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ABSTRACT 

In the last two decades an abundance of contact lens materials with unknown 
surface properties have been introduced as well as new contact lens design. Recent 
studies have identified the importance of physical and chemical interactions 
between materials and liquids. The purpose of this experimental research work was 
to investigate the relationship between a contact lens surface and a liquid. The 
wettability and hydrophilicity of both soft and rigid contact lens surfaces were 
determined using two novel techniques and an established method. The two novel 
techniques were the un-separated adherent liquid/laser method and the adherent 
liquid/ maximum force method whereas the established technique involved 
monitoring the receding wetting angle and interface area diameter of a sessile drop. 

Contact lens surface preparation and the method of removing a liquid from 
hydrated surfaces were found to be important variables when determining 
wettability or hydrophilicity. Experiments showed that the use of surface tension to 
remove liquid from hydrated surfaces significantly improved the reproducibility of 
subsequent measurements. 

Variation of the sessile drop wetting angle and interface area diameter with 
evaporation time demonstrated different values for different contact lenses. The 
clinical consequence of monitoring the receding values would be; if a material to 
spread tear break up time occurs the dry patches will be advanced on PMMA, 
rather than Paraperm contact lens. 

Surface hydrophilicity, if defined in terms of the maximum adherent force, 
describes the ability of a lens surface to attract a liquid, whereas wettability may be 
defined as the ability of a liquid to spread on a contact lens surface. The wettability 
and hydrophilicity, therefore, are two different issues. When a wetting angle is 01, 
or close to 0" the surface is described as wettable. Results demonstrated that 
Equalens had a greater surface wettability and hydrophilicity than the PMMA for 
pre-wear, but the post-wear hydrophilicity for PMMA was greater than Equalens. 
The use of each measurement method, therefore, resulted in a value that is 
intrinsically related to measurement method and definition. The clinical 
consequence of the values is to help practitioners prescribe a lens material either on 
wettability or hydrophilicity values. 

In contact lens practice, a lens surface is required to maintain a stable tear film and 
produce a long tear film break up time. A combination of hydrophilicty and wetting 
angle values can help to determine the requirement of wettability and hydrophilicity 
in the contact lens industry and also in practice. It can be concluded that no single 
test can fully describe the surface properties of contact lens surface materials, but it 
is proposed that information and results from a series of tests provides the most 
useful clinical description. 
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Chapter 1. Introduction 

1.1. Introduction 

The surface properties of any material govern its interaction with external 

environments. In biological environments for example, the surface of a material 
interacts with water, ion molecules, protein and tissue (Figure 1.1). The chemical 

structure of the material surface, therefore, determines such properties including 

wettability and hydrophilicity. Wettability and hydrophilicity are specific properties 

of contact lens materials that form the basis of research in this thesis. 

-- 

. Ifll. -Zý: -- 

SOLUTE 
INTERACTIONS 

5ýINTERACTIONS 

1X 
I I. 

Zia: '- 

MATERIAL 
SURFACE 

PROPERTIES 

o 0-0 
0. - BLOOD *- 

INTERACTIONý-" 

44. 
_ 

- L. 

o: 0.1 N (. ) 0. --G INTERACTIONS 
P 620 E 

1E-I 
CELL : %-INýOTE CTiONS 

g-., 6 
-0 -- D. 

-- -- 

IM1F? AflTIflMS 

Figure 1.1. The figure shows that the surface of a material can interact with 
biological environments in a number of ways: interactions with 
water, ion macromolecules, protein and various tissues. These 
interactions are determined largely by the surface properties of 
the materials (Andrade, 1980; Treiber, 1988; Tighe 1990). 

The importance of wettability has been recognised in many fields (Larke, et al 1973 

and Hancock 1991). In the surface coatings industry, a paint must completely wet 

the surface to which it is applied, because there would be disastrous results if the 
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paint migrated into droplets after application. On the other hand with waterproof 

clothing it is essential to produce a surface on which water will not spread but will 
form droplets. 

There are a number of ways in which the surface properties of a material can be 

evaluated in the laboratory. For example, surface tension (y), interfacial tension of 

solid/liquid (YSL) or contact angle (0) all provide a measure of the various 

intermolecular forces that determine the interaction of a material with its external 

environment. Before describing the specific properties of the material and how they 

arise various terms used in the subsequent discussion will be defined. 

1.2. Covalent Bonds 

There are several chemical bonds in nature and the most predominant stable one is 

the covalent bond. In a covalent bond, electrons are shared between the two atoms 
(strong bonds between neighbouring atoms). Sometimes, the shared electrons are 

equally attracted to each other. This results in a non-polar covalent bond. In other 
instances, the shared electrons are attracted to one atom more than the atom; this 

results in a polar covalent bond. From the studies of the positions of atoms in 

molecules, the energetic of molecules could be determined (Table 1.1; Billmeyer, 

1971). 

Bond Bond Length, pm Dissociation Energy, Kcal/mole 

C-C 1.54 83 
C=C 1.34 146 
C-H 1.10 99 
C-N 1.47 73 
CýN 1.15 213 
C-0 1.46 86 
C=O 1.21 179 
C-F 1.32-1.39 103-123 
C-Cl 1.77 81 
N-H 1.01 93 
O-H 0.96 111 
0-0- 1.32 35 

Table 1.1. Typical primary bond lengths and energies. 
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1.2.1. Covalent Non-polar Bonds 

In a non-polar bond, the electrons are shared equally by the nuclei of the two 

atoms, leading to electric charges being symmetrically distributed. The attractive 

force that an atom has for the shared electrons of the molecule is known as the 

electronegativity of the atoms. In non-polar bonds, the electronegativities of the 

atoms are equal. An example is hydrogen, which can form a strong covalent bond. 

The formation of a hydrogen molecule involves the overlapping and sharing of its 

electron orbits. In hydrogen molecules, each atom contributes one electron and the 

shared electrons are equally attracted to each nucleus (Figure 1.2). 

Figure 1.2. The non-polar covalent bond in a hydrogen molecule. 

Another example of the non-polar bond is the carbon-hydrogen bond in a methyl 

group, which consists of a carbon atom and three hydrogen atoms. The electrons 

which are shared by the carbon and hydrogen atoms, are attracted equally to the 

two atoms. The carbon atom thus does not have a net electrical charge in relation 

to the hydrogen atom. The bond is, therefore, non-polar (Figure 1.3). 

H 

Figure 1.3. The non-polar covalent bond in a methyl group. 
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1.2.2. Covalent Polar Bonds 

When a covalent bond is formed between two atoms of different 

electronegativities, the atom with the higher electronegativity attracts the shared 

electron pair more strongly. Consequently, the electron spends more time around 

the atom with the higher electronegativity, with this atom acquiring a partial 

negative charge and the other atom a partial positive charge (Figure 1.4). 

(EE) E) 
C=O 

Figure 1.4. The polar covalent bond in a carboxyl group. 

Since the sum of the charges is zero, however, the overall molecule is still neutral. 

The greater the electronegativity difference between the two atoms, the greater the 

polarity of the bond. An example of such a polar bond is the carboxyl group (C=O) 

in which the oxygen atom has a higher electronegativity and therefore takes on a 

small negative charge. The carbon atom subsequently has a small positive charge. 

Another example of a polar compound is water. In this case, the oxygen atom has a 

greater attraction for the electrons, with the oxygen having a relatively negative 

charge and the hydrogen atom having a relatively positive charge. Since the 

hydrogen atom has a relatively positive charge, it will be attracted to the oxygen 

atom (relatively negative) of another molecule, forming a hydrogen bond. This 

bond is not very strong because it is only a partial charge, but it is very important 

in surface chemistry and wetting and is responsible for the existence of water in 

liquid form. 
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1.2.3. Hydrogen bond (Ionic bonds) 

The hydrogen bond can be considered electrostatic or ionic in character. The 

hydrogen is usually attached to an acidic group typically a hydroxyl, carboxyl, 

amine or amide group. The other group could be basic usually oxygen such as 

carboxyls, ethers or hydroxyls or nitrogen such as amines and amides. The 

association of such polar liquid molecules as water, alcohols and hydrofluoric acid 

results in polar polymers such as nylon, cellulose and proteins because of 
hydrogen bonding (Ellison et al 1954a and b). Only fluorine, nitrogen, oxygen and 

occasionally chlorine have sufficient electronegativity to form hydrogen bonds 

(Weinschenk 1989; Figure 1.5). 

Figure 1.5. The polar-covalent bond of water. Hydrogen bonding 
is essentially electrostatic in character and relatively 
weak. When hydrogen is bound to an electronegative 
atom, such as oxygen, nitrogen or fluorine, the 
bonding electron is strongly displaced. This leaves a 
partial positive charge on hydrogen and a partial 
negative charge on the hetero-atom. Although such 
bonds are weak, they are important in ordering the 
arrangements of molecules in solutions. 
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1.3. Solid[Liquid Interactions 

1.3.1. Intermolecular Forces 

There is a difference between the intermolecular forces in the interior and at the 

surface of substances. They are known as the cohesion forces and the adhesion 
forces respectively (Dabezies et al 1984). The intermolecular forces however, 

consist of cohesion forces and adhesion forces that function between the molecules 

of substances. These attractive forces are the result of the interaction of fluctuating 

electric dipoles with the induced dipoles. They contribute to the cohesion in all 

substances with the magnitude of the intermolecular force depending on the type of 

material and its density. In the case of mercury, the inter-atomic force involves 

cohesion forces and the metallic bond, while in water, they comprise adhesion 
forces and dipole interactions (hydrogen bond). 

1.3.1.1. Cohesion Force 

Forces acting on the same types of molecules are called cohesive forces. If a drop 

of mercury is placed on a glass surface, for example, it retains its spherical shape. 
The molecules of mercury have a greater attraction for similar molecules of 

mercury and are less strongly attracted to the dissimilar molecules of glass (Figure 

1.6a). The stronger the cohesive forces between molecules in a liquid, the higher is 

the surface tension (see 1.3.2). 

High Cohesion High Adhesion 
Low Adhesion Low Cohesion 

a 

100 

Figure 1.6. Cohesion and adhesion forces: a drop of mercury on glass and 
ba drop of water on PMMA material Dabezies et al 1984. 

MERCURY 

GLASS 

b 
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1.3.1.2. Adhesion Force 

Forces acting on the molecules of two different substances are called adhesive 

forces. If a drop of water is placed on a polymethylmethacrylate (PMMA) for 

example, it spreads partially over the surface because water molecules, in addition 

to their attraction to other molecules of water, also have an attraction to molecules 

of PMMA (Figure 1.6b). The wetting of a solid by a liquid implies the adherence 

of the liquid to the solid despite the cohesive forces holding the liquid together 

(Gray, 1966). Blue (1966) and Fowkes (1968) calculated the adhesion forces 

through the wetting angle and stated that the adhesive forces increase as the 

contact angle decreases. 

Rankin, et al (1970a) defined wetting in terms of the work of adhesion (Wa) and 

the work of cohesion (WC). Work of adhesion contains three terms, the first is due 

to dispersion forces and can be expressed in terms of dispersion components of 

solid surface tension (Ys) and liquid surface tensions (YL), the second term is due 

to forces arising from surface polarity and third is due to surface ions. The 

formulas below express the association between work of adhesion and work of 

cohesion: - 

Wa-= Ys = 7L -YSL 

Wa ý7 (1 +COS 0) 

Wa = Wc when 0= 0' 

Wa = Wc/2 when 0= 90' 

Wa = 00 when 0 =1 80' 

1.3.2. Surface Tension/Surface Energy 

(1) 

Surface tension is the tension force developed on a liquid surface as a result of the 

asymmetric molecular interactions to which molecules in the surface are subjected. 

In the interior of a liquid (drop), each molecule is surrounded by others. Since it is 

subject to attraction in all directions, the molecular forces cancel each other out. At 

the surface however, conditions are quite different (Figure 1.7). 
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The molecules at the surface are attracted to each other and to the molecules 

beneath, although there is no outward attraction to balance the inward pull. 

Hence, each surface molecule is subject to a strong unopposed inward pull. Due to 

this inward pull, the surface molecules continuously attempt to enter the interior 

bulk of the drop, lowering the surface area to contract until it reaches a minimum 

size for a given volume and no more molecules will fit into the interior of the drop. 

For a given liquid volume, the minimum surface area is achieved by assuming a 

spherical shape. 

1ý4 

44 

Figure 1.7. The surface tension of a liquid drop. Inward pull of 
surface tension results in a spherical shape. 

Rocher (1975) suggested that the molecules on the surface have an excess amount 

of potential energy compared with the molecules in the bulk. The potential energy 

per unit area was called the surface tension or surface free energy. When a liquid 

volume changes, work being carried out to expand or deform the surface. Since 

work must be undertaken, energy is present (surface tension, Figure 1.8). 

28 



Chapter 1. Introduction 

SURFACE TENSION LAYER SURFACE MOLECULES LAYER 

INTERMOLECULAR 
BOND 

Weaker 
Balanced 

-+ Pull *- 

Unopposed 
Inward Force 

All 
Bulk 

Molecules 

Figure 1.8. The attractive forces between liquid molecules of a 
homogeneous liquid and the contrast between surface 
molecules and interior (bulk) molecules. The surface 
tension of a liquid is created by the unopposed pull of 
surface molecules. The surface has higher potential 
energy than the bulk molecules. 

Good (1977 and 1979) stated that work (energy) is required to bring molecules 

from the interior phase into the surface region to form the liquid. Hence, the 

surface molecules have free energy. For this reason, he preferred the term, surface 

free energy to surface tension. Rocher (1974) explained the surface tension as 

'potential electronic charges between the molecules'. He pointed out that two 

molecules vigorously repulse each other if they are brought too near to each other, 

but attract each other if they are separated. 

1.3.3. Surface Tension Measurement 

Surface tension can be measured by several methods. Rayleigh (1890) measured 

the surface tension independent of contact angle using a ripple method in which 

Unopposed 
Inward Force 
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short waves travel over the surface of a liquid. The relationship between surface 

tension and the contact angle was established as early as 1805 by Young, who 

calculated the surface tension through the measurement of the contact angles 

(Kirkwood et al 1949, see Chapter 3 to measure the surface tension through the 

contact angle). He showed that the difference between the solid surface tension 

and liquid surface tension are given by: - 

(ys - yi, ý Ysi, COS Oe) (2) 

Where YsI, is solid/liquid interfacial tension of solid/liquid and 0. is the equilibrium 

contact angle (Figure 1.9a). 

Air 

Solid 

Liquid 
Solid/liquid 
Interfacial Tension 

Figure 1.9a. The liquid/solid/air interface. 

Sulman ( 1920) investigated the cause of discrepancies between recorded values of 

surface tension. He found that certain variations were because of conditions when 

measuring the contact angle (Advancing and Receding). MacDugall et al (1941) 

measured the surface tension of liquid using the equilibrium of a drop on a tilted 

plate. They suggested that the correct contact angle is the mean of the advancing 

and receding angles. (Figure. 1.9b). The surface tension was then calculated. 

(COSOA - COSOR) = Apg sin a 

Where p is the density, g is the acceleration of gravity, 7 is the surface tension of 

the liquid, cc is the angle of tilted plate and A is area. 

30 



Chapter 1. Introduction 

Figure. 1.9b. The equilibrium forces on a drop resting on an inclined 
plate (MacDugall et al 1941). 

The surface tension of a pendant drop was calculated by measuring the dimensions 

without evaluating the contact angle (Fowkes et al 1940; Matijevic 1969, Goods 

et al 1979 and Ambwaniet al 1979; Figures 1.10 and 1.11). It is claimed that the 

method is very accurate and the measurement may be made rapidly, although 

measuring the surface tension of substances was found to be one of the useful 

procedures to obtain the contact angle (see later, Figures 1.12 and 1.13, Osipow, 

1962, Staicopolus, 1962 and Hattori et al, 1978). 

CONDENSING 
LENS - 

FOCALPLANE MICROSCOPE 
OBJECTIVE 

DROP 

PENDANT DROP CELL 
AND SYRINGE 

t LIGHT 
SOURCE 

Figure 1.10. The pendant drop method device to measure the surface tension. 
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Figure 1.11. A schematic diagram of a pendant drop to measure dimensions 
to calculate the surface tension (Goods et al 1979). 
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Figure 1.12. Liquid surface tension against the contact angle for various 
fluorinated polymers (Osipow, 1962). As the surface tension of 
the liquid decreases, so the contact angle on the surface reduces. 

32 



Chapter 1. Introduction 
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Figure 1.13. The liquid surface tension against the cosine contact 
angle for various materials (Osipow, 1962). 

1.3.4. Critical Surface Tension 

The critical surface tension (y. ) is defined as the value of liquid surface tension 

below which liquids spread on a given solid (Zisman, 1964). When a liquid with a 
low surface tension is placed on a solid with a strong surface energy, the liquid will 

spread on the solid, as the system works towards equilibrium. The effective surface 

energy thus attracts and fixates the liquid. If the surface tension of the liquid is of 

the same order or higher than the critical surface tension of the solid (such as an 

organic solid), the liquid will not spread but will form drops, such surface will be 

non-wetting. 

Jarvis et al (1964) reported that the ability of an aqueous solution to spread on a 

low-energy surface depends not only on the critical surface energy value of the 

surface but also on the concentration of different wetting agents that must be 

dissolved in water to depress the surface tension of water (Figures 1.14 and 1.15). 

The relationship between the critical surface tension and wettability was also 
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investigated by Shaffin et al (1967), Holly et al (1971a) Larke et al (1973) and 
Braudo et al (1974). The values of the critical surface tensions of several liquids, 

including fluorinated alcohol and water, have been determined by using contact 

angle methods (Zisman, 1964; Dann, 1970). 

to 
0 

4 to 
U 
I- 

SURFACE TENSION OF SUBSTRATE LIOUID 

Figure 1.14. The relationship of the critical surface tension for spreading 
with the surface tension of some liquids (Zisman, 1964). 
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Figure 1.15. The contact angle related to the surface tension of inert liquids. 
Liquids with surface tensions below the critical surface tension 
will spontaneously spread over the surface, forming a contact 
angle of 0" (Jarvis and Zisman, 1964, Tighe 1976). 
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1.3.5. Interfacial Tension 

When a liquid wets a solid, in addition to the unopposed inward attraction of the 

surface molecules of the liquid, the attraction forces of the other molecules must be 

considered (see 1.3.1.2). This changes the balance of the forces, with the surface 

molecules of the drop attracted inward by the molecules of the bulk, and also 

outward to the material surface. This lessens the excess energy of the liquid surface 

molecules. This new lower surface energy, or modified surface tension, is called 

interfacial tension (Figure 1.16). 

There does not appear to be any method whereby YSL can be determined by direct 

experiment, so that the relation between YSL and the parameters (ý) YS and YL has 

received a lot of attention. If the surface molecules of the liquid are held tightly in 

place by cohesive forces, the liquid will have a high surface tension, hence, low 

interfacial forces, depends upon the second phase (Good 1977): 

YSL: YS+YL -2ý(YSYL)12 
(4) 

In this case, the liquid tends not to spread over a solid surface. In other words, 

there is minimal interaction between the surface molecules of the liquid and those 

of the solid. As a result of the interfacial tension, the wetting will be poor. Thus, 

the key factor is the interaction between the surface molecules of the liquid and 

those of the solid. 

Good (1979) evaluated the magnitude of the adhesion force contribution to surface 

energy in many liquids and solids by measuring interfacial tension and contact 

angles. Li et al (1992) reported that the adhesion and interfacial bonding are 

closely related to the involved energy. They strongly supported the existence of the 

localised chemical bonds at the inter-face as a result of the electron transfer at the 

interface. Shuttleworth et al (1948) stated that the equilibrium position of the liquid 

depends not only on the surface energies of the liquid, solid and solid-liquid 

interface, but also on such factors as, surface roughness (see chapter 3) and the 

way in which the liquid is placed on the solid. They also reported that there was no 

general agreement about the magnitude of the solid/liquid interfacial tensions. To 
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enhance wetting, therefore, either the cohesion forces within the liquid or the solid 

need to be lowered and or increased adhesion forces. This will result in a lower 

interfacial tension (Souheng, 1971 and Baker et al, 1977). 

INTERFACIAL TENSION 

[I 
a --Ibh. 44)WW-C 

SURFACE TENSION LAYER 

Unopposed 
Inward Force 

Q-WqL 

SURFACE TENSION 

INTERMOLECULAR 
BOND 

I 

Weaker \4 
Balanced Solid 

s pull Molecule""' 

Figure 1.16. The interfacial tension and surface tension in a 
solid/liquid/air interface. 

1.3.6. Surface Hydrophilicity 

Surface hydrophilicity (surface attraction) can be defined as the ability of a material 

surface or a contact lens surface to attract a water. The values can be measured on 

both rigid and soft contact lenses directly. It could be influenced by several factors. 

See Chapter 6 for the novel measurement approaches, experiments and discussion. 

See 2.4.4 for material's hydrophilicity (Tighe 1989). 
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1.4. Wettabilitv 

When a liquid covers a solid surface, there is an adhesion force between the solid 

and the liquid. This phenomenon is called wettability, and a variety of definitions 

has been documented (Krezanoski 1963). It can be defined as the ability of a solid 

surface to cause a liquid placed on it to spread and maintain a stable liquid film. 

A solid can be classified as wettable if water spontaneously spreads on its surface. 
Feldman (1977) pointed out that surface wettability is a function of surface energy, 

while Ellison et al (1954a) defined normal wetting behaviour as resulting from 

forces of adhesion at the solid/liquid interface. Adam et al (1934) suggested that 

"the contact angle between a liquid and a solid is a measure of the wettability. 

Contact angle measurements represent one of the oldest techniques for studying 

solid surfaces and the most convenient of which have been reported to measure the 

contact angle (Pethica, 1961; and Elliott et al, 1964). The wetting angle is defined 

as the angle between a tangent to the liquid/air interface and liquid/solid interface 

measured at the solid/liquid/air interface point (Macdougall et al, 1942). It was 

suggested that the contact angle measurements were more applicable than any 

other technique (Neumann, 1974) and may be used to assess the wettability of any 

type of solid, although there are some limitations on soft contact lens surfaces. 

The relationship between the contact angle and wettability is that the greater the 

contact angle, the less wettable is the test material, while the lower the contact 

angle, the more wettable is the test material. The contact angle and wettability are, 

therefore, relatedto one another. If a strong interaction exists between the liquid 

molecules bathing a material and the molecules of a test material, the liquid will 

spread over the surface, resulting in a low contact angle. If, however, there is only 

a weak interaction between the liquid and the surface, the liquid does not 

successfully cover the surface and remains beaded on its surface, which results in a 
high contact angle. In other words, wettability is a reflection of the relative 
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strength of the interaction between liquid molecules and the molecules of the test 

material. 

The wetting angle has been used as a quality control to detect material variation 

and accuracy during materials processing. Lippman (1989) stated that the contact 

angle between the liquid and a solid surface should give a quantitative 

measurement of the polarity of that surface. Measurement of the wettability to 

characterise solid/liquid interaction has a long and controversial history (Johnson et 

al, 1969). Young (1805) linked the wettability to surface energy. The measurement 

also demonstrated liquid penetration into a solid and liquid displacement. 

Theoretically, wetting angles can be determined through a knowledge of the 

chemical bonds. Uncertain experimental values of the contact angle and conflict 

over theoretical interpretations were reported by Johnson et al (1969). 

Shuttleworth et al (1948) reported that the spreading of a liquid over the surface of 

a solid is a complex phenomenon because of influencing many factors (see later 

Zisman, 1964; and Andrade et al, 1979; Adamson, 1982), while Good (1979) and 

Gregonis et al (1982) believed that the contact angle is one of the techniques 

capable of assessing polymer-water interactions and it is extremely sensitive to 

surface energy, surface roughness contamination and heterogeneity. 

Tadros (1978) defined the spreading coefficient as S=7Lv (COS 0- 1). (5) 

Where YLv is the surface tension of the solution and 0 is the contact angle of the 

drop on the surface. He showed the variation of S with surfactant concentration. 
Wettability was connected with the adhesion and cohesion forces, as noted in 

section 1.3.1.2 (Ondarcuhu 1992), and as a result of these forces, it is possible to 

obtain complete wetting, partial wetting or non-wetting: - 

a. Complete Wetting. In complete wetting, the liquid surface tension and 

interfacial tension and also the solid surface tension are low; thus the contact angle 
is zero. An example of complete wetting is the spreading of oil over glass, as 

shown in Figure 1.17. a (Andrade, 1980). 
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0=00 

SOLID 

a. Complete wetting. The contact angle is 0'. 

b. Incomplete wetting or/partial wetting. The contact angle is between zero and 90' 

c. Non-wetting. The contact angle is greater than 90'. 

Figure 1.17. Complete wetting, incomplete wetting and non-wetting. 

b. Incomplete Wetting or/Partial Wetting. The liquid surface tension is too 

high or the solid surface tension is too low, so the liquid does not spread fully over 

the solid. An example of partial wetting is the spread of a sessile drop on PMMA 

material (Owens et al 1978 and Lamberts et al, 1984). Rankin et al (1970) Lemp 

et al (I 970b) described incomplete wetting when the contact angle is between zero 

and 90' (Figure 1.17. b). 
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c. Non-wetting. When the liquid surface tension is very high and/or the solid 

surface tension is low, the liquid does not significantly wet the solid, for example 

Teflon. Contact angles greater than 90' are described as non-wetting (Figure 

1.17c; Rankin et a], 1970; and Andrade, 1980). 
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1.5. Wettabilitv of Contact Lens Materials 

1.5.1. Contact Lens History and Materials Development 

Leonardo da Vinci was, apparently, the first person to conceive of neutrallsing the 

cornea by replacing it with a new refracting surface, thus suggesting the concept of 

corneal correction and replacement with contact lenses. According to Mandell et al 

(1953), Da Vinci "sketched and described several forms of contact lens" in 1508. 

One was made by cutting little round ampoules of glass into two, one of tile halves 

to be filled with water, to look through only one eye (Figure 1.18). 

a 

b 

Figure 1.18. a. The concept of corneal neutralisation by a hollow glass 
serni-spheroid filled with water (Da Vinci), b. 'rhe first 
contact lens described by Descartes ( 1636). 
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Descartes (1636) described and illustrated a contact lens as one method to correct 

vision. He employed a tube full of water, like a cornea, against the eye, after which 

the refraction at the entry of this eye ceased (Figure 1.19. b). Young (180 1) used a 
double convex lens with water in his eye and found changes in eye refraction 'to 

presbyopic'. Herschel (1823) suggested that the irregularity of the cornea would be 

adapted by a lens on the eye of nearly the same refractive power. 

Fick (1887) described the first contact lenses with known refractive power. The 

lens was made of a thin glass which was 'the only suitable material at that time' to 

protect a cornea from desiccation due to lagophthalmos. Glass had many obvious 
limitations that would make it impractical for contact lenses, although it was used 

successfully for many years (Mann, 193 8). 

According to Mandell (1953), Feinbloorn (1936) was the first person to utilise 

PMMA material for contact lenses. It had many advantages over the glass lens in 

manufacturing and clinically. In 1948, Nugent began to manufacture PMMA 

corneal lenses instead of glass. PMMA then became the standard material for 

contact lenses. 

Although there were changes in lens design following the introduction of PMMA, 

relatively little consideration was given to the material itself until the arrival in 

1960 of a new category of plastics called 'hydrogels' (Wichterle and Lim). 

Wichterle and Lim (1960 and 1961) patented hydrophilic gels (soft material) for 

medical use, in which the hydrophilicity of the polymer plays an important role. 
According to Rosenberg et al (1960) poly Hydroxyethylmethacrylate (pHEMA) is 

transparent with up to 40% water content and beyond that are turbid (Schwartz 

1987). Hard lens manufacturers modified or "cross-linked" PMMA to reduce the 

wetting angle and, therefore, increase the wettability of the lens surface (Aquavella, 

1976; Goldberg, 1979; Wyckoff, 1980). Oxygen availability via the tears increased, 

and a greater initial comfort and longer wearing time was obtained by enhancing 

wettability. 

The first gas-permeable rigid lens was made of cellulose acetate butyrate (CAB). It 

was fabricated from naturally occurring materials: cellulose from wood and cotton, 
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acetic acid from vinegar and butyric acid from natural gas. There are now many 

variations of CAB for use in industry. The wetting angle of CAB lenses has been 

reported to be lower and higher than PMMA lens (Gasson, 1981). But problems 

reported with CAB lenses include instability (Sarver et al, 1978), corneal oedema 

(Hill, 1977a); deposits (Seidner, 1987 and Maskell, 1981), scratches (Clark et al 

1993), flexure and patient discomfort (Cappelli, 1982 and Fowler et al, 1990). In 

1982, Bames-Hind introduced a lathe-cut surface treated of CAB II to overcome 

the problems. 

Silicone acrylate lenses were introduced to practitioners in 1978, consisting of 

copolymers of siloxanyl-alkyl-methacrylate (siloxane acrylate, commonly called 

silicon/acrylate), silicone resin, styrene acrylate, fluorocarbon polymer and styrene 

acrylate siloxane. Silicone has excellent oxygen permeability characteristics but by 

itself is limited by its wettability (Espy 1978, Yang et al 1983, Lindridge 1989, 

McLaughlin 1989). There are several problems with silicone acrylate. One, which 

is related to wettability, is 'subjective dryness' Sarver et al (1978) reported that 

dryness and redness are possible because of its poor wettability, while Pole et al 

(1987) stated that there is a tendency for the lens surface both to attract protein 

and lipid deposits as a result of the surface low wettability (Wilsher, 1982). 

The further development of high oxygen materials with Dk values significantly 

higher than those of soft contact lens materials has resulted in contact lens wear 

with minimal corneal oedema (Barr et al, 1989). These have a wide range of gas 

permeability and surface wetting properties. 

Boston II silicon/acrylate lens is composed of a methylmethacrylate- 
dimethylitaconate siloxanyl material that was claimed to be inherently wettable and 

as dimensionally stable as PNUVIA (Barr et al, 1984). Silificone A is made from a 
100% silicone resin material and is lathe cut and then surface treated to render the 

surface wettable. The manufacturing process can result in a lens that has wettability 

problems, the patient and practitioner need to handle the lens with care to avoid 

scratching, which will cause the scratched surface area to become non-wettable. 
The lens is bottled in liquid to assure optimum wettability. Dehydration usually 

reduces the lens wettability, although the treated lens, after drying, is still more 
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wettable than the Polycon II lens (Bailey 1960, Benjamin et al, 1983). The main 

disadvantage of the lens is the polishing after manufacturing, which may result in a 

non-wettable lens surface. It has been documented that some patients with dry eyes 

may be able to wear silicone treated or silicone rubber contact lenses because of 

their highly wettable surface (Barr et al, 1981 and 1984; Woodward, 1984; 

Kossmehl et al, 1988). 

The Menicon contact lens was made of silicon/acrylate that was surface treated 

(Maskell 1981, Port 1985 and Benjamin, 1992a). It has been claimed that the 

cleaning effect on the lens surface aligns the molecular structure of the surface, 

resulting in effective wettability (Mackeen et al 1992), although 3 and 9 o'clock 

staining have been reported in 25 out of 80 fittings (Philipp et al, 1984; Barr, 

1988). Fluorinated contact lens materials recently dominated the industry regarding 

the higher Dk and the enhancement of wettability (Lippman 1990). These 

characteristics were changeable according to the amount of fluorine and the 

manufacturing process (Jacob 1989, Lembach 1990). Comprehensive research by 

scientists, has produced a wide range of contact lens materials with various 

properties that are available to practitioners. 

1.5.2. Contact Lens Wettability In vivo 

Assessment of contact lens wettability in vivo was recommended by several 
investigators, but a majority of workers still believe that wettability measurement in 

vivo, evaluate the tear film of the individual patient, and not the assessment of 

contact lens materials' wettability. Isaacson et al (1989) and Davis (1994) 

evaluated and assessed the contact lens wettability in vivo using various methods, 
including tear film analysis, pre-lens tear film analysis, non-invasive tear break-up 

time (TBUT), tear drying time, tear thickness and lipid presence (Loveridge, 1993; 

Lemp, 1973 and Douthwaite et al, 1992) and corneal oedema (Fink et al, 1993). A 

significant individual variation was observed because of the difference in quality of 

tear production. Recent documents showed that different contact lens wettability 

can be observed clinically in the same PMMA wearer (Hill, 1995). Tear wettability 
for a particular eye is not a single value for the same patient, but also depends on 
the environment, age, diet, medications and the health of the eye. Even changes of 
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blink frequency and eye orientation may affect the tear wettability (Lemp 1973; 

Hill et at, 1975; Hill et at, 1976; Terry et al, 1978; Benjamin et al 1986; Caffery 

1989 and Tomlinson et al 1991 and 1992). 

Several investigators studied in vivo wettability using an interferometric method 
(Lydon et al, 1984; Guillon, 1987; Guillon et al, 1990). The latter demonstrated 

that a thin lipid layer is usually present on the front surface of the soft lens tear 

film. In the case of PMMA corneal lenses, a lipid layer in the pre-lens tear film was 

rarely detected, with similar results recorded by Hill (1977b). Carroll et al (1994) 

and Pole et al (1987) used TBUT on the front surface of different rigid gas- 

permeable (RGP) lenses and stated that the surface chemistry of RGP lens 

materials might cause lens surface drying, the accumulation of debris on the 

surface, peripheral corneal staining, lens discomfort and visual problems. 

Bagnall et al (1980) used the contact angle method in vivo and reported that 

measurement is not sufficient to estimate and speculate on protein absorption. 

Bourassa and Benjamin (1987) utilised the in vivo 'relative sessile contact angle' 
(RSCA see Chapter 3) and found a significant variation in wettability. Yeager et al 
(1987) used the sessile drop method on several different rigid contact lens care 

regimens and reported a reduction of in vivo contact angles to nearly zero. 
Finnemore et al 1980 and Finnemore (1984) analysed the contact lenses in vivo by 

lens surface drying and patients' comfort, stating that the lower the wetting angle, 

the more comfortable it was. Benjamin et al (1983) and Rankin et al (1970) 

however, stated that post-wearing wettability is most accurately predicted by the 

wetting angle measurement carried out immediately after wear. 

