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ABSTRACT 

The water wave/structure interaction is a complex 

phenomenon, which affects the prediction of the dynamic 

response of offshore structures. The problem arises 

from the interdependence of the structural response 

and the wave force. This interdependence is usually 

represented by the effect of the relative velocity and 

relative acceleration used in the wave force formula. 

This work is carried out to investigate the effect of 

the water wave/structure interaction on circular 

cylinder for small Keulegan-Carpenter numbers and 

structural amplitude of oscillation. In order to 

achieve this an extensive experimental program, in 

conjunction with theoretical study was undertaken. 

The study indicates that the use of modified Morison's 

equation taking into consideration the velocity and 

acceleration of the structure is not needed to predict 

the structural deflection. But significant difference 

in the force coefficients for free and fixed structure 

have obtained experimentally. 
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CHAPTER ONE 

INTRODUCTION 

At present, the exploration for energy resources has 

resulted in offshore structures being built in deep 

seas, where severe conditions of wind and waves exist; 

under these conditions the classical design process 

produces uneconomical and sometimes unsafe structures. 

It has been shown in the inquiry into the collapse of 

Texas Tower No 4(l) that dynamic analysis will have to 

be used for designing of such towers. 

In deep water, the interaction of a time-dependent ocean 

environment with a dynamically responsive structure leads 

to complex resonance conditions and gives rise to larger 

stresses than would be predicted by a quasi-static 

analysis. For example, Brannon et al 1974(2) have shown 

that the dynamic response can double the static wave 

load. 

Laird 1962 and 1966(3' 4) has shown that the drag and 

inertia coefficients may vary rather widely when the 

structures are oscillating. 
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From the above it can be concluded that the investigation 

of the water wave/structure interaction is important for 

both the dynamic analysis and for the determination of 

the water wave force. 

The existing knowledge in the fields of mechanical 

vibration and fluid mechanics can be used to determine 

the structural response. By knowing the system input of 

the wave profile and by applying the hydrodynamic theories, 

such as Airy's linear wave theory, the flow characteristics 

of the wave in the vicinity of the structure can be 

evaluated. Morison's semi-empirical force formula 

enables the hydrodynamic forces on the structure to be 

evaluated. The theory of mechanical vibration is used 

to compute the structural response due to these forces. 

The complication arises here due to the water wave/ 

structure interaction which is the interdependence of the 

fluid forces and structural response. 

In general the problem of the interdependence of the 

fluid forces and structural response is caused by the 

structures significant velocity and acceleration only. 

This may be overcome by using the relative velocity 

and relative acceleration in the Morison's equation 

which is called the modified Morison's equation. 
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In this thesis an investigation of this interdependence, 

including the effect of the structure's vibration on the 

force coefficients (CD and CM) used in the force formula 

and the effect of this interdependence in the dynamic 

response (deflection), was carried out for the condition 

of low Keulegan-Carpenter numbers (1.87 - 10.69) and 

amplitudes of structure oscillation. 

For this purpose extensive experimental work was done. 

Two sets of structures in different material 

were tested. The structures were circular cylindrical 

piles. The first set was PVC material and consisted 

of two groups. Each group had two structures with 

different heights. The first group was relatively stiff 

(the structure diameter was 0.11 metre), the second group 

was relatively flexible (the structure diameter was 

0.0605 metre). The second set was aluminium and consisted 

of two structures of the same diameter (0.0574 metre), 

but with different height; in this set each structure was 

tested three times, once with no added load on top and 

later with different added loads on top, to give 

different flexibility properties of the sturcture. The 

dynamic properties of the tested structures, such as the 

damping coefficient, the fundamental natural frequency 

and the stiffness constant, were determined 

experimentally. 

3 



The above structures were tested for different wave 

conditions. At each wave condition and at each level 

of the structure where the pressure can be measured, 

the structure was tested twice, once when it was 

free to vibrate and once when it was prevented from 

vibrating. At each test, the wave profile, the pressure 

distribution around a certain level of the structure, 

the tip displacement and the bending moment at the base 

of the structure were measured. 

The data obtained from the experiments were subjected 

to extensive analysis in order to predict the most 

appropriate wave theory for the tested wave condition 

and the method used for the determination of the 

average value of the force coefficients CD and CM. 

For the determination of the wave velocity and 

acceleration, the fast Fourier's analysis was utilized 

to obtain the free higher harmonic components in the 

tested wave. The least square method was used in 

the determination of the average value of the 

CD and CM. 

For the analysis of the structural response, the 

structure system was idealized. The equivalent 

structure was assumed to be fixed at the base and the 

continuous member was assumed to consist of a 

series of pipe finite elements with discrete springs 
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of mass at the two end nodes. The vertical wave force 

was ignored and the horizontal wave force was 

discretized at the node point. The analysis was 

restricted to two dimensions. 

Two methods were used in the formulation of the dynamic 

equation of structural response in order to find whether 

the water wave/structure interaction represents a 

significant contribution in the prediction for the case 

of the condition studied. 

The first method included the water wave/structure 

interaction which will cause a nonlinear term in the 

partial differential equation of motion, the direct 

approach method was used to overcome this nonlinearity. 

In the second method, the water wave/structure inter- 

action was ignored by assuming that the wave force is 

not modified by the motion of the structure and 

substituted for this assumption by using the value of 

the hydrodynamic damping obtained in still water 

for the dynamic analysis. 

The numerical analyses were done by finite 

element method using computer program SAP IV. 
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The dynamic response was calculated by the mode 

superposition technique taking only the first three 

modes and using time domain description. 

This work gives a clear insight into the relative 

influence of the structure vibration on the fluid 

force coefficients, (the inertia and drag coefficient). 

It also gives the possibility of substituting for the 

nonlinear hydrodynamic damping that arise from the 

terms of relative fluid-structure velocities by the 

damping coefficient in still water for obtaining the 

structural response. 

6 



CHAPTER TWO 

SURVEY OF LITERATURE RELATED TO DYNAMIC RESPONSE 

The flow induced vibrations are a relatively complex 

and diverse phenomena and heterogeneous body of research 

and analyses in related fields is available but is 

scattered through a wide variety of journals. 

One of these phenomena is the water wave/structure 

interaction. The term, water wave/structure interaction, 

however, denotes only these phenomena in which an 

interdependence develops between the fluid dynamic 

forces acting on the structure and the structural 

response. 

The inclusion of the dynamic response of an offshore 

structure to the water wave force complicates the 

determination of the structure's behaviour and water 

wave force. 

In order to study the behaviour of these structures unaer 

dynamic loading and wave conditions, the following 

aspects of the problem will have to be understood and 

properly applied to the structure in question. 

(1) The hydrodynamic forces on the structure caused by 

waves 

(2) The idealization used to model the structure's 

system should simulate the system's response. 
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(3) The applicable numerical procedure must be used. 

2.1 HYDRODYNAMIC FORCES 

The determination of the hydrodynamic forces exerted by 

waves on structure is complex, even for slender members 

because of the assumptions and approximations required to 

predict the wave force. This requires the determination 

of the time histories of the loading corresponding to the 

design wave (i. e. velocity and acceleration time histories 

of wave particular with the region of each structure). 

2.1.1 WATER WAVE THEORIES 

If the flow field is assumed incompressible and irrotational, 

the flow field should satisfy the Laplace's equation 

D2ý =0... ... ... ... ... ... (2.1.1) 

where ý is the velocity potential. 

The flow field will have to satisfy the following boundary 

conditions 

-A- at the surface 

let n (x, y, z, t) describe the surface S 

t .'. the kinematic boundary hnx + vny + Wnz =-T1 

... ... ... ... ... ... (2.1.2) 

free surface boundary p=0... 
... ... ... (2.1.3) 

where P/p = Pressure at the free surface 

then the generalized Bernoalli equation reduce to 

+ 2(ü2 + v2 + w2) + gY = F(t) ... ... (2.1.4) 
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-B- at the bottom 

Let G(x, y, z, t) represent the bottom surface 

. '. UGx + VGv + WGZ =- Gt ... ... ... (2.1.5) 

where the suffix mean differentiation with respect to the 

subscript. 

All wave theories find close solution to the above equations 

by using certain assumptions to match with the physical 

condition of the wave (5, ü, 7). 

The wave in the sea can be classified periodic, aperiodic 

and translatory. The regions of applicability of the 

various wave theories depend on the following parameters: 

(a) The wave parameters, wave height, wave length and 

period (H, L, T) 

(b) The position parameter water depth (h). 

The limitation conditions for sinusoidal and stakes wave 

were shown by Laitone 1962(8). Wilson 1957(9), Dean(10,11,12) 

and more recently Nishimuru and Isobe 1978 (13) have discussed 

the validity of these various theories. Figure (2.1.1) 

shows the relation between the validities of the theories 

to evaluate the kinematic properties for water wave with 

the relation to wave and position parameter after Dean(12 

also Figure (2.1.2) after Wilson. 
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Figure (2.1.1) - The Range of Validity of Various 

Wave Theories. 

In irregular random waves, the statistical properties 

will have to be determined. The random wave spectrum 

consist of waves having different wave-lengths and 

frequencies, Wiegel 1964(14) and more recently 1978 (15) 

used several linear and non-linear representations of 

the ocean system. 

The wave theory for the appropriate wave region is then 

chosen. From this, velocity and accelerations are 

calculated and related to the force. 
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Various Wave Theories. 
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2.1.2 HYDRODYNAMIC FORCE 

Several approaches have been developed for evaluation of 

the wave forces on offshore structures. The applicability 

of these methods depends on the relative magnitudes of the 

typical dimension of the structure, D, with respect to the 

wave-length, L, and wave height, H. The dimensionless 

ratios H/2D (the wake parameter) and 27rD/L (the scattering 

parameter) are key parameters which dictate the choice 

of the method used for wave force evaluation on offshore 

structure. 
(1b 1977ß . 

See Figure (2.1.3) by Garrison and Rao 
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Figure (2.1.3) - Wave Force Theory. 
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The scattering parameter 21TD/L controls the ratio between 

the incident wave and the reflected wave. For large value 

of 2TID/L the structure is largely in a deflection regime. 

For smaller value of 21rD/L the structure will be in the 

drag regimes where the incident wave plays a predominant 

part. 

The following ratios of D/L give the approximate regime 

of flow 

D/L >1 pure reflection 

D/L > 0.2 diffraction effects predominate 

D/L < 0.2 incident wave predominate 

The wake parameter H/2D controls the flow regime of the 

wave round the body as H/2D becomes sufficiently large, 

flow separation and energy dissipation in eddys are 

important, where the viscous effects become important 

and the following ratios of D/H give approximate regimes, 

Verley(17) 1975. 

D/H > 0.3 inertia increasingly predominant 

D/H = 0.6 incipienceof lift (. and drag) 

D/H < 0.3 drag increasingly predominant 
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2.1.2.1 FORCE ON LARGE BODIES 

2.1.2.1A DIFFRACTION THEORY 

For the case of diffraction where viscous effects are not 

important, MacCamy 1954(18) calculated the forces on 

cylinder subjected to regular wave using linear wave 

theory and Bessel function. 

Spring and Monkmeyer 1974(19) outlined an analytical 

procedure of solution for any number of cylinders (Linear 

Theory) and obtained results for the case of two cylinders. 

Chakrabarti 1978(20) applied with slight modification, 

Spring and Monkmeyer (1974) method to the case of more 

than two cylinders. 

Garrison 1974,1978(21-22) presented the linear wave theory 

based on Green's function, for general structural geometries. 

Raman et al 1975(23) used a higher order theory to obtain 

analytical studies for circular cylinder. They used the 

perturbation method to obtain a solution for the second 

order theory. This resulted in a slight improvement when 

compared with the linear theory. 

For the case of diffraction where viscous and diffraction 

effects were important, for the case of an isolated cylinder, 

Chakrabarti 1973(24), used a fifth order waves theory. 

However there is an inconsistency in his solution as the 

fifth order wave theory was used without satisfying the 

free surface non-linear condition. 
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2.1.2.2 FORCE ON SMALL BODIES 

For small values of the scattering parameter 1121TD/L" and the 

wake parameter "H/2D" where Morison's equation and 

diffraction theory both apply, the problem can be treated 

as radiated waves. 

2.1.2.2A MORISON'S EQUATION 

As mentioned above that when scattering parameter is small 

Morison's equation is applied to evaluate the wave force, 

this equation has been formulated by Morison et al 1950(25) 

for the vertical cylinder The main assumptions were, 

(a) the body has negligible effect on the waves (the 

wave field does not change due to the presence of 

the structure), 

(b) the total force on the body has two independent 

components. 

These two component of forces are: 

The drag force which results from the flow separation 

induced by the relative velocity of the fluid around the 

structure, the drag force on the body is generally made 

up of two terms, one a viscous and the other a pressure 

term, in the vast majority of cases the viscous term is 

negligible compared to the pressure as the viscous drag 

is proportional to velocity and not to the velocity squared 

as for the pressure drag force. 
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The other component is the inertia force which is due 

to the pressure gradient associated with the relative 

acceleration of the ambient fluid and is proportional to 

the particle acceleration. 

Therefore the total force on a vertical cylindrical 

structure is assumed to be 

FT = FD + FI ... ... ... ... (2.1.6) 

Each of these time varying components has been formulated 

in terms of (i) Geometrical properties of the structure, 

(ii) fluid properties describing the flow field and 

(iii) some "variable coefficients" 

. '. d FD(t) = CD 1/2 PD U(t)1 U(t)I ds ... 

2 
d FI(t) = CM p'i U(t) ds ... ... 

where D= diameter of the cylinder 

p= water density 

U= fluid particle velocity 

U= fluid particle acceleration 

CD = drag coefficient 

CM = inertia coefficient 

(2.1.7) 

(2.1.8) 

In the above equations the geometrical properties of the 

structure appear as exposed area in the drag force term 

and as volume in the inertia term. But this geometry of 

the structure also affects the fluid flow field around 

the structure as shown in Blesvins 1977(20 ). 
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The fluid properties represented in the wave velocity and 

acceleration in the above equations are calculated from 

the wave theories. Hence it is important to use the 

sequential wave theory in order to estimate accurately 

the wave force. They also affect indirectly the estimation 

of CD and CM as shown below. 

The variable coefficients are the drag coefficient and the 

inertia coefficient. The drag force on structure is due 

to the pressure difference across the structure. This 

pressure difference is due to separation of the flow from 

some point on the structure creating a low pressure area 

behind the structure. The position at which separation 

occurs, the way in which it occurs and the resultant wake 

width all influence the pressure behind the structure. 

Thus the drag coefficient is used taking into account the 

unknown pressure difference across the structure. 

The inertia force on the body is due to the fluid in the 

wave accelerating and as the fluid in the wave must move 

round the object additional accelerations are involved, 

related to the curvature of flow. The accelerations are 

dependent on the form of the wake. These accelerations 

induce a force field which is expressed in terms of the 

fluid mass it displaces. 

It is clearly shown that the drag and the mass (inertia) 

coefficient is dependent on the geometrical properties of 

the structure and the fluid properties describing the 

flow field. 
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The experimental values of Cd and Cm obtained by Morison 

et al show some scattering and no trend as function of 

dimensionless parameter, Reynolds number (Umax D/v), where 

flumax is the maximum surface orbital velocity, D is the 

structure diameter and y is the kinematic viscosityof the 

fluid. 

Because the wave flow reverses every half wave cycle as 

shown in Figure (2.1.4). This means that there is only 

a relatively short time for the wake to form before it'is 

destroyed. Keulegan and Carpenter 1968(27) formed a 

dimensionless parameter which compares the time for a 

wake to form with the time available for it to form. 

V -Wave Propagation 

A 
AA 

A 
V 

Figure (2.1.4) - Direction of Velocity and Acceleration at 

Various Points of a Wave Cycle. 

They carried out studies both theoretically and experiment- 

ally on the force acting on cylinders in an oscillating 

flow field. They observed that CD and Cm varied over 

a wave cycle. They correlated the cycle averaged values 

of CD and Cm with the period parameter K-C = Um T/D called 

the Keulegan-Carpenter number where "Um is the maximum 

orbital velocity, T is the wave period and D is the 

diameter of the cylinder. " 
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The variation of the average of the inertia coefficient 

values per cycle with the period parameter is shown in 

Figure (2.1.5). Similarly for the drag coefficient is 

shown in Figure (2.1.6). 
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The period parameter K-C is associated with the flow 

separation process and eddy formation around the 

cylinder. When K-C is small, no separation occurs. 

As K-C increase, separation is initiated and eddies 

are formed. 

In the work of Keulegan and Carpenter they did not 

correlate CD and CM with respect to Reynolds number Re. 

In order for Morison's equation to be applicable and be 

useful to engineers in the design of offshore structure, 

it was necessary to undertake a comprehensive laboratory 

and field tests for the purpose of determining the 

coefficient of drag and inertia which appear in the 

equation. Some of the data came from the measurements 

carried out in the actual sea condition (field test). 

Wiegel, Beebe and Moon 1957(28) made field measurements 

at Pacific Coast (Davenport, California) on various 

sections of a 6.625 inch cylinder. They used linear 

wave theory, average values of CD and CM were obtained. 

They calculated CM at zero velocity and CD at zero 

acceleration, the results show considerable variations 

in the mean values of CD and CM as well as scatter. 

Agerschau and Edens 1965 (29) 
used the data obtained 

from Wiegel et al and used Stokes fifth-order theory. 

The values of CD and CM obtained were also scattered 

and show that the fifth order approach was not superior 

to the first order "linear theory. " 
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Reid 1957(30) measured force on a section of an 8.625 inch 

cylinder in water of 30 ft depth in the Gulf of Mexico. 

The kinematics of the flow were calculated from the wave 

profile and the drag and inertia coefficient were obtained 

through the use of the least squares technique. 

Measured wave force records and those calculated using 

constant mean CD and CM values were in good agreement. 

Structural vibration was observed and allowed for in 

the analysis.. 

Wilson 1965(31) presented the results of wave force 

data from an experiment conducted with a 30 inch diameter 

pile in confused sea conditions in the Gulf of Mexico. 

He developed a numerical filter with which unwanted 

high frequency effects were removed from force records. 

Large scatter in CD and CM values from different wave 

force record analyses. 

Two wave projects were undertaken at the Gulf of Mexico 

and the results were evaluated by several researchers; 

Aagaard and Dean 1970(32) by using stream function 

theory in the estimation of CD and CM with CM = 1.33 

and CD varying with Reynolds number as obtained from 

the data, they found agreement between calculated and 

measured local force maximum within 50%. 
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Evans 1970(33) performed his work in 100 ft depth of 

water with 3.7 ft diameter pile. The average pressure 

distribution was measured over a one foot section. The 

forces and their directions were calculated from it. 

The wave profile was recorded simultaneously with 

pressure. He used Stokes fifth order wave theory to 

calculate CD and CM. Calculated total forces were 

generally within 100 of the measured forces, and usually 

conservative. None of the evaluations of the data of 

the two projects considered the effect of currents. 

Wheeler 1970 (34) 
used another technique to represent 

the data of the Gulf of Mexico by predicting the 

velocities and accelerations by linear digital filter 

acting on the wave profile records. No correlation of 

CM and CD coefficient with critical parameter was 

reported; agreement between measured and calculated 

maximum local forces was within 40%. 

Kim and Hibbard 1975(35) presented the results of data 

obtained from measurements in Australia. The test pile 

was 38 ft long and 12.75 inch in diameter, it was 

subjected to rather small amplitude waves, the 

agreement between the measured and calculated force 

was good in the drag dominated part of the wave cycle 

and fair in the inertia dominated region. 
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Heideman, Olsen and Johansson 1979 (36) 
used two methods 

to evaluate the drag and inertia coefficients from the 

large scale experiments of space frame structure in 

the Gulf of Mexico. The first was the least squared 

error procedure for each half wave cycle. The second 

method consisted of evaluation of CD over short segments 

of wave where drag force was dominant and of CM over 

short segments in which inertia force was dominant. The 

force coefficients exhibited large scatter particularly 

for K-C < 20. The current was taken into consideration. 

Bretschneider 1967 (37) 
predicted the probability 

distributions of peak wave drag and inertia force from 

field tests carried out in California Coast at Devenport 

for vertical cylinder using linear wave theory, the 

probabilistic approach considering peak drag and inertia 

forces were unsatisfactory. 

The reasons for discrepancies in the evaluation of CD 

and CM in field tests may be many; among the more 

important are: 

1. Representation of the irregular wave 

2. Turbulence around the structure by which the 

test structures are supported 

3. Inaccuracy in measuring force 
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4. Vibration of test structure 

5. Inability of wave theories to describe actual 

water particle motion especially if there is 

the possibility of a steady ocean current. 

