	159 187	-46 -58	346 ${ }^{3} 5$	-653.	-559	332	-724 689
-232.	-246.	-30:	-154	-165	192	-62	369	663.	-427	335	6s
-225\%	-24i	-25	-139	-163	132	-56	348	671	-310	354	602
-292.	-240-	$\because-34$:	- -158	-197	173	: 33	331 年	679	-203,	356	542
198 ${ }^{\text {a }}=$	-220	-37	-144	-193	171	-49	328	672	-93	372	46

コvy	＊－－svo	163	148	610	240	－900	＜00，－ $2<0$	31	
292	339．．－309．	130	．143	－217	317	－438	254．－403．	44	123
300	341． 313.	131	－147	－223	369	－457	254．－493	46	－7）0
291	$342 .-309$.	127	149	－226	365	－448．	236－564	36	－658
282	349－311	129	147	－ 220	366	－444	$233-841$	27	－619
264	$341 \therefore . .-308$	129	147	$=220$	362	－435．	233－724	35	－336
23 9\％	340－321	135	142	－222	365	－43i	245．－811．	51	510
214	316．．．－303	126	144	－ 223	355	－39\％r	250．－880	47	＝ 438
191	289．－294．	125	130	－207	330	－3611	268－958	67	－332
164	263：－278．	108	128	－189	301	－312．	281：－1013．	75	－238
133	239 ${ }^{\text {2 }}$－269．	39	104	$=166$	274	－229	319－1088	101	－234
1017	211：$-247 \bar{E}$	78	83	$=130$	243	-280	335：－1141－：	124	－1＋6
70°	171：－229．	58	54	－106	221	－162．	360－1186	133	－33
33．	125－－210\％．	44	－45	－ 29	199.	－93	$391-1217$.	149	2
$=4$	$71^{\circ}-189$	22	28	－ 59	124	－22．	416－1259．	175	4
－39 $=$	10－$=166$	－3	17	－742	156	3 角	449－81278	：188	215
－69	$-28-149$	－21	3	－ 14	$12 \overline{2}$	1015	464－－1279	206	314
－1925	－64	－32．	－29	－． 13	－${ }^{\text {¢ }}$ 22	535 E	499： 1289 ：	$=230$.	405
－128	－36－－119	－43．	－56	－ 44	－．7，2	123	522－1276	254	2
－ria	125：－95	－59	－7	$\cdots 22$		2！重	564i：1234	261.	575
－190	－151－82	－75	－97	95	－ 24	2595	564：1186	283	636
－129	1825－	－91．	＋113	－－114	\bigcirc	268i	527：－1113：	287.	685
－2 27	205^{-54}	115.	－113	． 125	－-9	295 ：	$602 \div 1031$	293	730
－212	221才三－59	121.	－ 131	146	－ 29	3243	616\％－940	311.	742
－226	$-233=-45$	130.	－143	－ 159	．－36	340.	635－849	328	739
－22\％	245 － 32	150.	－142	－． 162	－	351	$6465=-725$	334.	736
－229	241 $=$－ 39	$1+2$	－159	－ 178.	－－52	365	$650^{\circ}-609$	351.	704
EE									
－12	$128=1$				\bigcirc	$\dot{3}$			
234	$340=318$	146.	12：	．-208	－ 367	－373＊	233：－852	60	439
230	32．4－$=308$	143	145	－210	351	－361	239－887	66	－471
206	$303-304$	13.	133	－178	330	－323	－252－964	73	－4．20
179	$273-232$	121	134	－136	320	－311	273－1027	81	－314
149	250－264	176	119	－159	292	－276	300－1090	106	－247
116＝	227．－－239	80.	110	．－140	－373	－230	$305=1131$	105.	－151
－92－	199－223	55	85	－1is	． 254	－174	355－1185	133	－76
－46：	$1530-199$	38.	63	－90	－225	＝ 8 8j	321：－1205	133.	6
． 14	109－183．	31	39	－-55	191	62	402－1235	168	9
－20：	52 $=:-163$ ：	5		－40	163	－ 515	427：－1255．	186	170
－ 56	－2－151．	－16	2	－13	129	107	452－1264	205	284
－82	－51．：－131．	$=-31$	P20	21	－98	151%	478．－1263．	216	384
－118	－90－117．	－49	．-42	40	－83	192	510－1251．	223	8
－139：	－153：－107	－54	－71	75	－ 51	2234	526：－1226．	254	545
－159	－139－78	－76	－ 3	91	42	252	551－117\％	259	623
－1？6	$-16 ?=5-69$	－85	－ios	118	15.	284%	568 $=1111$	267	72
－193	-187^{-63}	－95	－120	136	－6	309.	591－10421	279	707
－204三	$-205=-50$	110	－131	$151-$	－19	3309	602：－947．	278	35
－ 212	$-212=-43$	－122	－140	162	－30	349.	$617-337$	280	745
－216	－225\％－ 37	-133	－145	178	－39	370	629：－71？	286	45
－2is	$-22 \overline{2}$	－138	－153	188	－4 4	$37{ }^{\circ}$	641－607	293	719
$-218=$	$-233 \pm \begin{aligned} & \text {－} 27\end{aligned}$	-148	－151	136	－46	326	646－－479：	287	688 640
－203	－226－29	-151	－148	183	－30	363.	663－359	297	640 581
－195	三223才－27：	-152	－149	198	－45	$363{ }^{\text {a }}$ ．	656＝：－230	293 308	581 516
－178．	－215－ 212	－153	－145	177	三－37	$342{ }^{2}$	662－128	308 317	516 442
－152	－203．$\ddagger-30$	-143	－143	172＝	-39 -37	3248	663： $646-11$	317 320	442 361
-133^{2} -183	－190－－32	-130 -126	－144	176 155	-37 -19	315 375	646 645.114 189	320 329	361 286
-183	$\begin{aligned} & -168 \\ & -152\end{aligned}=-41$	-126 -106	－126	155 157	－ $\begin{aligned} & -1 \\ & -19\end{aligned}$		645. 635. 6313	329 340	286 198
53	－126：-55	－96	$=104$	137	－${ }^{-3}$	2027	632i $=406$	335	124
－17	－94 $\mathbf{4}^{4}-65$	－84	－93	129	${ }_{10}{ }^{\circ}$	168.	608494	340	31
－ 24	－49ㅍ．－79！	－69	－79	－110	－33	1027	5997：549	356	－59
	－9－-95	－51	－65	89	61	57	586593	391.	125
	30：－111	－ 35.	－60	76	－－90	－星	560：： 626	355．	－207
143	$90^{\circ}-130$	－23．	－45	59	．iio	$\bigcirc 66{ }^{\circ}$	424 624	358	－277
$\because 168$			－31	－1－43－	－13\％．		52FEう586－	368.	－350
186^{\prime}	15a－181	： 15.	14	is	． 165	－15	511551	366.	-417 -476
－190	1885i－199\％	！30．		-13	－ 20.	－19\％	49075 506？	358.	-476 -541
282	229－232	56.	22	－44	239 292	-239 -295	482 448 \％	365.	－541
$=221 \div$	$2665 ;-244:$	71.		-83 -108	.282 .300	-295 -316		357.	-587 -633
$246!$ 269	288 302 $30-275$	80.		-108 -142	-300 -32 年	-316. -340^{\prime}	448 487＝ 497%	338．	－633
285	319．－272	114.		－－130	． 326	-360°	422243	292	－700
23 示	$330-286$	129.	110	．－12L	－346	－3897	417三 $=188$	299.	－714
$302=$	$344{ }^{+}=-297$	137.	120	．－178	348	－390．	$398{ }^{\circ} 136$	233	－735
$302=$	－316\％＝－290\％	： 129	－ 137	－-182	－353－	－3935	3653 351	199	-738 -749
312	341－289	132.	140	－194	． 359	－398．	3515	177	－749
319%	314：5－293：	131.	： 142	－ 196	－ 359	－3995	329：${ }^{\text {－3 }}$	146	－ 746
312	344－300	135.	145	－205	． 369	－415	$324-71$	130.	－747
312 \％	34 ${ }^{\text {¢ }}$ 三－-303 ，	142.	143	－199	－364	－499x．	292＝－132．	134.	－749
315	349－29	133.	145	－206	320	－415	268－198	72	－733
3is\％	351：－－308．	138	150	$=209$	－318	－47！	268：－283	62.	－723
312.	351：－305．	146	142	$=206$	372	－415	240－339	51	716

	336：－323	7.	132	－－280	－ 3 ？${ }^{\text {a }}$	－53i	$1 \mathrm{i}^{0}$	96	－916	－712
256	336：－323	：-8.	123	－ 221	－370	－547	102	－ 32	－931	$6: 1$
242	343－－325：	125.	135	－－229	－ 376	－5 54	129	－181	－909．	－629
234	7＋4－32？	1：9．	12%	－229	386	－ 538	120	－ 3 \＃6	－992	－+5
$210=$	334 $=-331$	153.	125	－－ 220	－ 32	－5930	125	136	354．	5
135	3：3＂－331	54．	$12+$	－215	． 359	－511	165	－37	－912	－40．
132．	299＋．－329	12！．	：26	．－216	-359	－469	193	－795	－754．	403
132	（3）${ }^{\circ} \mathrm{Ca4}$	4.	1：${ }^{\prime}$	－178	． 319	－403	137	934	－7：4	こ13
1	294＝－273	$3{ }^{+}$	10！	－176	－29？	－344：	139	1969	－0． 2 ．	237
． 72	$230^{-}-262$	$3{ }^{3}$	－＇	38	． 251	－287	131	1172	－541	： 55
三36	129－－ 242	$\therefore 1$.	9	－111	－239	－259＝－	188	$=1323$.	－	3
－1	$15 i-225$	45.	？ 3	－3！	－201	－212	126	！ 416	444	11
－33－	1253． 200	17.	23	－i4	－183	－ 144	187	79	－372－	3
－${ }^{69}$	55．－192．		；	－43	． 154	－ 97	132	－1508	－216	\％ 5
11k＝	－5：－－183．	24	－15	1σ	12%	－24－	131	－1520．	2	1
－14	－52－164	－-3	－\＄5	16	－84	33	1.5	3.	－120	6
－123－	－125：－143．	51	－72	42	－63	29－	159	－1517．	33	）
－134	－144．－i？ 5	－70	－3i	64	－ 38	103	1.2	－1514	3\％	2
－211	－122＋－107	－31	－： 03	86	$1 ?$	136	157	－1515	27	CO2
－232	$-194^{\circ}-32$	－16	－151	11） 7	－2	156	156	－151？	13	5
－3	－220－． 71	－117	－135	117	-11	－17\％	159	－1523	142	3
－258	－232－62	－127	－14．3	134	－26	209	153	-1513	47	33
－ 2.63	－246－54	－143	－132	145	j $=32$	318－	155	－ 1533	243	743
シixi	－253－54	－145	－173	173	－53	237	147	－1515	290	7
－278－	－265．－44	－162	－154	170	－ 4 ！	226.	159	1465	339	？ 39
$=2 \%{ }^{\circ}$	－ 258 －42	－15s	－1	178	－54	225	153	1784	398	2
－261．	－259－－48	－157	－173	197	－64	229	152	－1280	331	31
－255＊	－253．－49	－15？	－1	133	－65	226	147	1104	410	3
－24\％．	－242－－ 44	－16！	16 ．	158	－94	219	162	8．	423	539
－225	－232－4：	－155	－154	168	－57	292	153	－	$4 \div 5$	
－2	－230－44	－153	－！ 5 ＋	162	－50	183	157	－780	435	1
－137	－2i4－53	－145	－14	： 51	-42	155	153	－640	32	33
-193	－15：－－	\cdots	－14：	1：9	－49	153	145	－493	339	
－15：	－10j－i．s	$1{ }^{3}$	－1	：41	－29	101	147	－340	378	90
－	$-1+0=-73$.	－113	－123	118	85	5	152	－201．	341	1
－ 55	$-1.93^{\circ}-9$	17	$=1$.	103	． 6	13	142	4.	96	9
－26	－6\％－113	－75	－130	96	28	－45．	141	30	258	54
13	$-10 \cdot \cdots 121$	＋	－ $7=$	ji	57	－104	14：	195	221	0
52	$31=-140$	－43	－34	50	74	－155	117	330	156	09
38	$73^{\circ}-155$	－ 3	－45	23	107	－219	13%	433	14	5
115	114－190	－13	－45	－6	171	－280	142	536	35	2
132	151．－205		－32	33	184	－328	133	536	－42	5
1430	194；－ 227	16	，	－i4	$22!$	－384	136	． 704	－75	3
10°	229 ${ }^{2}$－251	4.4	3	－37	260	－439	132			3
17%	$255=-277$	54	25	-118	293	－48i．	126	915	－250	
202	273－291	3.4	$4{ }^{5}$	－142	315	－518	131	315	-313 -343	
223：	$298=-314$	103	53	－－is	522	－526．	125	333	-343	\％
234	307－320	169	91	－182	335	－540	127	7	－404	
23	i16＝－－319	： 114	90	－192	338	－548．	125	934	－537	
246	317－318	111	193	－211	355	－5i0	136	13		－781
248	$321:-331$	124	102	－297	349	－571．	134	778	－ 861	7
250	324－333	． 128	10°	－214	355	－564	135		－737	－7．8
252：－	$333-731$	129	115	－217	357	－5651	129	669	－78！	－-788
252	333 －331	127	116	－223	369	－5691	146		－82\％	785
255	337	131	115	－217	364		152 155	483 365	－879	－775
253	$333-356$	128	114	－218	359	－55	$1-$		879	
	334 ± -339	130	115	－222	365	－575：	$161-$	241 122	898 -911	13
254	338－335	123	121	－220	363		166		3	
254%	$337 \%-334$	131	117	－218	67 65	－572．		-172	－90？	3
244 ${ }^{\text {a }}$	$332-333$	123	120	－228	78					－604
23	34\％$\%-133=$	126	127	－231	378	－572．		－484	－856	－347
288	33 ${ }^{\text {\％－}} 332^{\circ}$	125	124	－230	377			－526．	－ 30	\％
1972	3127×538	129	119	－232	356	－537즐	171	-780°	－798	－421
135	$298-333$	125	113 105	-214 -291	324．	－499\％	194	F2－936	－726	361
129	$2897=-32$	116 101	105 92	-281 -177 175	295	－4ij	179	－1063 $=$	－67？	－281
			． 82	－155－	36\％		184	－ 12	621	－193
\pm	194－E－249	$\div 3$	－ 38	－128	248	－ 30 云\％	197	－1324	545	－122
	15% ¢－2	40	－47	－ 198	． 229	－254	175	：1420	494	
三35	$129^{=-218}$	26	15	．－ 73	． 166	－194．	17	－1490	405	
	－69 ${ }^{\text {¢ }}$－-1	10	$\therefore{ }^{-9}$	－．-43		－ 173	175	1510	－334	131
	$17=176$	－15	－8	－－ 27	$13 \overline{2}$	$=78$	182	51	261	222
	－3\＄－160．	－20	－38	－：．$=9$	： 9 E	－${ }^{2}$	17	：	－186	1
－152	$-71=-149$	－40．	－56	－ 39	3	36	172	－1514	－124	3
-172	－1619－132：	－55．	－72	－； 64	31	67.	8	1527	－44	485
－208 ${ }^{7}$	－147 $=106$	－．79	－87	8S	32	178：	162	71517	10	567
－212		7^{-81}	－114	113	－	135	160	31516	？ 0	．625
－235	－193 5^{-176}	-101	－120	125°	1	197	161	－1523	133	673
－ 241	－224\％－－50	112	－ 534	435		12	165	1 1524	195	213
－25	$=-237^{\circ}-57^{\circ}$	-123	－146	131	－ 2	205：	160	－1522	234	725
	－242－－48	135	－157	669	－42	$233 \pm$	153	：－1514	272	73
－2	249 －－ 53	$=137$	－171	134	－53	246.	151	－1495	317	712

