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Abstract 

This thesis presents some extensions to existing methods of software reliability estimation and pre- 

diction. 

Firstly, we examine a technique called 'recalibration' by means of which many existing software 

reliability prediction algorithms assess past predictive performance in order to improve the accu- 

racy of current reliability predictions. This existing technique for forecasting future failure times of 

software is already quite general. Indeed, whenever your predictions are produced in the form of 

time-to-failure distributions, successively as more actual failure times are observed, you can apply 

recalibration irrespective both of which probabilistic software reliability model and of which statis- 

tical inference technique you are using. In the current work we further generalise the recalibration 

method to those situations where empirical failure data take the form of failure-counts rather than 

precise inter-failure times. We then briefly explore how the reasoning we have used, in this extension 

of recalibration to the prediction of failure-count sequences, might further extend to recalibration of 

other representations of predicted reliability. 

Secondly, the thesis contains a theoretical discussion of some modelling possibilities for improving 

software reliability predictions by the incorporation of disparate sources of data. There are well 

established techniques for forecasting the reliability of a particular software product using as data 

only the past failure behaviour of that software under statistically representative operational testing. 

However, there may sometimes be reasons for seeking improved predictive accuracy by using data 

of other kinds too, rather than relying on this single source of empirical evidence. Notable among 

these is the economic impracticability, in many cases, of obtaining sufficient, representative software 

failure vs. time data (from execution of the particular product in question) to determine, by inference 

applied to software reliability growth models, whether or not a high reliability requirement has been 

achieved in a particular case, prior to extensive operational use of the software in question. For 

example, this problem arises in particular for safety-critical systems, whose required reliability is 

often extremely high. An accurate reliability assessment is often required in advance of a decision 
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whether to release the software for actual use in the field. Another argument for attempting to 

determine other usable data sources for software reliability prediction is the value that would attach 

to rigorous empirical confirmation or refutation of any of the many existing theories and claims 

about what are the factors of software reliability, and how these factors may interact, in some given 

context. In those cases, such as some safety-critical systems, in which assessment of a high reliability 

level is required at an early stage, the necessary assessment is in practice often currently carried 

out rather informally, and often does claim to take account of many different types of evidence 

experience of previous, similar systems; evidence of the efficacy of the development process; expert 

judgement, etc-to supplement the limited available data on past failure vs. time behaviour which 

emanates from testing of the software within a realistic usage environment. Ideally, we would like 

this assessment to allow all such evidence to be combined into a final numerical measure of reliability 

in a scientifically more rigorous way. 

To address these problems, we first examine some candidate general statistical regression models 

used in other fields such as medicine and insurance and discuss how these might be applied to pre- 

diction of software reliability. We have here termed these models explanatory variables regression 

models. The goal here would be to investigate statistically how to explain differences in software 

failure behaviour in terms of differences in other measured characteristics of a number of different 

statistical 'individuals', or 'experimental units': We discuss the interpretation, within the software 

reliability context, of this statistical concept of an 'individual', with our favoured interpretation be- 

ing such that a single statistical reliability regression model would be used to model simultaneously 

a family of parallel series of inter-failure times emanating from measurably different software prod- 

ucts or from measurably different installations of a single software product. In statistical regression 

terms here, each one of these distinct failure vs. time histories would be the 'response variable' 

corresponding to one of these 'individuals'. The other measurable differences between these indi- 

viduals would be captured in the model as explanatory variable values which would differ from one 

individual to another. 

Following this discussion, we then leave general regression models to examine a slightly different 

theoretical approach-to essentially the same question of how to incorporate diverse data within our 

predictions-through an examination of models for 'unexplained' differences between individuals' 

failure behaviours. Here, rather than assuming the availability of putative 'explanatory variables' to 

distinguish our statistical individuals and 'explain' the way that their reliabilities differ, we instead 

use randomness alone to model their differences in reliability. We have termed the class of models 
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produced by this approach similar products models, meaning models in which we regard the indi- 

viduals' different likely failure vs. time behaviours as initially (i. e. a priori) indistinguishable to us: 
Here, either we cannot (or we choose not to attempt with a formal model to) explain the differences 

between individuals' reliabilities in terms of other metrics applied to our individuals, but we do 

still expect that the 'similar products" (i. e. the individuals') reliabilities will be different from each 

other: We postulate the existence of a single probability distribution from which we may assume our 

individuals' true, unknown reliabilities to have all been drawn independently in a random fashion. 

We present some mathematical consequences, showing how, within such a modelling framework, 

prior belief about the distribution of reliabilities assumes great importance for model consequences. 

We also present some illustrative numerical results that seem to suggest that experience from previ- 

ous products or environments, so represented within the model-even where very high operational 

dependability has been achieved in such previous cases-can only modestly improve our confidence 

in the reliability of a new product, or of an existing product when transferred to a new environment. 
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Chapter 1 

Introduction 

1.1 Problem Area 

The task of predicting the future failure behaviour of software as accurately as is possible, has, 

over the last three decades or so, become increasingly recognised not only to be inescapable 

for project management, product reliability evaluation and certification, and software engineering 

research reasons-but also to differ substantially from other reliability prediction tasks, [78,18,55, 

57,611. This thesis addresses the area of software reliability assessment and prediction. By the term 

"software reliability" in this thesis we refer to characteristics (observed or predicted) of the stochastic 

process of software failures versus software "execution time". This failure process may be a discrete- 

time process, in the case of "demand-based" systems, if we choose to measure execution time simply 

by counting the number of demands on the software. (See §2.1. ) More usually, the failure process 

is modelled as a continuous time stochastic "point process" of discrete software failure "events" 

embedded in a continous time metric representing execution time. (See §2.2. ) In either of these two 

cases, 'reliability' is here interpreted with an emphasis placed on the rate at which software failures 

occur, 'rather than on how bad are the consequences or cost of particular failures. ' For a discussion 

of software incident/failure attributes see e. g. [70, 'How to Measure Incidents, Failures & Faults' 

on pp3l-44]. Throughout this work we have in mind a software application of such difficulty, and 

hence a resulting software system of such size and complexity, that it is unrealistic or uneconomic 

to attempt to complete an exhaustive, deterministic analysis of all the potential modes and causes 

of software failure. Such an analysis would involve a complete classification of individual inputs and 
I Of course we could first classify failure events according to such criteria and then use the methods treated in this 

thesis to analyse the rate of occurence of failures of any selected categories [94, pp348-50]. 

I 
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outputs according to whether or not they would constitute software failure. If this were possible 

then we would be in a position to think in terms of removing all faults and producing guaranteed 
fault-free software for which reliability would not be an issue. This is generally not achievable : 
We speak of fault-free software in the sense of software which could be safely assumed, usually in 

advance of extensive operational use, to contain no faults. This is different from properties expressed 

in terms such as merely: "there is a good chance that this software may contain no more faults"; or 

(cas it reaches the end of its operational life, having run over several years at many installations it is 

at last beginning to look very likely in retrospect that this software contained no faults on the date 

it was released". The scenario of being able to assure in advance of use that a software product is 

fault-free does not accord with current real-life experience and is believed by many to be unlikely to 

do so for the foreseeable future, if ever. In the circumstances more familiar to developers and users 

of non-trivial software products, for which complete understanding and full knowledge of flaws in 

the product is beyond our reach, the case for a probabilistic analysis has been well made elsewhere. 

See e. g. [50,56,781, [72, pp324-71. 

Thus the problem domain addressed in this thesis is already a well established area of applied re- 

liability theory in which many of the same operational reliability measures (see §2.2), such as failure 

rate, are applicable as have been employed in the work on hardware reliability. However it should 

be understood that it is software failures which are considered here. Such failures originate from 

preceding human errors in the development of complex and purely logical entities. Software failures 

are thus of a fundamentally different kind from the failures of hardware components caused by the 

degradation of these through operational use. It has been shown, [69,50,52], both theoretically and 

by observation of empirical reliability data, that we must expect the different natures of these two 

classes of system failure to be reflected in differences in the resulting pattern of unreliability. Conse- 

quently, the specific application to software has stimulated the development of new reliability models 

and prediction methods having important differences from those of the longer established theory of 

hardware reliability. Some of the salient features of software affecting its reliability behaviour which 

have been identified and discussed elsewhere are: the ease with which the software components of 

a system can be made to be very complex logically; the ease of modification or "softness" of soft- 

ware; the immense diversity between different software products; the large amount of design novelty 

commonly found in each new piece of software; and the difficulties associated with the interface 

between the abstract, logical domain of formal languages, and the "real world", physical domain of 

the majority of software applications. It has been argued [53], that the essential features of what 

has been called "software reliability theory" would be more accurately encapsulated if the word 
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"software" was replaced by "complex design". In this case software reliability prediction methods 

could be taken to apply also to hardware design failures of complex hardware components. 
We address the problem of stochastic modelling and prediction or forecasting of the point-process 

of software failure events embedded in (continuous or discrete) software execution time, focusing on 
two main extensions to existing techniques. The first of these consists of a further development of 

current techniques of empirical evaluation and improvement ("recalibration", [2,59,6]) of a pre- 
dictor, involving principally an extension from continuous inter-failure time data to the case of the 

coarser "discrete" failure-count data. Results of numerical investigations are presented in support 

of the techniques proposed. The second extension addressed in this thesis is an entirely theoretical 

discussion of the potential for using disparate data when predicting software reliability. That is, we 

examine some ideas and models that might enable us to incorporate, into our predictions of software 

reliability, sources of data additional to the recorded behaviour of the failure vs. execution time pro- 

cess of the single software product, whose future reliability we now wish to predict, operating in an 

execution environment that is statistically representative of its present one. It is this latter source 

of data alone that is typically used by many existing software reliability growth models. We seek to 

explore ways to supplement this useful data source by using in addition some data of other kinds. 

To do this we initially examine the potential for use in the software reliability prediction context 

of certain already existing statistical techniques based on "proportional hazards" and "proportional 

intensity" regression models. It is proposed that some of these general statistical regression tech- 

niques may provide methods of incorporating supplementary data sources (in addition to merely past 

failure-vs. -time behaviour) into our software reliability predictions under some circumstances. We 

present arguments for and against the viability of such an approach, distinguishing some different 

potential applications. We finish by leaving the context of pre-existing general statistical regression 

models to propose a more specific model for unexplained random variation between the reliabilities 

of 'similar' software products or execution environments. We examine how this model might be used 

to improve the reliability predictions of any particular single member of such a 'family of similar 
(product, environment) pairs'. 
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1.2 Layout of Thesis 

Chapter 2: Previous Work 

4 

§2.1 briefly mentions a simpler modelling context sometimes used in which the software's execution 
is measured as of a sequence of discrete 'demands; rather than using the more common continuous- 

time model for the cumulative amount of execution to which a software product has been subject, 
§§2.2,2.3 contain a review of existing techniques for forecasting a process of software failures in 

continuous software execution time, using records of the early portion of that process as the sole 

source of data for prediction of subsequent behaviour. The first of these two sections contains a brief 

survey of some existing models of such a failure process. Some of the basic terminology, used in 

later sections, relating to reliability of software is introduced and defined here. §2.3 reviews common 0 
methods of deriving a reliability prediction algorithm from such a model. 

§2.4 discusses techniques for validation of a predictor against a particular failure data set. For 

reasons which are explained, assessment of predictive performance of each predictive technique 

assumes a particular significance when it is software whose failures are being predicted, and such 

assessment of any particular software reliability prediction technique is unlikely ever to be completed 

to a point where that prediction technique can thereafter justifiably be regarded as validated for 

general use in predicting software failure processes. Particular attention has in the past been paid to 

evaluation of a succession of short term predictions for the degree to which they possess the property 

of being "well calibrated" in a sense which can be expressed as. a property of a certain sequence of 

generalised residuals denoted (u,, ) and used to form the "u-plot". These residuals form the basis of 

the recalibration methods reviewed in §2.5 and later extended in Chapter 3. 

§§2.6 & 2.7 are included as additional background material required for the work contained in 

§5.2. §2.6 contains a literature survey of some previous work addressing the problem of how data on 

the past failure-vs. -time behaviour, of the particular software item whose future failure behaviour is 

required to be predicted, might be supplemented by other data sources of various kinds in the pursuit 

of more accurate reliability predictions. §2.7 discusses various statistical results and methods based 

on two general regression models. These have been applied in several diverse contexts in which 
"survival time" or "lifetime analysis" has been considered appropriate. Such random events and 

processes range from insurance claims in actuarial work to patient responses following different 

treatments in medicine. The discussion in §2.7 centers around work found in the statistical, rather 

than software engineering, literature. 

§2.8 considers some existing work on the prediction of failure-count sequences. Failure-count data 
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amounts to less information available for input to a predictor than the more typical assumption of 

the availability of complete inter-failure time data from the past portion of the point process of 

software failures in continuous execution time. 

Chapter 3: Extension to Discrete Predictions 

Chapter 3 further pursues the problem introduced in §2.8 beginning with some observations on 

difficulties encountered when attempting to carry over, essentially unchanged, to the failure-count 

context the methods used previously for complete past inter-failure time information. §3.1 discusses 

difficulties with the conversion of parametric reliability models and their related predictors to the 

failure-count case. 

§§3.2 & 3.3 return to the concept of calibration of a predictor and discuss the associated tool of the 

u-plot. The notion of an ideal or 'true' predictor is introduced as a way of examining the calibration 

behaviour that a 'best possibly performing' predictor might exhibit. Some difficulties with u-plot 

based approaches are revealed in the transition to the failure-count case, when we attempt to define 

u-plots and construct recalibrated reliability predictors from predictors that concentrate positive 

predictive probability at discrete values of the variable to be predicted. 

As a contribution towards overcoming these problems, §§3.4 & 3.5 consider alternative definitions 

of the (u,, ) sequence and of the u-plot which are shown to have desirable properties for general 

predictors of quantities possessing discrete (or mixed) predictive distributions including, as one 

special case in particular, predictors based on software failure counts. §3.6 focuses on the potential 

of such plots for use as tools for obtaining improved, recalibrated predictors. In particular, in §3.6, 

the use of weighting, and of smoothing under gradient-constraints, are discussed, leading to the 

proposal of further modifications to the recalibration mechanism. These last modifications are not 

specific to recalibration of discrete predictions and can be applied also to the case of prediction of 

continuously distributed quantities, such as the original software inter-failure times. §3.7 reviews 

the extensions of the recalibration idea developed in Chapter 3 and discusses the extent to which 

these suggest methods of recalibrating other kinds of predictions. 

Chapter 4: Data Analysis 

Chapter 4 reports a data analysis in prediction from failure-count data using the techniques devel- 

oped in Chapter 3. The techniques were tested using both simulated and real software failure-vs. -time 
data. Graphical output is collected in Appendix A. 



CHAPTER 1. INTRODUCTION 

Chapter 5: Other Sources of Data 

Taking the original case of complete information on a single failure-vs. -execution time history as a 

kind of reference or standard data assumption for the software reliability prediction problem, the 

work in Chapter 5 can then be seen as progress 'in the opposite direction' from that taken in §2.8 and 

further pursued in Chapter 3. Thus, Chapter 5 considers the possibility of augmenting--rather than 

depleting by the transition to failure counts-the information entailed by the much treated data 

assumption of a single sequence of past inter-failure times. After a motivating problem description 

for Chapter 5 given in §5.1, §5.2 picks up the ideas introduced in §§2.6,2.7 and discusses the question 

of whether and how it may be feasible to identify and rigorously validate models for software reli- 

ability prediction which are able to produce more accurate reliability predictions by incorporating 

supplementary data sources ("explanatory variables"), rather than being restricted, as sole source 

of data, to the use of the so-far-observed part of the process of failure events along the execution 

time axis of the single software item whose reliability is to be predicted. For this purpose of incor- 

porating additional sources of data supplementary to the inter-failure time sequence, the potential 

merits of the two related classes of general statistical regression model, proportional hazards models 

and proportional intensity Poisson process models, are discussed. These have been used in other 

contexts for carrying out regression of event times on to associated explanatory variables. At several 

places throughout §5.2-and in particulax in §§5.2.1.4 & 5.2.3-some reasons for the popularity of 

the common approach of modelling only a single stochastic point process of failures in the case of 

software are reviewed and some of the obstacles to doing anything more than this are described. 

In §5.2.1 a number of alternative ways of conceptualising software reliability prediction problems in 

terms of the standard structures entailed by each of the two classes of general statistical regression 

models are identified, and it is concluded that the obstacles mentioned apply to greater or lesser 

extents for each of these, the most favourable application being that of §5.2.1.3 in which different 

software "operational environments" of a single software product play the role of "individuals" in 

the terminology of the statistical models. 

§5.3 explores of a different approach to incorporating other data into the reliability predictions 
for a software product and its operating environment. In this case we concentrate on empirical reli- 

ability data emanating from other software products or execution environments which are believed 

to be 'similar' to the product and environment in question, whilst acknowledging that they will have 

reliabilities which will differ from it. Here our term 'similar' can be thought of as a kind of 'indif- 

ference' between distinct failure vs. time processes, whose precise meaning lies in the (conditional) 

independence assumptions assumed to represent the reliability variation between the different failure 
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processes. In contrast to the approach taken in §5.2, there is no assumption now that we have. access 
to observable metrics or characteristics of the different (product, environment) pairs of our family, 

and with which we can attempt to model any explanation for or correlate with their differences in 

reliability behaviour. 

Chapters 6&7: Conclusions and Suggestions for Further Work 

Chapter 6 contains the main conclusions and Chapter 7 contains some suggestions for taking some 

of the ideas further in the future. 

Appendices 

Appendix A contains the graphical results discussed in Chapter 4. Appendix B contains some 

mathematical details suppressed for clarity of exposition in earlier chapters. 



Chapter 2 

Previous Work 

2.1 Discrete Demand-Based Reliability Models 

Perhaps the simplest mathematical framework in which to model reliability is the demand-based 

one in which 'time' is represented simply as a count of the number of executions, or demands made 

on an item of equipment or, in the case of this thesis, an item of software. With each in a succession 

of demands, we may assume that the software executes the task required of it either successfully or 

unsuccessfully, the latter case being termed a failure. This is not the most appropriate model for all 

software, many examples of which are better conceived as operating continuously, but it does have 

the advantage of a kind of simplicity in that the mathematics of the real line is not required for 

the model of the time metric. The simplest model for this kind of failure process is the Bernoulli 

Dials process, where the probability p of failure is the same for each demand, and the outcomes of 

demands which are distinct are always assumed to be statistically independent. See e. g. (22, §4.9], [28, 

Ch. VI, VIII]. We make use of this simple model of successive executions in §5.3 of this thesis, but 

otherwise concentrate on point-process models of the failure vs. execution time process. It should 

be born in mind throughout §§2.2 and 2.3 that most of the discussion of parametric inference and 

forecasting systems, though couched largely in terms of the mathematically more involved point- 

process case, can easily be modified (and in fact simplified) to apply to the discrete demand-based 

model framework. 
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2.2 Continuous Time Point-Process Reliability Models 

Throughout most of this thesis the underlying model with which we are concerned is the slightly more 

complex 'continuous time' analogue of the above. This consists of a one dimensional stochastic point 

process. For a formal mathematical definition, the standard one may be assumed. This involves a 

sample space, Q, consisting of a set of elementary outcomes, w, each of which, in the case of a point 

process model, consists of a single realisation of the process. Thus each WE fl is itself some fully 

specified deterministic arrangement of finitely or countably manyl indistinguishable points along a 

half line. A family, E, of subsets, E, of 0, including all straightforwardly defined subsets, each have 

i 
time 

Figure 1: One realisation, w, of a point process, (fl, E, P) 

an associated probability, P[E]. E is assumed to have the closure properties of a sigma algebra of sets. 

The set function, P, satisfies the countable-additivity and other axioms of a probability measure, 

[821. In this way a formal framework may be built within which events of interest concerning the 

arrangement, w, of indistinguishable points along the half line have coherently defined probabilities 

of occurrence. Subject to the satisfaction of the axioms mentioned, it follows that any function, 

X: fl -* R, which is measurable with respect to E, is a random variable (RV) having associated c. d. f. 
C> 

Fx(x) = P[{w : X(w) 5 x}] (or P[X < x] for brevity, following the usual convention), expectation 

E[XI = fo X dP etc. 2 It is also possible, using Radon-Nikodym derivatives, to define conditional 

probabilities and expectations in the standard ways, [45,27], having the standard properties. 

The process of formal definition sketched in the previous paragraph produces the general tool of 

a stochastic point process. In the context of software reliability modelling, the half line is interpreted 

as an axis of cumulative software execution time, 7-, measured from time, 7- = 0, on the left. See 

[68, p1701 and [70, pp45-53] for further discussion of some more precise practical definitions of 

this metric. The points of each process realisation, w, are the locations in cumulative execution 

time at which successive software failures occur when a particular copy of a single item of software 

is executed at a given installation site3 using a given sequence of inputs to the software. The 

possibility of modification to the software during its execution is not excluded, being in fact central 
I For the purposes of modelling software failures we could also without loss of realism tighten this to exclude 

accumulation points of the set of failure times. 
2Here a general Lebesgue integral of the E-measurable function X is used, [211. 
30f course, it may be possible to pool the sequences of failures occurring from copies of the same software running 

at multiple sites into one single point process, provided it is possible to formulate a single aggregated execution time 
metric with respect to which all of these events can be temporally located. 
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to the software reliability growth models described below. 

10 

Of the twenty or so, [17,71,26], [78, Chapters 9-111 existing point process models which have 

been applied to the software reliability prediction problem, the majority are parametric families 

of stochastic processes. In terms of the above general framework this means that a parameterised 
family, JPe :0E E)J, of probability functions is specified by the model. Here 0 is a parameter vector 

of typical dimension about 1-3. For a given probability law P of a process, i. e. for a given value of the 

parameter vector 0 in the case of a parametric model, several theoretical quantities determined4 by 

P are of particular interest from the point of view of reliability modelling. Four of these are R(t; r1g), 

f(t; 7-19), z(7-19, ), and M(, r), the reliability function, p. d. f. of time-to-next-failure, conditional hazard 

rate, and process mean function, respectively. Before explaining the meaning and relevance of these 

quantities, the purpose of the "9" on the right hand side of the conditioning sign will be briefly 

explained in the following paragraph: 

The purpose here is to emphasise that there does exist a rigorous underlying theory which guar- 

antees under very general circumstances5 (a) the existence of conditional probabilities, conditional 

expectations, conditional stochastic rates etc and (b) the satisfaction by these quantities of certain 

general properties, such as that expressed by equations of the form E[E[YJXJJ = E[Y], which will 

be employed in Chapter 3. Thus, in terms of the abstract model, (Q, E, P), of a point process 

sketched on p9,9 is a sub-sigma algebra of E (i. e. a subfamily of the family of sets comprising E, 

such that 9 itself satisfies the closure axioms required for it to qualify as a sigma algebra of sets). 

The interpretation of such a9 is that 9 defines a set of possible conditions of partial knowledge 

about a realisation, w, of the process. Exact knowledge of w is equivalent to a complete description 

of the number and positions of all points along the half line. For each EEE (i. e. each E C- fl for 

which P[E] is meaningful), a positive or negative answer to the question, "Is wEE? ", represents 

an element of knowledge about the realisation, w, of the process. A complete set of answers to 

all of the corresponding questions for every EEg is the abstract representation of the result of 

a certain kind of partial observation of the arrangement, w, of points along the half line. Thus, 9 

consists of those sets EEE whose outcome (either wEE or wV E) will be determined by the kind 

of restricted observation concerned. Each potential state of affairs observed can be thought of as 

equivalent to a boolean-valued function whose arguments are the member sets EE9. For example, 

the act of observing the positions of the earliest (left-most) n points, for some fixed n, however long 

4For some conditional probabilities, rates and expectations, this is a slight simplification since such a quantity 
is not uniquely determined by P. It is close to unique in that any pair of alternative candidates for the conditional 
quantity (having the same random variable or event on the LHS of the conditioning, "I", sign) are identical "P-almost 
everywhere", i. e. identical with P-probability 1, [45,27]. 

5We do not always assume that random variables are of the continuous or discrete classes in later chapters. 
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this may take, constitutes a particular act of partial observation of a realisation w. This process 

of observation would be represented by a sub-sigma algebra 9 defined as the family precisely of 

those "binary" questions about any realisation w, for which P is defined and whose answer, "yes" or 

"no", is logically entailed6 by knowledge of the positions of the earliest n points of the process (i. e. 

9 is the family of those subsets EEE which represent such questions). Another common partial 

observation of a realisation is "observation of the process up till time r", which has associated sigma 

algebra denoted 9, above. 7 Similarly, observation solely of the value of one random variable, X 

(i. e. a E-measurable function X: Q --+ R), as the conditioning knowledge, can be expressed in the 

8 same form by setting 9 equal to 9(X) the sigma algebra generated by X, [27, p1601. This notion 

generalises without difficulty to multivariate random variables, X: 0 -* Rk, and further to random 

vectors of random dimension, X: 11 U' 0Rk k= , as discussed in [16, Chapter 11. Having introduced 

this notation for conditional quantities, we follow common convention in dropping it in most cases 

in what follows and either adopting looser descriptions of the "conditioning partial knowledge" on 

the right hand side of the "I" sign or omitting this altogether if it is felt to be clear from context. 
Sometimes we have adopted the practice of shortening the length of equations on the page by moving 

the conditioning " 19" or " JX" down to form a subscript of the "P" or "E" to which it applies (e. g. 

see p58, including footnote 19). However, despite the looseness of the notation often used, see [27, 

pp160-21, [21, ppl39-40], [82, pp117-24] for theory assuring the existence and cooperative behaviour 

of such "conditional" quantities under very general assumptions. 

Returning to the quantities defined above, the reliability function, R(t;, rlg), is defined as the 

conditional probability P [C(, r, 7- + tj =0 1191, where C1 denotes the random variable which counts 

the number of events occurring in the interval, I, and the usual notation is employed for open, closed 

and half open intervals. Here 9 denotes some kind of observation of the behaviour of the realisation 

prior to (to the left of) time r, such observation often taking the form of complete knowledge of 

event times in [0,, r] or perhaps knowledge only of some event counts as discussed in Chapter 3. 

The p. d. f., f (t; -rig), of time-to-next-failure is the density function corresponding to this reliability 
function, 

f(t;, r1g) = --'9R(t; 7-19) 
at 

lim 
1 

P[C(T, -r+t]=OAC(T+t,, r+t+At]>Olg] 
At-O+ At 

'It is conventional to assume that the rules used to interpret "logically entailed" here will result in g having the 
closure properties of a sigma algebra-Just as it is conventional to assume that any probability function P is defined 
on a sigma algebra. 

7Thus, informally P[E19, ] denotes the conditional probability of an event E as this probability is assessed by an 
observer whose original beliefs held at time T=0 about the process corresponded to the probability law P and who 
is "now standing at time 7-" having fully observed the times of intervening events. 

81n this case it is usual to substitute " JX)" for " 19)" 
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where this limit exists (i. e. where, as is usually the case for the software reliability growth mod- 

els discussed here, the time-to-next-failure is, given 9, continuously distributed). A commonly 

treated special case of these quantities, reliability function R(t; 7-19) and time-to-next-failure density 

f (t; -rig), is that in which the conditioning observation' g represents observation up to the time 

,r tj of the n-1th failure. Here the indices, i or n, when appended to the time-to-next- 

failure variable t denote that the time is measured from a failure time (or from start of execution 

,r=0 in the case of tj) to the time of the following failure, i. e. the variable t,, is the nth inter-failure 

time of the software. This case is often equivalently referred to in terms of one-step-ahead prediction 

of the inter-failure time process (Tn). See also §2.4.2, and Figure 2 on p34. 

The term, conditional hazard rate, is used to denote the stochastic failure rate at time r of 

software whose past failure behaviour has been fully observed, 

Z(Tlg. r) 
f(O; Tlgr) 

lim 1 P[C(T, -r + At] >0 
, at-o+ At 

This quantity may also be referred to in what follows as the conditional program hazard rate or the 

software failure rate, the implication being, unless otherwise stated, a rate at time r conditional on 

complete observation of failure behaviour, 9, prior to r. z(, rlg, ) is, of course, itself a real, non- 

negative valued, stochastic process (but not in the case of NHPP failure processes-see below). The 

failure process mean function is simply the unconditional expected number of failures prior to time, 

, r, i. e. M(, r) = E[C[O,, r]) = fn C[O, r] dP. Note that M(, r) is a deterministic function of r: From the 

definition of conditional expectation, for fixedr, t and 9, it follows that R(t;, rlg) and f (t; -rlg) are 9- 

measurable random variables' , z(, rlg, ) is a 9, -measurable random variable, and M(7-) is a constant. 

In the NHPP case only, we may assume the same for the conditional failure rate function-In which 

case, we speak of the process intensity function and use the symbol A: z(, rl! g, ) = A(, r)-See §2.7. 

The mean (MTTF) E[t;, r I G1 11 of the time-to-next-failure distribution, frequently used to express the 

reliability of hardware components, may also be of interest in expressing software reliability. This 

quantity can be expressed in terms of either the reliability function or the p. d. f. of the time to next 

failure distribution, 

E[t; 7-19] = 
foo" 

tf (t; -r 19) dt 

= 
1000 

R(t;, rlg) dt 

"In this case 9 will be the sigma algebra generated by the random vector (T,, T2,. --, Tn-1)- 
101f a random variable is g-measurable, the interpretation is that its realised value is determined by the knowledge 

denoted by the sigma algebra, 9. 
"Almost always 9=9, being intended 
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It should be born in mind, however, that this mean alone is insufficient for the determination of 

failure probabilities for many software reliability models, since an exponential assumption for the 

time-to-next-failure distribution may be very inaccurate. For example, if the time-to-next-failure 

distribution is of the Pareto family, as is the case for some models, then the mean time to next failure 

may be infinite even in cases where the reliability is very poor, (50]. In such cases the median time to 

failure, denoted m(T19), satisfying R(m(-rlg); 7- 19) = .1 may be preferred as a measure of reliability 2 

at time 7% This point about mean vs. median time to next failure exemplifies a more general one 

There is no single agreed numerical 'reliability measure' of a software product at a given time 12 

This is an important consideration in many situations in which the apparent comparative reliability 

level achieved will depend on how that reliability is expressed [631. 