In order to eliminate most of the above discrepancies, 

to obtain for a wide range of data and flow 

conditions and to segregate each parameter which can 

affect the calculation of CD and CM, laboratory 

experimental tests were conducted. In the laboratory 

tests several experimental methods have been used in 

the evaluation of the drag and inertia coefficient 

which include: 

(a) Force measured on structure in laboratory wave 

(b) Force measured on structure in an oscillating 

fluid, where the motion of the particle is in 

straight line rather than orbital 

(c) Force measured on a cylinder constrained to 

move with an oscillatory motion in a stationary 

fluid. 

The flow field characteristics of (a) are essentially 

different from that of (b) and (c). 
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Some of the experimental work which follow pattern (a) 

were carried out by Morison et al 1950(25) using 

measured moments and using linear wave theory, in 

calculating CM and CD they did not correlate well with 

d/X, D/X or Re for linear sinusoidal waves. 

Susbielles et al 1971(38) used various methods of 

derivation of coefficients which included linear, 

stokes third and fifth order wave theory and stream 

function wave theory. The actual CM and CD range of 

values varied with the method of derivation. Several 

CM and CD pairs were shown to predict the same force. 

By using the values of the coefficients fröm Keulegan 

and Carpenter's curve the results obtained differed by 

10% between the measured and the calculated. 

Chakrabarti et al 1975 1) found large scatter in CD 

and CM values using Morison's equation in three- 

dimensional vector form with component normal to the 

axis of the cylinder. Measured and calculated mean 

forces agreed to within 10% using CD and CM values for 

individual waves. The tested structures were held at 

various inclinations in line with and normal to the 

waves. 

Gaston and Ohmart 1979(40) measured the total wave 

force and overturning moment on a smooth and roughened 

14 ft long, lft diameter, vertical cylinder under 

conditions of periodic and random waves. Drag and 
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inertia coefficients have been determined by the least 

squares method, using the measured in-line moment and 

predicted kinematics from the irregular stream 

function theory. Typical Reynolds number of the 

experiments were 2x 105 to 3x 105 based on the r. m. s 

water-particle velocity data. The results gave the 

average values of CD and CM as: 

CD = 0.77 and CM = 1.81 

for smooth cylinder. 

Experiments which seem to have shed the most light upon 

the fundamental behaviour of CD and CM are those which 

have been conducted in straight line oscillatory motion. 

The best known early experiments were those of Keulegan 

and Carpenter 1958(27) who utilized the linear oscilla- 

tory flow field under a node of standing wave. Their 

experiments showed that CD and CM are not constant 

throughout a motion cycle but, in fact, varied 

substantially with motion phase. More recently in a 

series of papers Sarpkaya et al have presented the 

results of an extensive series of oscillating fluid 

experiments using vertical U-shaped water tank. 

Sarpkaya (1976a, 1976b) (41 -42) conducted a series of 

experiments for smooth and sand-roughened cylinders to 

evaluate the drag and inertia coefficients introducing 

"frequency parameter "ß in which ß= D2/vT or ß is 

equal to Re/K-C parameter to represent the data of CD 

and CM. The dependence of CD and CM on ß has already 
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been noted in connection with the discussion of the Stokes 

1851 (43) 
sphere problem. Sarpkaya 1977a(44) carried out 

his series of experiments for high Renolds numbers. 

Sarpkaya et al 1977(45) expressed their results for CD and 

CM as function of Reynolds number, Keulegan-Carpenter 

number and relative roughness. For large Keulegan- 

Carpenter number, they obtained a different trend than 

Keulegan-Carpenter(27). In general the scatter in the 

data is small. 

Maull and Milliner 

motion of vortices 

small U-tube at Re: 

They proposed that 

during a cycle may 

terms, the inertia 

1978 (46) 
examined the production and 

in a sinusoidally-oscillating flow in a 

ynolds numbers smaller than about 4,000. 

the variation of the drag coefficient 

be considered as the addition of two 

term with CM = 2.0, and a further term 

which is a function of the movement of the vortices 

produced. 

Bearman and Graham 1979(47) measured the in-line force on 

several cylindrical bodies in plane oscillatory flow in 

a small U-tube over a range of K-C number from 3- 70 at 

relatively small Reynolds number. They had noted large 

cycle to cycle variations in computed values of CD and CM 

even though the bulk flow in the U-tube was closely 

repetitive. 
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Force measured on a structure constrained to move with an 

oscillatory motion in a stationary fluid (Pattern C) help 

to add insight into the role played time dependence. 

Most of the work of unidirectional acceleration of a body 

in stationary fluid conducted to establish a single force 

coefficient combines the effects of drag and inertia. 

Kiem 1956(48) showed that the single coefficient as a 

function of (dU/dt)D/U2. This correlated the data fairly 

well. Also the experimental work of Laird and Johnson 

1956(49) and Laird et al 1959(50) expressed the result in 

terms of total resistance coefficient. 

Dalton et al 1976(51) and Sarpkaya and Garrison 1963(52) 

tried to use dimensional analysis to show that the single 

coefficient can be used to transform the results from the 

oscillating cylinder into the problem of a stationary 

cylinder in an oscillating fluid otherwise from Pattern C 

to Pattern A and B. 

From the above we can see the differences in the test 

condition, methods of measurement and data evaluation do 

not permit a critical and comparative assessment of the 

drag and inertia coefficients obtained in each investiga- 

tion. A comprehensive summary of the data on force- 

transfer coefficients has been presented by Hogben et al 

1977(53) The relationship between CD and CM has shown 

that there is not a unique relationship between them, 

independent of K-C and Re. Hogben 1976 
(54) 

suggested 
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a conceptual modelling of the interaction leading to an 

explicit formula for the inter dependence of CD and CNil 

it is based on highly simplified and somewhat initiative 

reasoning. 

2.1.2.2B TRANSVERSE FORCE (LIFT FORCE) 

Although the transverse force is not concerned in these 

studies it is important to mention it because this 

phenomenon may cause increase in in-line force and it 

has an important effect closely related to drag forces. 

The transverse force can be calculated from the equation: 

dFL(t) = DLL PD Uý ds ... ... ... (2.1.9) 

where CL = transverse or (Lift) coefficient. The 

rest of the symbols have been identified previously. 

The phenomenon of the transverse force is caused by the 

eddy shedding and so it is likely to be influenced by 

the way in which the eddies are shed (this also applied 

to the drag force). Some of the work concern the trans- 

verse force in wave flow have been looked at by Bidde 

1971ý00), Wiegel and Delmonte 1972 5° 
, Isaacson 1974 (57) 

(55 
and Zedan and Rajabi 1981ý. Some of the work concerning 

the transverse force in harmonically oscillating flows 

has been measured by Mercier 1973(59), Sarpkaya 1975a, 

1976a("`ý' 41) 
and Maull and Milliner 1978,1979(46 , 61 ). 
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2.1.2.3 MORISON EQUATION FOR A FLEXIBLE CYLINDER 

The original Morison equation has been modified by several 

investigations to cover in some sense the effect on the 

in-line forces of the flexibility of the structure. In 

particular the absolute value of the fluid velocity has 

been replaced by the relative one with respect to the 

structure's velocity, and the added mass term associated 

with the acceleration of the structure has been included 

(see Berge and Penzien 1976(62); Moan, Haver and Vinje 

1975(63)). 

The modified relation is: 

22 
dF(t) = ((CM l) ý4 P(U(t) - X(t)) +PU+ 

+2 CDP D IÜ(t) - X(t) I(U(t)- X(t)) ds 

... ... ... ... (2.1.10) 

where Xý The acceleration of the structure at the 

point under consideration 

X= The velocity of the structure at the point 

under consideration. 

The rest of the symbols have been identified previously. 

Although Equation (2.1.10) is a reasonable extension of 

the original Morison equation, it requires experimental 

verification as the original form of Morison's equation 

has been used for the estimation of CD and CM in field 

studies. 

30 



2.2 THE IDEALIZATION USED TO MODEL THE STRUCTURE 

SYSTEM 

In order to solve the static or dynamic response of any 

structure to the existing force it is necessary to model 

structure-foundation accurately to be able to establish 

the structure mechanism behaviour and the interaction 

between the superstructure and the supporting foundation. 

As the offshore structure is a very complex structure 

and problem; Penzein and Tseng 1976(64) refer to 

separate the modelling of the structure foundation 

system into (a) a foundation system, (b) a structure 

system. 

2.2.1 FOUNDATION SYSTEM 

The foundation of offshore structure can be either raft 

foundation as those commonly used for the gravity type 

of structure; see Figure (2.2.1) or a piles foundation 

as those normally used for the framed steel type of 

structure, see Figure (2.2.2). 
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Figure (2.2.1) - Gravity Structure Figure (2.2.2) - Framed 
Steel Structure 

The foundation impedence function stiffness coefficient 

and the damping coefficient of the foundation must be 

derived by performing a steady state foundation sub- 

structure dynamic analysis under harmonic excitation at 

its interface boundary. For the gravity structure 

Veletsos and Wei 1978(65), Luco and Westmann 1971(66) 

have obtained the foundation impedence assuming a uniform 

elastic half space. Luco 1974(67) obtained it assuming 

a layered viscoelastic half-space. 

Due to the presence of piles, realistic model of the 

foundation subsystem for framed steel structure is more 

complicated. Novak 1974(68) generate the foundation 

impe deuce for single pile in a uniform layer of soil 

founded in rigid rock. Kausel and Roessel 1975(69) 

bed 
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applied the finite element representation to obtain the 

impedence function. Tsai and Housner 1970(70), Lysmer 

and Kuhlemeyer 1969(71) developed the "exact" wave 

transmitting boundary element. 

As the foundation impedence and damping which consist 

of rediation damping causing loss of energy of the motion 

due to the soil properties hence it is frequency 

dependent. 

A type of the soil modelling of the foundation for 

gravity type and framed steel type are shown in 

(Figure 2.2.3) and (Figure 2.2.4) respectively. 

The effect of the soil parameter on the mathematical 

model of the foundation subsystem for the dynamic 

response of the structure had two principal effect 

according to (Taylor 1975(72) and Angelides and Conner 

1979(73)). 
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Figure (2.2.3) - Soil Model 
for Gravity Structure. 

Figure (2.2.4) - Soil 
Model for Framed Steel 
Structure. 
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1. Significant shifts in the response were observed 

for reasonable modification in the soil properties 

2. Reduction in foundation stiffness due to soil 

degradation increases the foundation period of 

the structure and the dynamic amplification of 

the structure response 

The first point has been investigated by Moan et al 

1975 (63) for the shear modulus variation. The combina- 

tion of the soil properties expressed in terms of 

damping and stiffness indicate that smaller soil damping 

will give higher dynamic amplification at resonnance 

(Bell et al 1976(74)). For the soil stiffness a higher 

dynamic amplification is found for a higher soil 

stiffness (Taylor 1974(75' 72) ) and that is clear due 

to the small amount of energy absorped'by the soil. 

The second point has been investigated (e. g. Walt 

1978(76)). It is important to represent the 

mathematical model for modelling the structure foundation 

interaction using the foundation impedence and damping. 

Figure (2.2.5) shows some of the modelling used. 
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-4 
Figure (2. "2. &) - Foundation Modelling. 

As the foundation has been represented completely in the 

offshore structure the vital points now are to use the 

information from the foundation modelling in the analysis 

using the foundation structure-interaction, this point 

has been looked at by many professional investigators 

e. g. (Penzin 1976(?? )' Taylor(75)). The interaction 

can be represented by forming the stiffness and damping 

matrix which are used in the equation of motion governing 

the dynamic analysis of the structure. 

[Mý {g} + EC ] {g} + [K] {X} = {F(t)} 

... ... ... ... ... (2.2.1) 

D- 
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where [M] = Mass matrix 

[C] = Damping matrix 

[K] = Staffness matrix 

{g}, {X} and {X} = Acceleration, velocity and 

displacement of the structure respectively 

{F(t)}= Hydrodynamic force 

by using the interaction between structure-foundation, 

the damping and the stiffness matrix will be 

CC ]= 1Cs1 + CCf] 
... ... ... ... (2.2.2) 

ýK _ [Ks] + [Kf] 
... ... ... ... (2.2.3) 

where ICs] = Damping in the free structure 

[Cf] = Damping in the foundation 

(K5l = Stiffness in the free structure 

[Ku] = Stiffness for the foundation 

One suitable method for evaluating[Cs] is to use the 

dynamic properties of the fixed base structure along 

with the pseudo/static influence coefficient associated 

with its base degrees of freedom, i. e. 

[c] [c]s 
Let [C 

s, _ ..... ... ... (2.2.4) 
[cr3 fcJ 

where ICS] is the damping matrix for the fixed base 

structure, 
[cr] is the damping matrix associated with the 

base degree of freedom of the structure, and 
[CS ] is the coupling damping matrix, 
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Matrix 
[ce] 

can be formulated for the fixed base 

structure using the relation formulated by Clough 1975(78) 

[cf 
J= 

[Me] 
E 

2C3 W; 
{0J}J}T EMe 

sJ 
... ... ... ... ... (2.2.5) 

where 
[MfJ is the diagonal mass matrix, including 

hydrodynamic add mass, 

m is the number of normal modes to be considered 

and 

{PJ}, Wit CJ and MJ are the mode shape vector, 

frequency, damping ratio and generalized 

mass respectively of the Jth normal mode. 

Matrices 
[c] 

and 
[cr] 

can be-formulated as follows: 

[c]= - [c] [bs] 
... ... ... ... (2.2.6) 

[c]= [b]T [Cs ] [b5] ... ... (2.2.7) 

where [b5 1= pseudo-static influence coefficient 
J 

matrix which is equal to 

I bs _-[ Ks]-1 [Ks ] 
... ... ... (2.2.8) 

Stiffness matrix of fixed base structure In which 
IKf 

= 

]= 
Stiffness-coupling matrix expressing the CK 
force developed in the degrees of freedom 

of the fixed base structure caused by the 

pseudo-static displacement of the base 

degrees of freedom. 
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From the above we can conclude that the understanding and 

evaluating the dynamic analysis of the fixed base structure 

should be carried out before establishing the analysis of 

the offshore structure with its foundation. 

2.2.2 THE STRUCTURE SYSTEM 

The structure system must be idealized so that the 

dynamic analysis can be made with simple systems 

forming the dynamic properties Mass, Stiffness and 

Damping of the structure. 

2.2.2.1 THE MASS MATRIX 

The mass matrix can be formulated either by consistent 

mass matrix or by the lumped mass matrix, the simplest 

procedure for defining the mass matrix of any structure 

is to assume that the entire mass is concentrated at the 

points of which the translation displacement are defined. 

The usual procedure for defining the point mass to be 

located at each node is to assume that the structure is 

divided into segments, the modes serving as connection 

points. 

The mass matrix of the offshore structure can be represen- 

tedas 

M= Mm + Ma 
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where Mm = Material structural mass and the platform 

mass 

Ma = Added mass due to the displaced fluid replaced 

by the submerged part of the structure 

MF = Flooding and marine growth mass 

The part of MF due to the flooding mass can be easily 

calculated and it is the mass of water occupying certain 

volume of structure element to make it flood. The part 

of MF due to marine growth are not easy to predict due to 

uncertainties of the marine growth thickness over the whole 

structure. Heaf 1979 (79) 
shows the effect of increased 

marine growth on the mass matrix. This effect appears in 

two ways; firstly, the increase in mass of the structure 

and secondly, the increase in hydrodynamic added mass due 

to an increase in displaced volume. 

Mm is the mass of the structure material plus the mass of 

the platform deck including all the machinery and equipment. 

It is easy to calculate and form the mass matrix for Mm. 

But the only problem associated with Mm is to choose the 

position and number of mass points to be taken in the 

analysis. 

Maddox 1974(80) has conducted a study to find the best 

position and number of discrete mass points to be considered 

by using two different representation of the mass points for 

the same structure, as shown in figures (2.2.6A and 2.2.6B) 

which represent model 1 and model 2 respectively. 
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A comparison between the tý, w models has shown that model 1 can be 

considered to be an adequate representation of the structure to be 

accounted for. 

-2 , 3- 
-3 4- 
-4 5' - 
--5 , 6- 
-6 7- 

-g 
8`- 

Figure (2.2.6a) - Model 1. 

-1 
-2 

-3 

-4 

-5 

-6 

-7 

-8 

Figure (2.2.6b) - Model 2. 

The number of discrete mass points must be considered in the analysis, 

because at each discrete mass point the dynamic equation of motion is 

set. By using a large number of discrete mass points we get a similar 

number of equations of motion to be solved simultaneously which requires 

too much computer time and a high computer capacity. This is not the 

only disadvantage of choosing too many lumped masses but also it gives 

an inaccurate solution because of the higher frequency modes which will 

be concluded in the solution while not being required. 
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From the above it is important to choose the exact 

number of lumped mass to be taken in the mathematical 

modelling of the structure. Nath and Harleman 1969(81) 

used one lumped mass at the platform for two massless 

leg structures, the experimental result shows that there 

is quite good agreement with the predicted analysis for 

deep water wave and with different space between 

structures. Harleman et al 1963 (82) 
carried out 

experiments for four massless leg structures using one 

lumped mass at the platform. They show general agreement 

between experimental and analytical prediction. Experi- 

mental and analytical studies for one-degree of freedom 

of one, two and four massless towers subjected to regular 

and random water waves had been performed by Nath and 

Harleman 1967 (83) taking into consideration the stress 

and the moment of the structures and the effects of the 

spacing of vertical supports on the platform deflection 

and also the effect of wave direction emphasis, the 

general agreement with the use of the one-degree of 

freedom. The above experiments used structure model 

fixed at the base and the wave structure interaction 

were ignored. It does not show whether the model 

represent any full scale real structure. 

Nolan and Honsinger 1962(84) found that for the single 

degree of freedom approximation for the structures 

assuming that all masses to be concentrated at the 

platform level, the ratio of the maximum theoretical 

to experimental displacement varied from 0.5 - 1.7. 

41 



Molhotra and Penzin 1970(8 h) 
mentioned that the behaviour 

of a tower in water subjected to random wave forces can 

be represented fairly accurately by using the first and 

second mode or first, second and third lateral mode of 

vibration. Also Bege and Penzien 1974(62) concluded 

that at least six normal modes of vibration should be 

included in the three-dimensional dynamic analysis. 

Wu 1976(86) concluded that the number of discrete mass 

points necessary to satisfy the displacement analysis 

is less than that required for the analysis of shear 

force and bending moment. 

The use of a large number of lumped masses is unnecessary. 

Ma represent the mass of water attached to the structure 

and move with it as one body. The evaluation of this 

mass of water represented by the equation 

Ma = (Cm - 1)pß ... ... ... ... 
(2.2.10) 

where V- = Volume of water displaced by structure 

p= Water density 

Cm = Mass coefficient (inertia coefficient) 

42 



Equation (2.2.10) has a numerical coefficient which 

attribute uncertainties to the evaluation of the added 

mass. Many works assumed that CM = 2.00 which means 

that the added mass will be equal to the mass of water 

displaced by the structure. 

King 1971(87) support the idea of CM = 2.00 and also 

mentioned that the added mass is unaffected by streaming 

flow and vortex shedding, as well as the added mass 

function was seen to be independent of frequency, ampli- 

tude and model shape. Jenssen et al 1977(88) observe 

that the above statement of King is not absolute as they 

found a variation in added mass near the surface. Sarpkaya 

1981(89) dealt with the question of instantaneous value 

of inertia coefficient which lead to negative added mass 

in some parts of the wave cycle, which prove that the 

added mass is not a constant value during the wave cycle 

and also it varies due to wave and structure condition. 
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2.2.2.2 THE STIFFNESS MATRIX 

The stiffness matrix is independent of the type of the 

structure whether offshore or inshore. It is also 

independent of the solution type i. e. whether static or 

dynamic, although some papers state that there are changes 

in stiffness matrix due to the difference in the dynamic 

Young's modulus. (See Nath and Harleman 1969(81) and 

Hallam et al 1978(90)). 

2.2.2.3 DAMPING MATRIX 

It is important to understand the general description of 

damping. Damping is basically a dissipation of energy due 

to motion. There are several possibilities for energy 

dissipation: 

(i) MATERIAL DAMPING 

The material damping is thought to be very small. 

This component may mathematically be represented 

as viscous damping. The damping coefficient may 

be assumed to be constant throughout the structure 

and only depend on the structure material. 

(ii) STRUCTURAL DAMPING 

The structural damping is caused by the way the 

structure is assembled (bracing, welding) and on 

the structure mechanism. The assessment of 

material damping is equally valid for structural 

damping. 
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(iii) ENVIRONMENTAL DAMPING 

For offshore structure the environmental damping 

is mainly of hydrodynamic origin. Damping forces 

due to movement of air above the water line are 

negligible compared with the hydrodynamic damping. 

The above physical possibilities of damping summed 

together to represent and use of damping in computations. 