Fonn et at (1988), Bennett et at (1988) and Morgan et at (1992) utilised the 
indirect measuring of contact lens wettability as another method of evaluating the 

wettability. They compared the comfort and vision quality of RGP Boston IV with 
Bausch and Lomb (B & L) hydrogel contact lenses. Non-wetting contact lenses are 

uncomfortable and wearers experience reduced visual acuity because of the 
disrupted tear film on the surface. The later stated that controlling polish and tool 
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pressure during contact lens manufacturing did not affect contact lens wettability in 

vivo. But Herskowitz (1989) used photoelectron scanning chemical analysis 

technique and stated that over polishing or dry polishing fluorinated contact lens 

materials results in frictional heating of the lens surface with associated chemical 

changes of decarboxylation and defluorination which manifests as an affinity poor 

wettability. Surface wettability was also evaluated with the biornicroscope by 

measuring tear coverage over the lens at each time interval blink (Feldman, 1977; 

Bourassa, et al 1989; Vaghmaria, 1993 and Hatfield, et al 1993). They stated that 

the surface wettability of all contact lens materials is particularly important for both 

patient comfort and vision, with a5 to I scaled evaluation being: 

5= Tear film regular and smooth for all the lens surface, no break-up of tear 

film between normal blinks. 

4= Tear film regular and smooth, and there may be areas of thin or irregular 

tear film with less than 25% of the total lens surface being non-wetting. 

3= Tear film thin and irregular, with 25-50 % of the total lens surface being 

non-wetting. 

2= Tear film thin and irregular, with 50-75% of the total lens surface being 

non-wetting. 

I= Tear film does not wet the lens surface. 

1.5.3. Contact Lens Wettability In vitro 

Fatt (1990) stated that there are clearly dozens, if not a multitude of combinations 

of the factors controlling the tear film in the living eye. The in vitro contact lens 

wettability measurement helps in identifying the interactions by allowing variations 

of one component at a time. The in vitro results are therefore, more accurate. It is 

one useful method in detecting several defects (see 1.5.6, Holly 1983a and b). 

Holly (1978) related the receding wetting angle in vitro to in vivo wettability. The 

lower the receding wetting angle (see Chapter 3), the stronger a material will try to 
keep an aqueous layer associated with it. In general, the more wettable the 

material, the thinner a film can be on a surface before it spontaneously ruptures, 
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with the result that a material with a low receding angle may be more suitable for 

patients in hot and dry environments. 

Holly (1983b) stated that the advancing contact angle is a poor indicator of surface 

wettability. The values on PMMA reported between 73'-90' and there is no 

agreement on the current methods, although Ong (1976) suggested that the sessile 

drop method is preferable to the captive bubble method, which only gives receding 

angles. 

In most contact lens materials, there is a varying ratio of polar to non-polar groups 
in the molecules. As the relative ratio of polar groups increases, the surface 

molecules of the polymer will have a greater tendency to interact with the surface 

molecules of a liquid. Because of this interaction, more adhesion occurs between 

the liquid and the materials, which in turn, reduces the interfacial tension and so 

enhances wetting. The wetting angle measurements evaluate both chemical and 

physical effects, processing and environmental factors. The development of these 

sophisticated polymers is stimulated by three major objectives (Feldman 1981 and 

Feldman et al, 1987): 

1. To increase oxygen permeability. 

2. To increase wettability and resistance to deposition mucous adhesion to 

the point at which lens spoilage no longer occurs (Knop et al 1992). 

3. To increase the comfort level to that of a soft lens while maintaining the 

physical and dimensional stability of a rigid lens. 

Wettability of polymers can be enhanced (see Chapter 2) by changes in the 

formulation or surface treating of the final product. Both methods try to place 

wettable groups on the surface to counteract the unwettable nature of the bulk 

formulation (Refojo 1984). These monomers fall into three types: acidic, basic or 

neutral compounds. Familiar neutral monomers include 2-Hydroxyethyl- 

methacrylate (HEMA) and N-vinyl-2-pyrrolidone (NVP). Acidic monomers 
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include simple unsaturated acids, such as acrylic and methacrylic acid, while basic 

monomers include simple unsaturated amines, such as aminomethacrylates. 

Andrade et al, (1982) suggested that polyacrylate silicone appear to be unwettable 

in air and wettable in water and is able to absorb water reversibly into their 

surfaces, which can be explained by surface mobility. Initial contact angle 

measurements (Captive bubble method) of Polyacrylate silicone are typically 60'- 

701 (Andrade et al, 1982). When placed in water, the surface slowly becomes 

wettable, and after a week, contact angle measurements were at 20'-30', 

indica ting improved surface wettability (Poster, 1978a and Benjamin, et al 1983) 

and permanent loss of wettability will occur after several hours of dehydration 

(Madigan et al, 1986). These results suggest that the measurements need to be 

carried out in a hydrated condition. 

Such properties as elasticity, optical clarity, hardness, wettability and gas 

permeability are maximised by a judicious choice of monomers and methods of 

polymerisation. As materials that contain a high percentage of unwettability 

silicone containing monomers are non-wettable, they require surface treatment, 

coating, grafting and free radical initiated polymers. Because these techniques 

result in surface modification it is possible that even slight changes in the surface, 

such as scratches or rigorous cleaning, will adversely affect its wettability. These 

have not been successfully prepared as inherently wettable materials because of the 

type of polymerisation process (step growth and condensation; Flory 1953; Mark 

et al 1979, Olson, 1982 a and b). 

An 'ideal' solid surface would be homogeneous and at the molecular level. Most 

surfaces are heterogeneous, although surfaces that have not been careffilly 

prepared and preserved are usually heterogeneous or become contaminated non- 

uniformly (Good, 1979). The heterogeneous nature of common surfaces may arise 

from at least three causes- 

a. The material has a different chemical composition. 

b. Essential components of the material may be impure. 
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c. A difference in the density of atom packing in separate planes, which leads 

to different energies of cohesion and, hence to varying values of solid 

surface tension. 

d. Different kinds of molecular groups exposed in separate planes (Good, 

1979). 

Fowkes ct al (1940) reported that of all the known methods for determining the 

contact angle, the tilting plate was chosen as the most effective for cases in which 
it can be employed. The main requirements for an accurate measurement of 

contact angles by the tilting plate method are three-fold (it is not applicable for 

contact lenses, see Chapter 3): 

i. The surface of the liquid must be kept clean while measuring the contact 

angle. 

ii. The observed edge of the solid-liquid intersection must lie on the axis of 

rotation of the solid surface. 

iii. There should be a mechanism to move the slide up and down in the 
liquid and parallel to the length of the slide. 
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1.5.4. Contact Lens Wettability: Clinical Implications 

The wettability of all contact lens materials is important for patient comfort, 

corneal integrity and excellent visual acuity (Holly et al 1971b). Wetting alteration 

could change the oxygen-permeability of lenses as a result of hydration, 

dehydration and the lens surface desiccation (Benjamin et a, 1983). Bier et al 
(1980) reported that, if the surface of the contact lens does not wet properly, the 

lens will be uncomfortable and will reduce visual acuity from a disrupted tear film 

on the lens surface. Wetting changes can affect the quality and quantity of the 

surface deposition, and the alteration of the contact lens wettability can influence 

the movement of the contact lens in vivo, and the duration of contact lens wearing. 

The wettability of a contact lens is important to the clinician in selecting the 

appropriate lens material for patients. Ideally, clinicians should be able to analyse 

the possible changes in wettability as a result of an alteration in environmental 
factors which could be the key behind successful contact lens wearing (McMonnies 

1991). Lakkis et al (1993) surveyed 11 properties of RGP materials: wettability, 

Dk, strength, machinability, deposit resistance, durability, vision, range of tints, 

availability, cost and rigidity/stability. Manufacturers viewed rigidity, stability and 

wettability as the most important, with vision, Dk and deposit resistance also rating 

highly. Practitioners emphasised the significance of rigidity, stability, Dk and 

wettability respectively. 

Madigan et al (1986) stated that measurement of the in vitro wetting angle of even 

a soaked or hydrated lens provides, at best, an index of the wettability of the 

material itself It is suggested that a better estimate of the wetting performance of a 
lens would be obtained by measuring the lens wetting angle after it has been wom 
(Madigan et al, 1983), but some contact lens fitting sets, which are available in the 

practitioner's offices, are based on the lens design (and not the materials), that 

limits measurement only to available fitting set materials. This limitation of the 

material of fitting sets directly or indirectly leads the practitioner to fit the contact 
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lenses on the basis of in vitro values. The only method, therefore, of predicting the 

lens wettability is through in vitro measurement (Taylor 1979). 

Some relatively high wetting angle materials, such as PMMA, perform adequately 

if a wetting solution is employed for insertion, as the tear film then forms over the 

wetting film. But with some other materials, such as silicone, this will not happen 

unless a special coating is used. With low wetting materials, no auxiliary solutions 

or special coatings are necessary (Fitzgerald, 1983b). It is generally assumed that a 

low wetting angle is preferred to a high wetting angle (Woodward, 1984). Jho 

(1983) stated that wettability is a manifestation of interfacial energy involving the 

surface that not only gives a validity to wettability phenomena but also helps to 

find chemical bond energy between solid and material molecules. Naturally, 

laboratory measurements are not only necessary for research and development, but 

are also important for predicting clinical on-eye performance. 

Hoffman (1983a) discussed the nature of surface properties stating that one of the 

major problems identified was the need to develop reliable methods to characterise 

surfaces of bio-materials. Other documents, however, show that there is a 

significant variability in wetting angle types with each method of measurement (see 

Table 1.2. and Chapter 3, Hales 1982), and it is not clear which method most 

effectively describes the wettability of the various lens types (Sarver et al, 1984). 

Although there is some agreement among different workers, the extreme values 

vary widely, which is a result of the different procedures and conditions that are 

used by the investigators. Several factors have been identified causing contact 

angle variation. 

Wetting solution. Some materials, such as PMMA, have adequate wettability 

if a wetting solution is employed, after which the tear film forms over the 

wetting solution (Kokoski et al 1963; Zekman et al 1972; Gelner et al 1989). 

11. Treated contact lenses. Some contact lens materials, such as silicone, require 

a special coating to turn the unwettable surface into a wettable one (O'Brien 

et al 1965, Gesser 1967, Yasuda 1981, Feldman 1981, Yasuda et al 1982, 
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Fowler et al 1987, Ho et al 1988 and Laferla 1991). The coating lens surface 

quality, coating procedure and coating material need to be precise (the poly 

vinyl pyrrolidone and fluorine contents). Increased PVP at the surface result in 

higher wettability (Blue, 1967). 

No VARIATIONS 00 S. D. Reference 

1 24 hours in distilled water 90.0 - 
Fatt (1990) 

2 it of 59.0 2.0 Gregonis et al (1982) 

3 Air in water, Receding 49.0 2.0 Jho (1983) 

4 7 days in distilled water 45.5 0.5 Keates (1984) 

5 PMMA # C, In saline 45.3 3.6 Poster (1984) 

6 " #Blue In saline 41.6 2.9 Poster (1984) 

7 "#4, Lab E 28.0 0.5 Poster et al (1978) 

8 "#4, Lab B 25.3 1.2 Poster et al (1978) 

10 "#4 24.3 3.8 Anan(1979) 

II "#4, Lab A 19.0 0.7 Poster et al (1978) 

12 " Clear 18.3 0.5 Anan(1979) 

Table 1.2. Wetting angle values of hydrated PMMA materials using 
bubble techniques by various authors. 

III. Soft contact lens manufacturing. No auxiliary solutions, treating solution or 

special coatings are necessary with hydrated hydrogels materials, although the 

variation in hydrogel lens manufacturing produces different lens surface 

wettability (see 2.3). 

IV. Polymer manufacturing. More wettable contact lens materials (Rankin et al 
1970, Gaylord 1974 and Ewbank 1992). The main factor determining 

wettability appears to be the chemical structure of the polymeric network at 

the interface (Braudo et al, 1974). 
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V. Contact lens manufacturing, Such as polishing (Meszaros 1986, 

Herskowitz 1989) and Lens surface treatments (Gesser et al, 1965 and 1967). 

Several phenomena have been suggested as affecting the polymer structure or 

contact lens surface wettability. The measurement of wettability can, however help 

to determine the effects of :- 

1. Polymerisation quality and polymer impurity (Hattori et al, 1978; Keller, 

1980 and Jones 1994). 

2. Differences between manufacturing methods, such as moulding and lathing- 

polishing, 
3. Polishing quality. 

4. Surface treatment, such as coating. 

5. Contact lens care products. 

6. Contact lens spoilation. 

7. Contact lens ageing. 
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1.6. Purpose 

The purpose of this research is to: 

a. Introduce a method to prepare hydrated contact lens surfaces, to measure both 

rigid and soft contact lens wettability. 

b. Develop novel, straightforward techniques in vitro which are relevant to in 

vivo performance, to measure contact lens wettability. 

c. Measure and observe the wettability of both rigid and soft contact lens 

surfaces before and after wearing. 

d. Develop a new technique to measure the surface hydrophilicity of both soft 

and hard contact lenses. 

e. Measure and observe the hydrophilicity of both rigid and soft contact lens 

surfaces before and after wearing. 

C Study the effect of the length of time wearing contact lenses on the wettability 

and hydrophilicity of the contact lens surface. Variations in the values are the 

subject of part of this research. 

Establish the effect of the wetting solution on the contact lens surface's 

wettability and hydrophilicity. 

h. Investigate the effect of the manufacturing contact lens processes of lathe cut, 

cast moulded and spin cast on wettability and surface hydrophilicity values, for 

both rigid and soft contact lenses. 

i. Investigate standardising the current methods of sessile drop and dynamic 

contact angle (DCA) for both soft and rigid contact lenses. 
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2.1. Polvmers 

2.1.1. Introduction 

Polymer properties have been recognised as being important in the use of materials 
for contact lenses. Among these properties, the surface wettability and surface 
hydrophilicity have been found as important properties in material design and 

contact lens production as might be oxygen permeability (Table 2.1). Contact lens 

properties have been influenced by many factors, including the polymer material 

structures, type of polymerisation (configuration), kinds of contact lens 

manufacturing and contamination. 

Material Characteristics Eye-Contact Lens Function 

Oxygen Permeability Corneal Respiration 

Surface Property Corneal Respiration 

Tear Film Integrity 

Deposit Formation 

Mechanical stability Visual Stability and Comfort 

Table 2.1. The contact lens properties in relation to eye/contact 
lens function. 

2.1.2. Polymers Structure 

Contact lens materials are synthetic polymers, often called macromolecules, while 

the small molecules that become linked together by covalent bonds are known as 

monomers. Under appropriate conditions, the molecules (the monomers) combine 

with each other, creating long chains of repeating units, with the final result being a 
large molecule (macromolecule), that is referred to as a polymer, which can exist 

as liquids, hydrogels or solids (rubbery and glassy solids). 

55 



Chapter 2. Contact Lens Polymers 

The average number of monomers in the long chain is termed the degree of 

polymerisation (DP) and may be 100 to 10,000 for most materials, while the 

molecular weight of most polymers is between 10,000 and 1,000,000. Some 

polymers occur in nature, such as cellulose whereas other polymers are produced 

synthetically in the laboratory, example being PNUVIA that is linear polymer. 

Polymers can be classified in several different ways, according to their monomer 

arrangements there are five types of polymers (Figure 2.1): 

a. Linear Homo-polymer. The polymer can be a homo-polymer, in which only 

one type of monomer is used, and hence each repeating unit is the same. 

b. Linear Random Copolymer. When more than one monomer is present in a 

copolymer (a polymer formed by the simultaneous polymerisation of two or 

more monomers), which has two or more repeating units (GP 1989). These 

can be in random order, with relative frequencies depending on the 

concentration of the monomers and their relative reactivates. Repeating units 

can also be linked in a more orderly or non-random way. 

c. Alternating Copolymer. Where there are two different monomers with such 

chemical structures that one will react only with the other, an alternating 

copolymer is created. In other words, the monomers alternate in a fixed order. 

d. Block Copolymer. A copolymer can also be formed that has repeating 

sequences of monomers, in which one polymer chain of one type of monomer is 

joined to another polymer chain of a different type of monomer. 

e. Graft Copolymer, A copolymer is called a graft copolymer, in which one 

monomer is attached to a polymer of another monomer. 

The physical and chemical properties of a copolymer are different, depending on 

whether it is a random, alternating block or graft copolymer and the relative 

percentage of each monomer used. The addition of a small amount of a second 

monomer can differentiate the properties of a polymer from those that a homo- 
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polymer would normally possess. The structure of the polymer affects the physical 

and chemical property of the material, so that the polymer can thus also be 

classified by the shape and the structure of the copolymer. They are (Bier et al 

1980): 

(a) Linear hornopolymer 

CD 0 
(b) Linear random copolymer 

0 
oý 

(c) Alternating copolymer 

00(l) 
00 

(d) Block copolymer 

a 

0 

0 

0 

0 

(e) Graft copolymer 

Figure 2.1. Five types of monomer arrangements to form different polymers. 
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Branch Polymer; As it can be seen on Figure 2.2, there is not only a long 

chain but also connected branching of the same repeating structure. 

Cross-Linked Polymer; Where adjacent long polymer chains are connected 

to each other by side chains or molecules. Many (hydrogel) lens materials 

have this type of chemical structure (Figure 2.3). 

Figure 2.2. Branch polymer. 

Figure 2.3. Cross-linked polymer. 
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The geometrical arrangement of atoms in a polymer is important because it affects 

the properties of a polymer. Certain arrangements, often referred to as 

configurations, can not be altered unless chemical bonds are adjusted and, 

therefore, they are classified as (Refojo 1978, Figure 2.4): 

Isotactic. When a large proportion of the substituent side groups lies only on 

one side of a chain. 

Syndiotactic. When the substituent groups of polymer can alternately lie 

above and below the plane. 

& Atactic. When the substituent groups of polymer can be in a random 

sequence. 

Cis isomers. In this configuration, involved carbon double bonds prevent 

rotation around a bond and hold constituent side groups in fixed positions. 

When similar side groups are on the same side of the bond, it is called cis 

(Smith et al 1982a). 

Trans isomers. When similar side groups of cis are on opposite sides, it is 

called 'trans'. 

Polymers are often classified as either crystalline or amorphous (Figure 2.5. a 

and b): 

Crystalline polymers. They have a geometrically regular structure, are stiff 

are extremely resistant to chemicals and are tough, but have limited uses as 

contact lens materials because of poor optical qualities, such as Nylon. 

11. Amorphous polymers. Amorphous polymers do not have a regular structure 

and the polymer chains intermingle and are in random positions. Most contact 

lens materials are of this form. 
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Figure 2.4. Isotactic, syndiotactic, atactic, cis and trans polymer 
configurations (Bier et al 1980). 
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a 

b 

Figure 2.5. (a) amorphous and (b) crystalline form of polymers. 
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2.1.3. Polymerisation Methods 

2.1.3.1. Addition Polymerisation 

Addition polymers are formed through the reaction of the monomer units with each 

other. In the resulting chain therefore, the repeating unit has the same composition 

as the monomer from which it is derived. The monomer is usually a compound, 

with one or more carbon-carbon double bonds and it is subjected to an initiator 

(which is activated by heat or another form of energy), the double bond between 

the two carbon atoms is broken, resulting in a new compound with an unpaired 

electron on the end carbon atoms. This transient compound is the free radical of 

the monomer which combines with another monomer, resulting in another new 

compound. Again, an un-shared electron is present at the end carbon of the new 

compound, which combines with another monomer unit, forming yet another, 
longer compound with an un-shared electron on the end carbon through this 

addition of monomers, the polymer chain is propagated almost instantaneously. 

The growth of the polymer chain is terminated when the free radical is lost. 

Depending on the polymerisation technique, the growing chain may be terminated 

by recombination, disproportionation or chain transfer. Typical examples of 

addition polymerisation are the synthesis of PMMA, which could be polymerised 
by one of the following techniques: 

a. Initiator Materials. Several substances may be used to initiate (activate) the 

monomer to polymerise, for example, benzoyl peroxide. In the first step, a 
molecule of benzoyl peroxide, under the influence of heat, fragments to form two 
benzoate free radicals, in each of which the oxygen atom has an unpaired electron. 
The oxygen atom now seeks another electron to complete its outer orbital with 

eight electrons (Figure 2.6), while the benzoate free radical reacts with the MMA 

monomer, resulting in a free radical of MMA in the following way. The MMA 

monomer has a carbon-to-carbon double bond, in which the carbon atoms share 
four electrons (Figure 2.7), one of which becomes paired with the unpaired 

electron of the benzoate free radical, leaving three electrons. Two of these three 

electrons form a stable covalent bond between the carbon atoms, leaving one 

unpaired electron on the end carbon of the polymer. 
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Figure 2.6. Activation of the initiator (Benzoyl peroxide). Outer orbital 
of the oxygen atom has an unpaired electron. Benzoyl 
peroxide initiates the reaction in which a monomer of MMA 
becomes a free radical, and the Benzoyl peroxide molecule 
reacts with and is attached to the monomer of MMA. 
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Figure 2.7. Breakage of the carbon-to-carbon double bond. Electron dot 
representation. PMMA consists of a hydrocarbon backbone, to which 
one methyl group and one methoxycarboxyl group are attached. 

B. Addition of the Free Radical. The MMA free radical joins another 

monomer of MMA, resulting in a new intermediate compound that has an un- 

shared electron on the carbon the polymer chain is then propagated by the addition 

of new monomers of NUM, with the resultant chain possibly consisting of 

thousands of monomer units (Figure 2.7). 
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2.1.3.2. Condensation Polymerisation 

Condensation polymers are produced by the reaction of monomeric units with each 

other, eliminating a small molecule, such as water. Within the polymer, the 

repeating unit is different from the monomer from which it was derived which is 

because a molecule, such as water, was eliminated during the polymerisation 

process. For the reaction to occur, one monomer must have a functional group that 

can react with the functional group of a second monomer, such the hydroxyl group 
(-OH). Examples of condensation polymerisation include the formation of silicone 

and cellulose, with silicone being synthesised in the laboratory, while cellulose 

occurs naturally. 

Silicone (poly siloxane) results from the condensation polymerisation of monomer 

units of silanol. Initially, two molecules of silanol combine to form siloxane, and, in 

a further condensation reaction, siloxane combines with another molecule of 

silanol. The final polymer, poly (siloxane), is frequently used as a construction 

material for contact lenses ('Silsoft' and 'Silicon' manufactured by Bausch and 

Lomb). The polymerisation of the poly (siloxane) begins with a halosilane that is 

hydrolysed to form silanol, which is a very reactive monomer. (A halosilane is a 

compound composed of halogen atoms, a silicone atom, and alkyl groups. ) The 

condensation polymerisation of two molecules of silanol yields siloxane and water 

(Figure. 2.8a), and the siloxane molecule then combines with another molecule of 

silanol (Figure 2.8. b), which begins the formation of a long chain (polymer). 

2.1.4. Polymerisation Termination. 

Polymerisation can be terminated by a number methods: 

a. Recombination Method. This occurs when two free radicals meet, share their 

un-paired electrons, and so form a covalent bond between the atoms. As there is 

no longer an unpaired electron on the end carbon of the chain, polymerisation of 

the chain is completed (Figure 2.9). 
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Figure 2.8. The condensation polymerisation: a. the formation of 
silanol and b. the formation of siloxane, which is 
termed silicone polymer. 
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Figure 2.9. Termination of polymerisation by the recombination 
method, in which two unpaired electrons of two free 
radicals one shared. 

c. Disproportionation Method. The hydrogen atom and one of its shared 

electrons are extracted from the carbon-hydrogen bond of the next-to-last carbon 

atom. This leaves an un-shared electron, which then combines with the un-shared 
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electron on the end carbon, resulting in a double covalent bond. This terminates the 

polymerisation of the chain, and the hydrogen atom that was extracted with its 

single electron then combines with the free radical of another growing chain and, 

thus, terminates the polymerisation of the chain (Figure 2.10). 

HH HH HH 
IIIIII 

---'--' C-C. > ---'--' 

) --- C=C 
H 

HH 

C-C- 
HH 

Figure 2.10. Termination of polymerisation by the disproportionation 
method. 

b. Chain Transfer. The growing polymer chain, which has a free radical on the 

end carbon, pulls a hydrogen atom from another polymer chain (in which 

polymerisation has been completed). The polymerisation of the previous growing 

polymer chain is now complete, although chain in which polymerisation has been 

completed now has a free radical and grows again. As the hydrogen atom was 

transferred from one chain to another, the process is identified as chain transfer 

(Figure 2.11). 

H CH3 CH3 HH CH3 CH3 H 
IIIIIIII 

-, --C-C C -Ce + H-CT ---C-C - C-C-H +-CT 
IIIIIIII 
HH HH 

0 OCH 
3o 

OCH3 0 OCH 0 OCH3 

Figure 2.11. Termination of polymerisation by chain transfer. 
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2.2. Ri2id and Soft Contact Lens Materials 

2.2.1. Rigid Contact Lens Polymers 

PMMA is an amorphous thermoplastic, composed of linear-linked polymers (70-75 

per cent syndiotactic) of NUVIA. As can be seen in Figure 2.12, both methyl groups 
(-CH3) and carboxyl groups (-CH2-, =CO) are exposed at the surface of the 

surrounding liquid and that there are no free OH-groups. Oxygen of the carboxyl 
(=C=O) group has a relatively negative charge, and because water is a polar 

compound existing in a dipole state the hydrogen atom of water will be attracted to 

the oxygen atom of the carboxyl group, while is hydrogen bonding. In the 

carboxyl group, however, this hydrogen bonding is relatively weak, so only a 
limited amount of wetting occurs. Furthermore, as the methyl groups are non- 

polar, the water is not able to bind to these groups (Wyckoff 1980). The methyl 

groups act as neutral wettability surface (Figure 2.13b), which means they neither 

attract, nor repel the water molecules. PMMA wettability values are used as a 

standard to compare the wettability of the other contact lens materials (Stahl et al, 

1974; Table 2.2) and the contact angle for conventional PMMA is 60'-75'. 

Advantages of Standard PMMA Disadvantages of Standard PMNIA 

Good optical qualities Practically no oxygen permeability 

Greater mechanical stability Moderate wettability 

Little tendency to accumblate *Unsuitability for permanent wear 
deposits lenses 

Bp Flex is a composition of cross-linked PMTvIA and is claimed to have: 

"a good wettability (Wyckoff 1980) 

"a degree of gas-permeability (Hill 1977a) 

Table 2.2. Some advantages and disadvantages of the standard and 
Bp flex PMMA contact lenses. 
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Figure 2.12. The wettability of PMMA. It consists of a hydrocarbon, 
backbone to which one methyl group and one 
methoxycarboxyl group are attached. The hydrogen 
bond of water a has relatively positive charge, while the 
oxygen atom has a relatively negative charge. The 
carbon-hydrogen bonds of the methyl group are non- 
polar, and carbon does not have a net electrical charge 
in relation to hydrogen. as these bonds are not polar, the 
methyl groups are not wettable. By contrast, the oxygen 
of the carboxyl group, because of its tendency to attract 
electrons, has a slightly negative charge, which produces 
wettability. 
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2.2.2. Soft Contact Lens Materials 

Soft contact lenses have been developed from a large group of acrylic polymers 

that contain water attractive groups, such as hydroxyethyl or glyceryl side chains, 

so the resulting polymer will spontaneously attract water. The water content of 

these polymers can be changed by increasing or reducing the amount of cross- 

linking of the polymer, with some degree of polymer cross-linking necessary to 

prevent the hydrogel from going into solution (Gumpelmayer, 1972-1 Stone et al, 

1989). One would assume that these hydrogels have a wettable surface, although, 

this is only partially true (see Chapters 5 and 6). The reports reveal that when these 

gels are exposed to saturated water vapour or to non-polar liquids, they have only 

moderate wettability. In fact, the wettability of the surface varies inversely (usually) 

with the water content. 

Methyl Group 
H 

C- CH3 
I 

I 

Hydroxylethyl Ester 

Figure 2.13. The pHEMA soft contact lens material structure. 

PHEMA is the most extensively used hydrogel (Figure 2.13), is amorphous and 

cross-linking It is hydrophilic because of the hydroxyl groups (-OH) on the side 

chains of the polymer. These groups have a slightly negative charge and, since 

water molecules are polar, there are electrostatic forces created that allow the 

water to be taken up by the polymer (Figure 2.14). For the same reason, any small, 

polar molecule will be absorbed by the polymer and will cause it to swell. 
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Figure 2.14. Electrostatic binding of a polar water molecule with molar 
hydroxyl. PHEMA consists of hydrocarbon chains to which 
one methyl group and one hydroxyethylcarboxyl group per 
repeating unit are attached. Like PMMA, within the 
hydroxyethyl carboxyl moiety there is a carboxyl group of 
relatively low polarity. At this point, therefore, there is weak 
hydrogen bonding with water. The hydroxyl group on the 
lower end of the molecule is more polar than the carboxyl 
group and thus attracts more water, and, therefore, pHEMA 
absorbs a considerable amount. Non-cross-linked pHEMA, 
however, is not soluble in water and is not very hydrophilic. 
cross-linked pHEMA is used as the construction material of 
the soft contact lens. 
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2.3. Contact Lens Manufacturing Techniques 

2.3.1. Lathe Cut 

In the lathe cut method of contact lens manufacturing, the polymer is bulk 

polymerised and is then shaped as a contact lens by lathe cutting and polishing. 

Several factors, including the quality of polishing, speed of lathing and the 

sharpness of the tip of the diamond have been reported as effecting lens surface 

quality, such as the surface wettability and hydrophilicity (Walker, 1982 and 1988, 

Meszaros 1986). 

2.3.2. Thermoforming 

The polymer may be produced in sheet form then heated and pressurised to be 

moulded into designed shapes. In this method, finished moulded or semi-finished 

moulded lenses can be made, and the semi-finished lens is then edged to the final 

product. The essential factor for the mouldable material is to have a linear un- 

cross-linked structure. It can subsequently be cross-linked in the mould for the 

necessary physical stability. A moulded material of sufficient rigidity can easily be 

made in the lathe-cut forms, while the cast moulded method may be used to 

manufacture rigid contact lenses of PMMA and Fluorofocon. 

2.3.3. Cast Moulded 

In this contact lens production method a material may be polymerised in a shaped 

contact lens mould (Acuvue, Medalist 66, Hydron Z4 and SeeQuence). The 

advantages of moulded contact lens productions would be the cheaper cost and a 

better surface quality. 

2.3.4. Spin Casting 

in the spin casting method of manufacturing soft contact lenses, a liquid monomer 

mixture in a lens mould is spun about its central axis to complete polymerisation, 

and the centrifugal force results in the direct formation of a lens form. The finished 
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de-hydrated lens is then stored in a sterile saline condition and autoclaved to 

produce a soft contact lens (Wichterle et al 1960 and 1961). According to Coombs 

(1982), several equations have been documented for this kind of lens production, 

for example a cylindrical co-ordinate system: 

Z(r) =+aII+II 2g pg Rs Rt 

Where, 

Z(r) is surface height 
w is rotational speed in radians per second 
9 is gravitational acceleration 
Cr is surface tension 
p is liquid density 
Rs is liquid sagitta radius of curvature 
Rt is surface tangential radius of curvature 

(6) 

Because of high precision techniques involved in the manufacture of such small 

articles and the nature of polymerisation (ie random co-polymerisation), 

reproducibility of this kind of contact lens manufacturing was unsatisfactory. But in 

recent years, the use of high technology has resulted in a massive production of 

inexpensive disposable soft contact lenses and there are some differences between 

the spin cast and lathe cut lenses in terms of strength and extensibility (Tighe et al 

1990, see Chapter 5 and 6). It also reported (Dubow 1992) that rigid contact 
lenses of Fluorofocon A (Fluorocarbon) material can be manufactured by spin-cast 
for both daily or extended wear, because of good wettability and high oxygen 

permeability. 
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2.4. Methods to Enhance Contact Lens Wettabilitv 

The wetting of a polymer surface has always been of concern. Untreated high 

wetting angle contact lenses have a very dull appearance, indicating the absence of 

wetting by tears, while subjects also noted physical discomfort that increased with 

time in the eye with the non-wetted lens, in addition to blurred vision in the non- 

wetted lens (Lin et al, 1973). Several procedures have been advocated, however, 

with varying degrees of success, to increase effective contact lens surface 

wettability, which traditionally are called 'surface treatment'. The wettability can 

be enhanced by hydration and changes in the formulation or surface treatment of 

the final product (Gesser et al, 1965, Pearson 1977 and 1979). Several approaches 
have been used to treat and increase the wettability of contact lenses, which include 

coating on hard lenses, special lens surface treatments (Blue, 1967; and Gesser et 

a], 1967), more wettable hard lens and soft lens materials (Rankin et al 1970), 

special soaking and wetting solutions (Kokoski et al 1963, Berman et al 1963, 

Pearson 1989) and use of tear substitutes (Harris et al, 1973). 

2.4.1. Surface Coating 

In the coating treatment method, a thin layer of a wettable material, such as Silica 

(Si02) or titanium dioxide (Ti02), will be coated on a low-wettable contact lens 

surface, ie silicone polymer (Ong et al, 1976b; Cordrey, 1983; Harris et al, 1973; 

Morrison, 1963; Wade et al 1991). In the treatment cases, it is possible for 

reactions to occur on the surface, resulting in a permanent, and materials bound to 

the surface in this fashion become part of the surface and can only be removed by 

chemical reaction or physically machining or re-polishing the surface. 

The silicone polymer has alternating silicone and oxygen atoms in the backbone 

structure. Two organic side groups, usually methyl (-CH3), are attached to each 

silicone, which are highly unwettable, with a wetting angle of over 90' (±8), and 

this has been one of the major disadvantages of using silicone for contact lenses. 