Existing software reliability point-process models can be classified in various ways into categories 

such as the exponential order statistic models, [74]. The exponential order statistic models are based 

on the idea of a population of faults, in the software, of fixed or parametrically distributed population 

size. This population size, N say, if assumed fixed, forms one component of the vector 0. If the 

population size is assumed random, then the parameter vector of its assumed distribution family- 

frequently for example the mean, A, of a Poisson distribution-replaces N as the component of 0. 

These exponential order statistic models then go on to assume that the individual software faults in 

this population will each first cause a software failure after independently, exponentially distributed 

cumulative execution times. We may avoid the unwanted complication of repeat manifestation of 

a single fault by assuming either: (i) that each fault is immediately and correctly removed on first 

manifestation (with no further fault being introduced in the process) so that subsequent occurrence 

is impossible ; or (ii) that repeat occurrences of a single fault are correctly diagnosed as such prior 

to fitting the exponential order statistic model, so that the times of occurrence after the first may 

be removed13 from the data-set. The assumption of exponentiality, along with an assumption, 

in the earliest models, of time-to-failure distributions identical over all faults, have subsequently 

been relaxed to form new models, e. g. the Littlewood model [53]. In various of these models, the 

distribution of individual fault manifestation rates over this fault population may be specified either 

as a deterministic parametric sequence of rates, as a random sample from a single parametric fault- 

rate distribution, or more generally as the points in a general stochastic fault-rate process. Some of 

these methods of relaxing the earliest and most simplistic model assumptions which appear at first 

sight to be distinct, actually turn out to be equivalent, [74), i. e. to result in identical parametric 
families, {Po :0E E)}, of point process probability functions. Briefly for example, two equivalent 

12And this remains the case even supposing we agree to focus on a single probability model of the failure process. 13with the entailed loss of statistical information 
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methods of achieving the same14 effective extension of model assumptions are: (a) to relax the 

exponentiality assumption above, and (b) to retain the exponentiality assumption but to replace 

the assumption of identical manifestation time distributions for all faults in the population, by 

the assumption that the individual fault rates form an independent, identically distributed random 

sample from some fault-rate distribution. This second technique is taken one step further in [74], 

by considering the sequence of fault rates themselves to arise as a parameterised stochastic point 

process. 

There are also models, see e. g. [40,62], which do not represent the software explicitly in terms 

of its fault population, but consider rather the overall software failure rate from the outset, directly 

modelling the effect of maintenance actions, following each software failure, by means of a random 

sequence of software failure rates which come into effect sequentially after each successive software 

failure. In the case of these models, the parameter vector, 0, of the point process of failures is simply 

identical to the parameter vector of the random sequence of software failure rates. The time to 

next failure, given the current software failure rate, is assumed to be conditionally exponentially 

distributed. Also, point process models from the well known NHPP class have been used for soft- 

ware failure process modelling. By means of such models, which can be completely specified simply 

by stating a parameterised, non-decreasing mean function, M(, r; 0) on the half line, [0,00), it is 

effectively assumed that there is no instantaneous effect on program failure rate following the event 

of software failure (and any subsequent corrective maintenance action). In fact these models are 

characterised by the assumption that the reliability function, R(t, -rl 9) is a deterministic quantity 

depending on r and t only, and not on 9, so that R(t, 7-19) = R(tj), (provided of course that 9 

contains information only on the locations of points outside the interval (7,, 7* + t]). Thus for an 

NHPP model the numbers and patterns of events occurring in disjoint intervals are independent 

random variables. However, these models too, or at least those of them for which M(t) is bounded 

by a constant, can be derived in another way such that this effective assumption is not immediately 

apparent [78, pp268-70]. Note also the comments on p47 concerning the importance of the distinc- 

tion between a parametric process model and a derived prediction system in interpreting the term 

"independent" when applied to events or variables. 
141n fact the second is more restrictive than the first since the class of distributions which can be produced as a 

mixture of exponentials is actually a restricted class, [27, p416]. 
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2.3 Forecasting Systems 

2.3.1 Observation and Statistical Inference 

Statistical inference procedures have been applied to software reliability models in order to provide 

solutions to the software reliability prediction problem. The most commonly applied procedures: 

maximum likelihood "plug-in" and Bayesian prediction are illustrated in [53,16,10,1,78]. These 

procedures can be interpreted in terms of the formal model described on pg. Briefly, whatever kind 

of observation is undertaken, it can be thought of abstractly as a function, Y: 2 --+ Y (i. e. a random 

variable in the usual case where Y is a numeric-valued function), which maps distinct points w onto 

a common point y in the observation space Y whenever these points w are not distinguished from 

each other by the particular kind of observation concerned. For example, if observation ceases at 

time r, and two realisations, WI v W2 are identical in the region of the half line to the left of r, then 

we will have Y(wi) ý Y(W2). For each 0, there is induced" a probability function P-,,, defined for 0 

subsets of Y by PY[S] = Po[Y-'(S)I. 0 

2.3.2 Maximum Likelihood Inference 

apy A likelihood function is then constructed as a density, L(O, y) =e (y), with respect to some am 
standard dominating measure 16 v, defined on the observation space Y. In all cases found in the 

literature listed in the bibliography, and also throughout the body of this thesis itself, v may be taken 

to be based on either Lebesgue measure for a continuous observation space (which is appropriate 

when the observation takes the form of a vector of inter-failure times), or in the case of an observation 

which is a vector of counts (Chapter 3), a counting measure will do for v. In either case, and for 

many other imaginable hybrid observations, the very general Radon-Nikodym Theorem [21, pp139- 

46] guarantees the existence of the likelihood function, L. A detailed exposition of the procedure for 

the former case is given in [16, Chapter 1). Using the well known maximum likelihood technique, 

the maximum likelihood estimate ? may be chosen to maximise L, once having observed the value, 

y, of Y, and then probabilities of the form Pi [- 19) used for purposes of prediction based on the 

observation Y. (Here, if used for predicting future events 17,9 denotes a sigma algebra which at 
15i. e. determined from the first probability function Pe by the particular form Y of the observation 
16a dominating measure is a measure with respect to which all of the probability measures (PY E e) are a 

absolutely continuous [21, p139], or, in other words, a measure with respect to which the desired measure-ratios 
(those suggested by the term density of Pay with respect to j/) may be taken (without the possibility of zero-divide). 
Le. we are requiring that v(S) >0 for all subsets SgY to which at least one of the (PY :0E 0) assigns a positive 

'V [S] > 0. probability P. 
17The unconditional probabilities PO may remain of interest, even after Y=y has been observed, for inference 

purposes such as producing confidence intervals and hypothesis testing concerning the value of 0. 
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least contains the sigma algebra 9(Y) generated by the function, Y. When 9= 9(Y), the notation 
" ly)" will frequently be used to mean the realised value of this predictor once the value Y=y has 

been observed. ) 

When the data Y takes the form of complete observation of the software failure point process prior 

to current time, r, then the likelihood function obtained from any one of the parametric models can 

often be quite a complicated function of the model parameter vector, 0. Hence, whether a maximum 
likelihood or a Bayesian approach is used for the inference and prediction problem, computer assisted 

numerical techniques are usually found to be necessary in order to construct predictions, see e. g. 

[10]. 

2.3.3 Bayesian Inference 

In the case of Bayesian, rather than maximum likelihood, statistical analysis and prediction, an 

additional model component is constructed in the form of a prior distribution for the parametere, 

regarded now as a random variable. Thus a probability measure Q, say, is assumed to represent 

the initial chances of G taking values from a suitable space 19. The net result of this refinement is 

effectively equivalent to a direct assumption of a probability law P for the failure process. Here P 

is given by the mixture distribution 

P[E] = 
le 

PO[E] dQ (2) 

i. e. we now have a single derived probability law P for the process rather than a parametric family. 

In practice the analysis and computations involved in forming reliability predictions, which as before 

are based on conditional probability distributions given full or partial observation of the part of the 

failure process prior to time r (representing "now"), are frequently carried out by means of an 

intermediate stage consisting of the derivation of a posterior probability distribution I yj for 0 

given the data y. This relies on Bayes' Rule in a form such as 

h(Oly) = k(y)L(O, y)9Q (0), 
Ov 

where h(. ly) is a density for the conditional probability measure A ý--* Q[Aly] with respect to the 

dominating measure v on the space E). Alternatively, directly in terms of posterior probabilities, 

there is the form 

Q[Aly] = k(y) JA L(O, y) dQ, 
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for the posterior probability that 0 occupies any measurable subset A of G. In these two forms of 
Bayes' Rule k is a normalizing factor independent of 0 chosen such that Q[E)ly] = 1. Having deter- 

mined this posterior distribution for the parametere, predictive probabilities based on the condi- 
tional distribution P[ - jyj can be calculated by mixing the corresponding O-parameterised quantities 

over the set E) of possible 0 values so that, where Pi [- jyj would be used in an ML plug-in based 

forecasting system18, we now have, under the Bayesian inference system, k(y) fe P. 1 - ly] dQ[01y] 

instead. Bayesian further conditioned probabilities P[ - 19] (i. e. those conditioned on further hypo- 

thetical information, such as would be a predictive reliability function or hazard rate function) can 
be obtained similarly, where here, as in the corresponding ML case, it must be required (for the 

prediction to be sensible) that the conditioning knowledge represented by 9 is consistent with Y 

having been observed: 9(Y) 9 9. In the Bayesian inference case, these would replace the simple 
ML plug-in conditional probabilities of the form Pý, (,, ) [- 19]. For example, when the information 9 

represents the observation of Y, plus the further hypothetical conditioning event E, which may be 

observed subsequently to have occurred, then in the Bayesian case having observed y, we. would use 

predictive conditional probabilities such as 

P[AIE, Y=yl = 
fgPo[AnEIY=y]dQ[Olyl 

fq Po[EIY=yl dQ[Olyl 

in place of the ML version Pi, (. )[AIE] = Pi, (, ) [A n El / Pe, (ý, )[E]. 

2.3.4 Computational Considerations 

Computationally the maximum likelihood method of obtaining predictive distributions reduces to 

a (sometimes constrained) optimisation of the likelihood function which may often be simplified 
by parameter transformations of 0, partial differentiation with respect to components of the (trans- 

formed) parameter vector, and transformations of the likelihood function itself such as log likelihood. 

Obtaining Bayesian based predictive probabilities and distributions involves integrations over the 

parameter space, E). 

2.3.5 How to Express Reliability 

Predictive probabilities or densities of various random variables may be desired depending on what 
form the reliability prediction is to take, i. e. what future events are required to be predicted. Typ- 

ically these will include predictive versions of the failure process quantities introduced on p1O. By 

this we mean that these quantities will be defined as for the original parametric model but in terms 
18ý being a function of the observation y, through the maximization of L(O, y) as explained on p15 
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now of the distribution P5, in the ML case, or P from equation (2), in the Bayesian case. The 

appropriate one of these two replaces PO as the process probability law used in the definitions of 

these quantities. There is a narrow definition of 'reliability' in terms of the 'reliability function', 

i. e. as the probability, under specified conditions, that there will be no further failures during a 

period 7- of further execution. In practice, the term reliability is often used rather more loosely. 

Statistics such as mean and median may be used to attempt to summarize important characteristics 

of predictive distributions, though care needs to be exercised [50] in the interpretation of these. E. g. 

mean or median times to next failure are often used as measures of reliability. It is common to 

speak loosely of system reliability using terms such as: 'a 10 to the minus 5 system'; or 'a system 

with MTTF11 107'. Here the units implied would typically be failures/hour and hours of execution 

time 20. It is of course possible to give a precise meaning to these terms, so some care is required in 

comparing reliabilities. Within a rigorous modelling framework, statements of comparison such as: 

'System A is more reliable than system B'; or 'data set I would yield a higher reliability estimate 

for this system than would data set Il' would need to be made more precise by explaining exactly 

which mathematical reliability measure they refer to. See §5.3.6 and the comparison of alternative 

stopping rules contained in [641 for further discussion of some situations in which care is needed in 

distinguishing alternative strict interpretations of the general qualitative concept of 'reliability'. 

2.3.6 How Far Ahead to Predict 

Related to this question of what precise form of quantity-whether reliability function, median time 

to next failure, hazard rate, etc-derived from predictive distributions is of interest to the user of a 

forecasting system, another important issue is the question of how far ahead to predict. Predictive 

versions of quantities such as R(t; 7-1! 9. ) where s< 7- may be of interest at to an "observer standing 

at time s" for example. 

2.4 Predictive Quality 

2.4.1 The Trustworthiness of Software Reliability Predictions 

There are a number of evident reasons for expecting the prediction of software failure behaviour to 

be a non-trivial problem. These include the diversity of software. The use of the single generic term 

"software" conceals the potentially infinite variety of the logical components of the solutions to a large 

19 mean-time-to-next-failure 20or perhaps, in the discrete demand-count setup discussed in §2.1, failures/demand and demands, respectively 
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number of vastly different practical problems, developed by differing organizations, using different 

methods and tools, executing on a range of different physical computers, running under different 

operating systems, and so on .... Many items from the entire family of all software components 

differ from each other in both application area and also in the level of difficulty or scale of each 

problem, and hence in the level of human organisation required to develop the software solution. 

Also, the fact that software is abstract and (other than for trivial programs) its development involves 

significant and problematic human-communication2l tasks means that the laws (if any) which govern 

its behaviour cannot be expected necessarily to be as regular and stable as those which enable the 

relatively accurate prediction of the failure behaviour of many physical systems. For these reasons it 

is essential in the case of software reliability prediction not to blindly trust the predictions emanating 

from any particular predictive technique when it is first applied to any new software component. 

Instead, the best statistical techniques which are available should be incorporated in methods of 

assessing the quality of the predictions produced by each prediction method when applied to each 

software component. 

2.4.2 Repeated Short-Term Prediction: Prequential Forecasting Systems 

In this thesis, as in previous work [2,58], we concentrate on the quality of short-term predictions of 

software failure-vs. -time behaviour. The techniques used in Chapters 3&4 centre on the assessment 

of the statistical distribution of the vector, (u, ), of residuals obtained by substituting an observed 

quantity in the c-d. f. of its own recent predictive distribution. Following Dawid, [20], we can define a 

Prequential Forecasting System (PFS) for a random process (X,, ), n=1,2,.. ., 
by means of functions 

(Fnx (xn; xn- 1)). The function F, ý is to be interpreted as the one-step-ahead predictive c. d. f. of Xn 

as its first argument, having observed the realisation Xn-1 = xn-1 of the process so far 22. Clearly 

the function x ý-4 F, ý(x; xn-i) must be a valid c. d. f. (monotonic non-decreasing, right-continuous, 

with limits 0 and 1 respectively as x--4 -oo or +oo) defined by the PFS for all possible values of 

Xn- I for each n. §3.2 provides further details. We focus on the (un) residual sequence given in terms 

of a process realisation by 

Un = F, '(z; x') 

This, together with the use of Prequential Likelihood, including log Prequential Likelihood Ratio 

plots, is in accord with Dawid's "Prequential Principle" of concentrating attention on the compar- 
ison between prediction and later-observed observation of the predicted quantity, when applying a 

21 "Instead of imagining that our main task is to instruct a computer what to do, let us concentrate rather on 
explaining to human beings what we want a computer to do. " 1461 

22 Here, introducing the notation (14 '! -"f (CI, ..., Cý) for vectors. 
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recursive prediction method. Thus we have deliberately avoided being overly distracted by questions 

of goodness of fit and parameter estimation error for the parametric model on which the forecasting 

system may be based, concentrating rather on the assessment and improvement of the performance 

of the forecasting system as a whole when applied to a particular sequence of observations [20,21. 

2.5 Recalibration 

In the case of recursive prediction involving the kind of predict-+observe-predict... cycle, discussed 

in [201, it has been found possible (see [10,59,11,6]) to dynamically modify the predictions in order 

to attempt to correct certain kinds of systematic inaccuracy which may become apparent with the 

accumulation of data on the comparison of prediction with subsequent observation. The basic idea 

used has been to attempt to modify (recalibrate) the predictive distribution of as yet unobserved 

quantities in a way which is aimed directly at the correction of certain observed kinds of consistent 

anomaly in the statistical behaviour of the sample of (u,, ) values forming the so-far-observed portion 

of the (u,, ) sequence mentioned in §2.4. Thus it is hoped that the statistical properties of the 

new (u,, ) sequence following, this modification23 will be closer to the theoretical ideal statistical 

distribution of these generalised residuals and that this, in turn, ought to mean that the predictive 

distributions themselves will have been improved in the process. Further details of this previous 

work are provided prior to novel extensions of the methods in §3.2. We follow the terminology of 

[10,59,11,6] in distinguishing a recalibrated PFS from the raw PFS on which it is based. The term 

raw can usually be thought of as referring to prediction without the use of recalibration. However, it 

has been found to be demonstrably useful in some previous work to consider recalibrating twice, i. e. 

adding a second (identical) recalibration step to a PFS which already incorporates one. Therefore, 

it is strictly more correct sometimes to interpret a raw PFS as one to which we could, and perhaps 

later will, add a recalibration step (or further recalibration step). 

2.6 Incorporating Further Data 

We turn now to the possibility of incorporating additional information, other than the so-far-observed 

part of our single point process of failures, in our predictor for the future part of that process. 
Previous work on explaining and predicting software reliability behaviour in terms of various kinds 

of other data is briefly surveyed here. Several diverse sources of other data have been considered but 

we suggest adopting the general terminology of "explanatory variables" denoted (x. ) for these in 
"i. e. the equivalent (uý) sequence for the "recalibrated" forecasting system 
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an attempt to force these various examples of related work, to the extent that this may be possible, 

into the general framework introduced in §2.7. The following is a selection from published work in 

this area. 

2.6.1 Correlation Between An Operating System's Failure Rate and Other 

Time-Varying Operating System Parameters 

Iyer and Rossetti [35,88) investigate reliability variations of a single installation of the VM/Sl? 

operating system running in a genuine application environment on an IBM 3081 over a 14 month 

period. The explanatory variables here are thus time varying, x= x(-r) for a sample consisting 

of one sole "individual 7124 (the entire operating system software). All the explanatory variables 

are internal measures of system activity logged automatically by the system itself The data is 

not listed. The analysis is crude in the sense that it treats each explanatory variable in isolation, 

and does not attempt to model the combined effect of more than one explanatory variable (by, 

for example, removing the effect of x, on the failure rate before investigating any X2-effect). This 

is perhaps a wise initial approach to a single data set. Some details of the procedure have been 

omitted. As far as the details are specified, it appears that the time axis is divided into successive 
five minute time intervals. For each candidate explanatory variable, say xj, this set of time intervals 

is then partitioned into seven subsets according to which of seven strata contains the mean value 

of xj(7-) over a closely preceding time interval of length one hour. Then the proportion of the 5 

minute time intervals in each stratum which contain an operating system failure is calculated. The 

correlation coefficient is used as a measure of strength of relationship between the vector of seven x, 

values and the vector of proportions of the corresponding sets of 5 minute intervals which do contain 
failure. The same is done independently for the other explanatory variables, x,. For each separate 

explanatory variable, x, the variation between the seven values of this proportion is typically up to 

one order of magnitude. The results for one particular explanatory variable, OVERHEAD, appear 
to be more statistically significant than those for the others. Also, this variable exhibits a greater 

proportionate variation (about three orders of magnitude) between its different strata. However, 

on closer inspection it transpires that the authors have used elapsed time, (i. e. calendar time or 
"real" time) as their fundamental time metric with respect to which all time intervals and reliability 

observations are defined. They mention that OVERHEAD is a good approximation to execution time 
for the operating system software. The strong correlation obtained between the value of OVERHEAD 

and the empirical failure probability now appears merely as confirmation that operating system 
"This standard statistical term, synonymous with "experimental unit", is explained in §2. T. 2 



CHAPTER 2. PREVIOUS WORK 22 

software failure rates are more stable if defined in terms of operating system software execution time 

rather than in terms of calendar time. This causes one to speculate as to whether the high correlation 

of empirical failure rate, vs. the calendar time metric, with some other explanatory variables (e. g. 

PAGEIN and SIO) might also be largely explainable in terms of a statistical association between the 

values of these variables and the current rate of accumulation of operating system execution time 

with respect to calendar time. 

An alternative analysis of this or similar data, were it available, would convert all inter-failure 

times to operating system execution time, using as good an estimate of this as could be obtained from 

the OVERHEAD values logged. Then it would be possible to experiment with fitting and checking 

a pIM25 model using time-varying explanatory variables x., (r), see [83,15]. Such an analysis, if 

it proved successful in the positive sense, would have the advantage of representing reliability as a 

function of the combined influences of a number of explanatory variables. That is it would attempt 

to separate the influence of x, when looking for an X2-effect on reliability, and might in theory even 

be used to examine so called "interactions" between the effects of x, and X2 on reliability. 

2.6.2 PHM Regression of Inter-failure Times Onto Fault Characterisics 

Wightman and Bendell [931 discuss the application of PHM26 to inter-failure times with faults 

identified as "individuals". Thus they choose ti rather than ri, in the notation which will be used 

in Chapter 3, as response variable. The authors' approach does not fit straightforwardly within the 

normal PHM scheme of regressing lifetimes onto individuals' characteristics since the inter-failure 

time preceding a fault is not actually equal to the true time for which that fault has been "in 

hazard" (i. e. subject to the risk of manifestation and removal). Also, they suggest using the number 

of previously observed failures due to other faults as an explanatory variable, which is likewise an 

unusual way of applying PHM in which the observed survival time of a fault compared to that 

of other faults, which would normally be thought of as a response variable in such an analysis, 

has become incorporated in the definition of the fault's explanatory characteristics. This analysis 

seems to be based on the idea of defining the sample to be "the first n faults which will occur" 

rather than an identified set of n known faults, each having explanatory variable values which are 

measurable in advance of the response variable, time of occurrence. One consequence of this is 

that any explanatory variables describing characteristics of a fault-with the exception of those 

such as the rank of the fault in order of occurrence or the times-to-occurrence of preceding faults, 

which variables are defined partially in terms of response variable&--cannot be known in advance 
25see §2.7.2, p26 26see §2.7.2, p26 
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and therefore cannot be fed into a predictor since (quite apart from the fact that it is not generally 
known what faults are present in software) it is certainly very unlikely to be known which of those 

present will give rise to the next software failure. So this analysis is different in kind from the other 

examples of PHM discussed below in §2.7 (such as the medical examples): There is no predefined 

population of individuals whose explanatory variable values can be stated in advance of observation 

of the response variable values. 

2.6.3 Software Reliability and Exercise Frequencies of Code Containing 

Each Fault 

Andrew [4] extends existing reliability models by including frequencies, obtained by code instrumen- 

tation, at which a suitably defined unit of code is exercised. These models are compared to existing 

models using simulated failure and exercise frequency data. 

2.6.4 Software Reliability and Software Module 'Dransistion Rates 

Several Markov chain models have been proposed for the effects on software reliability of the move- 

ment of the locus of code execution between different software sub-modules. For example, Littlewood 

[51] obtains asymptotic expressions for parameters relating to reliability using a semi-Markov struc- 

tural model for transfer of control between submodules of a software product. The data input 

required for these predictions consists firstly of past failure information for modules, along with 

some estimate of module interface failure rates. Secondly, control transition rates are required for 

transitions of execution from one module to another. These would most probably be obtained by 

code instrumentation. [731 describes a model for the affect on reliability of interactions and stress 

effects from multiple, simultaneous users transiting sequentially between multiple, shared software 

modules. 

2.7 Two General Regression Models 

2.7.1 Generality and Mathematical/Analytical Tractability 

Here we focus on candidate probabilistic models for extending the sources of data input to stochastic 

point process models, introducing two different regression models found in the statistical literature. 

These are proposed as models for generating software reliability predictions incorporating additional 
data which supplements the previously recorded failure vs. time behaviour for the specific software 
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under study. Neither of these models was designed with this application in mind, nor even specifically 
for engineering reliability analyses. Both are actually general purpose models, more accurately 
described as classes of models since they are flexible as to the number of different parameters 

employed: This is a matter for experimentation and choice in a given application-so called model 
identification. These two families of models are very much related and will be distinguished here 

by the names "Proportional Hazards Model" (PHM), and "Proportional Intensity Model" (PIM). 

Concerning terminology, note that the term "Proportional Hazards Model" is widely used, although 

occasionally with a wider meaning than that given below (see e. g. [66, Chapter 9]). The term 

"Proportional Intensity Model", [491, is less widely used. Both of these model families are suited 

to general regression analyses, taking advantage of linearity and other mathematically simplifying 

assumptions appropriate to the exploration of multiple and often little understood relationships or 

postulated relationahips. 

It should be noted that in the case of PHM, the application to software reliability analysis is 

not new, [93,791, though in some ways, because of the fundamental stochastic-process nature of 

software failure behaviour, the application of PIM to software reliability would be more natural and 

less problematic from the point of view of parameter estimation and model fitting, provided that 

sufficient suitable data had been collected. 

2.7.2 Description of PHM and PIM Models 

Before describing these models in detail, the elements common to both of them, which characterise 

them as regression models and suggest the application to software reliability, amongst several other 

applications, are identified as follows. Both models expect equivalent data from each member of a 

sample of "individuals" drawn from some population. This data should take the form of values for 

each of a finite set of attributes which all individuals have in common. (For example, in a medical 

application, these individuals could be patients suffering from a particular complaint, [851. ) Each 

attribute is possessed by every individual in the population, but to a level or measure which may 

vary from one individual to another on some numerical (or other) scale. (See [661 for a discussion of 

various scales of measurement and classification, and [30] for a more developed discussion specifically 
in the context of software. ) One scalar or sometimes vector attribute is singled out and termed the 

"response" variable or "dependent" variable for the purpose of applying the model. In applications 

this variable tends to be one whose value (a) can be thought of as being caused, or at least influenced, 

by the combination of values for the remaining attributes of the same individual, and (b) is desired to 

be predicted for certain individuals based on observation or measurement of the remaining attribute 
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values for the individual in question. (As usual, the discovery of a systematic relationship by fitting 

such a model to data is not necessarily interpreted as confirmation of a specific causal hypothesis. ) 

In an application the response variable is typically not observable until some point later in time 

than the time of observation of the other attributes, for this individual. The remaining attributes, 

apart from the response variable, are collectively termed the "independent" variables, "covariates" 

or "explanatory" variables. If there are more than one of these then the term "multiple regression" is 

often used. (Returning to the medical example, explanatory variables for each patient might include 

patient age at initial onset of symptoms, smoker/non-smoker, whether or not there is a known family 

history of the complaint, income bracket, etc, as well as perhaps the result of a biochemical test 

conducted on all patients, and/or aspects of the treatment regime such as the administration and 

dosage of drugs. The response variable might be survival time, time until remission from the illness, 

or one of several other possibilities. ) A regression model is often, but not necessarily always, defined 

in such a way as to specify either a complete probability distribution or at least the first two moments 

of a distribution for the response variable of any given individual in terms of the covariate values 

for that individual. This is the case for both PHM and PIM models. Of course, this information 

is not uniquely specified for models of a parametric class until a single model from the class has 

been identified by specifying exact values for all model parameters. In certain classes of regression 

models called "linear regression", or perhaps "generalised linear regression" models (see [66]), the 

covariates enter into the distribution of the response variable only via a single weighted sum of the 

covariate values. The weights in this sum (the vector P below) are constant over the individuals of 

the population, or at least over disjoint sub-populations termed strata. The weights, 3, are termed 

regression coefficients. The PHM and PIM models are of this kind. Such a model assumption is seen 

to be less restrictive than it might at first appear, on remembering that the attributes incorporated 

as explanatory variables in the formal statistical regression model can, if required, be produced from 

transformations of one or more primary, directly measurable attributes. In linear regression models 

the regression coefficients play the role of model parameters to be estimated from data. Note that in 

general, a regression model may incorporate other parameters to be estimated besides the regression 

coefficients. 

In the type of application to software reliability discussed here, observed reliability data (a 

vector of inter-failure times) are selected to play the role of response variable. The individuals 

are then the executable software items, segments or components (perhaps down to the level of 

individual faults in software) to which these failures may be attributed-Or rather, since it is well 

understood that observed reliability is not actually a property of the software alone but depends 
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also on the environment or execution profile under which the software is operated, the individuals 

will in general be (software component, usage environment) pairs. In the most general application 

of these statistical regression models to software reliability, it is envisaged that the covariates could 

be any measurable or estimable attributes of either the software itself (including its originating 

development process), or its execution environment, or some attribute of the dynamic interaction 

between these two (excluding reliability which has already been nominated as response variable of 

the model). This is certainly not to suggest that it would be a profitable exercise to attempt to fit 

such models for software reliability using just any choice of attributes as covariates. Also, because of 

the general purpose nature of these models, assurance that they have any useful application to the 

software reliability prediction problem could only be obtained by demonstrating an improvement 

in predictive quality on several real data sets. Methods of validating the models in a particular 

application are discussed in §2.7.3. 

To fill in the remaining details of the PHM and PIM model assumptions: In the case of the 

PHM model, the response variable, r, is a non-negative scalar. The model specifies a probability 

distribution for 7, described in this case in terms of its hazard rate function, 

h(T) = lim --LP[-r <T< -r + ATIT > T] 
A, r-G AT 

by the equation 
h(r) = e"Oho(-r) (3) 

where x is apx1 vector of covariate values, 0 is apx1 vector of regression parameters and ho is a 

hazard rate function known as the "baseline hazard rate". Following the usual convention, 'T', the 

upper-case r (distinguished from 'T', the upper-case t), is used to denote a random variable. The 

interpretation of the PHM model as described here is that no more than one event per individual 

may be observed. See [Pijnenburg 19911 for an "Additive Hazards Model" analogue of PHM. 

The PIM model makes use of a point process response variable, (-rj :j=1,2 .... 
}, where 

0 :5 -ri : ý, 7-2 < ... . This process is assumed to be distributed as a non-homogeneous Poisson process 

(NHPp)27, [51, with process intensity function, 

lim -LP[, r < Tj : 5, r + A7-, for some ar-O AT 

lim 1 
-P[, r<Tj: 5, r+, &, rlTj-1: 57-ATjý! 7-], foreveryj, 

a -r-O 
:KT- 

given by 

A(r) = e"ONo(T) (4) 
27see p14 



CHAPTER 2. PREVIOUS WORK 27 

Recall from p14 that the event 17- :5 Tj :5r+ A7-, for some j) here is independent of all earlier or 

subsequent events. 