In calculations, the damping are represented by the 

damping coefficient which can be calculated from the 

equation: 

=Cx 100 ... ... ... ... ... (2.2.11) Cc 

the damping coefficient is usually imagined to be constant 

throughout the structure which is not a good physical 

description (see Vugts and Hayes 1979(91)), the value of 

this coefficient is given in the form of a percentage of 

critical damping, as critical damping cannot be defined 

for a general N-degree of freedom, the natural period of 

vibration is important and to get the damping coefficient 

in the equation 

Cc =2M Wn ... ... ... ... ... (2.2.12) 

where M= mass of structure 

`fn = natural frequency of structure 
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The most vital part is to establish the appropriate 

damping coefficient. Several papers have been published 

concerning this point, some used model structures 

(Skep et al 1976(92) and King l972(J3)) and others used 

prototype structures. 

The damping coefficient of the structure can be measured 

by one of the three possible methods 

(a) Log-decrement measurements of decay vibration 

resulting from a free vibration due to tip 

displacement 

(b) Response measurements under known imposed 

excitation 

(c) Response measurements under natural excitation 

for offshore structure 

For offshore structure methods (a) and (b) seem practical 

for establishing the damping coefficient, the snag in 

both methods has been pointed out 
(91), 

also in the 

mathematical representation of the physical realities 

Three main factors affect the choice of a preferable 

method: nonlinear effects, local damping effect and 

frequency dependent coefficients. 

Ogilive 1964(94) found that the choice of a damping 

coefficient has strong effect upon forces and displacement 

but it had hardly any effect on the resonant frequency. 
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In reviewing the work done by some offshore professional 

in estimating the damping coefficient, Cherry and 

Brady 1965 (95) 
used the concept of outocorrelation 

technique for random vibration of experimental data 

as a method for predicting structure dynamic properties 

(Natural period and damping coefficient), the result 

concluded that reasonable estimation of structure period 

can be obtained from an analysis involving small amounts 

of data, relatively large sample sizes are required if 

meaningful estimates of structure damping coefficient 

are expected. 

A method of measuring structural damping based on time 

delay correlation has been established by Jeary and 

Winney 1972(96) for random vibration experiment data 

has shown that the results obtained with this method is 

in good agreement with the results obtained from the 

standard decay tests. Vanmarke 1971 (97) 
outlines a new 

method based on power spectral density analysis for 

determining period and damping values of offshore 

structure from field measurements of their response to 

wave-induced random excitation. Ruhl and Berdahl 

1979(98) carried out forced vibration tests to find the 

damping coefficient they found that the damping 

coefficient is less than two percent of the fundamental 

group of modes and is three to five percent range for 

the second group of modes. They used the steady state 

test which show that these tests are extremely useful 

for determination of coefficient of damping. Also Ruhl 
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1976(9-')conducted free vibration tests and spectral 

analysis of random response data to find the fundamental 

periods and damping coefficient using the partial 

spectral moment method for the random vibration. 

Another way of getting the damping of offshore structures 

is by separating it into two parts, first the material 

and structure damping and second the environmental 

"Hydrodynamic Damping. Skop et al 1972(92) evaluated 

a damping empirical formula for circular cylinder, but 

it had not been used or proven. King 1972(93) tried 

the hydrodynamic damping in still water, concludes that 

it is pure viscous and may be described by Stokes 

element damping theory. His work also shows that the 

damping increases rapidly with water depth. Verley 

1978(100) compared between the independent flow fields, 

i. e. by taking the damping as being the still water and 

the hydrodynamic added damping due to the relative 

velocity, his result of the analysis confirms the 

suggestion of using the independent flow fields for low 

values of the reduced velocity (Ur = Um/fnD) and low 

expected vibration amplitude as the relative velocity 

assumption for calculating the hydrodynamic damping 

will overestimate the damping, and underestimate vibra- 

tion. Verley and Moe 1979(101) carried out experimental 

investigation of oscillating cylinder in current and 

the results indicate the same conclusion of those of 

Verley 1978(102) 
(100). 

Dean et al 1979 
(103) in his 

report tried to establish. values to be added, called 
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(implied damping) to substitute the hydrodynamic damping 

but in their report they could not generalize the 

values for the sea state. 

2.3 NUMERICAL PROCEDURE 

A realistic dynamic analysis of the fixed offshore 

structure is complex. Hence approximation analogous to 

the single-degree of freedom system is adequate. But a 

full and comprehensive dynamic analysis appears to be 

the only satisfactory way of dealing with the problem. 

Two general aspects of the problem must be briefly 

discussed. 

2.3.1 TIME DOMAIN AND FREQUENCY DOMAIN DESCRIPTION 

A distinction in time and frequency domain analyses is 

governed by the manner in which the excitation is handled; 

(The right hand side of the equation of motion). With a 

description in the time domain the full time history of 

every quantity is involved, certain initial conditions 

are specified and with the loading distribution over the 

whole structure known as a function of time, the response 

of the structure may be obtained at each and every instant. 
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2.3.1.1 MATHEMATICAL FORMULATION OF THE DYNAMIC 

PROBLEM IN FREQUENCY DOMAIN DESCRIPTION 

- Constant and frequency depended coefficient can 

both simply and equally be handled. These 

coefficients may arise from e. g. hydrodynamic 

and soil interaction (added mass, damping 

coefficient). Time dependent coefficients are 

strictly not admissible. 

- Non-linearities in system properties (stiffness, 

damping) or in loading wave force can only be 

modelled by linearization. 

- The equation of motion have the appearance of 

differential equation but are in fact algebraic 

equations (see Ogilvie 1964(04)). 

- The steady state solution only is obtained, and it 

is obtained directly. 

- For N degree of freedom and harmonic excitation, a 

system of 2N linear algebraic equations must be 

solved at each frequency. The response to a random 

excitation can be obtained through spectral analysis. 

- An arbitrary though prescribed excitation over a 

short period cannot be handled in the sense that 

the response include transients but it can be 

analysed using Fourier series. 
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2.3.1.2 MATHEMATICAL FORMULATION OF THE DYNAMIC 

PROBLEM IN TIME DOMAIN DESCRIPTION 

In the time domain with constant coefficients the 

equations are differential equations. Frequency depen- 

dent coefficients lead to the inclusion of retardation 

functions, the equations become integro-differential 

equations(see Ogilvie). Coefficients that are functions 

of time can be handled. 

- The equations are differential or integro- 

differential equations. 

- Transient and/or steady state solutions can be 

obtained. Initial conditions have to be specified. 

Number of cycles required for steady state to be 

reached may be large depending on initial conditions 

and damping. 

- For N degree of freedom and harmonic excitation of 

a linear system under certain assumptions the set 

of N second order differential equations may be 

replaced by N simultataneous equation for every 

time step response, to random excitation may be 

obtained directly through numerical integration. 

- Any non-linearity can in principle be included 

provided that an adequate mathematical formulation 

and solution procedure is available. 
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- The differential equations must be solved numeri- 

cally with small time steps, initial conditions 

and a criterion to define steady state condition 

have to be specified. 

- Numerical integration under random excitation is a 

time consuming process. For different excitation 

the whole process must be repeated. In general 

the random loading distributions are required. 

- Any prescribed excitation can be dealt with by 

direct numerical integration given appropriate 

conditions and a reliable integration technique. 

2.3.2 MODEL SUPERPOSITION AND DIRECT INTEGRATION 

The distinction between model superposition and direct 

integration techniques lies in the manner by which the 

equation describing the behaviour of the system are 

dealt with. 

The model superposition technique makes use of the fact 

that the response of a complex multi-degree of freedom 

system can be described as the sum of the responses of 

a number of one-degree of freedom system. By appropriate 

coordinate transformations the degrees of freedom are 

uncoupled, so it improves the understanding of the 

system properties, also the excitation has also to be 
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transformed to refer to the same coordinate system. The 

system may be continuous or discretized. 

The direct integration approach, the coupled equation 

which in practical cases would refer to a discretized 

system are integrated as they stand. 

2.3.2.1 MATHEMATICAL FORMULATION OF THE DYNAMIC 

PROBLEM BY MODEL SUPERPOSITION 

- The basic features of this technique is that N 

degree of freedom system are uncoupled into N 

equations each describing a single degree of 

freedom system. The technique is exploited when 

the eigenvalues of the coupled equation is real. 

- The essential difficulty with model superposition 

is the number of modes that have to be considered. 

- The system non-linearities cannot be included. 

- The first requirement in an eigenvalue solution in 

order to find the undamped natural frequencies and 

mode shapes. 

- The transformation to generalized coordinates is 

lengthy but needs to be done only once. Only the 

transformation of the loading function is to be 

represented. 
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- Relatively small computer can handle the problem. 

2.3.2.2 MATHEMATICAL FORMULATION OF THE DYNAMIC 

PROBLEM BY DIRECT INTEGRATION 

- The coupled equation is dealt with directly. 

- There are no questions of truncation of a series, 

the full solution is obtained. 

- Non-linearities can in principle be incorporated. 

- Although not a part of the solution procedure, 

definition of damping may be facilitated by an 

eigenvalue solution of the first few natural 

frequencies. Knowledge of the principal mode 

shapes also improve physical insight. 

- No transformation is required. 

- Large computer is required. 

Two practical examples of the way in which dynamic 

analysis have been incorporated into particular design 

problems in both the time and frequency domain had been 

carried out by Schumm 1978(104) for steel jacket platform. 

It showed that the advantage of using time domain analysis 

are as follows: 
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1. The correct structure submergence for members in 

the region of the still water surface. 

2. Drag force can be included without linearizations. 

3. Relative velocity between wave and structure can 

be correctly accounted for. 

Also in frequency domain it shows that despite the 

necessity to perform linearization, the frequency domain 

approach provides an extremely powerful tool for stochas- 

tic analysis for long term effects as it reduces the 

amount of data processing to a manageable size and 

significantly reduces computing cost over an equivalent 

time domain approach. It shows also that the best suited 

technique of the solution of mathematical model for steel 

platform is the model superposition technique in which 

case the major response of the structure can be adequately 

represented by the first ten or so mode shapes without a 

significant loss of accuracy. 

Vugts 1979(10 5) 
made a comparison between the solution of 

mathematical model, also alternative model superposition 

analysis using varying numbers of modes to account for 

dynamic effects, supplemented by the full static solution 

which replaces the corresponding static component 

contained in the solution of the truncated model series 

has been used. All calculations were performed in 

frequency domain for two derivatives of the structure: 
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the first is made artificially stiff in order to make 

it dynamically insensitive to the wave load and the 

second is made artificially flexible in order to 

produce significant dynamic response to the prescribed 

wave excitation. This work indicates that pure model 

superposition is unacceptable if a realistic prediction 

of detailed member end forces and moment (and hence 

stresses) is the primary objective. The comparison with 

exact direct solutions confirm that model analysis 

provides reasonably reliable estimates of gross platform 

behaviour, expressed in terms of global horizontal 

displacement even when relatively few modes are used. 

A considerable improvement in accuracy observed when 

static response of higher modes, which were truncated 

in the model series, has a large influence upon the 

number force contribution and firmly recommended that 

however stress recovery is the primary objective of a 

dynamic analysis of an offshore structure a direct 

solution of the equation of motion in the physical 

coordinates should be performed. In the stiff structure 

it is not necessary to perform the direct dynamic solu- 

tion as it more costly than model superposition. 
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CHAPTER THREE 

THEORETICAL FORMULATION 

3.1 INTRODUCTION 

The problem of determining structural interaction of 

cylinders in periodic waves will be examined theoretically. 

The model posed is a circular cylinder fixed at the base 

and either free or fixed at the top (i. e. free to vibrate 

or not) subjected to periodic waves. 

The periodic wave form will be assumed to be linear. The 

force on the structure due to these waves will be obtained 

by the Modified Morison's equation as well as Morison's 

equation. 

The dynamic sturctural response to waves will be calculated 

using mode superposition in the time domain. A finite 

element method is used to solve the resulting dynamical 

equat ions. 

3.2 WAVE DYNAMICS 

The accuracy of the determination of the water wave force 

depends on the accurate description of waves. This is 

needed to obtain the appropriate wave velocity and 

accelerations necessary for the prediction of wave forces. 
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3.2.1 WAVE DESCRIPTION 

The wave flow field used in this study is assumed to be 

in two dimensions. Also it is assumed to be incompressible 

and irrotational which will satisfy Laplace's equation 

(2.1.1) 

a22 
+ 

a22 
=0 ... ... ... ... ... (3.2.1) 

ax ay 

The bottom surface is assumed to be horizontal, rigid and 

impermeable and hence Equation (2.1.5) reduces to 

3=0 
at y=-h... ... ... (3.2.2) 

ay 

The Equation (2.1.4) is linearized by neglecting 

the velocity components, also by assuming small amplitude 

wave 

.n=g .1 
2A, 

at y=0... ... ... (3.2.3) 

To satisfy the linearization of the boundary condition, 

the ratio between the neglected terms and terms which have 

been retained should be small. This is found to give: 

ak « 1, (tanh Kh and-cosh Kh « 1) ... (3.2.4) 
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if the velocity potential is considered to be the first 

term 11 in a perturbation expansion 

¢_ ¢1l +0 l2 + ¢13 + ... On ... ... (3.2.5) 

where 0n-1 » On for all n 

The ratio of ý12'hl should be small where ('12 is 

the Stokes second order term) 

X12 - 3/8 a cosh 
32k 

(h + z) sin 2(kx - at) C 
sink Kh cosh Kh 

... ... ... ... ... ... (3.2.6) 

To satisfy the above requirement the following condition 

must hold 

a/K2h3 << 1 ... ... ... ... ... ... (3.2.7) 

The wave generated contained small amplitude of higher 

order free harmonic waves. The wave profile was periodic 

.. n(t +T) = n(t) ... ... ... ... ... (3.2.8) 

The experimental wave profile obtained for one wave 

cycle was analysed using the Fast Fourier Transfor to 

obtain the magnitude of each of the individual free 

harmonic waves 
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ntotal E an cos(Knx - nt) + bn sin(Knx - ant) 

... ... ... ... ... (3.2.9) 

"" n=EA cos(K x-a t+ a) ... (3.2.10) 
" total n. nnnn 

where An = amplitude of the nth harmonic in the wave 

_ �a + b2 

an = the phase shift relationship between the various 

waves (nth harmonic) and the measured from the original 
a 

(kx - at)and equal to tan-1 bn 
n 

Since Laplace's equation is linear, the velocity 

potential of a wave system total 
is given by the 

sum of the potential of the individual waves 

total ý1 + ý2 + ý3 + ... ýn ... ... (3.2.11) 

in which 

Attg cosh Kn(h + z) 

n an cosh Knh sin(Knx - (rnt + an) 

... ... ... ... ... (3.2.12) 

and the dispersion relation 

2 
C 
Cn=(g/Kn) 

tanh Knh ... ... ... ... (3.2.13) 
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where g= gravitational acceleration 

an = the nth wave angular frequency = 2'/Tn 

Kn = the nth wave number = 2n/Ln 

h= distance from the still water level 

to bottom 

Cn = velocity of the nth wave propagation 

(phase velocity) = Ln/Tn 

Z= vertical distance measured positive upward 

from the still water level 

Since the fluid particle velocity and acceleration are 

first derivative of they can be added because 

is linear 

utötal U1 + U2 + U3 + ".. +&n """ """ (3.2.14) 

where 

ahn Ang Kn cosh Kn(h + z) 
Un 

Qn cosh Knh cos (Knx - ant + an) 

... ... ... ... ... (3.2.15) 

and 

Un=U1+U2 +U3+ ... +Un ..... (3.2.16) 
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where 

9Un cosh Kn(h + z) 
un 

at An gK cosh Kh sin(Knx - ant + an 
n 

... ... ... ... ... (3.2.17) 

3.2.2 WAVE FORCES 

The wave forces on structure will be determining using 

Morison's equation. This force varies with time during 

the wave cycle. It also varies with the position of 

different element along the structure. The force on 

the element is calculated using the average values of 

the drag and the inertia coefficients during the wave 

cycle (over the cycle CD and CM are assumed constant). 

dF(t, 
z) _ 

1 [CD(z) 
2 PD(Ut otal(t, z)) 

Utotal(t 
, z))I + 

C pTrD2 (3.2.18) + M(z) 4 Utotal(t, z)ý 
dz ... 

In the case where the structure is free to vibrate 

the force on the element will be represented by 

dF(t, 
z) 

[CD(z) 
2 PD(Utotal(t, Z)- 

X(t, z)ýl1total(t, z)- 

2 
X(týz) +(CM 1)p4D (Utotal(t, 

z)- 
k(t, 

Z) 
)+ 

+ p4D2 Utotal(t 
z)] 

dz ... ... (3.2.19) 
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The corresponding bending moment at the base of the 

structure due to the wave force can be obtained by 

integrating of Equations(3.2.18) and (3.2.19) along 

the submerged part of the structure for the case of 

small structure's deflection. 

For the case of free structure (cantilever) 

h 

Ma =/ dF(t' 
z) zdz 

z 0 

or 
h 

MB =Z7 dF't, 
Z) zdz ... ... ... ... (3.2.20) 

0 

For the case of fixed structure 

h z(L - z) 
2 

MB =f dF -s dz ... ... 
(3.2.21) 

Z 
(t, z) Ls 

0 

where Ls = structure length. 

The appropriate drag and inertia coefficients are 

obtained using either Equation (3.1.15) or (3.1.16) 

in conjunction with the measured wave force. The method 

of obtaining the measured wave force, the parameter 

X(t, 
Z) and X(t, 

Z) will be shown later in this 

chapter. 

The average values of the drag and inertia coefficients 

during the wave cycle can be calculated by one of the 

following methods: 
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1. Fourier analysis 

2. Cross point(calculated of the drag coefficient 

at zero inertia force and calculating of the 

inertia coefficient at zero drag force) 

3. Least square method 

The Fourier analysis for an oscillating flow represented 

by 

U= Um cos Qt ... ... ... ... ... (3.2.22) 

the average value of CD and CM are given by Keulegan 

and Carpenter(27) 

2n 
CD =-0.75 f(Fcos t/pUSD)dt ... (3.2.23) 

and 

3 27r 
CM = (2UmT/7r D) f Fm sin at/pUm SD)dt (3.2.24) 

0 

in which Fm is the measured force and S is the length 

of the segment over which the force was measured. 

This method yields the same value of CM as that of 

the least square method but with slight difference in 
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the value of CD. This method is not applicable if 

there are free higher order harmonic waves present in 

the wave. The omission of the second harmonic wave will 

affect the value of the force coefficients (see 

D. I. Maull and M. G. Milliner 1979(61)). 

The cross point will give discrepances due to the diffi- 

culty in determining the region of the zero drag and 

zero inertia during the wave cycle. 

The least square method is more applicable, as it can 

deal with higher harmonic component in the wave. 

The least square method used is as follows 

Fm (f I) C`ý1 + (fD) CD ... ... ... ... (3.2.25) 

where 

ýrD2 ((3.2.26) f I) - Utotal(t, 
z)S ''''" 

(fD) - -T pD Utotal(t, 
z) 

IUtotal(t, 
z)IS 

(3.2.27) 

E(fD)2 CM +E(fI)(fD)CD = E(fI Fm) ... (3.2.28) 

E(fI)(fD)CM + E(fD)2CD = E(fD Fm) ... (3.2.29) 
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E(fI)2 E(fD Fm) - E(fI Fm) E(fI) (fD) 

. '. CD(Z) = 
E(f1)2 E(fD)2 - E((fI) (fD)) 2 

... ... ,.. ,.. (3.2.30) 

E(Fm fI) E(fD)2 - E(fD Fm) E(fI) (fD) 
CM(Z) 

Z(f1)2 Z(fD)2 - E((fI) ( fD) )2 

... ... ... ... (3.2.31) 

where Fm = measured force for the case either (fixed 

or free). 

In the case of the modified Morison's equation is used 

Equation (3.2.25) becomes 

Fý =(FI) + (fi)Cý + (f')% ... ... ... (3.2.32) 

where 

F1=-42 X(t, 
Z) 

S ... ... ... ... (3.2.33) 

2 
TrD (ßI) pZ 

- (Utotal(t, 
z) 

X(t, 
Z) 

)S ... (3.2.34) 

(fD) =1 pD(Utotal(t, z) - X(t, 
z))1Utotal(t, z) 

X(t, 
z)IS ... ... ... ... (3.2.35) 

by arranging Equation (3.2.29) 

(3.2.36) 
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the values of CD(Z) and CM(Z) can be obtained from 

Equations (3.2.30) and (3.2.31) using these new 

values of Fm, fI, fD. 

3.3 STRUCTURAL DYNAMICS 

The problem of vibrating structure is solved by 

equilibrating the externally applied force with the 

inertia forces resulting from the acceleration of the 

structure, the elastic resistance to displacement and 

the energy-loss due to the structure mechanism (damping). 