As tears will not wet such an unwettable surface, the lens must be made more 

wettable by treating the surface with an alkyl titanate, such as tetraisopropyl 

titanate or titanium tetra-alkoxide. 

73 



Chapter 2. Contact Lens Polymers 

Glow discharge has also been used (the plasma glow was generated with almost 

any gas but typically oxygen or nitrogen) for coating treatment to increase the 

wettability of the samples. Collision with gas molecules caused the ionisation of the 

gas, which produced positive ions and additional electrons. Both caused further 

ionisation the contact lenses, even after drying, that were glow discharged for 2,5, 

7,5,10 and 20 minutes, showing a decrease in the wetting angle values. The 

exchange of the protons with Na+ and Ca++ improves the wettability character of 

the surfaces in the order Na<Ca. Due to the disadvantages of treating lenses with 

this method, and as coatings tend to scratch or wear off, these procedures have not 

been widely employed. This method, however, 'has been successfully used by the 

Menicon for many years (Blue, 1967; Phillips, 1969; Rankin et al, 1970; Baszkin et 

al, 1971; Lippman, 1981; Benjamin et al, 1983; Anderson, 1982; Fakes, 1986; 

Hough, et at 1986; Sharma et al, 1987; Ho et al, 1988; Walker, 1989; Sunny et al, 

1991, Yasuda et al 1975, Yasuda 1976, McBriar 1991 and Watt 1993). 

2.4.2. Acidic Treatment 

Sulphonating and acidic agents, such as formic acid, chlorsulphonic acid, 

phosphoric acid and oxides of chromium or ammonia (Sunny et at 1991), may be 

used to treat the contact lens surface and activate the contact lens surface, 

producing wettable groups on the contact lens surface, such as Aquasil contact 
lenses. The most common explanation of surface changes of the type described 

here is the production of more wettable carboxyl, carboxyl and hydroxyl groups 
through the oxidation of the hydrocarbon surface. Aquasil is a silicone acrylate co- 

polymer that, when immersed in a weak acidic solution, produces a thin wettable 
layer. it is claimed that the material provides a high level of comfort due to 'well 

wettability'. The use of nitric acid, led to a reduction in the wetting angle on 
treated materials (Ong et at 1976b). Moreover, the C=O body of the ester group is 

said to lie perpendicular to the surface of the plastic, and, if the direction of this 
bond is away from the surface, it would explain the failure of hydrogen-bonding 

liquids to cause increased wetting, which needs to be treated. 
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2.4.3. Wetting and Soaking Solutions 

A surfactant may be defined as a substance that lowers the surface tension of a 

solution; some mobile components in polymers may display this property after 

migrating from the bulk to the polymer surface GP (1989). Hind et al (1959,1963) 

and Rankin et al (1970) characterised wetting as 'the selective adsorption of a 

solute by the surface with the qualification that the hydrophobic ends of the 

adsorbed molecule orient towards the hydrophobic materials and the hydrophilic 

ends orient towards the aqueous phase'. Wetting agents (Kokoski et al, 1963), 

such as methacrylic acids, increase the surface wettability of soft and RGP contact 
lenses. Such chemicals carry a significant negative surface charge and produce a 

situation in which the overall net charge of the lens is highly negative. Olson 

(1982a and b) and Benjamin et al (1984) pointed out that the addition of 
benzalkoniurn chloride to the contact lens wetting and the storage solution has 

been thought to detract from the wettability of silicone-acrylate surfaces. They 

concluded that some solutions promise to be more efficient in providing initial 

comfort to the rigid lens wearer and imparting a better 'first impression' for the 

first few post-insertions of prospective hard lens wearers, although later success 

with contact lens care regimes may be dependent on other attributes of these 

solutions, such as their pH, toxicity buffering, and preservatives, because the tear 

fluid of each patient must then assume the principal role of wetting the contact lens 

surface. 

A number of studies (Fowler et al, 1984; Sack et al, 1987; Lin et al, 1991 and 
Yorav et al, 1992) have shown that such a charge causes the lens to attract a far 

greater number of deposits than those that are relatively inert. Jones (1992) 

believed this was because of the positive charge on the surface of the protein. 
indeed, this is also believed to be of much greater aetiological significance for 

deposit formation than water content (Kokoski et al, 1963). In solutions, solvated 
ions can associate with charges on a surface in contact with the solution, which can 

exchange freely, depending on the surface environments. Random thermal motion 

at room temperature is sufficient to exchange solvated ions at most charge surface 

sites. 
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The solution or solvent incompatibility can adversely affect rigid gas-permeable 
lens surface quality (Lippman 1989), thereby resulting in increased deposition of 

substances on the lens (Olson 1982 b). A number of effective care systems have 

now evolved that combine with the reactive sites on the surface of the silicone 

acrylate material by one or more of the following mechanisms: - 

1. Electrostatic interaction (Andrasko et al 1988). 

2. Hydrogen bonding (Brennan et al 1986). 

3. Hydrophilic interaction (Caroline 1988). 

The interaction of the conditioning solution with the reactive sites on the lens 

surface reduces, at least for a time, the affinity of the lipid-protein-mucus deposits 

to the surface of the contact lens material. 

PBEMA is hydrophilic because of the hydroxyl groups (-OH) on the side chain of 

the polymer (Bier et al (1980). These groups have a slightly negative charge and 

electrostatic forces that allow the water to be taken up by the polymer for the same 

reason that any small, polar molecule will be absorbed by polymer. 

2.4.4. Hydration 

A hydrophilic contact lens material generally means one with a bulk water content. 

Polymer hydrophilicity, in particular, indicates the ability of a material to absorb 

water into the polymer and swell, which is dependent on the ratio of hydrophilic to 

hydrophobic functional groups in the polymer (Tighe 1989). Most contact lens 

materials absorb some water when immersed in water, and the amount taken up 

can be expressed, most commonly, as a percentage of the weight change or as a 

volume change. The percentage of water can be calculated by subtracting the dry 

weight (d) of a specimen from the wet weight (w), and then dividing this value by 

the wet weight and multiplying by 100 to obtain a percentage (Andrasko et al 

1980, Brennan 1983, Figure 2.15 ). The absorption of water by polymer changes 

the contact lens surface wettability to a greater value, which is believed to produce 

a great acceptability by contact lens wearers. 
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The quantity of water that the polymer will imbibe is controlled by the amount of 

the cross-linking agent, the extent of water or water-ethylene glycol to dilute the 

monomer and the quantity of the initiator (such as ammonium per sulphate and 

sodium metabisulphite). The electrostatic forces will pull water into the material 

until the forces of the cross-linkages match those of the electrostatic between 

polymer and water molecules. For HEMA cross-linked with ethylene glycol, the 

gel is homogeneous and thus transparent with a water content of up to 40 per cent, 

while above this the material is a heterogeneous gel and becomes translucent or 

opaque. The material loses its transparency above 40 per cent water content 

because water is a poor solvent for the monomer, and with greater dilution there is 

phase separation between water and monomer, resulting in a disrupted polymeric 

material (Refojo et al 1965a). When the concentration of the solvent in the 

monomer during polymerisation is such that there is no change in the volume of the 

gel when placed in water after formation, the gel is said to be isovolumic. 

Figure 2.15. Hydration (swelling) of a cross-linked polymer. 

The REMA-ethylene glycol crossed-linked material has a softening point of about 

120 "C and can thus withstand heat sterilisation when hydrated. Water content for 
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contact lens material is usually 38-39 per cent, and with this composition the 

refractive index is 1.43, while in the dehydrated state, it is 1.52 and the index is 

dependent on the water content. In its dehydrated state, the material is transparent, 

but quite hard and brittle, but hydrated, it is flexible, soft and can be torn. A lens 

size specimen will almost completely hydrate when immersed for two hours and 

take about five hours to dehydrate. The material can be elongated 10-30 per cent 

and still recover fully (Yasuda et al 1966). 

After the hydrogel is formed, the percentage of water it contains varies with the 

temperature, pH of the bathing solution and any polar or ionic materials in it. If the 

medium in which the material is immersed is hypertonic and contains a high 

concentration of molecules, water will be drawn out of the lens until the 

concentration is the same as in the medium, but if the solution is hypotonic the 

opposite is true. On the eye, once the lens has equilibrated with lacrimal fluids, 

these factors are held reasonably constant. 

2.4.5. Wettable Materials 

The synthesis of high-gas-permeable materials with a non-ionic wettable surface 

has always been of concern when designing material. Plambeck (1978) stated that 

contact lenses made from a copolymer of a fluoralkyl acrylic ester and an alkyl 

acrylate or methacrylate have been developed, which have improved wettability 

when compared with PMMA lenses (Lippman 1990). 

It is claimed that fluorinated monomer enables the lenses to resist surface 
deposition through its superior wettability to PMMA (Hoffman, 1983b; Baszkin et 

at, 1979 and Benjamin et al, 1983). Increasing the siloxane content in the 

Siloxanylmethacrylate copolymers to such a sufficient level as to obtain 'super 

permeability' bring with it decreased wettability, increased mucous and adhesion 

and tenacious protein deposits (Feldman et al, 1987 and Brown, 1992). But 

Pearson (1986) demonstrated that the wettability of siloxane methacrylate is not 

significantly different from that of PMMA. 
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3.1. Introduction 

The reasons for measuring the wetting angle were explained in Chapter one. 

Theoretically, the wetting angle can be calculated from the polymer chemical 

structure, particularly by the quantity of wettable groups in a monomer and a 

polymer. The chemical nature of a surface can be evaluated by total internal 

reflectance, infrared spectroscopy, and electron spectroscopy for chemical 

application (ESCA, Keller 1980 and Hough 1989). ESCA can analyse the topmost 

100 ýtm of the surface and is particularly useful in detecting impurities, oxidation, 

and hydrophobic and hydrophilic groups bound to carbon, but the method is 

destructive to the contact lens. As polymer manufacturing is influenced by such 

factors as contamination and the percentage of polymerisation, theoretical 

calculation appears to be unrealistic. Practically, wettability could be measured by 

creating a liquid/solid/air interface, such as a sessile drop or a liquid/solid interface, 

a dynamic contact angle (DCA) for example. Wettability has been measured using 

a solid/liquid/air interface by various measurement techniques (Table 3.1). 

Wetting angle methods described in the literature 

Solid/liquid Interface Methods 

Measurement 
techniques 

Sessile drop Captive bubble Meniscus 

Dimensions 
Goniometer V., 
Photographic V/ -w/ 
Projection V/ V1, 
Laser assisted V/- V, 
Reflecting 

Table 3.1. Solid/liquid/air interface methods and wetting angle techniques to 
measure the wettability of materials and contact lenses (Mandell 
1984, Kneen et al 1937, Good et al 1963, Padday 1963, Bennett et 
at 1983, Hansen et al 1971, Scheer et al 1978, Dussan 1979). 
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3.2. Sessile Drop 

3.2.1. Drop Delivery 

There are three different ways of producing a sessile drop on a solid. 

a. Dripping Drop. To obtain an equilibrium drop, the droplet freely falls from the 

tip of a syringe needle on to a solid surface (Figure 3.1) and for the best 

repeatability the distance between the droplet and the surface was recommended 

to be less than I mm (Huff et al, 1988 and Knick et al, 1991). The volume of 

the drop delivery can be controlled by modifying the tip of the syringe, for 

example roughness, smoothness and sharpness (Figure 3.1. d). 

a b 

Figure 3.1. Drop delivery methods. (a & b) The tip of the syringe 
needle was cut obliquely. (c &d) The tip of the syringe 
needle was cut horizontally and flat. The adhesion area of 
the oblique cut was greater than the flat cut, and where the 
tip of the needle was well polished and sharpened the droplet 
did not make an adhesion meniscus to the needle material. 
Hence, the droplet can be dropped freely on a surface, which 
may enable one to produce a specific volume of liquid at the 
tip of the needle on the surface. 

C d 
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b. Contact Drop (Pendant Drop). The contact lens is moved slowly to a 

prepared droplet on the tip of a syringe needle until it touches the droplet. 

Tomlinson et al (1963), for example, utilised the tip of a platinum wire to place 

a drop. 

c. Indirect Drop (Expanding-Contracting Drop). By making a hole in the 

surface of a material, a sessile drop can be created through the hole and the 

volume of the drop can be either increased (advancing, Figure 3.2a) or 
decreased (receding, Figure 3.2b) at any desired rate (Geer et al 1961, Gaudin 

et al 1963, Phillips 1965). 

Receding 

a 

I1 

b 

Figure 3.2. The indirect liquid delivery. a The volume of liquid increases 
(advancing). b The volume of drop decreases (receding). 

3.2.2. Sessile Drop Variations 

1. Equilibrium Drop 

In this method, a drop is suddenly delivered on the material surface either by the 

'dripping drop' or by the 'contact drop' method (Gaudin et al 1963). 

11. Advancing Drop 

The advancing wetting angle is a measure of a material's un-wettability 
(hydrophobicity), which is defined as the resistance of a dry material to the advance 

of an aqueous film across its surface (Fitzgerald 1983a). In this method, after the 

drop delivery, the volume of liquid is increased either through a syringe needle 
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(Petke et al 1969 and Figure 3.3) or through a hole (Figure 3.2, O'Brien 1965, 

Davidson et al 1971, Lemp et al 1972, Fakes et al 1987 and Li et al 1992). 

Dabezies (1989) stated that, when the droplet is advanced on a fresh, dry and clean 

surface, the advancing wetting angle can be measured. The solid can be classified 

as wettable if water spontaneously spreads on its surface, which implies that the 

spreading coefficient of water is positive and, thus, the advancing contact angle of 

water is zero. By this criterion, only a few solid surfaces can be classified as 

wettable (Holly 1983b). 

ab 

Figure 3.3. Advancing and receding sessile drop wetting angle. 

111. Receding Sessile Drop 

The receding wetting angle is defined as a measure of the degree of attraction that 

a wetted material surface has for the wetting layer. In this method, the volume of a 

droplet after placement is slowly removed by a syringe or evaporation and the 

meniscus that is formed at the point where the edge of the droplet intersects the 

surface of the material will be observed to stick in place, until a significant volume 

of water has been removed from the droplet. At this point, the meniscus will break 

free and move across the surface of the material and the receding wetting angle can 

be measured (Figures 3.2 and 3.3; Baszkin et al, 1979) with literature showing 

that the receding angle is more unstable than the advancing angle (Cassie 1948), 

although Shirafkan et al (1994) found the receding wetting angle of PMMA to vary 
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between 50"- 0' and concluded that the current methods of measuring the sessile 
drop receding wetting angles are unreliable. 

Fitzgerald (1983b) compared the wettability of eight rigid contact lens materials 

with a surface treated polyacrylate silicone copolymer material and reported that 

accurate measurements below 10" were impossible. He argued that the receding 

wetting angle is a better measure of a material's wettability and concluded that 

because the surfaces of contact lenses in the eye are hydrated the receding angle is 

probably the best indicator of a material's clinical performance on the eye. The 

clinical consequence of this is that a material with a low receding angle may be 

more suitable for patients in environments conducive to the rapid drying of the eye. 

3.2.3. Techniques Used to Measure the Wetting Angle 

3.2.3.1. Dimension Methods 

Most of the classical methods to measure the wetting angle are based on evaluating 

and calculating drop dimensions (Figure 3.4). When a drop of liquid is placed on 

the surface of a solid, it may spread to cover the solid surface or remain as a stable 
drop on the solid. In the absence of a gravitational field, a drop that does not 

spread will lie on the solid surface as a segment of a sphere in a gravitational field, 

but, if the drop is very small, surface forces will predominate over the force of 

gravity and the shape of the droplet will not differ greatly from a true segment of a 

sphere. If the drop is quite large, the gravitational force will be the more important 

and the sessile drop will be distorted so that it is horizontal at the top. A drop of 
liquid of intermediate size would be partially flattened. 

Osipow (1962) stated that another important method for measuring the contact 

angle of a liquid on a solid surface is the height of a sessile drop. If a small quantity 

of a liquid is placed on a level solid surface, provided that the liquid does not 

spread spontaneously, a sessile drop will be formed, and, if liquid is added to the 

drop, the height increases until it reaches a maximum value. Further additions of 
liquid increase the diameter of the drop, but not its height above the solid surface. 
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a 

b 

Figure 3.4. Geometrical parameter of a sessile drop by (a) 
Farnariore (1984) and (b) Neumann and Good (1979). 

The relationship between the height It of the sessile drop and the contact angle 0 is: 

I- Cos 0= 
2YL 

(7) 

where p is the density of the liquid, g is the acceleration of gravity and YL is the 

surface tension of the liquid. Lin et al (1973) calculated the wetting angle by 

projecting a sessile drop on to a screen and measuring its height and diameter for a 

spherical drop with base diameter d and drop height Ii (Figure 3.4). 

211 tan 0 
d2 

Farnariere et al (1984) described a variation of the drop dimension method and 

claimed ease of use, although the technique required a conventional microscope to 
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measure the dimensions. Due to gravity effects, the droplet is not rigorously 

spherical, but the deviation from sphericity is negligible when: 

hd gAp 
2y 

(9) 

The wetting angle can also be derived from an equation relating the base diameter 

and the drol) volume (V): 

d3 24 sid () (10) 

v 2-3 cos 0+ COS30 

It was difficult accurately to measure V, d and h of the drop, while the drop size 

effect and the inaccessibility of the receding and advancing angles of these methods 
have restricted their popularity and use (Mack and Lee 1936). But several 

formulae have also been recommended by investigators to determine the wetting 

angle of large and non-spherical drops (Staicopolus 1962 and Maze et al 1969). 

3.2.3.2. Goniometer Method 

The first commercial contact angle goniometer instrument was developed by 

Zisman (1964) to measure the contact angle of a sessile drop or a captive bubble, 

which consisted of a telescope incorporating two cross-hairs. The horizontal cross- 

hair is rotated until it corresponds to an imaginary tangent to the profile of the 

droplet. Examiners then shift their gaze to a reticule assembly that is mounted 

within the telescope, and the value of the wetting angle is read on the scale of the 

reticule, which is graded in P increments. The sample chamber is mounted on an 

optical bench so that both horizontal and vertical movements are possible, which 

requires the eye-piece cross-hair being brought into alignment at the three-phase 

interface. The optical-quality glass windows enable drop viewing from one 
direction and illumination using a fibre optic cold-light source to prevent heating 

effects from the other. The wetting angle was measured directly at x 20 

magnification using a goniometer protractor eyepiece attached to a telemicroscope 

(Figure 3.5). 
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/ SESSILE DROP 

Figure 3.5. Sessile Drop method to measure the wetting angle 
using the Rame-Hart goniometer. 

The measurement was performed by aligning the cross-hair so that the horizontal 

bisects the view of the drop and its reflected image and the intercept coincides with 

the three-phase point or interface. The protractor (zero) reading is then recorded, 

the eyepiece is rotated until the cross hair forms a tangent to the surface at the 

three-phase interfaces and the wetting angle, through the liquid phase, is read from 

the protractor. This procedure is carried out for both sides of the drop and the 

wetting angle recorded is the average of the two. Advancing and receding 

conditions of contact angles are established by prompting the meniscus to advance 

or recede over the surface. 

This method has been widely used by investigators [Bruun et al (1965), Davidson 

et al (197 1), Lemp et al (1972), Adamson (1976), Neumann et al (1979), Andrade 

(1980), Fitzgerald (1983), Benjamin et al (1983), Fatt (1984), Sarver et al (1984), 

Fakes (1986), Sunny et al (1991)]. However, Huff et al (1988) and Bush et al 

(1988) believed that the contact lens goniometer method presented a number of 

variables that were often difficult to control, such as temperature and humidity. 

Ong (1976) concluded that the drop method was in many ways preferable, to the 

bubble method, which only gave the receding angle. Fox and Zisman (1964) 

compared the wettability of different liquids on a clean cornea and a PMMA 
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material and O'Brien (1965) reported that the advancing wetting angles are 50 to 

70 percent higher than the receding wetting angles. 

3.2.3.3. Photographic Method 

In this technique, the wetting angle is photographed and the contact angle is 

determined by a graphical method. Photographing the drop in contact with a solid 

and using a projection or enlargement of the image enabled the contact angles to 

be measured through a protractor. Harris et al (1973) reported a significant 

variation 10' to 24' in different PMMA materials and concluded that the 

difference must be due to variations in preparing of the solid surface, the 

measurement procedure or analysis of the photographs. O'Kane (1930), 

Staicopolus (1962), Neumann et al (1979), Adamson (1982), and Li et al (1992) 

used the sessile drop method with photographic measuring techniques in the 

advancing phase. The latter strongly supported the existence of the localised 

chemical bonds at the interface as a result of the electron transfer at the interface. 

3.2.3.4. Projection Method 

The wetting angle can be measured directly by projecting an image of a drop on a 

screen (Kneen et al 1937, Osipow 1962, Bikerman 1970 and Lin et al 1973). The 

apparatus consisted of an arc lamp, condensing lens system, adjustable stage and a 

small picture frame, which is shown schematically in Figure 3.6a and b. A thin 

sheet of paper was fastened to the picture frame by thumb tacks so that it lay flat 

against the glass. The measurements were carried out in a darkened, closed room, 

with the light from the arc lamp passing through the condensing lens and across the 

plane surface to be measured. The plane surface is placed in the path of the beam, 

and the image of the drop is projected through the glass and paper, where it may 

be outlined in pencil by hand. The paper may then be removed and the contact 

angle measured by a protractor. Ong et al (1976b) measured the wetting angle by 

using the projection technique and by the advancing method on treated lenses. 
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Figure 3.6. a Apparatus for measuring contact angle 0, b screen 

grid (front view, h=11eight, d=diameter). 

3.2.3.5. Laser Assisted Method 

This method is based on reflection of a laser beam at the solid-liquid-air interface 

(Figure 3.7). The technique is reported to be less subjective, and is superior to 
Goniometry [Bush et al (1988) and Knick et al (1991)]. They utilised this 

technique to measure the wetting angle of a sessile drop on rigid contact lensei and 
Shirafkan et al (1994 and 1995) used the laser to measure the wetting angle of 

unseparated adherent liquid on both soft and rigid contact lenses (see Chapter 5). 
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Figure 3.7. The reflection of the laser from the contact lens surface 
and from the liquid surface at the solid/liquid/air interface, 
which makes the wetting angle visible on a protractor. 

3.2.3.6. Reflecting Method 

The method employs a light source mounted on a beam, which is pivoted on an 

axis containing the liquid/solid/air interface at which the contact angle is to be 

measured. This may be at the edge of a drop or a meniscus at a flat plate or rod, or 

on the inside of a tube. The observer sights along the beam to observe the specular 

reflection from the liquid surface, with the measurement consisting of pivoting the 

beam on its axis and determining the orientation at which the specular reflection 

disappears (Figure 3.8). For the angles of incidence lower than 0, there is no 

reflection. Langmuir-Schaefer (1937) and Fort et al (1963) used this method to 

measure the wetting angle of a sessile drop on a flat material, Good et al (1963, 
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1979) utilised the reflecting wetting angle method on a Teflon plate by dipping it in 

liquid and on the meniscus of a tube that was half submerged in benzene and 

Shirafkan (1993) in a pilot study used a laser source to measure the 0 of a sessile 
drop on back surface of the rigid contact lenses. 

I 

protractor-s- 

axis for Ir 
viewing orm 

arm-clevoling screw 

0 

I) 

111,11,1114,11111 

C 

Figure 3.8. a Apparatus for measuring the contact angle by the 
Langmuir-Schaefer reflecting method, b reflection from a 
drop and from a flat surface shows the wetting angle 0, 
and c the wetting angle of a meniscus of a tube. 
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3.3. Bubble Methods 

3.3.1. Captive Bubble Method 

In the captive bubble method, the material or contact lens is submerged in water 

with the apex down. A small bubble formed at the tip of a hypodermic needle just 

below the apex is allowed to float upwards and, hopefully, adhere to the lens. The 

angle measured in the water at the perimeter where the bubble is in contact with 

the lens is the contact angle, while the solid-water-air contact angle is then 

measured directly using a telemicroscope with a goniometer (protractor) eyepiece 

or indirectly from a photograph of the bubble or bubble dimensions (Figure. 3.9, 

3.10 and 3.11, Holly et al 1975). The use of a sample chamber requires at least two 

of the walls to be transparent and preferably of optical quality glass. For accuracy, 

constant bubble volumes should be employed and duplicate measurements made. 

This method was used by Huntington (1906), improved by Del Giudice (1936) and 

modified by Gaudin et al (1963) for the investigation of contact angle hysteresis 

(see 3.6). Taggart et al (1930) and Shuttleworth et al (1948) originally used a 

bubble machine for investigating of flotation systems, a technique that is widely 

used and has been accepted by the Contact Lens Manufacturers Association 

(CLMA) [Gaudin et al (1963), Poster et al (1978a and 1978b), Cappelli (1979), 

NIH (1980), King (1980), Gregonis et al (1982), Andrade et al (1982), Benjamin 

et al (1983), Fitzgerald (1983), Cordrey (1983), Jho (1983), Poster et al (1984), 

Sarver et al (1984), Keates et al (1984), Derjaguin et al. (1987) and NIH (1989). 

The captive bubble method has several problems (Fatt 1984), in addition to the 

fundamental problem of the possible presence of a water film between the bubble 

and the sample. A review of the surface science literature and some laboratory 

experiments indicate that the captive bubble method may be invalid unless 

precautions are taken when performing measurements (Fatt 1990). Eriksen et al 

(1982) and Gregonis et al (1982) stated that the wetting angle and measurement 

methods were debatable, although Andrade et al (1979) utilised this method to 

analyse the fully hydrated polymer surface, reporting that the hydrogel-water 

interface is more diffuse than an un-wettable polymer interface. 
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Figure 3.9. The Captive bubble technique. a The bubble 
delivery apparatus, b Bubble chamber for wetting 
angle measurement. 
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Nevertheless, there are virtues in a bubble method, the main one being that the 

sample is always wet. The disadvantages are the difficulty in measuring because the 

discontinuous light path that passes from the air to the liquid and back to the air 

and the fact that the large liquid volume required precludes the use of human tears. 

Dabezies (1989) stated that it was difficult, however, to accurately measure the 

sessile drop on a soft lens because the surface tends to dry if it is not in an 

atmosphere of 100 per cent relative humidity. For soft contact lenses, therefore, 

the air-in-water technique may be used. 

Figure 3.10. The relative captive contact angle. 

Octane bubbles have been used by many investigators, such as Holly et al (1976a 

and 1976b) and Hamilton (1972) with the latter estimating the polar character of 

unknown polymers (Figure 3.11). The results with air bubbles have lower angles 

than when octane was used. It was concluded that the wetting angle represented by 

the polar component was not as good a parameter to predict the wettability, which 
is a net balance of all the interfacial free energies Qho 1983). Baszkin et al (1979) 
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used tear solution and found zero receding contact angle for the tear liquid on all 

surfaces. 

CA SEI: (D -_5 9 0' 
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Figure 3.11. Tile geometrical dimension contact angle measurement 
of captive bubble. 

3.3.2. Adherent Bubble Method 

Fatt (1990) introduced a new bubble method, called 'the adherent bubble method'. 
The contact angle was measured by either a goniometer in tile microscope or on 

photographic prints. The apex of the contact lens was viewed in profile either by a 

single lens reflex 35 mm camera or by the prism and microscope. Tile procedure 
involved filling tile plastic box with distilled water so that the apex of tile lens was 

covered to a depth of about 5 mm. The lens was allowed to remain under water 

from I to 12 or 24 hours. The barrel in the syringe connected to the lower port 

was then very slowly withdrawn to lower the water level. The water film on the 

lens broke at the apex when tile water film over the lens was very thin and the 

interface retreated to the edge or the lens. It was only necessary to observe that 
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after the filrn was broken a water-solid-air interface was created (Figure 3.12). The 

syringe barrel is now pushed slowly inwards, raising the water level in tile box and 

advancing the interface on the surface of the lens. The advancing angle is high 

when the circular interface moves towards the apex, and the cylinder of air within 

the water reaches from the apex of the lens to the air space above tile water 

surface. On further advance of the interface, the cylinder collapses to form a 

complete, thick layer of water over the lens, but a bubble of air adhering to the lens 

apex is usually lefl behind. The only cases in which a bubble could not be formed 

were afler an RGP lens had been treated with a wetting solution to give a zero 

contact angle or on a rresh, clean hydrogel lens. 

After tile water film breaks at the apex of an RGP lens, the water-air interface 

retreats rapidly until it comes to rest near the edge of the lens. The contact angle 

at this point is clearly a result of a receding interface on a previous wet surface. 

When the apex of the contact lens emerges from tile water, the film breaks on an 

RGP lens surface treated with a wetting agent and tile receding contact angle 

WATER LEVEL 
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WATER FILM ON LENS 
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7 

POWDER AWED WATER LEVEL LOWERED 

2 3 

WATER LEVEL RAISED 
WATER FILM BREAKS POWDER DEPOSITED ON LENS 

5 

LENS TOTALLY SUBMERGED 

8 

6 

Figure 3.12. Adherent bubble method (Fatt 1990). 

95 



Chapter 3. Wettability Measurement Methods 

will be zero or near zero. Film break up on a hydrogel lens will give a zero 

receding angle, while on raising the water level to re-submerge the lens the 

advancing contact angles on PMMA, RGP or hydrogel lenses are very high, 

approaching 90' as the advancing film nears the apex. On RGP lenses, an adherent 
bubble is left behind on the apex when the advancing film coalesces, while, on a 

hydrogel lens that has not been allowed to dry after the break up of the film, the air 
bubble does not adhere to the apex. 
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3.4. Meniscus Methods 

3.4.1. Willieliny Balance Technique 

The Willielmy balance technique is also variously referred to as the Willielmy 

gravitation, Willieliny-plate or Dynamic contact angle method. In this method, a 

rectangular sample is slowly immersed into, or withdrawn vertically from, a liquid 

and a precision balance is used to measure the force in the course of immersion and 

withdrawal. An advancing angle is measured during the immersion and a receding 

angle is calculated during the removal of the specimen from the liquid. F-Jectrical 

Direction of Travel 
Advancing 

a 

( 

A 13 

Directioti of Travel 
Receding 

A 

Time or Depth of Immersion 
Ii 

Figure 3.13. The Willielmy plate method can be used to determine 
both advancing and receding contact angles from the 
forces monitored during tile immersion (advancing) 
or removal (receding) ofthe polymer From solution. 
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signals from the balance are fed to a recorder (Figure 3.13 a, Wenzel 1936, Gaudin 

et al 1963, Wilhelmy 1863, Burley et al 1976, Holly 1976, Andrade et al 1979, 

Adamson 1982, Gregonis et al 1982, Smith et al 1982a and Sarver et al 1984). 

The advancing and receding angles were then calculated (Figure 3.13b): - 

Cos 0mg+ 
vpg 

py py 
(11) 

Where V pg / py is buoyancy factor, m is mass of slide sample as measured by 

electrobalance, g is local gravitational force (979.3 dynes/g), p is perimeter of the 

slide (cm), y is surface tension of wetting liquid (water = 72.6 dynes/cm, V is the 

volume of the immersed sample at a particular depth and p is the density of the 

wetting liquid (water = 0.998 g/cc at 20 * Q. 

Pearson (1987) compared two sets of data from two studies and stated that it is 

possible the measurement of wetting angles is influenced by several factors, 

including the rate of movement of the sample. However, Andrade (1979) reported 

that the dynamic contact angles may offer further information about the interface 

(see Chapter 6). 

3.4.2. Direct Meniscus Method 

In this method, a contact lens or a plate is slowly submerged or removed vertically 
into or from a bath of liquid. During the immersion and withdrawal of the lens from 

the liquid, an advancing and receding wetting angle may be measured. Elliott 

(1962) studied the contact angles and reported a greater reproducibility for the 

advancing than the receding wetting angle values. Madigan et al (1986a) used this 

method to measure the wetting angle of a rigid contact lens utilising a Nikon 

profile projector, in which a saline-filled container was placed on the projector 

platform, the contact lens was mounted vertically above the container and the 

liquid is moved to the lens to view and measure the formed meniscus. The 

advancing wetting angle was measured while the meniscus passed over the dry lens 
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surface, and the receding angle was observed as the meniscus moved over a 

previously wet surface. The wetting angle was then measured by a goinometer 

through drawing a tangent to the meniscus. Madigan et al (1986a and 1986b) 

suggested that wetting angles measured afler wear were the most appropriate way 

to predict in vivo material wettability characteristics. This can assess a surface 

wettability that is created with tear film components, although Shirafkan et al 
(1994) found several problems in the creation of the meniscus (see Chapter 6). 

3.4.3. The Tilting Plate Method 

Tile tilting plate method was originally used by Adam et al (1925). A test plate of 

approximately 2 cm wide is dipped into the test liquid, and the plate tilted until the 

meniscus becomes flat, with tile wetting angle being the measured angle between 

tile plate and the liquid horizontal (fluntington. 1906, Adam ct al 1934, Fowkes et 

a] 1940, Gaudin et al 1963 and Aveyard et al 1973). The solid is held in an 

adjustable holder that can tilt the solid to any angle, with the axis of rotation at the 

solid-liquid interface. The plate is tilted until a position is found at which the water 

surface remains undisturbed up to the line of contact with the solid. Tile apparatus 

also contains provision for raising or lowering the plate in the liquid, so that the 

contact angle can be measured either on a portion of the plate that has been 

immersed in the liquid or on an unexposed portion of the plate (Figure 3.14). 

Figure 3.14. The tilting plate wetting angle method. 
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When the tilting plate is lowered to expose a fresh portion to the liquid, the angle 

measured is known as the advancing contact angle, and when the plate is raised 

partially out of the liquid the receding contact angle is measured, with the plate 
being set to the required angle before, and not after, the raising or lowering of the 

plate, this requires several trials. The more important additions to the tilting plate 

apparatus were the use of glass barriers to clean the surface of the liquid, a film 

balance to detect the presence of impurities on the surface of the liquid and the use 

of a tight cover to achieve equilibrium between the liquid and vapour. Adam 

(1941) emphasised the necessity for clean solid surface, while Fowkes et al (1940) 

reported that the main requirements of an accurate instrument for measuring of 

contact angles by the tilting plate method were three-fold: - 

a. The surface of the liquid must be kept clean during measurement. 

b. The observed edge of the solid-liquid intersection must lie on the axis of 

rotation of the solid surface. 

c. There should be a mechanism to move the slide up and down in the liquid 

and in a direction parallel to the length of the slide. 