- 29	11%	-2:1	27	23	- 9	186	-212	135	-1480	-440	9
-61	73	-193	9	5	-48	157	-141	175	-1498	-374	126
-97	30	-178	-6	- 20	-16	124	-68	$1: 2$	-1508	-290	213
-131	-19	-153	-32	-3!	5	100	- 15	182	-1522	-210	295
-162	-63	-146	-46	-60	35	70	26	176	-1514	-150	394
-187	-99.	-126	-62	-78	54	58	49	172	-1524	- 72	464
- 207	-136	-106	-76	-99	90	33	98	162	-1514	-14	549
-225:	-167	-82	-90	-113	97	21.	108	172	-1522	54	611
-241	-194	-82	-1.52	-141	120	$\bigcirc 4$	146	163	-1522	115	652
-251:	-217	-72.	-113	-145	133	-11-	180	166	-1526	177	594
-262	-235	-64.	-123.	-161	156	-33	194	164	-1516	218	728
-268:	-249	-57	-136	-169	165	- +12	175°	152	91513	259	741
-276	-252	-52	-147.	-173	178	- - 50	199°	16	-1502	318	726
-268\%	-263	-43.	-157.	-179	- 174	$=45$	192	161	-1440	348.	719
-264	-258	- 51.	-147	-183	. 188	-61	203.	153	-1351.	372	697
-25 ${ }^{\circ}$	-253	-44	-148	-180	.186	-63	19%	159	-1239.	390	659
-24 ${ }^{-}$	- 248	-45	-159	-169	.170	-54	183	161	-1134	417	603
-232	-236	-49	-146	-175	.176	- 63	181:	155	-997	420	549
-212	- 226	- 50	-141	-164	165	$=54$	153	153	-858	417	485
-193:	-212	-48	-142	-157	159	-45	1.32.	163	-730	426	405
-172°	-194	-61	-125	-160	154	-42	107.	144	-576	406	335
-143.	-176	-61	- 126	-140	137	-27	73	163	-433	394	244
-112^{-}	-142	-79	-106	-142	136	-19	45	151	-280	361	159
-80	-120	$-83 .$	-98	-129	122	- 5	-92	149	-131	326	77
-48	-8i	-94	-33	-112	102	20	-4i	149	12	288	-12
- 8	-43	109	-60	-105	89	-4 4	+96\%	150	148	$23 ?$	-96
31	4	-124	-52	-80	61	76	-161	157	266	135	- 188
72:	55	140	-33	-62	46	101	-213.	148	401	124	-257
109:	97	-158	-23	-46	20	131	-254	149	5) 0	06	-342
133.	141	-189	3	-41	. 13	152	$-313=$	140	597	-5	-412
$15{ }^{-1}$	177	-209	8	-13	- - 28	198	-381	107	$0 \cdot 1$	-72	. 469
164%	218	-233	31	-2	. - 54	239	-434	146	-4.3.	-146	- 556
191	254	-260	51	7	-58	269	- 472	133	305.	-234	-603
$201=$	276	-269	66	36	$=107$	307	-517:	139	311	-298	-653
221	294	-293.	35	45	$=127$	320	-533	135	823	-362	-707
233°	302	-297	104	60	-157	332	$-544=$	129	$\$ 33$	-452	7728
243	722	-308	129	81	-180	344	- 599	13	329	-520	$=765$
248	318	-301	-117	104	-199	359	$-573=$	143	819.	-589	- - 784
25°	322	-311.	129	105	-195	$35 \frac{5}{5}$	-568	144	305	-650	$=803$
257:	333	-306	124	118	-210	363	-576	159	766.	-711	-908
259	336	317	130	123	$=214$	320	-59!.	151	711	$\square 76$. -802
258	341	-322.	. 137	119	$=210$	367	-582:	148	- 635	-820	- -799
252	332	-315	-130	123	$=2 i 3$	371	-592	150	546.	-871	$=780$
269 三-	343	-313.	130	128	$=216$	325	-597\%	16	$=134 .$	-838	-776
259	341	-321	130	127	-222	378	-601.	179	316	-915	-737
258	340.	-324	125	128	-226	389	-603:	170	186	-920	-740
258°	3361	-320	130	129	- 225	380	-604.	173	47	-927	$=706$
253	345	-325.	137	121	-214	371	-570r	162	-84.	-930	-665
242	348	-326	138	122	-218	374	-593.	171	-234	-918	627
223 i	$346{ }^{\circ}$	$\therefore-325$. 133	131	. -224	. 380	-606:	169	--395	-890.	-589 -536
198	337	- 332^{-}	143	123	. -218	. 380	-589	137	-554	-856	$\begin{aligned} & -536 \\ & -472 \end{aligned}$
$178=$	322°	-327	-139	126	--219	-377.	-553:	175	-702.	-823.	-472
$15{ }^{\circ}$	227	-306	122	126	. -215	-340	-458	192	-852	-777	-407
133 F	224:	-288	.111	113	- 891	-314	-445	191	-996	-720.	-331 -249
102.	243	-274	33.	97	- -172	. 291	-396	204	-1133	-664	-248

Table (4.3)- Digitized Electric Signal for One of the Tests.

In this chapter the results of the laboratory experiments and the theoretical work required to determine certain structural parameters(Dynamic Properties) will be covered. The experimental data analysis for the six structures will be presented, and the results obtained from these tests will be shown.

5.1 THE DYNAMIC PROPERTIES OF THE STRUCTURES

5.1.1 DETERMINATION OF DAMPING COEFFICIENTS AND NATURAL FREQUENCIES

Damping coefficients were determined from the logarithmic decrement method as set forth by Den Hartog 1956(112) For a single degree of freedom system, if an impulse load is applied to the mass centre, the sequential amplitudes of the oscillation are reduced by the damping in the system. For a system with linear, or viscous damping the relationship between succeeding peaks is expressed by:
$\frac{X_{n+1}}{X_{n}}=e^{-2 \pi \xi \text { FN/FD }} \ldots \ldots \quad \cdots \quad \cdots \quad \cdots \quad$ (5.1.1)

$$
\text { where } \begin{aligned}
X_{n} & =\text { magnitude of the } n^{\text {th }} \text { oscillation } \\
X_{n+1} & =\text { magnitude of the next oscillation } \\
\xi & =\text { relative damping coefficient } \\
F N & =\text { natural undamped frequency of vibration } \\
F D & =\text { natural damped frequency of vibration }
\end{aligned}
$$

and
$F D=F N \sqrt{1-\xi^{2}}$

For low damping as in the case of this work
$\xi^{2} \ll 1$ so that
$\ln X_{n+1}-\ln X_{n}=-2 \pi \xi$
or
$\xi=\frac{1}{2 \pi} \ln \left(\frac{X_{n}}{X_{n+1}}\right)=\frac{1}{2 \pi} \times \frac{1}{n} \ln \left(\frac{X_{o}}{X_{n}}\right)$

In the experiments the magnitudes of succeeding oscillations were obtained by constructing verticals at the upcrossings. The damping coefficients were determined from the smooth part of the record, after the higher modal vibration had disappeared. The decay trace was obtained by displacing the cantilever tip and releasing it. The first few cycles of motion from release were therefore occupied by the cantilever changing the imposed deflection shape to a curve compatible with a freely vibrating uniform loaded cantilever. For this
reason, the first three cycles from the start of the trace were ignored in the calculation. It was observed that over the remaining cycles, the amplitude ratio did not significantly vary with time.

Very little difference in the damping coefficient was observed from the two tests (impulse load test and tip displacement released test). The damping coefficients calculated therefrom were averaged. Each of these tests•were repeated several times.

From the results, it was observed that the damping coefficients in air were less than in water and also it was noticed that the damping coefficients in water increased with the increase of water depth. This could have been due to the added hydrodynamic damping.

The natural damped frequencies of the structures were obtained although in the analysis the undamped natural frequencies were required but since the relative damping coefficients were always very small the damped frequencies were essentially equal to the undamped frequencies as can be seen from Equation (5.1.2).

Table (5.1) gives the average of the results of testing for the relative damping coefficients and the natural frequencies for the structures in both air and water.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Structture} \& \multirow[b]{2}{*}{Water Depth Meter} \& \multicolumn{2}{|l|}{Relative Damping Coefficient} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
Natural \\
Frequency
\end{tabular}} \& \multirow[b]{2}{*}{Remarks} \\
\hline \& \& In Air \& In Water \& In Air \& In Water \& \\
\hline \multirow[t]{4}{*}{(A)} \& 0.45 \& \multirow[t]{4}{*}{0.043} \& 0.045 \& \multirow[t]{4}{*}{58.9} \& 55.4 \& \\
\hline \& 0.47 \& \& 0.046 \& \& 55.1 \& \\
\hline \& 0.50 \& \& 0.048 \& \& 54.8 \& \\
\hline \& 0.525 \& \& 0.049 \& \& 54.5 \& \\
\hline \multirow[t]{3}{*}{(B)} \& 0.5 \& \multirow[t]{3}{*}{0.040} \& 0.044 \& \multirow[t]{3}{*}{36.94} \& 34.25 \& \\
\hline \& 0.525 \& \& 0.045 \& \& 33.76 \& \\
\hline \& 0.55 \& \& 0.047 \& \& 33.4 \& \\
\hline \multirow[t]{3}{*}{(C)} \& 0.5 \& \multirow[t]{3}{*}{0.030} \& 0.034 \& \multirow[t]{3}{*}{25.8} \& 23.35 \& \\
\hline \& 0.525 \& \& 0.036 \& \& 22.92 \& \\
\hline \& 0.55 \& \& 0.037 \& \& 22.49 \& \\
\hline \multirow[t]{2}{*}{(D)} \& 0.5 \& \multirow[t]{2}{*}{0.028} \& 0.030 \& 21.2 \& 18.93 \& \\
\hline \& 0.525 \& \& 0.033 \& \& 18.54 \& \\
\hline \multirow[t]{6}{*}{(E)} \& \multirow[t]{4}{*}{0.5} \& \multirow[t]{6}{*}{\[
\begin{aligned}
\& 0.064 \\
\& 0.068 \\
\& 0.072
\end{aligned}
\]} \& 0.067 \& 20.6 \& 16.07 \& Zero load \\
\hline \& \& \& 0.070 \& 15.13 \& 12.33 \& 1010 grams \\
\hline \& \& \& 0.074 \& 12.69 \& 9.8 \& 2020 grams \\
\hline \& \& \& 0.069 \& \& 15.64 \& Zero load \\
\hline \& \& \& 0.071 \& \& 12.27 \& 1010 grams \\
\hline \& \& \& 0.076 \& \& 9.45 \& 2020 grams \\
\hline \multirow[t]{6}{*}{(F)} \& \multirow[t]{4}{*}{0.5

0.525} \& \multirow[t]{4}{*}{$$
\begin{aligned}
& 0.0625 \\
& 0.065 \\
& 0.070
\end{aligned}
$$} \& 0.065 \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 17.65 \\
& 13.46 \\
& 11.52
\end{aligned}
$$
\]} \& 14.65 \& Zero load

\hline \& \& \& 0.068 \& \& 10.76 \& 1010 grams

\hline \& \& \& 0.073 \& \& 8.6 \& 2020 grams

\hline \& \& \& 0.067 \& \& 13.8 \& Zero load

\hline \& \multirow{2}{*}{0.525} \& \& 0.069 \& \& 10.65 \& 1010 grams

\hline \& \& \& 0.075 \& \& 8.3 \& 2020 grams

\hline
\end{tabular}

TABLE (5.1) - Relative Damping Coefficients and Natural Frequencies.