The difficulties arises in the prediction of structural 

dynamic of offshore structure is due to the dependence 

of external applied force on the structure oscillation. 

The prediction of the dynamic response of offshore 

structure will depend upon the idealization used to 

model the structure system, the formulation of the 

equation of structure system response and the method 

of solution of the structural system equations with 

its numerical analysis. 

3.3.1 THE STRUCTURE MODELLING 

The structural system used in this study is modelled 

as follows: 
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- The continuous member is assumed to be series of 

discrete masses connected by springs (with no mass) 

- The continuous wave forces are represented by point 

loads acting at the mass centres 

Figure (3.3.1(a)) shows the actual structure and the 

wave force while Figure (3.3.1(b)) shows the modelled 

structure 

Fc 

'ýý 
_ý 

f2 (t) 

f3(t) 

�Si 

Z 
1//Y 

X 

Gl. bat Axis 

(a) Actual Structure ( b) Idealized Str ucture 

Figure (3.3.1) - Modelling of the Structures. 

68 



Further idealizations upon which the analysis is based 

are (a) stress is proportional to strain, (b) small 

deflection theory, (c) all motion is measured from the 

position of static equilibrium. 

In this study, it is assumed that the waves travel in 

the positive x direction. All structural and loading 

variations in the y direction are therefore neglected. 

Thus, the number of degrees of freedom at each node is 

reduced to three; namely, translational displacements 

in the horizontal x direction and in the vertical 

direction, and rotational dizplacement about the 

y-axis. 

3.3.2 FORMULATION OF THE EQUATION OF STRUCTURAL 

SYSTEM RESPONSE 

The force on the structure including the interaction 

effect and noting that 60 = UX and U0 = ÜX, where 

substript 'o' indicates that these quantities are taken 

at the undeflected structure location, the complete 

dynamic equation for the idealized structure shown in 

Figure (3.3.1(b)) may be written as follows 
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M1 0000X C11 c12 c13 "' Cln X1 

0 M2 0002 021 022 023 "'' C2n 2 

0000 jlan Xn Cnl cn2 cn3 '"' cnn Xn 

K11 K12 K13 ... Kln X1 

K21 K22 K23 ... K2n X2 

+. 

Knl Kn2 Kn3 ** *K Xn 

P1(t) 

'2(t) 

Pn(t) ... ... ... ... ... ... ... (3.3.1) 

where the column matrix {P(t)} can be obtained from 

modified Morison's equation (3.2.19) 
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Pl(t) 
p2 

Pn(t ) 

+ 

000000 -X1 

0 Fm2 000 Uo2 -X2 

00 Fm3 00 Uo3 3 

0000 Fmn Uon 
n 

000000 
0 Fý2 000 Uo2 

00 Fm3 00 Uo3 

0000 Fin Uon 

+ 

+ 

+00000 (0 -X1)10 -XjI 

0 Fog 000 (Uo2-X2)IU 2-4I 

00 Fp3 00 (Uo3-X3)IU 3 X31 

0000 FOn (Uon-Xn)IUon-Xn) 

(3.3.2) 
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where 
2 

F- p4D (CMn 1)Sn 
mit 

F, _ pITD2 S Mn 4n 

FDn =12 pD CDn Sn 

Here and thereafter, the agreement t of these time 

dependent quantities is dropped for convenience, except 

when a time dependent quantity first appears. 

Equations(3.3.1) and (3.3.2) can be written as 

j'' M] {X} + ýC] {X} + [K] {X} = [- Fmý] {Uo-X} {Uo} + 

+ [`FD --3{ ([Jo-g) 'ü0-% } 

... ... ... ... ... (3.3.3) 

By rearranging the above equation 

C` !I+i. Im 1 {g} + C[C] + [l-- 2t FD -. ]] {g} + [K] {g} + 

+ {E(X)} = {F(t)} 

... ... ... ... ... 
(3.3.4) 
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where 

{F(t)} _ 
[ýýFm`] 

+ [`Fmý]1 {Uo} + 

+ [`'FD'] (b01i1011 ... ... ... (3.3.5) 

From Equation (3.3.4) it can be seen that the water 

wave/structure interaction produces a hydrodynamic 

damping due to the drag force, which is L 2UFo-. ] {X} 

and a nonlinear vector tE(X)j which has the form 

{E(x)} _- ['' FD .- 
l{XýXý } ... ... ... 

(3.3.6) 

The nonlinear nature of Equation (3.3.4) necessitates 

an examination of solution methods for systems of 

nonlinear differential equation. The following methods 

are used for the solution of nonlinear differential 

equation 

1. Perturbation method 

2. Semilinear method 

The above methods depend upon the condition that the 

nonlinearity in the system is small. 
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PERTURBATION METHOD 

In this method the nonlinear term fE(X)1 expressed 

(3.3.7) 

where {E(X)} is the nonlinear damping function and 

{E'(X)} described the shape of the nonlinearity 

and the relative magnitude is indicated 

by the parameter E 

when E=0 the Equation (3.3.4) reduces the equationto 

linear oscillations. The perturbation method is based 

on the assumption that, the solution of the Equation 

(3.3.4) permits an expansion in power of e. It is only 

expected to be valid for motions in which the nonlinear 

part of the damping force remain small in comparison 

with the linear part. 

. '. X1 X10 + eXll + c2X12 + ... 

x2 x20 + EX 21 + s2X22 + ... 

Xn Xn0 + eXnl + eXn2 + ,,, 
2 

... ... ... ... ... (3.3.8) 
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Equation (3.3.8) can be written as 

NP 
{Xn} =E EI{XnI} ... ... ,.... (3.3.9) 

I=D 

where NP = an arbitrarily large integer 

n= number of node point 

The Ith term of the quantity-represents the Ith order 

correction to the (I-l)th order solution for that 

quantity The expansion of the shape function 

{E'(*)} by using the truncated Taylor series with 

respect with (ca) is 

d'E(X) 2 d'2 E(X)10 
E. 

[*)i 
+ 

10 () 
E (X)10 1! d x10 2! d X2 10 

EI )2 

d'E(X) '2 
+ AX) 

_ 
n0 + 

ý2 d E(X)n0 
+.. EI(X)n EI(X)nO 1.! d xn0 2! dX2 

rio 

... ... ... ... (3.3.10) 
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"" equation (3.3.10) can be written as 

NP (eti )I dIE'(X) 
{E'(X)n}= E I! I ... ... (3.3.11) n 

I=0 d(X)n 

where 

AXn = Xnl + El n2 

Therefore insert 

and substitute i 

terms having the 

+ E2Xn3 + ... ... ... (3.3.12) 

Equation (3.3.11) into Equation (3.3.8) 

n Equation (3.3.4) with collecting 

same power of E. 

The first four of these would appear as 

[[_ 
M+ Ma-] {X }o + C[C] + [` 2UFD_. ]}{X}0 + 

+ EK, f Xj 0-{F (t )jý + 
ýý"M 

+ Ma ýý {g}1 + [[C] +[ 2ÜFD--31 {X}1+ [K] {X} 1+ 

+ {E'(g)0 + 

E2rrM + Maw. ] {%}2 + [[CI + [`2UFD, ]1 {X}2 + [K] {X}2 + 

dE' 
+{(X)1 co- 

(X)o}1 + 

e3{i M+ Ma. l {g}3 + ý[C] +ý` 2b%-1ý1 {X}3 +[KJ {X}3 + 

d(k)0}+2{(X)2 dx(x)o}) + ... =0 + 
1({(k)2 d- 

x 

... ... ... ... (3.3.13) 
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If Equation (3.3.12) is to be satisfied identically 

in c, each square bracket must separately vanish. 

This provides a chain of linear problems in which 

XI+i(t) may be considered as a linear response to an 

excitation that is a nonlinear function of the previously 

determined X 1(t). 

Applying the perturbation method to the given problem 

leads to difficulty of deciding how many terms the 

solution, (3.3.9) should retain in order to fully 

represent the nonlinearity by a series of the type 

(3.3.11). Also it is necessary to establish how the 

computation for higher-order terms is to be executed, 

and what the permissible values of e should be. 

SEMILINEAR METHOD 

This method of analysis involves replacing the actual 

nonlinear system equation of motion (3.3.4), by a 

system of linear differential equation. It is possible 

to have the linear system to be an equivalent system 

by selecting the constants such that the errors arising 

from its use are minimal. The efficiency of this 

method depends, as did the perturbation method, upon 

the nonlinear strength of the system. If a highly 

nonlinear system were to be replaced by a linear one 

with constants selected to minimize the mean-square 

errors, the minimized errors might be large enough 
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to cast doubt upon the results. However, if the system 

is weakly nonlinear in the sense that its equations 

of motion possess linear portion which dominate the 

nonlinear portions (as anticipated in Equation (3.3.4)), 

the minimized replacement errors can be much smaller. 

This method was applied to a nonlinear system with 

deterministic inputs by Krylov and Bogaliubov 1947(106), 

The semilinear approach for the problem of offshore 

structure is developed as follows. 

The equation of motion (3.3.4) shows that the nonlinear 

effects are velocity-dependent which implies that the 

linear replacing system of equations should be of 

the form 

[''M + Ma ]{g} + [C] {g} + [g]{X} + {e(X)} = {F(t)} 

(3.3.14) 

In Equation (3.3.14) [C] is an equivalent linear damping 

matrix and {e(x)} is the vector of velocity dependent 

errors introduced by having the linear system. It is 

the objective of the semilinear approach to minimize 

the elements of {e(x)} in some manner. 

Prior to discussing the manner in which elements of 

{e(x)} will be minimized, it is necessary to study 

[C] in more detail to establish the parameters of 

this matrix which affect {e(x)}. Selection of 
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C[C] + E*'-260 FDý, Jj is aided by examining Equation 

(3.3.4) and substituting for {E(X)} from Equation 

(3.3.6) to obtain an alternative expression of Equation 

(3.3.4) as 

M+ Ma-. ] {g} + [Lc 
+ ['- 2ÜoFD, ] + [''FDý1 Ix 

{F(t)} 
... ... ... (3.3.15) 

where the matrix [`FD 
-- I -] will produce a 

diagonal matrix. Equation (3.3.15) shows that, the 

diagonal element of the damping matrix(premultiplying 

{X}) is a function of in while the off-diagonal element 

is a constant, namely Cmn. Accordingly, it becomes 

sensible to take [C] to be given by 

CMn m+n 

CMn = ... ... ... (3.3.16) 

CMn mn 

where the diagonal element Cmn remain to be determined 

such that {e(x)} is minimized. 
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By equating Equations (3.3.4) and (3.3.14) and solve for 

{e(x) } 

{e(x)} _ (ý[C] + L*-' 2UoFDr3 - [C] 1) {X} + {E(g)} 

... ... ... ... (3.3.17) 

As a consequence of Equation (3.3.16) at the nth node 

point the {en(x)n} depends only upon Xn, Cnn, 2Uon F: 
n, 

En(Xjn and the unknown constant of Cnn 

. '. en(X)n = (C 
nn + 2Uon FDn - Cnnn + En(X)n 

... ... ... ... (3.3.18) 

Taking the ensemble average of e2(k)n, given as 

(X(t)) > ... ... ... ... (3.3.19) ae =< en n n en 

provides N mean-square expressions of the nth node 

point {en(x)n} which can be minimized by N expressions 

of the form 

2 aQen 
en 

... ... ... ... ... 
(3.3.20) 

3Cnn 

Since Equation (3.3.18) shows that Cnn is the only 

unknown parameter affecting en(x)n, substituting from 

Equations (3.3.18) and (3.3.19) into (3.3.20) leads to 

N equation for Cnn by performing the operations 

a< ((Cnn + 2Uon F Dn -C nn 
)X 

n+E n(X)n> =0 (3.3.21) 
acnn 
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Differentiating inside the <> operator is permissible, 

given that the ensemble average exists, and provides 

the N optimizing equations for Cnn as 

Q2En(X)n 
Cnn = Cnn + 2U 

on 
FDn 2" ... "". (3.3.22) 

ß Xn Xn 

with 

2ý 

Q En(X)n =< Ln(k (t))n . (k(t))n > (a) 

Q2Xn 
gn =< (*2(t)n > (b) (3.3.23) 

That the coefficients Cnn define a true minimum is 

apparent in the computation leading to 

22 
v. 2n en 

= <2 Q2Xn Xn >0... (3.3.24) 
aCnn 

The value of akn X11 should be provided in order to 

obtain the new parameter for [C]. Obviously this 

cycle must have a beginning point, however, the 

selection of it is arbitrary. 
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The process initiates with a selection of the N 

diagonal terms 0C 
nn of the equivalent damping matrix 

°[C] the pre-superscript o indicates the initial 

approximation of a quantity, the second approximation 

value of Cnn will be 

ICnn Cnn +/ F0 QXn Xn ... ... ... (3.3.25) 
Tr D 

The nonlinear hydrodynamic damping force {E(X)} is a 

monotonically increasing function of X, which means that 

if the initial value of °Cnn underestimates the true 

value of Cnn ' 
oax 

x will be in excess of its true 
nn 

value so that provides 
1Cnn 

as a magnitude overestimate 

of the true value of Cnn. The reverse would be true. 

This process continues until convergence is defined, 

for all the N main-diagonal members of [C]. The 

number of cycles requires to establish convergence 

depends upon the initial value of C 
nn and the strength 

of the nonlinearity. 

This method requires changing of damping matrix at each 

step of solution until the convergence is defined. 

For the present study, the investigation was done for 

small amplitudes of vibration so that nonlinearity in 

Equation (3.3.4) is very small. Therefore the problem 

is solved by the following two methods. 
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METHOD A 

In this method the governing nonlinear equation of motion 

is solved by the direct approach method. This method 

is as follows: 

1) The governing equation of motion (3.3.4) can be 

rearranged as follows: 

[`iýI + Ma ]{g}+[ [C] + E- 2U 
o 

FDA {g}+ 

[K] {X} = {F(t)} - {E(%)} 
... ... (3.3.26) 

2) Neglecting the nonlinear terms {E(X)} for the first 

estimate. A set of linearized equations are 

solved. 

3) Use first solution and calculate the nonlinear 

term { E(X)} 

4) Resolve Equation (3.3.26) with the calculated 

nonlinear term obtained from the first solution. 

Obtain a second solution and recalculate the 

nonlinear term {E(%)} using the second estimate 

of X 

5) Repeat the process until convergence of successive 

iteration is obtained. 
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The value of CD and C11 obtained from the test of free 

structure were used in forming of Equation (3.3.26). 

METHOD B 

This method is based upon the assumption that for small 

displacement of the structure, whether the object moves 

in still water or the water moves about the object 

does not affect the value of the hydrodynamic damping. 

The equation (3.3.4) will be 

[ý'- M --] {X} + [c'] {x} + [K] {X} 

= s" r mil + [', Fm 
ýý 

{ü}+ [-F1 
ý, 

] {'kJ} 

... ... ... ... ... (3.3.27) 

where [C'] is the damping matrix obtained by using the 

damping coefficient measured in water 

[`F%3 and [ FD ] are calculated by using the value 

of CM and CD obtained from the test of fixed structure. 
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3.3.3 SOLUTION OF THE SYSTEMS 

The solution of the linearized system (Method (A) 

and Method (B)) is based upon the possibility of treating 

the system as having linear input-output characteristic 

in the sense that the principle of superposition is valid. 

The normal mode superposition approach is used to 

calculate the response of the structure. The response 

of the structure is given by 

{X} = [ý] {T} ... ... ... ... (3.3.28) 

where the modal matrix [f] is deduced for the undamped 

free vibration given by the eigen value problem. 

ý"Pd + Ma"] {-0 X} + [K] {X} = {p} 

[_ w2 ][. - M+M:, ]M _ [K] {ý} 
... (3.3.29) 

Equation (3.3.26) or (3.3.27) is premultiplied by the 

transpose of the modal matrix, and the displacement 

(XI expressed in terms of the normal co-ordinate 

vector ITS 
, to yield the relations 

",, &I{}+ 
[C] {}+¶K ý} {}_ (p*} 

... ... ... ... (3.3.30) 
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Since the system equations comprise a self-adjoint 

eigen value problem and orthogonality property of the 

normal modes exists, where 

[M]_C }T + (For Aethod A) 

= Generalized 

or [ý] TM (For Method 3) iiass Matrix 

... ... ... (3.3.31) 

[ K* ]_1T [K] [] (For Both methods) = Generalized 
Stiffness 
r, Iatrix 

... ... ... (3.3.32) 

[C] _ [ý]T [[C] + {ý` 2Ü0 FD 4[ý] (For Method A) 

or [JT [Cw] [ý] (For Method B) 

= Generalized Damping Matrix (3.3.33 ) 

{ p* }_[ ý] T l`Fmq + ["Fm' 11 { Uo }+ ý", FD ., ] { Lt } 

+ý'ý FD (For Method A) 

or =T+ [''Fmý. ýý {Üo} + 

+ [`ý FD {ü0}) (For Method B) 

... ... ... 
(3.3.34) 
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{p*} = Generalized Force vector. 

The coupled damping matrix [C] is symmetric but is not 

a diagonal matrix. The coupled damping matrix is 

decoupled by assuming that the damping matrix [C] 

satisfied the modal orthogonality condition 

[OJT [Cj [ý1m =0 (n I m) ... ... (3.3.35) 

. '. Equation (3.2.27) become 

L`MLL {'i} + ['`C*--, ]{#} +['-g*ý. j {r} = {p*} (3.3.36) 

Equation (3.3.33) therefore represents N uncoupled linear 

second order differential equations. These equations 

can also be put in the familiar form. 

P* 

n+ 
2wn 

n+ wn n= M* n=1,2, ..., N (3.3.37) 

n 

where 

c 
= nn 

... ... ... ... (3.3.38) 
n 2M*w 

nn 

In this derivation of the normal- coordinate equations 

of motion it has been assumed that the normal-coordinate 

transformation serves to uncouple the damping forces 

in the same way that it uncouples the mass and stiffness. 
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The conditions under which this uncoupling will occur 

is the Rayleigh damping matrix, that is, the form of 

damping matrix in which Equation (3.3.35) applied. 

Rayleigh showed that a damping matrix of the form 

[C] = ao[M] + al [K] 
... ... ... ... (3.3.39) 

in which ao and al are arbitrary proportionality 

factors, will satisfy the orthogonality condition. 

The method of determination of a0 and al will be 

shown later in this chapter. 

The solution of Equation (3.3.37) can be obtained in 

the time domain or the frequency domain. Having deter- 

mined Yn(t), n=1,2,3, ..., N the displacement {X} 

can be found through Equation (3.3.28). 

3.3.4 NUMERICAL ANALYSIS 

The analysis of the structures which used in this study, 

were carried out by using finite element method. The 

computer program SAPIV was available to analyse the 

dynamic response of the structures in the time domain. 

The structure's response was calculated by the mode 

superposition technique, using the first three modes 

only. 
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The structural system was analysed by using the 

tangent pipe element. The tangent pipe element (Figure 

(3.3.2) can represent a straight segment; the elements 

require a uniform section and uniform material properties. 

The member stiffness matrix account for bending, tor- 

sional, axial and shearing deformations. The types 

of structure loads contributed by the pipe elements 

include gravity loading in the global directions, forces 

and moments acting at the member ends (i, j). 

Vy(i11 

Ytl 

END(i) 

VZ (i) 

Vy(j) 

END (') y 

ýZ 

\VZ(j) 

Figure (3.3.2) - Ttie Tangent Pipe Element. 
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3.4 THEORETICAL FORMULATION OF THE EXPERIMENTS 

The parameters required in the analysis of the problem 

were obtained experimentally. The theory and assumption 

behind the analysis of experimental data are shown 

below. 

3.4.1 MODELLING OF THE TESTED STRUCTURES 

All the tested structures were divided into six elements. 

The first element had the length from the still water 

level to the tip of the structure and the other five 

elements were obtained by dividing the length from the 

still water level to the base of the structure. The 

element mass was lumped at the element ends equally. 

Each of these lumped mass has two degrees of freedom: 

(1) horizontal translation and (2) rotation. The response 

of the element is discretized in step-wise fashion, i. e. 

the response of each lumped mass represents the response 

of the element half way to the upper and lower lumped 

masses (see Figure (3.4.1)). 
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Figure (3.4.1) - Discretization of Response and Force. 

The fluid orbital velocities and acceleration are 

discretized in the same stepwise manner as the 

response. Morison's equation and the modified Morison's 

equation are used for the evaluation of the wave force 

which are discretized at the lumped mass positions. 

Each force is evaluated for the real structure configu- 

ration and represent the contribution from half of the 

panels below and above that position. The net moment 

created by the forces about a lumped mass centre is 

neglected, as it will be relatively small. 
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3.4.2 DIGITIZATION OF THE DATA 

The experimental data obtained were recorded in analog 

format. For numerical solutions this data need to be 

digitized in a way that it simulate the obtained 

analog data. 