3.4.4. Rotating-rod Method 

The rotating plate method can be considered to be an improved tilting plate 

method, with the fluid-fluid interface being contained within a cylindrical glass and 
the cuvette having optically flat end windows ( Figure 3.15). The cuvette has an 

opening on the upper side that allows the cell to be filled with fluid phases and 
introduces the rod to be investigated and is encased in a hollow aluminium cylinder 

that is mounted on ball bearings so it may be rotated around its axis. The rod that 
is made of the material to be investigated is driven in and out through the fluid- 

fluid interface in the cuvette by a hydraulic piston mounted on the aluminium 

casing. The glass cylinder with the mounted rod can be rotated so that the fluid- 

fluid interface meets, horizontally, the surface of the rod (or plate) that is 

simultaneously moving either in or out. The three-phase interline can be directly 
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observed with a microscope, and the contact angle measured with a protractor that 
is attached to the aluminium casing, or, alternatively, the system can be filmed as 

previously indicated (Adam et al 1934). 

Figure 3.15. Change of curvature of the water surface with rotation of the plate. 

The main advantages of this method were claimed to be: 

1. Precisely controlled motion of the specimen relative to the fluid-fluid 

interface over an unlimited range of speeds. 

2. Highest reading accuracy over the range from 0" to 180". 

3. Absence of any vibrations because of the hydraulic driving system. 

4. The construction material of the cuvette and the driving mechanism is glass 

and Teflon. This allows the system to be cleaned by all available methods. 

The airtight scaling eliminates any possibility of contamination by the ambient 

atmosphere. 

5. The contact angle (advancing and receding) can be read directly. 

Ablett (1923) and Wenzel (1936) studied the solid surface energy by measuring 

the contact angle (0) by immersing and rotating a cylinder: 
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CosO =(2 
11 (12) 
T-1) 

h is the height of the free liquid surface above the lowest generator of the cylinder 

and d is the diameter of the cylinder. 

3.4.5. Capillary Rise Nfethod 

The tendency of liquids to rise up a capillary tube or a flat material is called 

capillary rise or adherent action and is a result of surface and interfacial tension. 

When a tube or a flat material is moved into the liquid, the rise of a liquid in a 

capillary tube depends on the contact angle and the curvature of the tube, which in 

turn determine the curve of the liquid surface (Figure 3.16). The pressure 
difference across the curved surface depends on the free energy of the surface and 

provides the hydrostatic pressure under which the liquid flows up the tube (Holly 

1983b, Bartell et al 1953 and Atkins 1994). If the radius r of a cylindrical tube is 

so small that the liquid meniscus is essentially spherical, the height of tile rise (11) of 

the meniscus is given by: - 

2y cosO 
"ý gh(P I- P2) 

r 
(13) 

where y is the surface tension, 0 is the contact angle, g is the gravitational constant 

and PI- P2 is the difference in pressure between the rising liquid and the 

surrounding fluid. Neumann et al (1971 and 1970) reported on the dependence of 

tile advancing and receding contact angle on temperature in this method. 

Figure 3.16. Meniscus of a liquid in a capillary. 
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3.5. In vitro Interferometer Wetting Angle Method 

The wettability of contact lenses may be indirectly determined macroscopically 

using the interferometcr method (Garner 1981, Doane 1989a and b, Forst 1989, 

and 1990). The water layers were observed using a Nomarski diffierential 

interference contrast microscope with a magnification of approximately 23X and 

then located in a perpendicular standing position on a convex holder. '['he contact 

lens was submerged in the water and withdrawn. The behaviour of tile thin water 

layer on the contact lens was shown as interference, and the photograph was taken 

to measure tile contact lens wettability. The microscopic method observes the 

behaviour of water layers on the contact lens surfaces up to a thickness of 0.1 ýLm - 
0.2ýun, and by elevating the interference phenomena a water profile can be 

determined and the microscopic contact angle between the water and surface of the 

contact lens calculated (Figure 3.1 7a). It was claimed that this method allows a 

great Influence of surface deposits to be recognised. 

Figure 3.17a. In-vitro interflerence to measure contact lens wettability. 
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3.6. Wettinj! Anple Hvsteresis 

The difference between the maximum (advancing) and the minimum (receding) 

contact angle was termed hysteresis, Taggart et al (1930), Del Giudice (1936), 

Gaudin et al (1963) and Andrade (1976) while Holly (1978 and 1983b) defined 

relative contact angle hysteresis (HR) as the difference between the advancing and 

receding contact angle values divided by the advancing contact angle. Hysteresis 

also refers to phenomena in which two different values are obtained in a 

measurement, depending on whether the drop is expanding or receding, such as 

contamination of a liquid or solid that gives rise to hysteresis. 

In 1920, Sulman investigated the cause of discrepancies between recorded values 

of contact angles, and there are several possible causes of wetting angle hysteresis. 

One involves chemical changes on the surface of the solid. On the surface of a 

material (especially hydrogels), the various groups of polymer chains are mobile as 

they can rotate, and when the surface of the polymer is exposed to air the un- 

wettable groups tend to be oriented towards the out side. In measuring the 

advancing angle, since more of the un-wettable groups of the polymer chain are 

oriented towards the surface, there is less wettability and thus a larger contact 

angle is obtained. When the surface of the un-wettable groups is in the bulk, the 

wettable groups come to the surface. In measuring the receding angle, since more 

of the wettable groups of the polymer chain are oriented towards the surface, there 

is greater wettability and thus a lower contact angle is obtained (Holly 1983). The 

other cause can involve the work of adhesion (WA) between the liquid-dry solid 

and liquid-previously wetted solid. In this case, penetration and absorption were 

recorded as the most frequent causes of hysteresis (Cassie 1944). 

There has been an attempt in the literature to correlate hysteresis with lens material 

wettability (Holly 1978), but the results indicate that hysteresis is not a good 

indicator for advancing or receding contact angle (Fitzgerald 1983). Accurate 

measurement below 10' was impossible, and the receding contact angle of the 

treated silicone material is recorded as <10'. Thus, he concluded it was not 

possible to calculate precise hysteresis. 
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Bartell et al, (1953) and Grohe et al, (1989) ascribed "advancing and receding" 

wetting angles to improper preparation of the surface and poor measuring 

techniques, with the three factors responsible for hysteresis appearing to be surface 

roughness, contamination and adsorption effects. Similarly, Guastalla (1957) have 

listed several causes of contact angle hysteresis: hydration; dissolution; deposition 

and chemical interaction between the liquid and solid. 
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3.7. In vivo Wettability 

Clinical observations showed that tear spreading is a factor in determining the 

wearability of a contact lens surface (Dohlman et al 1976, Doane 1980a, Guillon et 

al. 1989, Shiobara et al. 1989, MacNfillan 1992). 

Jones ct al (1994) and Doane (1988 and 1989) studied in vivo wettability, using an 

intcrferometric method, demonstrated that a thin lipid layer is usually present on 

the front surface of the pre-soft lens tear film, although, in the case of standard 

PMMA corneal lenses, a lipid layer in the pre-lens tear film was rarely detected. 

Guillon et al (1989) stated that tear film on thicker soft contact lenses are more 

stable than the ultrathin lenses. Tears contain a significant amount of calcium, the 

precipitation of which can be examined by rapid tear film break-up. If tear film 

composition, quantity or quality is significantly found outside accepted values, an 

increase in the level of deposition is to be expected. The fatty acids lipids come 

into contact with the contact lens surface, which produces areas of non-wettability. 

Tomlinson (1984) investigated the contrast sensitivity function of subjects wearing 

rigid contact lenses, the contact angles were between 46.9' and 66.9' using the 

captive bubble method and subjects varied in their response, with the visual 

performance of one being severely affected by the material with the highest contact 

angle while another subject showed no relation between performance and contact 

angle. He concluded that for some patients visual performance is affected adversely 

by contact angles exceeding 60', but felt that angles lower than 60* were not 

necessary for establishing stable mucin. 

On-eye wetting was assessed using a slit-lamp biornicroscope. A qualitative 

grading system from 0' (very good ) was adopted, which was based on the number 

and size of non-wetting areas on the lens front surface and the evaporation time of 

the film on the lens front surface immediately following a blink (front surface tear 

break-up time). In vivo wettability was correlated with the advancing angle after 

seven days of soak and 20 minutes of wear (Benjamin 1984). In-eye wetting 

characteristics are markedly influenced by the lens manufacturing procedures, with 

variables, such as the polishing media, polishing compounds and solvent exposure 
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(duration and type), altering surface wettability (Bennett, 1990). Clinical 

experience has demonstrated that gas permeable hard contact lenses are more 

susceptible to deposit formation than those made from PNRVIA. In the case of 

CAB, the deposit is essentially lipid in nature, while siloxane-methacrylate adsorbs 

both lipid and protein. The deposits block the wettable groups of the polymer 

surface and produce an un-wettable surface. 

3.7.1. In vivo Sessile Drop Method 

Although contact angles can be measured on contact lens surfaces, there is still the 

problem of interpreting the observed angle in terms of a surface property of 
interest to a contact lens practitioner (Fatt 1990). Experience shows that the 

observed contact angle on RGP lens surfaces is sensitive to the history of the 

surface, while the in vivo study (Benjamin et al, 1984a and 1989) illustrated that a 

sessile drop contact angle ranged from the maximum observed for a fresh lens, 

about 650, to as low as 12" after a few blinks. 

Benjamin et al (1984a), Benjamin et al (1984b) Yeager et al (1987) and Benjamin 

(1987) measured in vivo RSCA: after five blinks and following five, ten, and fifteen 

minutes of lens wear. They concluded that the wetting effect of rigid lens "wetting 

solutions" is short lived after five blinks, one wetting regime started to reduce the 

wetting angle and then after five minutes of wearing began to increase the wetting 

angle, the contact angles of the lenses treated with various care regimens were not 

significantly different (P<0.05) from those found with the saline control within the 

first 10 minutes of wear and were certainly not different after one minute. 

Therefore, they concluded that the factors determining patient acceptance of most 

solutions did not include major differences in the initial surface wettability on 
insertion. In vivo wettability was also investigated by Benjamin et al (1986), 

Bourassa at al (1987 and 1992), Cooke (1991) and Owen (1990), Benjamin 

(I 992a and b), who showed a variation of tear on contact lens wettability. The slit- 

lamp biornicroscope was also used to observe the various aspects of the anterior 
lens surface, including wettability by Josephson et al (1989). 

107 



Chapter 3. Wettability Measurement Methods 

3.7.2. Tear Break Up Time 

The tear film break up time method (TBUT, Norn 1969, Holly 1973, Lemp et al 
1973, Koetting 1977, Holly 1981, Gleason et al 1987) and tearscope were used in 

vivo to evaluate tear film structure and tear film stability to measure the wettability 

of rigid and soft contact lens surfaces (11olly et al 1977, Guillon 1987, Guillon et al 
1988 Guillon et al 1989 and Tighe et al 1990, Figure 3.17b). There were marked 
differences between some of the lenses in the rate of tear film break up and tear 

film thickness on the lens surfaces, with the surface chemistry of rigid gas 

permeables (RGP) being reported as the cause of lens surface drying, the 

accumulation of debris on the surface, peripheral corneal staining and lens 

discomfort visual problems (Lemp et al 1970a). Subjective responses about 

comfort, vision and lens preference were also tile subject of contact lens wettability 

in vivo. But Tomlinson at al (1991) stated that pre-lens tear film, lens wettability 

and deposit resistance did not vary significantly with the fluorine content in vivo 

initially and after three days of wear. 
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Figure 3.17b. Schematic presentation of tear film on a hydrogel contact lens 
(Tighe et al 1990). 
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3.8. Variables Which May Influence Wettabilitv 

3.8.1. Conditioning 

Hydration, dehydration, contact lens wearing time, wetting and soaking solutions 

generally influence on the lens surface wettability. Several methods have been used 

to hydrate and dehydrate a material surface to measure the wettability, and some 

workers have dried the contact lenses with a paper tissue before each 

measurement [Poster et al (1978), Bush et al (1988), Huff et al (1988) and Knick 

et al (1991)]. Fitzgerald (1983) and Madigan et al (1986) dried the contact lenses 

with lint free cloths, while Harris et al (1973), Cappelli (1979) and Sunny et al 
(1991), measured the wetting angle after several hours of dehydration in air and 
Fakes et al (1987) dried the lenses in Nitrogen. Many investigators rinsed lenses 

with distilled water and dehydrated them over night in a desiccator containing 
CaS04 palates [Anan (1979), Benjamin et al (1983), Madigan et al (1986), Huff et 

al (1988) and Sunny et al (1991)]. Shirafkan et al (1994, ýee 4.2.1.1 and 5.1.2) 

introduced a reliable and easy method to remove water from the hydrated, both 

rigid and soft contact lens surfaces. 

Bush et al (1988) stored the contact lenses in wetting and soaking solution, rinsed 

them with distilled water and dried them with a tissue before each measurement. 
Knick et al (1991) stored the lenses in saline for three days and in a Boston 

conditioner for seven days, reporting that all lenses returned to their baseline 

wettability by the third day. Huff et al (1988) stored the lenses in Soaclens, rinsed 
them with saline and dried them with tissue, Sarver et al (1984) soaked the lenses 

in Bausch and Lomb saline solution for two weeks and Benjamin et al (1983) 

measured the wetting angle in the dried and soaked state for 0-20 hours in Flex- 

Care solution. 

Madigan et al (1986) measured the contact lenses' wetting angle in a dry state 

which had been hydrated in saline for one day and seven days, reporting the 

advancing wetting angles of 65', 24" and 20' and the receding angle values of 34', 

16' and 12* (±3) respectively. Gregonis et al (1982) reported the wetting angle 

value of 59' (±2) for soaking the lenses for 24 hours, while Poster (1984) and 
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Fakes et al (1987) compared the wetting angle values of PMMA Glass flex clear in 

the different soaking solutions of normal saline and Soaclens for 24 hours, which 

were 45.25" and 20.16' respectively. They also measured the wetting angle values 
for blue PMMA with different soaking solutions, as before, finding that the values 

were 41.60' and 18.73" and concluding that the preconditioned lenses in Soaclens 

appeared to have the lowest wetting angle. Hydration and dehydration in a room 

air temperature of 22'C and humidity of 50 per cent did not significantly alter 
(71.2' and 72Y) the wetting angle of PMMA lenses (Benjamin et al 1983). 

Distilled water has been used to hydrate contact lenses by many investigators 

[O'Brien (1965), Poster et al (1978), Cappelli (1979) Gregonis et al (1982), Jho 

(1983), Fakes et al (1987) and Sunny et al (1991)]. Keates et al (1984) soaked the 

lenses in de-ionised water, and Rosenthal et al (1986) reported that Benzalkoniurn 

chloride reduced the surface wettability of materials. In contrast, Chlorhexidine 

Gluconate (CHG) was less strongly bound to the lens polymers and did not create 

an un-wettable lens surface. 

Davidson et at (1971) and Dexter (1979) argued that there was a need to 

standardise surface preparation techniques to minimise fluctuations in the 

interaction parameters and make precise measurements of the wettabilities by 

organic liquids. The wettability of water by non-polar organic liquids has been 

measured experimentally by Shaffin et al (1967), while Hill et al (1981) studied the 

wettability of 10 different wetting solutions on PMMA material and reported the 

advancing and receding wetting angle values of 60' and 36' respectively for the 

distilled sessile drop. 

Most wetting solutions on the market contain water-soluble polymers, such as 

methyl cellulose, hydroxyethylcellulose and hydroxypropylmethylcellulose. These 

components impart high viscosity, and increase the break-up time, and, therefore, 

these solutions appear to form an aqueous layer over the surface that is applied to 

an un-wettable solid surface. Polyvinyl alcohol is also used as a wetting solution 
ingredient, the aqueous solutions of polyvinyl alcohol at one to two per cent 

concentration are nonviscous. The higher the residual acetate content, the more 
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surface activity (Holly 1983a). The wettability of rigid lenses with respect to the 

actions of lens care solutions has been tested by in vitro methods [Krishner et al 
(1964), Benjamin et al (1984), Poster et al (1987) and Holden et al (1992)]. The 

use of one day conditioning solution on Boston contact lenses showed reductions 

of 51 per cent and 65 per cent respectively for advancing and receding angles, 

but after, seven days soaking, the advancing and receding angles had either 

stabilised or declined further (Madigan et al 1986). Hill et al (1981) stated that 

every wetting solution must have relative acidity (pH) and equivalent osmolarity to 

produce a good wettability. Knick et al (199 1) compared the wettability of PMMA 

lenses that had been hydrated in saline for three days and in the Boston solution for 

seven days, reporting a temporarily lower wetting angle of 20' to 12' for the 

Boston conditioning solution. Poster (1984) compared the wettability of clear 

PMMA in normal saline (45.3') and in Soaclens solution (20.2') for 24 hours and 

reported on the wetting angle values for the blue PMMA with different soaking 

solutions, which were the same as before (41.60' and 18.73'), and concluded that 

the preconditioned lenses in Soaclens appeared to have the best wetting angle. 

Fatt (1984) reported different wetting angle values of PMMA when: - 

1. The contact lenses were stored in Contique soaking solution for 14 hours 

and rinsed with distilled water (730). 

2. Cleaned by rubbing the lenses with fingers using Contique cleaning solution 

and rinsing in distilled water (131). 

3. After two hours of wearing (440). 

4. After being wom for 12 hours (about 44*). 

He concluded that those lenses cleaned by rubbing using Contique cleaning 

solution, even after being rinsed with distilled water, lowered the wetting angles 

substantially from 73" to 13'. Fatt also found that wearing the lens changed the 

wetting angle from 13" to 44" in two hours and additional hours of wearing did 

not raise the contact angle. 
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3.8.2. Wetting Angle Interface Solution 

The presence of dissolved substances in the liquid, as well as un-dissolved particles 

on the surface of the drop, can markedly affect the contact angle. The purity of the 

liquid may be checked with published physical constants, as well as the use of 

instrumental methods of gas-liquid chromatography and spectrophotometric 

techniques (Bikerman 1970). Various solutions have been used in the sessile drop 

method: distilled water [O'Brien (1965), Lin et al (1973), Harris et al (1973), Ong 

et al (1976), Benjamin et al (1983), Fatt (1984), Fakes et al (1987), and Sunny et 

al (1991), ]; unpreserved saline [Lemp et al (1972) and Knick et al (1991)]; and 

preserved saline [Sarver et al (1984); Huff et al (1988) and Bush et al (1988)]. 

The latter also used 0.8 per cent Mucin and stated that this significantly decreased 

wetting angles by 8' to 15', although to acquire explicit data amenable to analysis 

it is essential that only pure solutions are used (Good 1979 and Zekman et al 

1972). 

3.8.3. Temperature 

Most workers have measured contact lens contact angles between 20'C and 251 C 

[Brophy et at (1951), Tomlinson et at (1963), O'Brien et at (1965), Ong et at 

(1976), Cain et at (1982), Gregonis et at (1982), Jho (1983), Benjamin et at 

(1983), Fitzgerald (1983), Sarver et at (1984), Benjamin et at (1984) and Sunny et 

at (1991)]. While several researchers suggested that strict temperature control is 

not necessary [Neumann et at (1970), Neumann et at (1971) and Neumann 

(1979)], Staicopolu (1962) and Petke et at (1969) argued that contact angles were 

dependent on temperature. 

Knick ct al (1991) measured the wetting angle of contact lenses at the corneal 

value of 34.3'C (Efron et at 1989), discovering that the wetting angles decreased 

slightly with temperature and the increased temperatures failed to improve 

wettability, concluding that the wetting angles were independent of temperature. 

Fowkes et al (1940) stated that temperature control of plus or minus two degrees 

is satisfactory while taking measurements for calculations at 25" C. 
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3.8.4. Humidity 

In general, wetting angles have been measured at humidities of between 29 to 76 

per cent [Tomlinson et al (1963), Poster et al (1978), Gregonis et al (1982), 

Benjamin et al (1983) and Sarver et al (1984)], although Huff et al (1988), Bush et 

al (1988) and Knick et al (1991) used calcium chloride, magnesium nitrate and 

sodium acetate to measure the wetting angle at humidities of 31 per cent , 56 per 

cent and 76 per cent. They calculated that the wetting angle of hydrated and 

dehydrated lenses at the ranges tested were not affected by humidity and suggested 

that, if a moderate range of humidity was the only environmental variable, lens 

wettability would be unaffected by dry or humid environments. Poster et al (1978) 

measured the wetting angles in ambient relative humidities of 29 per cent to 60 per 

cent, Benjamin et al (1983) measured the wetting angle in 50 per cent humidity. 

Sarver et al (1984) measured the wetting angles at ambient room temperature, 

Gregonis et al (1982) measured the wetting angle in humidity of 30 per cent and 

Tomlinson et al (1963) measured the wetting angle of liquids by the reflecting 

method at relative humidity of 65 per cent. 

Kneen et al (1937) reported that in the projection method careful control of 

humidity or temperature is not essential, with the measurement being carried out in 

less than 30 seconds after the drop has come into contact with the surface. Under 

such conditions, evaporation can be neglected for water and aqueous solution, with 

the contact angle showing no appreciable change over two to three minutes. 

3.8.5. Surface Modification and Manufacturing 

Several manufacturing processes have been recorded that affect lens surface 

wettability (Walker 1990) :- 

1. Special soaking solutions (Kokoski et al 1963, Dabezies et al 1966, 

Benedetto et al 1975 and 1978, Doell et al 1986). 

2. Special coating on hard contact lenses (O'Brien et al 1965 and Blue 1967). 
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3. Polishing (Lowther 1984; Dent 1986; Clompus 1987; Grohe 1988; Zantos 

1990 and Morgan et al 1992). 

4. Lens surface treatment [Gesser et al (1965 and 1967), Blue (1966), Fakes 

(1987)]. Sunny et al (1991) reported wetting angle values of 12.6' (±0.8) 

for treated and 78.71 (±2.25) for untreated PNUVIA materials. 

5. Roughness. The surfaces appear to be more wettable when the surface is 

roughened (Wenzel 1936, Larke et al 1973, see later). 

3.8.6. Surface Density 

Surface characterisation of biomedical polymers is obviously important because the 

surface of the material interacts with the biological milieu (Hosaka et at 1983, 

Ratner 1983 and Castillo et at 1984). PHEMA 38 per cent water content is a cross 

linked polymer that can be lathe cut, spin cast or moulded into contact lenses, 

while the concentration of the ester group increases slightly from the surface (0.35 

pm) to the bulk (2ýtm). The data suggest that the surface of the lens is less dense 

than its bulk, which is probably due to the lathe manufacturing technique. 

in the spin cast process, the monomers are polymerised in a concave spinning 

mould, providing a better surface finish (Castillo et al 1983 and 1984) and a 

smoother surface without the lathe markings, pits and grooves associated with the 

lathe cut method. A small, but statistically significant difference was recorded when 

comparing the manufacturing process. The spin cast lenses are more compact than 

those of either the other two methods (Holly 1977), although the latest work by 

Shirafkan et al (see 5.3) showed that the wetting angle was inversely related to the 

material's bulk density. 

3.8.7. Front Surface Radius 

Bush et al (1988) measured the wetting angle of different front contact lens 

surface radii (7.00mm to 8.30mm) and reported that the wetting angle was 
independent of the radius. Huff et al (1988) measured the wetting angle of different 
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radii between 7.9mm to 8.1 mm and stated that the wetting angle's values and front 

surface radius did not significantly correlate for the PMMA material. 

3.8.8. Surface Roughness 

Bartell et al (1953) defined roughness in terms of the average height h to which 

the asperities rise above the horizontal surface plane and the mean angle of 
inclination of the sides. (a) If, at the solid-liquid-air interface, the stable contact 

angle, with respect to the pyramid face, is formed, the curvature of the liquid-air 

interface will be distorted, which tends to cause the liquid to advance. (b) If the 

curvature of the liquid-air interface is constant, the angle made by the liquid with 
the solid on this pyramid face will be greater than the stable angle and the liquid 

will tend to advance the asperities with respect to the horizontal plane of the solid 

surface. The effect of such roughening to the surface is best understood in terms of 

the Wenzel (1936) equation through the Young equation, that modified by 

multiplying the energy change by a roughness factor, which is the ratio of the 

actual surface area to the geometrical surface area: 

r (ysy., 1) =yL cos (14) 

where 0' is the contact angle on the roughened surface. The roughness factor r 
is always greater than one, except on an ideally smooth surface, when it is equal to 

one. The contact angle observed on a smooth surface is related to the angle 

observed on a roughened surface: 

r (cos 0) = cos 0' 

From this relationship, it follows that, if a contact angle on a smooth surface is less 

than 90', roughening the surface will reduce the observed contact angle. If the 

angle on a smooth surface is more than 90', roughening the surface should increase 

the observed contact angle. The contact angle depends on whether the interface at 
the periphery of the drop is roughened (Blake 1968 . Eick et al 1975 and Sammons 

1985). Hoffman (1983b) discussed the nature of surface properties and stated that 
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a roughness that is greater than 0.1 pra can be readily detected by contact angle 

measurement, so it is important that all lens manufacturers use the same techniques 

in machining and polishing. 

Bikerman (1970) stated that grooves, valleys and scratches act as capillary tubes, 

in which a liquid rises if the angle is less than 90' or descends if the angle is greater 

than 90'. Lin et al (1973) reported that a rough surface is usually more effected on 

wettability than a smooth surface by a 'well wetting' liquid, while a 'poor 

wetting' liquid should spread on a smooth surface better than on a rough one. A 

rougher surface, therefore, would be more readily wet by water than a smoother 

one. Li et al (1992) and Cordrey (1983) studied the wetting angle on a surface that 

had less than 0.1 pm roughness, reporting that contact angle measurements are very 

sensitive to surface roughness and all samples should be smooth to the 0.1 gm level 

to improve wettability. 

3.8.9. Surface Preparation 

The presence of foreign materials on the solid surface can have a marked effect on 

the contact angle, according to Bikerman (1970). Lin et al (1973) stated that care 

must be taken in preparing and maintaining clean surfaces, while Ellison and 

Zisman (1954) used a procedure in which the samples, after polishing with silk, 

were rinsed. Tomlinson (1984) cleaned contact lenses by a solution and a hot 

ultrasonic cleaning device, Gleason (1987) stated that if the surface preparation 

was poor, the lenses would not wet properly and Dexter (1979) stated that there 

was a need to standardise surface preparation techniques to minimise fluctuations 

in the interaction parameters. Contact lens surface preparation was found to be an 
important factor (Shirafkan et al 1994, see 4.2.1), which could change the values 

of wetting angles. 

3.8.10. Deposit 

Bagnall et al. (1980) evaluated the quality and quantity of deposits of PMMA 

materials before and after implantation in animals and measured the contact angle 
by the sessile drop/photograph method to determine the effect of adsorption of 
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proteins on contact angle values, concluding that in-vitro PMMA absorbs more 

protein than the other polymers on the surface. A similar report was documented 

by Wilsher (1982) and Anderson et al (1991), who also stated that in vivo contact 

angle measurement is not sufficient to justify and consider the protein absorption. 

High water content lenses have a greater pore size and/or number of pores and are, 

therefore, more susceptible to tear film constituents entering the lens matrix (Ong 

et al 1976 Minarik et al 1989, Smiddy et al 1990). 

Feldman et al (1987) reported that a 'fluorinated' monomer enables the Equalens 

to resist surface deposition through its superior wetting on the eye. Tears contain a 

significant amount of calcium, the precipitation of which can be favoured by rapid 

tear film break-up, and if tear film composition, quantity or quality is found to be 

significantly outside the expected range then an increased level of deposition is to 

be expected. The fatty acids lipids coming into contact with the contact lens 

surface produce areas of non-wettability (Jones 1992). Deposit formation on 

various types of contact lenses are reported by many investigators, including 

Eggink et al (1988) and Allary et al (1989), while lathe-cut lenses may attract more 

surface deposits than lenses fabricated by either spin-casting or moulding because 

of their surface quality and lathing marks. Peppas et al (1981) and Jones (1992) 

stated that contact lens' manufacturing techniques are contributory factors in this 

respect. 

The anterior surface of contact lenses examination showed that the continuously 

worn lenses had thicker coats, but more even surfaces than those worn daily, and 

the coatings on the two type of lenses seemed to be composed of the same 

elements, trabecular and granular mucus-like material and some bacterial forms, 

When one observes contact lens coatings by comparing new lenses worn for only 

30 minutes, new lenses worn for only eight hours, routinely worn cosmetic lenses 

and continuously worn therapeutic lenses, the following hypothesis arises: in the 

first few minutes and hours of wear, cells and scattered bits of mucus adhere to the 

contact lens surface. As wear continues, more mucus is deposited and is ground to 

a more amorphous coating by the action of the upper lid on continuously worn 
lenses (Fowler et al, 1980). 
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The contact angle of water on PMMA is 65"-70" and on Silicone lenses is 103' 

and the problem of lipid adsorption for PMMA was not severe with a silicone lens 

(Holly 1983). In fact, the absorbed lipid clings more tenaciously to a hydrogel lens 

than to a hard lens and becomes insoluble in water, which appears to defeat the 

purpose of the attempts to make the surface of silicone or hard lenses permanently 

wettable either by ion or electron bombardment or by the deposition (Fowler et al, 

1980) of a thin coat of wettable material. Such a wettable surface absorbs lipids 

tenaciously in a short time, resulting in a short lens life. 

3.8.11. Ageing 

Ageing of contact lenses has been reported to decay the wettability of contact 

lenses, particularly the treated polymer surfaces (Yasuda et al 1981, Guillon et al 

1990, Figure 3.18) 
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Figure 3.18. Variation of wetting angle as a function of ageing time for 
different plasma-treated surfaces. A Glow-discharge- 
polymerised methane, B glow-discharge-polymerised propylene 
and C conventional polypropylene (Yasuda et al 198 1). 
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4.1. Introduction 

The sessile drop wetting angle technique is one of the oldest methods used to 

measure rigid contact lenses' wettability. Despite disagreement over the 

repeatability values and reliability of the method (Hoffman 1983), it is still valid for 

scientific investigation and was, for example, recently used to measure the 

wettability of soft contact lenses (Jones et al 1994). 

To produce a sessile drop on a hydrated contact lens surface, several techniques 

have been used by investigators to remove liquid from the hydrated contact lenses. 

It was suggested that the only method that could prevent extrinsic factors 

influencing the surface was to break the polymer material in to two pieces (Figure 

4.1), although the produced surface is not like a contact lens surface. Contact lens 

preparation methods, however, produce either surface dehydration or surface 

contamination that can affect the measurement. 

Figure 4.1. Polymer wettability can be measured when it is broken. 

This Chapter will discuss a series of experiments, for the first a novel method was 

used to clean and remove liquid from hydrated rigid contact lens surfaces to 

produce a solid-liquid-air interface to measure wettability (experiment 4.2.1). The 

aim of the next two experiments was to find a repeatable sessile drop delivery 

system (4.2.2) and investigate the influence of the front lens surface radius on the 

contact lens wetting angle (4.2.3). Both attempted to standardise the sessile drop 

technique. 

In 4.3.1, the sessile drop was used to measure contact lens wettability influenced 

by solutions, while 4.3.2 revealed the wettability of rigid lenses when influenced by 
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the tear film. Finally, the receding sessile drop on a rigid contact lens was 

monitored by measuring the wetting angle and diameter of a sessile drop every two 

minutes (4.4). 

4.2. Pilot Studies 

4.2.1. Contact Lens Surface Preparation Method 

4.2.1.1. Aims, Material and Method 

A contact lens in vivo would be in hydrated state, hence the wettability values of 
hydrated contact lens surface has close relationship to the actual usage of a lens. 

The literature search showed that the two methods of evaporation and wiping have 

been used to remove liquid from the hydrated contact lens surfaces which can 

partially or completely made the lens surface to be dehydrated. In order to use 

sessile drop method to measure contact lens surface wettability a novel method is 

used to clean and remove a liquid from hydrated rigid contact lens surface to 

produce a solid-liquid-air interface. The result were compared with the established 

methods of evaporation and wiping methods. 

A PMMA contact lens from the contact lens clinic at City University was cleaned 

with a L. C. 65 surfactant cleaner using a brush (Prolene by Proarte UK 106- 

50739455) for 30 seconds. To prevent lens surface contamination from the fingers, 

it was held by a contact lens holder. After cleaning, the lens was repeatedly 

washed with distilled water and soaked for 24 hours in de-ionised distilled water 

(pH 6.6 ±0.2; Y= 72.5 ±0.4). The following methods were used to remove liquid 

from the lens surface. 

a. Evaporation Method. The rigid contact lens, after cleaning and hydration, had 

warm air blown over it for three minutes to remove liquid from the lens surface. 

The temperature at the contact lens surface was adjusted to 40' C (±2). 
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b. Wiping Method. A medical paper tissue (Kleenex 3020) was rubbed on the 

rigid contact lens front surface five times. 

c. Surface Tension Removing Liquid Technique. Surface tension was used 

to remove liquid from the hydrated contact lens surface. The hydrated rigid 

contact lens was withdrawn vertically about Imm from the liquid surface of a 

container using two tweezers (Figure 4.2) and then tilted and elevated to 

remove water from the contact lens surface without touching or damaging it. 

The small amount of saline remaining on the edge of the lens was removed by a 

corner of the paper tissue. The equilibrium sessile drop/laser assisted method 

was utilised to measure contact lens wettability (see 3.2.3.5, Bush et al 1988). 

a 

C d 

Figure 4.2. The use of the surface tension function to remove liquid 
from the hydrated contact lens surface: a. hydrated contact 
lens; b withdrawing the contact lens from the liquid-, c 
removing liquid from the contact lens surface; and d the 
remaining liquid was removed by a paper tissue without 
touching the contact lens surface. 