5.1.2 DETERMINATION OF STIFFNESS CONSTANTS

The values of stiffness constant obtained from the experiments were substituted into the following equation
$\mathrm{n}_{\mathrm{n}}^{2}=K / M \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \ldots \quad \ldots$
$\mathrm{FN}=\mathrm{W}_{\mathrm{n}} / 2 \pi$
From the above equation, the analytical values of the natural frequencies were obtained. These analytical natural frequencies were compared with those obtained by experimentation during the tests for damping coefficients in order to provide an experimental check on the analysis.

The results are shown in Table (5.i).

Structure
(A)
(B)
(C)
(D)
(E) Mass Added at the top 1010 grams 2020 grams
(F) Zero

1010 grams
2020 grams

FN Experimental FN Analytical
58.9 59.08 33.9 25.0
20.1
18.88
13.41
10.97
15.09
10.89
8.95

TABLE (5.i) The Experimental and Analytical Natural Frequencies

Also the values of the stiffness constant were substituted into the following equation
$K=\frac{3 E I}{L_{S}^{3}}(1-b) \ldots \ldots \ldots \ldots$
wehre $L_{s}=$ structure height
$b=\frac{4 W L_{s}^{2}}{\pi^{2} E I}$

From the above equation the modulus of elasticity of each structure was calculated. Small discrepancies were found between the calculated and experimental values of the modulus of elasticity and also between the calculated and experimental values of the natural frequencies. These could be due to the possibility that the wall thickness away from the end may be different from that at the end which will affect the value calculated for the sectional moment of inertia I as well as the value of mass.

5.2
 DATA ANALYSIS

The obtained data for each setting of the wave generator, the water depth in the tank and each level on the structure where the pressure can be measured were
(1) The wave profile
(2) The pressure round the structure at that level
(3) The tip displacement
(4) the bending moment at the base of the structure.

The above data were taken, first when the structure was free to vibrate (Free) and second when the structure was prevented from vibrating (Fixed).

The wave profiles obtained from free structure and fixed structure for each test were compared. The difference between the wave profiles was neglipible, which shows that for the waves used in the tests and for the tested structures there were no radiation waves due to the movement of the structure.

For the structures with more than one level of pressure which can be measured, the data of the wave profile, tip displacement and the bending moment, obtained from the first level, were compared with the other levels for the same condition of test. There were no differences between these data which indicates that the wave properties did not change throughout the whole time of tests and the structures' vibrations were in steady state conditions.

Figures (5.2.1) and (5.2.2) show a typical data obtained for free and fixed structure respectively. Each figure shows the wave profile, the tip displacement, the

Abstract

pressures at each of the eight points due to the wave and the in-line and transverse bending moments. They also show the calculated in-line and transverse local forces at that level.

The calculated static pressure ($\gamma \eta$) is plotted with the measured value of the pressure at point (l) (the static pressure is the curve without symbols). The static pressure is higher than the pressure due to the wave throughout the wave cycle as expected.

Figures (5.2.3) and (5.2.4) show the corresponding pressure distribution across the structure a time increment of the cycle equal to ($\mathrm{t}=\mathrm{T} / 8$). From the figures it can clearly be seen that the distribution of pressure around the periphery of the cylinder crosssection is not symmetrical about the axis of wave propagation. This asymmetry is attributable to the asymmetric formation and shedding of eddies which will give rise to a transverse force.

Figures (5.2.5) and (5.2.6) show the corresponding Fast Fourier's Transformation to the wave profile, inline force and tip displacement. From the figures it can be noticed that there is a magnitude of the second harmonic in the wave profile, and they show also that the wave profile did not change for the two sets of

Figure (5.2.1) - Measured Data and the Calculated InLine and Transverse Local Force for Free Structure.

Figure (5.2.2) - Measured Data and the Calculated InLine and Transverse Local Force for Fixed Structure.

AT TIME=3/8 OF WAVE PERIOD

AT TIME=4/8 OF WAVE PERIOD

$\frac{\text { Direction of Wave }}{\text { Propagation }}$

at TIME $6 / 8$ gF WAVE PERIOO

AT TIME=7/8 OF WAVE PERIOD

Figure (5.2.3) - Pressure Distribution across the Structure during the Wave Cycle for Free Structure.

AT TIME=3/8 OF WIVE PERIOD

AT TIMÉ= $4 / 8$ OF WAVE PERIOD

PRESSURE DISTRIBUTION AT LEVEL: 0.05
at tIME=5/8 gF WAVE PERIOD

AT TIME=6/8 gF WAVE PERIOD

At time=7/8 of wave pe 100

Figure (5.2.4) - Pressure Distribution across the Structure during the Wave Cycle for Fixed Structure.

[^0]

Figure (5.2.6) - Fast Fourier Transfor for the Wave Profile, the In-Line Force and the Tip Displacement for Fixed Structure.
tests. Also they show the difference in the force between the two cases, and the existence of the third sine harmonic in the force as it would be expected (see Keulegan and Carpenter (27)).

Detailed analyses were conducted for all tests. The analysis of the data obtained from each test may be divided into three sections. These three sections were wave properties, forces on structure and dynamic behaviour.

5.2.1 WAVE PROPERTIES

The measured wave profile was processed and wave properties were defined. The processing of the wave profile was carried out by digitizing the electric signal from the wave probe at 0.02 of a second. As the waves generated used in the tests were not purely sinusoidal waves as it is shown in Figure (4.4.1), sinusoidal interpolation was used to generate, from the number of data points obtained from one cycle of the wave, an exact 64 data points in wave cycle, in order to use the Fast Fourier Transformation. See Appendix (C) for sinusoidal interpolation.

From the F.F.T. the amplitudes of each sine and cosine harmonics contained in the wave profile were determined. The wave profile was represented mathematically by Equation (3.2.10).

The wave period was obtained directly from the time increment between the wave cycle. Wave height was defined as the difference between the crest elevation and the trough elevation.

Figure (5.2.7) shows a typical case of the calculated wave profile using Equation (3.2.10) and substituting for the first three harmonics only and the measured one.

FIGURE (5.2.7) - The Measured and calculated Wave Profile.

Checks were made for the measured and calculated wave lengths using linear wave theory, from the Equation (3.2.13).

Equation (3.2.13) was solved by Newton's Raphson's iteration method getting the wave length of the first harmonic and comparing with the measured, the maximum difference was about 6%.

5.2.2 THE FORCES ON STRUCTURE

The signals from the eight pressure transducers located at one level of the structure were digitized at 0.02 of the second simultaneously with the wave profile, bending moment and tip displacement signals.

The force acting on the measured level of the structure at any time can be obtained from Equation (3.4.3). The numerical integration of this equation was carried out by using Simpson's rule:
$d F(t)=\frac{1}{3} \Delta(2 x$ Odd value $+4 x$ Even value $) d s$
. . the $\mathrm{dF}(\mathrm{t})$ in the direction of the wave propagation (in-line force) will be
$d F(t)=\frac{1}{3} \frac{\pi D}{8}\left[\left(2 x \delta P_{I} \cos \frac{\pi}{4}(I-1)+4 \delta P_{J} \cos \frac{\pi}{4}(J-1)\right] d s\right.$
where $I=1,3,5,7$

$$
J=2,4,6,8
$$

The values of the $d F_{x}(t)$ for the wave cycle had been represented mathematically in the same way as of the wave profile.

The measured bending moments were digitized. The digitized bending moments were used to compare the measured and calculated. The bending moments were calculated by using Equation (3.2.20). The values of C_{D} and C_{M} appearing in the equation were calculated from the highest level and taken as constant along the length of the structure. The difference between the calculated and measured bending moments varied from one test to another with maximum difference of 17.5%. Some tests gave good agreement between the measured and calculated bending moments as shown in Figure (5.2.8).

FIGURE (j.2.8) - The Calculated and Measured Bending Moments.

5.2.3 STRUCTURE DYNAMIC RESPONSE

The tip displacement values of $x(t)$ had been digitized and represented mathematically in the same way as those of the wave profile and in-line force.

The mathematical representation of the tip displacement was used to calculate the structure velocity and acceleration at the measured level of pressure by Equations (3.4.7) and (3.4.8).

After the data had been analysed it was subjected to the appropriate theoretical approach to obtain the final results. The results obtained can be divided into two parts, the first part is the waves and the corresponding forces on the structures and the second part is the structural response due to the acting forces and the surrounding environment.

5.3.1 WAVES AND THE CORRESPONDING FORCES ON THE STRUCTURES

In the present study, the experimental waves were nearly sinusoidal, the position parameter (h / T^{2}) was varied between ($0.247-0.564 \mathrm{~m} / \mathrm{sec}^{2}$) and the wave parameter $\left(H / T^{2}\right)$ was varied between ($0.079-0.201 \mathrm{~m} / \mathrm{sec}^{2}$). These values, according to the validity of the wave theory by Dean ${ }^{(8)}$, lie within the region of the Airy theory. Also referring to Howell ${ }^{(5)}$ the condition required to satisfy the linearization of the boundary condition is $\mathrm{H} / 2 \mathrm{k}^{2} \mathrm{~h}^{3} \ll 1$, which allows for using linear wave theory without significant difference from the higher order. Linear wave theory was applicable as $H / 2 \mathrm{k}^{2} \mathrm{~h}^{3}$ for this study was varied between (0.03-0.074). Finally according to the classification of the water wave length to the relative depth (h/L) the waves used
in this work can be classified as intermediate waves as h / L varies between (1/7-1/2.3).

From the above it can be concluded that the linear wave theory using the intermediate equation as shown in Chapter Three gives the most accurate theory to calculate the kinematic properties of the wave for the waves used.

As the structure used in this investigation had a small diameter relative to the wave length, the hydrodynamic forces were calculated by Morison's Equation (3.2.18) and the modified Morison's Equation (3.2.19).

The Keulegan-Carpenter number of the water wave was calculated on the basis of the maximum water velocity at the still water level. The forces corresponding to the wave acting on the structure were used to evaluate the values of the forces coefficients C_{D} and C_{M}. The average values of the drag and inertia coefficients for the cycle had been calculated according to a least squares fit between the experimental force history and that predicted by Morison's equation using Equation (3.2.18) and (3.2.19). Although the forces were measured at some distance from the still water level, the forces coefficients were related to the KeuleganCarpenter number at the still water level.

For each structure the forces coefficients corresponding, to the waves were represented as follows:

1. The forces coefficients C_{D} and C_{M} for fixed structures due to wave
2. The percentage ratio of the value of C_{D} for a free structure to that for a fixed structure ($C_{D P}$) and the same for $C_{M}\left(C_{M P}\right)$
3. The percentage ratio of the values of C_{D} and $C_{\text {in }}$ calculated by the modified Morison's equation to those calculated by Morison's equation ($C_{D D}$ and $C_{M D}$) when the structures were free to vibrate.

The characteristics of the waves used in the tests and the corresponding forces as represented above for each structure are shown in Tables (5.2 through 5.11).