In order to maintain a proper relationship between the 

phase and amplitude of a given variable a suitable 

frequency of digitization or digitization interval had 

to be chosen. Otherwise aliasing could occur which is 

a potential source of error in an analog to digital 

data conversion (see Bendat and Piersol 1971(107)). 

The maximum frequency reasonable is called Nyquist 

frequency and is defined as 

NY 20t ... ... ... ... 

where of is the interval of digitization. The frequencies 

in the original data above this cut off frequency are 

folded back into the frequency range from zero to fNY. 

Therefore, in order to choose a suitable of the maximum 

frequency encountered in the experiments had to be known. 

The observation of the analog records showed that the 

highest frequencies in the range of 3-4 Hz. 

92 



In general, it is a good rule to select fNY to be 

greater than the maximum anticipated frequency. Therefore 

a Nyquist frequency of 25 Hz was chosen from which an 

interval of digitization of 0.02 seconds resulted. Any 

digitization below this value would have given correct 

results. The smaller of this interval will require 

more computing time. 

3.4.3 DETERMINATION OF THE MEASURED WAVE FORCE 

At any time t, the force acting on the measured level 

of the structure can be obtained by integration of the 

pressure and the shear distribution on the object surface 

(see Figure (3.4.2)). 

Sp 

Cylinder / //// 

01 

Fre ssu: e 
cist: ibu: °_on 

Direction of 

wave propagation 

Figure (3.4.2) - Pressure and Shear Distribution about a 

Circular Cylinder. 
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2n 

dFm =[f 2(Po + 6P) cosO d6 
0 

2n 

+f2 T(O) sine dejds 
0 

DP 2 Tr 2 7r 
dFm =[ 20 

J coso d6 +f D6P(e) cosh d6 
00 

2n 
+f2 i(6) sinO d6] ds 

0 

21T 
dFm = zero +f. 6P(O)cos8 de 

0 

2n 

+f2 T(6) sine dO)ds ... ... (3.4.2) 
0 

As the structure has a smooth surface the force attributed 

to the shear distribution is negligible 

27r 

... dFm(t, 
z) = 

JP 
2 5P(6) cosO d6 ds ... (3.4.3) 

0 
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3.4.4 DETERMINATION OF THE VELOCITY AND ACCELERATION 

OF THE STRUCTURE AT ANY LEVEL 

The velocity and acceleration of the structure at any 

level (the level where the pressure were measured) were 

required for the determination of the force coefficients 

CD and CjVI when the modified Morison's equation was used. 

The calculation of the velocity and acceleration of the 

structure at any level by knowing the tip displacement 

is based upon the assumption that, if the load distribu- 

tion is similar to the deflected shape of the first 

mode shape and if the load frequency is smaller or equal 

to the first mode frequency of the structure, then only 

the first mode of vibration exists. 

Timoshenko 1956(108) shows a solution for elastic curve, 

p as an approximation formed from a truncated series 

of the sum of sinusoidal shapes, each contributing toi 

for the first mode shape. The result is 

X 
--h 

i 

Ls 

S 

º 
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PL 3 
31 rrs 

3EI 1- (1 - cos ZL- ... ... (3.4.4) 

where I= sectional moment of inertia 

4WL2 
ß1 _s 

Tr 2EI 

when S= Ls 

IP - 
PL 
SEI 

31 
which represent the tip 

displacement 

= X(1 - cos 2L ) ... ... ... ... (3.4.5) 
s 

Equation (3.3.5) represent the deflection at any level 

of the structure. As the tip displacement of the 

structure due to the wave forces is periodic function, 

it is possible to represent X by the fast Fourier 

transforms. 

X=E 'º sin (2ýn At) + b" cos (2ýrn At) 
an TnT 

(3.4.6) 
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The velocity k at any level of the structure can be 

obtained by differentiation of the displacement with 

respect to the time 

X_ ax 
at 

'rrs 
X= CEari In- cos(ZTn At)- bri 2Tn 

sin(2Tn At) (1-cos 2L 
s 

... ... ... (3.4.7) 

Also the acceleration 
i 

will be obtained by 

X_ ax 
at 

X= ýE- ari(2Tn)2 sin (ZTn At) - 

n) At)) (1 - cos ZLS - bZTn)2 cos ( 2Tn S 
n( 

... ... ... ... 
(3.4.8) 
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3.4.5 EVALUATION OF THE CONSTANT a0 AND xl 

FOR THE DAMPING MATRIX 

The Rayleigh damping matrix (Equation (3.3.39)) should 

satisfy the orthogonality condition. This can be 

demonstrated by applying the orthogonality operation 

which is 

[qI [Mý [ýý 
n=0mn 

(a ) 

... (3.4.9) 
ýýýn [Ký Mn =0mn (b) 

in both side of the equation 

[e]T [c] [ei = «o [e]T[M] [$]+ al [q]T [K] [: ] 

... ... ... ... (3.4.10) 

as each term at the right hand side of the above 

equation satisfy the orthogonality condition, therefore 

the left hand side satisfy the orthogonality condition. 

However it can be shown that an infinite number of 

matrices formed from the mass and stiffness matrices 

also satisfy the orthogonality condition: 
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[O]T [[: d] [MI]-1 [g]]b [fi]n =0 -co <b< 

(3.4.11) 

where [M] -1 _1 iA 

The two basic relationships Equations (3.4.9a) and 

(3.4.9b) are given by exponents b=0 and b=1 in 

Equation (3.4.11). 

Thus the damping matrix can also be made up of combina- 

tion of these. In general, then, the orthogonal damping 

matrix may be of form 

b ab 1 [M3 -1 [K] ]b =b [Cbl 
... (3.4.12) 

With this type of damping matrix it is possible to 

compute the damping influence coefficients necessary 

to provide a decoupled system having any desired 

damping ratios in any specified number of modes. For 

each mode n, the generalized damping is given by 

Equation (3.3.8). 

[Cn] mn [C] [ý] 
n=2 

ýnwn [M*] 
n ... (3.4.13) 

but if [C] is given by Equation (3.4.12), the contri- 

bution of b in the series to the generalized damping is 
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[fib] 
n=f 

ý] 
n 

[cb] [ý] 
n= ab [ý] 

n 
[NI] [[M -1 ýK] 1b 10] 

... ... ... ... (3.4.14) 

... 
ýýý n [M] [[M]-' [K] ýb ýýnI 

_ 
[Iný b ItA*] 

n 

... ... ... ... (3.4.15) 

therefore 

[Cb] 
n= ab [Wn2 ]b [hi*] In 

on this basis, the damping matrix associated with any 

mode n is 

[Cn] =Eb [Cb] 
n 

Eab [wn] b [M*] 
n ... ... (3.4.16 ) 

Equating the right hand side of Equations (3.4.13) 

and (3.4.16) 

1 2b (3.4.17) 
. 

'. En =2wE ab u ... ... ... 

Equation (3.4.17) in matrix form with the first two 

modes only is 

11 
1'/. wl w1 ao 

_ ..... ... (3.4.18) 
2 

L l/w2 w2 a1 
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w 

w2 
ý2 

2 
1 wl 
2(w -2 W2) 

W2 

71- ýl C2 

a=- W 2( 
- l/WZ) 

wl 
The parameter required to solve the above equations for 

al and ao are known except &2 (the damping coefficient 

of second mode). &2 was assumed to be equal to 

(see Wilson and Pensica 1972(109)): 
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CHAPTER FOUR 

EXPERIMENTAL TECHNIQUE 

The formula used in the estimation of the hydrodynamic 

forces oi, structure with relative small diameter has 

empirical parameters CD and CM which vary with the flow 

field and structure characters, any investigation dealing 

with water wave-structure interaction involves extensive 

experimental work before a concrete solution can be 

obtained. 

The aim of this experimental work is to find the relation 

between the force coefficients when the structure is 

prevented from vibration and when it is free to vibrate, 

under different wave and structure characteristics. 

4.1 EXPERIMENTAL FACILITIES 

4.1.1 WAVE TANK 

The experiments were preformed in a rectangular water 

tank. The dimensions of the cross section are 0.75 x 0.75 

metre and 18.0 metre long. The side walls are 0.0095 

metres thick glass which is suitable for visually 

observing the model. The water tank had a regular wave 

generator installed at one end with a sloping beach wave 

observer at the other end. At this end an extension of 

dimension 3.00 metre long and 1.25 x 1.25 cross section 

connected to the tank. This extension was built in order 

to help the beach to absorb the waves. 
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This regular wave generator is a wedge type, the wedge is 

connected to a 0.75 horse power motor with different speeds 

of rotation. The motor has a digital counter to control 

the speed of rotation. By changing the speed of rotation, 

the frequency of the displaced water by the wedge changes 

giving a different wave period and length. Also the wedge 

arm can be adjusted to give a different submerged volume 

of the wedge which effects the volume of displaced water, 

consequently effecting the wave amplitude. 

From the above and also as the water depth in the tank 

can be changed, the wave characteristics (d, L, T, H) can 

be changed in order to produce waves of differing 

characteristics for the tests. 

It is desirable to eliminate cross-waves at all times and 

all frequencies of the tests; so two-dimensional analysis 

can be carried out without discrepancies, there is a good 

case for mounting fins against the face of the wavemaker. 

The fin was a mesh, in the shape of A placed at a distance 

1.00 metre from the wavemaker the width of the channel, 

the angle between the A shape is adjustable to give the 

best elimination for each wave frequency. This fin 

improve the efficiency in eliminating the cross-waves for 

the range of wave frequency 0.75 - 1.25. 
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Reflected waves also prove undesirable though they are 

often not detected or allowed for. Their energy tends to 

increase in time to a limiting state, allowing them to 

exert a corresponding influence on the experimental 

results. The function of the beach is simply to absorb 

all wave energy incident upon it as reflections will 

produce problems. The fact that no beach is a fully 

efficient absorber implies that the beach design must be 

related to the wave climate required for the experimental 

programme, and the amount of reflection that can be 

tolerated. The beach used in the tank was made of wood 

sheet having the width of the tank and maximum slope of 

9.925°. The beach was efficient in absorbing the waves 

as defined by a "reflection coefficient", this being the 

ratio of the amplitudes of the primary reflected and 

primary incident waves. 

The position of the tested structure was half way between 

the wave generator and beach, approximately 8.5 metre 

away from either of them to minimize any disturbance 

caused either by wave generator or the beach. 

Figure (4.1.1) shows the wave tank dimension and the 

position of the beach and wavemaker. 
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Figure (4.1.1) - wave Tank. 
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4.1.2 TESTED STRUCTURES 

Two sets of single circular cylinder cantilever structure 

were tested. A cantilever was chosen because it represents 

the structure mechanism of the prototype structure, the 

cross-sectional shape of the structure was chosen to be 

circular in shape as it is the most common shape in the 

offshore structures. 

The first set consists of two group of structures. The 

structures of this set were plastic Acrylonitril Butadiene 

Styrene (Durapipe ABS) tube material. This material was 

chosen because it afforded a cylinder that could be fixed 

at the bottom and also has a low modulus of elasticity 

which decreases the natural frequency of vibration. 

The second set consists of one group of structures. The 

structures were made of Aluminium tube material. This 

material was chosen to compare between the behaviour of 

the first and second sets i. e. to compare the behaviour 

of two different dynamic properties. 

4.1.2.1 DURAPIPE ABS STRUCTURES 

Four different structures were tested. These structures 

can be divided into two groups according to the structure 

diameter and modulus of elasticity i. e. relatively stiff 

and relatively flexible. 
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Group one consists of two structures (A) and (B), the 

structures consist of a 0.11 metre outside diameter tube. 

The tube was glued at the bottom end to a cap which was 

rested and glued to a heavy pipe flange with a leader. 

The pipe flange has six 0.0125 metre bolt holes, equally 

spaced to fit the imbedded six 0.0125 metre bolts in the 

heavy perspex sheet of a dimension of 0.75 x 1.5 metre 

with 0.0125 metre thickness placed on the tank floor at 

the mid part of the tank. Silicone vacuum grease was 

applied between the contact surfaces to obtain a water- 

tight fit. 

At one level of the structure eight 0.006 metre diameter 

holes at equal space of the cross section (A = 450) were 

made. At each of these holes a plastic PVC (hard) tube 

having L shape of O. 03 x 0.01 metre in dimension where the 

short leg were fixed to the cylinder wall and filed to 

give smooth surface while the long leg of the tube were 

connected to one end of 0.75 metre long rubber tube of 

0.005 metre inside diameter, the other end of the rubber 

tube come out from the structure top so it can be connected 

to pressure transducer. 

A perspex top cap with eight holes to pass the rubber tubes 

was placed in the top of the structure. It was used to 

prevent the structure from vibrating by the use of the 

clamp. The parts of the structure before assembly were 

shown in Figure (4.1.2). 
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Figure (4.1.2) - The Parts of the Structures (A) and (B) 

Before Assembly. 
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Group two consists of two structures (C) and (D). 

The structures consist of 0.0605 metre outside 

diameter tube and similar parts as in group one 

with difference in dimension. See Figure (4.1.3). 

At two levels of the group two structure were eight 

0.004 metre diameter holes. A plastic PVC (soft) 

tube instead of the rubber tube was used as there is 

smaller space inside the tube structure than those 

of group one. 

Figures(4.1.4) and (4.1.5) show the structures of 

groups one and two after they have been assembled. 
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Figure (4.1.3) - Dimension of Structures (C) and (D). 
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Figure (4.1.4) - Structures (A) and (B). 
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4.1.2.2 ALUMINIUM STRUCTURES 

A third group consists of two aluminium structures. 

Structure (E) and structure (F) each has 0.0574 metre 

diameter, structure (E) was 0.735 metre high and 

structure (F) was 0.835 metre high. A circular PVC 

(hard) top cap having a mass of 520 grammes was mounted 

at the top of the structure. It was used as a concen- 

trated mass above the water line so that the structure 

would behave like a one-degree-of-freedom system when 

subjected to the wave, thus representing the 

platform of the offshore structure. 

Four masses were made of steel balls contained in a 

plastic bag each having a mass of 505 grammes. These 

four masses provided two possible combinations of 

masses in increments of 1010 grammes. The mass was 

put in the top cap, the top cap was rigidly fixed by 

four 0.0125 metre screws to the structure so that the 

top cap would not wobble with respect to the tube. 

The top of the cap was level with the structure top. 

The eight 0.004 metre diameter holes were made at 

three different levels of the structure. Figure 

(4.1.6) shows the parts and dimensions of the 

structures of this group. The masses and also 

structure (E) after assembly are shown in Figure 

(4.1.7). 
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Figure (4.1.6) - Dimensions of Structures (E) and (F). 
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Figure (4.1.7) - Structure (E) and the Four Masses. 
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The mechanical properties of the structures tested are 

shown in Table (4.1). 
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4.2 DESCRIPTION OF INSTRUMENTATION 

All the instrumentation used in this work was electrical, 

some of which was commercially available and the rest was 

designed and built especially for this work. 

The instrumentation used may be divided into the measuring 

instrumentation and the reading instrumentation. The 

instrumentation used for measuring each parameter needed 

in the analysis and results was designated as the measuring 

instrumentation, while the reading instrumentation was 

connected to the measuring instrumentation to give the final 

measured data. 

4.2.1 MEASUREMENT INSTRUMENTATION 

The measuring instrumentation was designed and placed to 

give the most reliable measurement without seriously 

affecting the characteristics and the environment of 

the test. 

4.2.1.1 WAVE PROBE 

The wave probe was used to measure the wave profile. The 

measurement was done by detecting the change of voltage 

due to the change of resistance of the wire probe 

following the equation 

'_ 
xxv 

1 1R 



ti 
where I= the constant alternative current 

ti 
V= the variable D. C Voltage 
ti 
R= the variable resistance of the probe wire 

due to the change of the wave profile 

Alternating current was used at the tips of the probe to 

avoid the polarisation of waver. 

Two stainless steel wires having a diameter of 0.002 

metre and a length of 0.5 metre with a resistance of 

0.006 ohms per metre were used as the probe. The two 

wires were stretched 0.025 metre apart and fixed to a 

perspex plate; the perspex plate was suspended over the 

tank by means of an adjustable boom. This mounting 

facilitated the daily calibration of the probe and also 

aided in maintaining the probe in the proper position 

relative to the still water level. 

There are certain disadvantages in the use of the resistance 

type probe. The relationship between water surface position 

and the electrical signal output is non-linear. Further- 

more, the calibration of the system is dependent upon the 

conductivity of the water between the two wires. These 

difficulties have been overcome satisfactorily by always 

adjusting the position of the probe to the still water 

level existing in the tank and also by adding a resistance 

to the electrical circuits before the electrical current 

reaches the probe. 
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4.2.1.2 STRAIN GAUGES AT THE BASE OF THE STRUCTURES 

The bending moment at the base of the structure was 

measured with strain gauges. They were Tokyo Sokki 

strain gauges, type FLA-6-11, the gauges lengths were 

0.006 metre and resistance of 120 ohms. For each 

structure two sets of gauges were used with four gauges 

in each set. The gauges were placed and connected as 

shown in Figure (4.2.1), one set was fixed to measure 

the bending moment in-line with the wave direction and 

the other perpendicular to the wave direction. 

The strain gauges for the Durapipe (ABS) structures were 

placed outside of the cylinder and covered with watertight 

paint while the wires from the strain gauges were carried 

inside the cylinders. The reason for placing the strain 

gauges outside is to keep them at a constant temperature 

throughout the test (water temperature). For the aluminium 

structures the strain gauges were placed inside. 

The strain gauges were connected so that only the bending 

moment was measured. The direct load, such as that form 

the concentrated mass, did not influence the strain gauge 

reading. 

The strain gauges were aligned with respect to the tank 

by. a vertical mark inscribed throughout the length of the 

cylinder and its base. 
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Figure (4.2.1) - Strain Gauge Installation. 
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4.2.1.3 PRESSURE TRANSDUCERS 

A more accurate method for measuring the force of the waves 

at any level of the structure is one in which the pressure 

is measured at equal intervals around the circumference 

of the structure at that level by use of pressure trans- 

ducers. The total pressure force on a unit height of the 

cylinder may then be obtained by integrating the pressure 

on the individual surface elements around the circumference. 

The general description of design of the pressure 

transducers was desirable to incorporate the following 

features: 

1. The pressure transducers should be capable of 

measuring pressures from 0.01 psi to 0.5 psi 

2. The output of the transducers versus the applied 

pressure should be linear 

3. The output traces should be clean "no noise", this 

could be obtained by the high natural frequency of 

the transducer sensing element. This feature reduces 

the error in reading, the output 

4. The pressure transducers should be easily attached 

and removed to read the pressure at any point along 

the pile 
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Because no known commercial transducer met the requirements 

listed above, a special transducer shown in Appendix (A) 

was developed. 

During the development of the transducer, a number of 

different types of sensing element were considered, 

fabricated and tested. Based on the experience obtained 

during these tests, the final design of the sensing element 

was arrived at. 

Eight pressure transducers were built so that eight 

individual pressure readings around the circumference of 

the structure at the level required can be obtained at the 

same time. 

The pressure transducers were mounted on the top of the 

tank. To measure the pressure at any particular points 

on the structure several soft tubes were connected from 

the various points on the structure to the transducers. 

Figure (4.2.2) shows the mounting and the connection of 

the pressure transducers to the structure. 
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4.2.1.4 DISPLACEMENT TRANSDUCER 

An inductive type of displacement transducer was attached 

to the tip of the structure to measure the tip displacement 

of the structure caused by the wave action. 

This displacement transducer utilises the well proven 

linear variable differential transformer principle. A 

transducer with a free unguided armature assembly was used 

so that the movement of the structure will not be affected 

by the stiffness of the spring loaded armature. This is 

especially so because the wave loading on the structure 

is small and consequently the movement of the structure 

was also small. 

The working range of the transducer is ± 0.0125 metre. 

4.2.2 READING INSTRUMENTS 

The reading instruments were used in conjunction with the 

measuring instruments. The reading instruments were used 

to drive, amplify the magnitude of the electrical signal 

coming out from the sensing element and purify it from 

any noise interference in order to be able to record and 

digitalize it without any alteration of the actual electric 

signal measured. 
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Ten channels out of the fourteen strain gauge bridge 

amplifier units of the basic Sensonic amplifier were used 

to drive and pick up the electric signals from the two 

sets of the strain gauges which were fixed at the base 

of the structure, and also from the strain gauges of each 

of the pressure transducers. 

Two channels of inductive amplifier units were used with 

the wave probe to measure the wave profile. 

A RDP transducer amplifier type D7M was used to drive 

and amplify the electrical signal of the displacement 

transducer. 