A Hamilton micrometer syringe with a circular modified needle tip (0.46mm 

diameter, see 3.2.1 and Figure 3.1) was used to place a sessile drop of de-ionised 

distilled water on the lens surface to produce a solid/liquid/air interface, while the 

contact drop delivery method (see later) was employed to place a sessile drop. 

Within 60 seconds of drop delivery, the laser was adjusted at the interface to 
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measure the wetting angle. To produce the wetting angle on the protractor 

quickly, the light was adjusted on the contact lens surface and then directed at the 

interface area. Two measurements were read for the left and right side of the drop 

and the average of two readings was calculated as the wetting angle. Ten 

independent measurements were taken for each contact lens preparation method. 

4.2.1.2. Results 

The effects of surface preparation on the wetting angle measurements are 
illustrated in Figure 4.3 and Table 4.1. The wetting angle values of the hydrated 

rigid contact lenses varied with the surface preparation methods and there was a 

significant difference between the wetting angle of the various contact lens surface 

preparations (ANOVA, F= 47.01, p<0.00001). The wetting angle of the hydrated 

PNUVIA contact lens, from which the liquid of the surface was removed by 

evaporation, had the greatest value. There was also a significant difference 

between the values of the "evaporation" and "wiping" methods (Bonferroni, t-test, 

P<0.001). The mean wetting angle of the hydrated lens using the surface tension 

technique was the lowest and there was a significant difference between this and 

the other preparation methods (Bonferroni, Mest, p<0.00001). The standard 
deviation of the surface tension method was the smallest (Table 4.1). 

Removing liquid techniques Wetting angle mean SD 

Evaporation 73.2 2.4 

Wiping 70.2 4.8 

Surface tension 62.8 1.8 

Table 4.1. The mean and standard deviation of the wetting angle 
values of the hydrated PMMA lens using different methods 
to remove liquid from the hydrated contact lens surface. 

4.2.1.3. Discussion 

Several methods have been used, apart from the surface tension technique, to 

remove liquid from the surface of hydrated contact lenses, which led to the lens 
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Figure 4.3. The wetting angle values following different contact lens 
surface preparation methods: evaporation, wiping and 
surface tension compared with the two the established 
values (PMMA).. 

I 

surfaces becoming partially or totally dehydrated. As the use of contact lenses in 

vivo would be in a hydrated condition, it is logical to measure the contact lens 

surfaces' wettability in vitro whist they are hydrated (see 3.9). 

Contact lens surface wettability can be influenced by manufacturing processes and 

wetting solutions (see later). When they were measured using wiping and 

evaporation methods to remove liquid from the contact lens surface, the surfaces 
dehydrated partially or completely, causing the values to increase towards a 

dehydrated condition. 

When the lens surface was wiped by the tissue and the pendant drop delivery used, 

measurement values increased. Because the drop at the tip of the needle became 

unstable and shook when the lens surface approached the droplet, it suddenly fell 
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on a contact lens peripheral area (not at the contact lens centre as expected). This 

was because the electrostatic charges were produced on the lens surface by wiping 

the tissue. As a result, a greater standard deviation was calculated from the 

measurement values (± 4.8). 

Figure 4.3 compares the established captive bubble method value with the 

experiment values which the standard method (captive bubble) shows a greater 

variation. One of the main reason to accept the captive bubble was because the 

measurement could be obtained in hydrated condition, otherwise there were no 

advantages over other methods. The only remaining method without any problem, 

therefore, was the surface tension technique, in which the molecules of water on 

the contact lens were removed by surface tension forces and, therefore, the 

molecules that were absorbed by the polymer bulk were not removed. The 

advantages of this method are that: 

" it does not affect lens surface hydration; 

" it gives low-standard deviation; and 

" it produces and incurs minimum surface contamination. 

4.2.2. The Influence of Sessile Drop Delivery Methods on Contact Lens 

Surface Wettability 

4.2.2.1. Aims, Material and Method 

A Literature search showed that to measure contact lens surface wettability a 

sessile drop can be used either in the state of dripping or contacting the lens 

surface to a pendant drop for placing the droplet. There was also a dilemma on 

reproducibility of methods, hence both methods were explored. 

A rigid contact lens made from PMMA with a front surface radius of 8.00mm and 

a total diameter of 9.50mm. was manufactured by the City University contact lens 

laboratory. It was cleaned with L. C 65 using a brush, as described in 4.2.1.1. It 

was hydrated in de-ionised H20 (pH=6.6 ±0.2,7=72.6 dynes ±0.4) for 24 hours 
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and the water on the hydrated lens surface was removed by the surface tension 

method. Two drop delivery techniques were used. 

a. Dripping Drop 

In this method, an equilibrium sessile drop freely fell from the tip of a syringe 

needle on to a contact lens surface. The distance between the droplet and the lens 

surface was adjusted to less than Imm and the volume of the drop was controlled 
by modifying the tip of the syringe needle. An initial study showed that the larger 

the syringe needle diameter and the more rough and unsharpened the needle tip, 

the larger the droplet volume. A 0.46mm syringe needle tip diameter was modified 

to produce a 3gl volume drop. 

b. Contact Drop (pendant drop) 

The contact lens was elevated slowly towards a prepared drop on the tip of a 

syringe. To deliver a sessile drop to the centre of the contact lens surface, the 

centre of the platform was adjusted towards the tip of the needle. The platform 

was then moved 5mm away from the tip of the needle while the syringe was filled 

with de-ionised water. A drop was created at the tip of the needle and the platform 

was slowly elevated until the front surface of the contact lens touched the drop. 

The laser wetting angle method was used to measure wetting angles. The 

laboratory temperature and relative humidity were 23' C (± 2) and 40 per cent 
(±5), and ten independent measurements were calculated for each drop delivery 

method. 

4.2.2.2. Results 

The results are illustrated in Figure 4.4, with the Student t test revealing that there 

was a significant difference between the mean wetting angle values of 'the contact 

drop delivery (63.81, SD=±0.9) and the dripping drop delivery (62.20', 

SD=±1.8, p<0.045) methods. 
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Figure 4.4. The wetting angle values of different drop delivery methods 
of the dripping and pendant sessile drops on hydrated 
PMMA contact lens surfaces. 

4.2.2.3. Discussion 

The dripping drop had kinetic energy at the drop delivery point (Figure 4.5a) that 

Syringe needle 

Uquid 

a Dripping drop 

Figure 4.5. a Kinetic energy for the dripping drop delivery method; and 
b adhesion force for the pendant drop delivery method. 
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affected the sessile drop, which expanded to a greater area on the contact lens 

surface. This can lead to the dripping drop delivery producing a flatter droplet than 

the pendant drop delivery (contact drop, Figure 4.5b) and resulted in a lower 

contact angle and a greater standard deviation for the dripping drop delivery 

method. As the pendant drop delivery method, produces a lower standard 

deviation and makes it easy to measure the wetting angle, it is a reliable method. 

Hence the experiments will be carried out using the pendant drop delivery method. 

4.2.3. The Influence of Front Lens Surface Radii on Wetting Angle Values 

4.2.3.1. Aims, Material and Method 

It has been suggested that the front contact lens radii can influence on the surface 

wettability values, hence it was necessarily to establish if this factor implemented 

wetting angle values. 

Six contact lenses, made of PMMA, had front surface radii of 7.00mm, 8.00mm, 

9 mm, 10 mm, II mrn and 12 mm and a total diameter of 9.5 mm. The front lens 

surfaces were manufactured at the City University contact lens laboratory and 

polished for three minutes and cleaned, hydrated and prepared in the method 

described in 4.2.1.1. A3 ýd pendant drop of distilled water was used to create a 

solid-liquid-air interface and the laser method was utilised to measure ten 

independent wetting angles for each contact lens. 

4.2.3.2. Results 

The mean and standard deviations of the collected data for different contact lens 

front surface radii are shown in Figure 4.6. ANOVA showed no significant 
disparity between the values of different contact lens surface radii (F=0.34, 

P>O. 3 4). Linear regression was applied to the data, a slope of 0.11 for all values 

and a slope of 0.02 for the first four radii were calculated. 
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4.2.3.3. Discussion 

A flat surface shape material is ideal to create a solid-liquid-air interface through a 

sessile drop method because it prevents gravity from changing the geometry of the 

drop and hence its wetting angle. Choosing front lens surface radii of between 

7.00mm and 9.00mm for analysing was logical because 98 per cent of laboratory 

contact lens production is within this range. For this range the slope of 0.02 

showed no significant dependence on the contact lenses' front surface radii, the 

wetting angle (ANOVA, F=0.34, p>0.87) and the mean of the data was 63.9' 

(SD=±1.02), which showed the repeatability of the values. 
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Figure 4.6. Correlation of the wetting angle values to the front lens 
surface radii (p>O. 1). 
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4.3. Rigid Contact Lens Wettability 

4.3.1. The Influence of Wetting Solutions on Contact Lens Surface 

Wettability 

4.3.1.1. Aims, Materials and Methods 

The effect of wetting solutions on the wettability of different rigid contact lens 

surfaces was investigated in this study. Three sets of nine contact lenses made of 
PNMN, Boston IV and Equalens, were lathe cut to the same specification: 
8.00mm. front surface radius and a total diameter of 9.5mm. The front lens surfaces 

were polished for three minutes and then cleaned and soaked in de-ionised distilled 

water for 24 hours. They were soaked for 12 hours in five contact lens solutions: 

Bausch and Lomb wetting and soaking solution (B&L. W&S. S), wetting and 

soaking solutions of both Delta and Renu; Allergan wetting solution; and 

Prymesoak (Table 4-2). 

Contact Lens Solutions 

Solutions Function Formula 
De-ionised H 20 pH=6.6, Y=72.6 
.............................................. i ...................................... .............................................................................................................................. 1 Wetting Bausch and Chlorhexidine Gluconate 0.006 per cent 
Lomb Soaking Disodium edetate 0.05 percent 

Disinfecting 
..................................... ........ w ....... .............................................................................................................................. Delta (B&L) Disinfecting Benzalkonium chloride 0.005 per cent 

Wetting Disodium edetate 0.128 per cent 
Soaking 

......................... .................... ................... W ................ .............................................................................................................................. Wetting Polyvinyl alcohol Liquirilm 
(Allergan) Soaking Hydroxypropyl methylcellulose 

Edetate disodium 
Sodium chloride 
Potassium chloride 
Benzalkonium chloride 0.004 per cent 
.............................................................................................................................. Renu (B&L) I Cleaning ; Boric acid 

Disinfecting Edetate disodium 
Sodium borate 
Sodium chloride 
Polyhexanide 0.0006 mg Poloxamine I per cent 

.............................................. ..................................... .............................................................................................................................. Prymesoak Disinfecting Chlorhexidine Gluconate 0.002 per cent 

Table 4.2. Contact lens solution ingredients. 
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The contact lenses were rinsed with de-ionised distilled water, the surface tension 

method removed the liquid from the hydrated lens surface and the pendant drop 

placed a sessile drop on the contact lens surface. Five independent wetting angle 

measurements were taken for the hydrated and soaked lenses in solutions. 

4.3.1.2. Results 

The wetting angle values are shown in Figure 4.7 and Table 4.3. Hydrated PMMA 

with H20 had the highest wetting angle values, which was expected, with the 

lowest being Boston IV and Equalens. There was a significant difference between 

the hydrated contact lenses (ANOVA, F=9.1 P<0.01) because contact lens solution 

influenced the contact lenses' wettability and produced a greater wettability. An 

example was PMMA for which different solutions produced various wettability 

values (ANOVA, F=260.8, P<0.00001). The B&L wetting solution significantly 

influenced the materials (P<0.0001) and increased their wettability to 30' with no 

significant difference between the three material's values (ANOVA, F=0.36, 

P>O. 7). 

The effect of wetting solutions on the surface wettability 
of different rigid contact lenses 

Water B&L. W&S Renu Delta Liquifilm Prymesoak 

Figure 4.7. The surface wettability of PMMA, Boston IV and Equalens 
contact lenses when soaked in various solutions. 
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Wetting angle of different contact lens materials after 

soaking in various solutions 

Materials 4 PMMA Boston IV Equalens 

Solutions 44 Mean SD Mean SD Mean SD 

Water 63.8 1.4 63.0 1.7 59.0 1.3 

B&L. W&S 29.8 1.3 30.6 1.2 30.6 1.2 

Renu 53.8 1.3 46.6 1.7 42.4 1.8 

Delta 57.0 1.6 25.8 1.6 32.2 1.7 

Liquifilm 37.8 1.5 43.0 1.2 35.0 0.7 

Prymesoak 41.4 1.2 63.0 
1 

1.6 37.4 1.9 

Table 4.3. The wetting angle' mean and standard deviation values for 
the rigid contact lenses of PMMA, Boston IV and Equalens' 
which were influenced by various solutions of water, B&L, 
Renu, Delta, Liquifilm and Prymesoak. 

Delta solution had the greatest effect on Boston IV (25.8'), while Prymesoak 

had the least influence (63"). There was no significant difference between the 

values of hydrated lenses with distilled water and Sauflon solution (Bonferonni: t- 

test, P=1), and the influence of different solutions on rigid contact lenses is 

ranked in Table 4.4. 

Materials 44 Wettability order of various CL materials 

PMMA Water < Delta <Renu < Prymesoak < Liquifilm < B&L 

Boston IV Water = Prymesoak <Renu < Liquifilm< B&L < Delta 

Equalens Water < Renu. < Prymesoak < Liquifilm< Delta < B&L 

Table 4.4. The wettability of various contact lens materials that were 
influenced by different solutions. 
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4.3.1.3. Discussion 

As a contact lens in vivo is hydrated, the most meaningful wettability value is 

related to its use in vivo. The wettability values could be affected by a number of 
factors, such as the manufacturing process (see later). The results show a high- 

wetting angle for the hydrated materials between 59'-63.8'. In this experiment, 

when a contact lens was influenced by the wetting solutions, a wettable surface 

was stabilised on the contact lens surface. The B&L wetting solution increased the 

wettability of all materials to one level, while other solutions produced different 

wettability values for a given material. Different wetting solutions may be 

recommended, therefore, for different materials. A moderate contact lens 

wettability of 40" (±5) would be enough for most patients while a high-wettable 

material is not always necessary (Tomlinson 1991). The use of wetting solutions in 

general increases the surface wettability to a moderate level, enabling the subject to 

feel more comfortable at the time of wearing, although later in vivo the individual 

tear film (Bright and Tighe 1993, Tomlinson et al 1993) and deposit affect contact 
lenses wettability and produce a different value for the contact lens surfaces' 

wettability (see Chapter 7). 

4.3.2. Post-wear Contact Lens Wettability 

4.3.2.1. Aims, Materials and Method 

The tear film can influence contact lenses' wettability (Guillon 1988, Guillon et al 
1991 and Tomlinson 1992). The quality varies from one person to another (Hill 

1977) and is influenced by several systemic mechanisms, like hormones and non- 

systemic factors such as cells and fatty components. It was, therefore, suggested 
that the wettability of materials would only be ascribable to an individual tear film 

and could differ for another. 

Contact lenses made from PMMA, Polycon II, Boston IV, Equalens and 
Fluoroperm. were manufactured at the City University contact lens laboratory. 

They were prepared using the method explained in 4.2.1.1, hydrated for 24 hours 

and the liquid on the lens surface was removed through the surface tension 
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technique. The contact lenses were then fitted on one male subject for 30 minutes 

and removed using a suction holder that did not touch the area of the lens to be 

measured. The remaining tear film on the lens surface was removed using the 

surface tension method. A 3pl pendant sessile drop of de-ionised distilled water 

(pH=6.6 +-+0.2, Y=72.6 dynes ±0.4) was placed on the contact lens surface to form 

a solid/liquid/air interface and the laser method was used to measure the wetting 

angle. Ten independent measurements were taken for each material. 

4.3.2.2. Results 

The mean wetting angle values for the tested materials declined from the hydrated 

condition values 57'-63.8' to I P-13" and an ANOVA revealed there was no 

significant difference between the values of various materials after 30 minutes of 

wearing contact lenses (F=3.47, P>0.47). 

4.3.2.3. Discussion 

In 1977 Hill reported the mean wetting angle of 55" for contact lens post-wear. 

The results of this experiment showed that the tear film significantly affected 

contact lens surfaces and produced wettable surfaces, when using both the sessile 

drop method and the novel contact lens surface preparation method. A similar 

result was also reported by Benjamin (1986) who found values of less than 10'. 

The sessile drop results showed no difference between materials after wear (see 4.5 

and Chapter 7). 
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4.4. Receding Wetting An2le 

4.4.1. Aims, MateriaIs and Method 

The aims of this study were: 

a. to evaluate the reliability of the traditional sessile drop/receding wetting 

angle method; and 

b. to introduce a new method to monitor the diameter of a sessile drop in 

relation to the contact lens wetting angle, in which an equilibrium sessile 
drop is monitored until the solid/liquid/air interface is terminated. 

For the first part of the study, rigid contact lenses made of PMMA, Boston IV, 

Equalens and Aquasil were investigated, after which two RGP Scleral lenses of 

115 Dk (Fluoroperm) were used. One was from a patient who had dry patches on 

the contact lens surface and found the lenses uncomfortable. The wearing time was 

reduced to about five hours. The other RGP lens was made from the same material 

but was only used to compare wettability. 

A 3ýd de-ionised distilled pendant drop of water (pH=6.6 ±0,2, Y=72.6 dynes 

±0.4) was used to create a solid/liquid/air interface. The receding sessile drop/laser 

wetting angle method was used, in which, after delivering the sessile drop, the laser 

was adjusted at the solid/liquid/air interface to measure and monitor the changes in 

wetting angle and diameter of the sessile drop with evaporation time which receded 

with evaporation. The shape of the sessile drop was changed by increasing the 

evaporation time, which altered the wetting angle and the diameter of the 

solid/liquid/interface. At every two minutes, two independent wetting angle 

measurements were calculated on both the left and right sides of the sessile drop, 

with the average of the two readings being recorded as the wetting angle. The 

diameter of the sessile drop was also measured using a digital micrometer by 

moving the laser from one side of the sessile drop to the other. 
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4.4.2. Results 

Figure 4.8 illustrates the variation in the sessile drop diameter with the wetting 

angle and the time that the sessile drop receded with evaporation. The PMMA 

contact lens had the lowest sessile drop diameter, while Aquasil had the largest 

value. Even though the sessile drop diameter on Boston IV (2.67mm) was the 

same as on PMMA (2.65mm), the wetting angle reached 0' at a diameter of 

2.00mm while PNRVIA the wetting angle reached 0' at I mrn diameter. 

Equalens had a sessile drop diameter of 3.06mm, and when the wetting angle 

reached 0' the interface diameter was 3.00mm. This material also showed the 

lowest reduction in its wetting interface diameter 0.06mm in which the wetting 

angle reached 0'. The Aquasil lens had the largest wetting diameter (3.15mm. ), 

while the wetting angle declined to 0', the wetting interface diameter only 

declined to 0.15mm and the wetting diameter reduced to 3.00mm (Figure 4.8). 
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Figure 4.8. The variation in the sessile drop diameter (interfacial 
tension area diameter) and wetting angles on different 
contact lens materials with evaporation of droplet. 

The scleral contact lenses had the same wetting interface diameter 2.45mm. The 

wetting interface diameter of un-wom lenses declined to Imm (a reduction of 
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1.45mm) when the wetting angle fell to 0', although, for the patient contact lens, 

the wetting diameter reached 0.6mrn (quantity of reduction 1.95mm), in which the 

wetting angle declined to 0' (Figure 4.9). 
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Figure 4.9. The variation in the sessile drop diameter (interfacial 
tension area diameter) with wetting angles on pre- and post-wear 
rigid contact lenses. 

4.4.3. Discussion 

The variation of the sessile drop diameter on the contact lens materials may be 

explained in relationship to the spreading coefficient (S) which Tadros (1978) 

defined as: S=YLv (Cos 0- 1). Where the sessile drops at the receding state had 

2.3mm diameter the wetting angles for Equalens, Aquasil, Boston IV and PMMA 

were 0', 0', 21' and 43' (Figure 4.8) giving a calculated spreading coefficient as 0, 

0, -4.7 and -19 respectively (Y= 72.6 Dynes/cm). This clearly indicate that PMMA 

has the lowest surface spreading coefficient to liquid than the other materials. 
Spreading coefficient for the pre- and post-wear were calculated when the sessile 
drops had 2.3mm diameter (Figure 4.9) which the wetting angle were 47" and 26* 

respectively. Pre-wear Fluoroperm lens had -24.1 and the post-wear one had the S 
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values of -7.7 which show wearing contact lenses produce a greater spreading 

ability on the lens surface (see also 1.4). 

Paddy (1978) stated that spreading can only occur when the effective work of 

adhesion WA is greater than the work of cohesion Wc of the liquid (Wc < WA). In 

this experimental work the liquid surface tension was constant but material variable 

producing different work of adhesion. The greater adhesion sessile drop diameter 

produced a greater work of adhesion for Equalens than the other materials. 

While the sessile drop shape changes, the liquid surface tension pulls surface 

molecules into the liquid to produce a minimum surface area for the given liquid 

volume, according to the surface tension definition. An example is a sessile drop on 

a contact lens, in which the liquid molecules produce interfacial tension with the 

contact lens surface molecules. The edge molecules of the liquid play an important 

role at the air/solid/liquid interface and are affected by three different forces in 

comparison with the molecules inside the liquid. One force is from the interior 

molecule of the liquid because of the un-opposed force that is called surface 

tension, while the second force is between the liquid and solid surface that, 

produces interfacial tension. The third is from the side of the liquid molecule, that 

have ordinary bond. 

The liquid and contact lenses' material can make an interface bond and wettability, 

which is dependent on the quantity of the bonds that produce interfacial forces. 

Consequently, a variation in the wetting angle and interface area diameter is 

created by the same liquid on different contact lens materials. 

As can be seen in Table 4.5, Aquasil and Equalens had the largest sessile drop 

interface diameter at 0', which could lead these materials having a greater tendency 

to keep the liquid on the surface. The interfacial forces were thus higher than for 

Boston IV and PNUVIA and the values revealed that the liquid on the Equalens and 
Aquasil did not coalesce, showing these materials were more wettable than the 

others. 

The results of the second part of the study revealed the ability of the scleral contact 
lens surface to coalesce the liquid. The quicker the liquid coalesces on the material, 
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the lower the interfacial forces. The greatest coalescent liquid from contact lenses 

was found with diminishing sessile drop diameter on the lens of the patientwith dry 

patches on the surface. It was suggested, therefore, that either the contact lens 

surface of the patient was damaged or the material was contaminated and or tear 

film was abnormal. 

Contact Lens Wettability 

Materials Interface Area Diameter at 
Equilibrium/mm 

Interface Area Diameter at 
Receding 0'/mm 

PMMA 2.65 1.00 

Boston IV 2.67 2.00 

Equalens 3.06 3.00 

Aquasil 3.15 3.00 

Fluoroperm, 
115 Dk, Patient 

2.45 0.60 

Fluoroperm, 
115 Dk, Sample 

I 2.45 

I 

1.00 

Table 4.5. Interface area diameter values for equilibrium and receding 
0' wetting angle. 
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4.5. Sessile Drop Discussion 

One of the aims of Chapter 4 was to standardise and validate the sessile drop 

wetting angle. The equilibrium and receding sessile drop methods have been used 

to measure the wetting angle of rigid contact lenses. Several investigators 

attempted to standardise the sessile drop wetting angle methods by controlling the 

humidity, temperature, liquid drop size, front lens radii, asperity and measurement 

technique (see Chapter 3). The preparation of hydrated contact lens surface and a 

method to control the receding wetting angle were found to be important. Thus 

removing the liquid from the hydrated contact lens surface through the surface 

tension method and monitoring the receding wetting angle and diameter of the 

sessile drop methods that have not been previously reported before are introduced. 

in introducing a liquid to polymer molecules, an essential requirement is the purity 

of the polymer surface. Cleaning the contact lens surface using surfactant agents 

(30 seconds) may not remove all contact lens surface contamination (Tang et al 

1977), while a preliminary study demonstrated that using fingers to clean a contact 

lens affects the lens surface wetting property. One of the basic requirements for 

measuring surface wettability, therefore, is to keep the polymer surface clean and 

keep it away from ftirther contamination. Using tweezers and brushes helps not 

only to remove the contact lens surface contamination, but also, unlike fingers, 

does not contaminate the contact lens surface. 

As contact lenses in the eye are hydrated, they logically should be measured when 
hydrated. One factor prompting researchers to use the captive bubble method for 

measuring wettability was the hydration condition, although the values were un- 

repeatable when measured by various investigators (see 3.3). Removing liquid from 

the hydrated contact lens surface by evaporation and wiping, dehydrates the 

contact lens surfaces because wiping contaminates the contact lens surface with 

electrostatic charges. It is clear that the only remaining technique for removing 

liquid from the hydrated contact lenses is surface tension. The lens surface will not, 

therefore, be dehydrated and will not be contaminated, this technique is also quick 

and easy to use. 
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In a solid/liquid/air interface, the rigid contact lens shape is a constant,. Expanding 

or coalescing liquid on contact lens occurs as a result of interface forces and liquid 

surface tension. In these experiments, the liquid surface tension was constant (de- 

ionised water Y= 72.6; pH=6.6) and the variable factors were therefore either the 

contact lens materials or the lens surfaces that were influenced by tear film. 

Hydrated rigid contact lenses wettability can be measured by the sessile drop 

technique. When they were influenced by solutions and tear film, the wettability 
increased as this method reveals. The sessile drop method values can distinguish 

between different materials' wettability but not when they were influenced by a tear 

film (see 4.4.3). One possible explanation could be the existence of tear film 

ingredients on the lens surfaces which make the surfaces wettability 
indistinguishable. An investigation on the wettability, therefore, needs to be carried 

out by a new measurement method (see Chapter 5). 

Monitoring the wettability through the changes in sessile drop area diameter and 

wetting angle during receding conditions reveals the interfacial forces between the 

contact lens surface and the liquid. If the forces are high, the liquid does not 

coalesce on the lens surface, the wetting angles change quickly and the drop 

diameter remains constant. But, if the interface forces are low, the surface tension 

pulls the liquid from the solid/liquid/air interface into the liquid, which causes the 

sessile drop diameter to decline the drop coalesces while the wetting angle remains 

constant. These findings can help to reveal the variation in contact lenses' 

wettability due to different materials and when they are affected by the tear film 

(see Chapter 7). 

140 



Chapter 5. Wettabilitv of Contact Lenses Usina Un-separated 

Adherent Liauid/Laser Method 

5.1. Un-separated Adherent Liquid/Laser Method 

5.1.1. Introduction 

Producing an interface between a liquid and a material is one of the basic 

requirements when measuring contact lens surface wettability. This can be 

influenced by several factors, such as polymer contamination. The sessile drop, 

captive bubble, vertical contact lens/adherent meniscus and adherent bubble 

meniscus (see Chapter 3) methods have been used to measure the wettability of 

contact lens surfaces, with the results differing even when the same method has 

been used, The most measurement values have been determined the flat and rigid 

contact lens materials wettability. 

In this Chapter, a new method called un-separated adherent liquid is used to 

produce the solid/liquid/air interface on rigid and soft contact lenses and the 

wetting angle is measured using the laser method. The liquid at the interface is in a 

receding state, which, as has been documented, is a measure of contact lens surface 

wettability. As it is a new method, a primary investigation to determine the 
influencing factors is necessary (see later). 

Hydrated rigid contact lens materials can be influenced by wetting solutions and 

tear films which have been investigated in 5.2. The important advantage of this 

method is that it can measure the wettability of both soft and rigid contact lens 

surfaces at hydrated condition (5.3). 
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Chapter 5. Un-separated Adherent Liquid/Laser Method 

5.1.2. The Un-separated Adherent Liquid/Laser Technique 

a. Soft Contact Lenses Preparation 

Rigid contact lenses were prepared using the method described in 4.2.1. For the 

soft contact lens surface preparation, however, a convex ended rod surface of 

8.7mm radius was lathe cut from a cylindrical shaped material to act as a soft 

contact lens holder. The convex rod surface was then lowered through saline to the 

back surface of the soft contact lens (Figure 5.1) and moving the holder close to 

the contact lens back surface, the lens was attached to the holder (Figure 5.1 b). A 

spatula supported the contact lens on the rod and was then withdrawn vertically 
Imm from the container liquid surface (Figure 5.1c). The rod was tilted and 

elevated to move the liquid from the contact lens surface to the lens edge (the 

surface tension removing liquid method (Figure 5.1d) without touching or 

damaging the prepared contact lens surface. A small amount of the liquid that 

remained on the edge of the lens (Figure 5.1 e) was removed by a comer of a paper 

tissue and the rod was then fixed to the adherent liquid/laser apparatus. 

b. Adherent Liquid[Laser Apparatus 

The apparatus used in the un-separated adherent liquid/laser method (UALLM) 

comprised (Figure 5.2): 

1. Two manually adjustable micrometer stages. 

2. An adjustable rotatable large protractor. 

3. A +7. OOD convex lens fitted on an adjustable stand. 

4. A Helium-Neon laser with 2m Watt power. 
5. A rigid contact lens holder. 

6. A soft contact lens holder with an 8.7mm. radius. 

The laser beam was incident at the centre of a convex lens that was placed on an 
X, Y and Z adjustable stand 80cm away from the laser and was focused 14.3cm 

from the convex focusing lens at the solid/liquid/air interface. The lower stage was 

able to move vertically and had a platform for holding a solution container. 
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Chapter 5. Un-separated Adherent Liquid/Laser Method 

The higher stage was equipped with a horizontal rod along the Y axis on which to 

hold the soft contact lens holder. A protractor was fixed 20cm from the stages on 

an adjustable platform with its centre aligned with the laser (Figure 5.2, see 

Apendix 1). 

INTERFACE 

+7. OD 
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0 
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REFLECTION PLANE 
OF LASER LIGHT 
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CL 

CL SURFACE REFLECTION 

WETTING ANGLE 

Figure 5.2. The un-separated adherent liquid/laser method to 
measure the contact lens surface wetting angle. 

To measure wettability, the contact lens was hung by the holder from the 

horizontal rod of the upper stage. The contact lens was moved towards the liquid 

surface by turning the micrometer screw until the lens front surface just touched 

the liquid surface. The micrometer scale was then adjusted to zero, and the lens 

was dipped 2.00mm into the liquid so that the front lens surface was rehydrated 

and then withdrawn slowly to create a solid/liquid/air interface (Figure 5.3) for soft 

and rigid contact lenses. 

A pilot study revealed that through lifting the contact lens from the liquid, the 

interface area was reduced and, therefore, the measurement was carried out in a 

receding condition. The receding solid/liquid/air interface diameters appeared on 

surface when the contact lens had 1.5mm distance from the solution surface (see 

the next experiment). The pilot study also showed that further distances of 2.1 Omm 

caused the adherent liquid to be separated. This led to a solid (contact lens 

surface)\Iiquld\air interface (un-separated adherent liquid) being created for 
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measuring the wetting angle by laser. To measure the rigid contact lens surface, a 

contact lens suction holder was used, as shown in Figure 5.3. 

CL 

1II1 

SUCTION HOLDER 

ab 

Figure 5.3. Creation of un-separated adherent liquid on rigid 
contact lens surface. 

rjý 

d 

The laser beam was adjusted on the contact lens surface and then moved to the 

contact angle of the solid/liquid/air interface, which produced two reflection strip 

pattern lines representing the wetting angle on the protractor (Figure 5.2). Two 

readings were taken, one from the left and one from the right side of the interface, 

and the average of the two readings was calculated as the contact lens adherent 

wetting angle. 

5.1.3. The Influence of Withdrawal Distance 

5.1.3.1. Aims, Materials and Method 

The aim of this experiment was to investigate the influence of the withdrawal 

height on the adherent liquid wetting angle values. As a pilot study suggested the 

contact lens withdrawal heights from the liquid surface might change the wetting 

angles (Figure 5.4), they were measured at the point at which the receding 

liquid/contact lens/air interface started (Figure 5.4b), although in practice they 

were measured where the diameter of the solid/liquid/air meniscus was at the 

receding condition which the solid/liquid/air interface was obvious. This point 
began where the contact lens surface was 1.4mm from the solution surface (de- 
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Chapter 5. Un-separated Adherent Liquid/Laser Method 

ionised distilled water, pH=6.6 ±0.2,7=72.6 dynes ±0.4), when the contact lens 

surface first touched, the liquid surface and withdrawn. 

Withdrawal 
Starting Point 

1 ul -QU I --- DI 

Figure 5.4. The creation of an un-separated adherent receding wetting 
angle: (a) contact lens withdrawal point; (b) by increasing 
the withdrawal height, the variation wetting angle was 
visible; (c) by a further increasing in the withdrawal height, 
the diameter area of the un-separated adherent liquid 
declined and the wetting angle moved on to the contact 
lens surface. 

b 
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Withdrawal heights of 1.5,1.6,1.7,1.8,1.9,2.00 and 2.10mm were 

investigated, and ten independent wetting angle measurements were carried out for 

each selected withdrawal height for the PMMA contact lens using the un-separated 

adherent liquid/laser method. 

5.1.3.2. Results 

Figure 5.5 shows the mean, standard deviation and linear regression of the un- 

separated adherent liquid wetting angle values. Despite a negative correlation 

between various withdrawal heights and wetting angle values (Slope=-0.26), there 

was no significant difference between the wetting angles measured at various 

withdrawal distances (ANOVA, F=0.96, P>0.5). 