For the case of more than one level of pressure measured along the structure the tables show:

1. For the fixed structures the drag coefficients decrease with depth while the inertia coefficients increase with depth for the tested waves. These are due to the reduction of the water particle
velocity along the structure and consequently the reduction of the $\mathrm{K}-\mathrm{C}$ number, as it shows later that the C_{D} decreases with the decrease of the $K-C$ number while C_{M} increases with the decrease of $K-C$ number, and due to the reduction of the vorticity with depth. The variation of C_{D} and C_{M} with depth should be taken into consideration for the determination of bending moment at the base of the structure especially for the case of deep water.
2. The percentage ratio of the drag coefficients for free structures to those for fixed structures slightly decreases with depth. The corresponding percentage ratio of the inertia coefficients behaves similarly. This can be attributed to the decrease of the effect of the vortices with depth, the forward movement of the separation points of the flow round the structure with depth and the reduced structural response with depth.
3. The percentage ratio of the drag coefficients calculated by modified Morison's equation to those calculated by Morison's equation increases with depth, similarly the corresponding ratio of inertia coefficients. These are due to the increase of the ratio of the relative velocity of the water particale to that of the structures' velocity, as the water particle velocity decreases exponentially with

$\begin{aligned} & \text { TEST } \\ & \text { NO. } \end{aligned}$	HATER DEPTH	wave heIGHI	$\begin{aligned} & \text { HAVE } \\ & \text { LENGTH } \end{aligned}$	$\begin{aligned} & \text { Have } \\ & \text { PERIOD } \end{aligned}$	keulegan- CARPENTER	revnolos	level from	CO	CM	$\begin{gathered} \text { CD FR } \\ \chi- \end{gathered}$	$\begin{gathered} c 0 f(7) \\ z \end{gathered}$		
	meter	meter	meter	SEC.	number	number	Sul	fixed	fixed	CO $\mathrm{P} \times$	C $\mathrm{P}^{\text {f }}$	CM FX	(M) 6
10	0.500	0.0800	3.2500	1.6700	3.040	22026.0	0.110	0.784	2.037	116.10	130.1503	133.32	99.9560
2	0.500	0.0740	2.6400	1.3500	2.473	22167.0	0.110	0.716	2.239	107.37	97.9200	131.62	99.94CJ
3	0.500	0.1100	1.9150	1.1500	3.635	38246.0	0.110	0.820	1.963	110.22	103.0603	132.10	99.98 Co
4	0.525	0.0860	3.2000	1.6500	3.469	2'5289.0	$0.13{ }^{\circ}$	0.810	1.967	111.25	103.5s00	133.05	100.0000
5	0.525	0.0770	2.4930	1.3700	2.456	25798.0	0.135	0.709	2.252	100.80	99.9593	130.81	99.8 CC3
6	0.525	0.1150	1.8880	1.1400	3.728	39569.0	0.135	0.839	1.962	108.22	103.1703	131.39	99.9500
7	0.670	0.0551	3.1545	1.0800	2.008	14638.1	0.030	0.682	2.411	100.00	100.3503	130.00	100.000 3
8	0.473	0.0730	2.4220	1.3600	2.693	22170.9	0.080	0.719	2.214	107.77	100.1303	131.85	99.80 CO
9	0.473	0.1000	1.9165	1.1600	3.321	34642.9	0.080	0.860	1.980	111.02	103.4300	136.46	99.7005
10	0.650	0.0543	3.1502	1.6800	1.876	13498.7	0.000	0.054	2.548	100.00	103.3300	130.00	100.0003
11	0.653	0.0663	2.3899	1.5600	2.231	19850.1	0.060	0.086	2.316	104.42	97.7700	136.75	99.7263
12	0.650	0.0970	1.8977	1.1600	3.269	34096.4	0.060	0.799	1.993	110.82	100.3300	133.95	99.7610

Table (5.2) - Wave Characteristics and the Wave Force Coefficients for Structure (A).

IESt	Hater	wave.			KEULEGAN-	RETNOLOS	Level			COFR	(${ }^{\text {c fra }}$ (R)	CM $\mathrm{CR}^{\text {R }}$	(Mfral
N0.	DEPTA meter	HEIGHT MEIER	LENGTH meter	PERIOD SEC.	CARPENTER nUMBER	number	FROM	$\begin{gathered} \text { CDEO } \end{gathered}$					CM fr
1	0.500	0.0790	2.6400	1.3500	2.682	24039.0	0.068	0.742	2.106	113.75	100.3?03	136.91	100.0200
2	0.500	0.1200	1.9510	1.1500	3.757	39534.0	0.008	0.850	1.922	110.79	133.53	133.25	99.8460
3	0.500	0.0990	2.2070	1.2600	3.177	30510.0	0.088	0.792	1.988	112.76	133.2600	135.36	99.9300
6	0.525	0.0660	2.5020	1.3600	2.182	19414.0	0.093	0.668	2.291	114.15	79.7303	139.50	99.9000
5	0.525	0.1140	1.9610	1.1600	3.748	39100.0	0.093	0.838	1.936	111.07	100.5300	133.23	99.8000
6	0.525	0.1330	1.5200	1.0000	3.926	47506.0	0.093	0.856	1.900	108.37	103.730	$1) 2.99$	99.7603
7	0.550	0.0749	2.5336	1.3600	2.594	23082.0	0.119	0.126	2.220	113.90	100.?30	137.51	99.7783
8	0.550	0.1057	1.9771	1.1600	3.639	35876.1	0.119	0.821	1.971	112.05	103.130	134.59	99.8403
\bigcirc	0.550	0.1290	1.5274	1.0000	3.775	45677.5	0.119	0.852	1.917	110.58	101.3303	133.10	99.8800

Table (5.3) - Wave Characteristics and the Wave Force Coefficient for Structure (B).

 $\begin{array}{rlrrrrr}0.150 & 0.858 & 1.846 & 115.53 & 100.9000 & 109.37 & 79.3700\end{array}$

 $4 \quad 0.5250 .11202 .47501 .3500 \quad 0.697 \quad 18157.4 \quad 0.0751 .0551 .746113 .87101 .3000103 .08 \quad 99.0200$ $000906600 \cdot 5010029 \cdot 171$ $\operatorname{coss} 6 t \quad 60 \cdot 2010008^{\circ} 101$ cclsot 212010000201 oces．66 02001 0001．201 $0025 \cdot 66$ 61•001 0009•201 $\cos 0.001$ に．001 00ック201 | 102.5400 | 100.31 | 100.0500 |
| :---: | :---: | :---: |
| 102.5400 | 100.29 | 100.0300 | $21^{\circ} 901$ s0． $021^{\circ} 1 \cos ^{\circ} 0$

 100.3000
Table（5．4）－Wave Characteristics and Wave Force Coefficients for Structure（C）
STR. DIAMETER $=0.0605$ SH STR. LEIGGTHEO.8350 A
DAHPING COEFF

 $\begin{array}{lllllll} \\ 0.150 & 0.973 & 1.837 & 118.27 & 101.2000 & 109.11 & 99.9700\end{array}$
 $\begin{array}{ccccccc} \\ -1.150 & 1.023 & 1.770 & 117.71 & 101.3200 & 107.67 & 100.1000\end{array}$

------.-- -------------$0.1531 .1091 .077113 .62 \quad 102.2600104 .54130 .2700$
 0229.66 990601 0000.101

 Table (5.5) - Wave Characteristics and Wave Force Coefficients for Structure (D).

 $\begin{array}{rrr}101.3300 & 101.60 & 99.900 \\ 101.3500 & 101.56 & 29.9330\end{array}$
$101.3500101 .56 \quad 29.9330$
$101.3900101 .54 \quad 99.8000$

 102.1200 100.17 130.3000 $102.2000100 .16 \quad 100.1000$ $101.4500 \quad 100.87$ 100.1000 | 101.4500 | 100.87 | 100.1000 |
| :---: | :---: | :---: |
| 101.4000 | 100.84 | 100.0000 |

 $101.0500103 .08 \quad 99.9000$ 101.0000103 .04 99.8500

 $0002 \cdot 00188^{-001} 0002^{\circ} 101$

 0018.6 E 56.101 0001.101
 coos.0.-...-

[^1]STR. DIAMETER $=0.0574 \mathrm{M}$ STR. LEMGTH=0. 7350 Y
NATURAL FRER.

 101.3300 102.17 --99.9500 $101.3200102 .15 \quad 79.7500$ $101.3300 \quad 102.12 \quad 99.9700$ $102.0500 \quad 100.67100 .4500$
-102.0800 100.64 100.5000 100.5200 0050001 100.0700 $0090 \cdot 001$ 101.3800101 .38 $101.0000103 .67 \quad 99.9100$ $101.0300103 .64 \quad 79.9200$ 99.9403 2096.060 $20070 \cdot 101$ $101.2800 \quad 101.50 \quad 99.9900$ $101.3000101 .45 \quad 79.9900$ 101.3000 101.46 99.3700 79.9200
 $0096^{\circ} 6 t$ \&s.201 00ヶ1*101
cture
(5.7) - Wave Characteristics and the Wave Force Coefficients 1010 Grs at the Top.

Table
STR. DIAMETER=0.0574 M STR. LENGTH=0.7350 M
NATURAL FREQ. IA AIR=12.O90 OANPING COEFF. IN AIR=0.072

 $101.3100102 .79 \quad 79.7000$ $101.3100102 .76 \quad 99.9200$ 101.3000 102.75 79.9300 0005.001 01•101 0006•101 $\begin{array}{r}101.9000 \\ \hdashline 101.10 \\ \hline\end{array}$ | 101.9100 | 101.06 | 100.3000 |
| ---: | ---: | ---: |
| 101.9000 | 101.06 | 100 |

100.3300
0001.001 16.101 0029•101 100.1000 $0021^{\circ} \mathrm{OCl}$ 79.8700
-99.8900 C088.6. 0016.66
 $: \begin{aligned} & \text { O: } \\ & : \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & 0\end{aligned}$ cool 001 0056.66 18
10
0
0
0
0
0 COE6. 66 $0060^{\circ} 6$
Table (5.8) - Wave Characteristics and Wave Force Coefficients for Structure (E) with 2020 Grs at the Top.
STR. DIAAETER $=0.0574$ i STR. LENGTH=0. 8350 i
NATURAL FRER. IA AIR=17.6S0 DAMPINGCOEFF. IN AIR=0.063

100.2000
100.2300
100.4000
100.4000
-100.5000
$\begin{array}{c:c}8 \\ 0 \\ 0 & 0 \\ 0 & 0 \\ \vdots & 0 \\ -1 & 0\end{array}$
$\xrightarrow{100.2000}$
$\begin{array}{r}130.1530 \\ \hdashline 100.3000\end{array}$
100.3000
-100.4000
cote. 6 t
79.7100
-79.9500
$\begin{array}{r}79.9500 \\ \hline-9.9400\end{array}$
$0096.6 \mathrm{t} \quad 10.9010002^{\circ} 101$
$0001^{\circ} 001$ ร5*501 $002 \varepsilon^{*} 101$
$101.2005103 .50 \quad 100.2000$
100.3000

- $101.000 \mathrm{~J} 104.73 \mathrm{O} \quad 99.7000$
1
1
$!$
$!$

STR. DIAMETER=0.0574 M STR. LE:AGTH=0.8350
NATURAL FREA. IN AIR=13.460 DAMPING COEFF. IN AIR=0.065

 1010 Grs at the Top.
STR. DIA.AETER=0.0574 M STR. LE:AGTH=0.33SO. A
NATURAL FREG. I: AIR $=11.520 \quad$ DAHPING COEFF. IN AIR=0.J70

 $\begin{array}{rlllllllllllll} \\ 1 & 0.525 & 0.1080 & 1.7600 & 1.1500 & 6.742 & 19148.2 & 0.120 & 1.080 & 1.717 & 115.98 & 101.2300 & 105.53 & 99.8000\end{array}$ $\begin{array}{llllllll} & 0.170 & 1.074 & 1.721 & 115.95 & 101.3000 & 105.49 & 79.7500\end{array}$ 100.0103 100.3200 100.2003 100.1700 100.1100 100.2000
 :
1
1
1
1
1
1
1
0
1 99.3700
-99.9000 $\begin{array}{r}99.9000 \\ \hdashline-100.0200\end{array}$
0020.001 E1.201 1020*101 00s1001 $29-901$ 0002-101 0002•001 59.901 0002•101 0051-001 29•901 0001•101 0096.06
 00500001 0050.001

[^2]depth while the structure velocity decreases sinusoidally with depth, for the case of the drag coefficient and similarly for the acceleration in the case of the inertia coefficient.

The Reynolds numbers of the tests varied from (1.09 $\times 10^{4}$ to 4.7×10^{4}). Figures (5.3.1a) and (5.3.1b) show the variation of C_{D} and C_{M} with Reynolds numbers, l/D.

The relationship between the waves and the corresponding forces can be shown by plotting the results of the dimensionless parameter (Keulegan-Carpenter number) and the coefficients representing the forces.

Figure (5.3.2a) and Figure (5.3.2b) show the variation of the drag coefficients and the variation of the inertia coefficients for the fixed structure versus the Keulegan-Carpenter numbers respectively.

Figures (5.3.3a through 5.3.12a) show the variation of the percentage ratio of C_{D} for free structures to that for fixed structures for each structure tested and Figure (5.3.13) shows the same variation of the ratio for all the tested structures with KeuleganCarpenter numbers. Figures (5.3.3b through 5.3.12b) show the variation of the percentage ratio of the
C_{M} for free structures to that for fixed structures for each structure tested and Figure (5.3.14)
shows the same variation of the ratio for all tested structures with Keulegan-Carpenter number.

Figure (5.3.15a) and Figure (5.3.15b) show the variation of the percentage ratio of the C_{D} calculated by the modified Morison's equation to that calculated by Morison's equation and similarly for C_{M} with KeuleganCarpenter numbers respectively.

The data presented in the figures cited above exhibit certain characteristics which will be discussed below.
(a) THE VARIATION OF THE FORCE COEFFICIENTS (C_{D} AND C_{M}) FOR FIXED STRUCTURE WITH KEULEGAN-CARPENTER NUMBER

The drag coefficient C_{D} increases with increasing $\mathrm{K}-\mathrm{C}$ numbers used in the tests (the range of K-C number used was (1.874-10.604)), while the C_{M} decreases with increasing $K-C$ number for the same range. These results agree with the previous results of Keulegan and Carpenter 1968 (27). The results show less scattering and that is because of the method used in measuring the local force for a segment of the structure which minimizes the error; arising due to the

Figure (5.3.1a) - Variation of C_{D} with Reynolds Number, l/D.

CM FIXED STRU. VERSUS REYNOLDS NUMBER. $1 / 0$

Figure (5.3.1b) - Variation of C_{M} with Reynolds Number, 1/D.

CD FIXED STRU. VERSUS KEULEGAN-CARPENTER NUMBER
Figure (5.3.2a) - Variation of C_{D} with Keulegan-Carpenter Number.

CM FIXED STRU. VERSUS KEULEGAN-CARPENTER NUMBER
Figure (5.3.2b) - Variation of C_{M} with Keulegan-Carpenter

Figure (5.3.3a) - Variation of \% (C_{D} Free (R)/C C_{D} Fixed) with K-C Number for Structure A.