The low level signals "output" from the measurement 

instrumentation drive amplifier were converted into higher 

level signals and also filtered with low output impedence 

by using a preamplifier. The preamplifier was designed 

and manufactured to satisfy the necessary requirements of 

the signals level to be recorded. For the electric circuit 

of the preamplifier see Appendix (B). 

The amplification and the phase shift due to filtration in 

the preamplifier were tested by using the output from a 

signal source type 471 which generates a sinusoidal wave- 

form of 100 MV at frequency ranges between 1 Hz to 10 Hz 

as an input to the preamplifier. Both the output from 

the preamplifier and the signal source were fed into a 
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two channel oscilloscope type D1011 which attenuated the 

signal from the amplifier so that both signals of similar 

amplitude were displayed on the screen, the attenuation 

inside the oscilloscope was equal to the gain of the 

preamplifier. The phase shift from the two signals was 

negligible. 

All the outputs from the preamplifier channels were recorded 

simultaneously by one fourteen channel RACOL tape recorder 

store 14D5. The electric signals were recorded at a speed 

of l$ and at the window of recording ±2 volt peak to 

peak. 

Figure (4.2.3) shows the strain gauge Sensonic amplifier, 

preamplifier and the tape recorder. 

The electric signals analogue recorded were f et to an 

Intercole Transmitter/Receiver model HS6202C which was 

connected to a PDP Compulog Intercole system in order to 

be digitalized at regular intervals to be saved on a 

floppy disc. 
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4.3 CALIBRATION OF THE MEASURING INSTRUMENTATION 

For the calibration tests of the measuring instrumentation 

the structure was first located and fixed in the tank. The 

displacement transducer was attached to the structure and 

the pressure transducers were mounted, so the structure 

was ready for the main test. The calibration tests were 

done twice each day; once before and once after the main 

tests. 

All the electric equipment was switched on and left for half 

an hour before the first calibration tests start in order 

to achieve a stable electrical signal. 

4.3.1 STRAIN GAUGES 

The strain gauges at the base of the structure for measuring 

the bending moments were calibrated by applying a known 

horizontal load equal to 4.45 N at the top of the cylinder 

with a wire and pulley arrangement. This horizontal load 

had three increment of loading each equal to 4.45 N. For 

the in-line bending moment the tests were done once where 

the horizontal load was in the direction of the wave 

propagation and once in the opposite direction in order 

to obtain the positive and negative bending moments reading. 

Similar tests were carried out for the strain gauges in the 

transverse direction. 
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The bending moments at the base of the structure were 

calculated by multiplying the horizontal force by the 

distance from the top of the structure to the strain gauge. 

For the cases where added mass was applied at the top of the 

structure (third group of structures) the bending moment 

was calculated as the above plus the moment due to the 

concentrated mass at the top of the structure when the 

structure is in a deflection position. The deflection of 

the tip of the structure was determined in a previous test 

where a dial guage was attached to the top of the structure 

on theother side and on the same line with the wire so that 

the tip displacement due to the horizontal load were known. 

This test was useful also in the calibration of the 

displacement transducer as shown below. 

Figure (4.3.1) shows the arrangement of the test determin- 

ing the tip deflection. 

4.3.2 DISPLACEMENT TRANSDUCER 

The displacement transducer was calculated at the same time 

as the strain gauge. The horizontal displacements were 

known due to the horizontal applied loads. A mark on the 

transducer armature was made in order to correct the 

relative positions between the armature and the body of 

the transducer. 

The relationship between the horizontal displacement and 

the electrical signal recorded was linear. 
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4.3.3 PRESSURE TRANSDUCERS 

The pressure transducers were calibrated for a positive 

gauge pressure by connecting the pressure transducers at 

the top of the tank with the eight holes around the 

circumference of the structure by the tube assembly in 

each structure. For that purpose the water level in 

the tank decreased to the level of these holes. This 

gave a zero gauge pressure reading. The electric 

signals from the pressure transducers were recorded. 

The water level in the tank increased by 0.025 metre 

which gave a gauge pressure equal to the head of water 

above the holes, the electric signals were recorded, 

the water level in the tank was again decreased to the 

level of these holes, again giving zero gauge pressure 

and the electric signals were recorded. By repeating 

this process with increments in the water level of 

0.025 metre up to the maximum water level of 0.1 metre, 

the pressure transducers were calibrated for the positive 

pressure gauge readings. 

The negative gauge pressures were obtained by disconnect- 

ing the pressure transducers from the tubes and connecting 

them again when the water level was 0.11 metre above the 

holes which give zero gauge pressure. The procedure of 

positive gauge pressure was reversed in order to 

calibrate the pressure transducers for the negative 

pressure gauge reading. 
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The calibration of the pressure transducers was done 

with the uppermost holes in the cases of structures 

with more than one holes level. 

The following test was previously made in order to 

find the pressure losses along the length of the tube 

from the hole on the structure to the pressure 

transducer at the top of the water tank. The pressure 

transducer was connected to a single bore at the 

bottom of a graduated measuring cylinder with a 

single bore stopcock by 0.04 metre long rubber tube 

in the case of testing for 0.025 metre head of water. 

This was in order to keep the pressure transducer 

away from the water as it is not waterproof. The 

electric signals were recorded, water was poured 

down to the level 0.025 metre in the measuring 

cylinder then electric signal was recorded. The water 

was emptied from the measuring cylinder by the stop- 

cock. A 0.75 metre long rubber tube of the same 

length as those used in the tests, replaced the 0.04 

metre tube and the test was repeated. 

The above test was repeated with different head of 

water pressure and different lengths of the short tube. 

The difference between the electric signals recorded 

from the short tubes and from the long tube were 

negligible. 
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4.3.4 WAVE PROBE 

After the position of the wires of the probe had been 

adjusted to the still water level the electric signal 

gave a zero reading. The probe was lowered by means of an 

adjustable boom by 0.01 metre which was equivalent to 

raising the water level by the same amplitude and the 

electric signal was recorded. This test was carried out 

by lowering the probe in stages of 0.01 metre until a 

distance of 0.1 metre was reached. 

Similar tests were carried out by raising instead of 

lowering the wave probe to give the calibration'in the 

case of lowering of the water level. 

4.4 EXPERIMENT 

To achieve the main objective of the investigation, it 

was decided to carry out experiments in order to determine 

all the parameters required in the analysis, which are 

the water wave criteria and the structure dynamic 

properties. 

4.4.1 WATER WAVE CRITERIA 

The first test was carried out to see how close small 

amplitude harmonic waves conformed to sinusoidal shape, 

and how their characteristics varied with time. 
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The test was done by adjusting the wedge arm and the speed 

of the driving motor of the wave generator. The wave 

profile was measured by the wave probe which was located 

at the position of the tested structure. The test was 

carried out for 45 minutes. 

For conformation of sinusoidal shape a typical case is 

shown in Figure (4.4.1). 

The variation of the wave characteristic during the test 

was insignificant. 
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Figure (4.4.1) - Water Surface Profile. 
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It was necessary to check the degree of wave reflection 

from the beach. The amount proved to be quite small. 

Eagleson and Dean 1966(110) show that a portion of a wave 

impinging on a sloping surface will reflect upon itself. 

The magnitude of the reflected wave can be expressed as a 

coefficient of reflection times the magnitude of the 

incident wave. The reflected wave will disturb the 

regularity of the wave: surface. The crests and troughs 

of the resulting wave will describe an envelope as shown 

in Figure (4.4.2). 

Fnvslnna of track 
r 

Hmax. 

Gnrewpr ut II uuyiia 

Figure (4.4.2) - Typical Reflected Wave. 

It is shown in the above reference that the reflection 

coefficient can be obtained from: 

K= 
Hmax Hmin 

... ... ... ... (4.4.1) 
r Hmax + Hmin 
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where Kr = Reflection coefficient 

Hmax Maximum wave height 

Hmin= Minimum wave height 

Waves of various characteristics were tested. From the 

results it can be concluded that reflection was minimal, 

and thus it was ignored in all analysis. Figure (4.4.3) 

shows the result of the reflection coefficient verse 

wave period. 

Xi0- 1 

"6J KR 

"40 

. 20 + 

00 1/ T 
irii rT. iii r'TT'ýT^ Tý'TmTr-T'Tr-T^T ^ýTr rTr - rrrr rT, riir . Ti r-ý 

. 00 . 20 . 40 . 60 . 80 1.00 
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Figure (4.4.3) - Reflection Coefficient for the Wave Tank. 
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4.4.2 STRUCTURE DYNAMIC PROPERTIES 

As the determination of certain structural parameter such 

as stiffness, natural frequencies and damping coefficients 

are important to be obtained, the following experiments 

were carried out. 

4.4.2.1 STIFFNESS TEST 

In the determination of the stiffness of the structure it 

is vital to know the rate of the deformation of the 

structure material, especially the Durapipe ABS structure. 

The Durapipe ABS is not a truly elastic material. Maxwell 

and Harrington 1952(111) show that the strain of this 

material depends on the time rate of deformation. That 

is, if the velocity of deformation is high enough the 

stress-strain curve will be linear. When the velocity 

of deformation becomes small or negligible, then a plastic 

flow takes place which is recoverable when the load is 

removed. There is a limit of strain however, beyond 

which plastic deformation is not recoverable. This can 

be called deformation types I, II and III and can be 

illustrated schematically as in Figure (4.4.4). 
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DEFORMATION TYPE 

Spring 
I ELASTIC DEFORMATION 

Spring DASHPOT II RECOVERABLE INELASTIC 
DEFORMATION 

Load 

DASHPOT III NON-RECOVERABLE INELASTIC 
DEFORMATION 

Figure (4.4.4) - Schematic Diagram of Deformation Types 

for Durapipe ABS. 

For this work it will be shown that type I deformation 

occurred for the Durapipe ABS cylinders under dynamic 

loads. 

The experimental procedure of this test was exactly as 

that of the calibration of the strain gauges at the base 

of the cylinder structure except that the output signal 

was taken to the Oscillograph instead of the tape 

recorder. 

Typical records 

Figure (4.4.5), 

at zero and end, 

deformation did 

fairly suddenly 

the record. It 

of the test procedure are shown in 

it was noted that the strain started 

ed at zero, indicating that type III 

not take place. The load was applied 

so that a few oscillations occured in 

can be seen that strain did not decrease 
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with time for constant load. If decrease showed in 

the strain under static load condition type II 

deformation would occur. 

The stiffness of the cylinders was determined by the 

following test. The cylinder was mounted vertically 

as in the case of the main test and a series of 

weights were applied at the free end. The free end 

deflection corresponding to each weight was measured 

using a dial gauge. Graphs of load against the deflec- 

tion were plotted, the slope yielding the equivalent 

stiffness. 
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4.4.2.2 NATURAL FREQUENCIES AND STRUCTURAL DAMPING 

For convenience, measurements of the natural frequency 

and damping were made simultaneously. Essentially, the 

scheme was to force the oscillation of the structure by 

means of an impulse load and then to take the reading of 

the strain gauge at the base of the structure. The signals 

were recorded on an oscillograph from which the structural 

damping and natural frequency in the fundamental mode could 

be measured. 

Care was taken to make the amplitude of vibration during 

an impulse load test about the same as the amplitude of 

vibration during the experiments with waves. 

In the second approach, the structures were deflected 

with a steady load and then released. 

The natural damped frequencies of the structures were 

obtained from the same test records as those from which 

the damping coefficient were obtained. 

Typical records of the test results are shown in Figure 

(4.4.6). 

The structures were tested in air and water. 
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4.4.3 MAIN TESTS 

After the structure was installed in the water tank and 

all the measurement instrumentation was calibrated the 

tests were started by adjusting the water level in the 

tank. The wave generator arm was fixed at the position 

required and then switched on; the speed of the motor which 

controlled the frequency of the wave was set up by the 

digital counter. The records were taken after a few waves 

passed the structure in order to establish a steady state 

wave and structure motion. This was approximately five 

minutes after the operation of the wave generator. 

First the structure was acting as a cantilever "free to 

vibrate" the signals from the eight pressure transducers 

connected to one level of the structure, from the wave 

probe located beside the structure, from the strain gauges 

at the base of the structure and from the displacement 

transducer at the top of the structure were recorded 

simultaneously for 15 minutes. Then the structure was 

clamped from the top "Fixed Structure" by screwing a stiff 

shaft fixed on the top of the water tank to the top cap of 

the structure. The effectiveness of the clamp at the top 

was tested by monitoring the signal of the displacement 

transducer. If the signal was zero throughout the wave 

cycle then the structure was fully clamped. After the 

structure was fully fixed the signals from the measurement 

instrumentation were recorded for 15 minutes. The stiff 
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shaft was released, returning the structure to the initial 

condition and the signals were recorded for 15 minutes. 

This process was repeated for waves of other charac- 

teristics. 

For the first group of the Durapipe ABS, structures A 

and B which had only one level in which the pressure 

could be measured; for this case the above test procedure 

was complete for testing this group. 

Figure (4.4.7) and Figure (4.4.8) show structures A and 

B when they were under test, respectively. 

The second group of Durapipe ABS, structures C and D 

which had two levels at which the pressures could be 

measured. For that reason after the above test procedures 

were carried out then the second level of pressure was 

recorded by locking the connection between the pressure 

transducers and first level and by opening the connection 

to the second level and repeating the procedure. 

Figure (4.4.9) shows structure C when it was under test 

and also it shows clearly the position of the wave probe. 

Figure (4.4.10) shows structure D under test and it also 

shows the way of the mounting of the displacement 

transducer and the stiff shaft used for clamping the top 

of the structure. 
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Fi,, ure (4.4.11) - Structure (E) under Test. 



For the group of the Aluminium structures, structures E 

and F the test was carried out without any added mass 

for the highest level where the pressure can be recorded. 

The test was repeated for each increment of added mass 

for the same level of the pressure. For the other two 

levels which the pressure could be measured the same 

test procedure as used for the first level was repeated. 

Figures (4.4.11) and (4.4.12) show the structure (E) and 

structure (F) while they were under test. 

Table (4.2) shows the reading of the digitize electric 

signals of one of the calibration test, column one to 

eight are the eight pressure transducers, column nine 

is the strain gauge reading for the in-line bending 

moment while column ten is the reading of the transverse 

bending moment, column eleven is the reading of the 

displcaement transducer and column twelve is the reading 

of the wave probe. 

Table (4.3) shows the digitize electric signals reading 

for one of the test. 
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,i ru. ure (4.4.1 2) - Struct urc (F) under Test 
. 
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Table (4.2) - Digitized Electric Signal for One of the 

Calibration Tests. 
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Table (4.3)- Digitized Electric Signal for One of the Tests. 
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CHAPTER FIVE 

RESULTS 

In this chapter the results of the laboratory experiments 

and the theoretical work required to determine certain 

structural parameters(Dynamic Properties) will be 

covered. The experimental data analysis for the six 

structures will be presented, and the results obtained 

from these tests will be shown. 

5.1 THE DYNAMIC PROPERTIES OF THE STRUCTURES 

5.1.1 DETERMINATION OF DAMPING COEFFICIENTS AND 

NATURAL FREQUENCIES 

Damping coefficients were determined from the logarithmic 

decrement method as set forth by Den Hartog 1956(112) 

For a single degree of freedom system, if an impulse 

load is applied to the mass centre, the sequential 

amplitudes of the oscillation are reduced by the damping 

in the system. For a system with linear, or viscous 

damping the relationship between succeeding peaks is 

expressed by: 

n+l = e-lwg 
FN/FD ... ... ... ... ... (5.1.1) 

Xn 
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where Xn = magnitude of the nth oscillation 

Xn+l = magnitude of the next oscillation 

= relative damping coefficient 

FN = natural undamped frequency of vibration 

FD = natural damped frequency of vibration 

and 

FD = FN �1 - ý2 ... ... ... ... ... (5.1.2) 

For low damping as in the case of this work 

&2 <<1 so that 

Zn gn+l - Rn gn =- 2iß 

or 

-11 

21r 
kn(Xn 

21T xn Qn(X°) 
... ... (5.1.3) 

n+l n 

In the experiments the magnitudes of succeeding oscilla- 

tions were obtained by constructing verticals at the 

upcrossings. The damping coefficients were determined 

from the smooth part of the record, after the higher 

modal vibration had disappeared. The decay trace 

was obtained by displacing the cantilever tip and 

releasing it. The first few cycles of motion from release 

were therefore occupied by the cantilever changing the 

imposed deflection shape to a curve compatible with a 

freely vibrating uniform loaded cantilever. For this 
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reason, the first three cycles from the start of the 

trace were ignored in the calculation. It was observed 

that over the remaining cycles, the amplitude ratio 

did not significantly vary with time. 

Very little difference in the damping coefficient was 

observed from the two tests (impulse load test and tip 

displacement released test). The damping coefficients 

calculated therefrom were averaged. Each of these 

tests-were repeated several times. 

From the results, it was observed that the damping 

coefficients in air were less than in water and also 

it was noticed that the damping coefficients in water 

increased with the increase of water depth. This could 

have been due to the added hydrodynamic damping. 

The natural damped frequencies of the structures were 

obtained although in the analysis the undamped natural 

frequencies were required but since the relative damping 

coefficients were always very small the damped frequencies 

were essentially equal to the undamped frequencies as 

can be seen from Equation (5.1.2). 

Table (5.1) gives the average of the results of testing 

for the relative damping coefficients and the natural 

frequencies for the structures in both air and water. 
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Relative Damping Natural 
Coefficient Frequency 

Struct- Water 
ture Depth In Air In Water In Air In Water Remarks 

Meter 

(A) 0.45 0.043 0.045 58.9 55.4 

0.47 0.046 55.1 

0.50 0.048 54.8 

0.525 0.049 54.5 

(B) 0.5 0.040 0.044 36.94 34.25 

0.525 0.045 33.76 

0.55 0.047 33.4 

(C) 0.5 0.030 0.034 25.8 23.35 

0.525 0.036 22.92 

0.55 0.037 22.49 

(D) 0.5 0.028 0.030 21.2 18.93 

0.525 0.033 18.54 

(E) 0.5 0.064 0.067 20.6 16.07 Zero load 

0.068 0.070 15.13 12.33 1010 grams 

0.072 0.074 12.69 9.8 2020 grams 

0.525 0.069 15.64 Zero load 

0.071 12.27 1010 grams 

0.076 9.45 2020 grams 

(F) 0.5 0.0625. 0.065 17.65 14.65 Zero load 

0.065 0.068 13.46 10.76 1010 grams 

0.070 0.073 11.52 8.6 2020 grams 

0.525 0.067 13.8 Zero load 

0.069 10.65 1010 grams 

0.075 8.3 2020 grams 

TABLE (5.1) - Relative Damping Coefficients and Natural 

Frequencies. 
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5.1.2 DETERMINATION OF STIFFNESS CONSTANTS 

The values of stiffness constant obtained from the 

experiments were substituted into the following equation 

TIn = K/M ... ... ... ... ... ... (5.1.4) 

FN = Wn/27r 

From the above equation, the analytical values of 

the natural frequencies were obtained. These 

analytical natural frequencies were compared with 

those obtained by experimentation during the tests 

for damping coefficients in order to provide an 

experimental check on the analysis. 

The results are shown in Table (5.1). 

Structure 

(A) 

(B) 

(C) 

(D) 
Mass Added at the top 

(E) Zero 

1010 grams 

2020 grams 

(F) Zero 

1010 grams 

2020 grams 

FN Experimental FN Analytical 

58.9 59.08 

36.94 33.9 

25.8 25.0 

21.2 20.1 

20.6 18.88 

15.13 13.41 

12.69 10.97 

17.65 15.09 

13.46 10.89 

11.52 8.95 

TABLE (5.1) The Experimental and Analytical Natural 

Frequencies 
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Also the values of the stiffness constant were 

substituted into the following equation 

K= 33I (1-b)... ... ... ... ... ... (5.1.5) 
Ls 

wehre Ls = structure height 

4 WL2 
b=S 

rr2EI 

From the above equation the modulus of elasticity of 

each structure was calculated. Small discrepancies 

were found between the calculated and experimental 

values of the modulus of elasticity and also between 

the calculated and experimental values of the natural 

frequencies. These could be due to the possibility 

that the wall thickness away from the end may be 

different from that at the end which will affect the 

value calculated for the sectional moment of inertia I 

as well as the value of mass. 

5.2 DATA ANALYSIS 

The obtained data for each setting of the wave generator, 

the water depth in the tank and each level on the 

structure where the pressure can be measured were 

(1) The wave profile 

(2) The pressure round the structure at that level 
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(3) The tip displacement 

(4) the bending moment at the base of the structure. 

The above data were taken, first when the structure was 

free to vibrate (Free) and second when the structure 

was prevented from vibrating (Fixed). 