5.1.3.3. Discussion 

As the contact lens was lifted from the withdrawal point, the shape of the liquid 

meniscus on the contact lens surface changed without varying the adherent liquid 

diameter on the contact lens surface until it reached to a height at which the 
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diameter started to decline (Figure 5.4). The changes meniscus shape from the 

withdrawal point to a height at which the diameter started to decline were obvious, 

although no liquid/contact lens surface/air interface (Figure 5.4) enables the 

adherent wetting angle values to be measured at the edge of lens surface. A further 

increase in the withdrawal height led to the diameter of the adherent liquid area 
declining and the solid/liquid/air interface (wetting angle) moving from the contact 
lens edge on the lens surface. The diameter size of the adherent liquid area was 
dependent on the withdrawal height, whose increase the withdrawal height, 

changed the meniscus mechanically, although, because of the presence of the liquid 

surface tension function, the liquid meniscus was re-shaped. 
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Figure 5.5. The influence of the withdrawal height on the adherent 
wetting angle of the PMMA contact lens. 

Surface tension at a new withdrawal height pulled, as much as possible, the liquid 

molecules from the surface into the liquid. By increasing the withdrawal height, the 

surface area of the liquid expanded, which caused the molecules involved in the 

surface tension to increase. Through a further increase in the withdrawal height, 

the liquid surface area expanded, resulting in a greater number of liquid molecules 
involved in the surface tension until a height at which, by increasing the surface 

area, the interface diameter declined. At this point, the molecules involved in the 
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surface tension had reached a maximum level and a further increase the withdrawal 

height caused the molecules at the interface to be pulled into the liquid, leading to a 

reduction of the solid/liquid/air interface diameter. 

This experiment was carried out on one rigid contact lens, and the interface liquid 

was de-ionised distilled water, with the only variation being the withdrawal height. 

The results revealed that, while the solid/liquid interface area declined on the 

contact lens, the wetting angles had a similar range to various withdrawal heights, 

and, therefore, the method was consistent in producing a solid/liquid/air interface 

and in measuring contact lens wettability. 

The values of 1.8mm to 2.1mm had a lower standard deviation (±0.2) than the 

first three values, which gave a more repeatable value to measure the wetting 

angle. it can, therefore, be concluded that measuring the wetting angles using un- 

separated adherent liquid not only provides the wettability values of hydrated 

contact lenses, but is also repeatable. This method can evaluate the contact lens 

surface wettability through the un-separated solid/liquid/air interface at the 

receding condition. 

5.1.4. The Influence of Front Rigid Contact Lens Surface Radii 

5.1.4.1 Aims, Material and Method 

The objective of this procedure was to investigate the influence of the front surface 

radii on the contact lens surface wetting angle. Six contact lenses made of PMMA 

were used with differing front surface radii of 7,8,9,1,11.00 and 12mm, 

which were manufactured by the same technique. The front surface of each lens 

was polished for one minute, cleaned and prepared in a hydrated state using de- 

ionised water ((pH=6.6 +-0.2,7=72.6 dynes ±0.4), while the un-separated 

adherent liquid/laser method was used to measure the wetting angle. 
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5.1.4.2. Results 

Figure 5.6a shows the mean and linear regression of wetting angle values for 

various front contact lens surface radii. The lens with the 12mm front surface 

radius had the highest wetting angle of 57', while ANOVA indicated there was a 

significant difference between the wettability of various contact lens surface radii 

(F=10.2, P<0.00001) while linear regression analysis revealed a positive 

correlation between the wetting angle and the contact lens front surface radii, more 

than 97 per cent of contact lens production was within the front surface radii of 

7.00-9.00mm and ANOVA showed no significant difference between the values 

(F=1.6, P>0.21). 
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Figure 5.6a. The influence of PMMA front lens surface radii on the 
wetting angle of an un-separated adherent liquid. 

5.1.4.3. Discussion 

A perfect method to measure the influence of front lens surface radii on the wetting 

angle values would be a plate at various angles to a liquid (Tighe 1997, Figure 

5.6b), but the laser method is not applicable to the solid/liquid/air interface 

produced, possibly a goniometer could be used. However during withdrawal a 

contact lens surface from a liquid the angle of contact lens surface to liquid would 
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change due to the area of interface, hence it was decided to investigate the 
influence of the lens surface on the contact lenses rather than a flat material. 

Receding Receding 

44 

a 

Figure 5.6b. A flat material at three different angles to a liquid, 
demonstrating the influence of front lens surface radii on 
the wetting angle values. 

The results revealed that the values of un-separated adherent liquid wetting were 
dependent on the front lens surface radii from 7mm to 12mm. As the shapes of 
liquid meniscus on both flat and steep front contact lens surfaces were the same, 

they produced similar reflecting patterns. But the reflected lines from the different 

contact lens front surfaces were not the same because varying front contact lens 

radii produced different wetting angles, with the greater the lens front surface radii, 

the greater the wetting angle. 

A high percentage (97%) of contact lens front surface radii were in the 7.00mm to 

9.00mm range, with results revealing there was no significant difference (at the 

level of 95 per cent) between the values in this range. The wetting angle of the 

typical range of contact lenses used in practices can be consistently measured by 

using the un-separated liquid/laser method. 
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5.2. Rigid Contact Lens Wettabilities 

5.2.1. The Influence of Solutions on Rigid Contact Lens Wettabifities 

5.2.1.1. Aims, Materials and Method 

One of the aims of this investigation was to evaluate the influence of different 

solutions on contact lens materials. Three rigid contact lenses were manufactured 
from PMMA, Boston IV and Equalens to identical specifications and cleaned. 
The hydrated lenses were then soaked for 12 hours in the following solutions: 
B&L. W&S, Delta-Sauflon, Allergan Liquifilm, Prymesoak and Renu (Table 4.2), 

while the contact lenses were repeatedly washed with de-ionised distilled water 
before being measured using the un-separated adherent liquid method. The process 

repeated five times to collect five independent data. 

5.2.1.2. Results 

Figure 5.7. shows the un-separated adherent liquid wetting angle values for 

PMMA, Boston IV and Equalens when influenced by the Bausch and Lomb, Delta, 

Allergan liquifilm, Prymesoak and Renu solutions. An analysis of variance revealed 

there was a significant difference between the values for PMMA (F=173.6, 

P<0.00001), Boston IV (17=48, P<0.00001) and Equalens (F=56.6, P<0.00001) 

using the various wetting solutions. 

The Delta and Renu-multi solutions had less influence on PMMA material and 

there was no significant difference between them (Bonferroni: t-test, P=0.6). 

Prymesoak had the greatest effect on PMMA, although there was no significant 
difference between Prymesoak and the next wetting value of B&L. W&S 

(Bonferonni: Mest, P=0.47). For Allergan liquifilm, however, compared with the 

next highest wetting angle, which was Delta, there was a significant difference 

between their values (Bonferroni: t-test, P<0.00001). The value of Allergan 

Liquifilm was compared with the next lowest wetting angle, which was 
B&L. W&S, there was a disparity between their wettability (Bonferonni: Mest, 
P<0.01). 
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There was also a contrast between the values of Delta and B&L. W&S on Boston 

IV (Bonferonni- t-test P<0.001), although there was no significant difference 

between the values of Renu, Allergen, Prymesoak and B&L. W&S solutions 
(ANOVA, F=0.25, P=0.85). 

The Allergan liquifilm had less effect on Equalens' wettability than PMMA and 

Boston IV. And while there was a significant difference between Equalens and the 

next less influenced one (Delta, Bonferonni: t-test, P<0.02), there was no great 
disparity between the wettability of B&L, Prymesoak and Renu solutions 
(ANOVA, F=1.68, P=0.22). 

I 

0 

501 

a) 40 - 0) 

30 
0) 1 

20-- 

101 

0 
ME 

4 

0 PMMA 

El Boston IV 

M Equalens 

FEE - Water B&L. W&S Renu Delta Liquifilm Prymesoak 

Different Solutions 

Figure 5.7. Un-separated adherent liquid wetting angles of different 
contact lenses of PMMA, Boston IV and Equalens when 
influenced by various solutions. 

5.2.1.3. Discussion 

The influence of solutions on contact lens wetting properties has been reported by 

many investigators. Contact lens solutions generally reduce the wetting angle of a 
lens. Prymesoak and Bausch and Lomb wetting solutions, which include 

Chlorhexidine Gluconate, produced excellent wettability for all three materials, 
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while others had a selective influence on the materials' wettability. These may 

prompt practitioners to use a particular solution for a specific material, such as 

utilising Bausch and Lomb wetting or Prymesoak rather than using Renu or Delta 

solutions for PNUN4A contact lenses. 

5.2.2. Post-wear Rigid Contact Lens Surface Wettabilities 

5.2.2.1. Aims, Materials and Method 

Although an individual tear film has a general composition, it can be influenced by 

nutrition and blood components, such as hormones. The purpose of this 

experiment, was to investigate the effect of one subject's tear film on the 

wettabilities of different contact lens surfaces. The experiment was carried out at 

the same time on each day on a male subject. 

Five pairs of rigid contact lenses made from PMMA, RXD, Equalens, Paraperm 

EX and Polycon 11 were manufactured to the same specification for only one 

subject. Pairs of hydrated lenses were wom for 30 minutes and then removed using 

the method described in 4.4.2.1 and the un-separated adherent liquid method was 

utilised to measure the wetting angle. The process repeated five times to collect 

five independent data. 

5.2.2.2. Results 

Figure 5.8 shows the mean values of the un-separated adherent liquid wetting angle 
for pre- and post-wear rigid contact lenses. There was a significant difference 

between the wetting angle of adherent liquid on various hydrated pre-wear contact 
lenses (ANOVA, F=305.11, P<0.00001). The wettability of the materials in the 

hydrated state would be ranked as: 

PMMA < Polycon II < RXD < Paraperm < Equalens 

The increase in wettability of the post-wear contact lenses can be seen from the 

plot. The mean of the post-wear wetting angle values (12.161, SD=±2.5) had an 
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enhancement in wettabilities compared with the hydrated pre-wear values (35.8'). 

Despite a significant difference between various contact lenses in pre-wearing 

materials (ANOVA: F=27.62, P<0.00001), there was no great disparity between 

the PNIMA, RXD and Equalens contact lenses in post-wear (ANOVA, F=2.04, 

P>0.21). The Paraperm Ex-wear contact lens had a greater wetting angle for post- 

wear, while the next lowest wetting angle was Polycon 11. The wettability of post- 

wear rigid contact lenses were ranked as: - 

Paraperm:! ý Polycon 11 < PMMA! ý RXD:! ý Equalens 
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Figure 5.8. Pre- and post-wear un-separated adherent liquid 
wetting angles of PMMA, Polycon 11, Boston RXD, 
Paraperm EX and Equalens contact lenses. 
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5.2.2.3. Discussion 

Contact lens wettability can be measured either pre- or post-wear in vitro. 
When contact lens wettability is measured pre-wear using de-ionised distilled 

water, it evaluates the finished contact lens, but when measured post-wear it 

evaluates the influence and integration of the individual tear film on a specific 

contact lens material. The results of the experiment revealed there was a contrast 
between the wettability of the hydrated pre-wear contact lenses and the post-wear 

using different materials. When worn, the tear film influenced the contact lens 

surfaces and increased wettabilities significantly. A similar result was also reported 
by Shirafkan et al (1995) for the pre- and post-wear soft contact lens surface 

wettabilities using the method. They showed that the maximum wettability was 

created on the lens surface after 30 minutes of wearing and further wearing period 
did not enhance the wettability because surface charge equilibrium was reached 
(see Chapter 7 and Apendix II). 

155 



Chapter 5. Un-separated Adherent Liquid/Laser Method 

5.3. Pre- and Post-wear Soft Contact Lens Wettabilities 

5.3.1. Aims, Materials and Method 

The aim of this experiment was to measure the surface wettability of a range soft 

contact lenses (Table 5.2) with different water contents, that were manufactured 

using varying techniques. The tear film can influence wettability, so post-wear was 

also investigated. The un-separated adherent liquid/laser method measured the 

wetting angle of pre-wear and 30 minutes post-wear in five subjects (four females 

and one male), and saline ((pH=7,7=82.8 dynes/cm) was used to produce the 

meniscus on the soft contact lenses. The process repeated five times to collect five 

independent data. 

Trade Name Material Water Content % DK Manufacture 

Hydron Z6 pBEMA 38.6 10 Lathed Cut 

SeeQuence B&L pHEMA 38.6 8.5 Spincast 

Hydron Z4 pHEMA 38.6 10 Cast Moulded 

Elegance pHEMA 38.6 10 Cast Moulded 

Acuvue Etafilcon A 58 27 Cast Moulded 

W6hlk 55 PAM/NVP 55 23 Lathed Cut 

Focus Vifilcon A 55 20 Cast Moulded 

Medalist Alphafilcon A 66 29.1 Spincast 

W6hlk 70 MMA/VP 70 43 Lathed Cut 

Hydron 67 MMA/VP 67 30 Lathed Cut 

OmniFlex MMA/VP 70 32 Lathed Cut 

Table 5.1. Soft contact lenses' characteristics. 

5.3.2. Results 

The mean values and standard deviations of un-separated adherent liquid wetting 

angles for pre- and post-wear soft contact lenses are plotted in Figure 5.9. There 

was a significant difference between the wetting angle values of various soft 

contact lenses (pre-wear, ANOVA, F=51.42, p<0.00001), but, while they were 
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worn, wettability increased to 2' (+-0.2), although the ANOVA showed no great 

disparity between them (F=I, p<0.45). 
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Figure 5.9. The pre and post-wear un-separated adherent liquid 
wetting angle values for different soft contact lenses. 
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The analysis was also applied to the soft contact lenses manufactured by lathe cut, 

cast moulded and spincast. There was a significant difference between the values of 

those lathe cut and the others (ANOVA: F<109, P<0.00001), which were ranked 

as follows: 

Z4 (Cast moulded, p=0.02)>SeeQuence (Spincast, p=0.0001)>Z6 (Lathed cut) 

The lathe cut contact lens of Hydron Z6 had the highest wetting angle (I P, 

SD=±0.7l') while HydronZ4 moulded lenses had the lowest (3.80, SD=±0.830). 

157 



Chapter 5. Un-separated Adherent Liquid/Laser Methcd 

5.3.3. Discussion 

The results of the un-separated adherent liquid/laser wetting angle method on soft 

contact lenses revealed their surface ability to adhere (to prevent coalescence) 
liquid and that soft contact lens surface wettability is dependent on two main 

factors:. 

e The contact lens materials. 

e The contact lens manufacturing methods. 

Linear regression showed a positive correlation (slope=0.009) on the wetting 

angles of various water content lathe cut contact lenses. Cast moulded contact 
lenses had a very low-wetting angle because of either a higher surface density than 

the lathe cut lenses of the same material or a greater ionic bond due to 

manufacturing. The results from post-wear contact lenses showed that the tear film 

influenced all types of soft contact lenses, resulting in greater wettability. The 

lower wetting angle resulted in greater comfort for contact lens wearers 

(Woodward 1984). 

These results demonstrate that the technique can assess pre-wear soft contact lens 

surface wettability, and this discussion may assist practitioners in fitting soft 

contact lenses on the basis of contact lens manufacturing and the other factors that 

can influence surface wettability. The significant difference in wettability prompts 

the questions that if 

a. there was another technique for polishing lathe cut lenses, would wettability 
be improved? 

b. If the material of the mould changed, would wettability alter? 
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5.4. Adherent Liquid Discussion 

The un-separated adherent liquid/laser wetting angle method has a common 

characteristic with other solid/liquid/air interface techniques used to measure 

contact lens surface wettability. In the novel method, when the contact lens surface 

touched the liquid and while it was lifted, the contact lens surface could continually 

attract liquid until a receding wetting angle was reached. The solid/liquid interface 

area diameter is dependent on the contact lens wettability. If the molecules of the 

contact lens surface are wettable, the interface bonds do not break quickly, they 

resist breaking up. The interface area does not decline, and therefore, the wetting 

angle is lower. In contrast, if the contact lens surface is unable to keep liquid on the 

surface, the surface tension separates and pulls the interfaced liquid molecules into 

the liquid, at which point, the interface area declines, leading to a greater wetting 

angle. 

The experimental results demonstrate that the water adhering to a contact lens 

surface provides a measurement of wettability which is in agreement with the 

literature. A justification of the validity of this method is as follows: All materials in 

this study had the same front surface radius of curvature (8mm) and were 
immersed 1.5mm. (the sagitta of the FS curve) into the water after point of contact. 

Therefore, the surface area of the contact lens exposed to the water was a constant 
for all samples. As the lens was lifted from the water, the surface tension, which 

was constant irrespective of the volume of the water, acts to "sweep" the water 

molecules from the surface of the lens. Towards the edge of the lens (at the start of 

removal) the surface tension acted at a large angle (perhaps 70' - 80') to the 

adhesion force on the lens surface, the component of the adhesion force opposing 

the movement was greater and there was less chance of moving the water 

molecules. When the adhesion force balanced the surface tension, any further 

upward force led toward breaking the molecular bonds from the surface. Since the 

surface tension and liquid hydrogen bonds were constant for all samples, the only 

variable was the contact lens material affecting the adherent liquid, producing 
different adhesion force, resulting a variation in adherent wetting angle. 
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To further confirm the above arguments, the shape of the adherent liquid was 
investigated for the explored contact lens materials in this study. A micrometer was 

used to measure six different diameters of the adherent liquid on contact lenses. 

The potential energy is a minimum for any system in equilibrium and hence expects 

the surfaces of the adherent liquid to be spherical, because of adhesion forces it 

produced a meniscus in the receding condition. 

A measure of how well the adhered liquid laser technique can distinguish between 

different materials may be obtained by performing a single variable analysis of 

variance. The values were computed for the hydrated lenses. All the F (ANOVA: 

Single-factor and F-test) values were significant at the 5% level and therefore 

indicate a statistically significant difference between the materials. This indicates 

that the unseparated adherent liquid laser method can more readily distinguish 

between the material wettabilities. 

The wetting angle values for all 3 hydrated materials were in a wide range of 20.51 

-55.25'(Table 5.2). Nevertheless, the results determined by the new technique gave 

comparable orders for wettability to that obtained by current techniques. The 

advantages of this technique are that as the entire lens surface is immersed, it 

reproduces more closely the in-vivo situation where the whole of the lens is 

wetted, unlike the sessile drop method where only a small area of the lens has its 

wettability measured. The results of the novel approach show less variation than 

those given in the literature using the captive bubble technique. 

In order to reduce the number of confining factors of the new method, the front 

surface radii of the lenses were constant. However, spherical front lens surfaces, 

and differing optic radii, may alter the results. It is also suspected that the speed of 

withdrawing the lens from the liquid, cleaning the lens surface, the liquid container 

and pH could alter the values. Consideration of these different effects will help to 

standardise the method and can be a topic for a further investigation. 

when rigid contact lens wettability is measured pre-wear, the result represents the 

finished contact lens, which may be used by the contact lens manufacturer to 

control lens surface quality. But when it is measured post-wear the result reveals 
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the influence and integration of individual tear film on specific contact lens 

materials. 

The variation of the adherent liquid wetting angle on contact lens surfaces may be 

explained in relationship to spreading coefficient: S=YLv (cos 0- 1). In the 

hydrated condition the wetting angle of PMMA, Boston IV and Equalens were 

55.25', 35* and 20.5* respectively which the spreading coefficients were -31.2, - 
13.2 and -4.6. The values for the effect of solutions ionisation showed a significant 

enhancement in wettability close to absolute spreading value of 0. One of the 

possible explanation would be creation of hydrophilic sites on the lens surfaces. 

Wetting Angles and Spreading Coefficients (S) 

Materials Water B&L. W&S Renu Delta Liquifilm Prymesoak 

PMMA 55.25' 4.2* 18.4* 17.8' 6* 3.8' 

S -31.2 -0.2 -3.7 -3.5 -0.4 -1.5 
Post-wear 11.20 

S -1.6 
Boston IV 35' 40 3.8' 11.4' 3.4' 3.6* 

S -13.2 -0.17 -1.16 -1.4 -0.12 -0.14 
Equalens 20.50 30 3.80 6.40 11.6' 3.8' 

S -4.6 -0.1 -0.16 -0.5 -1 -0.16 
Post-wear 9.40 

S1 -1 
1 1 1 1 

Table 5.2. Un-separated adherent liquid wetting angle and 
spreading coefficient of PMMA, Boston IV and 
Equalens contact lenses when influenced by various 
solutions and tear film. 

Measuring contact lens wettability through the un-separated adherent liquid/laser 

method has several advantages: 

1. The apparatus used in the UALLM is readily available and inexpensive. 
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2. Measurement training is short. 
3. It can be used on soft and rigid contact lenses. and 
4. Measurements can be carried out in the hydrated condition. 

(see Chapter 7) 
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6.1. Introduction 

While the meniscus of a solid/liquid/air interface can be measured using wetting 

angle methods, the interfacial forces between a liquid and solid can be measured 

using a balance. The balance of the dynamic contact angle method has been used to 

measure force between a thin rectangular piece of a material and a liquid. The force 

values can be converted to wetting angles through several formulae (see Chapter 

3). A balance can also be used to measure the chemical bonding forces between the 

molecules of a liquid and those of a contact lens material, this parameter is known 

as the surface hydrophilicity. This can be determined by immersing the front 

surface of the lens and measuring the forces with a balance. The maximum force 

recorded as the lens is withdrawn and measures the interface molecular binding 

forces between a contact lens surface and a liquid. The value can be taken as a 
direct measure the contact lens surface hydrophilicity. 

In this Chapter, studies are presented in an attempt to apply the Wilhelmy plate 

method (dynamic contact angle) to both hard and soft contact lenses (6.2). The 

first experiment demonstrates the problems associated with a rigid contact lens 

moving into a liquid and being removed vertically (6.2.1). Then the adherent 
liquid/maximum force method (ALMFM, 6.3) is explained to measure surface 
hydrophilicity of rigid and soft contact lenses both for pre-and post-wear (6.3.3, 

6.3.4 and 6.3.5). The aim of 6.3.2, is to find the influence of front lens surface 

radius on the contact lens surface hydrophilicity. In 6.4, the experiments' results of 

this chapter will be discussed. 
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6.2. Dynamic Contact Angle Method 

6.2.1. Aims, Material and Method 

The aim of this experiment was to investigate whether the Wilhelmy plate method 

could be adapted to measure contact lens wettability. Four samples made from 

PMMA material were manufactured to four specifications. 

1. A rectangular plate measuring 25 x 10 x 1.5mm (length x width x and 

thickness). 

11. A triangular shape, for which the lengths of the hypotenuse were 25mm with 

a base length of 20mm. The thickness of the material was 1.5mm, as above. 

III. A circular disc with a diameter of 10mm and a thickness of 1.5mm. 

IVA contact lens with specifications TD = 10mm and Tc = 0.2 mm, while the 

front and back optic radii were cut to 7.3mm and each surface was polished 

for one minute. 

The dynamic contact angle system (DCA-CAHN-312) was used to collect data and 

calculate the wetting angle. The speed of moving the material into the liquid was 

adjusted to 40pm/sec because a pilot study discovered that a faster speed did not 

allow enough time to read the scale and a speed 40ýtm/sec was found to be 

repeatable. 

Receding Advancing 

j k N ( 

ab 

t 

Figure 6.1. A comparison of the liquid meniscuses of PMMA (a) 
on a flat material and (b) on a contact lens. 

Receding Advancing 
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The material was moved into de-ionised distilled water (pH 6.6, ± 0.2; advancing) 

and then withdrawn (receding), while data were stored automatically in a computer 

to analyse the wetting angle (Figure 6.1). The contact angle of the central and 

peripheral area of the contact lens were also measured by (Figure 6.2): 

a. Moving the lens perpendicularly into the liquid, and the force data between 

4mm to 5mm from the edge of the contact lens were used to calculate the 

wetting angle. 

b. The force values from the periphery of the lens were recorded by tilting the 

contact lens towards the back lens surface until its peripheral area was 

perpendicular to the liquid surface. Values were obtained between 0.75 and 

1.5mm from the contact lens edge. 

Advancing 

a 

Perpendicular 
Edge and Central 

CL to Liquid 

Advancing 

Figure 6.2. The (a) edge and (b) centre of the contact lens surface 
were perpendicular to the liquid surface. 

6.2.2. Results 

The wetting angle values for the samples are shown in Table 6.1, and the changes in 

the force, measured by the balance are illustrated in Figures 6.3,6.4,6.5,6.6 and 
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Figure 6.3. Adherent force values of a rectangular flat PMMA material at 
different immersion positions in the liquid. 
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Figure 6.4. Adherent force values of a triangular, flat PNUVIA material at 
different immersion positions in the liquid. 
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6.7. Figure 6.3 shows the force values when using the rectangular shaped PMMA 

sample, in which the force variation is linear and has the same gradient for both 

advancing and receding, but the results for the triangular shaped sample produce 

curved lines due to an increasing (advancing) or declining (receding) solid/liquid/air 
interface perimeter (Figure 6.4). 

The values of the disc-shaped sample produced even greater variations because of 

changes in the solid/liquid/air interface perimeter during the advancing and 

receding phase (Figures 6.5). 

Figures 6.6 and 6.7 show the values of the contact lens periphery and its central 

area. As can be seen, the slope of values that were expected to be negative was 

positive and had greater fluctuation due to front and back contact lens radii and 

changes to the solid/liquid/air interface perimeter. 

PMMA Contact Angle Conditions 

Material Shapes Advancing Receding Hysteresis 

Rectangular 68 54 
................... . ......................... ....................................... 

14 
... . Triangular 72 63 

....................................................................................... 
...................................... 9 

... .................. ... Disc 74 61 
... . .......................................... ........................................ 

. .................. 13 
... ........ Contact Lens Periphery 81 70 

................................... ........................................ 
. ............................... 11 

... ......... Contact Lens Centre 87 72 . .............................. 15 

Table 6.1. The contact angles of variously shaped PMMA lenses 
measured by the dynamic contact angle method. 

6.2.3. Discussion 

A DCA balance was used to collect data on changes to the forces at the 

solid/liquid/air interface. The force data depend on several factors, such as the 

perimeter of the material (length of solid/liquid/air interface), the surface tension, the 
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Figure 6.5. Adherent force values of the circular, flat PMMA 
material at different immersion positions in the liquid. 
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Figure 6.6. Adherent force values of a PMMA contact lens when 
the edge was immersed perpendicularly into a liquid. 
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Figure 6.7. Adherent force values of a PMMA contact lens when 
it was immersed in liquid. 

volume of the sample that was immersed and the density of the solid. Figure 6.3 

reveals that, when the rectangular material was immersed in water and withdrawn, 

the force data plot was a straight line (see Chapter 3, Figures 6.3). When the 

triangular-shaped sample was being immersed from the vertex into the liquid, the 

contact area between the material and the liquid (perimeter) gradually increased. 

The enhancement of the perimeter created a greater force on the material and vice 

versa during withdrawal (receding). The force variations were neither linear, nor a 

straight line, with great variation being seen on the scale (Figure 6.4). To make the 

force values linear, the variations of perimeter size were needed to adapt in the 

main formula (Chapter 3). that were variable with the depth of immersion for 

advancing and receding conditions, then the data could be converted to wetting 

angle. 

The values for the disc sample were not consistently increased or reduced because 

of the influence of the solid(disc)/Iiquid/air interface perimeter on the depth of 

169 



Chapter 6. Contact Lens Surface Hydrophilicity 

immersion (Figure 6.5), which caused greater variation in data in comparison with 

the triangular sample. 

When the contact lens was moved into the liquid, the front and back surface radii 

and the angle between the lens surface and liquid surface affected the values, in 

addition to the previously mentioned factor. In an advancing state, the meniscus for 

the back lens surface was upward, which needed to be downward to create 

negative force (see Figure 6.2). The meniscus that created a positive force was 

acting as a semi-capillary attraction force, which was observed for both advancing 

and receding conditions. As a result, different contact angle values were calculated 
for the varying depths of immersion in the advancing condition. Different values 

were also obtained for the receding condition due to the influence factors that have 

already been explained (Figures 6.6 and 6.7). 

The angle between the contact lens surface and liquid surface was thought to be 

perpendicular, but, if the contact lens is initially adjusted to be perpendicular to the 

lens edge surface as it moves down into the liquid, the angle will change. A device 

was thus required to vary the position of the lens perpendicular to the liquid 

surface for every level of immersion (both for advancing and receding condition). 

In addition, the front and back optic radii, total diameter and peripheral radius of 

the contact lenses are variable, and to change the position from the advancing to 

receding condition a manoeuvre of a few millimetres was required (4mm), which 
limited the measurements. 

As the four samples were prepared under the same conditions, one solution was 

used and all samples were perpendicularly moved to the liquid surface, the wetting 

angle of the materials were expected to be the same, although there was a large 

and significant variation between them (ANOVA: p<0.00001). 

When the flat materials were moved to the liquid, the meniscuses of both surfaces 

had the same shape. The meniscuses of the contact lenses in the advancing position 

varied: the meniscus of the front optic radius was convex and the meniscus of the 

back optic radius concave. This created a greater force on the contact lens surface, 

resulting in larger wetting angles. When the contact lens was withdrawn from the 
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liquid, the meniscus on the back and front surfaces did not have the same height. 

The size (height and base) of the meniscus of the front optic radius was smaller 

than the meniscus of the back optic radius, which led to a greater force on the back 

surface and a larger receding wetting angle on the contact lens than the receding 

wetting angle on the flat material. The front contact lens surface radius produced 

partially capillary force, which elevated the liquid in the advancing condition and 

enhanced the values. 

From the above discussion it may be concluded that measuring the wetting angle 

of rigid contact lenses through the DCA method is not repeatable and not reliable 
because: 

a. The contact lens/liquid interface perimeter varies. 

b. The back and front contact lens radii effect. 

c. The lack of perpendicularity of the contact lens to the liquid surface. 

For the reasons that were explained earlier, it is suggested that the balance method 

might only determine the wetting properties of a rectangular flat sample of contact 
lens materials and not the finished soft and rigid contact lenses (see later). 
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6.3. The Adherent Liguid/Maximum Force Method 

6.3.1. Theory and Method 

In the Adherent Liquid/Maximum Force Method (ALMFM), the back surface of 
both rigid and soft contact lenses were held by a suction holder and a convex 

ended rod surface respectively (see Chapter 5.2.1). The contact lens holder was 
then attached to the balance and the lens was moved automatically towards the 

liquid surface at a speed of 40ýtm per second until it touched the liquid surface 
(Figure 6.8). When the convex contact lens surface touched the liquid, the 

attraction force at the interface, which was monitored by the DCA system suddenly 
increased. Further downward movement of the lens by 1.5mm reduced the force 

to zero, with the collected data of time, immersion depth and force being digitised 

and stored by computer every second. On withdrawing the lens, the force at the 

contact lens surface increased until, at a certain point, the force started to decline. 

BALANCE 

b 

TCL 

i LIQUID 
I 
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I dherent liquid will be 
separated 

A 

LIQUID 1ý 

Figure 6.8. The prepared contact lens was moved to the liquid surface 
and withdrawn. The maximum adherent force, critical 
distance and separation distance were measured. 
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Figure 6.9. A rapid increase in force at the point where the contact lens 
surface touched the liquid. 
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The force at this point is called the maximum force and the withdrawal distance is 

known as the critical distance. By ffirther withdrawing the lens from the liquid, the 

liquid separated at a certain distance known as the separation distance (Figures 

6.10). As the contact lens surface attracted the liquid and when the interfacial force 

between the contact lens surface and liquid was at the maximum values of the 

scale, this measures the phenomenon known as contact lens surface hydrophilicity. 

6.3.2. The Influence of Front Lens Surface Radii 

6.3.2.1. Aims, Material and Method 

The aim of this experiment was to investigate the influence of front lens surface 

radii on the maximum adherent force. Six rigid contact lenses made of PNUvIA 

were used, all of which had the same specification of 0.2mm centre thickness and 

total diameter of 9.5mm. The front contact lens surfaces (FOZR) were cut on one 

lathe with the same diamond that had radii ranges of 7.00,8.00,9.00,10.00,11.00 

and 12.00mm. The front lens surfaces were then polished for one minute with Silo- 

02-Care and cleaned with Isobar liquid in the final stages of manufacture. The lens 

surfaces were perpetrated through the method explained in Chapter 4. De-ionised 

distilled water was used to produce adherent liquid and the DCA balance was 

utilised to measure the adherent maximum force, which was taken as a measure of 

contact lens surface hydrophilicity. Ten independent measurements were carried 

out on each contact lens at a temperature of 23" ±2 and a humidity of 40 per cent 

±10. 

6.3.2.1. Results 

The mean and standard deviation of the maximum adherent force values are 
illustrated in Figure 6.11, which shows that the maximum force increases with an 
increasing front surface radius. A linear regression analysis confirmed there was a 

positive correlation coefficient between the contact lens surface radii and the 
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maximum force values (slope= + 0.15 ), and an analysis of variance revealed there 

was a significant difference between the values (ANOVA: F= 14.86, p<0.001). 
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Figure 6.11 a. The mean, standard deviation and linear regression of 
the adherent value for different contact lens surface radii. 

Figure 6.1 lb. A flat material at three different angles to a liquid, 
demonstrating the influence of front lens surface radii on 
the values (Tighe 1997). 
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6.3.2.3. Discussion 

A possible explanation for these results is that the surface molecules of the flatter 

front radii (at the periphery) were closer to the liquid surface than the molecules of 

the central lens surface, which caused the flatter lens surface to attract more liquid 

than the steeper surface, making the maximum force greater for the flatter surface 
(Figure 6.1 lb). Since the results showed a positive correlation between the 

maximum force and the front lens surface radii, one approach would be to produce 

a constant coefficient for measuring different contact lens radii, which could be 

varied for each contact lens material. The other possible conclusion is to use the 

same front lens surface to compare contact lens materials hydrophilicities. Further 

work is, therefore, required to standardise the method (see Chapter 7 for the 

comparison of the three methods). 
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6.3.3. Variation in Hydrophilicity with Contact Lens Manufacturing 

Methods 

6.3.3.1. Aims, Materials and Method 

The objective of this experiment was to evaluate the effect of polishing time on the 

surface hydrophilicities of different lens materials. PMMA, CAB, Boston RXD and 

Equalens materials were manufactured to the same specification, and samples were 

produced with polishing periods of one, three and five minutes polished with Silo- 

02-Care and cleaned with Isobar liquid in the final stages of manufacture. The 

contact lenses were cleaned and hydrated for 24 hours, and the ALMFM method 

was used to record the measurements of the maximum adherent force. The process 

repeated five times to collect five independent data. 