Figure (5.3.4b) - Variation of \% (C_{M} Free (R$) / \mathrm{C}_{\mathrm{M}}$ Fixed) with K-C Number for Structure B.

Figure (5.3.5a) - Variation of \% (C_{D} Free (R)/CD Fixed) with K-C Number for Structure C.


```
Figure (5.3.6a) - Variation of \(\%\left(C_{D}\right.\) Free (R)/CD Fixed)with K-C Number for Structure D.
```


Figure (5.3.7a) - Variation of $\%\left(C_{D}\right.$ Free (R)/ C_{D} Fixed) with K-C Number for Structure E with no Mass at Top.

Figure (5.3.7b) - Variation of $\% ~\left(C_{M}\right.$ Free (R)/CM Fixed) with K-C Number for Structure E with no Mass at Top.

Figure (5.3.8a) - Variation of \% (C_{D} Free (R)/ C_{D} Fixed) with K-C Number for Structure E with 1010 Grs at Top.

Figure (5.3.8b) - Variation of $\% ~\left(C_{M}\right.$ Free (R)/C C_{M} Fixed) with K-C Number for Structure E with 1010 Grs at Top.

Figure (5.3.9a) - Variation of $\%\left(C_{D}\right.$ Free (R)/ C_{D} Fixed) with K-C Number for Structure E with 2020 Grs at Top.

Figure (5.3.9b) - Variation of \% (C_{M} Free (R)/CM Fixed) with K-C Number for Structure E with 2020 Grs at Top.

Figure (5.3.10a) - Variation of \% (C_{D} Free (R)/CD Fixed) with K-C Number for Structure F with no Mass at Top.

Figure (5.3.10b) - Variation of $\%\left(C_{D}\right.$ Free (R)/CD Fixed) with K-C Number for Structure F with no Mass at Top.

Figure (5.3.11a) - Variation of \% (C_{D} Free (R)/ C_{D} Fixed) with K-C Number for Structure F with 1010 Grs at Top.

Figure (5.3.11b) - Variation of \% (C_{M} Free (R)/CM Fixed) with K-C Number for Structure F with 1010 Grs at Top.

Figure (5.3.12a) - Variation of \% (C_{D} Free (R)/CD Fixed) with K-C Number for Structure F with 2020 Grs at Top.

Figure (5.3.12b) - Variation of $C_{0}\left(C_{M}\right.$ Free (R)/C C_{M} Fixed)with K-C Number for Structure F with 2020 Grs at Top.

Figure (5.3.13) - Variation of \% (C_{D} Free (R)/CD Fixed) with K-C Number for all Structures.

Figure (5.3.14) - Variation of \% (C_{M} Free (R)/ C_{M} Fixed) with K-C Number for all Structures.

Figure (5.3.15a) - Variation of \% (C_{D} Free (R)/C Free) with K-C Number for all Structures.

Figure (5.3.15b) - Variation of $\%\left(C_{M}\right.$ Free (R)/C C_{M} Free) with K-C Number for all Structures.
variation of the value of C_{D} and C_{M} along the submerged part of the cylinder.
(b) TIIG VARIATION OF THE PERCEINTAGE RATIO OF. THE FORCE COEFFICIENTS FOR FREE STRUCTURES TO THOSE FOR FIXED STRUCTURES WI'IH KEULEGAN-CARPENTER NU:BERS.

The variations of the percentage ratio of C_{D} for free structures to that for fixed structures with the K-C numbers have negative gradients with negative second derivatives for all structures with the exception of structure A (relatively stiff). In this case, for low K-C numbers there is no difference between C_{D} (free) and C_{D} (fixed) with the increasing value of K-C numbers. The percentage ratio C_{D} (free): C_{D} (fixed)then increases up to a definite maximum. Thereafter the behaviour of the C_{D} ratio is similar to that described above for other less stiff structures. The variations of the percentage ratio of the C_{M} have the same behaviour as that of the C_{D} for all structures with the exception that they have positive second derivatives.

The percentage ratios of the drag coefficient are greater than the correspondinc percentage ratios of the inertia coefficient.

With decreasing structural stiffness, it is apparent that the rate of variation of the force coefficient ratios with the K-C numbers decreases.

For a particular value of $K-C$ number it is apparent that, with decreasing structural stiffness, the ratios of the force coefficients increase.

This increase in the value of the force coefficients for free structures compared to those for fixed structures could be attributed to the movement of the structure and consequently the shift of the separation points in the upper stream direction towards the front of the cylinder and the increase of the wake size, thereby leading to an increase of the force. Similarly this increase occurs when the flow reverses its direction (see Figures (5.3.3) and (5.3.4)).

The negative gradient variation of the force coefficients with the $K-C$ numbers could be due to the change of the level of vorticity in the fluid near the structure. The change of the level of vorticity is due to the increase of the $K-C$ numbers combined with the increase of the amplitude of the structure's response

The reason for the lessening of the rate of change of the force coefficients ratio with the decreasing of the structural stiffness could be due to the increase of the phase angle shift of the structure's response to the wave force.
(c) THE VARIATION OF THE PERCENTAGE RATIO OF TAE FORCE COEFFICIENTS CALCULATED BY MODIFIED MORISON'S EQUATION TO THOSE CALCULATED BY MORISON'S EQUATION $\mathbb{V} I T H$ THE K-C NUMBERS

The variation of the percentage ratio of the C_{D} slightly increased with $K-C$ numbers while no variation is noticed for the percentage ratio of C_{M} with the K-C numbers. This shows that for the tested waves and structures the ratio of the squared values of the relative velocity to the squared values of the water wave particle velocity is very small and decreases with the increase of the $K-C$ numbers while the value of the ratio of the relative accelerations to the water wave particle accelerations is negligible.

5.3.2 STRUCTURE'S RESPONSE TO THE WAVE FORCES

The structures' response results obtained from the experiments conducted for the structures together with the computed values are presented below. The structures' responses were represented by the nondimensional parameter X / D where X is the amplitude of vibration and D is structure diameter.

As the structures' responses should be related to non-dimensional parameters which contain the necessary variables to represent the structures' dynamic properties as well as the water waves. As the reduced velosity is normally used to relate the structure's response in the transverse direction due to the transverse force, because the drag component of the in-line force and the transverse force are due to the separation of flow around the structure and the formation of eddies, tine structure's response in the direction of the wave can also be related to tine reduced velocity. Therefore tine reduced velocity was used as the non-dirnensional parameter waici satisfied the above condition. The reduced velocity was calculated for each test by:
$V D=U_{m} / D \times F N \quad \ldots \quad$.
where $U_{m}=$ maximum water particle velocity
FN = structure natural frequency

Also the reciprocal of reduced velocity was calculated for each test, as it was used by T. Sarpkaye and R. L. Shoaff 1979 (l13).

Because the reduced velocity does not include the effect of damping of the structure, the dimensionless damping was calculated for each test by:

where $\bar{M}=$ effective mass

$$
\xi=\text { damping coefficient }
$$

$$
\rho=\text { water density }
$$

$$
L_{s}=\text { structure length }
$$

The response parameter has been introduced by multiplying the dimensionless damping by the reciprocal of the reduced velocity
$D M=\left(2 \bar{M} \xi / \rho D^{2} L_{S}\right)\left(D \times F N / U_{m}\right)$

Each tested structure is presented in a table (Tables 5-12 through 5-21). Each table shows the following parameters:-

1. The above non-dimensional parameters
2. The ratio of the force frequency to the structure natural frequency
3. The percentage ratio of C_{D} for the free structure to that for fixed structure
4. The percentage ratio of C_{M} for the free structure to that for fixed structure
5. The calculated phase shift between the structure's response and the applied force
6. The structure's resnonse calculated by using the wave forces acting on the fixed structure (Method B)
7. The structure's response calculated by using the wave forces acting on the free structure (Method A)
8. The structure's response measured from the experimental tests.

The structures' responses calculated by using the wave forces acting on the structures when they were free to vibrate, the ratio of the frequency of the force to the natural frequency of the structure, the calculated. phase shift between the structure's response and the applied load and the percentage ratio of C_{D}

$0 ッ 9200^{\circ} \mathrm{O}$ 0クッマしで 0
0
0
0
0
$?$
0
0 0
0
0
\vdots
0
0 0
0
a
0
0 $\begin{array}{cc}n & \sim \\ \sim & \tilde{n} \\ \tilde{0} & 0 \\ 0 & 0 \\ 0 & 0 \\ \dot{0} & \dot{0}\end{array}$
n
0
0
0
0
0
i $\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$ 0
\sim
∞
0
0
0

 . $101550-0.02071545$ J. Uis23 J.U35137 0.037564 0.038317
 n
∞
\sim
∞
∞
0
0
n
\hat{a}
0
0
0
0
n
n
\vdots
-
-
-
\vdots
\vdots 0.082750
0.091344
.15033 0.J9!158 J.1.1214? 0.091344

[^3]Table (5.15) - Structure's Response to the Wave Force for Structure D.
Sthucture (E)

Table (5.16) - Structure's Response to the Wave Force for Structure E with
No Mass at Top.
Table (5.17) -

\[

$$
\begin{aligned}
& \text { Structure's Response to the Wave Force for Structure E with } \\
& 1010 \text { Grs at Top. }
\end{aligned}
$$
\]

$100.74101 .040 .0165 \quad 0.054185 \quad 0.054733 \quad 0.054025$ $110.00101 .94 \quad$ J. U150 C. $345478 \quad 4.6463760 .045233$ 113.38104 .140 .01320 .0325370 .0339020 .032734

112.53103 .13 リ.0141 1. 1520143 V.537037 0.030037

Table (5.18) - Structure's Response to the Wave Force for Structure E with
2020 Grs at Top.

 0.0724030112 .24102 .330 .009010 .0072500 .1088050 .000399 $10.007090^{\circ} 113.30103 .31 \quad 3.0090 \quad 1.357294 \quad 0.057170 \quad 0.050984$ 1). J59350: 115.001100 .17 J.0077 U.U4vo33 0.043147 0.041223 $113.90103 . j 0 \quad 0.00070 .050244 \quad 0.358215 \quad 0.055750$

no Mass at Top.
STKUGTURE (F)

 TNOCORE SESPONSE RESPONSE
 $======\pi====================$ §SクOSO $0^{\circ} \mathrm{C}$ 112.01103 .00 J. J131 $0 . J 002540.208300 .068210$ 114.30104 .00 2.01く1 0.050992 \quad U.099207 0.055773 $110.451 J 0.57$).4111 J. $141.45 \quad 0.3 .41710 .040326$ $114.38104 .040 .0127 \quad 0.053478 \quad 0.3577110 .054600$ 0.Jju0)2c i1j.03 13j.32).J113 U.J40350 0.349352 J.047214
Table (5.20) - Structure's Response to the Wave Force for Structure F with
1010 Grs at Top.
$0.97950 \quad 1.0208$
$0.015<5 \quad 1.2200$ $0.50335 \quad 1.0354$ $0.06550 \quad 1.1827$ 0.732131 .4242

2020 Grs at Top.

Table (5.21)

$$
0.121431 y \quad 113.60 \text { 103.37 2.0103 .00.179 } 0.0716713 .009408
$$

$$
0.1115573 \quad 115 . j 3104.50 \text { 5.J109 3.05:035 ?.000312 } 1.057597
$$

Table (5.21) - Structure's Response to the Wave Force for Structure F with

$$
0.040180
$$

$$
0.050327
$$

$$
0.047727
$$

for the free structures to that of the fixed structures as well as the percentage ratio of C_{M} were plotted against the two non-dimensional parameters (the reciprocal of the reduced velocity and the response parameter).

The variation of the structures'responses with the reciprocal of the reduced velocity is shown in Figure (5.3.16a). The variation of the structures' responses the response parameter is shown in Figure (5.3.16b). The figures show that the structures' responses can be represented by these non-dimensional parameters. The structural responses increase with the decrease of these non-dimensional parameters. The response parameter represents more accurately the structural response as the graph shows less scattered results.

Figures (5.3.17a) and (5.3.17b) show the variation of the phase shift with the reciprocal of the reduced velocity and the response parameter respectively.

The variation of the ratio of the force frequency to the structure frequency with the reciprocal of the reduced velocity and with the response parameter are shown in Figures(5.3.18a) and (5.3.18b), respectively.

Although the variation of the structure's response is better represented by the response parameter, the variation of the phase shift and the variation of the ratio of the force frequency to the structure frequency are better represented by the reciprocal of the reduced velocity. The variations of these three parameters with respect to the reciprocal of the reduced velocity and response parameter have the same pattern.

The variation of the percentage ratio of the drag coefficient calculated for the free structures to that calculated for fixed structures with the reciprocal of the reduced velocity is shown in Figure (5.3.19). The variation of this percentage ratio with the response parameter is shown in Figure (5.3.20). This variation has a positive gradient with a negative second derivative for all the structures.

Figures (5.3.21) and (5.3.22) show the variation of the percentage ratio of the inertia coefficient calculated for free structures to that calculated for fixed structures with reciprocal of the reduced velocity and with the response parameter respectively. The variations have positive gradients with positive second derivatives for all structures. The variation of the percentage ratio of the force coefficients with the reciprocal of the reduced velocity is clearer than that with the response parameter.

Figure (5.3.16a) - Variation of the Structures' Response (X/D) with the Reciprocal of Reduced Velocity.