When fitting either of these models to a sample of n individuals {Ai}, indexed by i, the baseline 

function, ho or AO, is the same for all individuals, as are the regression parameters, 0, of course. Every 

other term will be indexed by i, i. e. : response variables, -ri for PHM and I-rjj :j=1,2,... } for PIM; 

covariate vector xi ; and hazard rate hi(-r) = e419ho(-r) for PHM; process intensity, A&r) = e' , 19 Ao (7-) 

for PIM. (Under certain circumstances, such as model checking procedures, the population may be 

divided into strata between which either the baseline function or possibly the regression parameters 

are allowed to vary. See p3l. ) 

Fitting procedures which allow the baseline function to be completely unrestricted exist for both 

model families. Indeed one of the advantages of these models is the degree of separation which can be 

achieved between the estimation of the regression parameters, 6, and the estimation of the baseline 

hazard rate or process intensity in this unrestricted-baseline case (the so called semi-parametric 

version of the model). Alternatively, a best fit for the baseline within some parametric family can 
be obtained. An obvious initial selection of such parametric families for the baseline of the PIM 

models is provided by those parametric NHPP models which have previously been applied as software 

reliability models. For example the Weibull, lognormal, negative exponential, and Pareto intensity 

models amongst others. (See e. g. [74,78,481. ) 

At this point, it is worth mentioning a possible confusion with regard to the naming of PIM and 

PHM models in terms of the parametric family of their baselines : Suppose a model of time-to-first- 

manifestation of each member of the population of faults initially present in an item of software 

employs hazard rate function ho. Then the associated NHPP model formed as in [74] (by mixing 

over a Poisson(p) distributed fault population size) has intensity function jifo where fo is the pdf, 
th )du 

not the hazard rate function, of the distribution indicated by ho, Le. fo (T) = ho (, r) e- f" . For 

example, if the name "Weibull" is given to a model based on time-to-first-manifestation distribution 

for each fault having hazard rate of the form ho(7-) = ab-rb-1, then there is an NHPP model, 

associated in the above sense, which has intensity function \(7-) = pab7-b-1 e-a"', and which could 

therefore reasonably be called the NHPP version of "the Weibull model". Potential terminological 

confusion arises with the completely different but perfectly legitimate and interesting NHPP model 
based on the "Weibull intensity" function, , 

b-1 \(, r) = ab7- 

The PIM version of the Weibull model having intensity \j (-r) = e"19ab-rb- I is worthy of particular 

attention for another reason. It lies at the intersection of the PIM and AFT classes of explanatory- 

variables-NHPP models. Here, by the AFT class is meant the "Accelerated Failure Time" class 
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of NHPP regression models for which the explanatory variables have the effect of accelerating or 
decelerating the process of failure occurrence and reliability evolution against time, 

Ai(T) = e, ̀ý113Ao(e'-'13, r) (5) 

Models of the AFT class are in general (i. e. for cases other than the Weibull intensity) less tractable 

for statistical inference than PIM models. There is a corresponding class of AFT survival time 

models [381 which bears the same relationship to the PHM class as the above AFT NHPP class 
bears to the PIM class. 

The following remarks about flexibility within the PIM model assumptions apply equally to the 

PHM model. The proportionality assumption 

A (, r) =g (x, 0», o (-r) 

is fundamental to the PIM models. However the form of the scaling factor, g(x,, O) 

rp I, 
=, ex, O-s does allow some flexibility through transformation, of the explanatory variables. Indi- 

vidual explanatory variables can be transformed to give for example a power law x. Oý in place of ex-13ý 

by a logarithmic transformation. Further, the assumption of independence for the intensity-scaling 

effects of the different explanatory variables, g(x, 0) = 1115'= 1 g. (x., 0. ), can be circumvented while 

remaining within the PIM model structure by introducing artificial new explanatory variables rep- 

resenting more complex explanatory variable "interactions" such as for example, in the case p=2, 

g (x,, 3) ex 101 eX2,32 eX 12 012, where we may define the third explanatory variable as a bivariate func- 

tion of the first two, for example X12 = XIX2. Model extensions of this kind are discussed more 

systematically in the context of generalised linear models, [66). Such a model extension may be 

suggested by inspection of suitably defined "residuals" (see the final paragraphs of §2.7.3) which 

result from fitting an initial model which does not represent interactions. 

Models with unrestricted baseline function are termed "semi-parametric" to distinguish them 

from "fully parametric" versions in which the baseline is restricted to some parametric family. One, 

not too serious, disadvantage of fully parametric versions is that some of the separation between 

inference concerning the baseline and inference concerning the regression parameters is lost by the 

parametric restriction on the form of the baseline, [49]. 

A refinement which can be applied to either model class without seriously impeding the model- 
fitting and model-checking techniques is the use of time dependent covariates, x= x(7-), in equa- 
tion (1) or (2), [38, Chapter 51,115,83). Clearly there may be potential in this case for detect- 

ing a relationship between explanatory variables and response variable using a smaller sample of 
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individuals-observations on the time-variability of x for a single individual supplementing the in- 
formation obtained from the variability of x between individuals of a sample. 

The pros and cons of these two model families for software reliability modelling and prediction 

are discussed later, in Chapter 5.2. 

2.7.3 PHM and PIM Model Fitting and Validation 

The PHM and PIM model classes are designed for ease of estimation and model checking. The 

details of the estimation procedures vary depending on factors such as whether a PHM or PIM 

model is used, whether the family fitted is semi-parametric (arbitrary baseline) or fully parametric 
(parametric baseline), with what parametric form, whether all individuals are uncensored in-hazard 

for the same length of time. Some key techniques from the extensively developed statistical fitting 

and validation methods for PHM and PIM models are briefly summarised in this section. 
Before beginning this summary we give a few comments intended to clarify the notation. Where 

possible both PIM and PHM model methods are indicated by a single equation. If the sample of m 
individuals under study are indexed by i, i=1... m, we use j, j=1... ni, to index the sequence of 

events (failures in our software reliability context) observed in connection with individual i. Thus 

the set of all observed event times for the entire sample of individuals is denoted by jrjj} by which 

we mean frij :j= ni, i= m}. Under the PHM model assumptions, it is clear that, for 

each individual, ni =0 or I so that in the PHM case all times 7ij are in fact rij. Thus, the second 

subscript can be dropped to give I-rij when we refer to the PHM model only. When the expression 
f -rij}, or f Tj} for the PHM-only case, appears as a conditioning event on the right hand side of a "I", 

then the conditioning event is to be interpreted below only as a full sequence of observed event times, 

i. e. without assignments of these event times to individuals. So in this specific context, a pooled 
list of times for all individuals is conceived as given without knowledge of the values of either of 

the associated suffices ii. (We emphasise that there is no suggestion that such ignorance concerning 

the allocation of event times to individuals reflects the reality of the information available to the 

observer: it is purely a hypothetical device for explaining the conditioning used in the formulation 

and description of the Cox Partial Likelihood of equation (6). ) We continue to use s, s=11..., p, 
to index the scalar components of both the regression parameter vector 6 and the m explanatory 

variables vectors xi, i=1,. . m. Double summations and products j, j and E,,, mean 11' [17i ri 
i= 3- 

and respectively, where, following the usual convention, rjjO=j 1 and Eo=, = 0. %= j= i 

For each time r, the "risk set" R(-r) is the subset of 11, ..., m) containing the indices i of precisely 
those individuals which are in hazard and uncensored at time r, so that, as far as the observer is 
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concerned, there remains a risk at time 7- - S-r that an observed event may befall individual i at time 

7-, for arbitrarily small 6-r. 28 

It turns out [12,49] that, roughly speaking, the order and comparative numbers in which different 

individuals experience events determines ý, without regard to more detailed information about the 

actual times of occurrence. (Although the times matter more if x= x(, r). ) Given an estimate, ý, of 

, 3, a good and perhaps optimal [49] estimate of the baseline function, ýo or & can subsequently be 

obtained. 0 is frequently estimated using the Cox Partial Likelihood, [13], 

L(ß) exß 

. �) e'i �j 
EIEIZ(, 

r�) 
eiß 

(6) 

This product contains one factor for each observed event. Each such factor may be interpreted 

as the conditional probability that it is individual i who experiences an event (individual i1S jth 

uncensored event) at time -rij, given that at times rij - Jr, sufficiently closely preceding 7-ij, the 

individuals 1E IZ(-rj) are precisely those which are "in hazard" (and uncensored), and given that 

an unknown one of these individuals is to experience an event at time -rij. Given the event times, 

and given the risk sets at each event time, L(, O) is the probability of the ranks, i. e. the sequence of 

tags rather than times, where each event is thought of as tagged with the name of the individual to 

which it belongs. Thus, for explanatory variables which are constant in time, L(, O) does not depend 

on the event times, once the ranks are known. The score vector or gradient vector of the log Cox 

Partial Likelihood, and the matrix of second derivatives can be calculated in the usual way and used 

to obtain an estimate, ý, iteratively by the Newton-Raphson method. Asymptotic theory for this 

estimate of the regression parameter is discussed in [12,13,151, and can be used for model checking. 

The score vector has a particularly simple form 

U(ß) =0 
log L 

aß 

10 =Z xi - 
1: ex 

- xi 
ili lElZ(-ris) EkEIZ(-ril) e-"&: ß 

1 

the difference between Ei, j xi and its "conditional mean". So actually satisfies the equation 

U(, O) = 0, or Ei, j xi =E 
[Ei, 

j xi 
I {Tij} : ý], with a suitable interpretation of the conditioning. 

Given such an estimate, ý, a non-parametric estimate of the cumulative baseline 

Ao (-r) = AO , 

28There is a minor issue here concerning the assumptions about the effect of the exact coincidence of an event with 
the beginning or end of a period of censoring. However, it is a simply matter to sensibly defined the risk set in such 
circumstances. 
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is given by 

Ao(, r) (7) 

-rij<r e1113 

[49]. (This works for both PIM and PHM. ) 

It has been remarked elsewhere [21 that, if a software reliability model is primarily intended for 

use in prediction of software failure behaviour vs. time, then empirical measures of the accuracy of 

the resulting predictions are the "goodness of fit" measures which are of greatest practical interest 

for that model. Needless to say, the same predictive quality comparison techniques [2], based on 

u-plots, y-plots and prequential likelihood, as have been used for evaluating predictive quality of 

software reliability models not containing explanatory variables are available both for assessing the 

extent of any improvement resulting from the incorporation of explanatory variables and also for 

making comparisons between explanatory variables models. However, some of the central ideas from 

the extensive separate literature on model identification and validation 29 techniques specific to the 

PIM and PHM regression models are briefly surveyed here. 

To check for the influence of a specific scalar covariate, note that the models do include the 

case that one (or more) of the covariates, x,, say, may be extraneous in the sense that its value 

has no effect on the distribution of the observations. This possibility is accounted for within the 

framework of the model by setting the corresponding regression parameter, fl,, to zero. Hence after 

obtaining an initial fit, it is obviously of interest for each scalar covariate, 5= 11 ... I p, to carry out 

a formal statistical test of the hypothesis, HO : 3, =0 which will detect whether each fitted scalar 

regression parameter is significantly different from zero. This can be done using likelihood ratio test 

statistics, making use of asymptotic results where appropriate, [13,15]. Subject to the conditions 

of the asymptotic theory, approximate X2 tests can be used. 

A proportionality check for the hazard or intensity functions can be carried out graphically by 

plotting for each of two or more strata formed by grouping individuals according to bands of covariate 

values: - 

* log empirical cumulative hazard function30 in the case of PHM; and 

* log empirical cumulative event-count, in the case of PIM, 

against time. The proportionality assumption of the models predicts an approximately constant 
29 "Validation" as used here refers to investigating the extent to which the various structural model assumptions 

appear to be supported by the observed data, i. e. this is a slightly different matter from the single issue of the accuracy 
of the reliability predictions emanating from the model and its associated inference procedure. 

30Empirical cumulative hazard is obtained for each stratum from a simplified version of equation (7) in which each 
term in the sum is simply the reciprocal of the number of individuals in the risk set for that stratum at one of its 
event times i. e. xi =0 for all i. 
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vertical separation, particularly towards the right hand end where the variance is smaller. Alter- 

natively Schoenfield [90] showed that a plot for each fixed s, 1 <- s :5p, of the scalar residuals, 

Fi. = xi. -E 
[xi. I Jri} : ý] against rj for the PHM could be used to check the proportional hazards 

assumption. Note that j: Zj Fi. =0 from the equation U(ý) = 0. Various errors of the model 

assumptions can be represented by imagining the PHM model structure to hold good but with some 

components of the regression parameter vector to be in truth time dependent. Now we can regard 

Schoenfield's plot as some points on the graph of a function F. (T) defined at 7, E {, ri} by F'. (, ri) = Fi.. 

If a constant ý is fitted as above whilst the true 3 of equation (3) has some scalar component 3, 

which is actually a functions of time, 0. = 0,, (, r), then Schoenfield shows that this is likely to be 

reflected in positive values of F, (7-) for those regions in r where 3, (, r) is larger and negative values 

of F, (7-) for those regions where 3, (T) is smaller. (See also [81]. ) 

Kay [39] produces residuals ej = fo"rý hi(7-) dt by substituting event times in their own predictive 

cumulative hazard function in order to verify that the resulting jejj themselves show an empirical 

cumulative hazard function 31 which is consistent with a sample of unit exponential random variables, 

i. e. is approximately linear with unit slope and intercept 0. 

2.8 Failure-Count Data 

It is frequently found in practice that complete inter-failure time data such as discussed above has 

not been logged. It is then necessary to devise predictors of software failure behaviour which can 

make do with only the coarser data that is available. Work exists in [1,67] on maximum likelihood 

plug-in predictors for software failures in the form of failure counts, i. e. counts of failures occurring 

during consecutive execution time intervals. The approach has been to attempt to carry over, 

essentially unchanged, the methods used previously for data in the form of execution time between 

individual software failures, using identical underlying models for the point process of failures vs. 

usage time metric. Thus, although the point process model of §2.2 remains the same, the observation 

function Y: fl -+ Y discussed in §2.3, which equally influences the form of the likelihood function, 

is now a different and "less discriminating,, 32 one. In fact, when inter-failure times are replaced by 

failure counts as the observation, then the observation function Y is sufficiently different that a new 

observation space Y and measure33 v are required. Further investigation of the software reliability 

prediction problem in these circumstances is the major motivation for the work below in Chapter 

31See footnote 30 on p3l. 
32y fails to distinguish between wl and w2 which give the same failure counts in each of a sequence of intervals 

(Y(WI) ý Y(W2)) even though the times of failures within those intervals may differ from wl to w2 
331n the measure theoretic terminology of §2.3, Lebesgue measure no longer qualifies as a dominating measure v for 

the measure PY which now concentrates probability mass at discrete points. 0 
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3. However, it is believed that the methods developed in Chapter 3 actually have wider application 

than this. 



Chapter 3 

Extension to the Case of Discrete 

Predictions 

The purpose of this chapter is to address the modification of the theory and methods described in 

§§2.2-2.5 so that they may be applied in the case where the data available takes the form described 

in §2.8 of failure-counts during each of a series of elapsed intervals of software execution time. The 

main novel content concerns the extension of the methods in §§2.4 and 2.5 on U-plots used for 

predictive quality assessment and recalibration of predictors. 

3.1 Software Failure-Count Data 

3.1.1 Different Forms of Failure-vs. -Time Data 

The work contained in this chapter is primarily motivated by the need to estimate and predict 

the reliability of software from failure-count observations, when inter-failure time observations are 

not available. These two forms of software failure data are discussed in [11 and [G7]. Figure 2 

I t2 t3 t4 t r, to t? t8 to time 

(b 

mli=3 m1 2-2 
!, 

=2 time 

Figure 2: Relationship between complete inter-failure time data and the coarser failure-count data 

34 
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illustrates the distinction between them. In (a), records of the time elapsed between individual 

software failures are available to the observer whereas in (b) less complete information is provided in 

the form of counts of the number of failures occurring during each of a sequence of contiguous time 

intervals. Thus the word discrete in the title of this chapter refers to the observation of quantities 

which can take discrete values (failure-counts). We are not discussing the discretization of the time 

metric here. Our underlying stochastic model remains that of a point process in continuous time. 

The first of the situations illustrated in Figure 2 has been more extensively studied than the second 

although results based on maximum likelihood are presented in [1] for several models applied to 

failure-count data. 

3.1.2 Inheriting an Inter-Failure Time Model, Unmodified for Use with 

Failure-Count Data 

To model such a failure-count process, it is clearly in principle possible to use identical parametric 

models to those used to model the complete point process of inter-failure times. Given any parametric 
family, JPO :0E ej, of probability functions for the full point process of inter-failure times, and 

any deterministic division of the time axis into contiguous intervals, such as that illustrated in 

Figure 2(b), there is a unique induced parametric family of probability functions for the resulting 

process (M,, ) of failure counts. In fact this is a special case of the family JPY; 0E 0) defined in 0 
§2.3 when Y is taken to be the function Y: w ý--+ (m,, ). Any partial observation Z: (m,, ) ý-, z of the 

failure-count process then defines an observation function Yj :W ý--+ z by composition, Yj =ZoY, 
BPYI and hence a "discrete likelihood function" L(O, z) = =ýý corresponding to any existing parametric V 

model jPo :0E e) for the complete point process of failures. Here, v is some suitable dominating 

measurel on the space Y1, the image space of the observation function Z: Y --+ Y1. This likelihood 

function can be used to estimate and "plug in" the same parameter vector, 0, as before, but now 

using only the coarser data (so that a different estimate ý is obtained). However, we note that: - 

The two likelihood functions for the same model parameters, using the continuous and the 

discrete-data respectively, usually differ in functional form, (one being obtained from a param- 

eterised family of densities of a continuous random quantity and the other from a parameterised 

family of discrete probability functions). Therefore there is no guarantee that the analytical 

and computational problems involved in the remaining stages in the derivation of a predic- 

tor, subsequent to the formulation of the likelihood, will bear much resemblance between the 
IA "counting measure" defined to assign a value 1 to each discrete point in Yj will make zý L(O, z) a discrete 

probability function. 
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inter-failure time and the failure-count cases. 

It follows that, if a workable prediction algorithm is sought, then it may be preferable not to k, 
retain identical probabilistic assumptions for the underlying parametric failure point-process 

(Q, E, (Po :0E E)J) in taking the step from continuous to discrete data. Ease of analySiS2 is 

often one of the factors considered in the formulation of a point process model by its original 

developers. If this is lost in moving from the continuous to the discrete data case, there 

may be a case for abandoning or modifying the probabilistic model when faced with discrete 

data. Some modelers have taken this view and modified the underlying probabilistic model 

in some such way without comment. For example, in the presentation of a discrete-data 

version of the likelihood for the JM model given in [11, the assumptions about the behaviour 

of the conditional hazard rate (z(, rlg, ) on p12) locally within each measurement interval have 

been modified, simplifying subsequent analysis while approximately preserving (provided the 

observation intervals are short) the global relationship between failure-rate and cumulative- 

failures-observed which characterises the JM model. 

In particular, in passing from the continuous to the discrete-data case, two important questions 

about the tractability of the likelihood function associated with any proposed modification to 

the probabilistic assumptions are: - 

(a) To what extent is it possible analytically to reduce the dimension of the parameter space 

before carrying out a numerical search for the local maxima? (This reduction of dimension 

being achieved, where possible, by parameter transformation and/or partial differentia- 

tion. ) 

(b) Can it be demonstrated analytically that the global maximum (rather than a local max- 

imum) of the likelihood function will always be obtained? 

Aside from this issue of model tractability, there may actually be a basis in the reality modelled 
for some modification of the probabilistic model of the underlying failure point-process in the 

case of failure-count observations. This is because there will often in practice be a relationship 
between the reporting of software failures and the execution of corrective software maintenance 

actions which are likely to affect subsequent failure behaviour. For example, it may be realistic 

to assume that, in the failure-count observation case, attempts to correct any fault occurring 
during one of the observation intervals illustrated in Figure 2(b) are not made instantaneously 

following fault occurrence, as many common software failure point-process models assume, 
2primarily ease of production of a prediction algorithm from a model, in our case 
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but rather are delayed until the end-time of that interval. Such considerations may perhaps 

provide further justification-Le. aside from the mere need for mathematical tractability-for 

some departure from the exact point-process assumptions used for analysis of inter-failure time 

data. 

3.1.3 Example : The Jelinski-Moranda Model 

To illustrate some of the above general points about the transition from inter-failure time to failure 

count data sequences we briefly, on the next four pages, discuss the case of the JM (Jelinski-Moranda) 

model [36,37). This model is one of the earliest and most simplistic applied to software reliability 

growth modelling. It is of the eTponential order statistic class described in §2.2 on p13. The size of 

the fault population is constant, forming the first model parameter N. The faults are assumed to 

cause software failure at independently exponentially distributed times -r after the start of program 

execution and then to be immediately and perfectly removed. The rate parameter 46 of these N 

exponential random variables forms the second model parameter, so 0= (N, 0). 

Inter-Failure Time Data 

In the case of complete observation of all failure times between r=0 and r=1, where I is a constant 

observation interval duration, we can represent the observation y as the number, n, and the times, 

0 <T1 <72 < ... <-r, <I, of failures observed. So this observation y= (n, rj ...... r,, ) lies in a space Y 

as described in [16]. The inter-failure times (ti) shown in Figure 2 are the differences tj = ri -ri-1. 

The likelihood function is obtained as the parameterised probability density 

(n 
(N-n)ikl L(O, y) rl Oe-O'l e- 

on j_1 -ri+(N-n)1]4i II(N 
-i+ 1) 

evaluated at the observation y. The ML parameter estimate 
(rV, ý) is obtained by maximizing L, 

which is most easily performed by noting that 

nn 
logL=-lNo+l: log(N-i+l)+nlogo- 1: -ri-ni 0 (8) 

i=l 

li-I I 

For each fixed N ý: n, this function has a unique maximum at 0= h(N), say, where 

h(N) n (9) 
Ti + (N - n)l 
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so that by substituting this value in (8) the problem is reduced to that of maximizing the univariate 
function of N 

n(n 
logL=Elog(N-i+l)-nlog E-ri+(N-n)l +nlogn-n (10) 

If we now define 7-i and substitute x= ; 'Th(N) = L" in (10), the problem becomes n N-n+( 

one of maximising 1(x) for xE (0, (-'] where 

t(x) = log 
Ni+I) 

+n(logn- log I- 1) 
(N-n+C 

n 

= 
Elog(l+(n-C-i+l)x)+n(logn-logl-l) 

i=1 

But t is a sum of logarithms of positive linear functions of x and hence is a sum of concave functions 

and is thus itself concave. It follows that the ML solution is given by 

if £'(0) 5 0; 

iý = (-I, if ý! 0; 
one of the two values adjacent to the unique solution of i'(x) = 0, otherwise. 

Dealing with the three cases here in turn: - 

x=0 corresponds to the limit N ---+ oc, and is an HPP model with rate 2, obtained as liMN-,,,, Nh(N) 

in (9); 

x= C-I is the other end point of the region of feasible x values and corresponds to R=n, i. e. all 

faults have been observed; 

e(x) =0 Because t is concave 3, it follows that there must be exactly one such stationary point if 

the maximum is not at either end point. Then the best x corresponding to integer N must be 

the closest such x on one side or the other of the stationary point. 

Failure-Count Data 

Moving to the failure count case, assume the interval [0,1) is partitioned into k failure-count ob- 

servation intervals by 0= Io < 11 < ... < Ik =I which are treated as deterministic. To simplify 

what follows introduce a notation di = 1i - li-1 for observation interval length. If the observation 

consists of failure counts yj = Mk)" for these intervals we use the notation ci = Ejý=j mj 

for cumulative failures observed. Thus co = 0, and Ck = n, retaining the notation n for the total 

31n fact 1'(x) is strictly decreasing. 
4The number of scalar observations is no longer random being determined in advance by the number k of failure 

count intervals, so the space Yj of p35 is Nk. 



CHAPTER 3. EXTENSION TO THE CASE OF DISCRETE PREDICTIONS 39 

number of failures observed in time I consistently with the previous case (equation (8)). If the same 

point process model is assumed, then the general method of dealing with failure-count observations 

mentioned above leads to a multinornial likelihood function with N for the number of trials and k+1 

possible outcomes for each trial. These k+1 outcomes have probabilities 1- e-11 ", e-11 e-120,.. ., 

e-1-0 - e-10, e-10 respectively. Thus, now 

L(O, yi) = 
NI 

CIO(N-n) 
k 

(N - n)! rjý , mi! 
rl (e-li-10 - e-1, O)m' 

%= i=1 
(Iln 

i=l N- i+ 1) 
e( f1k 

i= 

In changing to failure-count observations for this model we have finished up with a different and 

in this case less tractable likelihood function. This is not surprising since Jelinski and Moranda 

published their model together with a suggested inference procedure for the inter-failure time case, 

and it could easily be that the publication of this precise model was in part due to their demonstration 

of a workable inference procedure. Taking the logarithm, as for the inter-failure-time case, the 

following form is obtained. 
log L= -INO+f(N)+g(O) -K 

= I: n 
. 
9(0) = Ek Ek 

I M, log (1 -d. 4 where f (N) log(N -i+ 1), diciO + i= e 1), (the identity 

Ek li-I)mi = 
Ek 

I dici has been used here), and K= Ek 
I ET', logi. We can obtain i= i= J= 

Olog(L) 
=0 for N 

and, interpolating between integer values of N, 

19 log(L) f(N) 
aN =0 for 0=I 

but it is clear that this analysis, though feasible, is beginning to get quite involved at this point, due 

to the awkward form of the 0-term in comparison to the previous case. 

A Modification of the Underlying Model for the Discrete-Data Case: The above illustrates 

the differences and frequently, so it has been found, increased difficulty of an analysis based on the 

likelihood function arising from the failure count case if we stick strictly to the idea of shifting 

to a failure-count observation function whilst retaining exactly the same underlying point process 

models as have been developed for reliability modelling centering around a full inter-failure time 

data sequence. It is observed that in [1) the point process model has been tacitly changed so that, 

in his discussion of the modelling of failure counts based on what lie refers to as the JM model, the 

probabilistic model assumed by Abdel Ghaly is actually subtly different from that used in previous 
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analyses of inter-failure time data. In fact Abdel Ghaly's model uses probabilistic assumptions which 

actually depend on the failure count intervals (i. e. the (Q) which are used. His implied point-process 

model (i. e. that implied by his statement of his version of the likelihood function for failure-count 

observations) can most succinctly be described by specifying that the conditional program failure 

rate function, z(7-19, ) described in §2.2, takes the same random value 5 when expressed in terms of 

the past observations at T= 1i as it would have under the assumptions of the true JM model, but, 

unlike the original JM model, the rate now remains constant throughout the failure count interval 

(1i, 1i+1) irrespective of failures occurring during that interval, i. e. we have z(, rlg, ) = z(1iJ91J for 

1i <r< li+,. Thus the point process is, conditionally given failure times prior to li, a Poisson 

process throughout the period of the interval (1i, li+1). This adjustment of model assumptions is 

faithful to the fundamental conception of the JM model provided that the failure count intervals are 

many and short6, and it results in a likelihood function for a failure count observation which can be 

expressed as a product of Poisson probabilities 

L(O, y, ) 
ke 

-d, tP(N-ei-1) (diO(N - ci-1»" 91 
Mi! 

k 
di ' on 

(k 

(N - ci-, )") e( -IN+rh jd, ci-1)4b 

and which consequently turns out to be considerably more tractable mathematically. It leads to log 

likelihood 
k 

log L= -INO + mi log(N - ci-1) +n log 0+ dici-I 0+K (12) 

where KI mi log di - log It turns out that with this form of the likelihood we 

have returned to an inference problem with, for each fixed N ý: n, a unique maximum of log L given 

again by an explicit closed form expression 0= h(N) where now 

h(N) =n IN-Ek 
ýi= 

The remaining analysis is very similar to the inter-failure time data case. (13) can be substituted 

for 0 in the log likelihood formula (12) to give 
kk 

logL=Emjlog(N-cj_j)-nlog IN-Edici-i +nlogn-n+K (14) 

'This value is z(1jj9j, ) = (N - ci)O. 
6 In fact, as mentioned under one of the "bullet points" on p36, it could be interpreted as a deliberate representation 

of delayed failure reporting and fault correction, which introduces the possibility of multiple occurrence of a single 
fault during a single failure-count interval. 
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and the problem is again reduced to the maximisation of a scalar function of N. Putting 

I Ek T j=1 dici-I and substituting x= -Lh(N) in (14) gives the function n N-C 

mi log(1 + (e - ci- )x) + n(log n- log 1- 1) +K 
i=I 

to be maximised from xE (01 
n'(]' 

It can be seen, as for the inter-failure time case, that this 

function is concave on this interval and therefore always has a maximum point which can easily 

be determined. The cases in which the maximum is at the end points of xE (01 
n1C) are easily 

identified, by considering the sign of f'(x). Such considerations lead to the conclusion that the ML 

fit is an HPP with rate 2 when C :5L Ek mic, -1; or, in the opposite extreme case, the ML In i=1 

olution is the "completed debugging" case, in which FV = n, when 1- ZkI"<1. In other n S= n-ci-1 - n-( Zes 

N can be found numerically as an integer adjacent to the value corresponding to the unique 

zero of f'(x) in the interval (01 
n1 (). 

Equation (13) gives ý in terms of RV. 