The wave profiles obtained from free structure and 

fixed structure for each test were compared. The 

difference between the wave profiles was negligible, 

which shows that for the waves used in the tests 

and for the tested structures there were no radiation 

waves due to the movement, of the structure. 

For the structures with more than one level of pressure 

which can be measured, the data of the wave profile, 

tip displacement and the bending moment, obtained from 

the first level, were compared with the other levels 

for the same condition of test. There were no 

differences between these data which indicates that the 

wave properties did not change throughout the whole 

time of tests and the structures' vibrations were in 

steady state conditions. 

Figures (5.2.1) and (5.2.2) show a typical data obtained 

for free and fixed structure respectively. Each figure 

shows the wave profile, the tip displacement, the 
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pressures at each of the eight points due to the wave 

and the in-line and transverse bending moments. They 

also show the calculated in-line and transverse local 

forces at that level. 

The calculated static pressure (yn) is plotted with 

the measured value of the pressure at point (1) (the 

static pressure is the curve without symbols). The 

static pressure is higher than the pressure due to the 

wave throughout the wave cycle as expected. 

Figures (5.2.3) and (5.2.4) show the corresponding 

pressure distribution across the structure a time incre- 

ment of the cycle equal to (t = T/8). From the figures 

it can clearly be seen that the distribution of 

pressure around the periphery of the cylinder cross- 

section is not symmetrical about the axis of wave 

propagation. This asymmetry is attributable to the 

asymmetric formation and shedding of eddies which will 

give rise to a transverse force. 

Figures (5.2.5) and (5.2.6) show the corresponding 

Fast Fourier's Transformation to the wave profile, in- 

line force and tip displacement. From the figures it 

can be noticed that there is a magnitude of the second 

harmonic in the wave profile, and they show also that 

the wave profile did not change for the two sets of 
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Figure (5.2.1) - Measured Data and the Calculated In- 

Line and Transverse Local Force for 

Free Structure. 
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Figure (5.2.3) - Pressure Distribution across the Structure 

during the Wave Cycle for Free Structure. 
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Structure during the Wave Cycle for 
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Displacement for Free Structure. 
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tests. Also they show the difference in the force 

between the two cases, and the existence of the third 

sine harmonic in the force as it would be expected 

(see Keulegan and Carpenter (27 ) ). 

Detailed analyses were conducted for all tests. The 

analysis of the data obtained from each test may be 

divided into three sections. These three sections 

were wave properties, forces on structure and dynamic 

behaviour. 

5.2.1 WAVE PROPERTIES 

The measured wave profile was processed and wave 

properties were defined. The processing of the wave 

profile was carried out by digitizing the electric 

signal from the wave probe at 0.02 of a second. As 

the waves generated used in the tests were not purely 

sinusoidal waves as it is shown in Figure (4.4.1), 

sinusoidal interpolation was used to generate, from 

the number of data points obtained from one cycle of 

the wave. an exact 64 data points in wave cycle, in 

order to use the Fast Fourier Transformation. See 

Appendix (C) for sinusoidal interpolation. 

From the F. F. T. the amplitudes of each sine and cosine 

harmonics contained in the wave profile were determined. 

The wave profile was represented mathematically by 

Equation (3.2.10). 
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The wave period was obtained directly from the time 

increment between the wave cycle. Wave height was 

defined as the difference between the crest elevation and 

the trough elevation. 

Figure (5.2.7) shows a typical case of the calculated 

wave profile using Equation (3.2.10) and substituting 

for the first three harmonics only and the measured one. 

X10-I 
. 90 

. 60 

"30 

"00 

-"30 

-. 60 

-. 90i 

FIGURE (5.2.7) - The Measured and calculated 

Wave Profile. 

+ CALCULATED 
MEASURED 
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Checks were made for the measured and calculated 

wave lengths using linear wave theory, from the 

Equation (3.2.13). 

Equation (3.2.13) was solved by Newton's Raphson's 

iteration method getting the wave length of the first 

harmonic and comparing with the measured, the maximum 

difference was about 6%. 

5.2.2 THE FORCES ON STRUCTURE 

The signals from the eight pressure transducers located 

at one level of the structure were digitized at 0.02 

of the second simultaneously with the wave profile, 

bending moment and tip displacement signals. 

The force acting on the measured level of the structure 

at any time can be obtained from Equation (3.4.3). The 

numerical integration of this equation was carried out 

by using Simpson's rule: 

dF(t)= . a(2 x Odd value +4x Even value)ds (5.2.4) 

. '. the dF(t) in the direction of the wave propagation 

(in-line force) will be 
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dF(t) =3 8D [(2 x 5PI cos -(I-1) +4 6PJ cos 4(J-1)]ds 

... ... ... ... .., (5.2.5) 

where I=1,3,5,7 

J=2,4,6,8 

The values of the dFX(t) for the wave cycle had been 

represented mathematically in the same way as of the 

wave profile. 

The measured bending moments were digitized. The 

digitized bending moments were used to compare 

the measured and calculated. The bending moments were 

calculated by using Equation (3.2.20). The values of 

CD and CM appearing in the equation were calculated from 

the highest level and taken as constant along the 

length of the structure. The difference between the 

calculated and measured bending moments varied 

from one test to another with maximum difference of 

17.5%. Some tests gave good agreement between the 

measured and calculated bending moments as shown in 

Figure (5.2.8). 
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FIGURE (6.2.8) - The Calculated and Measured 

Bending Moments. 

5.2.3 STRUCTURE DYNAMIC RESPONSE 

The tip displacement values of x(t) had been digitized 

and represented mathematically in the same way as 

those of the wave profile and in-line force. 

The mathematical representation of the tip displacement 

was used to calculate the structure velocity and 

acceleration at the measured level of pressure by 

Equations (3.4.7) and (3.4.8). 
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5.3 THE RESULTS FROM THE EXPERIMENTS 

After the data had been analysed it was subjected to the 

appropriate theoretical approach to obtain the final 

results. The results obtained can be divided into two 

parts, the first part is the waves and the corresponding 

forces on the structures and the second part is the 

structural response due to the acting forces and the 

surrounding environment. 

5.3.1 WAVES AND THE CORRESPONDING FORCES ON THE 

STRUCTURES 

In the present study, the experimental waves were nearly 

sinusoidal, the position parameter (h/T2) was varied 

between (0.247 - 0.564 m/sec 
t) 

and the wave parameter 

(H/T2) was varied between (0.079 - 0.201 m/sec2). These 

values, according to the validity of the wave theory by 

Dean (8), lie within the region of the Airy theory. Also 

referring to Howell (5) the condition required to satisfy 

the linearization of the boundary condition is 

H/2k2h3 <<1, which allows for using linear wave 

theory without significant difference from the higher 

order. Linear wave theory was applicable as H/2k2h3 

for this study was varied between (0.03 - 0.074). 

Finally according to the classification of the water 

wave length to the relative depth (h/L) the waves used 
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in this work can be classified as intermediate 

waves as h/L varies between (1/7 - 1/2.8). 

From the above it can be concluded that the linear wave 

theory using the intermediate equation as shown in 

Chapter Three gives the most accurate theory to 

calculate the kinematic properties of the wave for the 

waves used. 

As the structure used in this investigation had a small 

diameter relative to the wave length, the hydrodynamic 

forces were calculated by Morison's Equation (3.2.18) 

and the modified Morison's Equation (3.2.19). 

The Keulegan-Carpenter number of the water wave was 

calculated on the basis of the maximum water velocity 

at the still water level. The forces corresponding to 

the wave acting on the structure were used to evaluate 

the values of the forces coefficients CD and C,, 4, The 

average values of the drag and inertia coefficients for 

the cycle had been calculated according to a least 

squares fit between the experimental force history and 

that predicted by Morison's equation using Equation 

(3.2.. 18) and (3.2.19). Although the forces were 

measured at some distance from the still water level, 

the forces coefficients were related to the Keulegan- 

Carpenter number at the still water level. 
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For each structure the forces coefficients corresponding, 

to the waves were represented as follows: 

1. The forces coefficients CD and C11 for fixed 

structures due to wave 

2. The percentage ratio of the value of CD for a 

free structure to that for a fixed structure (CDO) 

and the same for CM(CMP) 

3. The percentage ratio of the values of CD and 

C, 
ýi calculated by the modified Morison's 

equation to those calculated by Morison's 

equation (CDD and C14D) when the structures were 

free to vibrate. 

The characteristics of the waves used in the tests and 

the corresponding forces as represented above for each 

structure are shown in Tables (5.2 through 5.11). 

For the case of more than one level of pressure 

measured along the structure the tables show: 

1. For the fixed structures the drag coefficients 

decrease with depth while the inertia coefficients 

increase with depth for the tested waves. These 

are due to the reduction of the water particle 
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velocity along the structure and consequently the 

reduction of the K-C number, as it shows later that 

the CD decreases with the decrease of the K-C number 

while CM increases with the decrease of K-C number, 

and due to the reduction of the vorticity with depth. 

The variation of CD and CM with depth should be taken 

into consideration for the determination of bending 

moment at the base of the structure especially for 

the case of deep water. 

2. The percentage ratio of the drag coefficients for free 

structures to those for fixed structures slightly 

decreases with depth. The corresponding percentage 

ratio of the inertia coefficients behaves similarly. 

This can be attributed to the decrease of the effect 

of the vortices with depth, the forward movement of 

the separation points of the flow round the structure 

with depth and the reduced structural response with 

depth. 

3. The percentage ratio of the drag coefficients calculated 

by modified Morison's equation to those calculated by 

Morison's equation increases with depth, similarly the 

corresponding ratio of inertia coefficients. These 

are due to the increase of the ratio of the relative 

velocity of the water particale to that of the 

structures' velocity, as the water particle 

velocity decreases exponentially with 
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depth while the structure velocity decreases 

sinusoidally with depth, for the case of the drag 

coefficient and similarly for the acceleration 

in the case of the inertia coefficient. 

The Reynolds numbers of the tests varied from 

(1.09 x 104 to 4.7 x 104). Figures (5.3.1a) and 

(5.3.1b) show the variation of CD and Cr1 with Reynolds 

numbers, 1/D. 

The relationship between the waves and the corresponding 

forces can be shown by plotting the results of the 

dimensionless parameter(Keulegan-Carpenter number) 

and the coefficients representing the forces. 

Figure (5.3.2a) and Figure (5.3.2b) show the variation 

of the drag coefficients and the variation of the 

inertia coefficients for the fixed structure versus 

the Keulegan-Carpenter numbers respectively. 

Figures (5.3.3a through 5.3.12a) show the variation 

of the percentage ratio of CD for free structures to 

that for fixed structures for each structure tested 

and Figure (5.3.13) shows the same variation of the 

ratio for all the tested structures with Keulegan- 

Carpenter numbers. ' Figures (5.3.3b through 5.3.12b) 

show the variation of the percentage ratio of the 
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Cm for free structures to that for fixed structures for 

each structure tested and Figure (5.3.14) 

shows the same variation of the ratio for all tested 

structures with Keulegan-Carpenter number. 

Figure (5.3.15a) and Figure (5.3.15b) show the variation 

of the percentage ratio of the CD calculated by the 

modified Morison's equation to that calculated by 

Morison's equation and similarly for CSI with Keulegan- 

Carpenter numbers respectively. 

The data presented in the figures cited above exhibit 

certain characteristics which will be discussed below. 

(a) THE VARIATION OF THE FORCE COEFFICIENTS (CD AND 

CM) FOR FIXED STRUCTURE WITH KEULEGAN-CARPENTER 

NUMBER 

The drag coefficient CD increases with increasing 

K-C numbers used in the tests (the range of 

K-C number used was (1.874 - 10.604)), while the 

CM decreases with 

for the same range. 

increasing K-C number 

These results agree with 

the previous results of Keulegan and Carpenter 

1968(27). The results show less scattering and 

that is because of the method used in measuring 

the local force for a segment of the structure 

which minimizes the error; arising due to the 
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Figure (5.3.1a) - Variation of CD with Reynolds Number, l/D. 
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Figure (5.3.1b) - Variation of CM with Reynolds Number, l/D. 
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Figure (5.3.3a) - Variation of % (CD Free (R)/CD Fixed) with 
K-C Number for Structure A. 
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Figure (5.3.3b) - Variation of % (C, I Free (R)/CM Fixed) with 

K-C Number for Structure A. 
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Figure (5.3.4a) - Variation of `, "o (CD Free (R)/CD Fixed) with 
K-C Number for Structure B. 
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Figure (5.3.5a) - Variation of % (CD Free (R)/CD Fixed) with 
K-C Number for Structure C. 
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Figure (5.3.5b) - Variation of % (C1 Free (R)/CM Fixed) with 
K-C Number for Structure C. 
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Figure (5.3.6b) - Variation of % (CM Free (R)/CM Fixed) with 
K-C Number for Structure D. 
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Figure (5.3.8a) - Variation of % (CD Free (R)/CD Fixed) with 
K-C Number for Structure E with 1010 Grs 

at Top. 
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Figure (5.3.8b) - Variation of % (CM Free (R)/CM Fixed) with 
K-C Number for Structure E with 1010 Grs 
at Top. 
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Figure (5.3.9a) - Variation of % (CD Free (R)/CD Fixed) with 
K-C Number for Structure E with 2020 Grs 

at Top. 
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Figure (5.3.11a) - Variation of % (CD Free (R)/CD Fixed) with 
K-C Number for Structure F with 1010 Grs 

at Top. 

115 CMP 

112 

109 

106-- 

103-: 

100 K-C 
. 00 1.57 3.14 4.71 6.29 86 9.43 11.00 

U. T/D 
'/CM FREE(R)/CM FIXED VERSUS K-C NUMBER 

Figure (5.3.11b) - Variation of % (Ch7 Free (R)/C1 Fixed) with 
K-C Number for Structure F wikh 1010 Grs 
at Top. 

209 



1 ZC_ CD 

I16. 
S 

gg 

B 
1Z_ 

108_ 

104- 

100, K-C 

. 00 1.57 3. i4 4.71 6,29 x. 86 9.43 11.00 
U, nT/D 

°i CD FREE(R)/CD FIXED VERSUS K-C NUMBER 
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variation of the value of CD and CM along the 

submerged part of the cylinder. 

(b) THE VARIATION OF THE PERCENTAGE RATIO a?. THE FORCE 

COEFFICIENTS FOR r REE STRUCTURES TO THOSE FOR 

FIXED STRUCTURES WITH KEULEGAN-CARPENTER NUMBERS. 

The variations of the percentage ratio of CD for free 

structures to that for fixed structures with the K-C 

numbers have negative gradients with negative second 

derivatives for all structures with the exception 

of structure A (relatively stiff). In this case, for 

low K-C numbers there is no difference between CD 

(free) and CD (fixed) with the increasing value of 

K-C numbers. The percentage ratio CD (free): CD(fixed)then 

increases up to a definite maximum. Thereafter the 

behaviour of the CD ratio is similar to that described 

above for other less stiff structures. The variations 

of the percentage ratio of the CM have the same 

behaviour as that of the CD for all structures with 

the exception that they have positive second 

derivatives. 
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The percentage ratios of the drag coefficient are 

greater than the corresponding percentage ratios of 

the inertia coefficient. 

With decreasing structural stiffness, it is apparent 

that the rate of variation of the force coefficient 

ratios with the K-C numbers decreases. 

For a particular value of K-C number it is apparent 

that, with decreasing structural stiffness, the ratios 

of the force coefficients increase. 

This increase in the value of the force coefficients 

for free structures compared to those for fixed structures 

could be attributed to the movement of the structure 

and consequently the shift of the separation points 

in the upper stream direction towards the front of the 

cylinder and the increase of the wake size, thereby leading 

to an increase of the force. Similarly this increase 

occurs when the flow reverses its direction (see Figures 

(5.3.3) and (5.3.4)). 

The negative gradient variation of the force coefficients 

with tae K-C numbers could be due to the change of the 

level of vorticity in the fluid near the structure. 

The change of the level of vorticity is due to the 

increase of the K-C numbers combined with the increase 

of the amplitude of the structure's response 
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The reason for the lessening of the rate of change 

of the force coefficients ratio with the decreasing 

of the structural stiffness could be due to the 

increase of the phase angle shift of the structure's 

response to the wave force. 

(c) THE VARIATION OF THE PERCENTAGE RATIO OF THE 

FORCE COEFFICIENTS CALCULATED BY MODIFIED 

LIORISON'S EQUATION TO THOSE CALCULATED BY 

LIORISON'S EQUATION WITH THE K-C NUMBERS 

The variation of the percentage ratio of the CD 

slightly increased with K-C numbers; while no variation 

is noticed for the percentage ratio of Ch1 with 

the K-C numbers. This shows that for the tested 

waves and structures the ratio of the squared values of 

the relative velocity to the squared values of the water 

wave particle velocity is very small and decreases with 

the increase of the K-C numbers while the value of the 

ratio of the relative accelerations to the water wave 

particle accelerations is negligible. 
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5.3.2 STRUCTURE'S RESPONSE TO THE WAVE FORCES 

The structures' response results obtained from the 

experiments conducted for the structures together with 

the computed values are presented below. The 

structures' responses were represented by the non- 

dimensional parameter X/D where X is the amplitude of 

vibration and D is structure diameter. 

As the structures responses should be related to 

non-dimensional parameters which contain the necessary 

variables to represent the structures' dynamic 

properties as well as the water waves. As the reduced 

velosity is normally used to relate the structure's 

response in the transverse direction due to the 

transverse force, because the drag component of the 

in-line force and the transverse force are due to the 

separation of flow around the structure and the 

formation of eddies, tine structure's response in the direction 

of the wave can also be related to the reduced velocity. Therefore 

tie reduced velocity was used as the non-dimensional parameter 

waich satisfied the above condition. The reduced 

velocity was calculated for each test by: 

VD = U/D x FN ... .... ... ... ... (5.3.1) 

where Um = maximum water particle velocity 

FN = structure natural frequency 
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Also the reciprocal of reduced velocity was calculated 

for each test, as it was used by T. Sarpkaye and 
(113) L. Shoaff 19793) 

Because the reduced velocity does not include the effect of 

damping of the structure, the dimensionless damping 

was calculated for each test by: 

2Mý/p D2LS ... ... ..... ... ... (5.3.2) 

where M= effective mass 

&= damping coefficient 

p= water density 

Ls = structure length 

The response parameter has been introduced by multiplying 

the dimensionless damping by the reciprocal of the 

reduced velocity 

DM = (22ý/p D2Ls) (D x FN/Um) ... ... ... (5.3.3) 

Each tested structure is presented in a table (Tables 

5- 12 through 5- 21). Each table shows the following 

parameters: - 

1. The above non-dimensional parameters 
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2. The ratio of the force frequency to the structure 

natural frequency 

3. The percentage ratio of CD for the free structure 

to that for fixed structure 

4. The percentage ratio of CM for the free structure 

to that for fixed structure 

5. The calculated phase shift between the structure's 

response and the applied force 

6. The structure's response calculated by using the 

wave forces acting on the fixed structure (Method B) 

7. The structure's response calculated by using the 

wave forces acting on the free structure (Method A) 

8. The structure 's response measured from the 

experimental tests. 

The structures' responses calculated by using the 

wave forces acting on the structures when they were 

free to vibrate, the ratio of the frequency of the 

force to the natural frequency of the structure, the 

calculated. phase shift between the structure's response 

and the applied load and the percentage ratio of CD 
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for the free structures to that of the fixed structures 

as well as the percentage ratio of CM were plotted 

against the two non-dimensional parameters (the 

reciprocal of the reduced velocity and the response 

parameter). 
k 

The variation of the structures' responses with the 

reciprocal of the reduced velocity is shown in Figure 

(5.3.16a). The variation of the structures' responses 

the response parameter is shown in Figure (5.3.16b). 

The figures show that the structures' responses can be 

represented by these non-dimensional parameters. The 

structural responses increase with the decrease of 

these non-dimensional parameters. The response 

parameter represents more accurately the structural 

response as the graph shows less scattered results. 

Figures (5.3.17a) and (5.3.17b) show the variation of 

the phase shift with the reciprocal of the reduced 

velocity and the response parameter respectively. 

The variation of the ratio of the force frequency to 

the structure frequency with the reciprocal of the 

reduced velocity and with the response parameter are 

shown in Figures(5.3.18a) and (5.3.18b), respectively. 
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Although the variation of the structure's response is 

better represented by the response parameter, the 

variation of the phase shift and the variation of the 

ratio of the force frequency to the structure frequency 

are better represented by the reciprocal of the reduced 

velocity. The variations of these three parameters with 

respect to the reciprocal of the reduced velocity and 

response parameter have the same pattern. 

The variation of the percentage ratio of the drag coeffi- 

cient calculated for the free structures to that calculated 

for fixed structures with the reciprocal of the reduced 

velocity is shown in Figure (5.3.19). The variation of 

this percentage ratio with the response parameter is shown 

in Figure (5.3.20). This variation has a positive gradient 

with a negative second derivative for all the structures. 