Figure (5.3.16b) - Variation of the Structures' Response (X/D) with the

Figure (5.3.17a) - Variation of the (Force Frequency/Natural Frequency) with the Reciprocal of Reduced Velocity.

(FORCE/STR.) FREQ. VS. RESPONSE PARAMETER
Figure (5.3.17b) - Variation of the (Force Frequency/Natural Frequency)
with the Response Parameters.

Figure (5.3.18a) - Variation of the Phase Shift between the Structure's Response and the Force with the Reciprocal of Reduced Velocity.

Figure (5.3.18b) - Variation of the Phase Shift between the Structure's Response and the Force with the Response Parameters.

Figure (5.3.19) - Variation of (\% $C_{D} F r e e(R) / C_{D}$ Fixed) with the Reciprocal of Reduced Velocity.
CDP
Figure (5.3.20) - Variation of (\% $\mathrm{C}_{\mathrm{D}} \mathrm{Free}(\mathrm{R}) / \mathrm{C}_{\mathrm{D}}$ Fixed) with the Response Parameter.
CMP

Figure (5.3.21) - Variation of ($\% C_{M}$ Free(R)/ C_{M} Fixed) with the Reciprocal of Reduced Velocity.
CMP

The variations of the percentage ratio of C_{D} and also of C_{M} with respect to the reduced velocity have a similar pattern to the variations with the $K-C$ numbers. This similarity in the behaviour emphasises the previous explanation of the water wave structure interaction.

The variation of the relative displacement X / D with the time of one wave cycle is shown in Figures(5.3.23) through (5.3.32) for one test of each structure when the water depth was 0.5 meter and the wave period was 1.15 seconds. In these figures the relative displacements are represented by the following symbols:

- The measured displacement divided by the structure diameter.
o The calculated relative displacement using the values of C_{D} and C_{M} for free structure and taking into consideration the water wave/structure interaction in the dynamic equation.
$+\quad$ The calculated relative displacement using the values of C_{D} and C_{M} for fixed structure and using the damping coefficient in water without taking into consideration the water wave/ structure interaction in the dynamic equation.

Figure (5.3.23) - Structure's Response (X/D) during the Wave Cycle for Structure A.

Figure (5.3.25) - Structure':s Response (X/D) during the Wave Cycle for Structure C.

Figure (5.3.26) - Structure's Response (Y/D) during the Wave Cycle for Structure D.

Figure (5.3.27) - Structure's Response (X/D) during the Wave Cycle for Structure E with no Mass at Top.

Figure (5.3.28) - Structure's Response (X/D) during the Wave Cycle for Structure E with 1010 Grs at Top.

Figure (5.3.29) - Structure's Response (X/D) during the Wave Cycle for Structure E with 2020 Gre at Top.

Figure (5.3.30) - Structure's Response (X/D) during the Wave Cycle for Structure F with no Mass at Top.

Results for the other tests are shown in Appendix (D)

The figures show that there areinsignificant differences between the two calculated relative displacements, the greatest difference being 11.08%. Also the difference between the calculated relative displacement using finite elements and the measured relative displacement is small, with a maximum difference of 9.63\%.

CHAPTER SIX

SUMMARY AND CONCLUSION
6.1.1 Theoretical and experimental investigations were carried out in a regular wave regime to study the wave force and the associated structural response on a circular cylinder pier. The cylinders were tested under three different conditions (a) fixed at the bottom and the top end free to vibrate as a cantilever (b) fixed at both ends top and bottom, (c) fixed at the bottom but free to vibrate, top end being free carrying an added mass. The experimental study was conducted in a wave regime defined by Keulegan-Carpenter number (Um T/D) i.e. from 1.87 to 10.69. The maximum amplitude of the structural response (X/D) at the top of the cylinder varied from 0.0049 to 0.098 . The ratio of the force frequency to the structural natural frequency was low to avoid resonance.
6.1.2 The theoretical model used in this study were
(a) The structural model is an equivalent beam arrangement (pipe element) consisting of lumped masses, the force being applied to the mass node.
(b) The damping model for the structure is based on the mass and stiffness damping. In the case when the water wave/structure interaction is ignored and the value of C_{D} and C_{M} were taken for a fixed structure, the value of the relative damping coefficient taken from the water damping test was used.
(c) The direct approach method was used in the iterative solution of the nonlinear differential equation of motion in the case of water wave/structure interaction.
(d) The mode superposition technique with few modes was used in the two-dimensional analysis of the structural response in the time domain.
6.2.1 The local force coefficitnts C_{D} and C_{M} were calculated at certain depth of the structure (where the pressure could be measured). This depth varied from 0.06 to 0.12 metres from the still water level (see Tables 5.2 to 5.11). For some structures, there were more than one level where the local force coefficients were calculated. It was found that the magnitude of the drag coefficient decreases with depth and that of the
inertia coefficient increases with depth (e.g. in the Table 5.5 Test 1 , the value of C_{D} at 0.05 metres from the still water level was 1.019 and at level 0.15 was 0.978 and the corresponding C_{M} value was 1.758 and 1.837).
6.2.2 When the structures were fixed at the top i.e. not allowed to vibrate, the value of the calculated local drag coefficient C_{D} varied from 0.654 to 1.261 and that of the inertia coefficient C_{M} varied from 2.548 to 1.544 as the Keulegan and Carpenter number varied from 1.87 to 10.69 (see Figures 5.3.2a and 5.3.2b). The order of the magnitude of the value of C_{D} and C_{M} obtained agree with the previous published results (Hogben et al $1977^{(53)}$) (Aagaard and Dean $1969^{(114)} C_{D}$ varied from 0.5 1.2 and C_{M} was constant and equal to 1.33 , Keulegan and Carpenter $1958^{(27)} C_{D}$ varied from 0.7 to 1.3 and C_{M} varied from 2.6 to 1.6 , Morison et al $1950^{(25)} C_{D}$ varied from 1.626 ± 0.414 and C_{M} varied from 1.508 ± 0.197 and Paape and Breusers $1967^{(115)} C_{D}$ varied from 0.5 to 2.0 and C_{M} varied from 1.0 to 2.5).
6.2.3 When the structures were free at the top i.e. free to vibrate, the values of C_{D} and C_{M} were calculated by two methods, first by Morison's equation and second by modified Morison's equation. The second
method producing the larger value of the drag coefficient with a maximum ratio (C_{D} modified Morison/C C_{D} Morison) of 102.7% while the inertia coefficient C_{M} showed no differences between the above two methods (see Figures 5.3.15a and 5.3.15b).
6.2.4 There is a difference between the magnitude of the drag coefficient of the "free" structure and that of the "fixed" structure under a particular set of wave conditions, the former being greater in magnitude than the latter. The maximum ratio of the drag coefficient for the free structure to that of fixed structure (C_{D} Free $/ C_{D}$ Fixed) was 118.45% (see Figure 5.3.13). It was found that the inertia coefficient exhibited a similar pattern of behaviour. The maximum ratio of the inertia coefficient for free structure to that of fixed structure (C_{M} Free $/ C_{M}$ Fixed) was 109.56% (see Figure 5.3.14). These differences in the magnitude of the force coefficients decrease with increasing depth from the still water level (see Tables 5.4 to 5.11).

The difference in magnitude of the drag coefficients is greater than the corresponding difference in magnitude of the inertia coefficients. Both differences in value are attributed to the vibration of the structure and consequently the
change in the flow field round the structure (see Figures 5.2.3 and 5.2.4). Therefore these differences are dependent upon the structural response (X/D) and Keulegan-Carpenter number (Um T/D). There is a decrease in magnitude with increasing Keulegan-Carpenter number for the same structure because the increase of the level of vorticity in the fluid field near the structure. For constant Keulegan-Carpenter number their magnitude increase with decreasing structural stiffness.

No differences in the ratio of C_{D} Free/C C_{D} Fixed and the ratio of C_{M} Free $/ C_{M}$ Fixed were noticed when the structural response (X / D) was less than 0.006. As the structural response increases to a value in excess of 0.006 the differences in coefficients start to increase sharply until a peak is reached at X / D of $0 . O 1$, thereafter the differences decrease with increasing structural response as shown in Table (5.12).

For the tested structures and waves, the wave force acting on the free structure was greater than that of the fixed structure. The maximum difference was 9.5%.

Abstract

6.2.5 The magnitude of the relative damping coefficient is greater in water than in air and increases with increasing water depth. For the same structure, the magnitude of the relative damping coefficient increases with increasing added mass at the top of the structure i.e. decreasing structure stiffness (see Table (5.1)).

6.2.6 Also from Table (5.1) it can be seen that the natural frequency of the structure in air had a higher value than that in water. The value of the structural natural frequency in water decreases with increasing water depth.
6.2.7 The dynamic analysis using the first three modes
in the mode superposition technique (as suggested
by Molhatra and Penzien $1970^{(85)}$) and using the
damping matrix as proportional to the mass and
stiffness matrix, gives a more accurate representa-
tion of the problem of the structural response
(deflection) for a cantilever structure when the
ratio of the forcing frequency to the structure's
frequency is very small (<< 1) (i.e. 0.13). The
maximum difference between the measured and the
calculated structural response using the modified
Morison's equation (Method A) is 9.87% The
maximum difference between the measured and
calculated structural response using Morison's
equation (Method B) is $7.45 \% ~(s e e ~ T a b l e s ~ 5 . l 2 ~$
6.2.81 The maximum difference between the calculated structural response using Mechod A and Method B is 9.56%.
6.2.9 The structural response (X/D) is better represented by the non-dimensional response parameter $\left(2 \bar{M} \xi / \rho D^{2} L_{S}\right)\left(D F N / U_{m}\right)$ than by the reciprocal of the reduced velocity ($\mathrm{D} \mathrm{FN} / \mathrm{U}_{\mathrm{m}}$) as shown in Figures(5.3.16a - 5.3.16b).

6.3 RECOMMENDATION

Additional research is needed, under the same condition (FF/FN << l) for structures with dynamic properties differing from those investigated herein. In addition a continuation of research is needed under different condition (FF/FN > l) and less than the second resonance for structure of similar dynamic properties to those investigated.

REFERENCES

1. Inquiry into the Collapse of Texas Tower No. 4. Hearings before the Senate Preparedness Investigating Sub-Committees, Committee on Armed Services, U.S. Senate, 87 th Congress, First Session, U.S. Govt. Printing Office, May 3, 4, 10, 11 and 17 , 1961.
2.
3.
4.