3.1.4 Failure-Count Data, Reliability Prediction, & Prequential Forcast- 

ing Systems 

We now leave the illustrative JM example and return to the general case of failure-count data, 

concentrating more specifically on the task of reliability prediction (see §2.3). A problem which 

is encountered in the attempt to emulate the approach used for inter-failure time observations 

concerns the difference, in the failure-count case, of the relationship between that which is observed 

(i. e. the terms m,, in the sequence of observations) and the type of predictions which are desired 

to be produced from these observations. Many commonly accepted methods of expressing current 

reliability, (reliability function, mean-time-to-failure, percentiles of time-to-failure distribution, and 

conditional failure rate, see p1O) are defined in terms of the predictive distribution of tile time to 

next failure, given past observations. Thus, in the inter-failure time case, all that is required for the 

estimation of a conventional mathematical representation of current reliability is a one-step-ahead 

predictive distribution, FZ(t,,; t'-'), " of the observed process (T,, ) itself, since it is the observed 

quantity T,, whose predictive distribution contains many of the software reliability measures in which 

there is interest. For this reason tracking the reliability of a software product from inter-failure time 

observations can be thought of in terms of a repeated cycle of the form: predict T,,, observe T,, = t,,, 

predict T,, +,, observe T,, +l = t,, +I... . Expression of the problem in this particular form allows 
7The sometimes suppressed tn- 1-term to the right of the semicolon is made explicit in the notation of this thesis to 

emphasise that the predictive distribution is thought of as a random entity, being a function of all the previous terms 
in the process. tn-1 denotes conditioning information (9 of P10) in the form of observation of the process realisation 
w for exactly as long as it takes for the first n-1 failures to occur. Regarding the superscript n-1 notation, see 
footnote 22 on p19. 
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the construction of a (U,, ) sequence and hence of prequential likelihood, u-plots, and y-plots, giving 

measures of predictive accuracy as well as improved, recalibrated predictors [10,59,11,61. In the 

failure-count case however, estimation of current reliability expressed in the familiar mathematical 

terms requires the prediction of a quantity which will never be directly observed, i. e. of the time to 

next failure, given the previously observed failure counts. The approach taken to circumvent this 

difficulty here has been to assume that it is still adequate in the failure-count case to represent the 

current reliability in terms of the predictive distribution of the next term in the observed sequence, i. e. 

the number of failures which will occur within an immediately subsequent execution time interval of 

given duration. If this is accepted, then we are again in the situation of one-step-ahead prediction of 

an observable sequence, i. e. we require to obtain predictive distributions, (Fe (mn; mn-1)), of failure 

counts, for the given intervals. Later, we find that this approach-after a bit of extra work-does 

indeed enable us to derive something analogous to the recalibration procedure previously used to 

predict reliability from inter-failure times. However, note that it is not our intention to imply by this 

simplification that something analogous to recalibration cannot be performed successfully for more 

general kinds of prediction. On the contrary, some proposals of ways in which this might be done 

are included in §3.7. The point is rather that, as a first step towards recalibrating from failure-count 

observations, we attempt to model as closely as possible the successful experience of recalibrating 

inter-failure time predictions which was based on one-step-ahead prediction of inter-failure time 

sequences. Hence we begin by producing predictive distributions for the next failure-count in our 

observation sequence in order to frame the prediction task in the same mathematical form of a 

Prequential Forecasting System (PFS) [20], or sequence of predictors (FnX(X,,,; Xn-1)), the only 

difference being that (xn) is now a sequence of failure-counts rather than a sequence of inter-failure 

times. 

3.1.5 Three Difficulties of the Failure-Count Case 

Having formulated the reliability estimation problem in this way, there remain three important 

further differences from the case of individual inter-failure time observations, when it comes to pre- 
dictive quality assessment and recalibration. Only the third of these differences perhaps obstructs 

the use of prequential likelihood plots for assessment and comparison of predictors, but all three 

present potentially significant problems in the definition of a u-plot for assessment and for recali- 
bration. The nature of these problems with u-plots in the failure-count case is briefly sketched here. 

The problems are then explored in greater detail in the following sections of this chapter, along with 

some proposed approaches to overcoming them. 
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1. Varying Length Execution-Time Intervals: The first difference is the impact of the elapsed 

execution-times (d,, ) corresponding to each successive failure-count. Any variability with n of these 

times constitutes an additional deterministic source of variability in the observation sequence, (X,, ). 

(The counts of failure occurrences during longer periods of executing the software will tend to be 

larger, in comparing intervals located at around the same period in the evolution of the software. 8) 

However, the justification of a recalibration procedure based on the u-plot relies on some notion 

of approximate constancy of the distribution of Un as n varies. (See §3.6. ) Variability in interval 

lengths complicates matters by interfering with this. 

2. Constructing U-Residuals from Discrete Predictive c. d. f. s: The second sense in which 

u-plots based on failure-count data differ from u-plots based on inter-failure time data arises from 

the discreteness of the predictive distributions; or, more precisely, from the eventuality of a random 

variable assuming a point value which has been correctly predicted with positive probability. The 

resulting discontinuities in the predictive c. d. f. s Fflx,,; x1-1) are shown in §3.2 to cause correspond- 

ing discontinuities and bias in the distributions of the U,,. It is later shown in §§3.4 & 3.5 that this 

effect can be overcome by defining a u-plot in terms of the pairs (Fnx (x, -; xn- 1), F'ý (xn; xn- 1)). 

This recaptures, in the discrete case, some of the desirable properties of the familiar u-plot applied 

to the prediction of continuously distributed processes. 

3. Small Size of the Sample of Observed Us Available for U-plot Construction: Another 

quite simple practical problem is frequently encountered in approaching the recalibration of a set of 

software reliability predictions based on failure-count data. Recalibration requires the accumulation 

of a set of observed u,, from predictions of earlier terms in the sequence predicted. In particular, in 

order for the u-plot, which forms the basis of the recalibration method, to be reasonably statistically 

stable, a reasonably large collection of previous u,, s must have been accumulated so that reliable 

recalibration can commence. This remark applies particularly to the problem of achieving stability 

in the tails of the recalibrated predictive distribution, since the proportionate accuracy of the tail- 

probabilities is highly dependent on a small sample of the largest (or smallest) u,, values observed 

so far. The need for a reasonably plentiful stock of past observation values x" arises also from the 

fact that the accumulation of u,, values cannot even begin until sufficient early observations have 

been made to first fit the mathematical process model and thus begin producing the successive raw 

predictive c. d. f. s in terms of which the un residual sequence is defined. In one typical data set 
8As a first approximation the predictive distribution could be assumed to be, locally, and conditionally on the 

past, 9, Poisson with mean equal to some function of interval length. 
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seen by the author, 193 failures of a software product had been recorded, but time of occurrence 
information had been recorded only by counting the number of these 193 failures which occurred 
during each of 17 contiguous observation time intervals. Had complete inter-failure time data been 

recorded for these failures, it would have been straightforward to fit reliability growth models to 

the data, successively adding one additional failure time to the set used for model fitting, in the 

standard way required to apply an inter-failure time PFS, and hence accumulating a large set of u,, 

values, which could then have been used to improve the raw model's predictions by incorporating a 

recalibration step in a new PFS. In the actual case, having instead only the 17 failure counts, there 

seems far less scope for including a useful recalibration step in the analysis due to the limited size of 

the sample of u,, resulting from one-step-ahead prediction of such a short sequence of observations 

(m,, ). We have found however that the use of a constrained gradient of the u-plot smoother, as we 

will propose in more detail in §3.6.6 below, contributes towards the stabilization of a u-plot based 

on a small sample of predictions. 

One would anticipate that the rate of evolution of software failure behaviour, per data point 

of the sequence to be predicted, is generally likely to be higher for failure count data than for 

complete inter-failure time data. This might perhaps pose further problems by interfering with the 

desired approximate stationarity of the u,, sequence when that sequence is to be used for purposes of 

recalibration, again making things worse for the "would be recalibrator" of failure-count predictions. 

One rather ad hoc proposal for recalibrating a predictor of rapidly evolving reliability data is to use 

decaying weights as we suggest in §3.6.3. 

Concerning the lengths of failure-count intervals, note that paragraphs 2 and 3 above constitute 

two competing considerations: Shorter intervals, and a consequently larger set of predicted (and then 

observed) counts, would tend to mitigate the problem identified in paragraph 3. On the other hand, 

the problem of recalibrating failure-count predictions mentioned in paragraph 2 arises specifically 

from the discreteness of the individual predictive distributions. It will be seen later that the effect of 

this discreteness in biasing the u,, distribution is far more pronounced if the failure-count intervals 

are short. Suppose, for example, that, for some interval [1,, 
- 1,1,, ], three small values, m, = 1,2,3, 

are the only values of the failure count that are predicted with significantly large probabilities. 
Then, each of these count value; will produce a significant discontinuity in the associated predictive 

c. d. f. (Fr ml- 1)). These few large discontinuities will contribute significantly to the bias in the 

distribution of Un F, ýf (Mn; mn- 1). It is this bias in the distribution of the U-residual which is the 

obstacle to discrete recalibration discussed in paragraph 2, and further examined in §3.3. However, 

if the modified u-plot developed in §§3.4 & 3.5 solves this difficulty with discontinuities, then there is 
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no longer an argument from paragraph 2 in favour of the predictive distributions being continuous, 

or approximately continuous. It could then be argued strongly from the consideration discussed in 

paragraph 3 that, for the purpose of producing raw predictions which can be effectively recalibrated, 

the shortest possible failure-count time intervals should be used when collecting the failure count 

data. 

In the following sections of this chapter, we develop some initial approaches to overcoming the 

difficulties sketched here, so as to extend the use of the recalibration procedure to failure-count-based 

software reliability estimation. However, we feel there may well remain further scope for both other 

analytic refinements, as well as further experimental work to confirm or refute the hypothesized 

benefits of these various modifications for the efficacy of predictor recalibration in the discrete-data 

case. Some ideas for further validation work on the approaches developed in the remainder of this 

chapter are proposed later in chapter 7. 

3.2 U-Plots 

This section discusses the standard "u-plot", [2], with an examination of the joint probability distri- 

bution of the (U,, ) sequence under combined assumptions about the process being predicted and the 

prediction system applied. For an informal overview of the purpose and uses of the u-plot, formed 

from the application of a one-step-ahead prediction system which produces its predictions in the 

form of predictive distributions, see §§2.4 and 2.5. Further details are given below. In [2,6,101 

and [581 u-plots are used in order to assess the quality of one-step-ahead predictions based on inter- 

failure time data, and are used further in order to improve the predictive quality by mcalibrating 

the predictions (see also [111 and [59]). The main substance of this chapter consists of an extension 

of this kind of technique suitable for application in the failure-count case. As explained on p42, we 

concentrate on one-step-ahead prediction of the observed sequence itself, with a brief mention of 

possible extension to longer term prediction and prediction of other quantities in §3.7. 

Recall from §2.4.2 that a Prequential Forecasting System (PFS) for a random process (Xn), 

n=1,2,..., is a sequence of c. d. f. functions (Fýr(Xn; Xn-1)) where F, ý is to be interpreted as 

the one-step-ahead predictive c. d. f. of Xn as its first argument, having observed the realisation 

, (X; Xn- 1) must be a valid c. d. f. (monotonic Xn-1 = Xn-1 of the process so far. The function x ý--* FnX 

non-decreasing, right-continuous, with limits 0 and 1 respectively as x --+ -oo or +oo) defined by 

the PFS for all possible values of Xn- I and for each n. 

In the examples of chapter 4, F, ý is defined only for n ýt no = 6. I. e. "raw" predictions are 
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begun after 5 terms have been observed. The term "raw" is used in what follows to describe 

predictors and their associated predictions when these do not rely on a recalibration stage in the 

total prediction algorithm. In contrast, recalibrated predictions, which will be discussed in §3-6, are 

begun in the examples of chapter 4 only after the realisations corresponding to 10 raw predictions 

are first available, i. e. no = 16 for our recalibrated predictors. 

We restrict to proper c. d. f. s, (i. e. not allocating predictive probability to X,, = ±oo) in §§3.2-3.6, 

in order to avoid having to mention too many special cases. There is no real obstacle to extending 

the procedures to include improper c. d. f. s if desired. Indeed such c. d. f. s are examples precisely 

of predictive probability concentrated at a point, for which purpose our "modified u-plot" and its 

associated recalibration procedures described below in this chapter were designed. The usual (u,, ) 

sequence [2,6,10,58] can be thought of as a realisation of a process (U,, ), defined in terms of the 

observed process, (X,, ), and the PFS by substitution of successive observations in the predictive 

c. d. f. 

U�=F, ý(Xn; X"-1), n>no. 

Of course, the joint probability distribution of the resulting (U,, ) process depends on both the PFS 

(FýX, (-; -)), and on the true' probability distribution of the process (X,, ) to which the PFS is 

applied. 

3.2.1 Common Notation for Continuous, Discrete, and Mixed Case 

In order to provide, as far as possible, a common framework for handling the two types of software 

failure-vs. -time data mentioned in §3.1, we discuss in §§3.2-3.6 the definition and the use for predictor 

recalibration of a "u-sequence" in the general case of predicting an arbitrary scalar random process 

in discrete time, i. e. an arbitrary random sequence. This entails allowing for the cases in which the 

next observation has a predictive distribution which is either continuous, or discrete, or mixed. The 

first two of these three alternatives correspond respectively to inter-failure time and failure-count 

PFSs. The inclusion of the third might appear superfluous. It does not seem to introduce any 

essentially new problems, however, as far as the techniques suggested in §§3.2-3.6 are concerned, 

and does clarify the relationship between the "u-plots" and the recalibration algorithm discussed 

in the above references, and those applied in Chapter 4 here to failure-count data. Also there is a 
9There may be valid objections here to the notion of a 'true', unknown probability distribution for an observed 

process of software failures. The important point for us here (about the proposition that such a thing exists) is that 
it enables us to acknowledge explicitly within our mathematical formalisms that the PPS (FX, (-; . )) we have used 
to define the (uý) sequence may correspond to a process law that could in principle be improved, and to explore how 
the nature of the inadequacies of this PFS will determine the stochastic behaviour of the process (Un) of 'residuals' 
resulting from the application of our imperfect PFS. See §3.2.3 below. 
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possibility that the general, mixed case might find an application in another context. We represent 

the probability distribution of a general scalar random variable by its c. d. f. and, to allow for the 

case in which it does not possess a density function with respect to Lebesgue measure, make use of 

Lebesgue-Stielties integrals (see e. g. [21, especially Chapter 9]) for probabilities and expectations. Le. 

we use a Stieltjes-like integral whose formal interpretation involves the use of a function of bounded 

variationl() to define a Borel-measure on R with respect to which the integral can be formally defined 

using the usual theory of integration with respect to an abstract measure. These integrals reduce to 

the familiar finite or countably infinite sums in the discrete, failure-count case, and to integrals of 

expressions involving continuous probability density functions in the case of continuous inter-failure 

times. However, the available rigorous theory allows extension to the general, mixed-distribution 

case when this is required. 

In the case where the PFS provides predictive c. d. f. s F, ý (x,,; x1-1) which are continuous in the 

argument xn (presumably indicating a belief on the part of the observer that the corresponding 

conditional c. d. f. of the true distribution of the process (Xn) is likewise continuous), the u-plot and 

y-plot can be employed in order to test whether the realised (un) sequence appears consistent with 

an i. i. d. uniform U[O, 11 joint distribution (see e. g. [21). This approach is not always appropriate in 

the discontinuous case for reasons which become apparent when we examine, in this section, the 

distribution of the (Un) process in this more general case. 

3.2.2 The Probability Measure Defined by a PFS P 

We think of a PFS for the process (X,, ) as being equivalent to an assumed probability distribution, 

Pp, for the process, (see [20], p4). If no > 1, then xna-1 will be observed before carrying out any 

prediction and can be regarded as a directly observable parameter of P and of all other distributions, 

probabilities and expectations considered in what follows. Thus P assigns probabilities" 

P [X,,, E A,,,,,. --, X,, E A,, ] = 
P 

dFý (x,,; x'- 1) 
... dF,, ý, 

+, (x,, +I; x"')dFZ(xn,,; Xno-I) (16) 
fz,., 

) E A,,,, 

Ix,.,, 

+IEA,.,, +I,, E A,, 

to cartesian product sets. Pp represents a probabilistic model for the process, whose conditional 

distributions are used in making one-step-ahead predictions, even though the distribution Pp may 

not be the basis of the de7ivation of the PFS-It is not, for example, in the case of a maximum 

likelihood "plug-in" PFS. In fact, we note that, whether P is derived via ML or Bayesian analysis 

10c. d. f. s are trivially of bounded variation 
IlThis repeated-integral construction of the probability measure Pp assumes that the PFS is such that the inter- 

mediate integrals form integrable functions. 
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of a parametric point process model JPo :0E 01, the distribution Pp implied by the forecasting 

system may be quite distinct from any PO, and in particular, events which are independent under PO 

for all 0E 19 may be associated i. e. dependant under the distribution Pp. Thus the predictive c. d. f. 

F, ý(x,,; x") is now assumed to be identified also as a conditional c. d. f. Fnx(x,, Ixn-1) associated 

with the joint distribution Pp. Actually the problem of formalising in a fairly general case the 

relationship between a PFS P and its associated or implied stochastic process probability law Pp : 

E --+ [0,1] remains a topic of research interest among probability theorists [92]. There is also a 

problem of the non-uniqueness of conditional probability measures defined for a single global process 

measure Pp (see footnote 4 on pIO). For the remainder of this chapter we will ignore these matters 

and attempt to motivate and explain the modified u-plot and recalibration techniques presented 

on the assumption that our predictive c. d. f. functions may be written Fflx,, Jxn-1) (i. e. with "; " 

now replaced by "I") and will satisfy all properties of conditional distributions corresponding to 

the process probability measure Pp. Even where this assumption is incorrect, the algorithm for 

construction of the modified u-plots and recalibrators12 remains precise and unambiguous in terms 

of any given PFS, (Ffl .; -)). 

3.2.3 Recalibration Conceived in Terms of a True PFS? 

The procedure of employing the evolving u-plot, during an application of a PFS to a software failure 

data sequence, for the purpose of "recalibration", (i. e. producing a new and, it is hoped, better PFS 

for the same data) is not easy to justify formally. Ideally in practice, the raw PFS employed ought 

to encapsulate the observer's current probability model for the process being observed. However, 

the addition of a recalibrator to the prediction algorithm necessarily implies a willingness on the 

part of the observer to entertain probability functions for the process which are at variance with P, 

the one implicit in the raw PFS. This idea seems awkward to handle theoretically since an observer 

who is prepared to learn from the (U,, ) and thereby to produce a recalibrated PFS, must think in 

terms of employing two inconsistent probability models for the process (X,, ): firstly the probability 

measure Pp implicit in the raw PFS P, and secondly a higher level model which is able to include the 

possibility that P may differ from the truth and which forms the basis of the recalibrated PFS. Thus 

the underlying "real-world" mechanism generating the observations may be assumed equivalent to 

some unknown (and perhaps not unique) 'perfect' PFS Q for the process (X,, ), where it is formally 

accepted that we may find P 34 Q. At this point we should make a small digression to examine 

this statement. We have expressed the development which follows, firstly of the probability law 

12A recalibrator is an algorithm for improving the predictive quality by "recalibration" of each prediction in the 
light of what can be learned by observing predictive performance so far. 



CHAPTER 3. EXTENSION TO THE CASE OF DISCRETE PREDICTIONS 49 

of the (U,, )-process, and secondly of recalibration and of what recalibration achieves, in terms of 

this distinction between the PFS P (and its associated probability law Rp) and some other 'true' or 
'real-world' PFS Q for the process. The question can reasonably be asked of whether it is meaningful 

to talk of the true probability law for something 'real', i. e. for a random process that is found in an 

application of probability to a real problem. Where the experiment of observing this process is in 

some sense 'repeatable' under 'identical conditions' then perhaps the law of large numbers can be 

used to argue that there are true probabilities for events that could in principle be estimated to any 

desired accuracy. The arguments below can be adjusted, to partially accommodate this potential 

criticism of using a notion of 'true PFS' Q, by arguing instead that the raw PFS P we. are using 

may not be the best we could ever come up with for predicting this failure process. Then we can 

describe Q instead merely as 'some hypothetical better PFS than the one we already have'-Or 

perhaps more correctly : 'some better PFS which exhibits superiority precisely of a kind which will 

be detected by examination of u-plots'. We have not explored this issue as carefully as perhaps it 

could be, but feel confident that such an adjustment to the interpretation of Q is possible and could 

be used below to construct slightly different developments of the main arguments. From this point 

on, however, we will continue the discussion in terms of a probability law PQ for the process which 

is allowed to differ from our working (i. e. numerically implemented") PFS P and to which we will 

refer using terms such as the best, true, ideal, perfect, etc PFS, to indicate that Q is supposed to be 

an unknown but superior representation of the true nature of the random behaviour of the empirical 

software failure process. Note however that at least for the simulated failure-data sets in chapter 4 

(i. e. for JM1, LI, and LV1 on p84) we do have an obvious interpretation of Q as the probability law 

that was used to simulate the failure data14. 

3.3 Behaviour of Us from an Ideal PFS 

Having agreed to think of the situation in these terms an immediate question is: How should the 

process (U,, ) behave if we do have the perfect PFS, i. e. if P=Q? This question is partially answered 

in the general case by examining the following conditional distribution under this assumption that 

P=Q. 

P[u ý uIx'] = P[F(Xlx') ý ulx''] 
23as a general point, the fact that to be useful a PFS has to be both analytically derived and manipulated, and 

computationally implemented is one good answer to the question: "Why are you not already using the'best'raw PFS 
QTI 

14Denoted by TRUE in Table 3 on p88 
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sup(F,, X(Xlx'-'): F, ý(Xjxn-l ): 5 ul 
x 

G,, (Ulxn-1), say. 

Here, we have used the fact that if W is a random variable with c. d. f. F, and m is a monotonic 

non-decreasing function, then P[m(W) :5 a] = supjF(w) : m(w) :5 a}15. We will apply this fact 

repeatedly in this chapter to obtain the one-step-ahead c. d. f. of U,, under various modifications to its 

definition. The conditional c. d. f., G,,, takes the form illustrated in Fig. 3(b), where for each n, the 

pairs (Pnk i qnk) correspond to any points ank Of discontinuity of the conditional c. d. f. F, ý (Xn IXn- 1) 

in its first argument xn. The points ank are, in the most general case, functions of xn-I and, for 

fixed xl- I, they are at most countably many in number. Thus 16 

Fx(x-lx'-') < F, ý (X+lXn-1) only at x= ank (Xn- 1), k 
n 

and at these points, we define 

Pnk (X n-1) = FX(ank-lXn-1) 

F, ý(ank+ lXn-1) 

FX(ank lXn-1) 
n 

Figure 3(b) illustrates the behaviour of G,, (. jx1-1) which results from two such points of disconti- 

nuity in Ffl. jxn-1). Also indicated is the effect on G,, (. jxn-1) of an interval on which Fnx(. jXn-1) 

is continuous. The c. d. f. of a uniform U[O, 1] random variable is indicated by the broken line for 

comparison. It can fairly easily be shown from (17) that, if we adopt the symbol Go for the c. d. f. of 

a U[O, 11 random variable and employ the "indicator function" notation 

is (Z) = 
1, if zES; ý 

0, otherwise, 

so that 

Go (U) = UI[O, 1] (U) + I(1,. ) (U), 

then 

Gn (UlXn-1) =I 
Pnkv if Pnk <u< qnk for some k; 

(18) 
Go(u), otherwise. 

This follows by well known properties of all c. d. f. s : Any uE [0,11 is either contained in an interval 

[Pnk, qnk] or is the image of a point of continUity of F, ý - jXn- 1). These cases can be considered 

25which follows from the "continuity" or "a-additivity" axiom for measures. 
161t is well known 121] that functions of bounded variation, which include all univariate c. d. f. s, possess at most 

countably many points of discontinuity, and possess left-handed and right-handed limits everywhere. 
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a) Conditional c. d. f. FX, (- Ix n-I ) of Xn given Xn-I = xn-1: 

1 

9,, 2 

P. 2 

q,, l 

P. 2 

0 

1 

9,, 2 

P. 2 

9"1 

P. 1 

0 P'. I Q'. I P. 2 9-, 2 1 U. 

Figure 3: Relationship between predictive c. d. f. s of X,, and U,, 

a. 1 -. 2 

b) Conditional c. d. f. G,, (. Ix"') of U,, given X'-1 = x"-': 
a 
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separately, remembering that Ffl. jXn-1) is non-decreasing and right-continuous, to arrive at (18). 

This c. d. f. can be expressed as a sum of a finite or countable number of terms17 

Go(u)-E(U-P, 
-, k)I(p,,,,, g,,,. )(U) 

k 

Go(u)-E(I)nk(U)) say. 
k 

3.3.1 Biasing Effect of Discontinuities on the U-Distribution 

It is now apparent that the conditional distribution of U,, given X" -I =n-1, which is uniform if the 

predictive c. d. f. is continuous, receives a bias towards larger values of U,, if there are discontinuities 

in F, ý, i. e. single points of positive predictive probability, P,, [Xn = a,, klTn-l] > 0. Perhaps, if the 

discontinuities are small, the uniform distribution will be a reasonable approximation to Gn (- jXn- 1) 

giving justification to the use of standard u-plots, y-plots and the Kolmogorov-Smirnov test statistic 

to assess the correctness of the hypothesis that the distributions P and Q above are equal. In the 

application where (X,, ) is a software failure-count process however, it is hoped that, at least after the 

initial stages of testing, high predictive probabilities will be assigned to particular discrete values, C, Z5 
(e. g X,, =0 or X,, = 1), making the assumption that Gn(Ul: rn-1) is the U[O, 1] c. d. f. under the 

hypothesis P=Q more difficult to justify, (see Fig. 3). 

3.3.2 The Mean as an Indication of the Seriousness of this Bias 

An indication of the level of severity in this effect of discontinuities in the predictive c. d. f. on the 

conditional distribution of U,, is provided by the conditional expectation 

E[U�lx'-1] 
I 

udG�(ulx'-1) 
UE R 

udu -u d(D�k, by (19) 
IUE[0,11 

k UE(p�k, q,. kj 
1 qnk 

udu -u du + qnk (I)nk (q�k +) - 'Dnk (qk 
10 

k p,. k 

12- P2nk qqk 
+ qnk(Pnk - qnk) 

k2 

2+ '21 
Z (qnk 

- P�k)2, (20) 

k 

1 n-1 2 
2+ il 

EP[Xn 
= ank lXn-1 =X 2kp1 

which further demonstrates the concluding statement of the previous paragraph. 
17in the general case of a completely arbitrary continuous, discrete, or mixed scalar predictive c. d. f. Ffl - jxI-I) 
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3.4 Alternative Definitions of U 

The question arises of whether the definition (15) of the (U,, ) process could be altered, in cases 

where Fý' can possess discontinuities in its first argument, so as to provide distribution properties 

which are less dependent on n, (through variation in the Pnk, qnk), and consequently more amenable 
to statistical testing. This section discusses properties of some alternative (U,, ). 

3.4.1 An Alternative Definition which Reverses, Rather than Removes, 

this Bias 

The asymmetry of the deviation of G,, (ulxl-'), as a function of u, from the function Go (u), apparent 

in Figure 3, suggests an alternative definition of (U,, ) obtained on replacing (15) by 

UIx ,= Fn' (Xn-jX"-l)l n> no, 

the left-handed limit Fý' (Xn-lXn-1) = lim., -x,, - 
F, ý (XlXn-1). In terms of the conditional proba- 

bilities of the joint distribution, P, this amounts to changing the definition of u,,, given the realisation 

xl, from 

Un =P [X. :5 Xn lXn-1 = Xn-1 1 

to 

Ul = P[X" < x,, IX"-l = X'-Il. (22) np 

The argument of §3.2, slightly amended, now leads to the conditional c. d. f. for U, " on the hypothesis 

P=Q 

G'(ulx"-') sup[Fý((xjxn-1): FX(X-jxn-1)5uj nn x 
qnki if Pnk :5u< qnk for some k; 

Go(u), otherwise, 

Go(u) + E(qn/c 
- U)I[P,, k, q,, A, )(U) 

k 

With this definition it turns out that UI, is biased downwards 

E [Un'lXn-1] =1-1 E(qnk 
- Pnk)2. (23) 22 

k 
It requires only a trivial sign change in the derivation of (20) to demonstrate this. C, 

We mention that another way of viewing the (U,, ) is by means of the (U,, ) for a different process. 
It can be seen that if (Y,, ) is a process deterministically related to (X,, ) by functions continuous and 

strictly monotonic-decreasing in their first argument y,, = d,, (x,,; x1- I), with the induced probability 
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distribution 'PY, then U,, from the (X,, ) process with PFS P is simply 1-U,, from the (Y,, ) process 

with PFS Py. 

3.4.2 Elimination of the U-Bias 

There does not seem to be much to choose between (21) and (22), but at least viewed together they 

suggest a way of eliminating the bias from the conditional distribution of U,, by simply redefining it 

as the mean of these two values 

_lXn-1) + FX lXn-1)) Un = 
12 ( FýC (Xn 

n 
(xn 

p[XncýXnjXn-I=Xn-1] lXn-I = Xn-1]. +21 P [Xn = Xn (24) 
71 

This results in a conditional c. d. L when P=Q 

G,, (ulx'-') sup{F,, X(xlx'-'):.! (F,, X(x-lx'-')+F, ý(xlx'-'))! ýu} 2 
x 

qnki if " (Pnk + qnk) :5u< qnk for some k; 
2 

Pnk I if Pnk <U< 12 (Pnk + q,, k) for some k; 

Go (u), otherwise, 

illustrated in Figure 4, and a conditional expectation, Rp [U,, jxn- 1] = 1, which is independent of 2 

n and unaffected by discontinuities in the predictive c. d. f., making this definition of (U,, ) preferable 

to the previous two. In Figure 4 the PFS remains as in Figure 3(a): it is the change from equation 

(21) to (24) which is responsible for Figure 4 replacing 3(b). 

3.4.3 A Formalisation in Terms of Integration by Parts 

In fact, (20), (23) and the last result can be rigorously obtained in the general mixed-distribution 

case directly from the integration by parts formula for Lebesgue-Stieltjes integrals, 

fs 
G, dH + 

fs 
H- dG = 

fs d(GH), (25) 

where the function definitions are G, :x ý-4 G(x+), H- :x -ý H(x-), and GH: x ý-+ G(x)H(x) and 
G and H are defined and of bounded variation on a (finite or infinite) interval containing S [2111s. 

18The Lebesgue-Stieltjes measure [21, p1561 implied by the symbol dG above is defined independently of the values 
of the function G at its points of discontinuity, being determined rather in terms of the one-sided limits G+ and G_ 
(It is, trivially, invariant also under addition of a scalar constant to G). This measure may be employed as a rigorous 
formalisation of the construction of a probability distribution given any function having the basic properties of a c. d. f. 
(although it equally has application to the definition of signed and non-finite measures). It can be obtained by a 
general measure extension procedure once it has been defined on finite intervals by definitions such as juc, 

((a, b]) = 
G+(b) - G+(a), etc. The measures, integrals, and the integration-by-parts equation (25) are guaranteed to apply at 
least to all Borel subsets S of the interval over which the functions G and 11 are defined. 