Figures (5.3.21) and (5.3.22) show the variation of the 

percentage ratio of the inertia coefficient calculated 

for free structures to that calculated for fixed structures 

with reciprocal of the reduced velocity and with the 

response parameter respectively. The variations have 

positive gradients with positive second derivatives for 

all structures. The variation of the percentage ratio of 

the force coefficients with the reciprocal of the reduced 

velocity is clearer than that with the response parameter. 
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Figure (5.3.16a) - Variation of the Structures' Response (X/D) with the 
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The variations of the percentage ratio of CD and also of 

CIM with respect to the reduced velocity have a similar 

pattern to the variations with the K-C numbers. This 

similarity in the behaviour emphasises the previous 

explanation of the water wave structure interaction. 

The variation of the relative displacement X/D with 

the time of one wave cycle is shown in Figures(5.3.23) 

through (5.3.32) for one test of each structure when 

the water depth was 0.5 meter and the wave period was 

1.15 seconds. In these figures the relative displace- 

ments are represented by the following symbols: 

- The measured displacement divided by the structure 

diameter. 

o The calculated relative displacement using the 

values of CD and CM for free structure and taking 

into consideration the water wave/structure 

interaction in the dynamic equation. 

+ The calculated relative displacement using the 

values of CD and CM for fixed structure and 

using the damping coefficient in water without 

taking into consideration the water wave/ 

structure interaction in the dynamic equation. 
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Cycle for Structure E with 2020 Grs at Top. 
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Figure (5.3.29) - Structure's Response (X/D) during the Wave 
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Results for the other tests are shown in Appendix (D) 

The figures show that there areinsignificant differences 

between the two calculated relative displacements, 

the greatest difference being 11.08%. Also the 

difference between the calculated relative displacement 

using finite elements and the measured relative 

displacement is small, with a maximum difference of 

9.63%. 
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CHAPTER SIX 

SUMMARY AND CONCLUSION 

6.1.1 Theoretical and experimental investigations were 

carried out in a regular wave regime to study the 

wave force and the associated structural response 

on a circular cylinder pier. The cylinders were 

tested under three different conditions (a) fixed 

at the bottom and the top end free to vibrate as 

a cantilever (b) fixed at both ends top and 

bottom, (c) fixed at the bottom but free to 

vibrate, top end being free carrying an added mass. 

The experimental study was conducted in a wave 

regime defined by Keulegan-Carpenter number 

(Um T/D) i. e. from 1.87 to 10.69. The maximum 

amplitude of the structural response (X/D) at the 

top of the cylinder varied from 0.0049 to 0.098. 

The ratio of the force frequency to the structural 

natural frequency was low to avoid resonance. 

6.1.2 The theoretical model used in this study were 

(a) The structural model is an equivalent beam 

arrangement (pipe element) consisting of 

lumped masses, the force being applied to 

the mass node. 
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(b) The damping model for the structure is based on 

the mass and stiffness damping. In the case 

when the water wave/structure interaction is 

ignored and the value of CD and CM were taken 

for a fixed structure, the value of the 

relative damping coefficient taken from the 

water damping test was used. 

(c) The direct approach method was used in the 

iterative solution of the nonlinear differen- 

tial equation of motion in the case of water 

wave/structure interaction. 

(d) The mode superposition technique with few 

modes was used in the two-dimensional 

analysis of the structural response in the 

time domain. 

6.2.1 The local force coefficitnts CD and CM were 

calculated at certain depth of the structure 

(where the pressure could be measured). This 

depth varied from 0.06 to 0.12 metres from the 

still water level (see Tables 5.. 2 to 5.11). For 

some structures, there were more than one level 

where the local force coefficients were calculated. 

It was found that the magnitude of the drag 

coefficient decreases with depth and that of the 
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inertia coefficient increases with depth (e. g. in 

the Table 5.5 Test 1, the value of CD at 0.05 

metres from the still water level was 1.019 and 

at level 0.15 was 0.978 and the corresponding 

CM value was 1.758 and 1.837). 

6.2.2 When the structures were fixed at the top i. e. not 

allowed to vibrate, the value of the calculated 

local drag coefficient CD varied from 0.654 to 

1.261 and that of the inertia coefficient CM varied 

from 2.548 to 1.544 as the Keulegan and Carpenter 

number varied from 1.87 to 10.69 (see Figures 

5.3.2a and 5.3.2b). The order of the magnitude 

of the value of CD and CM obtained agree with the 

previous published results (Hogben et al 1977(53)) 

(Aagaard and Dean 1969(114) cD varied from 0.5 

1.2 and CM was constant and equal to 1.33, 

Keulegan and Carpenter 1958(27) CD varied from 0.7 

to 1.3 and CM varied from 2.6 to 1.6, Morison et 

al 1950(25) CD varied from 1.626 ± 0.414 and CM 

varied from 1.508 ± 0.197 and Paape and Breusers 

1967(115) CD varied from 0.5 to 2.0 and CM varied 

from 1.0 to 2.5). 

6.2.3 When the structures were free at the top i. e. free 

to vibrate, the values of CD and CM were calculated 

by two methods, first by Morison's equation and 

second by modified Morison's equation. The second 
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method producing the larger value of the drag 

coefficient with a maximum ratio (CD modified 

Morison/CD Morison) of 102.7% while the inertia 

coefficient CM showed no differences between the 

above two methods (see Figures 5.3.15a and 

5.3.15b). 

6.2.4 There is a difference between the magnitude of 

the drag coefficient of the "free" structure and 

that of the "fixed" structure under a particular 

set of wave conditions, the former being greater 

in magnitude than the latter. The maximum ratio 

of the drag coefficient for the free structure 

to that of fixed structure (CD Free/CD Fixed) 

was 118.45% (see Figure 5.3.13). It was found 

that the inertia coefficient exhibited a similar 

pattern of behaviour. The maximum ratio of the 

inertia coefficient for free structure to that of 

fixed structure (CM Free/CM Fixed) was 109.56% 

(see Figure 5.3.14). These differences in the 

magnitude of the force coefficients decrease 

with increasing depth from the still water level 

(see Tables 5.4 to 5.11). 

The difference in magnitude of the drag coefficients 

is greater than the corresponding difference in 

magnitude of the inertia coefficients. Both 

differences in value are attributed to the 

vibration of the structure and consequently the 
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change in the flow field round the structure 

(see Figures 5.2.3 and 5.2.4). Therefore these 

differences are dependent upon the structural 

response (X/D) and Keulegan-Carpenter number 

(Um T/D). There is a decrease in magnitude with 

increasing Keulegan-Carpenter number for the 

same structure because the increase of the level 

of vorticity in the fluid field near the structure. 

For constant Keulegan-Carpenter number their 

magnitude increase with decreasing structural 

stiffness. 

No differences in the ratio of CD Free/CD Fixed 

and the ratio of CM Free/CM Fixed were noticed 

when the structural response (X/D) was less than 

0.006. As the structural response increases to 

a value in excess of 0.006 the differences in 

coefficients start to increase sharply until a 

peak is reached at X/D of 0.01, thereafter the 

differences decrease with increasing structural 

response as shown in Table (5.12). 

For the tested structures and waves, the wave 

force acting on the free structure was greater 

than that of the fixed structure. The maximum 

difference was 9.5%. 
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6.2.5 The magnitude of the relative damping coefficient 

is greater in water than in air and increases 

with increasing water depth. For the same 

structure, the magnitude of the relative damping 

coefficient increases with increasing added mass 

at the top of the structure i. e. decreasing 

structure stiffness (see Table (5.1)). 

6.2.6 Also from Table (5.1) it can be seen that the 

natural frequency of the structure in air had a 

higher value than that in water. The value of the 

structural natural frequency in water decreases 

with increasing water depth. 

6.2.7 The dynamic analysis using the first three modes 

in the mode superposition technique (as suggested 

by Molhatra and Penzien 1970(85))and using the 

damping matrix as proportional to the mass and 

stiffness matrix, gives a more accurate representa- 

tion of the problem of the structural response 

(deflection) for a cantilever structure when the 

ratio of the forcing frequency to the structure's 

frequency is very small (« 1) (i. e. 0.13). The 

maximum difference between the measured and the 

calculated structural response using the modified 

Morison's equation (Method A) is 9.87%. The 

maximum difference between the measured and 

calculated structural response using Morison's 

equation (Method B) is 7.45% (see Tables 5.12 

to 5.21). 
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6.2.81 The maximum difference between the calculated 

structural response using Mechod A and Method B 

is 9.561/o. 

6.2.9 The structural response (X/D) is better represented 

by the non-dimensional response parameter 

(2MC/pD2Ls) (D FN/Um) than by the reciprocal of 

the reduced velocity (D FN/Um) as shown in 

Figures(5.3.16a - 5.3.16b). 

6.3 RECOMMENDATION 

Additional research is needed, under the same 

condition (FF/FN « 1) for structures with 

dynamic properties differing from those investi- 

gated herein. In addition a continuation of 

research is needed under different condition 

(FF/FN > 1) and less than the second resonance 

for structure of similar dynamic properties to 

those investigated. 
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APPENDIX A 

PRESSURE TRANSDUCER 

SENSING ELEMENT 

The sensing element was a circular disc of 48 mm diameter 

which was a part of a brass plate. The brass plate was 

100 mm square and 0.02 mm thick. It had to be absolutely 

flat and without initial strain. The plate was dipped in 

acid etch until its thickness was reduced to between 0.015 

to 0.0125 mm. The plate was pulled from each corner to 

give initial tension and remained in this condition until 

the pressure transducer was completed. Four strain gauges 

were fixed at each side of the sensing element. They were 

FL-6-11 Tokyo Kenkyoio wireless type. Connecting wires 

had been soldered of 36 standard wire gauge enamel self- 

fluxing. The strain gauges were connected together 

through four pine holes which can be punched from the top 

before the strain gauges were mounted. After the connec- 

tion of the strain gauge the four pine holes were sealed 

and the sensing element were sprayed with flexible varnish 

making the thickness of the sensing element increased to 

0.025 mm. 

Figure (1A) shows the strain gauges fixed on the sensing 

element and the connection of the strain gauges. 

After the pressure transducer was completely built the 

outer part of the plate was discarded. 
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Figure (1A) - The Sensing Element. 
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TRANSDUCER HOUSING 

The transducer housing was made from brass and it consisted 

of two circular compartments, the lower compartment which 

was larger than the upper compartment. The upper compart- 

ment was tight and fixed to the sensing element and the 

lower compartment with glue and twelve cap head screws 

0.5 inch long fitted at an equal distance from each other 

around the circumference. 

Figure (2A) shows the transducer housing and location of 

the sensing element. 
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Figure (2A) - The Transducer Housing. 
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APPENDIXB 

PREAMPLIFIER 

A linear amplifier produces at its output a waveform which 

is a perfect copy, but of greater amplitude. The most 

important class of linear amplifier i. c. is the operational 

amplifier which features high gain, high input resistance, 

low output resistance and narrow bandwidth extending to 

d. c. 

The 741 is typical of the operational amplifier generally, 

so that the design methods, circuits and bias arrangements 

can be used with small modification. 

Figure (lt3) shows the circuits used for an inverting 

preamplifier. The components used in this circuit were: 

R= potentiometer resistance of 200 k2 0.5 Watt 

R1 = 390 k12 resistance of 0.25 Watt 

R2 = 68 kc resistance of 0.25 Watt 

R3 = 470 kR resistance of 0.25 Watt 

C= Capacitors 0.1 PF 

The voltage gain = R3 x R3 
22 

= 
680 

x 68 
0= 47.77 
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Figure (1B) - The Preamplifier Circuits. 
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APPENDIX C 

SINUSOIDAL INTERPOLATION 

V 

Let y=a sin (bx + c) 

at point 1 y1 =a sin (-bh + c) 

at point 2 y2 =a sin c 

at point 3 y3 =a sin (bh + c) 

. '. yl + y3 =a sin (-bh + c) +a sin (bh + c) 

= 2a sin c cos bh 

=2 y2 cos bh 

.'. b=j Cos-' (yl + y3 
ý 

2y2 

Y3 - yl =a sin (bh + c) -a sin (-bh + c) 

= 2a cos c sin bh 

+ y3ý2112 
= 2y2 cot c(1 - (y12 

y2 J 
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. '. C= tan-1 
{_22 

YY 
{1 - (Y1+ 

Y3)2}1/2] 

312 Y2 

and 

v2 
a= 

sin c 

care should be taken to ensure that y2 #0 
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APPENDIX D 

THE VARIATION OF THE RELATIVE DISPLACEMENTS X/D 

WITH TIME FOR ONE CYCLE OF THE WAVE 
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Figure (1D) - Structure's Response (X/D) during the Wave Cycle for 

Structure A (K-C = 3.04). 
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Structure A (K-C = 2.473). 
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Structure A (K-C = 3.449). 
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Structure A (K-C = 2.493). 
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Structure A (K-C = 3.321). 
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Structure A (K-C = 1.874). 
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Figure (11D) - Structure's Response (X/D) during the Wave Cycle for 

Structure A (K-C = 3.269). 
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Figure (12D) - Structure's Response (X/D) during the Wave Cycle for 
Structure B (K-C = 2.682). 

297 



Figure (13D) - Structure's Response (X/D) during the Wave Cycle for 
Structure B (K-C = 3.177). 
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Figure (14D) - Structure's Response (X/D) during the Wave Cycle for 

Structure B (K-C = 2.182). 
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Figure (15D) - Structure's Response (X/0) during the Wave Cycle for 
Structure B (K-C = 3.748). 
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Figure (17D) - Structure's Response (X/D) during the Wave Cycle for 

Structure B (K-C = 2.594). 
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Figure (18D) - Structure's Response (X/D) during the Wave Cycle for 
Structure B (K-C = 3.439). 
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Figure (190) - Structure's Response (X/0) during the Wave Cycle for 

Structure B (K-C = 3.775). 
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Figure (20D) - Structure's Response (X/D) during the Wave Cycle for 

Structure C (K-C = 4.076). 
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Figure (21D) - Structure's Response (X/D) during the Wave Cycle for 

Structure C (K-C = 7.863). 
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Figure (22D) - Structure's Response (X/D) during the Wave Cycle for 

Structure C (K-C = 6.697). 
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Figure (23D) - Structure's Response (X/D) during the Wave Cycle for 

Structure C (K-C = 7.975). 
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Figure (24D) - Structure's Response (X/D) during the Wave Cycle for 

Structure C (K-C = 10.604). 
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Figure (25D) - Structure's Response (X/D) during the Wave Cycle for 
Strucrure C (K-C = 9.821). 
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Figure (26D) - Structure's Response (X/D) during the Wave Cycle for 

Structure C (K-C = 10.391). 
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Figure (27D) - Structure's Response (X/D) during the Wave Cycle for 

Structure D (K-C = 5.524). 
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Figure (28D) - Structure's Response (X/D) during the Wave Cycle for 

Structure D (K-C = 8.399). 
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Figure (29D) - Structure's Response (X/D) during the Wave Cycle for 

Structure D (K-C = 5.466). 
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Figure (30D) - Structure's Response (X/D) during the Wave Cycle for 

Structure D (K-C = 7.576). 

315 



O 

O 

L O 

X 0 

©+ ö 

C, 

It Lr) 
ti º 

LQ < 
N 

cD p 

O U) 

O 
LL 

+0 up 
w 

+E) F--- LLJ 

CL 

w 

W 

L 
f. - 

" 

Cl 

X 0 
O 

7OOOO OOO 
ON Oct st O IT co N 

º 

Figure (31D) - Structure's Response (X/D) during the Wave Cycle for 

Structure D (K-C = 7.904). 
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Figure (32D) - Structure's Response (X/D) during the Wave Cycle for 

Structure E with no Mass at Top (K-C = 6.742). 
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Figure (33D) - Structure's Response (X/D) during the Wave Cycle for 

Structure E with no Mass at Top (K-C = 8.13). 
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Figure (34D) - Structure's Response(X/D) during the Wave Cycle for 

Structure E with no Mass at Top (K-C = 7.308). 
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Figure (35D) - Structure's Response (X/D) during the Wave Cycle for 

Structure E with No Mass at Top (K-C = 7.271). 
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Figure (36D) - Structrure's Response (X/D) during the Wave Cycle for 

Structure E with no Mass at Top (K-C = 6.520). 
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Figure (37D) - Structure's Response (X/D) during the Wave Cycle for 

Structure E with 1010 Grs at Top (K-C = 6.743). 
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Figure (38D) - Structure's Response (X/D) during the Wave Cycle for 

Structure E with 1010 Grs at Top (K-C = 8.130). 
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Figure (39D) - Structure's Response (X/D) during the Wave Cycle for 

Structure E with 1010 Grs at Top (K-C = 7.308). 
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Figure (40D) - Structure's Response (C/D) during the Wave Cycle for 

Structure E with 1010 Grs at Top (K-C = 7.271). 
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Figure (41D) - Structure's Response (X/D) during the Wave Cycle for 

Structure E with 1010 Grs at Top (K-C = 6.520). 
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Figure (42D) - Structure's Response (X/D) during the Wave Cycle for 

Structure E with 2020 Grs at Top (K-C = 6.742). 

327 



c 

o 00 
U 

N 

LLj 

gi 
"C 

0 
LL- 

W X ý 
fYý v 

w 

co 

Z 

o CD 

V) CL 
U) 

w 

ui 

lfý ý 

ED w F-- 
UO 

X O 
O 

ÖO 
oOo OC 

co 114- NC 0i ýo 

Xi it' 

Figure (43D) - Structure's Response (X/D) during the Wave Cycle for 

Structure E with 2020 Grs at Top (K-C 8.130). 
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Figure (44D) - Structure's Response (X/0) during the Wave Cycle for 

Structure E with 2020 Grs at Top (K-C = 7.308). 
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Figure (45D) - Structure's Response (X/D) during the Wave Cycle for 

Structure E with 2020 Grs at Top (K-C = 7.271). 
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Figure (46D) - Structure's Response (X/D) during the Wave Cycle for 

Structure E with 2020 Grs at Top (K-C = 6.520). 
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Figure (47D) - Structure's Response (X/D) during the Wave Cycle for 
Structure F with no Mass at Top (K-C = 6.742). 
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Figure (48D) - Structure's Response (X/D) during the Wave Cycle for 
Structure F with no Mass at Top (K-C = 8.130). 
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Figure (49D) - Structure's Response (X/D) during the Wave Cycle for 

Structure F with no Mass at Top (K-C = 7.308). 
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Figure (50D) - Structure's Response (X/D) during the Wave Cycle for 

Structure F with no Mass at Top (K-C = 7.271). 
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Figure (51D) - Structure's Response (X/D) during the Wave Cycle for 
Structure F with no Mass at Top (K-C = 6.520). 
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Figure (52D) - Structure's Response (X/D) during the Wave Cycle for 
Structure F with 1010 Grs at Top (K-C = 6.742). 
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Figure (530) - Structure's Response (X/D) during the Wave Cycle for 
Structure F with 1010 Grs at Top (K-C = 8.130). 
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Figure (54D) - Structure's Response (X/D) during the Wave Cycle for 

Structure F with 1010 Grs at Top (K-C = 7.308). 
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Figure (55D) - Structure's Response (X/D) during the Wave Cycle for 

Structure F with 1010 Grs at Top (K-C = 7.271). 

340 



Figure (56D) - Structure's Response (X/D) during the Wave Cycle for 

Structure F with 1010 Grs at Top (K-C = 6.520). 
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Figure (57D) - Structure's Response (X/D) during the Wave Cycle for 

Structure F with 2020 Grs at Top (K-C = 6.742). 
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Figure (58D) - Structure's Response (X/D) during the Wave Cycle for 

Structure F with 2020 Grs at Top (K-C = 8.130). 
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Figure (59D) - Structure's Response (X/D) during the Wave Cycle for 

Structure F with 2020 Grs at Top (K-C = 7.308). 
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Figure (60D) - Structure's Response (X/D) during the Wave Cycle for 

Structure F with 2020 Grs at Top (K-C = 7.271). 
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Figure (61D) - Structure's Response (X/D) during the Wave Cycle for 

Structure F with 2020 Grs at Top (K-C = 6.520). 
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Figure (5.3.24) - Structure's Response (X/D) during the 

Wave Cycle for Structure B. 
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Figure (5.3.31) - Structure's Response (X/D) during the 

Wave Cycle for Structure F with 

1010 Grs at Top. 
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Figure (5.3.32) - Structure's Response (X/D) during the 

Wave Cycle for Structure F with 

2020 Grs at Top. 
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Figure (16D) - Structure's Response (X/D) during the Wave Cycle for 

Structure 8 (K-C = 3.926). 

r- 

301 