A. D. K. Laird "Flexibility in Cylinder Groups Oscillated in Water" Journal of the Waterways and Harbors Division, ASCE, Vol. 92, No. WW3, Proc. Paper 4884, August, 1966, pp 69-85.
5. D. Howell "Equations for Water Wave and Approximation Behing Them" Waves on Beaches and Resulting Sediment Transport, Edited by Meyer, Academic Press New York, London 1972.
6. J. J. Stoker "Water Waves" Interscience Publishers INC, New York, 1957.
7. J. V. Wehausen and D, V. Laiton "Surface Waves' Handbuch der Physik, Bd. IX.
8.
E. V. Laiton "Limiting Conditions for Cnoidal and Stokes Wave", Journal of Geophysical Research, Vol. 67, No. 4, April 1962.
9.
B. W. Wilson "Origin and Effects of Long Period Waves in Ports'", XIX International Navigational Congress Section II Comm. Vol. 1, (1957).
10. R. G. Dean "Stream Function Wave Theory; Validity and Application", Proc. of the ASCE Specialty Conference on Coastal Engineering 1965, Chapter 12, pp 269-299.
11. R. G. Dean "Relative Validities of Water Wave Theories", Proc. ASCE, Jour. of Waterway and Harbors Division, Vol. 96, Nowwl, Feb. 1970.
12. R. G. Dean "Evaluation and Development of Water Wave Theories for Engineering Application", U.S. Army, Corps of Engineers Coastal Engineering Research Centre Report, No. 1, 1974.
13. H. Nishimura and M. Isobe "On the Validities of Finite Amplitude Wave Theories", International Conference on Water Resources Engineering, Bankok, Tailand, 1978.
14. R. L. Wiegel "Oceangraphical Engineering", PrenticeHall, Inc. 1964.
15. R. L. Wiegel 'Waves and Wave Spectra and Design Estimates", Deep-Sea Oil-Production Structures, January 23-27, 1978.
16. C. J. Garrison and S. Rao "Interaction of Wave With Submerged Objects", Jour . of Waterway, Harbors and Coastal Eng. Div, May 1977, WW2, pp 259-277.
17. R. L. P. Verley "Wave Forces on Structures an Introduction", BHRA Report No. TN1319, 1975.
18. R. C. MacCamy and R. A. Fuchs "Wave Force on Piles: A Diffraction Theory", U. S. Army Corps of Engineers, Beach Erosion Board, Tech. Memo No. 69, 1954.
19. Spring and Munkmeyer, "Interaction of Plane Waves with Vertical Cylinders", Coastal Eng. Conference, ASCE, Vol. III, 1974, pp 1828-1847.
S. K. Chakrabarti, "Wave Forces on Multiple Vertical Cylinders", Jour. of Waterway, Port, Coastal and Ocean Div. ASCE, Vol. 1O4, 1978, WW2 pp 147-161.
21. C. J. Garrison, "Hydrodynamics of Large Objects in the Sea, Part I - Hydrodynamic Analysis', Jour. of Hydronautics, Vol. 8, No. 1, January 1974, pp 5-12.
22. C. J. Garrison and R. Stacey, "Wave Loads on North Sea Gravity Platforms: A comparison of Theory and Experiment", Offshore Technology Conference 1977, Paper No. OTC 2794, pp 513-524.
H. Raman, P. G. V. Rao and P. Venkatanarasaiah, "Diffraction of Nonlinear Waves by a Circular Cylinder", Acta Mechanica, 23, 1975, pp 145-158.
24. S. K. Chakrabarti, "Wave Forces on Pile Including Diffraction and Viscous Effects', Jour. of Hydraulics Division, ASCE, Aug. 1973, Vol. 99, HY8, pp 1219-1233.
25. J. R. Morison et al, "The Force Exerted by Surface Waves on Piles", Petroleum Transaction, AIME, Vol. 189, 1950, pp 149-154.
26. R. D. Blevins, "Flow-Induced Vibration", Van Nostrand Reinhold Company (1977).
27. G. H. Keulegan and L. H. Carpenter, "Forces on Cylinders and Plates in an Oscillating Fluid", National Bureau of Standard (Journal of Research) Vol. 6O, Nos. R. P 2857 (1968).
28.
29.
30.
31.
32. R. G. Dean and P. M. Aagaard, "Wave Forces: Data Analysis and Engineering Calculation Method", Jour. of Petroleum Technology, March 1970.
33.
34.
35.
36.
37.
C. L. Bretschneidier, "Probability Distribution of Wave Force", Proc. ASCE 93, WW2, pp 5-26, (May 1967).
38.
G. G. Susbielles et al, "Wave Forces on Pile Sections due to Irregular and Regular Waves", Proc. Offshore Technol. Conf. Paper OTC 1379, 1971.
39. S. K. Chakrabarti, "Wave Forces on a Randomly Orient Tube", Proc. OTC Paper No. OTC 2190, 1975.
40. J. D. Gaston and R. D. Ohmart, "Effect of Surface Roughness on Drag Coefficients'"; Civil Engineering in the Ocean IV', ASCE, pp 611-621, 1979.
41. T. Sarpkaya, "Vortex Shedding and Resistance in Harmonic Flow about Smooth and Rough Circular Cylinders at High Reynolds Number", Report No. NPS - 59SL76021, Naval Postgraduate School, Monterey, CA (1976a).
42. T. Sapkaya, "In-Line and Transverse Forces on Smooth and Sand-Roughened Cylinder in Oscillatory Flow at High Reynolds Number", Report No. NPS - 59SL76022, Naval Postgraduate School, Monterey, CA (1976b).
43. G. G. Stokes, "On the Effect of the International Friction of Fluid on the Motion of Pendulums", Cambridge Phil. Trans. Vol. IX, Part 2, p 8, 1945.
44. T. Sarpkaya, "In-Line and Transverse Forces on Cylinders in Oscillatory Flow at High Reynolds Numbers", Journal of Ship Research, Vol. 21, No. 4, pp 200-216, (1977a).
45. T. Sarpkaya et al, "Wave Force on Rough-Walled Cylinders at High Reynolds Number", Offshore Technology Conference 1977, Vol. III, Paper No. OTC 2901, pp 175-184.
46.
47. P. W. Bearman and J. M. R. Graham, 'Hydrodynamic Forces on Cylindrical Bodies in Oscillatory Flow', Proc. of the Second International Conference on Behaviour of Offshore Structures BOSS 79, London, Paper No. 24, pp 309-322 (1979).
48. S. K. Keim, "Fluid Resistance to Cylinders in Accelerated Motion", Journal of the Hydraulics Div. ASCE Vol. 83, No. HY6 (1956).
49. A. D. K. Laird and C. A. Johnson, "Drag Forces on Accelerated Cylinders", Journal of Petroleum Tech. Vol. 8, pp 65-67, (1956).
50. A. D. K. Laird et al, "Water Forces on Accelerated Cylinders," Jour. of Waterways and Harbor Div. ASCE, WW1, pp 99-119 (ly59).
51. C. Dalton et al, "The Forces on Cylinder oscillating Sinusoidally in Water II, Further Experiments", Offshore Technology Conference 1976, Paper No. OTC 2538.
52.
T. Sarpkaya and C. J. Garrison, "Vortex Formation and Resistance in Unsteady Flow', Journal of Applied Mechanics, Vol. 30, Series E, No. 1, pp 16-24 (1J63).
53. N. Hogben et al, "Estimation of Fluid Loading on Offshore Structures", Proc. Institution of Civil Engrs. Vol. 63, Part 2, pp 515-562 (1977).
54. N. Hogben, "Wave Loads on Structures", Proc. International Conference on the Behaviour of Offshore Structure, Vol. 1, pp 187-219 (1976).
55. D. D. Bidde, "Laboratory Study of Lift Forces on Circular Piles", Jour. Waterwats Harbors and Coastal Eng. Div. ASCE, Vol. 97, No. WW4, pp 595-614, 1971.
56. R. Wiegel and Delmonte, "Wave Induce Eddies and Lift Forces on Circular Cylinders", Univ. of Calif. Berkeley, Tech. Report No. HEL 9-19, 1972.
57. M. De St. Q. Isaacson, "The Forces on Circular Cylinders in Waves", PhD Thesis Submitted to the Dept. of Engineering, Univ. of Cambridge (1974).
58.
B. Berge and J. Penzien, "Three-Dimensional Stochastic Response of Offshore Towers to Wave Forces", OTC 1974, Paper No. OTC 2050, pp 173-183.
63.
64.
65.
A. S. Veletsos and Y. T. Wei, "Lateral and Rocking Vibration of a Footing', J. of the Soil Mechanics and Foundation Division ASCE, Vol. 97, No. SM9, pp 1227-1249, September 1971.
66. J. E. Luco and R. A. Westmann, "Dynamic Response of Circular Footings', J. of the Engineering Mechanics Division, ASCE, Vol. 97, No. EM5, pp 1381-1395, October 1971.
67. J. E. Luco, "Impedance Functions for a Rigid Foundation on a Layered Medium", Nuclear Engineering and Design, Vol. 31, No. 2, pp 2O4-217, 1974.
68. M. Novak, "Dynamic Stiffness and Damping of Piles", Canadian Geotechnical Jour. Vol. 11, pp 574-598,1974.
69. E. Kausel, and J. M. Roessel, 'Dynamic effects of Circular Foundation", J. of the Engineering Mechanics Division, ASCE, Vol. 101, No. EM6, pp 771-785, December 1975.
70.
N. C. Tsai and G. W. Housner, "Calculation of Surface Motions of a Layered Half-Space", Bulletin of the Seismological Society of America, Vol. 6O, No. 5, pp 1625-1651, October 1970.
71. J. Lysmer and R. L. Kuhlemeyer, "Finite Element Model for Infinite Media'", J. of the Engineering Mechanics Division, ASCE, Vol. 95, No. EM4, pp 859-877, August 1969.
72. E. R. Taylor, "A Preliminary Study of Structure Dynamic of Gravity Platform", Proc. Seventh Ann. OTC Houston, Paper 2406, III, pp 695-706 (1975).
73. D. C. Angenides and J. J. Conner, "A Probabilistic Model for Stiffness Degradation of Steel Jacket Structure", Proc. BOSS 1979, London, Vol. 2.
74. K. Bell et al, "Analysis of a Wave Structure Soil System Case of Study of a Gravity Platform", Proc. BOSS 1976, Norway, Vol. 2, pp 846-863.
75. R. E. Taylor, "Structure Dynamics of Offshore Platform", Proc. Conference on Offshore Structure, Paper 10, Organised by Inst.of Civil Eng. London (7-8 October, 1974).
76. B. J. Watt, "Dynamic Analysis of Concrete Gravity Structure", Deep-Sea Oil-Production Structure, Univ. of California, Berkeley (23-27), Jan. 1978.
77. J. Penzien, "Structure Dynamics of Fixed Offshore Structure", Proc. BOSS 1976, Vol. 1.
78. R.W. Clough and J. Penzien, "Dynamics of Structures", McGraw Hill Ltd 1975.
79. N. J. Heaf, "The Effect of Marine Growth of the Performance of Fixed Offshore Platforms in the North Sea", llth Annual of OTC Conference 1979, Paper No. OTC 3386.
80. N. R. Maddox, "Fatigue Analysis for Deep Water Fixed-Bottom Platforms', 6th Annual OTC in Houston, Tex. May 6-8, 1974, Paper No. OTC 2051.
81.
J. H. Nath and D. R. F. Harleman, "Dynamics of Fixed Tower in Deep-Water Random Wave", Proc. ASCE Jour. of Waterways and Harbor Division (November 1969) pp 535-555.
82. D. R. Harleman et al, "Dynamic Analysis of Offshore Structure", Presented at the 1963 ASCE Eight Conf. on Coastal Engineering, Mexico City, Mexico.
83. J. H. Nath and D. R. F. Harleman, "The Dynamic Response of Fixed Offshore Structure to Periodic and Random Waves", M.I.t. Hydrodynamics Laboratory Report No. 102, (Jan. 1967).
84. W. C. Nolan and V. C. Honsinger, "Wave Induced Vibrations in the Fixed Offshore Structures", M.S. Thesis, M.I.T. May (1962).
85. A. K. Molhotra and J. Penzien, "Analysis of Tall Open Structures Subjected to Stochastic Excitation!', Conference on Dynamic Waves in Civil Engineering, University of Wales, Swansea (1970).
86. S. C. Wu, "The Effects of Current on Dynamic Response of Offshore Platforms", 8th Annual OTC Conference Houston, Tex. May 3-6, 1976, Paper No. отС 2540.
87. R. King, "The Added Mass of Cylinder", BHRA Report, No. TN 1100 (April 1971).
D. N. Jenssen et al, "Gravity Platform Tower Vibration', 9th Annual OTC in Houston, Tex. May 2-5, 1977, Paper No. OTC 2905.
89.
T. Sarpkaya, "A Critical Assessment of Morison Equation", International Symposium on Hydrodynamics in Ocean Engineering, The Norwegian Institute of Technology, 1981.
90.

Hallam et al, "Dynamics of Marine Structures: Method of Calculating the Dynamic Response of Fixed Structure Subject to Wave and Current Action', CIRIA Underwater Engineering Group, Report UR8, 1978.
91. J. H. Vugts and D. J. Hayes, "Dynamic Analysis of Fixed Offshore Structure", Eng. Structure Vol. 1 1979, pp (114-120).
92. Skop, Ramberg and Ferer, "Added Mass and Damping Forces on Circular Cylinder", NRL Report 7970, June 1976.
93. R. King, "The Hydrodynamic Damping of Natural Vibrations on a Cantilever Cylinder in Water', BHRA Report RR 1122, (1972).
94.
T. F. Ogilvie, "Recent Progress Toward the Understanding and Prediction of Ship Motions", Proc. 5th Symp. Naval Hydrodynamics, Berge, Norway, pp 3-80, Sept. (1964).
95. S. Cherry and A. G. Brady, "Determination of Structural Damping Properties by Statistical Analysis of Random Vibrations", Proc. of the Third Wrold Conference on Earthquake Engineering, New Zealand, (1965).
96. A. P. J. Jeary and P. E. Winney, "Determination of Structural Damping of a Large Multi-Flue Chimney From the Response to Wind Excitation", Proc. of the Institution of Civil Engineers TN 65, 53, pp 569-579 (1972).
97. E. H. Vanmarcke, "Estimation of Dynamic Properties of Offshore Structures", Third Annual Offshore Technology Conference, Houston, Texas, (1971).
98. J. A. Ruhl and R. M. Berdahl, "Forced Vibration Tests of Deep Water Platform', llth Annual OTC Paper No. OTC 3514, (1979).
99. J. A. Ruh1, "Offshore Platform: Observation Behaviour and Comparison with Theory',8th Annual OTC Paper No. OTC 2553, (1976).
100. R. L. P. Verley, "An Experimental Investigation into Hydrodynamic Damping in Waves', BHRA Project No. RP 13104, 1978.
101. R. L. P. Verley and G. Moe, "The Effect of Cylinder Vibration on the Drag Force and the Pesultant Hydrodynamic Damning" Mechanics of Wave-Induced Force on Cylinder", Pitman Advanced Publishing Program (1979), (T.L. Shaw, Ed).
102. R. L. P. Verley, "Oscillations of Cylinder in Still Water", The Royal Norwegian Council for Scientific and Industrial Research, Report No. 602417, 1978.
R. B. Dean, P. R. Fish and N. J. Heaf, 'Water Structure Interaction Analysis of Hydrodynamic Damping in Offshore Structure", Atkins Research and Development, A Report for L.E.A. (Offshore) Ltd. and the E.E.C. 1979.
104. W. Schumm, "Dynamic Analysis of Deep Water Platform", Inst. Symp. on Integrity of Offshore Structure, Paper 2, Glasgow (6-7 April 1978).
106. N. Krylov and N. Bogoliuboy, "Introduction to Nonlinear Mechanics: Approximate Asymptotic Methods", Trans. by S. Lefshetz in Annals of Mathematical Studies, Vol. 11, Princeton Univ. Press (1947).
107. J. S. Bendat and A. G. Piersol, "Random Data Analysis and Measurement procedures", WileyInterscience (1971).
108. S. Timoshenko, "Strength of Materials", Part II, Advanced Theory and Problems, 3rd Edition, Van Nostrand Company, Inc, Princeton, J.N. (1956).
109.
110. Eagleson and Dean, 'Small Amplitude Wave Theory', Chapter A of Estuary and Coastline Hydrodynamics', McGraw-Hill Book Co. (1966), (A. T. Ippen, Ed).
111. Maxwell and Harrington, "Effect of Velocity on Tensile Impact Properties of Polymethyl Methacrylate", ASME Transactions, May (1952).
112. Den Hartog, "Mechanical Vibrations', McGraw-Hill, New York (1956).
113. T. Sarpkaya and R. L. Shoaff, "Numerical Modeling of Vortex-Induced Oscillation", Civil Engineering in the Oceans IV, ASCE, PP 504-517, (1979).
114. P. M. Aagaard and R. G. Dean, "Wave Forces: Data Analysis and Engineering Calculation Method", Proc. 7th Offshore Techd. Conf, Houston, Paper OCT 1008, (1969).
115. A. Paape and H. N. C. Breusers, "The Influence of Pile Dimension on Forces Exerted by Waves", Proc. 1Oth Coastal Engineering Conference, Tokyo (1967).