6.3.3.2. Results 

The values of the maximum force for all materials are illustrated in Figure 6.12, 

which shows that one minute polishing on PMMA produces 395mg maximum 

force. When PMMA was polished for three minutes, the maximum force increased 

significantly (Bonferonni: t-test, p<0.0001), but after five minutes of polishing the 

maximum force was significantly lower than the value for three minutes polishing 

time (Bonferonni: t test, p<0.001). 

Polishing CAB contact lenses had a significant effect on the maximum force values 

with three minutes of polishing producing a greater maximum force than one 

minute of polishing (Bonferonni: t test, P<0.00001). After five minutes of polishing 

the maximum force had reduced to a value below that for one minute. 

Equalens had similar trends to PMMA, with three minutes of polishing producing a 

significantly greater maximum force than one minute of polishing (p<0.00001). 

But, five minutes of polishing reduced the maximum force to a value that was still 

higher than for one minute polishing (p<0.001). 
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Figure 6.12. Adherent maximum force values for different contact 
lenses that were Dolished for three oeriods of time: 
one, three and five minutes. 

6.3.3.3. Discussion 

The lathe cutting of a material produces heat on the contact lens surface and the tip 

of the diamond, with the amount depending on a number of factors, including 

material stiffness, the speed of lathe cutting and the sharpness of the tip of the 

diamond. It has been reported that generated heat can damage material surfaces 

(Walker 1989), although one and three minutes of polishing required to remove the 

damaged surface areas of contact lenses for all materials, increased the 

hydrophilicity. Further polishing produced heat energy that reduced hydrophilicity 

for all materials, apart from Boston RXD. The conclusions of the experiment are. - 

a. Polishing up to three minutes increases contact lens surface hydrophilicity 

for all materials. 

b. For the tested contact lens materials (apart from RXD), excess polishing 

reduces the hydrophilicity of the contact lens surface when measured using 

the ALMF method (see 7.3). 

C. Contact lens materials have different sensitivities to polishing. 
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Another possible method of increasing lens surface hydrophilicity might be 

through determining the optimal polishing time and pressure (weight). 

6.3.4. Pre-wear and Post-wear Contact Lens Surface Hydrophilicity 

6.3.4.1. Aims, Materials and Method 

The aims of this experiment were to assess the surface hydrophilicity of various 

rigid contact lenses for pre-wear condition and to determine the effect of residual 

tear film components and wearing (post-wear) on hydrophilicity values. Five 

contact lenses made from PNUVL&, Polycon 11, Equalens, Boston RXD and 
Paraperm materials were used with the same diameter and front lens surface radii 

(±O. 1), and the values of the maximum adherent force for pre- and post-wear (3 0 

minutes of wearing) were measured. The lenses were prepared as described in 

4.4.2.1 and the process repeated five times to collect five independent data. 

6.3.4.2. Results 

The mean and standard deviation of the maximum adherent force for pre- and post- 

wear rigid contact lenses are illustrated in figure 6.13, showing that there are 

differences in surface hydrophilicity between the contact lenses for pre and post- 

wear. An analysis of variance showed there was a significant variation between the 

values of the different materials for both pre-wear (ANOVA: F=170.32, 

P<0.00001) and post-wear contact lenses (ANOVA: F=266.12, P<0.00001) and 

the mean value of the measurements for post-wear (387.8 mg) was significantly 
lower than for pre-wear (410.6 mg). These variations were established by using t 

tests: PMMA p<0.001, Polycon II p<0.0001, Equalens p<0.0001, Boston RXD 

p<0.0001 and Parapermp<0.000001. 

6.3.4.3. Discussion 

Guillon et al (1994) measured the wettability of rigid contact lenses in vivo using a 

tear break up method and stated that 'some patients perform similarly with several 

materials and others show very large inter-material differences'. The pre-wear rigid 
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contact lens surfaces attracted a greater water than the post-wear surfaces, 

therefore, pre-wear rigid contact lens surfaces were found more hydrophilic than 

the post-wear surfaces (see 6.4). It can be suggested that hydrophilic sites on the 

contact lens surfaces might be blocked by tear film components. PMMA which had 

a moderate hydrophilicity was influenced the least by the tear film. The post-wear 

hydrophilicity value of PMMA was greater than any other material, therefore, 

PMMA had the highest hydrophilicity after 30 minutes of wear among the tested 

materials. In contrast, Paraperm lens surface had the highest hydrophilicity, but 

after wear it had the lowest hydrophilicity apart from Polycon 11, which before and 

after wear had the lowest hydrophilicity. 

Polycon 11 Equalens PMMA RXD 

Figure 6.13. The pre- and post-wear adherent maximum force 
values of different contact lenses. 

Paraperm 

The influence of the tear film on materials may prompt practitioners to select a 

contact lens material on the basis of post-wear hydrophilicity, which would make 
PMMA the first choice and Polycon 11 the last (see Chapter 7). 
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6.3.5. Pre- and Post-wear Soft Contact Lens Surface Hydrophilicity 

6.3.5.1. Aims, Materials and Method 

The purposes of this experiment, were to determine the influence of water content 

on the hydrophilicity of soft contact lens surfaces and to investigate the effect of 

one subject's tear film on different contact lens surfaces. The experiment was 

carried out at the same time on each day on a male subject. Three contact lenses of 

low, medium and high-water content (pHEMA Hydron Z6 38 per cent, Wbhlk 55 

per cent and Omniflex 70 per cent) were manufactured. Saline (pH=7, Y=82.8 

dynes/cm) was used as the liquid and a solid/liquid interface was produced. The 

ALMF method was then used to measure the maximum adherent force and 

measurements were carried out for pre-wear lenses and after they had been worn 

for 30 minutes. The process repeated five times to collect five independent data. 

6.3.5.2 Results 

The mean values of the maximum adherent force for the different water content 

contact lenses for pre- and post-wear are illustrated in Figure 6.14. The linear 

regression line shows that the pre-wear soft lens surface hydrophilicity increases 

with greater water content. 

An analysis of variance revealed that there was a significant difference between the 

three water content contact lenses for pre-wear (ANOVA: F=591, p<0.00001). 

Hydron Z6 38.6 per cent had the lowest contact lens surface adherent maximum 
force, while there was a significant difference between the values of the low-water 

content of Hydron Z6 and the medium water content of Wbhlk 55 per cent contact 

lenses (Bonferonni, t-test, p<0.0001) and also disparity between the hydrophilicity 

of the medium water content of Wbhlk 55 per cent and the high-water content of 

Omniflex 70 per cent lenses (Bonferonni: Mest, P<0.0001). 

After wearing the lenses for 30 minutes, the values of the maximum adherent force 

significantly declined in comparison with the pre-wear values for all three materials 
(Bonferonni: t-test, p<0.000001). ANOVA demonstrated there was a significant 
difference between the values of post-wear (F=28.9, p<0.001). 

181 



Chapter 6. Contact Lens Surface Hydrophilicity 

560 

5401 

520 

Pre-wear 

[= Post-wear 

500 . ........................ 

480 t 

460+ 

4401 

420 -f 

L9 

Ir ....... ..................... 

Omni 70% Z6 38% wohlk 55% 

Contact Lens Water Content Percentage 

Figure 6.14. Linear regressions for the pre- and post-wear adherent 
maximum force values for different water content soft 
contact lenses. 

6.3.5.3. Discussion 

Water absorption into a polymer depends on a number of factors including 

hydrophilic sites inside the polymer. Water molecules in the polymers can create a 
hydrogen bond with water molecules in the liquid outside the polymer (adherent 

liquid). The greater the water content, the higher the liquid attraction from outside. 

Linear regression (slope--2.75) revealed a positive correlation between water 

content and the maximum adherent forces for pre-wear, and after-wear the 

maximum adherent force values declined significantly. The greater water content 

contact lenses, lost higher values than the lower water content lenses (slope=0.99). 

High-water content lenses obviously had greater hydrophilic sites, a number of 

these sites were blocked by the tear component causing the lens surface to become 

less hydrophilic due to wearing (see later). 
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6.4. Hvdrophilicitv Discussion 

Hydrophilicity is a general term that has been used to specify a polymer surface 

wettability or water absorption into a bulk polymer and swell (Tighe 1989). But 

contact lens surface hydrophilicity is the ability of a material surface to attract 

water. The maximum force between water and a contact lens surface was 

measured by a balance and the method to measure contact lens surface 
hydrophilicity called adherent liquid maximum force (ALMF) which has been used 

in this chapter. The values were obtained when the lens surfaces had the highest 

interaction with the water. 

When the front surface of a rigid lens is withdrawn from the liquid, the changes of 

meniscus shape were clearly visible. The shape can be explained by changes in the 

surface tension of liquid. The surface energy pulled the surface molecules inside the 

liquid volume, but the interaction forces between the liquid and contact lens 

surface resisted which resulted in enhancement in forces until at a level (maximum) 

that the resistance was broken. This was called maximum force. The hydrophilicity 

of the contact lens surfaces was found to be dependent on two main factors 

(excluding external variables such as front lens surface radii): the liquid surface 

tension and the polymers' hydrophilic sites. 

In the experimented samples the YL was constant (72.6 dynes/cm). The other 

factors such as liquid container were constant. The variable factors were the 

contact lens surface material and polishing time. As explained in Chapter I when a 

covalent bond is formed between two atoms of different electronegativities, the 

atom with the higher electronegativity attracts the shared electron pair more 

strongly. Consequently, the electron spends more time around the atom with the 

higher electronegativity, with this atom acquiring a partial negative charge and the 

other atom a partial positive charge, The greater the electronegativity difference 

between the two atoms, the greater the polarity of the bond. An example of such a 

polar bond is the carboxyl group (C=O) in which the oxygen atom has a higher 
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electronegativity and therefore takes on a small negative charge. The carbon atom 

subsequently has a small positive charge which produces forces with a liquid. 

In the case water, the oxygen atom has a greater attraction for the electrons, with 

the oxygen having a relatively negative charge and the hydrogen atom having a 

relatively positive charge. Since the hydrogen atom has a relatively positive charge, 
it will be attracted to the oxygen atom (relatively negative) of another molecule, 
forming a hydrogen bond. This bond is not very strong because it is only a partial 

charge, but it is very important in surface chemistry and wetting. 

The hydrogen bond can be considered electrostatic or ionic in character. The 

hydrogen is usually attached to an acidic group typically a hydroxyl, carboxyl, 

amine or amide group. The other group could be basic usually oxygen such as 

carboxyls, ethers or hydroxyls or nitrogen such as amines and amides. The 

association of such polar liquid molecules as water, alcohols and hydrofluoric acid 

results in polar polymers such as nylon, cellulose and proteins because of 

hydrogen bonding). Only fluorine, nitrogen, oxygen and occasionally chlorine have 

sufficient electronegativity to form hydrogen bonds. 

Varying the length of polishing time up to a maximum of three minutes increased 

the potential maximum force because possibly increasing the numbers of 
hydrophilic sites, and further expansion from three minutes to five minutes reduced 

the hydrophilicity property. It may suggested that, this may caused either by heat 

damaging the hydrophilic sites on the lens surface or removing the hydrophilic sites 

and or by penetrating the polishing component into the polymer bulk (Tighe 1997). 

Hence contact lens manufacturing can, therefore, affect lens surface hydrophilicity 

(see Chapter 7). 

Different contact lens materials have varying surface hydrophilic sites due to the 

nature of polymerisation (F=170.32, P<0.00001) and the post-wear results showed 

even a greater disparity between them (F=266.12, P<0.00001) but in lower value 

than the pre-wear (mean of pre-wear 413>385 post-wear). The maximum force 

results showed a greater differences between the post wear and secondly showed 
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that for post-wear the hydrophilic sites may be blocked by tear film components 

resulted in reducing hydrophilicity. It also appears to be logical to assume, 
therefore, that other factors, such as deposits, could further reduce hydrophilicity, 

which is being investigated. 

Pre-wear soft contact lenses with varying water content gave the maximum force 

values with increasing water content. But, after being worn for 30 minutes, the 

hydrophilicities decreased significantly (pre-wear 512.8>445.1 post-wear, F=216, 

p<0.04). The value for the post-wear of the high-water content lens was still 

greater than for the medium and low-water content lenses. This could imply that 

the tear film components influence high-water content material more than lower- 

water content material. One possible the reason for a greater value of soft contact 
lenses to rigid lenses can explained of the water inside the bulk of soft makes 
hydrogen bonds with the tested liquid beside of liquid/contact lens material surface 
ionic bonds (see Chapter 7). 
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7.1. Introduction 

An ideal contact lens material should have a hydrophilic surface (Refojo 1994), and 

the more wettable and hydrophilic the lens surface is, the more stable the pre-lens 

tear film covering it becomes (Holly et al, 1971 and Holly 1973). A stable tear film 

is important because it affects: 

a. the transmission of gases when the contact lens is on the eye; 

b. the quality of vision; 

c. comfort; 

d. deposition. 

When a liquid covers a solid surface, the process is known as wetting (Dabezies 

1989). A number of definitions have been used to describe contact lens surface 

wettability that are intrinsically related to the methods of measuring their values 

(Table 7.1). 

Definitions 

A contact lens surface will be wettable if. 

Methods References 

(see caption) 
I It has 0' wetting angle 0 

.......... . ........... ............................................................................................................................................................................ It has low receding wetting angle OR 2 

.................... . ...... ............................... 
It spreads a liquid on the surface spontaneously 3 

............ .............................. 
It produces a long TBUT TBUT 4 

................................................................... ................................ ....................................... 
It creates a thick tear film on the surface Tearscope 5 
............................................................................................. . ............................. ....................................... VA 6 It produces a good and stable vision 

................................................................ ................................ ....................................... 
It produces comfort 7 

Table 7.1. Different contact lens surface wettability definitions according to 
various measurement methods. I (Fitzgerald, 1983), 2 (Holly, 1978), 
3 (Andrade, 1980; Zisman, 1964), 4-5 (Guillon 1988), 6 (Vaghmaria, 
1993) and 7 (Benjamin et al 1984). 
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The majority of papers (see Chapters 3 and 5) utilised indirect methods to grade 

the wettability because it was well known that solid-liquid interfacial tension can 

not be measured directly (Holly, 1983b). Contact lens surface hydrophilicity has 

been defined as the ability of the surface to attract a liquid, this was measured 

directly using the ALMF method which determines the force between a liquid and 

contact lens surface. 

When there are no attraction forces between a contact lens surface and a liquid, the 

phenomenon may be called hydrophobicity, however all the tested contact lens 

surfaces had attraction forces with the water and hence the contact lens surfaces 

were found to be hydrophilic (Figure 7.1). An attempt to measure the attraction 

forces on both soft and hard contact lenses using the DCA system was 

unsuccessful when the contact lens moved into a liquid and was withdrawn 

vertically (see 6.2). Madigan et al (1983) and (1986) claimed to have measured the 

wetting angle of rigid contact lens surfaces when they moved into a liquid 

(advancing) and withdrawn (receding) vertically. The results were found unreliable 

because in both advancing and receding conditions the meniscus of the back and 

front surfaces were influenced by front and back contact lens surface radii such that 

no resolving method was found (6.2). 

Non-weffing 

Wefting 
Wc > Wa 
O'< 0> 180. 

Spreading 
Wc < Wa 

Figure 7.1. Representation of non-wetting and wetting systems 
(Padday 1978, (See also 1.3.1.2). 
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There are three main reasons why in vitro measurements have value in assessing 

contact lens surface wettability: 

a. As a quality check of contact lens manufacturing processes, the lens surface 

may be damaged by heat or be contaminated in such a way that affects the 

surface wettability and hydrophilicity. 

b. Tear film components in vivo can cover damaged or un-wettable surfaces (Holly 

et al, 1971). The authors stated that 'mucus coating can make practically any 

material wettable 'even a material with as high a wetting angle as Tcflon. 

c. It has been documented that tear film break-up can be influenced by tear 

deficiency, inadequate mucus, a pathological lipid layer, excessively fast 

evaporation, pathological blinking reflexes, drugs and hormone imbalance 

(Marquardt, 1993). In addition, the values in vivo are significantly influenced by 

lens designs. Thus in vivo measurement of wettability may not be repeatable or 

universally applicable. 

Wetting values in dehydrated and in vivo conditions are not covered in this study 

because it is obvious that contact lenses would be used in hydrated condition and 

the dehydrated values found would be of little clinical application (Benjamin et al 

1984). A great deal of work has been carried out in vivo, although Guillon et al, in 

their recent articles (1994 and 1997) found different values for one material on 
different subjects (see later). Thus contact lens surface wettability and 
hydrophilicity have been investigated in the following conditions: 

1. Wet or hydrated condition- because the use of contact lenses in vivo would 
be in a hydrated condition, measurements in a hydrated state are of interest. 

2. Pre-wear condition- contact lens surface wettability can be influenced by 

solutions and therefore, measurements in this state can illustrate the capabilities 

of wetting agents. 
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3. Post-wear condition- shows the effect of wearing and a tear film on lens 

surface wettability. The values may be used to evaluate the effect of individual 

tear film characteristics and wearing period on the contact lens surface 

wettability. 

7.2. Wettability Discussion 

In order to study the interaction of materials with liquids, it is necessary to. control 

as many of the variables as possible. The lens surface preparation was deemed 

important to meet criteria for measuring wettability (Lin et al 1973 and Poster et al 

1978). In this study this was partly achieved by standardising contact lens surface 

preparation and measurement methods. One of the aims of Chapter 4 was to 

introduce a new method for preparing the lenses in hydrated conditions and to 

remove the liquid from both soft and rigid contact lenses without contaminating 

and damaging the prepared surfaces. As contact lenses are hydrated in vivo and 

absorb a percentage of water, the surface tension method, in which the water 

molecules are swept from the lens surface using a non-mechanical method, would 

appear to be the most appropriate. In a controlled study, this method produced the 

highest repeatability and was, therefore, chosen as the preparation method for this 

work. 

The second aim of Chapter 4 was to show that the equilibrium sessile drop delivery 

method could be made repeatable through the liquid delivery system, in which the 

tip of the syringe needle was modified (sharpened and softened). When the syringe 

needle was made rougher the suspended drop at the tip of the needle was spread 

over a greater area of the needle body, and thus a rough needle surface produced a 

greater variability in results. The reduced variability with the pendant drop delivery 

method showed a greater repeatability (4.2.2). 

A comparison study on influencing factors of front lens surface radii (Figures 4.6 , 
5.6 and 6.11) demonstrated that the sessile drop method is reliable, but on the 

other hand does not explain the influence of varying front surface radii. One 

possible explanation could be that in the sessile drop method the explored diameter 
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area would be less than 3mm which has 1.5mm distance from the lens surfke 

centre. If the liquid volume increased the interface area diameter will be increased, 

hence the air/liquid/contact lens surface interface will be moved to the lens 

peripheral which has a greater slope. At this area the values will be influenced by 

radii. 

The de-ionised distilled water had the hydrogen bonds and YL energies (72.6 

dynes/cm, pH=6.6). When a sessile drop was delivered on to a contact lens 

surface, the polar-covalent bonds of H20 (see 1.2.2, the partial positive charge on 

hydrogen and a partial negative charge on the oxygen) produced interface bonds 

with the contact lens surface. If the contact lens surface is ionic, the bonds produce 

a greater interface area diameter (solid/liquid interface) for the sessile drop. The 

greater interface area diameter means the liquid spreads more on the contact lens 

surface, resulting in a lower-wetting angle. 

In the sessile drop experiments, the liquid surface tension was constant, contact 

lenses were hydrated and the surfaces were cleaned and prepared using the same 

method avoiding any contamination. The experimental variables were restricted to: 

a. Differing materials, 

b. Differing contact lens manufacturing processes, 

c. Solutions and tear films. 

The results revealed wetting angles between 59'-64' (S=-35 to -40.7) for the 

hydrated rigid contact lens materials tested. The majority of the literature 

recommended low-wetting angle values for contact lenses, apart from when they 

are influenced by the tear film and become more wettable. However, measuring the 

pre-wear wettability, using the sessile drop method in the hydrated condition helps 

to evaluate unworn contact lens wettability that could be influenced by a number of 

factors as explained earlier. 

The application different solutions on contact lens surfaces resulted in a significant 

enhancement of contact lens wettability (p<0.001) due to creation of hydrophilic 
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sites on the surfaces. The extent of the interaction varied because of the effect of 

solution contents on contact lens materials. The effect of different solutions on 

various contact lenses indicated that different contact lens materials have differing 

ionic charges altering surface wettability. The use of solutions on contact lenses 

were found to be important because they may increase or reduce deposits and 

wettability on contact lens surfaces (Benjamin et al 1984). However, Rosenthal et 

al (1986), stated that the increase in wettability was due to the adsorption of a 

wetting agent by polymers. 

Results from post-wear contact lens surfaces demonstrated increased wettability, 

probably because of tear film component interactions with the contact lens surface. 
A similar result was also reported by Kokoski et al (1963) and Benjamin et al 

(1989). The measurements were carried out after 30 minutes of wearing, for longer 

wearing times, a greater deposition may appear on the lens surface reducing 

contact lens surface wettability. But Shirafkan et al (1995b) showed no changes in 

wettability after 30 minutes of wear up to two hours wearing. 

Variation of the sessile drop wetting angle and interface area diameter with 

evaporation time caused the sessile drop to be in a receding condition. These 

changes, therefore, have a relationship with contact lens surface wettability. If a 

contact lens has a low-surface attraction force to adhere liquid, the liquid surface 

tension coalesces the liquid and reduces the liquid diameter, leading to a high and 

constant wetting angle. If, however, a contact lens has a large surface attraction 
force, the diameter of the interface area does not decline, and the wetting angles 

change during evaporation. 

The results of wetting angle and interface area diameter showed a greater 

attraction by the Aquasil contact lens surface. In general, the greater sessile drop 

diameter in the receding condition shows that the surface is more wettable. This 

method can, therefore, determine whether a thick film of liquid will be present on 

the lens or whether it spreads to form a thin film on a surface, such as Aquasil, for 

which the sessile drop area diameter was large. 
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if the wettability is defined as a material property, in that a liquid spreads on a 

surface, then Aquasil contact lens material is wettable. However, if the thickness of 

the liquid film on the contact lens is used as a measure of wettability, then Aquasil 

is a less wettable material than PMMA, because the liquid on the PNUVIA surface 

had a lower interface area diameter (a greater liquid thickness) than the Aquasil 

according to Lin et al (1973,2h = 
tanO 

d2 

Aquasil and Equalens had the greatest sessile drop interface area, which indicates 

that these materials are able to keep the liquid spread on the surface. The interface 

area diameter values of the sessile drop showed that the liquid on these lenses did 

not coalesce, the mean values for these materials were found to be greater than 

PMMA values. It can be clinically concluded that if tear break up occurs in these 

materials the dry patches do not advance quickly on Equalens, but PMMA may 

produce a greater tear film thickness that theoretically produces a greater TBUT. If 

however tear break up occurs on the PMMA the dry patches advance quickly on 

the lens surface. Thus the equilibrium, receding and monitoring the wetting 

angle/diameter of the sessile drop values demonstrated different information about 

wettability. 

When the height of an un-separated adherent liquid increased (Chapter 5), the 

liquid surface tension acted to minimise the surface interface area for a given 

volume. If the surface is wettable, the attraction forces would be high and the 

liquid would be kept spread by the lens surface. However, if the contact lens 

surface attraction force is low, the liquid will coalesce due to liquid surface tension 

and the wetting angle would be high. One of the advantages of this method is that 

the lens surface does not become dehydrated or un-wetted. The results showed 

differing wetting angles for different contact lens materials, such as the liquid on 

Equalens (0=20.50', S=-4.6) or the liquid coalescing on a surface such as 

PMMA (0 =5 5', S=-31.2). When the hydrophilic sites at the surface increased, 

due to the influence of wetting solutions the contact lens surface maintained the 

liquid spread, resulting in a lower wetting angle. When the lens was worn for 30 

minutes, the influence of the tear film produced even lower wetting angles between 
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9.5'-12' (S=-1 to -1.6) for the tested rigid contact lenses. The method thus 

supports lower interfacial forces for PMMA than Equalens. The clinical 

consequence of this is: if tear breaking occurs on Equalens, the thickness of broken 

tear film would be stable or increased which could means that the lens surface is 

damaged or contaminated. If however the broken tear film thickness decreases it 

could means that the lens surface is not damaged, but the problem caused by tear 

film quality. 

7.3. Contact Lens Surface Hydrophilicity Discussion 

a. Rigid contact lenses: In Chapter 6, the adherent liquid/maximum force 

method was introduced to measure interfacial forces between liquid and the 

contact lens front surface directly, known as lens surface hydrophilicity. Hence 

when the wetting angle was measured, the distribution of liquid on the surface is 

measured. Hence the results of this study indicate that the surface wettability and 

hydrophilicity were two different surface properties. The results revealed a 

difference in the attractive forces between liquid and both the soft and rigid contact 

lens surfaces. 

Surface hydrophilicty was also found to be different when the contact lenses were 

polished for one, three and five minutes. The results revealed that polishing time 

can increase contact lens surface hydrophilicity and over-polishing can lead the 

hydrophilic sites at the surface being blocked and reducing hydrophilicity. These 

results depend on many factors including the material's rigidity (Meszaros 1986). 

When these lenses were over polished the hydrophilicity decreased due to heat 

produced at the surface or the polishing component penetrated into the bulk 

polymer (Tighe 1997). This provides a possible explanation as to why there have 

been some conflicting results on the asperity/wettability issue (see 3.9.8). 

The post-wear results revealed that, in general, contact lens surface hydrophilicity 

declines with wearing and it is possible to suggest that the tear film components 

may block the lens surface hydrophilic sites. PMMA surface hydrophilicity was 

influenced less than Paraperm by wearing time, even though the pre-wear surface 
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hydrophilicity of Paraperm was greater than PMMA (see Figure 6.13). In this case 
it was found that for 30 minutes wearing, PMMA had a greater surface 
hydrophilicity than Paraperm. 

b. Soft contact lenses: The surface wettability of soft contact lenses using un- 

separated adherent liquid laser method for pre-wear was significantly higher than 

the mean of rigid contact lenses (p<0.00001). The low-water content soft lenses 

had a greater tendency to keep the liquid spread over the surface, for the pre-wear 

situation. After wear, the wetting angle values decreased significantly. A similar 

result was also reported recently by Guillon et al (1997). 

The results of the adherent liquid/maximum force revealed that soft contact lenses 

with a higher water-content have a greater surface hydrophilicity due to an increase 

in hydrophilic sites. The results (Figure 6.14, Table 5.1) also showed that high Dk 

materials have a greater surface hydrophilicities than the low Dk polymers. Holly 

(1979) suggested the changes in hydrophilicities were due to the segmental 

mobility of hydrophilic-hydrophobic transition of the surface polymeric chains. 

Despite a decrease in surface hydrophilicity with wearing time, the surface 
hydrophilicity of the high-water content lens was higher than low-water content. 

This change could be due to the deposition of the tear film component on the lens 

surface and also into the high water content polymers (Tighe 1994). 

7.4. Wettability and Surface Hydrophilicity General Discussion 

Throughout the work described in this thesis, wetting angles were taken for the 

equilibrium and receding conditions. The use of each method resulted in a value 

that related to a specific wettability definition. In contact lens practice, a lens 

surface is required to maintain a stable tear film doing the normal inter-blink 

period. A combination of the adherent liquid/maximum force with sessile drop 

wetting angle and adherent liquid/wetting angle can help to determine the 

requirement of wettability in the contact lens industry and also in practice. An 

example is shown in Table 7.2. The sessile drop wetting angle on pre-wear PNUVIA 

was measured at 63.7' which was greater than the Equalens wetting angle (59'). 
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After wear the materials demonstrated an equal surface wettability (I I *- 1 P). On 

the basis of the post-wear values, it can be concluded that when worn there is no 

clinical difference between these two lenses. 

Materials 4 PMMA Equalens 

Wettability methods 4, Pre-wear Post-wear Pre-wear Post-wear 

Sessile drop 
...................................................................................... 

0 63.7 11'-130 
............................................................. 

0 59 ll'-13' 
............................. ............................... Adherent liquid/wetting angle 

....... ......................... . 
0 55 12' 

............................. ................................ 
00 20.5 9.5 

........... .. . ... ..................... . Adherent liquid/maximum force 412mg 407mg ... . . ....... ............................... 404mg 393mg 

Table 7.2. The wettability values of PMMA and Equalens when measured by 
different methods of sessile drop, adherent liquid/wetting angle and 
adherent liquid/maximum force (4.3.1,4.3.2,5.2.2 and 6.3.4, see 
Table 5.2). 

The adherent liquid/wetting angle revealed a difference between pre-wear PMMA 

(55.0') and Equalens wettability (20.5'). The post-wear values demonstrated an 

increase in surface wettability and a reduction in the disparity between their values 

(12.0', 9.5'). 

The values of the adherent liquid/maximum force for pre-wear showed different, 

surface hydrophilicity between PNEVIA (412mg) and Equalens (404mg), and when 

worn, both values decreased (404mg, 393mg). The results suggested that 

hydrophilic sites on the Equalens had greater blockage than the PMMA with the 

tear film component. It can be concluded that the PMMA surface has a greater 

resistance to tear film component blocking the hydrophilic sites than the Equalens. 

Results obtained indicate that Equalens has a greater surface wettability than 

PMMA, and on the basis of surface hydrophilicity values, PMMA has a greater 
hydrophilicity surface than Equalens. Therefore, the contact lens wettability and 

surface hydrophilicity defined in this thesis are two different properties. On the 

basis of this discussion the selection of contact lens material would be in the hands 
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of practitioners to select the lens either on wettability or surface hydrophilicity 

values. If the lens is selected on the basis of surface hydrophilicity, a material that 

influenced less by tear film such as PMMA would be the first choice among the 

possible materials which some still believe is superior to RGP lenses in some cases, 

but the long term effects on the corneal epithelium needs to be considered as 

pointed out by Stevenson (1993). 

in developing contact lens materials a difference between these two properties 

needs to be understood and considered by the polymer designers, so that they 

informing the practitioners about materials. Tear composition changes with the 

ageing, the different materials may be appropriate with age changing. 
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8.1. General Conclusion 

A series of techniques has been developed to detern-ýine the wettability and surface 
hydrophilicity of both rigid and soft contact lenses: 

a. Sessile drop/wetting angle method. 

b. Sessile drop, monitoring the receding wetting angle/interface area diameter. 

c. Un-separated adherent liquid/laser method (UALLM). 

d. Adherent liquid/maximum force method (ALN9M). 

The first three methods were indirect techniques used to measure the contact lens 

surface wettability. Knowing the wetting angle is not enough to define the 

wettability in scientific terms (Fatt (1984). However, the use of the ALMF method 

is a possible way to measure contact lens surface hydrophilicity directly. The 

outcome of this research is that the results of a variety of tests help in the 

understanding of biocompatibility in relation to contact lens surfaces. No single test 

can fully describe the surface properties of contact lens surface materials, but it is 

proposed that information from a series of tests provides the most useful clinical 
description. 

The conclusions of this research are as follows: 

1. The un-separated adherent liquid laser method enabled one to measure rigid and 

soft contact lens surface wettability in a hydrated condition. A significant disparity 

between pre-wear values and no significant difference between the post-wear 

results, demonstrated that tear film has a very great effect on contact lens 

wettability. The method was reliable and easy to use both for rigid and soft contact 
lens surfaces. 
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11. The distributions of sessile drop at equilibrium and receding conditions were 
investigated when liquid coalesced on different contact lens material surfaces. 
There was a significant disparity between the wettability values for different 

contact lens materials. Contact lens materials such as Equalens and Paraperm had a 

wettable surface, because of a greater interface area diameter and a low wetting 

angle. A similar result was also obtained using un-separated adherent liquid laser 

method. The results showed that these materials were able to keep the liquid 

spread over the surfaces (not coalescing), but the liquid on PMMA was coalesced. 

It thus can be concluded that if liquid or tear film breaks on the PMMA, the dry 

area will be expanded quicker than those on Equalens and Paraperm lenses. 

111. Because PMMA surface hydrophilicity was less influenced by tear film than the 

other contact lens materials, it can be concluded that the PMMA surface is more 

acceptable in vivo than the others. 

IV. Wetting solutions and tear films affect contact lenses, leading to liquid spread 

on the surfaces and preventing the liquid from coalescing, which means the surface 

was made more wettable. 

V. In general polishing the contact lens surfaces increased surface hydrophilicity, 

but over polishing decreased these values. 

VI. A high- water content soft contact lens had the greater surface hydrophilicity 

than the low- water content materials, but high- water content contact lens surfaces 

were influenced more by tear film components, so the difference between high and 
low- water content contact lenses decreased with wearing time. The surface 
hydrophilicity values could provide a base line by contact lens manufacturers to 

help practitioners. 
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8.2. Suggestions for Further Research 

The work described in this thesis has highlighted a number of areas with potential 

for future research. A brief resume of these areas follows. 

1. The wettability and surface hydrophilicity of a contact lens could be investigated 

when different artificial tears on a standard flat material, interfere with different 

contact lens surfaces (Figure 8.1). These may help one to evaluate different tear 

compositions with contact lens surfaces 

Contact Lens + Contact Lens 

r-7ý\ Artificial Tears 

I Flat PMMA Flat PMMA 

a 

Contact Lens + Contact Lens 

Artificial Tears 

I Flat PMMA 
C d 

Flat PMMA 

Figure 8.1. a Contact lens surface, artificial tears and a PMMA standard flat 
surface. b creating of an interface, c producing the tears in all 
areas of surfaces, d creation an interface at the receding condition. 
d the wettability and surface hydrophilicity may be measured. 

2. The values of the ALNIF method may be influenced by gas in liquid (dissolving 

gas in the distilled water), which, therefore, needs to be Investigated. 
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3. The wetting angle of two contact lens surfaces could be compared when the 

adherent artificial tears are created between the two contact lens surfaces 

(Figure 8.2). 