I 

q. 2 

P. 2 

q,. 

p" 

0 

CHAPTER 3. EXTENSION TO THE CASE OF DISCRETE PREDICTIONS 

q,,, P,, 2 q, -2 I U1, 

Figure 4: Conditional c. d. f. of unbiased version of U,, 
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For any function, H, of bounded variation over an interval containing S, it follows by putting G=H 

in (25) that 

H, dH + H- dH dH 2 

s 

fs 

s 

Also, from basic definitions, [21], 

fs H., dH - 
fs 

H- dH = 

and it follows that 

is 
H, - H- dH 

E H, - H- dH, 
k 

ffak) 

1: (H(ak+) - H(ak-))2 
k 

jak :k=1,2,... l being the 
discontinuity points of H in S, 

H, dH = .12 _))2) 2 JfSdH + Ek(H(ak+) 
- H(ak 

fS 
H_dH =12{fsdH 2_ Ek(H(ak+) - H(ak -))21 

which if applied to the function F, ý (- jxn- 1) over S=R, gives the results obtained above for the 

conditional expectations of U,, under the three alternative definitions. 

Alternatively these expectations can be obtained by inspection of the graphs of the c. d. f. s (see 

Figures 3 and 4 using the well known result that for a c. d. f. F of any non-negative random variable 
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x 

or 
xdF(x) = 

fo, * 
R(x)dx (26) 

where R(x) =1- F(x) is the reliability function of X. Thus the mean of the random variable is 

equal to the area bounded by the vertical axis "x = 0", the line "y = 1", and the graph of F (where 

discontinuities would be joined by vertical lines. ) The fact that this identity (26) continues to hold 

for arbitrary non-negative random variables can actually be shown from (25), and some additional 

reasoning, on putting G(x) =x and H(x) =1- F(x). (Essentially the same result was also quoted 

as equation (1) on p12. ) This enables the three results about bias to be verified by inspection of the 

graphs of the conditional c. d. f. s of U,,. 

3.4.4 A Randomised Definition of U Removing Both Bias and Disconti- 

nuity 

A further modification to the definition of (U,, ), reminiscent of procedures used for handling discon- 

tinuities in other contexts (e. g. [41, §20.22]), is to define U,, to be a point selected randomly from 

within the interval [F, ý (x,, - Ix'- 1), F, ý (xn jXn- I)I, instead of using an end-point or the mid-point 

of this interval as in the three definitions discussed so far. For this purpose, assume that (ýn) is an 

i. i. d. uniform U[O, 11 process which is assumed independent of the (X,, ) process (a realisation of (ý, ) 

could be generated by the observer), and redefine 

(27) 

To obtain the resulting revised c. d. f, G,, (u,, lxn-1), on the hypothesis P=Q, we fix a number u, and 

consider probabilities, conditional on XI-I = x1-1, of events in the space of (X,,, ý,, ) as follows: - 

(1 _ ýn)F, ý (X 
_ 1,, n- 1) +ý Fý (X lXn- 1) < U; n. nn 

E, F. X(X�lx'-1 
n )<u; 

E2 : Fý (X 
n _IX n- 1) 5U< FnX gn lXn- 1) A Zn 5 u- Fýc (Xn - 1., rn- 1) 

FX(X lXn-1) lxn- 1) 
nn- 

FnX (Xn - 

Then E= El U E2, El n E2 = 0, P[Ell is given by the RHS of (18), and 

(q, 
-, k - P. k) XU- 

Pnk 
, 

if uE [p,, k, qnk) for some k; 
P[E21 ý 

10, 

qnk - Pnk 
otherwise. 

It follows that 

Gn (Ulxn-1) = P[E] = P[Eij + P[E21 = Go(u), (28) 
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i. e., with this "randomised" definition, U,, is conditionally a uniform U[O, 1] random variable, given 

X n-1. 

In one sense this final definition of the process (Un) seems preferable to those preceding it 

in that it has recaptured the uniform-conditional-c. d. f. property of Un, which held in the case of 

continuous predictive distributions but at first appeared to have been lost in attempting to extend the 

application to a PFS producing arbitrary predictive distributions. It is also apparent, however, that 

in this last definition a random component-whose value is meaningless as far as the performance of 

the PFS is concerned-has been added to the (U,, ). This must have some detrimental effect on the 

usefulness of, for example, a u-plot used as a means of capturing graphically something of the nature 

of the bias in the output from a PFS applied to a particular data set. Also, if the sequence, (U"), 

were incorporated in a recalibration procedure, it is to be expected that any resulting recalibrated 

PFS would be subject to extra noise effects from the (C,, ), 

In the next section, a "Modified U-Plot" is suggested which makes use of the idea of the above 

(U,, ), without requiring a realisation of Thus the doubts mentioned in the previous paragraph 

do not arise. A further theoretical interpretation of this modified plot is attempted in §3.6, and in 

Chapter 4 results are presented based on this plot, after additional modifications have been developed 

also in §3.6 and Appendix B. 

3.5 Modified U-plot 

As mentioned at the end of §3.4, a plot can be produced via the definition (27) of (U,, ) without 

having to generate a noise sequence The definition of this plot can be presented as an extension 

of the definition already familiar for the continuous FX, case by, rather artificially, thinking of the 

familiar definition in terms of poste7ior c. d. f. s of the Uj; i=1,. .., n. Later on p78, it is suggested 

that this device indicates an approach to recalibration of predictions in other more general contexts. 

In the familiar continuous case, (27) reduces to %, = F, ý (Xn jXn-1) which is the standard definition 

Of Un. Then, the standard u-plot, regarded as a function, is the sample distribution function of 

(U, )n , i= (which we continue to write as Un. ) This function, Sn :R -+ [0,1], can be expressed using 

the Heaviside notation as 
n 

Sn(u) wiH(u - uj), i where wi = n-no+l f 
i=no 

which trivially can be rewritten 
n 

Sn(u) 1: 
wjG, (ujx'), (29) 

i-n() 



CHAPTER 3. EXTENSION TO THE CASE OF DISCRETE PREDICTIONS 58 

where Gj(- Ixi) is used to denote the c. d. f. (under the assumption that P= Q) of Uj, conditional 

on X' = x. Expressed in this form the definition will extend to the general mixed F. X case, i. e. 
(29) can be used as the basis of a Modified U-Plot defined for any scalar PFS applied to any data 

with U,, defined now by (27), (and therefore possibly not an observable quantity). Thus G,, (. jxn) 

will be the c. d. f. of a uniform U[Pnk, qnk] random variable, whenever x,, = ank for some k, and a 

constant random variable otherwise. This follows from the fact that (27) defines U,, such that Un, 

conditioned on X' = x', is distributed U[O, 1] for any m<n, and U[FflXn-jXn-1), FflXn jXn-1)] 

for any m>n, (provided P=Q. So instead of thinking of Un as a deterministic function of Xn' 

we think of it as having a posterior c. d. f. given XI = xn which, depending on xn, may or may not 

turn out to be a Heaviside function. The "u-plot" is defined in terms of these posterior c. d. f. s which 

take the form 
if u> FiK(xjjx'-1); 

U- F; ý( (xi - I. T4-1)x, 
_ 

if Fi"ý(xj-jx'-1) :5u<F; ý((xiix'-1); (30) i(UIXI) Fi(xijx'-I)-F, (xj-j 1)' 

0, if u<F; ý((xj-jx'-I). 

The resulting S,, is equal to a mixture of cumulative probability distribution functions, and must 

therefore itself be a c. d. f. Moreover if P=Q, then S,, is a random function with, for u any fixed 

number, 19 

n 
E[Sn(u)] = 

1: 
wiE[Gi(uIX')] 

Xlý 
i=no 

n 
Z wi 4 [Gi(Ulxi)] 

i=no X' 

n 

wi 
XE, 

[xi 

JE. _, 

[i 
P, [Ui < u] 1: x. IX 

Wi E, u) E X, - ilx 
1 

i=no 

n 
Wi 

X. - 1 
[ci(Ulxi 

t=no 
n 

wixE1 [GO(U)], by (28) 

t-n(b 
Co(u). 

So it has been shown that a function, S,,, can be defined by means of (27) and (29) which-regarded 

as a Modified U-Plot--extends to the case of a general PFS, the definition used in (2), whilst 
"The notations E[. 1, PJ. 1, E Hand PwH, where V and Ware random variables, are used hereto mean Ef. ), 

VV VJW VI 
P[ - 1, E[ - IWI and P[ - JWJ, respectively, explained in Chapter 2 pIO. Thus, strictly speaking, given that we are assum- 
ing for the joint process (X., C,, ) an underlying probability law with respect to which expectations and probabilities 
are defined, the "V" in these expressions is superfluous but is included as a reminder that the numerical value of the 
random variable or expression inside the square brackets is fully determined by a realisation of the pair (V, W). 
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preserving the property of expectations lying on the 45"-Iine under the hypothesis that P=Q. It 

is also of interest to see how this plot relates to that which would have been obtained had the (ý,, ) 

been explicitly generated. We can reexpress (29) as 
n 

S" (U) E wi P [Ui :5 U] (Uj still defined by (27)) 
i=no 

n 
Wi 

C,,,.. 
[Ui E (-OO, Ujl 

i=n, 
n 

E 
Wi 

i=nj) 
n 

Wi P,, [I-I(u 
- Uj)j E 

411, 
i=n, 

E,, 
n 

WjH(u - Uj)1 (32) 
V. 1'. 

1: 

i=n, 

So the definition (29), (30) is equivalent to assigning Sju) to be the expectation of the value which 

would have been obtained from the same realisation xI, by actually generating a realisation of ý', 

and using the sample c. d. f. of the resulting u' values obtained from (27). Equations (31) and (32) and 

the attempt at the end of this section to further emphasize the relationship to the continuous case by 

relating the Modified U-Plot to the u-plot of a hypothetical underlying process for which continuous 

predictive c. d. f. s would be appropriate, suggest using some measure of "distance" between S,, and 

Go as a comparative measure of predictive performance of different PFSs on a common data set, 

just as has been done, in for example [21, for continuous inter-failure time prediction. However, the 

present work provides no basis for carrying out a formal statistical hypothesis test of P=Q, from 

the Modified U-Plot alone 20 in the general mixed (or discrete) case since, although the point-wise 

expectation of S,, (u) has been shown by (31) to be u, still, the effect on the distribution of the 

Kolmogorov distance for plot (29), has not been analysed when H(u - uj) is replaced by equation 

(30)'s Gi(ulx'), for those ui which are incompletely observed. The Kolmogorov distance is therefore 

interpreted as an indicator of predictive quality in the same way as in [21, although now without the 

force of a formal statistical hypothesis test. As to the sign of the deviation, it should be born in 

mind that failure counts are a kind of reciprocal observation of inter-failure times, so that optimistic 

predictors of failure-count, (those which over-estimate future software reliability), will have u-plots 

which deviate below the 45*-Iine-which would indicate pessimism if the predictions had been of 

inter-failure times, as in [2]. 

In appearance the plot described above is piece-wise linear, having gradient changes at points 
200f course a formally correct rundomised test could be obtained using the u-plot produced by actually generating 

the Cn of equation (27). 
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U= Ak and qtk for those i with xi = aik for some k; and having discontinuities of size wi at u= ui 
for other i. Its slope at u, obtained from (29), is 

dS� Wi 
du 

Z 
(qzk - Pik) 

(fli k k. 

where defined. If in the application of a PFS, every observed value xi has been correctly predicted 

on the basis of x'-', with non-zero probability, then the plot here described will be a continuous 

function. This is the likely situation with software failure-count data2l . Examples of plots obtained 

are presented in Appendix A. 

3.5.1 An Alternative Interpretation in Terms of a Hypothetical Continuous- 

Valued Process 

Before going on to describe its use for recalibration in §3.6, we mention an alternative way of 

viewing the (U,, ) sequence defined by (27), which gives more meaning to the introduction of the 

random quantity ýi. The basic idea here is to suggest that there may be a quantity underlying the 

observations which can be represented as a process (Z,, ) whose conditional cAfs are continuous. 

The (X,, ) could then be thought of as that part of (Z,, ) which is available to the observer, i. e. as 

the result of incomplete observation of the process (Z,, ). ý,, would represent the information lost in 

the step from Z,, to X,,. Suppose that the following conditions hold: - 
(i) (X,,, Z,, ) is a two dimensional random process, (Z,, ) having marginal joint distribution ? z; 

(ii) For each n, Xn is a deterministic function of Zn by means of a sequence of functions (vn) each 

non-decreasing in its first argument 

Xl ý-- Vl (Zl) 
i 

X2 =-- V2 (Z2 
i 

XI) 
i .... 

Xn = Vn (Zn, Xn-1), 
... ; 

(iii) The marginal probability distribution for (X, ), which is determined by Pz and the functions 

(v,, ), is *P. 

Figure 5 illustrates the function V,, (., n- 1) which maps the interval [bno, cno] onto the single point 

ano, the interval (cno, b,,, ) monotonically onto (anO, anl), and [bnl, cnll onto the point ani where 

it is assumed that a,, o and a,, l are two adjacent points at which positive predictive probability is 

21Exceptions do exist, such as ML plug-in based PFSs in which the size of the initial fault population is a finite 
(or at least allowably finite) model parameter: then a failure count may be observed after having a zero assigned 
predictive probability. The JM model on p37 is an example. 
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c,. 0 b, ý 1 cul 
a1j! i 

a'. 0 a,, 

Figure 5: Interpretation of C,, in terms of a hypothetical underlying continuously distributed quantity 
Z. 

assigned, by P, to X,, given that X'-1 = x1-1. The points b,, i and c,, i are allowed to depend on 

x'-'. It now follows from the assumption that Pz has continuous predictive c. d. f. s 

EZ(Z"IZ, -1) =p [Zn: 5 Zn1Zn-1 = n pz 

that the associated (UZ, ) process (defined according to the original form (15) with Z replacing X), 

has conditional c. d. f. s p, z [Uý 
.5 UjZn- I= Zn- 1] = Go(u). It then follows that (30) above also 

defines the conditional c. d. f. of Unz given xn, i. e. (27) defines Un having the same conditional distri- 

bution given xn as has Uý, defined according to the standard definition, (15), for the hypothetical 

process (Z,, ), 

P[U,,! 5 UIX'] =P [U'z' 
r PZ 

This suggests that, provided it is agreed to accept the existence of such an unobserved process (Z,, ), 

then U,, defined by (27) can be identified with UZ,, defined in the original manner, for the (Z,, ) 

process. Thus the modified u-sequence is nothing more than the familiar u-sequence for prediction 

of the process (Z,, ) using the PFS Pz. And the modified u-plot s ý-+ S,, (s) is the point-wise posterior 

expectation of the ordinary u-plot (29) of the incompletely observed (Z,, ) process with respect to 

this "extended" PFS Pz- 

3.6 Further Modifications for Recalibration 

In this section the use of the Modified U-Plot described in §3.5 for improving failure-count predictions 
by recalibration techniques is discussed. There are certain problems with the idea of recalibrating 
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failure-count predictions which are mentioned-for example, the problem of unequal duration of 
failure-count time intervals. Arguments for attempting to use some kind of recalibration technique 

despite these problems, are the consistent success achieved in the inter-failure time case, [59], and the 

problem mentioned in [21 of the apparent non-existence of widely applicable "best" raw software reli- 

ability growth models. In view of such problems this section is intended to comprise an investigation 

of some techniques for recalibrating a PFS, complemented by a data analysis in Chapter 4 indicating 

the effectiveness of these techniques. Some success in recalibration of failure-count predictions is 

evident in the numerical results of §4.2 for both simulated and real failure data. In fact, both the 

definition of the Modified U-Plot and its method of use for the purpose of recalibrating predictive 

distributions could be applied as described here in the general case of arbitrary mixed predictive 

distributions. However numerical results have been obtained only for the case of the purely discrete 

predictive c. d. f. s appropriate for prediction of failure-count processes. For the other special case 

in which the predictive c. d. f. s are purely continuous, both the Modified U-Plot and the technique 

of recalibration given in this chapter become equivalent to those discussed in [111 and [59], where 

they are applied to inter-failure time data. In addition, the two further enhancements to the u-plot, 

described below, and intended to improve its use in recalibration, remain applicable in the general 

mixed case and, in particular, might be useful in the case of inter-failure time prediction-although 

perhaps slightly less so than they are shown to be in the failure-count context by the numerical 

results of §4.2. The second of these two enhancements-the technique of introducing tighter con- 

straints on the derivative of the smoothed plot-is probably most beneficial when the number of 

past predictions (i. e. the number of "u"s observed) is small, which will more commonly occur with 

failure-count data than with individual inter-failure times. 

The description of the recalibration technique which will be given later in this section, including 

the two optional modifications mentioned, originates from the following general understanding of 

the role of recalibration in improving predictive distributions, (c. f. [6,10,11,20,59,7] and [5G]): 

3.6.1 A PFS 'P as : (i) a Probability Model for (X,, ); or (ii) a Transfor- 

mation between (X,, ) and (U,, ) 

An observer generates one-step-ahead predictive c. d. f. s (F, ý Jxn- T for a process, (Xn), using a 

raw PFS which, as explained in §3.2, is here assumed equivalent to a joint distribution, Pp, for (Xn), 

with the conditional c. d. f. s of Pp equal to the predictive c. d. f. s from the PFS. However, the fact that 

the observer is prepared to consider a recalibrated version of this PFS indicates that the observer 
is treating P as a provisional probabilistic model only, and retains a "higher level" model of the 
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situation. According to this higher model (X,, ) arises from a true22 0 joint probability distribution, 

PQ, which is unknown and from which P-p may differ. Thus, on moving to the higher model, the 

role of P is changed from being the probabilistic law for the process (X,, ). Rather, P can be loosely 

regarded as defining a transformation, known to the observer (via (27) in our generalised-u case), 

between the processes (X,, ) and (U,, ). Therefore any value of Q, the unknown true joint distribution 

for (X,, ), should induce a similarly unknown joint distribution, SQ say, for the (U,, ) process 

«X. ) , Q) V «U. ), S, 2). (33) 

The result of this transformation was considered in §§3.2 & 3.4 only for the special case Q=P, 

«x. ), p) lp 

say. 

3.6.2 Recalibration Viewed as Replacement of the model for (U,, ) 

The recalibrated PFS can now be viewed as resulting from a decision to replace the PFS S*P for 

(U,, )-which would be logically consistent with belief in P for (X,, )-by a crude PFS, S* say, for 

(U,, ) which is chosen by the observer independently of any specific modelling assumptions which 

were involved in the original justification of the raw PFS P for (X,, ). Having replaced SP by S* 

as the probabilistic model for (U,, ), the recalibrated PFS, P* say, for the (X,, ) process becomes 

determined by a requirement for consistency of the probabilistic model representations of the PFSs 

for the two processes (X,, ) and (U,, ), 

((X. ), P*) fip 6 ((U. ), S*) - 
(N. B. Here, the definition of each realisation (un) in terms of (xn) has remained unchanged, still 

being given by (27) using the unchanged raw PFS, P. ) 0 

Some Requirements for a Fully Rigorous Argument 

The above description is intended to motivate the recalibration techniques described below by em- 

phasizing the central task of choosing a PFS S* for the (U,, ) process independently of the assumptions 

involved in the raw PFS, P. However, it is not strictly accurate-particularly for the cases where 

definition (27) is used for a PFS P which can assign concentrated predictive probability. In order to 

provide a rigorous development (which has not been done here) along the same lines, in the general 

case, the following problems would need to be dealt with: - 
22But see remarks in §3.2.3. 
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(i) The equivalence of a PFS (i. e. sequence of c. d. f. s (F, ý (-I- ))) to a joint probability distribution, 

as mentioned on p48, is not 1-1. Many sequences of conditional c. d. f. s may define the same joint 

distribution. We can assume, provided the sequence (Fx may correctly be regarded as n 

conditional c. d. f. s consistent with the probability measure Pp (defined by equation (16)), that, 

by standard properties of conditional probability" the sequence of functions (F, ý(. Jxn-1)) 

which arise for a given realisation of (Xn) will be, with P-probability one, identical to that 

arising from any given other PFS consistent in the same way with the joint distribution, Pp. 

However, the phrase "with probability 1" may be less reassuring than usual in our situation 

here since this probability is Pp-probability, and we are not assuming Pp to be the true 

distribution Of (Xn )24. 

(ii) Even after fixing upon a single sequence of c. d. f. functions corresponding to P, the transfor- 

mation between x' and u' provided by (27) is not deterministic, because of &, in cases where 

one of the xi has been predicted with positive probability. It is also the case in general that 

many n-vectors x' may map onto one ul since a c. d. f. function FX(. Ix'-') is not necessarily 9 
1-1. All we can say with certainty about the general case is that any sequence of functions 

corresponding to P defines a correspondence between any x1 and a set of possible Un , and 

between any Un and a set of possible Xn. 

The form of the relationship between the PFS S*, (sequence of functions (GS, * (u,, lull-, )), say), 

and the recalibrated PFS P*, (say (Fn*X(X,, jXn-1))), can be obtained by noting that, given the 

observation Xn-I = x", the two events: Xn :5 xn, and U,, :5F, ý(Xnjxn-') are identical. (Here 

there is a problem from (ii) above if F, ý(- jXn-1) is constant on an interval extending to the right 

from xn. ) Then, provided we read the condition jun-I )I as "given that un- I lies in a set consistent 

only with Xn-I = xI-I ", we can derive 

P[X.: 5x. lx"-'] 
. p. 

P[U�5Fý(xnlx'-1)Iun-1 

21A countable intersection of probability-one events has probability one. So, it suffices to show, that for each 
individual integer n and (using also right-continuity of c. d. f. s) for each rational first argument Xn (to the left of the 
'I'), the two predictive c. d. f. s will agree (as functions of the vector Xn- I to the right of the 'J') with Pp-probability 1. 
This weaker statement will follow after verifying that assumption (16) for a process measure Pp implies that, for any 
fixed numberXn, thec. d. f. FflXnI '), when regarded as a function of the vector argument to the right hand sideof the 
'1', satisfies the properties of a'Radon-N ikodym derivative' of the measure E- Pp[(w: Xn(w) :5 xn A Xn-'(w) E E] 
with respect to the measure Eý pp[(LO: Xn-I(W) E E]. Now rely on the theorem (21, pl. 391 that two equivalent 
Radon-Nikodym derivatives can only differ on a zero-measure subset of the domain of their argument variable-in this 
case of the variable Xn-1, where the measure concerned in our case here (i. e. the second of the above two measures) 
is clearly just Pp-probability. 

241n measure theory terminology, we might even not have absolutely continuity [21, p139] of PC relative to Pp, in 
which case having to ignore a "Pp-probability 0" collection of exceptional cases might represent a significant weakness 
if that collection of process realisations has positive PQ-probability. 
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Gý*(FflX,, jx, -I)jun-I n 
)l (34) 

which states the familiar result [59] that the recalibrated predictive c. d. f. of X,, given x,, -, is 

obtained by the function-composition of the observer's predictive c. d. f. Gn5* (. jUn-1) for Un with 

the raw predictive c. d. f. F, ý(-Ixn-l) for Xn given Xn-I ý xn-1. This recalibration procedure 

is the same as that used in the references cited on p62, provided that the standard u-plot given 

in those references is interpreted as the observer's predictive c. d. f. GS, (. Jun-1) of Un. Thus in n 
the case of inter-failure time prediction, the PPS S* has been defined by setting the predictive 

c. d. f. s Gs*(. jun-1) equal to the sample c. d. f. of all the ui values observed up to current time (or 
n 

a smoothed version of this). For the case of an arbitrary raw PFS we generalise this technique by 

setting GS* 10- 1) equal to the modified u-plot function, Sn- 1, defined by (29) and (30). Again 
n 

here it is assumed understood that references to the "observed un-,,, (as well as conditioning of the 

form ,. jun-l,, in probability statements and predictive c. d. f. s) must be regarded as a shorthand 

for "observation that Un-1 lies within the set of possible values consistent with the observed value 

of xn- 1 ". 

A small point about definition (34) is that there are some special circumstances in which-to 

be logically consistent-we must allow the recalibrated predictive distribution F, *, X(x, lx"-I) to be 

'improper'. E. g. positive "S*-predictive probability" concentrated at U,, =1 can cause F, *, x (x,, jxn- 1) 

to assign positive probability to the prediction X,, =oo, even when the corresponding raw distribution 

Fx (x,, Ix'-') is not improper in this sense. In other respects we do have good c. d. f. -behaviour of n 

Fn*x I.,, n-1) (monotonic non-decreasing, and right-continuous) inherited from similar behaviour of 

both Ffl. jxn-1) and G'*(. jun-1). However, when we consider the effect of definition (34) on left 
n 

hand limit values, we find that the situation becomes complicated due to the lack of left-continuity 

for general c. d. f. functions. In particular, to take one interesting case which crops up in the numerical 

examples of chapter 4, when we consider the extreme, large values of X,, and U,,, we find that we 

can, for the recalibrated predictor, rely only on 

lim F*X(x lx'-') 
G. . (SlUn-1), 

nn x,. _00 Gnl'(S - jUn-I 
n 

)l 

if Fflx,, jxl-l) attains s for some finite x,,; 

otherwise, 
L-f liMjc,. _cO 

FX(Xnl. Xn-1 where s' 'n 
). So, even for a 'proper' raw predictor (a predictor with s=1), the 

presence of a discontinuity Gs*(l - 10-') < Gs*(llun-1) corresponding to concentrated predictive nn 
probability of the PFS S* at the value Un=1 will produce an improper recalibrated predictor whenever 
the proper raw distribution Fflxn jxn-1) represents an unbounded (above) RV. That is to say, a 

proper, unbounded raw predictive distribution becomes improper upon recalibration whenever the PFS 

S* assigns positive predictive probability to the extreme event Un=1 corresponding to Xn=00- In 
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this case, the logically consistent interpretation of (34) is simply that the recalibrated predictor 

F,, *X(. lxn-1) predicts a value of oo for Xn with a positive probability equal to that with which 

G, I* (U,, Iul-') predicts the extreme event Un=l. There are other related special cases, such as that n 

a zero S*-predictive probability on a neighbourhood of U,, =l can result in a proper (or bounded) 

recalibrated predictor where the original raw predictor lacked the same property of being proper 

(or bounded). Another cme, perhaps more difficult to interpret in the application to failure count 

or inter-failure time prediction, would be the event that CS* jun- 1) might concentrate predictive n 

probability at the small end extreme Un=O. Logically, according to (34), this appears to demand 

the interpretation that the recalibrated predictor is assigning positive probability to a value for Xn 

which is off the small end of the scale of values predicted by the raw PFS-perhaps in the form of a 

prediction that X,, =- oo with positive probability. Depending on how the recalibrated probabilities 

embodied in the PFS S* are obtained, various of these awkward cases can be argued to be improbable 

or impossible to occur. In particular, the gradient constraints described in §3.6.6 can be used to 

eliminate the possibility of S*-probability concentrated at point values. These considerations seem 

similar to those concerning recalibration of small probabilities discussed below in §3.6.5. 

3.6.3 Weighting the U-Plot Sum when it is Used for Recalibration 

One alternative to the use of equal weights in (29) is for the observer to represent, by the assignment 

of different weights wi, any intuitive belief they may hold that certain of the previous Uj should be 

modelled under S* as being more strongly associated with U,, than others. Thus it is possible to 

arrive at a predictive distribution of U,, under an alternative S* by taking S,, -,, from (29), as the 

predictive c. d. f. of U,,, but now with the wi varying in some systematic way to reflect the intuition 

of the observer. In obtaining the results of §4.2, weights were used which decrease exponentially the 

less recent the prediction Fj' Ix'- 1) from which ui (or rather its posterior c. d. f. Gj 1xi), given by 

(30)) was obtained, so that 

n-1 
where wi = 

n-l-i(l _ r) (35) Gsn* (ulun-1) = 
1: wiGi(ulx'), 

-, rn-no 10<r<1. 
i=no 

Thus a decision can be taken to be influenced more heavily by the most up-to-date observation of 
how the realisation (u,, ) of the process (U,, ) is behaving. Figure 6a on p67 provides some empirical 

evidence to support this approach. In this figure the functions 

n 
Sn(U) T'oGi(UIX4), n= 15,25,35,45,55 

10 
i=n-9 
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Figure 6a: Evidence of trend in (U,, ) for DJMAG PFS applied to SS3 data 
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are shown for the DJMAG PFS (see p85) applied to the SS3 data set (see p84 and Table 2 on p86). 
Interpreted as empirical approximations to the marginal distributions of the Uj values taken from 

each of these 5 disjoint i-sequences, the corresponding 5 plotted functions seem at least consistent 

with some kind of systematic trend over time in the distribution of the (U,, ). Hence, we can informally 

regard Figure 6a as evidence which suggests an explanation for the effectiveness-as applied to this 

particular combination of data and PFS (see Chapter 4)-of recalibrators based on the exponential 

sequence of weights given in equation (35). 

Of course, any formal test of such a "trend" hypothesis for the (U,, ) would need to take account 

of the "censoring" involved here: The (U,, ) of §3.4.4, adopted throughout §3.5, were defined in 

such a way (27) as to be incompletely determined by observation of the (x,, ). Tile indeterminacy 

of our randomized U,, -sequence, as described in §§3.4.4-3.5.1, creates complications in the task of 

statistically formalizing a test for trend. These complications are related to the similar difficulties 

mentioned on p59 of formally testing the significance of deviations of the Modified U-Plot from 

the ideal uniformity of U,, -distribution corresponding to the 45"-Iine. We briefly, in the following 

section, investigate the utility, under such difficulties, of a 'y-plot' as a test for trend, illustrating the 

discussion in terms of testing for the trend that, on visual inspection at least, appears to be present 

in the (u,, ) data as represented in Figure 6a. 