APPENDIXA

PRESSURE TRANSDUCER

SENSING ELEMENT

The sensing element was a circular disc of 48 mm diameter which was a part of a brass plate. The brass plate was 100 mm square and 0.02 mm thick. It had to be absolutely flat and without initial strain. The plate was dipped in acid etch until its thickness was reduced to between 0.015 to 0.0125 mm . The plate was pulled from each corner to give initial tension and remained in this condition until the pressure transducer was completed. Four strain gauges were fixed at each side of the sensing element. They were FL-6-11 Tokyo Kenkyoio wireless type. Connecting wires had been soldered of 36 standard wire gauge enamel selffluxing. The strain gauges were connected together through four pine holes which can be punched from the top before the strain gauges were mounted. After the connection of the strain gauge the four pine holes were sealed and the sensing element were sprayed with flexible varnish making the thickness of the sensing element increased to 0.025 mm .

Figure (1A) shows the strain gauges fixed on the sensing element and the connection of the strain gauges.

After the pressure transducer was completely built the Outer part of the plate was discarded.

Figure (lA) - The Sensing Element.

The transducer housing was made from brass and it consisted of two circular compartments, the lower compartment which was larger than the upper compartment. The upper compartment was tight and fixed to the sensing element and the lower compartment with glue and twelve cap head screws 0.5 inch long fitted at an equal distance from each other around the circumference.

Figure (2A) shows the transducer housing and location of the sensing element.

Figure (2A) - The Transducer Housing.

APPENDIXB

PREAMPLIFIER

A linear amplifier produces at its output a waveform which is a perfect copy, but of greater amplitude. The most important class of linear amplifier i.c. is the operational amplifier which features high gain, high input resistance, low output resistance and narrow bandwidth extending to d.c.

The 741 is typical of the operational amplifier generally, so that the design methods, circuits and bias arrangements can be used with small modification.

Figure (lB) shows the circuits used for an inverting preamplifier. The components used in this circuit were:
$R=$ potentiometer resistance of $200 \mathrm{k} \Omega 0.5$ Watt
$\mathrm{R}_{1}=390 \mathrm{k} \Omega$ resistance of 0.25 Watt
$\mathrm{R}_{2}=68 \mathrm{k} \Omega$ resistance of 0.25 Watt
$\mathrm{R}_{3}=470 \mathrm{k} \Omega$ resistance of 0.25 Watt
C = Capacitors 0.1 $\mu \mathrm{F}$

The voltage gain $=\frac{\mathrm{R}_{3}}{\frac{\mathrm{R}_{2}}{2}} \times \frac{\mathrm{R}_{3}}{\mathrm{R}_{2}}$

$$
=\frac{470}{68} \times \frac{470}{68}=47 \cdot 77
$$

Figure (1B) - The Preamplifier Circuits.

APPENDIXC

SINUSOIDAL INTERPOLATION

$$
\begin{aligned}
& \text { Let } y=a \sin (b x+c) \\
& \text { at point } 1 \quad y_{1}=a \sin (-b h+c) \\
& \text { at point } 2 y_{2}=a \sin c \\
& \text { at point } 3 \quad y_{3}=a \sin (b h+c) \\
& \begin{aligned}
\therefore y_{1}+y_{3} & =a \sin (-b h+c)+a \sin (b h+c) \\
& =2 a \sin c \cos b h \\
& =2 y_{2} \cos b h
\end{aligned} \\
& \begin{aligned}
\therefore \cdot b & =\frac{1}{h} \cos ^{-1}\left[\frac{y_{1}+y_{3}}{2 y_{2}}\right] \\
y_{3}-y_{1} & =a \sin (b h+c)-a \sin (-b h+c) \\
& =2 a \cos c \sin b h
\end{aligned} \\
& \quad=2 y_{2} \cot c\left[1-\left(\frac{y_{1}+y_{3}}{2 y_{2}}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

$\therefore C=\tan ^{-1}\left[\frac{2 y_{2}}{y_{3}-y_{1}}\left\{1-\left(\frac{y_{1}+y_{3}}{2 y_{2}}\right)^{2}\right\}^{1 / 2}\right]$
and
$a \quad=\frac{y_{2}}{\sin c}$
care should be taken to ensure that $y_{2} \neq 0$

APPENDIX D

THE VARIATION OF THE RELATIVE DISPLACEMENTS X/D WITH TIME FOR ONE CYCLE OF THE WAVE

Figure (ID) - Structure's Response (X/D) during the Wave Cycle for Structure A ($K-C=3.04$).

Figure (2D) - Structure's Response (X/D) during the Wave Cycle for Structure A ($K-C=2.473$).

Figure (3D) - Structure's Response (X/D) during the Wave Cycle for Structure A ($K-C=3.449$).

Figure (4D) - Structure's Response (X/D) during the Wave Cycle for Structure A ($K-C=2.454$).

Figure (5D) - Structure's Response (X/D) during the Wave Cycle for Structure A ($K-C=3.728$).

Figure (6D) - Structure's Response (X/D) during the Wave Cycle for Structure A ($K-C=2.008$).

Figure (7D) - Structure's Response (X/D) during the Wave Cycle for Structure A ($K-C=2.493$).

Figure (8 D) - Structure's Response (X / D) during the Wave Cycle for Structure A ($K-C=3.321$).

Figure (9D) - Structure's Response (X/D) during the Wave Cycle for Structure A ($K-C=1.874$).

Figure (10D) - Structure's Response (X/D) during the Wave Cycle for Structure A $(K-C=2.231)$.

Figure (11D) - Structure's Response (X/D) during the Wave Cycle for Structure A ($K-C=3.269$).

Figure (12D) - Structure's Response (X/D) during the Wave Cycle for Structure B $(K-C=2.682)$.

Figure (13D) - Structure's Response (X/D) during the Wave Cycle for Structure B ($K-C=3.177$).

Figure (14D) - Structure's Response (X/D) during the Wave Cycle for Structure B ($K-C=2.182$).

Figure (15D) - Structure's Response (X/D) during the Wave Cycle for Structure B ($K-C=3.748$).

Figure (17D) - Structure's Response (X/D) during the Wave Cycle for Structure B $(K-C=2.594)$.

Figure (180) - Structure's Response (X/D) during the Wave Cycle for Structure B (K-C = 3.439).

Figure (19D) - Structure's Response (X/D) during the Wave Cycle for Structure B $(K-C=3.775)$.

Figure (20D) - Structure's Response (X/D) during the Wave Cycle for Structure C ($K-C=4.076$).

Figure (21D) - Structure's Response (X/D) during the Wave Cycle for Structure C $(K-C=7.863)$.

Figure (22D) - Structure's Response (X/D) during the Wave cycle for Structure $C(K-C=6.697)$.

Figure (23D) - Structure's Response (X/D) during the Wave Cycle for Structure C ($K-C=7.975$).

Figure (24D) - Structure's Response (X/D) during the Wave Cycle for Structure C $(K-C=10.604)$.

Figure (25D) - Structure's Response (X/D) during the Wave Cycle for Strucrure $C(K-C=9.821)$.

Figure (26D) - Structure's Response (X/D) during the Wave Cycle for Structure C $(K-C=10.391)$.

Figure (27D) - Structure's Response (X/D) during the Wave Cycle for Structure D ($K-C=5.524$).

Figure (28D) - Structure's Response (X/D) during the Wave Cycle for Structure D ($K-C=8.399$).

Figure (29D) - Structure's Response (X/D) during the Wave Cycle for Structure D ($K-C=5.466$).

Figure (300) - Structure's Response (X/D) during the Wave cycle for Structure D ($K-C=7.576$).

Figure (3ID) - Structure's Response (X/D) during the Wave Cycle for Structure D ($K-C=7.904$).

Figure (32D) - Structure's Response (X/D) during the Wave Cycle for Structure E with no Mass at Top ($K-C=6.742$).

Figure (33D) - Structure's Response (X/D) during the Wave Cycle for Structure E with no Mass at Top ($K-C=8.13$).

Figure (34D) - Structure's Response(X/D) during the Wave Cycle for Structure E with no Mass at Top ($K-C=7.308$).

Figure (35D) - Structure's Response (X/D) during the Wave Cycle for Structure E with No Mass at Top ($K-C=7.271$).

Figure (36D) - Structrure's Response (X/D) during the Wave Cycle for Structure E with no Mass at Top ($K-C=6.520$).

Figure (37D) - Structure's Response (X/D) during the Wave Cycle for Structure E with 1010 Grs at Top ($K-C=6.743$).

Figure (38D) - Structure's Response (X/D) during the Wave Cycle for Structure E with 1010 Grs at Top ($K-C=8.130$).

Figure (39D) - Structure's Response (X/D) during the Wave Cycle for Structure E with 1010 Grs at Top ($K-C=7.308$).

Figure (40D) - Structure's Response (C/D) during the Wave Cycle for Structure E with 1010 Grs at Top ($K-C=7.271$).

Figure (41D) - Structure's Response (X/D) during the Wave Cycle for Structure E with 1010 Grs at Top ($K-C=6.520$).

Figure (42D) - Structure's Response (X/D) during the Wave Cycle for Structure E with 2020 Grs at Top ($K-C=6.742$).

Figure (43D) - Structure's Response (X/D) during the Wave Cycle for Structure E with 2020 Grs at Top (K-C 8.130).

Figure (44D) - Structure's Response (X/D) during the Wave Cycle for Structure E with 2020 Grs at Top ($K-C=7.308$).

Figure (45D) - Structure's Response (X/D) during the Wave Cycle for Structure E with 2020 Grs at Top ($K-C=7.271$).

Figure (46D) - Structure's Response (X/D) during the Wave Cycle for Structure E with 2020 Grs at Top ($K-C=6.520$).

Figure (47D) - Structure's Response (X/D) during the Wave Cycle for Structure F with no Mass at Top ($K-C=6.742$).

Figure (48D) - Structure's Response (X/D) during the Wave Cycle for Structure F with no Mass at Top ($K-C=8.130$).

Figure (49D) - Structure's Response (X/D) during the Wave Cycle for Structure F with no Mass at Top ($K-C=7.308$).

Figure (50D) - Structure's Response (X/D) during the Wave Cycle for Structure F with no Mass at Top ($K-C=7.271$).

Figure (51D) - Structure's Response (X/D) during the Wave Cycle for Structure F with no Mass at Top ($K-C=6.520$).

Figure (52D) - Structure's Response (X/D) during the Wave Cycle for Structure F with 1010 Grs at Top ($K-C=6.742$).

Figure (53D) - Structure's Response (X/D) during the Wave Cycle for Structure F with 1010 Grs at Top ($K-C=8.130$).

Figure (54D) - Structure's Response (X/D) during the Wave Cycle for Structure F with 1010 Grs at $\mathrm{Top}(K-C=7.308$).

Figure (55D) - Structure's Response (X/D) during the Wave Cycle for Structure F with 1010 Grs at $\mathrm{Top}(K-C=7.271)$.

Figure (56D) - Structure's Response (X/D) during the Wave Cycle for Structure F with 1010 Grs at Top ($K-C=6.520$).

Figure (57D) - Structure's Response (X/D) during the Wave Cycle for Structure F with 2020 Grs at Top ($K-C=6.742$).

Figure (58D) - Structure's Response (X/D) during the Wave Cycle for Structure F with 2020 Grs at Top ($K-C=8.130$).

Figure (59D) - Structure's Response (X/D) during the Wave Cycle for Structure F with 2020 Grs at Top ($K-C=7.308$).

Figure (600) - Structure's Response (X/D) during the Wave Cycle for Structure F with 2020 Grs at Top ($K-C=7.271$).

Figure (61D) - Structure's Response (X/D) during the Wave Cycle for Structure F with 2020 Grs at Top ($K-C=6.520$).

Figure (5.3.24) - Structure's Response (X/D) during the Wave Cycle for Structure B.

Figure (5.3.32) - Structure's Response (X/D) during the Vave Cycle for Structure F with 2020 Grs at Top.

BEST COPY

AVAILABLE

Variable print quality

Figure (16D) - Structure's Response (X/D) during the Wave Cycle for Structure B ($K-C=3.926$).

[^0]: Figure (5.2.5) - Fast Fourier Transform for the Wave Profile, the In-Line Force and the Tip Displacement for Free Structure.

[^1]: (E) with əxn7onx オО戸
 (5.6) - Characteristics and the Wave Force Coefficients no Mass at the Top.

[^2]: Table (5.11) - Wave Characteristics and Wave Force Coefficients for Structure (F) with Table (5.11) 2020 Grs at the Top.

[^3]: C.