Contact Lens 

a 

+ Contact Lens 

rtificial Tears 

,., o 
PMMA C. L 

b 
PMMA C. L 

Contact Lens 

rNzzzý 
kllý 

+ 
Artificial Tears ýýj 

10000 
c PMMA Contact Lens 

d 

Figure 8.2. a artificial tears between a RGP or soft contact lenses and a PMMA 
standard contact lens, b creation of interfaces, c producing artificial 
tears on all areas of the surfaces, d creating two receding 
solid/liquid/air interfaces, d at the this condition the wetting angles 
and adherent liquid maximum force (surface hydrophilicity) can be 
measured and compared. 

4. The influence of different tear films (post-wear) on the contact lenses 

wettability/ hydrophilicity may be measured using the above methods. 

5. Mould and spin-cast techniques that are used to shape polymer materials to 

contact lenses (in manufacturing) can produce different wettability and surface 

hydrophilicity could be investigated. 
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Chapter 8. Conclusion 

6. The rate of flow of liquid across different contact lens materials can be 

measured by making a hole in a material and measuring the rate of liquid that 

flows through it. This work could be extended when a liquid passing through a 

gap between two contact lenses. This can help to assess frictional forces caused 

by surface effects, and demonstrating the changes of the hydrogen bonding 

between molecules of liquid and a polymer surface (Figure 8.3). 

I 

Liquid 

A hole in a contact 
lens material 

]MEN) 
PMMJ 

i 

Figure 8.3. The rate of flow of liquid that can flows through a thin hole 
may be different using various contact lens materials. 

7. The liquid meniscus at the contact lens edge area could be investigated on rigid 

and a model eye (Figure 8.4). The influence of lens design on the tear film 

meniscus (pump efficiency) associated with plus and minus power rigid contact 

lenses may be also investigated on single cut, lenticular and minus-carrier 

designs on different materials. 

Contact Lens 

rammomm 

Liquid Meniscus Liquid Meniscus 

Figure 8.4. The liquids at peripheral area of contact lenses produce 
meniscus that may be varied using different materials on 
the a PMMA model eye. 
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A novel approach to measuring the wettability 
c)f rigid contact lenses. Mass measurement of 
the adherent liquid on the rigid lens surface (1) 
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Summary 
A novel approach and the equilibrium sessile drop (laser assisted) method were used to 
determine the wettability of hydrated and unhydrated PMMA, Polycon 11, Boston IV, Equalens 
and Boston RXD rigid contact lens materials. In the new method the ability of the contact lens 
surface to attract the liquid is evaluated by measuring the adhered mass of liquid on the front 
lens surface. The mass has a direct relationship to contact lens wettability, so the greater the 
lens surface hydrophilicity the more liquid adheres to the contact lens surface. In the hydrated 

state, Equalens and Boston IV showed the greatest hydrophilicity of all five materials, 
although there was no significant difference between them (P > 0.9). Boston RXD had a 
lower ability to attract liquid and there was a significant difference between it and the next 
higher material which was Boston IV (P < 0.005) and also the next lowest Polycon 11 (P < 
0.00001). PMMA had the lowest capability to adhere liquid and there was a significant 
difference between PMMA and Polycon II (P < 0.00001). The new method is simple and 
cluick to use and gives greater discrimination and repeatability than other current methods. 

ophthal. Physiol. Opt. 1995,15,575-583 

An optimum contact lens surface wettability is necessary to 

maintain an unbroken tear film and to minimise greasing 

and deposition. One of the relevant methods for evaluating 

surface properties is to measure the wettability (hydro- 

philicity) of the material surface. The most widely used 
method for assessing hydrophilicity of a material surface is 

.2 to measure the wetting angle' . Only with consistent wet- 
tability can the practitioner predict the success from 
diagnostic lens to dispensed lens and from one dispensed 
lens to another. 

Adequate wettability is defined as the ability of the 
material to support a stable tear film across its entire 
surface'. It is generally assumed that a low wetting angle 
is preferred to a high wetting angle. In vitro measurement 
of materials are thus not only necessary for research and 
development, but are also important for predicting clinical, 

*FBCO 

Received: 22 March 1994 
Revisedform: 5 August 1995 

on-eye performance. The wettability of contact lenses is 
thus recognised to be an important property of material dev- 
elopment possibly as significant as oxygen permeability". 

There is a significant variation in wetting angle obtained 
with each method of measurement and it is not clear which 
result best describes the wettability of the various lens 
materiaIS7. It has been believed that because the surfaces 
of contact lenses in the eye are hydrated, the receding angle 
is the best indicator of a material's clinical performance 
on the eye. Furthermore, Ng et al. ' concluded that the 
sessile drop receding angle values are similar to the captive 
bubble contact angles9 which is the method that has been 

accepted by the Contact Lens Manufacturers Association 
(CLMA)4,7,10-14. Unfortunately, the captive bubble method 
gives a very wide range of values (90-18") on the same 
material in the hands of different investigators (Table 1). 
Notwithstanding this, there is broad agreement among 
different workers, on average values. The large variation 
among different laboratories is understandable since pro- 
cedures and conditions used by different investigators have 

not been uniform. The main methods used to measure the 
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Table 1. Wetting angle values of hydrated PMMA materials 
using the captive bubble technique (various authors) 

No. Variations Wetting angle SD Reference 
(degrees) 

1 24 h in distilled water 90.0 19 
2 24 h in distilled water 59.0 2.0 14 
3 Air in water, receding 49.0 2.0 16 
47 days in distilled 45.5 0.5 17 

water 
5 PMMA C, in saline 45.3 3.6 10 
6 PMMA Blue, in saline 41.6 2.9 10 
7 PMMA 4, Lab E 28.0 0.5 12 
8 PMMA 4, Lab B 25.3 1.2 12 
9 PMMA 4, Lab IF 24.8 1.0 12 

10 PMMA 4 24.3 3.8 13 
11 PMMA 4, Lab A 19.0 0.7 12 
12 PMMA Clear 18.3 0.5 13 

SD, standard deviation. 

surface wettability of the materials are as follows (see also 
Table 2). 

(i) Sessile drop method. This is carried out in air; 
advancing, receding and equilibrium wetting angle 

. 
7-9,20-27 

<c can be determined' 
(ii) Captive bubble method7.10,13,14,16-18. 

14.22.29-33 (iii) Meniscus methods7- 

The contact lens wetting angle can be determined by 

several ways. The angle can be measured directly from 

photographS33'42 or from a projected image', 22,29,34,43. The 

angle is commercially measured with a goniometer or 
protractor' . 8,23,24,27,39-4 ' but can also be calculated from the 
dimensions of the sessile drop3l-35 or captive bubble34,48. 
The laser assisted method26,27 has also been utilised to 
measure the wetting angle of a sessile drop in equilibrium. 
Other methods have been used in material property assess- 
ments but not in the contact lens field" 46. 

An alternative, and we believe novel, approach would be 
to assess the wettability of a rigid contact lens by measuring 
the mass of liquid adherent to a surface. This may be 

Table 2. Wetting angle methods and measurement tech- 
nique used to determine the wettability of the contact lens 
and materials (various authors) 

Measurement Sessile Captive Meniscus 
techniques drop bubble 

Dimensions 34-38 37,48 32 
Goniometer 4,7,8,23-26,7,10,13,14,29,32 

39-41 16,18,41 
Photographic 36,42 19 19 
Projection 27,28,34,43 - 18,20,22 
Laser assisted 26,27 - 
Reflecting 41 43 

Reference numbers shown. 

measured by a relatively simple and reliable system. After 

one of the lens surfaces has been wetted, the retained mass 
of liquid on the surface is weighed. The mass of liquid 

adhering to the surface is proportional to its wettability (see 
discussion). 

Despite a plethora of papers in the literature and opinions 
such as those given by Lakkis et al. " who stated that 
'wettability is among the most important properties of 
RGP materials to be followed by Dk in the order of impor- 

tance', there is much confusion and little consistent infor- 

mation available to the contact lens practitioners on this 
subject'"O. The aim of this paper is to introduce the novel 
approach for measuring the ability of the rigid contact lens 

surfaces to attract the liquid. 

Methods 

A novel approach and the equilibrium sessile drop (laser 

assisted)" method were both employed to determine the 
wettability of hydrated and unhydrated rigid contact lenses. 
The apparatus utilised to apply the adherent drop and 
measure the mass of liquid adhered to the surface of contact 
lenses was as follows. 

(1) A digital balance scale (Mettler AE50) with a resolution 
of ±0.01 mg. The balance was able to measure 
positive and negative weight changes between 0.1 mg 
and 15 g. 

(2) Two micrometer manual positioning components with 
two platforms in one device. A set of tweezers on the 
upper platform, to hold the contact lens suction holder. 
This could be manoeuvred vertically into a container 
which was positioned on the lower platform (Figures 
1-4). 

(3) Thermometer and humidity indicator to measure 
ambient air conditions. 

Five lenses for each of five different rigid contact lens 
materials (PMMA, Boston IV, Boston RXD, Equalens and 
Polycon II) were measured. All lenses had the same speci- 
fication of 8 mm FOZR, 0.2 mm centre thickness and a 
total diameter of 9.5 mm and were manufactured at City 
University contact lens laboratory. The front lens surfaces 
were cut by one lathe with the same set of diamonds. Both 
front and back lens surfaces were polished for 1 min with 
Silo-02-Care. The lenses were cleaned with Isobar liquid 
in the last stages of manufacture. Before measurement the 
lenses were cleaned with L. C. 65 surfactant cleaner and 
washed repeatedly with distilled water; they were then 
soaked for 24 h in distilled water. The hydration process 
was reversed by leaving the lenses for 24 h in a room 
temperature of 23*C (±2) with a humidity of 30-50%. 

The lens was first weighed prior to wetting the front 
surface. It was then lowered until it just touched the liquid 
using the micrometer screw, and then lowered a further 
1.5 mm to wet the front surface completely (Figures I and 2). 
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Figure 1. The adherent mass of liquid device diagram. 

Figure 3. Surface tension, adhesion force and air-liquid- 
PMMA interface. 

r, 

Figure 2. The device to create the adhered mass of liquid 
on contact lens surface. 

After 30 seconds the wetted lens was removed and placed 
on the balance (Figures 3 and 4). The weight of adhered 
liquid was obtained by subtracting the total weight of the 
contact lens and adhered liquid from the original lens 
weight. This procedure was repeated four times for each 
contact lens. 

The laser assisted method is based on reflection of a laser 

Figure 4. Adhered mass of liquid on the rigid lens. 

beam at the point of solid-liquid-air interface and is sug- 
gested to be less subjective, and superior to goniometry26,21. 
A helium-neon laser with a maximum power of I mW, 
was clamped to the left side of an optical triangular bench. 
The laser beam travelled parallel to the optical bench and 
was incident at the centre of a wetting angle indicator (a 

paper protractor drawn by a computer), which could read 
both 120* clockwise and anticlockwise. The anticlockwise 
and clockwise sections were separated by a zero central 
line. The protractor was mounted 155 cm away from the 
laser on the optical bench and could be rotated about the 

axis of the laser beam. The contact lens platform was 
mounted on a manual positioning component for horizontal, 
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vertical and rotary movement. The centre of the platform 
was marked with a dot, surrounded by concentric circles of 
1,2,3,4 and 5 mm radii. A +7.00 DS convex lens was 
fixed 120 cm away from the laser in order to focus the laser 
beam on to the centre of the contact lens surface which was 
placed at the centre of the platform. A 10 IAI syringe with a 
needle diameter of 0.46 nun was fixed vertically above the 
platform to deliver a3 1AI saline sessile drop on to the front 
surface apex of the contact lens. 

By moving the Z and Y translators, the laser beam was 
directed to the sessile drop/contact lens interface. The laser 
beam at the contact angle produced two reflection pattern 
strips on the protractor. Two reflected lines are produced, 
one by the contact lens surface and the second by the sessile 
drop of the solid-liquid-air interface. In order to have the 
narrow laser strips on the protractor, the laser beam was 
focused on the interface. The zero line of the protractor was 
aligned with the first reflected line then the second reflected 
line showing the liquid-contact lens interface wetting angle 
was measured on the protractor. The measurements were 
made in dim light within I min of drop delivery. The pro- 
cedure was also repeated four times for each contact lens. 

Results 

The means and standard deviations of the adhered mass of liquid for hydrated and unhydrated states on each set of the 
rigid contact tenses are illustrated in Figure 5. The means 
and standard deviations of sessile drop wetting angle for 

35 

30 

25 

20 

is 

10 

5 

0 

PMMA 

hydrated and unhydrated contact lenses are plotted in 
Figure 6. An analysis of variance (ANOVA: single-factor, 
t-test: paired two-sample for means and F-test: two-sample 
for variances) at the P<0.05 level of significance were 
performed on the results of the studies. 

There was a significant difference between the mass of 
adhered liquid on different materials for both hydrated and 
unhydrated contact lenses (ANOVA: single-factor, P< 
0.00001). In the unhydrated state, PMMA (12.1 mg X 10, 
SD = 1.3) attracted the lowest mass of adhered liquid on 
the surface, hence showing the least hydrophilicity and 
there was a significant difference between it and the next 
higher lens which was Polycon 11 (15 mg x 10, SD = 1.1, 
mest, P<0.00001). Equalens (25.7 mg x 10, SD = 1.7) 
attracted the highest quantity of liquid and showed a signi- 
ficant difference from the other materials (t-test, P< 
0.00001). There was no significant difference between 
the values of Boston RXD (19.9 mg; X 10, SD = 1.6) and 
Boston IV (20.2 mg x 10, SD = 1.9, t-test, P<0.6). 
However, there was a significant difference between them 
and Polycon II (mest, P<0.00001). The hydrophilicity 
values of unhydrated materials and the rank order of wet- 
tability are illustrated in Tables 3 and 4, which would be 
summarised as: 

Equalens > Boston IV > Boston RXD > Polycon 11 
> PMMA. 

There were significant (ANOVA: single-factor, P< 
0.00001) increases in the adhered mass of liquid on all 

ADHERED NIASS OF LIQUID ON UNHYDRATED AND 
HYDRATED RIGH)CONTACT LENSES 

POLYCONII BOSTON RXD BOSTON IV EQUALENS 

Figure 5. Mean values of adhered mass of liquid of five different hydrated and unhydrated rigid contact 
lenses are plotted to show the hydrophilicity of materials. 
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WETTING ANGLE OF SESSILE DROP ON UNHYDRATED AND 

HYDRATED RIGID CONTACT LENSES 
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Figure 6. Mean values of wetting angle of five different and hydrated and unhydrated rigid contact 
lenses are plotted using the laser assisted method. 

Table 3. Comparison of the wettability of Boston IV, Equalens, Boston RXD, Polycon 11 and PMMA lenses using adhered 
liquid balance, sessile drop laser assisted equilibrium and captive bubble methods (literature values) 

Adhered mass of liquid and wetting angle 

Methods Adhered mass Sessile drop Captive bubble 

Material Unhydrated SD Hydrated SD Unhydrated SD Hydrated SD Hydrated 
(mg x 10) (mg x 10) (mg x 10) (mg x 10) (mg x 10) 

Equalens 25.7 1.7 31.2 1.2 84.3 2.3 59.6 1.7 30 
Boston IV 20.2 1.9 31.15 1.7 85.5 1.5 59.4 2.3 16 
Boston RXD 19.9 1.6 29.6 1.4 83.7 2.6 61.3 2.4 - 
polycon 11 15.0 1.1 24.6 1.2 78.0 1.3 58.0 2.0 20-46 
PMMA 12.1 1.3 18.9 1.3 69.3 2.6 61.7 1.6 19-90 

SD, standard deviation. 

Table 4. Comparison of the wettability of Boston IV, Equalens, Boston RXD, Polycon 11 and PMMA lenses using the values 
of the adhered mass of liquid, sessile drop laser assisted equilibrium and captive bubble methods (from the literature) in 
ranking order 

Wetting angle Adhered mass of liquid Sessile drop Captive bubble 

Material Unhydrated Hydrated Unhydrated Hydrated Hydrated 

Equalens 441 2-3 3 
Boston IV 44 1-2 2-3 4 
Boston RXD 3321 
Polycon 11 2234 2-3-4 
PMMA 1141 1-2-3-4 
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hydrated contact lens materials as compared to the un- 
hydrated contact lenses: 21.4% Equalens; 48.7% Boston 
RXD; 56.8% PMMA; 54.6% Boston IV; and 64% Polycon 
II. Equalens (31.2 mg X 10, SD = 1.2) and Boston IV 
(31.15 mg X 10, SD = 1.7) showed the greatest hydro- 
philicity of all five materials although there was no signi- 
ficant difference between them (Mest, P<0.9). Boston 
RXD (29.6 mg X 10, SD = 1.4) had a lower ability to 
attract the liquid and there was a significant difference 
between it and the next higher material which was Boston 
IV (t-test, P<0.005) and also a significant difference to 
the next lower lens that was Polycon 11 (24.6 mg x 10, 
SD = 1.2, t-test, P<0.00001). PMMA (18.9 mg x 10, 
SD = 1.3) had the lowest capability to adhere liquid and 
there was a significant difference between PMMA and 
Polycon 11 (t-test, P<0.00001). The hydrophilicity of 
hydrated contact lens materials would be ranked as (Tables 
3 and 4): 

Equalens >- Boston IV > Boston RXD > Polycon II > 
PMMA. 

The wetting angle values of unhydrated contact lens 
materials measured with the laser assisted method showed 
a significant difference between them as we expected 
(ANOVA: single-factor, P<0.00001). PMMA (69.30, 
SD = 2.6) had the lowest wetting angle and there was a 
significant difference to the next material which was Polycon 
11 (7811, SD = 1.3, mest, P<0.00001). Boston IV (85.5*, 
SD = 1.5) had the highest wetting angle value and there 
was no significant difference between it and Equalens 
(84.3 0, SD = 2.3, mest, P<0.1). There was a significant 
difference between Boston RXD (83.7 ", SD = 2.6) and 
Boston IV (t-test, P<0.02). 

The wetting angle values on the 24 h hydrated contact 
lenses showed a significant decrease in wetting angle for all 
the materials, which indicated an increase in the wettability 
in comparison with the unhydrated state (ANOVA: single- 
factor, P<0.00001). The decrease in wetting angles 
varied: 9.9% PMMA; 25.2% Polycon 11; 26.7% Boston 
RXD; Equalens 29.3 %; and 29.4 % Boston IV. There was 
no significant difference between Boston IV (59.4", SD = 
2.3) and PMMA (61.7% SD = 1.6, mest, P<0.6) and 
also no significant difference between Equalens (59.6% 
SD = 1.7) and Boston RXD (61.3% SD = 2.4, mest, P< 
0.8). There was, however, a significant difference between 
Polycon 11 (58% SD = 2) and Boston IV (t-test, P<0.02). 
The wetting angle of all five materials after 24 h soaking 
stabilised at a close range level of (58-61.7") which sug- 
gested little difference between the wettability of the five 
hydrated lens materials. 

Discussion 

The experimental results demonstrate that the mass of water 
adhering to a contact lens surface provides a measurement 

of wettability which is in agreement with the literature. 
However, it is perhaps not obvious why the mass of water 
is a suitable measure of wettability and so we present a 
qualitative explanation as to why the method reported here 
is valid. All materials in this study had the same front 
surface radius of curvature (8 mm) and were immersed 
1.5 mm. (the saggita of the FS curve) into the water after 
point of contact. Therefore, the surface area of the contact 
lens exposed to the water is a constant for all samples. As 
the lens is lifted from the water, the surface tension, which 
is constant irrespective of the volume of the water, acts to 
'sweep' the water molecules from the surface of the lens. 
Towards the edge of the lens (at the start of removal), the 
surface tension acts at a large angle (perhaps 70-80') to the 
adhesion force and it is relatively easy for the molecules to 
be moved towards the lens apex (Figure 7a). Nearer the 
lens apex, the component of the adhesion force opposing 
the movement is greater and there is less chance of moving 
the water molecules (Figure 7b). When the adhesion force 
balances the surface tension, any further upward force goes 
to break the molecular bonds in the surface at which point 
the water drop on the lens separates from the main body of 
the water (Figure 7c). Since the surface tension and the 
intermolecular spacing are constant for all samples, the 
only variable affecting the mass of water adhering to the 
surface is the adhesion force. 

To further confirm the above arguments, the shape of the 
adhered mass of liquid was investigated for the five contact 
lens materials in this study. A travelling microscope was 
used to locate nine points on the air-water-contact lens 
interface of hydrated contact lenses (Figures 7 and 8). The 
potential energy is a minimum for any system in equilibrium 
and hence we would expect the surfaces of the drops to be 
spherical. (It can be shown mathematically that a sphere 
has minimum surface area for a given volume. ) Best fit 
spherical surfaces were calculated from the data (coefficient 
of variation, 3.86-8.66%) and are shown, together with 
the lens surface, in Figure 8 (data points and error bars not 
shown for clarity). The drops are all spherical (within 
error), and have approximately the same thickness between 
the lens surface vertex and the drop apex (Figure 8). This 
is expected since the distance between these apices primarily 
depends upon the surface tension and the intermolecular 
forces holding the water molecules together, both of which 
are constant. However, evaporation and gravity can act to 
distort the shape and it is these factors which contribute to 
the errors. 

A measure of how well the adhered mass technique and 
the laser assisted sessile drop method can distinguish between 
different materials may be obtained by performing a single 
variable analysis of variance. The values were computed 
for both unhydrated and hydrated lenses and for both 
measurement techniques. All the F (ANOVA: single-factor 
and F-test) values were greater than the 5% critical level 
(2.47) and therefore indicate a statistically significant 
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Figure 7. Explanation of drop size on the contact lens 
surface. (a) Surface tension, acting at a large angle to the 
adhesion force; any water molecules are easily moved at 
this stage. (b) The adhesion force is now more strongly 
opposing any further movement of water. (c) Any further 
lifting provides the energy to break the surface tension and 
then separates from the main body of the water. 

difference between the materials. However the F values 
obtained using the laser assisted sessile drop method (F = 
180.7 unhydrated and F= 7.8 hydrated) are significantly 
lower than the values for the adhered mass method (F= 
222.6 unhydrated and F= 289.8 hydrated). This indicates 
that the adhered mass method has a greater ability to 
distinguish between types than the laser assisted method. 

It has been suggested that wetting angle measurement 

0.05 

0.00 
0.10 0.15 0.20 -0.20 -0.15 -0.10 -0.05 0.00 0.05 

Position with respect to the lens apex (cm) 

Figure 8. Disposition of adherent liquid on the contact lens 
materials. 

in vitro gives the best rank order description of lens 
wettability in ViV07 . Thus, from parametric results and 
statistical significance of the adherent mass of liquid, we 
were able to rank the wettability by non-parametric ranking 
order. The higher the number, the greater the lens wet- 
tability using this system. Four different groups of contact 
lens wettability were identified for both hydrated and un- 
hydrated materials (Table 4). 
, Contact lenses in vivo are hydrated so the wettability 
values and ranking order of hydrated lenses are likely to be 
more relevant. The wetting angle values for all five hydrated 
materials were in a small range of 58-61.7*. The ranking 
order of wetting angle values showed three with a significant 
difference and two with no significant differences both for 
the hydrated and unhydrated state, which indicated a low 
hydrophilicity. However, the ranking order for the adhered 
mass of liquid method resulted in four with a significant 
difference and one with no significant difference. Further- 
more, on comparison of the two methods, the adhered mass 
of liquid provided 25% more confidence than the sessile 
drop wetting angle which is confirmation of the reliability 
of the new method. Nevertheless the results determined by 
the new technique gave comparable orders of ranking for 
wettability to that obtained by current techniques (Table 4). 
The advantages of this technique are that as the entire lens 
surface is immersed, it reproduces more closely the in vivo 
situation where the whole of the lens is wetted, unlike the 
sessile drop method where only a small area of the lens has 
its wettability measured. 

The ranking system of the results, which is given in Table 
4, is more likely to be of value in clinical decision making. 
However, if it is wished to make a comparison with results 
from other techniques, the most appropriate comparison 
would be with the receding angle. 

A significant increase of adhered mass of liquid on all 
hydrated materials indicated that all lens surfaces became 
more hydrophilic (46%), while the increase of hydrophilicity 
measured by sessile drop laser assisted equilibrium in 
hydrated state was less than the new method (25%). The 
results of the novel approach show less variation than those 
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given in the literature using the captive bubble technique 
(Table 1). 

Unhydrated values have been given as they are widely 
quoted in the literature. However, we feel they have little 
relevance to the in vivo situation and should be treated with 
caution. We appreciate that the unhydrated values are in 
opposition to the accepted view that a low wetting angle 
equates to better wettability, in that we found samples with 
a low wetting angle and a high adherent mass. However, 
this does not invalidate the technique when used on hydrated 
samples. The variation could well be due to significant 
changes in surface properties produced by hydration. The 
technique offers the advantage of simulating the in vivo 
situation, but avoiding the inter-patient variation produced 
by differences in the subjects biofilm. production. The 
technique is simple and quick and reliable, it may be 
replicated and utilised by laboratories. 

In order to reduce the number of confining factors of the 
new method, the front surface radii of the lenses were 
constant. However, aspherical front lens surfaces and 
differing optic radii may alter the results. It is also sus- 
pected that the speed of withdrawing the lens from the 
liquid, polishing, cleaning, lens surface charge and ionis- 
ation of the solution could alter values. Consideration of 
these different effects will be the topic for a further inves- 
tigation. The intention of the authors is to utilise the 
technique on lenses before and after wearing to investigate 
variation of the lens surface characteristics. 
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summary 

Surface wettability and hydrophilicity of pHEMA soft contact lenses were investigated 
utilising adherent liquid/laser method (ALLM) and adherent liquid/balance method (ALBM). 
The measurements were carried out before and after periods of 15 min to 2h contact lens 

vvear. Following the lens removal, the wetting angle of the contact lens of the left eyes and 
hydrophilicity (maximum force) of the contact lens of the right eyes of the five subjects were 
irTimediately measured, respectively, without cleaning (one value for pre-lens wear and eight 
values for post-lens wear). The wettability of soft contact lenses significantly increased after 
15 min of wearing and stabilised at a maximum level after 30 min in vivo. Contact lens 
hydrophilicity was found to decrease as the lens was worn. The reduction continued for up 
tc) 1.5 h of wearing, f or male cases, and f or the f emale cases, the reduction continued until 
the end of the experiment. 

ophthal. Physiol. Opt. 1995,15,529-532 

Introduction 

Several methods have been introduced to create a solid- 
liquid-air interface. To measure the angle of interface, 
various techniques were utilised by several investigators, 
rnost of which were used on rigid materials'. The Wilbelmy 
balance method is the only method which has been used 
on soft, hydrophilic, flat materials. However the method 
has limitations when used on soft contact lenses. On the 
other hand there are no reports of the sessile drop tech- 
niques being used successfully on hydrophilic contact 
lenses. The manufacturing techniques of soft contact lenses 
have been found to be important in the final wettability 
of the material, but there are few reports in the literature. 
j4owever, a recent study by Shirafkan et al. ' provided 
a new method to measure the wettability and a novel 
technique to create a meniscus' of solid-liquid-air inter- 
face for actual soft contact lenses. They also reported a 
new method 3 to remove water from a hydrophilic lens 
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surface prior to surface wettability measurements. 
The difference between the wettability and hydrophilicity 

of contact lenses has been discussed by Shirafkan et al. '. 
Contact lens surface wettability depends on the ability of a 
polymer surface to spread and maintain liquid on the lens 
surface. The wettability of the contact lens surface may be 
measured when there is a creation of a solid-liquid-air 
interface on the lens surface. Hydrophilicity is a term 
which is used to specify the ability of a contact lens material 
to attract water. This sort of attraction force into the polymer 
depends on the polymer structure. The aim of this study 
was to determine the effect of wear on the wettability and 
hydrophilicity of soft contact lenses. 

Methods 

Five pairs of unworn soft contact lenses of pHEMA 
(Hydron Z6, lathe cut, WC 38%, Dk = 10) were used for 
five subjects, two males and three females. The lenses were 
cleaned with LC 65 surfactant cleaner for 30 s using a brush 
and tweezers. They were then washed repeatedly with 
saline and soaked in saline for 24 h. 
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Unseparated adherent liquid1laser method (UALLM) 

A convex shape stage with a radius of 8.7 mm was utilised 
for holding the soft contact lens. It was lowered to the back 
surface of the contact lens which was prepared in the saline 
container and then adhered to the stage. It was subsequently 
withdrawn vertically about I mm from the container 
(Figure ]a), then tilted and elevated in order to remove the 
liquid from the contact lens surface (Figure 1b). The small 
amount of saline which remained on the periphery of the 
lens surface (Figure 1c) was removed with a tissue. The 
stage was then connected to the rod of an adjustable X, Y 
and Z component. The contact lens was moved towards the 

saline surface by turning the micrometer screw until the 
front lens surface just touched the liquid surface (Figure 
2a). The micrometer scale was adjusted to zero. The lens 

was then submerged to a depth of 2.5 mm in order to re-wet 
the lens surface completely (Figure 2b) and the lens was 
withdrawn slowly 1.4 mm from the solution surface (Figure 
2c). This action caused a solid-liquid-air interface to be 

created for measuring the wetting angle. 
A laser bearn' was adjusted on the periphery of the lens. 

It was then further adjusted to produce a reflection from the 
solid-liquid-air interface. The reflected laser was incident 
on a protractor which can directly measure the contact 
angle (Figure 3). For the post-wear measurements, the 

abc 
Figure 1. Wetting and removing liquid from hydrated soft contact lens surface. 

ab 

Figure 2. Creation of solid -liquid -air interface. 
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Figure 3. Adherent liquid/laser assisted method, to measure the wetting angle of solid -liquid -air interface. 



Surface wettability and hydrophilicity of soft contact lens materials: A. Shirafkan et al. 

lenses were directly mounted on the contact lens holder 
by a suction holder. One pre-wear and eight post-wear 
(with an interval of 15min) independent wetting angle 
measurements were carried out for the right eyes of the 
five subjects. 

Adherent liquid1maximum force (ALMF) 

A Cahn (312) balance was utilised in the second part of the 
study to measure the hydrophilicity of the bulk material. 
The device consisted of a balance and two stages in a glass 
cubical box. The upper stage was connected to a balance 
and was able to move vertically2 . The speed of movement 
was 40 ltm/s. The container was placed on the lower stage. 
The position (force and distance) of the upper stage was 
stored automatically into a computer every second. 

The soft contact lens, after preparation, was mounted on 
the holder as before and attached to the balance. A con- 
tainer of saline solution was placed on the lower platform 

and the level of the saline surface adjusted to be about 4 nim 
distance from the contact lens. The lens was moved towards 

the container until it just touched the liquid. A further move- 

ment of 2.5 mm enabled the lens surface to wet completely. 
After 30 s the lens was withdrawn from the saline until the 
liquid on the lens surface separated from the liquid of the 

container. During withdrawal, the force at the contact lens 

surface increased until, at the critical distance, it started to 
decrease (maximum force). One pre-wear and eight post- 

wear (with an interval of 15 min) independent measurements 
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were carried out to determine the hydrophilicity of the 
material surface for the left eyes of the subjects. 

Results 

Wettability (unseparated wetting angle) 
The mean wetting angle value of the contact lenses for pre- 
wear measurements was 10.40' (± 1. V) (Figure 4). After 

Wettability of pHEMA Pro-wear and Post- 
wear 

0 Min Is Min 30 Min 45 Min 60 Min 

Figure 4. Wettability of the soft contact lenses before 
and after wear. After 15min of wearing, the wettability 
significantly increased. The enhancement of wettability 
continued to an optimum level, when the lenses were. 
worn for 30 min. Further wearing up to 2h did not show 
a significant variation in wettability. 

Pre-wear and Post-wear pHEMA 
Contact Lens Hydrophilicity 
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Figure 5. The figure shows that the pre-wearing contact lens hydrophilicity was higher than that 
after wear. When the lenses were worn for 15 min, the wettability significantly decreased for 
all subjects. The reduction was continued f or up to 1.5 h of wearing, f or male cases and, f or the 
female cases, the reduction continued until the end of the experiment. 
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15 min of wearing, the wettability significantly increased 
(4.4*, SD =±1.4*, P=0.001). The enhancement of wet- 
tability continued to a maximum level of 2.2 0 (SD = 1.00 0) 
when the lenses were worn for 30 min. Further wearing for 
up to 2h did not show a statistically significant variation in 
wettability. 

Hydrophilicity (maximum force) 

Pre-wearing contact lens values of hydrophilicity (maxi- 
mum force) were higher than the other values (mean = 
504 mg, SD =±6.6 mg) (Figure 5). When the lenses were 
worn for 15 min, the values significantly decreased for all 
subjects (mean = 489 mg, SD =±7 mg, P=0.008). The 
reduction was continued for up to 1.5 h of wearing, for 
male cases (450 mg) and then appeared to increase slightly. 
For the female cases, the reduction continued until the end 
of the experiment. 

Discussion 

The results of wetting angle measurements showed the ability 
of the lens surface to prevent coalescence of the liquid. In 
pre-wear, the mean wetting angle was 10.40' when the lens 
was worn; the tear film components varied the surface 
charges, causing a reduction of the contact lens surface 
tension, which resulted in a lower wetting angle. Further 
contact lens wear enhanced these effects further, lowering 
the surface tension. After 30 min of wearing, the wetting 
angle showed no further reduction, possibly because surface 
charge equilibrium was reached. The clinical consequence 
of this is that the wettability of this type of contact lens 

after 30 min of wearing would be at a maximum level. 
The second experiment showed that after wear, lenses 

attracted water with lessening forces compared to unworn 
lenses. Possible causes of this reduction in hydrophilicity 
could include absorption of protein or lipid to the surface 
of lens. The inter-subject variability suggested that the 
selection of an appropriate material for a particular patient 
might be assisted by such measurements. 
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