3.6.4 'Y-plot' Tests for Trend in the Case of Discrete" Predictions 

A commonly used [59,54,10], [7, p281, [65, p140] statistical test for systematic trend in a standard 

(u,, ) sequence (i. e. a fully observable (u,, ) sequence emanating from a continuous PFS applied to, for 

example, a sequence of one-step-ahead inter-failure time predictions) is based on a transformation 

of the vector of observed (un) values whose sample c. d. f. is plotted as a 'y-plot'. Let us assume there 

are K of these observed un and index them uno, Uno + 1, --- Uno +K-1 (remembering that prediction 
begins at observation sequence index no > 1). Then the y-plot is formed of the transformed sequence 

n 
E log(i - ui) 

Yll -- 
i=no 

I-n= no,..., no+K-2 (36) 
no+K- 

E log(i - ui) 
i=no 

Here, each y,, is a function of the entire sequence (U, )n(i+K-1 of observed U s; so notice that, i-no 

unlike the un residual whose value depends only on 'the p,, StiN, the value of the 'transformed 
"The reasoning used here applies equally to Mixed Predictions 
26on xi for i<n 
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residual' y,, is dependent, via the denominator of (36), on the number of subsequent predictions 

that are to be made before the statistical test for trend will be applied (predictions of those Xj 

with n<i< no+K-1), as well as on the eventual realised values of these later-predicted elements 

U, )7o+K-1 of the (Xn) sequence. Under the usual null hypothesis that the ( 
=n,, are independently 

distributed from an identical uniform probability distribution (corresponding to a PFS of the (Xn) 

which is 'perfect' or 'true', and which nowhere concentrates predictive probability mass at a point 

value---see §3.3 on p49), the (yi)nf)+K-2 become distributed as the order statistics of a random i=no 
(Ui)no+K-1 27 U[O, 1] sample of size one less than the size K of the i=no samp e. Significant deviation 

of this (Y, )n, )+K-2 sample from such uniformity, as measured by the Kolmogorov-Smirnov distance 
i=no 

(sometimes shortened to 'KS-distance', or 'Kolmogorov-distance') of the sample c. d. f. of these (yi), 

has been used elsewhere to test for systematic trend in the sequence (Ui)7(j+K-1. (Littlewood and s=no 
Keiller [591 point out that any such trend might be interpreted in terms of a failure of the PFS to 

capture correctly some trend in the reliability data-in their case an inter-failure time sequence-to 

which the PFS is being applied. ) 

The immediate difficulty with transporting this y-plot technique into the generalised context 

of our Modified U-Plot is that we have resorted to a randomized u-residual (27) each time that 

predictive probability has been concentrated at a point value x, immediately prior to this value 

being realised, X,, =x. Then the corresponding un in (27) is incompletely observed. So long as there 

is at least one such randomized u., for which we will finally have only a posterior distribution- 

K-2 (y not an exact numerical value, then all of our (yi)7"+ become RVs i)!,,, 
+K-2 for which we, , =n,, s=no 

likewise, have only posterior distributions with which to work. (In fact, at the end of our sequence 

i)ý()+K-2 
I (Xi)71)+K-1 (Y of observations, we have a joint, posterior distribution 4 %=no i=no 

for the Y-vector, 

whose components will be statistically associated. ) Recall from §3.5 that, in this generalised discrete- 

or mixed- prediction case, under a hypothesis of 'perfection' of our PFS (notated as *P =Q in § §3.2- 

3.5), and prior to obtaining any observation evidence of the form (X,, ) = (x,, ), our randomized 

U,, are distributed i1d. uniformly U[O, 11. Under the same 'PFS perfection' hypothesis, but now 

conditionally at the end of the prediction/observation process, given observations (x,, )"' +K-1 
I i-n,, the 

updated distribution of our randomized U,, says that they are now conditionally independently, 

non-identically, uniformly distributed 

UI (x, )7o+K-1 
n %=n,, ' U[Pnk, qnk] (37) 

2713riefly, under the null hypothesis, auý- log(l - u) transformation creates HA exponentially distributed RVs. 
Thinking of these as the spacings of successive points of an IIPP process in time, we may consider the time interval 
from time zero, up to the time of the Kth of these points, and condition on its length. It is a well known property [14, 
p27] of the HPP process that the positions of the intermediate K-1 points within this interval are then conditionally 
distributed as order statistics of a (K- 1)-sized random sample from a uniform distribution. 
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where k is determined by the value of the observed x,, and may below be dropped from the notation 

without ambiguity. See Figure 3(a) on p5l. For the data illustrated in Figure 6a, we have tabulated 

these 'observed u-intervals' [p,,, q,, ] as the central columns in Table 1 on p72. Clearly the development 

of a 'y-plot-based' test for trend in the randomized (u, ) would require that some thought should 
be applied to the consequences, of this posterior U,, -distribution (37), for the induced posterior 
distribution of the (Y,, ) vector, defined by (36), under the same null hypothesis of a perfect PFS. 

Firstly, we can see easily from (36) that y,, is a monotonically increasing function of each ui with 

no <i<n, and a monotonically decreasing function of each ui with n<i :5 no+K-1, yielding the 

I (X, )no+K-1. bounds of the posterior marginal distribution of Yn i=no 
n 

E log(I - pi) 
min i=n, (38) Yn 

n n, )+K-1 
E log(' 

- pi) +E log(I - qj) 
t=n, ) i=n+l 

n 
1: log(l - qj) 

max i=no (39) Yn 
n n,, +K-1 

E log(l - qj) +E log(l - pi) 
i=no i=n+l 

With a little more effort28, the mean value of this same posterior Y,, -distribution 

-'] =1n )/no+K-1 E[ Yn 
I 

(X 
i) s7=". 

+, ýf[E log(i 
- Ui 

1: log(l 
- ui) 

volume(C) c 
t=no i=no 

I 

may be obtained by numerical integration, where C is the K-dimensional hyper-cube defined by 

pi :5 ui :5 qi, i= no,..., no+K-1. The numerical values for these three ynini", E[Yn I data], ym", n 

obtained using the same data set that was used to produce Figure 6a, are tabulated as the righthand 

columns of Table 1 on p72. These three columns are plotted in Figure 6b in the form of three 

corresponding sample c. d. f. s (but note the cosmetic adjustment mentioned in footnote 30). That is, 

for each value of the ordinate P, if we draw a horizontal line across the figure at that P-value, it will 

intersect the three graphs shown at the minimum, mean, and maximum, respectively, of the posterior 

distribution of the point at which the y-plot (i. e. the sample c. d. f. -were the exact values comprising 
(Y n)54 the sample ., known) corresponding to our unobservable, randomized (Un), 55 

6 would intersect n= n= 

the same horizontal line. As in the case of the Modified U-Plot, which we earlier defined similarly as 

th6 posterior mean of an unobservable plot29 associated with randomised residuals, it is not obvious 
28The dimension of the integral may be high, but the integrand is a well-behaved, bounded, smooth function, 

monotonic in each argument ui. 
29similarly, but not quite equivalently: Even if we restrict to equal weights wi in the definition (29), (30) on p57 

of the Modified U-Plot, still we used there (see also (32) on p5g) the posterior expectation of the sample c. d. f. of an 
'incompletely observable sample'; whereas the middle plot in Figure 6b corresponds rather to the sample c. d. f. of the 
posterior expected order statistics of an 'incompletely observable sample'. 
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how to interpret the middle plot of Figure 6b in a manner enabling a formal statistical test for trend 

to be obtained. As for the U-plot case, we provide no answer, in this thesis, to the general problem of 

formally interpreting our "E[Y]-plot" in the discrete- (or mixed-) data cases. Fortunately, however, 

in the case of this particular data set, the deviation from the 45*-Iine is sufficiently pronounced that 

even the extremes (38), (39)-between3O which the unobservable c. d. f. of the true Y,, -sequence must 

of course lie-can be used to formally reject a hypothesis of uniformity for the (Y,, ) with a high 

degree of confidence. The Kolmogorov-Smirnov distance (KS-distance, or KS-statistic) [41, §30.49, 

p477], [80,75] is one test statistic commonly used in this context. In the case of the data illustrated 

in Figure 6b, we know that the KS-statistic (of the unobservable sample c. d. f. of the randomized 

(Y n)54 r . n= , values) must be at least . 2283. We are assured of this because the most 'vertically distant' 

point on our "y"' c. d. f. " from the 45*-line may be easily verified from the numbers in Table 1 to 
n 

occur immediately before the step positioned at the value y, in on the horizontal axis. This is the 23rd 
28 

y min 
-value (because we began prediction at n= no = 6), i. e. it is the step up to level 24 on the P-axis 49 

(the vertical axis of the graph). So, without reference to the posterior y-plot distribution shape or 

to the computed values of the posterior y-means, but knowing only the extremes y'nin and ymax of 

this distribution, our lower bound on the KS-distance is the distance between the points (ymin, 22) 28 T9 

and (Ymin, min 
28 Y28 ) on Figure 6b. Coincidentally, this lower bound of 0.6773-L2 = 0.2283 is equal (to 4 49 

r, 
for a sample of this size significant digits) to the M-critical value of the Kolmogorov-Smirnov test3l 

(Yn, n=6,..., 54, so the sample size is 49 [80,751). We can conclude, in the case of this data shown 

in Table 1 and Figure 6a, that there is a formally confirmed deviation of our 'randomised Y-plot' 

below the 45*-Iine, which is at least as significant as the 1%-level. The (Yn) are therefore statistically 

'too large' to be accepted at the Mlevel as a sample from a parent distribution uniform on the 

interval [0,11. This in turn means that the randomised (U,, ) show a significantly decreasing trend, 

as Figure 6a earlier seemed to suggest that they might, so that the DJMAG predictions obtained 

with this discrete SS3 data set are tending towards increasing pessimism (smaller u-values) as time 

progresses. 
30We found that, if one attempts to plot at this resolution exactly the steps of a step function (and at the same 

time distinguish the three plots by means of dashed line styles), then the graphing package produces an unsatisfactory 
line. So Figure 6b was plotted by joining with straight line segments only the front (i. e. upper, left) corners of each 
'step' (of the sample c. d. f. functions, for each of the three quantities that are tabulated in the 'Y-values' column of 
Table 1). Le. there is a small discrepancy (maximum vertical size -L : so just visible at the resolution of this figure) 

49 

! =6 
between the plots shown and the true region known to contain the sample c. d. f. graph of the unobservable (yn), S, 4 

sequence. This pictorial discrepancy is present only on the plots of Figure 6b, and does not affect either the numerical 
values in Table 1, or the calculation of the lower bound on KS-distance, both of which we obtained exactly (to the 
number of digits shown in Table 1), using the exact, step-function sample c. d. f. s., as required by the rigorous KS test 
procedure. 

31two-sided, single-sample 
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There have been several other tests proposed for identifying trend in the spacings of a point- 

process. For example, the 'Laplace test' [7,651, or the various tests mentioned in [14, Chapter 3]. We 

will not further pursue the notion of formal U,, -trend-tests for our randomized (U,, ) in this thesis, 

contenting ourselves with the initial thoughts and example given above about extending the 'y-plot' 

method, and with our proposal that the possibility of systematic trend in the (U,, ) provides one 

potential justification for considering the use of unequal weights wi in a Modified U-Plot (29) on 

p57 when it is to be used for recalibrating a PFS. 

Failure Counts 

Index Count 

11-values Y-values 

n MI. P'. y E[Y,, ] Y. 

6 4 0.4070 0.6019 0.007289 0.0116 0.01744 
7 2 0.0954 0.2457 0.008709 0.0146 0.02270 
8 10 0.9966 0.9990 0.08971 0.1152 0.1489 
9 3 0.2432 0.4402 0.09407 0.1221 0.1587 

10 4 0.4743 0.6686 0.1039 0.1361 0.1775 
11 5 0.6817 0.8260 0.1214 0.1592 0.2070 
12 7 0.9120 0.9615 0.1586 0.2047 0.2617 
13 10 0.9917 0.9971 0.2325 0.2900 0.3586 
14 5 0.4965 0.6702 0.2442 0.3045 0.3752 
15 8 0.9021 0.9533 0.2822 0.3477 0.4227 
16 8 0.8645 0.9306 0.3157 0.3852 0.4630 
17 5 0.3774 0.5505 0.3246 0.3955 0.4739 
18 5 0.4002 0.5747 0.3343 0.4064 0.4854 
19 14 0.9991 0.9997 0.4508 0.5286 0.6099 
20 7 0.5525 0.6966 0.4663 0.5447 0.6255 
21 9 0.8022 0.8850 0.4963 0.5752 0.6549 
22 3 0.0339 0.0917 0.4973 0.5763 0.6558 
23 7 0.5776 0.7190 0.5145 0.5934 0.6719 
24 7 0.5649 0.7077 0.5313 0.6101 0.6872 
25 7 0.5536 0.6976 0.5478 0.6262 0.7019 
26 3 0.0466 0.1195 0.5493 0.6276 0.7030 
27 10 0.9211 0.9604 0.5975 0.6741 0.7459 
28 13 0.9860 0.9939 0.6773 0.7496 0.8150 
29 3 0.0296 0.0818 0.6784 0.7506 0.8156 
30 3 0.0379 0.1005 0.6798 0.7517 0.8164 
31 6 0.4118 0.5718 0.6924 0.7628 0.8254 
32 8 0.7210 0.8298 0.7200 0.7874 0.8462 
33 1 0.0018 0.0130 0.7201 0.7875 0.8462 
34 2 0.0211 0.0730 0.7212 0.7883 0.8467 
35 1 0.0045 0.0288 0.7216 0.7886 0.8468 
36 2 0.0396 0.1226 0.7234 0.7900 0.8476 
37 1 0.0084 0.0487 0,7240 0.7904 0.8478 
38 0 0.0000 0.0111 0.7242 0.7905 0.8479 
39 6 0.7523 0.8669 0.7560 0.8179 0.8702 
40 4 0.3832 0.5769 0.7694 0.8286 0.8782 
41 4 0.3916 0.5858 0.7832 0.8397 0.8862 
42 1 0.0153 0.0792 0.7844 0.8405 0.8866 
43 3 0.2387 0.4342 0.7933 0.8472 0.8911 
44 4 0.4488 0.6441 0.8101 0.8603 0.9005 
45 7 0.8997 0.9547 0.8630 0.9035 0.9350 
46 3 0.2377 0.4329 0.8726 0.9102 0.9392 
47 1 0.0196 0.0967 0.8742 0.9112 0.9396 
48 4 0.4764 0.6707 0.8935 0.9252 0.9493 
49 3 0.2738 0.4797 0.9048 0.9330 0.9541 
50 0 0.0000 0.0244 0.9052 0.9332 0.9541 
51 2 0.1302 0.3108 0.9117 0.9373 0.9562 
52 5 0.7296 0.8605 0.9475 0.9635 0.9750 
53 1 0.0300 0.1353 0.9501 0.9649 0.9755 
54 1 0.0332 0.1463 0.9529 0.9664 0.9760 
55 5 

1 
0.8191 0.9184 

. 

Table 1: Investigation of Y-Plot as Measure of Trend in the U-Data of Figure 6a 
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Figure 6b: Distribution of 'y-plot' for DJMAG PFS applied to SS3 data 

3.6.5 A Difficulty of Recalibrating Very Small Probabilities 

It perhaps seems unreasonable to assume that the predictive c. d. f., GS* jun- 1), should possess n 
discontinuities, or discontinuities in derivative, at the points, mentioned in §3.5, where Sn-1 does. 

For this reason we have applied the same smoother, based on the use of B-splines and used in [11], 

to Sn- I before using it as GS'( - jun- 1) in order to recalibrate. The results obtained are presented n 
in §4.2. 

A modification of this smoother has been implemented, in an attempt to overcome the following 0 
weakness in the recalibrator as so far described. A large random variability in the recalibrated 

predictive probability of unlikely events results from the above method of defining GS* (. jun- 1). 
n 

This may be especially noticeable in the case of discrete predictive c. d. f. s. The importance or 

otherwise of this variability depends in part on whether it is considered desirable to predict unlikely 

events as accurately as likely ones, with probabilities which are proportionately not too far in error. 

If this is so, then the random variability can be partially corrected by the smoothing procedure as it 

stands, but further improvement has been obtained (as measured by discrete prequential likelihood). 

If a "small" (in probability terms) subset, A say, of [0,1] is considered and if the number n-1 of 

observed ui is not large, then there is a high probability that the proportion of the ui in 0- 1 which 

I 

. 100 

00, 

y 
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fall in A is not at all representative of the 'true probability' of such an event occurring, nor, more 
importantly, of the observer's subjective "recalibrated" probability (i. e. under his alternative model 
S*) that the next Un is about to fall in A. This is simply because, in percentage-error terms, a 

reliable estimate of the probability of an unlikely event is not given by the proportion of occurrences 

in a small number of trials 32 
. For example, in the context of discrete predictions it is frequently 

the case that the recalibrated predictive probability of one discrete outcome for X,,, given x'-', 

corresponds to the predictive probability, based on S*, of U,, lying in such a small subset of [0,1]. 

(This can be verified from the u-plots in Chapter 4. ) To take a hypothetical example in which 

X,, takes non-negative integer values only, suppose A is the interval [0,011 and the event X16 =0 

or I given x15 corresponds to U16 lying in A (i. e. suppose FIX6(llxl5) = . 01). Then the current 

recalibration procedure would assign a recalibrated predictive probability of 0 
0, if ui > . 01 is observed for no 5i5 15 

F16X(11--15) 
wi at least, if ui :5 . 01 is observed for some no 5i :5 15 

either of which events (and especially the first) has a significant probability even if the raw PFS is 

perfect, (in which case F1X6 (1 Ix") = . 01 would be the "perfect" prediction. ) This example illustrates 

why P, - [Un E AJO-11 cannot safely be obtained empirically from S,, -, when PS. [Un E Alun-1] 

is small and n is not large. Attempting to do this results in large random fluctuations in the 

proportionate adjustment from Pý, -P [Un E Alun-1] to P., - [Un E Alu"-'] during the recalibration 

step. 

3.6.6 A Solution using a Gradient- Constrained U-Plot for Recalibration 

To get round this problem the smoothed G5* jun-1) can be restricted to belong to a family with n 

upper and lower bounds on first derivative. Another way of saying the same thing is that bounds on 

the ratios of recalibrated and unrecalibrated predictive probabilities of all events of the (Un) process, 

one-step-ahead, can be imposed 

fP [Un E Aju'-1] :5P [Un E Alun-1] P [Un E A10-1], (40) 
S'P S. Sp 

say, where 0<f, 3< 133 . 
Although the introduction of the bounds f and S has been jus- 

tified by considering unlikely events, Un E A, where A is small, it follows (in the general case 

by considering the Radon-Nikodym derivative for the two measures A ý- P'- [Un E Alun-1] and 

32 --P 

P 
The coefficient of variation [441 of the proportion of successes in n Bernoulli trials with parameter p is V ; ý-D 

(np)-i asp -0. 
330ne further extension which has not been implemented in obtaining the results of Chapter 4, would be to allow f 

and & to decrease as time progresses since, as n increases, the larger sample Un-I will allow S*, defined without the 
last refinement, to produce more accurate predictive probabilities for Un lying in smaller sets A. 
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A ý--+ P, -;, [U,, E A10-11) that this necessarily entails imposing the same bounds on the ratio of 

these two predictive probabilities for all events Ag [0,1]. It will be noticed that, for a discrete 

PFS, the bounds f and 5 can be directly interpreted in terms of the logPLR 34 plot of recalibrated 

versus unrecalibrated predictors. The logPLR plot (see for example Figure 14b) will have successive 

ordinates, y,, say, which must satisfy 

Yn-1 +109f '-5 Yn :5 Yn-I - 1095- 

The details on the method of imposing these bounds on the slope of the smoothed function 

GS* lu'-') used for recalibration are given in Appendix B. This method and the use of unequal n 

weights wi, are the two enhancements mentioned on p62 at the beginning of this section, and can 

be introduced into the recalibration procedure either separately or in combination. 

3.7 Implications for Recalibration of Other Predictions 

This chapter concludes with a review of the ideas which have been used to extend the method of 

recalibration to arbitrary one-step-ahead scalar predictive distributions. By choosing to view the 

recalibration method in terms of prediction of the outcomes of sequences of events, rather than the 

values of sequences of random variables, it is suggested that recalibration might be further extended, 

including as an example an application to the direct recalibration of failure rate predictions. 

3.7.1 Recalibrating a Raw Predictor of a Sequence of Analogously Pre- 

dicted, Equi-probable Events 

Suppose we concentrate now on a sequence of individual events (E,, ) i. e. we have a discrete time 

metric n, which may if we like be derived in some way from an underlying continuous time model 

(11, E, P), and we know that at discrete-time n=1 we will have observed whether of not El occurred, 

etc. Thus we assume that En E gn where gn denotes observation up to 'time' n (so that gn- I is 

a sub-sigma algebra of gn for each n). Then an interpretation of the phrase "well-calibrated" for a 

sequence of one-step-ahead probabilistic predictions (assumed derived from a particular PFS P) as 

to the occurrence or otherwise of each of these events is usually thought of [19] as something like 

n1n 

E IE, is close to - EP[Eilgi-il , nn 71 

34This is the analogue for two competing PFSs of the likelihood ratio for two competing parameter values from a 
parainetric family of models. See (48) on p83 for a definition. 
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or perhaps even 
nn 

IEi P[Eilg, -Il -40 as n --. # oo, (42) 

in some form of stochastic convergence35 . Here, as on p50, we use indicator function notation, so 

that IE, is the random variable whose value is 

1, if event Ej occurs; 

0, otherwise. 

In practice, of course, there is usually only one unique realisation of the process available, and, 

for that data sequence, well-calibratedness is simply an empirical property. Then the concept of 

stochastic convergence of (42) is not applicable. Althou, (,,, h, such theoretical considerations might 

still be useful in providing arguments to say how close is 'close' in (41); or, when comparing two 0 
PFSs on the same event-sequence, to say whether one has 'significantly' outperformed the other in 

the sense of (41). 

Given a sequence (E,, ) of events which have each been analogously predicted with equal probability 

this kind of definition of "well-calibrated" has been used to form the basis of a definition of 

recalibration for current predictive probabilities of as yet unobserved events. By "analogously" 

predicted, we mean ideally that" 

* the events E,, of the sequence are themselves in some sense analogous to each other, 

9 the states of knowledge 9,, - 1 or observation on the basis of which each event has been predicted 

are in some sense analogous relative to the event being predicted for each event in the sequence, 

* the conceptual and probabilistic model, inference procedure, and resulting forecasting system 

P (which may have been composed into a single automated algorithm) are likewise similar or 

identical for the prediction of all events of the sequence. 

When these conditions hold, it is intuitively appealing, and forms the basis of the methods discussed 

in [2,6,10,58,19] that the definition (41) of well-calibratedness should be extended, for such 

sequences of equi-probable event predictions, and provided n is sufficiently large, to an equation 

which assigns the left hand side of (41) 

n 

P [En+l l9n] lEi (43) 

as a recalibrated predictive probability of the next event E,, +j in the sequence. 
35In (19] it is shown that a PFS which may be identified with the true conditional probabilities of a stochastic 

process measure P (see §2.2) is well-calibrated in this second sense using "P-almost sure" convergence of the limit. 
36or, at least, that the triples (Eý, data,, - 1, prediction-method. ) are believed to be evolving systematically with n 
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3.7.2 Recalibration of a Predictor of Random Variables Interpreted as 
Recalibration of Predictors of some Associated Event-Sequences 

This notion of the property of being welýcalibrated has been used in [2,6,10,58] as the basis 

of a procedure for re-calibration of a probabilistic predictor, as discussed in §3.2. The work con- 

tained in these references in fact describes the recalibration of a sequence of predictive distributions 

(F, ý(- IX,, 
-, 

)) of continuous scalar random variables, (X,, )-rather than a sequence of predictive 

event-probabilities-within an iterative predict--4observe--+predict... set-up which is in other re- 

spects identical. The methods used in the references to define a property of well-calibratedness 

and also to recalibrate predictions of such a continuous quantity can easily be expressed in terms 

of analogous methods for the less complex event sequences introduced in this section. It is only 

necessary to focus on a few particular event sequences from amongst all such sequences which could 

be defined along the lines of En '-! -"f {w : Xn(w) E Aj for some set A,, (where the set37 A, is 

allowed to be defined in terms of observations The method used is effectively to construct 

for all fixed pairs of numbers po E [0,11 and p, E [0,1 - pol, a sequence (E,, (po, p)) of events defined 

in terms of the pair of percentiles 100po% and 100(po + p)% of the raw predictive distribution of 

X,,. That is, to define the event E,, (po, p) = jw : an < X,, !5 bn), where F,, X(a, lxn-1) po and 

F, ý (bn lx'-') = po + p; n=1,2, ... . Then a recalibrated prediction of the event En+ assigns, 

by (43), the left hand side of (41) to be P, -[En+j(p0, p)jXn], the recalibrated probability of En+l 

given that Xn = Xn. A recalibrated predictive c. d. f for the random variable Xn+l is then the c. d. f. 

which assigns this recalibrated probability to events En+ I (po, p) for all po and p. Note that it is only 

sequences of events defined in a this way, in terms of a pair of percentiles which are fixed for all n, 

that are correctly recalibrated according to (43) by this method. Other sequences of equi-probable 

(i. e. equi-probable in the view of the evolving predictions of the raw PFS) events must inevitably 

be assigned recalibrated probabilities which do not satisfy (43)38 . But note also that, fortunately, 

for a raw predictor of a continuous scalar process (Xn)s it is trivial to show that, for each n, all 

of tile recalibrated probabilities produced39 are not only intuitively sensible (in the sense of (43)) 

predictive probabilities for each such sequence of events, but also are "coherent" [19,31] to the 

extent that they constitute a genuine predictive probability distribution of the random variable Xnt 

i. e. the additivity and other axioms are satisfied by the recalibrated probabilities assigned to these 

37To be clear: the question of 'which set An is' may be determined by past observations, but the outcome as to 
whether or not An contains Xn will not be determined until Xn is observed. 

381n the terminology used earlier, we can say that we here interpret 'analogous' events to mean events identically 
defined in terms of percentiles of the successive c. d. f. s of the raw, continuous PFS. 

39by selecting different values of po and p 
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events by the predictive c. d. f. This is a consequence of the fact that, to define a probability distri- 

bution for a scalar quantity, it is only necessary to specify some non-decreasing function satisfying 
the properties of a c. d. f. And we can see that our recalibration procedure-defined by applying (43) 

to event sequences defined from raw percentiles-turns out (use (43 with po = 0)) to simply 'adjust' 

the raw predictive c. d. f. by composing with a monotonic function as in (34), using (35) with equal 

weights wi. 

3.7.3 The Problem of 'Missing Events' in the Failure-Count Case, or more 
Generally the Mixed c. d. f. Case 

Viewed in the above terms, the problem arising in the extension to mixed or discrete predictive 

cAfs, can be expressed as a shortage, for some po, p pairs, of such past events Ej(po, p) which we 

would wish to have been first predicted, and then observed, by the time a prediction of E,, +, (po, p) 

is required. Thus in the general non-continuous case, for some or perhaps all i :5n, the desired 

percentiles po, po +p of the past predictive distributions F; Y( - jXj-1) do not exist. In the case of 
failure-count observations, this is because the richness of the family of events of the mathematical 

process model, being at this stage naturally the result of an attempt to model the richness of the 

family of potentially observable events in the real world, has been reduced by the move to the cruder, 
less discriminating failure-count observations. (For failure-counts there may be the additional and 

separate problem for recalibration, that as well as the absense of exact 100p-percentiles of the raw 

predictive distributions for some p and i=1,2,.. ., n, there will also be a smaller number n of past 

predictions than would have been the case if individual inter-failure time data had been collected- 

Refer back to paragraph 3 on p43, and footnote 32 on p74. ) 

3.7.4 Solution by: (i) Enriching the Mathematical Process Model; and 
(ii) Using Posterior Expectations in Place of Full Observations 

In §§3.4,3.5 the problem of this deficiency of the supply of previously predicted and subsequently 

observed events for use on the right hand side of (43) has effectively been overcome by expanding 

the probabilistic model to include additional events in as "natural" and plausible a way as could be 

found. Since the selection of the events to be represented within the original model was determined 

by those events whose occurrence, or not, is fully determinable in the real-world observation process, 
it follows that the price paid for this extension necessarily involved the problem of unobservable or 
"fictitious" events having been added. Therefore, in order to include these new events on the right 
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hand side of (43), a substitute is sought for the now unobservable term IE,. For this purpose it 

can be considered that, although such an event E, added in a mathematically natural way to the 

model, is not observable, this is far from saying that it is thought of by the observer as being 

stochastically independent of all events whose occurrence or otherwise will be observed subsequent 

to the probabilistic prediction of E by an extended raw prediction system which we might apply to 

the extended model. Hence the added event E may have a posterior probability, given a period of 

intervening observation, which differs from the probability with which it was predicted prior to that 

period of observation. Then a tentative proposed solution to the problem of the non-observability 

of E is to replace the now unobservable random variable 1E in (43) by its posterior expectation, 

given the most up-to-date intervening observations. It is stressed that term "posterior expectation", 

as used rather loosely here, should not be interpreted with respect to the raw PFS process model 

P only, since the whole purpose of the recalibration step is to replace that badly calibrated model 

with a better one by some kind of ad-hoc remodelling of the process, or some aspect of it, in an 

alternative, and probably rather cruder way. 

To sum up this way of perceiving the recalibration method used for discrete or mixed prediction 

in §§3.4-3.6, there are two steps to circumventing the problem of the shortage or absence at stage 

n of historically equi-probably predicted, analogous events (Ej(p, po))'j=j compared to the more 

straightforward situation with the prediction of continuously distributed quantities: - k: 1 

9 Embed the process model in a larger one which is richer in events by adding non-observable 

events. Ideally but not necessarily these could concern some unobservable aspects of the 

conceptual model of the real world. 

For those terms IE on the right hand side of (43) for which E is such an added event, replace 

IE by the posterior probability P*[Ejobservations to date]. Here, this conditional probability 

is to be thought of as a probabilistic prediction or, more likely, 'backwards' estimate of the 

chances of E's occurrence with respect to some process model which may differ in some respects 

from the raw model being recalibrated-Le. P* here is something analogous to S* on pG3. 

The above way of describing the recalibrator of discrete and mixed predictions developed in 

§§3.4-3.6 is mentioned in the hope that it may suggest methods of generalising the recalibration 

technique beyond situations in which the one-step-ahead predict--+observe-predict... cycle applies. 

There is interest in longer term predictions of software reliability and it is tentatively suggested that 

perhaps the method of using up-to-date posterior probabilities of events in the "recalibration set" 
{Ej, E2,.. ., E,, ) in place of their observed indicator function values IE, may provide some kind of 
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weaker recalibration technique for longer term predictions. We have not persued this idea further 

here. 

3.7.5 Direct Recalibration of Failure-Rate Estimates 

That these methods do suggest ways of recalibrating quantities other than the predictive distribution 

of the next term in the observation sequence (X, ) itself is exemplified by the following proposed 

method of recalibrating point predictions of instantaneous program failure rate (leaving aside the 

question of how these quantities r,, +Il, say, themselves may have been obtained) in the failure-count 

observation sequence case described in §3.1. In the notation of that section, it may be considered 

that a raw prediction system, by producing a sequence (r, li-1) of analogously predicted rates at 

times 1j; i=1,2, ..., n, has produced equal predictive probabilities of a sequence of unobservable 

events 

Ei= w: C li, ii+ Z >o (44) 

for c>0 small. (Where the operator C is defined on p1l. ) Then, taking mi ' as a crude 97, r. -,. - 
posterior probability 40 of occurrence of Ej gives 

or more generally 

n 
1: Mi (45) 

n dir, li-I 

nn 

rili-1 
where 

ýWni 
=1 WniMiT U)ni > Ov 

I 

as a recalibrated predictive probability of E,, +I. This in turn is equivalent to a recalibrated program 

failure rate estimate 

7'* 
7*n+lln p[E n+llg n n+11n 
n WniMi 

dirili-i rn+lln 

Of course, this is just an attempt to suggest a further example application of the ideas developed 

in §3.7, whose performance would need to be tested in practice. Le. we should devise accompanying 

assessment methodologies for the comparison of the performance of these two failure rate predictors. 

As a minimal requirement, for example, we might hope that that rn*+Iln is at least better calibrated 

than the raw rn+11n with respect to the sense of calibration used in its own definition. If we use for 

i 
"'Depending on the sizes of these numbers, other estimates such as I-1- might perhaps be pre- d, rjjj- 1) 

ferred, but we could perhaps equally think of c as sufficiently small to make this unnecessary. 



CHAPTER 3. EXTENSION TO THE CASE OF DISCRETE PREDICTIONS 81 

this purpose the same sequence (Ei) of (44) in an equation like (41) we find that this comparison is 

equivalent to a comparison of 

1nE1n*C 

-Erili-, =E and - 1: rili- , riii-, n i=I rili-, 
(46) 

to see which is closest to the empirical estimate (45), where of course the common c factor, from 

the derivation, is redundant. (If the right-hand term in (46) is closer (than is e) to (45), then, in 

our chosen sense, the recalibrated rate predictor r* is 'better calibrated' than the raw r. ) 



Chapter 4 

Failure-Count Data Analysis 

4.1 Description of Analysis 

This section contains results from a number of numerical examples, each consisting of three compo- 

nents: data comprising a sequence of failure counts; a raw PFS, (one-step-ahead predictor), applied 

to this sequence; and a recalibrator used to modify the raw predictions. The main purpose here is 

to explore the effect on the predictions of varying the third component, for given combinations of 

the first two. Accordingly most of the tabulated and graphical results are grouped by failure-count 

sequence and raw PFS. 

The tabulated results, (see Table 3 on p88), consist of values of two scalar indicators of overall 

predictive quality for complete sequences of predictions. The first of these, "K-dist", is simply the 

maximum vertical distance between the modified u-plot described in §3.5 (with no smoothing, and 

weights wi all equal), and the line segment joining the points (0,0) and (1,1). The meaning of 

this quantity is discussed on p59. The second scalar indicator is a X2-type measure of "distance" 

between prediction and realisation, 

x2= 
(Xt - E, [X i 1Xi-1])2 

(47) ýý 
maxil, E, [XilXi-1]1' 

i= 

where Xj is the failure count in the ith observation interval and, as before, the subscript P indi- 

cates that the expectation involved is the mean belonging to the predictive distribution function, 

F: X(. IXi-I), defined by the PFS. (N. B. These notations P and FiK, are not always exactly consistent S 
with the notation of previous sections since the PFS now concerned may incorporate a recalibrator- 

in which case P* and Fj*X used in §3.6 are represented here by P and Fi'v. ) E,, [Xilx'- 1) is the 

same one-step-ahead predictive expectation plotted on the graphs collected in Appendix A. Like 

82 
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K-dist, the scalar X2 is given no precise statistical interpretation here since, with the conditioning 

on previous observations, it is not a standard statistic of goodness-of-fit of a model to data. The 

decision to constrain the denominator of each term in this X2 sum to be at least 1 was taken in order 

to reduce the sensitivity of this measure to those values of xi for which the mean E, [Xilx'-1] of the 

distribution used to predict xj is small. Many of the predictive expectations are small in practice, (a 

fraction of one failure in some of the later intervals when the reliability of the software has improved), 

So X2 is viewed merely as a rough indication of comparative performance of various recalibrators. 

By analogy with existing theory on more standard uses of X2 statistics to test model fit, it seems at 

least possible that a more reliable performance indicator might be obtained by pooling the predictive 

means and count observations from a series of intervals for which the predictive means are small. 

However, in view of the fact that, often, different PFSs disagree as to whether or not this is the case, 

this would require some thought if the pooling were to be implemented in such a way as to allow 

consistent comparisons between the performance of a number of different PFSs applied to a single 

data sequence. We have not explored any such refinements to our primitive X2 predictive quality 

measure and do not assume it to be amenable to formal statistical tests of comparative predictor 

performance. 

In all the examples presented, only those intervals from the 16"' onwards were included in the 

analysis of predictions since the predictions for intervals 6 to 15 were made using the raw (not 

recalibrated) PFS only-in order to accumulate sufficient observations to form a plot, u ý--+ S, '(u), 

with which to begin recalibration. So the index variable i in both the above summation, (47), and 

the summation, (29), used to define the plot from which K-dist is obtained, ranges from no = 16 up 

to the index, n, of the final observation interval. 

The remaining numerical results of prediction/recalibration are presented graphically in Ap- 

pendix A. These take the form of superimposed graphs which can be used to compare different 

recalibrators on a common data set and raw PFS. The quantities plotted are: (i) predictive expecta- 

tion of number of failures in next interval against interval index, (ii) log discrete prequential likelihood 

ratio against interval index, and (iii) the modified u-plot. These graphs are labelled (a), (b), and (c) 

respectively in all cases. The first is the expectation used in defining the X2 distance in (47), and 

the third is the plot whose maximum vertical distance from the 45'-Iine is "K-dist". The second is 

the natural logarithm of the discrete prequential likelihood ratio of the recalibrated vs. raw PFS, 

log PLR(i) = log 
P'. [xj = xjlxj-l = xJ-11 (48) 
P" [Xi = xj1xj-, = xi-11 j=16 
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i 
E log lFj*x(xjlxj-') - Fj*x(xj-lxj-')) (49) 

j=16 

i 

-E log fFjx(xjlxj-') - Fjx(xj-lxj-')), 
j=16 

using the 'Y' superscript to distinguish recalibrated from raw predictive c. d. f., as on p63. (N. B. 

There are also a few logPLR plots used for comparing raw PFSs - see Fig. 29b. ) The numerical 

value of this function at a particular interval index, i, is affected by the arbitrary decision to take 

the 16 th failure count as the starting point for producing recalibrated predictions. More important, 

therefore, in the interpretation of the logPLR plot is an apparent trend over any sub-sequence 

of consecutive predictions: upwards indicates that the recalibrated PFS is performing better, and 

downwards indicates the contrary, over the particular time period concerned. Similarly a trend in the 

difference between two of the graphs can be taken as an indication that one recalibration procedure 

is out-performing the other during that period. (See [20] for further details on PLR. ) In several of 

the examples with an unsmoothed recalibrator, a failure-count value is observed after having been 

predicted with probability zero. When this occurs all subsequent logPLR values are -00, which 

is denoted graphically by truncating the graph at the point where this occurs. All prematurely 

terminated plots in this section have that interpretation. 

The real data sets employed for prediction are: - 

o SS3 -A set of times between failure of a word processing system with many copies in actual 

use. See Musa [77]. Here we have grouped the data to produce failure counts during intervals 

oflength di = 106 seconds; 

* SYS1 - Times between failure of a real time command and control system, also taken from 

[771, and grouped here into intervals of length di = 1000 seconds; 

* AAA - Data from many operational copies of an aerospace software product, grouped here 

into intervals of length di = 400 hours. 

The individual inter-failure times of the first two of these data are sets are listed in [1,65], and on 

the web at www. dacs. dtic. mil/databases/sled/swrel. shtml. 

The following simulated data sets were also used: - 

a JM1 - Failure-count data generated from the Jelinski-Moranda model (see §3.1.3 on p37) with 

parameters N= 106,0 =7x 10-5, and interval length di = 1000; 
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e Ll - Failure-count data generated from the Littlewood model [53] with parameters N= 200, 

a=1,0 =5x 104, and interval length di = 1000; 

s LVI - Failure-count data generated from the Littlewood-Verrall model [62], [65, p1051 with 
parameters a=1.5, )31 = 30,32 = 5, and interval length di = 500. 

The raw PFSs employed are as follows: - 

* DD - the ML plug-in PFS using the likelihood function from the Duane model [24]; 

* DJMAG - the NIL plug-in PITS using the likelihood function from an approximate version of 

the Jelinski-Moranda model used by Abdel Ghaly, (see [1, p6l], and equations (12-14) in §3.1.3 

of this thesis); 

e DJMNHPP - the ML plug-in PFS using the likelihood function from the NHPP version [32] 

of the JM model. 

In addition to these three, the word "TRUE" sometimes occurs in Table 3 as a PFS applied to those 

of the failure data sequences which are obtained by simulation. This indicates that the predictive 

c. d. f. used is "the truth" in the sense that it is equal to the conditional c. d. f. associated with the 

model used to simulate the failure data. This has been included, wherever feasible, (i. e. for those 

examples based on failure data simulated from a known model, provided the necessary computation 
is straightforward-specifically, for the JM1 and Ll data sets), as a kind of upper limit on the 

improvement over raw predictions that can be expected from any recalibration procedure. It has been 

assessed as a PFS, using the same scalar and graphical tools. See e. g. Figs. 24abc in which the graph 
labelled "TRUE" corresponds to the use of a one-step-ahead predictive distribution Fi(mi; mi-1) 

which is binomial with parameters N- ci-I and 1- e-diO, where N= 107,0 =7x 10-5, di = 1000. 

The recalibration procedures applied are based on various versions of the modified u-plot as 
described in Chapter 3 and can be distinguished apart by: - 

(i) the value of r used to specify the weights in equation (35); 

(ii) whether or not a smoother is used-the label "BSPLSOdx" in Table 3 indicates that the 

smoother of Appendix B is used with xj = mj, as described on p229; 

(iii) the values of the bounds, e and -11, on slope of the smoothed plot, wherever a smoother is used. 

The following is a key to the plotted data and results in Appendix A: 
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Table 2: Key For Data and PFS 

Data Raw PFS 

SS3 Fig. 12 
DD Fig. 13a t 
DD Fig, 13b t 
DD Fig. 13c t 
DD Fig. 14a 
DD Fig. 14b 
DD Fig. 14c 
DD Fig. 15a f 
DD Fig. 15b t 
DD Fig. 15c t 
DJMAG Fig. 16a f 
DJMAG Fig. 16b t 
DJMAG Fig. 16c t 

sysi Fig. 17 
DD Fig. 18a t 
DD Fig. 18b t 
DD Fig. 18c t 
DD Fig. 19a 
DD Fig. 19b 
DD Fig. 19c 

AAA Fig. 20 
DD Fig. 21a t 
DD Fig. 21b t 
DD Fig. 21c t 
DD Fig. 22a 
DD Fig. 22b 
DD Fig. 22c 

86 

tPlot included for raw PFS Continued 

tPlot included for the "true PFS" 
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Table 2: Key For Data and PFS (continued) 

Data Raw PFS 

iml Fig. 23 C, 
DJMAG Fig. 24a ft 
DJMAG Fig. 24b tt 
DJMAG Fig. 24c tt 
DJMAG Fig. 25a 
DJMAG Fig. 25b 
DJMAG Fig. 25c 
DD Fig. 26a tt 
DD Fig. 26b tt 
DD Fig. 26c tt 
DD Fig. 27a 
DD Fia. 27b 
DD Fig. 27c 

Ll Fig. 28 
DJMNHPP, DD, DJMAG Fig. 29a tt 
DJMNHPP, DD, DJMAG Fig. 29b tt 
DJMNHPP, DD, DJMAG Fig. 29c tt 

DD Fig. 30a tt 
DD Fig. 30b tt 
DD Fig. 30c tt 

DJMNHPP Fig. 31a t$ 
DJMNHPP Fig. 31b tT 
DJMNHPP Fig. 31c tt 

Lvl Fig. 32 
DJMAG Fig. 33a t 
DJMAG Fig. 33b t 
DJMAG Fig. 33c t 
DJMAG Fig. 34a 
DJMAG Fig. 34b 
DJMAG Fig. 34c 
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tPlot included for raw PFS 
$Plot included for the "true PFS" 
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4.2 Results 

Table 3: Results of Failure-Count Prediction 
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Data Interval Raw Recalibrator Pred. Perf. 
source length PFS r Smoother f 6 K-dist x2 
SS3 106 DD . 207 85.6 
SS3 106 DD 1.0 . 237 79.0 
SS3 106 DD 0.9 . 125 72.1 
SS3 106 DD 0.7 . 117 90.9 
SS3 106 DD 1.0 BSPL50dx 0.0 0.0 . 239 73.9 
SS3 106 DD 0.9 BSPL50dx 0.0 0.0 . 122 70.6 
SS3 106 DD 0.7 BSPL50dx 0.0 0.0 . 106 88.5 
SS3 106 DD 1.0 BSPL50dx 0.3 0.3 . 246 74.5 
SS3 106 DD 0.9 BSPL50dx 0.3 0.3 . 154 70.3 
SS3 106 DD 0.7 BSPL50dx 0.3 0.3 . 132 74.4 
SS3 106 DD 0.7 BSPL50dx 0.3 0.0 . 084 83.4 
SS3 106 DD 0.7 BSPL50dx 0.0 0.3 . 160 76.1 
SS3 106 DJMAG . 245 75.3 
SS3 106 DJMAG 1.0 . 185 73.4 
SS3 106 DJMAG 0.9 BSPL50dx 0.3 0.3 . 145 71.9 
SYS1 103 DD . 132 63.7 
SYSI 103 DD 1.0 . 082 G7.9 
SYS1 103 DD 0.9 . 038 66.9 
SYS1 103 DD 0.7 . 057 70.2 
SYSI 103 DD 1.0 BSPL50dx 0.0 0.0 . 084 67.2 
SYS1 103 DD 0.9 BSPL50dx 0.0 0.0 . 039 66.7 
SYS1 103 DD 0.7 BSPL50dx 0.0 0.0 . 042 69.5 
SYS1 103 DD 1.0 BSPL50dx 0.3 0.3 . 082 67.3 
SYS1 103 DD 0.9 BSPL50dx 0.3 0.3 . 040 66.8 
SYS1 103 DD 0.7 BSPL50dx 0.3 0.3 . 036 68.7 
SYS1 103 DD 0.7 BSPL50dx 0.3 0.0 . 035 68.8 
SYS1 103 DD 0.9 BSPL50dx 0.3 0.0 . 040 66.7 
AAA 400 DD . 145 22.9 
AAA 400 DD 1.0 . 127 21.7 
AAA 400 DD 0.9 . 095 23.7 
AAA 400 DD 0.7 . 117 30.6 
AAA 400 DD 1.0 BSPL50dx 0.0 0.0 . 125 21.9 
AAA 400 DD 0.9 BSPL50dx 0.0 0.0 . 092 24.0 
AAA 400 DD 0.7 BSPL50dx 0.0 0.0 . 090 31.3 
AAA 400 DD 1.0 BSPL50dx 0.3 0.3 . 124 21.8 
AAA 400 DD 0.9 BSPL50dx 0.3 0.3 . 098 23.3 
AAA 400 DD 0.7 BSPL50dx 0.3 0.3 . 122 26.2 
AAA 400 DD 0.7 BSPL50dx 0.3 0.0 . 095 27.7 
AAA 400 DD 0.9 BSPLSOdx 0.3 0.0 . 091 23.7 
imi 103 TRUE 

. 068 18.2 
(Columns 4&5,6,7 blank indicates no recalibration of raw predictions; Continued... 
Columns 5,6,7 blank indicates no smoothing involved in recalibrator. ) 
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Table 3: Results of Failure-Count Prediction (Continued) 
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Data Interval Raw Recalibrator Pred. Perf. 
source length PFS r Smoother f S K-dist X2 
imi 103 DJMAG . 288 28.2 
imi 103 DJMAG 1.0 . 160 21.2 
JM1 103 DJMAG 0.9 . 093 18.7 
imi 103 DJMAG 0.7 . 042 18.9 
imi 103 DJMAG 1.0 BSPL50dx 0.0 0.0 . 160 21.3 
imi 103 DJMAG 0.9 BSPL50dx 0.0 0.0 . 09G 18.7 
imi 103 DJMAG 0.7 BSPL50dx 0.0 0.0 . 046 18.8 
JM1 103 DJMAG 1.0 BSPL50dx 0.3 0.3 . 160 21.4 
imi 103 DJMAG 0.9 BSPL50dx 0.3 0.3 . 095 19.1 
imi 103 DJMAG 0.7 BSPL50dx 0.3 0.3 . 061 18.9 
imi 103 DJMAG 0.7 BSPL50dx 0.3 0.0 . 044 18.7 
imi 103 DD . 302 28.5 
imi 103 DD 1.0 . 131 20.3 
imi 103 DD 0.9 . 078 18.5 
imi 103 DD 0.7 . 044 18.9 
imi 103 DD 1.0 BSPL50dx 0.0 0.0 . 129 20.3 
imi 103 DD 0.9 BSPL50dx 0.0 0.0 . 078 18.6 
imi 103 DD 0.7 BSPL50dx 0.0 0.0 . 041 18.8 
imi 103 DD 1.0 BSPL50dx 0.3 0.3 . 129 20.6 
imi 103 DD 0.9 BSPL50dx 0.3 0.3 . 077 19.0 
imi 103 DD 0.7 BSPL50dx 0.3 0.3 . 058 18.9 
imi 103 DD 0.7 BSPL50dx 0.3 0.0 . 041 18.7 
imi 103 DD 0.7 BSPL50dx 0.0 0.3 . 054 18.9 
Ll 103 TRUE . 088 37.1 
Ll 103 DD . 161 38.0 
Ll 103 DD 1.0 . 061 43.2 
Ll 103 DD 0.9 . 050 47.3 
Ll 103 DD 1.0 BSPL50dx 0.3 0.3 . 065 42.0 
Ll 103 DD 0.9 BSPL50dx 0.3 0.3 . 051 45.9 
Ll 103 DJMNHPP . 064 46.3 
Ll 103 DJMNHPP 1.0 . 050 49.2 
Ll 103 DJMNHPP 0.9 . 044 51.2 
Ll 103 DJMNHPP 1.0 BSPL50dx 0.3 0.3 . 048 48.4 
Ll 103 DJMNHPP 0.9 BSPL50dx 0.3 0.3 . 038 50.7 
Ll 103 DJMAG . 098 39.3 
LVI 500 DJMAG . 136 60.3 
Lvi 500 DJMAG 1.0 . 143 00 
Lvi 500 DJMAG 0.9 . 078 00 
Lvi 500 DJMAG 0.7 . 082 00 
Lvi 500 DJMAG 1.0 BSPL50dx 0.0 0.0 . 119 46.4 
Lvi 500 DJMAG 0.9 BSPL50dx 0.0 0.0 OG8 52.4 
Lvi 500 DJMAG 0.7 BSPL50dx 0.0 0.0 

1 
. 077 50.9 

LV1 500 
_DJMAG 

1.0 BSPL50dx 1 0.3 0.3 . 076 1 48.8 

(Columns 4&5,6,7 blank indicates no recalibration of raw predictions; Continued 
Column 5,6,7 blank indicates no smoothing involved in recalibrator. ) 
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Table 3: Results of Failure-Count Prediction (Continued) 
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Data Interval Raw Recalibrator Pred. PerL 
source length PFS r Smoother f 6 K-dist x 
LVI 500 DJMAG 0.9 BSPL50dx 0.3 0.3 . 035 53.5 
Lvi 500 DJMAG 0.7 BSPL50dx 0.3 0.3 . 060 50.2 
Lvi 500 DJMAG 0.9 BSPL50dx 0.3 0.0 . 069 52.3 
LV1 1 500 DJMAG 0.9 BSPL50dx 1 0.0 0.3 1 1 . 037 1 53.7 

(Columns 4&5,6,7 blank indicates no recalibration of raw predictions; 
Column 5,6,7 blank indicates no smoothing involved in recalibrator. ) 

Of the real data sets, the SS3 data is the one for which the most obvious increase in predictive 

quality has been obtained by recalibration. Both K-dist and X2 performance indices can be greatly 

improved from their respective values of . 207 and 85.6 obtained by, for example, the raw DD PFS. 

The best values of each from among the few recalibrators tried were . 084 and 70.3-although these 

were not obtained simultaneously. The smoothed recalibrator with r= . 9, e=8= .3 is a candidate 

for best performance of those tried, on the basis of the values, . 154 and 70.3 of these two indices, and 

also the comparative stability of both the predictions themselves, (Fig. 14a), and the upward trend 

in logPLR, (Fig. 14b). The success of recalibration here appears to be related rather to the SS3 

data set than to the particular raw PFS used for its prediction since similar results were obtained on 

applying other PFSs, Fig. 16b. Results from three cases using the DJMAG PFS are also presented. 

On examination of Fig. 12, certain sub-sequences of consecutive failure counts may be identified 

which are anomalous, (in comparison with the general trend of the whole preceding sequence), in 

some consistent manner, e. g. data points 15-21-reliability decay; or 33-38-instantaneous increase 

in reliability. There is arguably some correspondence between intervals of this kind and those 

over which is found the most marked improvement in PLR for recalibrated vs. raw predictions, 

(Figs. 13b, 14b, 15b). It is noted that the modified u-plot for raw prediction of the SS3 data has a 

pronounced, one-sided deviation from the 45"-Iine which is matched in magnitude only by the plots 

obtained from the JM1 simulated data, (Fig. 24c. ) These data sets are also identified as two which 
lead to consistent evidence, from all three methods of assessment (K-dist, X2, and PLR), for the 

success of recalibration. This provides some confirmation of the result, which was to be expected 
by comparison with the studies on inter-failure time prediction, (see e. g. [6]), that a "bad" u-plot 

of this kind may be regarded as a positive indicator in favour of proceeding to recalibrate the PFS. 

(c. f. the poor results for e. g. DJMNHPP applied to the data set, L1, discussed below, in the light of 

the very different initial modified u-ploi, Fig. 29c. 'But note also the results for AAA, Figs. 21abc 
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& 22abc. ) 
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Although the results for SS3, along with some of the other data sets, do confirm the advantage of 
introducing "decaying" weights, (implemented here by taking r< 1), it is also evident from Fig. 13a 

and others that excessively small values of r cause the predictions to become over-sensitive to noise 

in the last few observations. This leads to a poorer predictive performance of the recalibrated PFS 

as judged by the X2 value. This decrease in quality is often not reflected by any increase in K-dist. 

In fact, some of the best K-dist values are obtained from such recalibrators. This illustrates a point 

mentioned elsewhere, [56], on the construction of a poor PFS which is nevertheless "well-calibrated". 

As in the case of continuous predictions assessed by standard u-plots, so here also, the property of 

being well-calibrated is not, alone, sufficient to demonstrate high predictive quality. It may also be 

noted that the noisiness of the predictions associated with smaller r can be reduced by smoothing 

using positive f and 6. (Compare plot 4 in Fig. 14a with plot 4 in Fig. 13a, numbering the plots by 

reading the line-style keys below the graph from left to right, in rows. ) However, it must also be born 

in mind that larger values of f and 3 will tend to inhibit any feature of a recalibrator-the extreme 

case being obtained by setting either f or J to 1, in which case the recalibrator will "disappear" 

altogether. 

The test results for the recalibrators using SS3 data are followed by the less successful results on 

SYS1 and AAA data. 

In the case of SYS1 data using the DD PFS, the X2 value is always damaged by recalibration, 

the least worse case of those tried bein- an increase of about 3. As usual improvements in K-dist 

are achieved. The best PLR performances are obtained by setting r= .9 or 1.0 and using positive 

bounds on the slope of the recalibrator, of which the lower bound appears most helpful. With these 

settings the logPLR plot is approximately level indicating that there Is neither gain nor loss in PLR 

performance resulting from recalibration, (Fig. 19b). In fact the logPLR has a slight positive trend 

over the last thirty or so predictions. For these better recalibrator settings, the K-dist value favours 

r= .9 over r=1.0, and so, marginally, does the X2 value. 

The results for the AAA data are remarkably similar to those for SYS1. Again r=1.0 or . 9, 

smoothed with e>0 gives the best logPLR plots, which have a small positive trend in the later 

stages of prediction. Again also, of these recalibrators, K-dist favours r= . 9. But now X2 favours 

r=1. One improvement over the SYS1 case is the actual decrease in X2 achieved by recalibration 

with r=1. 
In summary, for the results on SYS1 and AAA data, no decisive improvement in predictive qual- 

ity is achieved by recalibration, other than an improvement in the modified u-plot, measured by 
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K-dist. It should be noted that the modified u-plot from raw prediction of the AAA data (Fig. 21c) 

is consistent with a significant pessimistic bias. This illustrates the need for caution in the interpre- 

tation of such a plot which does not guarantee that great improvements in prediction are achievable 

through recalibration. The same conclusion has been arrived at previously for continuously dis- 

tributed predictions, [6,59]. The most successful recalibrators for the failure-count sets SYS1 and 

AAA found here were obtained by smoothing with c>0 and r=1.0 or. 9, these recalibrators being, 

at least, not significantly worse than the raw PFS-In some respects they are marginally better, 

particularly in the later stages of prediction. 

As already mentioned, the JM1 data set is one on which recalibration proved a definite success. 

The fact of this data set having originated from simulation makes it is possible to gain an additional 

perspective on the success achieved. The improvement in performance of the "true PFS" over the 

performance of the raw PFS can be used as a yardstick against which to measure that achieved 

by recalibration. The effects of varying the recalibrator parameters are very similar on this data 

set whether applied to the DD or DJMAG PFS, and all of the following findings are more or less 

equally true in both cases. It was found that the better recalibrators gave an improvement over raw 

prediction of the order of one half of the amount by which the raw PFS was inferior to the true 

PFS, when assessed by IogPLR. The K-dist and X2 values show an even greater improvement. It 

appears possible for a recalibrated PFS to do better than the true PFS in respect of K-dist, (achieved 

with r= . 7). On consideration this is not such a suprising result since a recalibrated predictor is 

specifically designed to "look bacV, during each prediction stage, to see how the u-plot Is developing 

and then to adjust the next prediction so as to tend to counteract any deviation from the 45*-Iinel. 

Another property specific to the K-dist scalar (and the u-plot, from which it is obtained) is that 

it is not much affected by smoothing or choice of bounds, c and 3, during the recalibration phase. 

(Though larger values of E and 6 were not investigated. ) This seems to apply generally with all the 

data sets. Of the various recalibrators applied to the JM1 data, the x2 measure favours r= .9 or .7 

and seems little affected by smoothing or positive bounds on slope. In one respect this is consistent 

with the logPLR plot which again appears to favour r= .9 or r= .7 over r=1. But for r= . 7, 

smoothing and the use of e>0 appears essential to a good logPLR plot. For larger r this appears 

to become less important until with r=1.0 the IogPLR plot is equally good almost irrespective of 

the use of a smoother. As usual, Mist ranks the values of r in order with .7 preferred. 
'The possibility of producing a PFS which Is extremely well-calibrated, in the specific sense of u-plot behaviour, if 

one sets out to achieve only this, is easily demonstrated: In fact, taking this to the ultimate extreme, the next Un value 
u say in [0,1] can be chosen as desired (i. e. to be the next term of a deterministic sequence (u,, )) by the forecaster 
simply defining the next raw predictive c. d. f. to be a constant function of its argument x so that Fnx(, In-1) .U 
over all conceivable values x of Xn. 
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The next data set, L1, is also simulated. The results from predicting this sequence of failure 

counts provide an example of how the choice of raw PFS can influence the success or otherwise 

of recalibration in the prediction of a single data set. Figs. 29abc compare the predictions from 

three distinct raw PFSs applied to the Ll data. The predictive mean plots in Fig 29a immediately 

suggest that, with this failure data, DD is a good candidate for recalibration due to the consistently 

pessimistic bias in prediction. However this precise information on predictor bias is only available 

in a simulation experiment. The modified u-plots in Fig. 29c do not suffer from this restriction 

(except of course the plot from the true PFS), and give the same indication that recalibration is 

most likely to be successful with the DD PFS. This forecast is proved correct by the logPLR plots 

in Fig. 30b and the modified u-plots in Fig. 30c. Both recalibrators in which r=1.0 give logPLR 

values which are about half way between the plots from the raw DD PFS and the true PFS-Le. a 

performance roughly level with that of the other two, initially superior raw PFSs. The unsmoothed 

recalibrator, in particular, has a plot whose trend is as good as that of the true PFS during the 

period after the initial eight recalibrated predictions. Note that the X2 scalar does not provide any 

support for this conclusion of the superiority of recalibrated predictions (with r=1.0) over the raw 

PFS. This could be due to the fact that in the definition of X2, the denominators of the terms in 

(47) are decreased by about 25-30% as a result of recalibrating, here. (Compare plots 1 and 3 in 

Fig. 30a, reading the key at the bottom in rows, from left to right. ) For the sake of comparison the 

results from recalibrating the raw DJMNHPP PFS are also presented (see Figs. 31abc), this being 

the PFS with the worst indication in favour of recalibrating from its modified u-plot (Fig. 30c). As 

expected no improvement in logPLR plot was obtained. Slight improvements in the already small 

value, . 064, of K-dist are found, but these are the smallest obtained by recalibrating of any of the 

examples considered. 

Applying the DJMAG PFS to simulated LVI we find that recalibration achieves some improve- 

ment in all three indicators of predictive quality. The modified u-plot in Fig. 33c for the raw PFS 

indicates optimism of prediction, and this interpretation is corroborated by the tendency of the 

recalibrated predictive mean failure counts to exceed those of the raw PFS. Many of the previous 

conclusions can be repeated here. The K-dist values are very much improved by recalibration. How- 

ever, note here that they seem to favour r= .9 over r=1.0 or 0.7, even with smoothing and gradient 

constraints applied. The X2 evidence conflicts with this in preferring r=1. Smoothing and the use 

of positive f and 6 produces the best logPLR plot, with some advantage here being obtained from 

r<1 with r= .9 perhaps slightly outperforming r= .7 again, as it does for the X-dist measure. 
In the case of this data, the raw DJMAG predictor predicts zero failures with certainty (i. e. perfect 
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software) just once: after the first 5 failure counts only have been observed. This occurs because, 

at that point in time, the ML parameter fit has R= 14, equal to the number of failures that have 

been observed. That is, after observing the first 5 failure counts, the ML model fit is the "completed 

debugging" case mentioned at the end of §3.1.3 on p4l. One consequence of this over-confident 

prediction is that when, in fact, two failures of this perfect software are encountered during the 

6th observation interval it becomes known with certainty that U6ý1, with the consequence that all 

unsmoothed u-plots thereafter concentrate some positive amount of mass at u=1 and we arrive at 

the situation, noted on p65 at the end of §3.6.2, that each recalibrated prediction F, *X(X,, Ix"-I) 

thereafter assigns positive mass to X,, =oo, with the consequence that the predictive means plotted 

in Fig. 33a are infinite in those cases in which they have been obtained by recalibration from an 

unsmoothed u-plot. 

See also [9412 for a similar analysis of software failure-counts from actual software, but in a 

context where inter-failure times genuinely had not been collected. 

2A correction is needed to results in this PDCS2 project report: Table I on p349 contains an editing error in 
columns 3-8 of the bottom 6 rows, referring to the DJMNHPP predictor. These entries should read as follows (using 
semicolons to separate rows): blank, blank, blank, blank, . 229,434.7; 1.0, blank, blank, blank, . 079, blank; 1.0, 
SPLINE, 0.0,0.0, . 085,432.7; 1.0, SPLINE, 0.3,0.3,356,438.0; 0.8, SPLINE, 0.0,0.0, . 103, blank; 0.8, SPLINE, 
0.3,0.3, . 173,409.9 



Chapter 5 

Prediction Using Additional 

Sources of Data 

5.1 Statement of Problem 

Much previous effort in mathematical modelling for software reliability prediction has focussed on 

the restricted problem of predicting ahead a single process of software failures in time. Thus the 

data on which each prediction is based consists only of the so far observed part of that process. 

Past Now Future 
? 

time 

Figure 7: Most extensively studied software reliability prediction problem 

Here and in what follows "time" refers to some measure or estimate of the amount of execution 

to which the software has been subjected. This one-dimensional scalar, which is fundamental to 

these software reliability models, is intended as a measure of the amount of opportunity which the 

software has been given to fail through its being employed to perform tasks. A number of alternative 
definitions may be appropriate depending on the nature of the software and application area as well 

as the constraints on the recording and extraction of software usage data [68, p170]. Thus observed 

reliability quantities (inter-failure times, or failure counts vs. time) have typically been used as the 

sole source of data for predicting corresponding quantities for the same software item at some future 

point in cumulative execution time, within a relatively stable environment. 

There are sound reasons for restricting our formal models to handling this type of problem. It is 

difficult to relate the predicted reliability behaviour to other quantifiable characteristics of software 

95 
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products, their development histories and execution environments because of the multitude of fac- 

tors influencing software's propensity to fail, including for example the complexity and diversity of 

software and its applications, the variations in performance between different programmers, tools, 

and development methods, the high degree of design novelty often contained in software. There 

are simply too many sources of variability between software products, remembering that reliability 

may well depend on subtle and often poorly understood interactions between these different factors. 

This problem is compounded by differences between execution environments of a single software 

component (of which there may be several copies executing at different sites) and also by changes to 

these environments and their associated execution profiles over time. The term "execution profile" 

here is to be interpreted formally in terms of the frequency distribution with which a particular 

usage environment generates different "input points" in the software's "input space". The variabiI- 

ity between different execution environments may also be expected to impact on the operational 

reliability which is observed, [35,9,25). 

These difficulties have been circumvented by restricting attention in much formal modelling 

to comparing the reliability behaviour of software with only its own corresponding behaviour at 
different points in time under a relatively stable execution profile, and attempting to model the 

evolution of this behaviour of a single software product. For a classification of some such models 

and associated methods of analysis see e. g. [74,78,2] and [65, Ch. 3,4]. Such a restriction achieves 

a level of stability under which it becomes realistic to expect to discover or confirm the existence of 

systematic relationships between corresponding random quantities. However, constraining the scope 

of application of our formal modelling in this way appears to come at a price in terms of the limits 

of what can be concluded from limited evidence. One argument in particular for seeking to extend 
formal software reliability models so as to incorporate further sources of evidence concerns the very 
high reliability requirements of some software applications. Critical systems are coming to depend 

more and more upon the correct functioning of software to ensure their safe operation. At the same 

time, the size and complexity of these software subsystems is increasing as designers take advantage 

of the extensive functionality that software makes possible-functionality that sometimes enhances 
different aspects of safety. 

There are important unresolved questions concerning how one might go about designing such 

systems so that they will be sufficiently safe in operation. For the purposes of this thesis, our concern 
is the difficult problem of evaluation that they pose. In particular, we are faced with the problem 

of how to measure the reliability of such a software system when that reliability is likely to be very 
high. 
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In several recent papers different authors have pointed out some of the basic difficulties here, 

[8,60,761. They show that, if we are only going to use the evidence obtained from operational 

testing of the software, we shall only be able to make quite modest claims for its reliability. For 

example, Littlewood and Strigin! show that even in the most favourable situation of all, that of a 

system that has not failed during -r hours of statistically representative operational testing, subject 

to reasonably plausible assumptions, we can draw only the weak conclusion that there is a 50: 50 

chance that it will survive failure-free for the same time r in the future. 

The limitations here seem intrinsic: they arise from the relative paucity of evidence (when 

compared with the stringency of the reliability level that needs to be demonstrated) and will not be 

ameliorated significantly by better statistical models. To make a very strong claim-that a particular 

system is ultra-reliable-needs a great deal of evidence. If that evidence comprises only observation 

of failure-free behaviour, then the length of time over which such behaviour is observed needs to be 

very great. To assure the reliability goals of certain proposed and existing systems, for example the 

10-9 probability of failure per hour for the 'fly-by-wire' computer systems in civil aircraft [89,86], 

would clearly require the systems to be observed and show no failures for lengths of time that are 

many orders of magnitude greater than is practicable. 

Faced with these limitations to what can be claimed from merely observing the system in opera- 

tion, it has been suggested that we should instead base our evaluations upon all the disparate kinds 

of evidence that are available. This seems to be the way in which some safety-critical software-based 

systems are currently assessed, although it must be said that the process of combining evidence here 

is somewhat informal and does not generally provide a quantitative assessment [341. The different 

kinds of potential evidence include, in addition to the operational data discussed above, evidence of 

the efficacy of the development methods utilised, experience in building similar systems in the past, 

competence of the development team, architectural details of the design, etc. Most of these other 

sources of evidence about the dependability of a system will involve a certain amount of engineering 

judgement in the evaluator, which might itself introduce further uncertainty and potentiality for 

error. In addition, there are serious unresolved difficulties in combining such disparate evidence in 

order to make a single evaluation of the overall dependability and thus to make a judgement of 

acceptability. 

In this chapter, the question is discussed of what more might be achieved, despite the difficulties, 

in terms of improving the accuracy of prediction of software failure behaviour by incorporating 

additional data in the predictions. That is, we will explore methods of supplementing the past failure 

vs. execution time behaviour data for the software in question executing in its current environment. 
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This chapter is purely theoretical in the sense that we have not obtained nor simulated any such 

data. We simply wish to discuss some modelling approaches. 

We will consider two ways of making such an extension to the sources of data used for predic- 

tion. Firstly in §5.2 we will survey the general statistical models incorporating what we will term 

explanatory variables which we believe might be used in this context. We will attempt to compare 

the different ways in which such general models might be made to apply to the software reliability 

prediction context. 

What is intended by the term explanatory variables is some collection of observable measures of 

any of the acknowledged or hypothesised factors of reliability, which could supplement the data on 

past observed failure behaviour vs. time. We will sometimes use the term covariate as synonymous 

to explanatory variable. These observable measures are thought of as deterministic for the purposes 

of the models discussed here. (Even if they are in some practical sense 'random', we require that 

their values are observable so that any question of how to model their distribution is passed over, 

as far as this model is concerned, by asserting that all probabilities mentioned in any application 

of this model are conditioned on one unique realisation of the explanatory variable values which we 

have been able to measure, observe, or perhaps even 'estimate' using other methods not within the 

scope of this discussion. ) 

Secondly we will explore in §5.3 a rather different idea for incorporating data on other software 

failure vs. time sequences, be they arising from different software products, or different execution 

environments than the one which we wish to predict (or perhaps even sequences that are different 

in both of these respects, or arise from different kinds of application, though it will be clear in what 

follows that we consider the difficulties here to be greater). We will refer to this second approach 

loosely as a sequence of similar productsl. In this case we will attempt to use 'randomness' or 

'statistical indifference' to interpret our notion of similar. The practical interpretation of such a 

mathematical approach would be that: - 

we have access to several failure vs. execution time data sequences, one of which we wish to 

predict forward into the future; 

9 we believe that there are differences between the 'true' reliabilities to which these sequences 

correspond but we have no idea how to capture the causes or correlates of these differences 

systematically in terms of any observation or metric that we are able to obtain; and 

We use similar products as a concise terminology for similar (product, environment) pairs, as explained further 
below. 
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e we nevertheless do have prior beliefs of a purely probabilistic nature about the possible disfti- 

bution of reliabilities from which we may imagine these unknown, different true reliabilities to 

be independently drawn. 

Thus the distinction in §5.3 from the explanatory variables regression approach of §5.2 is that while 

in §5.3 we still believe that the reliabilities differ and we have prior distributional beliefs about the 

likely size of this difference, we know of no way to systematically explain, assess, or characterise these 

differences-other than the obvious 'suck it and see' method of recording the unfolding empirical 

reliability of each sequence directly. 
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5.2 Explanatory Variables Regression Models 

The variables contained in most existing software reliability models usually play the role of "model 

parameters" rather than "explanatory variables" -Their values are estimated from observable data 

(failures vs. time) during the statistical inference phase of the analysis, rather than being directly 

observed. 

A principle which is often applied in modelling complex and poorly understood "random" phe- 

nomena is that of experimenting, at least initially, with models chosen for their mathematical 

tractability, including both ease of analysis and ease of expandability (flexibility as to number of 

model parameters). Compare the many applications of, for example, generalised linear models [661, 

or Box-Jenkins time series models [43]. Motivated in part by this principle, but also by their struc- 

tural similarity to some of the parametric, single- (product, environment) software reliability models 

(which do not contain explanatory variables) referred to on the last two pages of §2.2, we consider 

two special classes of regression model. These have previously proved useful in a number of diverse 

applications in which an initially identified finite set of "individuals" may each experience or give 

rise to "events" along some time axis ("time-in-hazard"). As far as these specific models are con- 

cerned, the events here are distinguishable only by the individual to which they belong and the 

time of their occurrence. They can be pictured as points spaced along a horizontal time axis as in 

figure 7 on p95. However each point is now tagged with the identity of the associated "individual". 

It may also be necessary to take account of information on "censoring" in the form of known time 

intervals during which particular individuals have been for some reason withdrawn from observation 

so that it is not known whether or not they would otherwise have given rise to any observable events 

during these periods. The purpose in such applications is to obtain predictive expectations, higher 

moments, or distributions for the times of events not yet observed, based both on the number and 

time-spacings of earlier observed events and also on available measurements of other characteristics 

of the individuals in the population whose event times are being observed and predicted. In view 

of the kind of advantages mentioned at the beginning of this paragraph, it is not surprising that 

models from the two classes on which attention is focussed in this section have tended to be applied 

in situations where the causal mechanisms relating event times to individuals' characteristics are 

complex or poorly. understood, perhaps involving a human element (e. g. insurance claims), or some 

problem in the 'softer' sciences such as medicine (e. g. the relationship between the treatment regime, 

age, history or lifestyle of each patient and the patient survival time or time to the development, 

reappearance or disappearance of some symptom, in medical research). In the case of software, the 

process of failures in execution time can be conceived as a result of the interaction of two other 
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processes, at least one of which can be argued to be of a similar (i. e. complex, poorly understood) 

nature. These two other processes are: (a) the process of software development and maintenance 

and in particular the human reasoning and other errors and communication difficulties during these 

activities, and (b) the process of the application domain which determines the sequence of inputs 

to the software. This observation does not guarantee that the same general regression models will 

be found useful here. However, the model fitting and validation techniques and the supporting sta- 

tistical theory are now well developed for the two classes of statistical models under consideration, 

providing another argument to suggest that they may deserve empirical assessment in the software 

reliability application (exploiting the body of existing knowledge about these models gained through 

experience of their use in other applications). 

The importance attached to obtaining the most trustworthy possible software reliability predic- 

tions is well justified in [78, pp2l-291, [30, §11.2] for purposes such as estimating cost, effort and 

time scales in development and maintenance, or rigorously evaluating, where feasible, the various 

supposed factors in software development of final product reliability. There seems to be general 

agreement that many known characteristics of product, development, type of application, and exe- 

cution profile have some kind of impact on failure rate vs. execution time. However there is a need, 

if possible, to develop a quantitative understanding of these effects. Some previous work along these 

lines is briefly discussed in §2.6. It may be that some improvement in quantitative understanding 

could be obtained using the kind of general purpose regression models outlined here, rather than, 

perhaps prematurely, attempting to model the exact causal mechanisms at a more detailed level- 

which attempt in any case suffers from the drawback that, because of the novelty and variety of 

software, it might lead in the direction of a different model for each development environment, each 

application domain, or even for each new piece of software. For example, one can imagine that a 

Markov assumption for the flow of control between sUb-modules or sub-functions, e. g. [51], might 

be acceptably accurate for certain products and applications but not for others. Where It can be 

exploited successfully, the accuracy of such an assumption might require different notions of "state" 

and different partitioning between states depending on the nature of the software and application. 

This is not to deny the possibility of similar problems with the assumptions of the regression mod- 

els and the choice of their explanatory variables; but rather to suggest that, when such problems 

are encountered, the flexibility of these model classes facilitates the task of exploring a variety of 

different hypotheses using established rigorous techniques of model validation. A brief discussion of 

methods of checking model assumptions, with references, is given in §2.7.3. 

Mention should be made of the prior need for well defined, consistent, and preferably cheap 
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methods of measwing characteristics of software (including its development history) and its envi- 

ronments before searching for empirical relationships of these characteristics with reliability. One of 

the reasons that direct measurement alone is not sufficient, however, is that many of the attributes, 

like reliability, which are of greatest practical interest are actually most valuable if available in the 

form of predictions at an early stage, [30]. 

A schematic outline of the broad question being addressed in this section is therefore as follows: 

Can probability statements of the form 

P[Future reliability behaviour of A; Past reliability behaviour of A] 

be improved upon by probability statements of the form 

P [Future reliability behaviour of A; Past reliability behaviour of A, x] ? 

Here, A is some software component and/or particular circumstances of its execution, "reliability 

behaviour" refers to some aspect of the resulting point process of failures in execution time, and the 

"explanatory variables" vector, x, comprises some set of other data supplementing past reliability 

behaviour of A. Discussion of exactly what characteristics and measures x may contain follows 

later. The items to the right of the semi-colon represent the data required to calculate the predictive 

probabilities of events describable in terms of the variables represented to the left of the semi- 

colon. In some implementations of this scheme, it may be possible to interpret these probabilities as 

conditional (replacing the semi-colon by "I", read as "given"2). However, it is preferred to describe 

the situation in more general terms. For example a model-fitting procedure may intervene between 

the observation of the data on the right and the calculation of a new prediction as a conditional 

probability. The precise calculations involved will be decided by a combination of (a) an informal 

understanding, however approximate or incomplete this may be, of the causal mechanisms leading 

to the occurrence of software failure, in which the variables, x, are believed to be either causal 

factors or merely indicators correlated with future failure behaviour; and (b) the outcomes of more 

formal investigations involving the tailoring of hypotheses or adjustment of models to fit empirical 

data. On the basis of (a), some kind of structural model may be employed which attempts to mimic 

mathematically the real-world connection, so far as this is understood, between the quantities, x, and 

the process of software failures vs. execution time. In (b), the term model fitting will now typically 

involve the fitting of multiple software failures vs. time data sets by a single enlarged model, where 
2E. g., by a procedure analogous to that given in (16) on p47, it may be possible to define a process probability 

law (such as (11, E, P) on p9) with respect to which these predictive probabilities do indeed qualify as true conditional 
probabilities, satisfying the properties referred to on plO. However, in view of the difficulty [92] of understanding the 
relationship between prediction system and process probability distribution, it would be unnecessarily restrictive to 
exclude situations in which no such probability distribution for the failure process is available. 
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the different data sets each have an associated vector of explanatory variable values. Here we are 
thinking of the kind of analysis proposed in §§5.2.1.1 & 5.2.1.3 where we would expect to model 

multiple data sets in the sense that we can think of failures of each individual as comprising one data 

set of the kind modelled in isolation in Chapters 3 and 4 of this thesis and also in much previous 

work, such as [2,56,1,71. (Contrast this idea with the work in [2,71 in which a single data set 

of this kind is multiply fitted using an array of different point-process models. ) There are sufficient 

software reliability growth models and sufficient software failure-time data sets available now and 

which have been applied one to another in pairs in sufficient previous work [10,2,71 that these 

approaches to the extension of this work have seemed naturally to suggest themselves as worthy of 

some consideration. For both (a) and (b), we will require both a faithful representation of some of the 

complexities of reality, and mathematical tractability facilitating subsequent analysis and validation 

of the model. These are two important but frequently competing requirements. The requirement for 

data for comparing software items or their environments, to play the role of explanatory variables, 

is discussed briefly in §5.2.3. 

5.2.1 The Role of Individual 

The idea of "explanatory variables modelling of software reliability", as described above in §5.2, 

admits a number of distinct more precise interpretations. Here, three application categories are 
distinauished which enable a crude classification of some ideas and suggestions found in previous 0 
work. These three categories correspond to distinct notions of "individual", in the terminology 

of the statistical models discussed above. (Although neither this terminology nor a restriction to 

PHM/PIM models are essential to any of the three categories which follow. ): - 

5.2.1.1 Product 

An application in which "individuals" are identified as different software products is perhaps the 

first to come to mind when thinking of extending the sources of data input to software reliability 

prediction systems beyond the single one of the so-far-observed portion of the point process of failure 

vs. time. Can a model be developed which helps to explain reliability variation between software 

products in terms of measurable characteristics of those products? There is general agreement for 

many attributes of software products that such attributes must have some kind of impact on, or at 
least correlation with, product reliability. These attributes include basic classifications of software, 

such as source language used, type of application, as well as internal structure metrics such as size 

and complexity metrics, and metrics or classifications relating to the development process of the 
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software (e. g. tools, methodology and personnel employed, or resources consumed). 
One way of including such information might appear to be to use models for "prior belief" (Q 

on p16) about the values of the parameters of existing software reliability models. For example, a 

modeller might claim to be able to form a prior distribution for the two model parameters, N, 0, 

(see p37 and [36], [74, p13]) of the Jelinski-Moranda model in terms of measurable characteristics of 
the software product and its development, such as size in lines of source code, complexity as defined 

by the McCabe metric, rate of finding bugs per person hour of code inspection, etc. A Bayesian 

inference procedure could be applied to the Jelinski-Moranda model in which these explanatory 

variables would enter the reliability predictions via this Bayesian prior. However, doubt has been 

cast on the interpretation of actual fitted parameter values of some existing models as realistic 

estimates of internal software attributes (e. g. of N as "number of faults present in software" for 

the Jelinski-Moranda model). Such doubts are frequently confirmed by the instability (i. e. extreme 

variability) of the estimated parameter value in successive model fits as additional observed reliability 
data is accumulated from one single executing software product. 

5.2.1.2 Fault 

A PHM analysis of times to software failure with "individuals" identified as single faults in one 

software product could perhaps be seen as a limiting case of the first category, described in §5.2.1.1 

above, applied to subcomponents of software where the size of these subcomponent-individuals has 

been reduced to the point where each is either fault-free or contains exactly one fault. But this 

analogy with §5.2.1.1 is actually very weak for at least two reasons: The first is the impossibility of 

associating certain softwaxe faults with any particular location or subcomponent of the executable 

software product, (e. g. defects in the higher level design). The second important difference between 

§5.2.1.1 and §5.2.1.2 relates to the observability of the population under study. This is discussed 

further below. Examples of characteristics of faults are: stage at which introduced, severity/cost of 

consequent failure, type of human error (e. g. typographic slip). 

5.2.1.3 Operating Environment 

A single software product, once having been developed, will usually be released into a number of 

sites, or different usage environments. Thus, the "individuals" of this model consist of different 

copies of one single piece of software, or more accurately the execution profiles associated with the 

distinct sites to which these copies have been shipped. An added opportunity with this kind of 

application arises from the time-variability of some measures of software operational environment. 
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This suggests the possibility of applying a version of one of the statistical models which is able to 

incorporate time-varying explanatory variables (xi = xi(t)), e. g. the PIM model [83,811. 

5.2.1.4 Discussion of Plausibility of Different Approaches 

A serious reason to doubt the likely predictive capability of explanatory variables software reliability 

models of each of the above three categories concerns the regularity and stability of the population 

under study. Suppose that a "significant" statistical relationship between explanatory variable val- 

ues and reliability behaviour is discovered to hold for a sample of individuals used to fit the model. 

(In fact such a relationship is very likely to be discovered if an approach is taken of persistently 

trying one hypothesis after another until "success" is achieved. This approach is assisted by the 

general purpose nature of linear regression models. It is clearly preferable that there should exist in 

advance some small number of well considered beliefs or hypotheses that specific sets of covariates 

will collectively have a particular kind of impact on reliability. ) Then what are the chances of that 

relationship continuing to hold: (a) in the future for the same sample of individuals, and (b) for a 

new individual? Since there seems to be general agreement that many explanatory variables are not 

independent of reliability, this question must relate to the possibility of "unobserved heterogeneity" 

within the population: The sources of variability, amongst the population of individuals observed, 

which determine reliability variation may not all have been captured by the explanatory variables 

used-Or rather, since that is inevitably the case, a sufficient number of the more important sources 

may have been omitted, or inadequately captured, to the extent that their effect is too large to be 

successfully represented as noise. (By "noise" is meant the random variation allowed within the 

model, by the probability distributions which the model incorporates. ) The other possible source of 

failure-that the model class, though flexible, is not flexible enough to represent the mathematical 

form of a true relationship to a sufficiently close degree of approximation-is difficult to eliminate 

when applying a general purpose model specifically because our understanding of the real relation- 

ships is poor. One can only point to the success of the model in previous applications. Returning 

to the possibility of a true relationship, adequately modelled for a restricted set of explanatory vari- 

ables, but obscured by unobserved heterogeneity in the form of other individual characteristics which 

have been missed, there seem to be three positive responses to this problem before abandoning the 

model altogether: (a) try harder to define and measure more explanatory variables which capture 

the remaining variation, (b) fit the model to a larger number of individuals and hence detect and 

verify weaker relationships than would otherwise be possible, or (c) restrict the field of application 

of the models to populations which are less heterogeneous. (The extreme case of the latter, where 
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most effort has been concentrated up to the present time, is to model only a single software item 

within a single, stable environment. ) 

The above mentioned problem of an overwhelming multiplicity of sources of heterogeneity appears 

particularly true for the application category of §5.2.1.1. Apart from anything else, if no restriction 

whatsoever is imposed on the population under study, then the variability between application tasks 

alone-never mind the software systems developed to address the task-is very great. Perhaps some 

success could be achieved by restricting to sets of software products built for a single application or 

by a single developer. 

Model applications of the category described in §5.2.1.2 involve a different sampling rule which is 

reflected in a crucial difference in the probabilistic modelling and statistical inference problems. In 

most software which is of practical interest, if faults are the "individuals" then there will remain an 

unknown number of individuals which have been "in-hazard" for the period of observation and which 

have given rise to no event during that period, (i. e. a number of faults which remain undiscovered, 

not having caused a detected software failure during the observation period). The sub-population 

of faults which do cause a detected failure, during the period of software usage, is far from being 

either a random sample, or a sample whose members can be identified by the observer in advance. 

It is in fact a self-selecting sample (i. e. the chance of an arbitrary member of the entire population 

of faults being included in this sample depends on its covariate values'). Some further probabilistic 

model of the entire fault population, including some assumptions about the number of hidden faults 

and their unobserved covariate values, would be needed in order to develop a likelihood function 

which properly takes account of the existence (and non-occurrence during the period of observation) 

of these faults. The non-occurrence of events for an individual can clearly be, as far as inference 

about the population is concerned, one of two quite different things depending on whether or not 

the observer has knowledge of the existence of that individual, and of the fact that the individual 

has been 'in-hazard' during the period of his or her observations. In the terms of the medical 

analogy, we are dealing, in §5.2.1.2, with a situation in which a researcher remains ignorant as to 

the number of patients involved in his study, and only discovers the fact that a patient exists (let 

alone the details relevant to that particular patient, such as treatment administered) if and when 

that patient dies (or experiences a medical 'event' however alternatively defined) during the period 

of the study. For prediction of future reliability it is precisely the population of hidden faults, of 

unknown number and covariate values, which is of interest. Bearing in mind the non-observability 
both of the population size and of individuals' characteristics for this population, it is nevertheless 

3the values of its 'explanatory variables', as we would observe them them, were the fault's existence to be made 
known to us. 
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the case that many existing software reliability models which are used for reliability prediction 
without explanatory variables do rely on a model of the entire fault population of the software, 
including as yet undiscovered faults. This model typically represents the size of this population and 
the distribution of its fault rates, [53,741. Perhaps a study of the manifestation rates of software fault 

populations regressed onto other individual fault characteristics could ultimately help to validate 

or improve upon such models, or to learn more about the effect on reliability of different phases of 

software development. However, with realistically sized software, such a study would always have 

to contend with the difficulty of working with a self-selecting sample from a concealed population. 
Software reliability prediction theory might perhaps benefit from examining techniques used in other 

application areas for inference from analogous data, if such statistical applications can be identified. 
Models for the category of applications described in §5.2.1.3 include structural models such as 

Littlewood [511 in which the operational environment of the software is characterised directly in terms 

of the software's response to that environment. Specifically, statistics on the flow of control through 

the software are utilised, via code instrumentation, as observable characterisations of the software's 

current environment. For example the proportion of time spent in each module, or a matrix of 

module transition probabilities can be regarded as measures of the environment. The reasoning 

behind this kind of environment measure is that the failure rate due to a bug will probably (though 

not certainly) increase with the exercise frequency of the code containing it. Regarding PIM as a 

crude general purpose model, it would be interesting to examine detailed structural models: (a) 

to find out how mathematically distant are their theoretical conclusions from a PIM mathematical 

form, and also, (b) to compare their predictive performance, using real data, against that of PIM 

models incorporating the same metrics, i. e. to use PIM models as a standard of comparison for 

predictive performance of such more detailed structural models. 

Of course, there are many other means of characterising the environment of a software product, 

without working in terms of the structure of the software itself, such as classifications like com- 

mercial/industrial/academic, type of hardware, number of simultaneous users [35,731, type of user 

applications, or some measure of the diversity of the user population. The use of a binary test/usage 

explanatory variable would be equivalent to fitting a 'testing compression factor' as in [78]. 

In the environments-as-individuals category it may be possible to carry out inference using fewer 

(or even one alone, [35)) individual environments. The variability of explanatory variables (xi = 

xi(t)) required to achieve a fit might be present within a single environment. There Is a question 

about the granularity of the logging of time-varying xi(t) in practice. e. g. there may be a diurnal 

cyclic effect-Ought this to be ignored by logging only totals per day, or should the daily variability 
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be used to assist with the model fitting? How should time-varying measures be smoothed before use 
in the model? 

There is also a question about how the global time metric, required by a PIM model, should be 

defined for software of which several copies (the "Individuals") are running in distinct environments. 
The obvious solution is to assume that each copy of the software will produce failures mapped onto a 
local time line in the form of its particular host-machine's cumulative execution time of the specific 

software concerned. The single global time required by the model for each failure event can then 

simply be defined as the local time at which that fault occurred on the host which experienced 

it. However, this raises questions if any evolution in reliability is occurring following maintenance 

and debugging actions, since, for example, a fault could be removed in one environment "before" 

(model global time) its time of discovery (by manifestation) in another environment. Thus using 

global time, defined in this way, for the single horizontal axis of the statistical model, may result in 

switching the chronological order of two events from their calendar-time chronological order, if these 

events belong to distinct individuals (environments). Clearly this may have implications for the 

kind of baseline model which will be appropriate. It appears also that the relative appropriateness 

of PIM or AFT models for reliability variation between environments would be effected by (a) the 

definition of failure time as discussed here, and also (b) the degree of coordination of debugging and 

other maintenance activity between different environments. PIM is able to model variation of failure 

rate between individuals, whereas AFT will model a related variation between individuals of both 

failure rate and reliability evolution rate. (Compare equations (4) and (5) in §2.7.2. ) 

Intuitively it seems likely that there will generally be greater uniformity for a single software 

product operating in several distinct environments, than for a number of totally distinct products. 

(The precise assertion suggested here would be that there is 'more variability' between software 

products than between software environments of a single software product. ) Consequently it is to 

be expected that practical success in fitting a general model using explanatory variables in order to 

predict reliability is more likely for the category of applications discussed in §5.2.1.3 than for models 

of the variation between products discussed in §5.2.1.1. One hope is that a model of this third 

category would enable reliability observations during testing to be used as a basis for the prediction 

of subsequent operational reliability in various usage environments. 

5.2.2 Use of Recalibration 

Concerning recalibration we remark here that-although in Chapters 3&4 as well as in previous 

work [6,10,11,20,59,7,56], recalibration has tended to be applied in the context where a sequence 
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of scalar values is predicted, using a PFS as defined in §2.4.2, one-step-ahead using past observation 

of that process as the sole source of data-there is no reason why the incorporation of further data 

as discussed in the current chapter should preclude the use of a similar recalibration technique to 

achieve improvements in predictive quality. Indeed all that is essential for the construction of some 

technique of recalibration-applied to prediction incorporating explanatory variables used to model 

the differences between the failure-vs-time behaviour within a family of individuals-would be that 

we should remain within a setup where: - 

9 we can accumulate a stock of a reasonable number of observed valueS4 each of which had 

previously been predicted in the form of a predictive distribution for that value; and 

e we continue to believe that an analogy or similarity holds between the relation of each of these 

successive predictions to the reality of what it predictsS, yielding a systematic aspect to the 

prediction error (distribution of the u) produced at each prediction step. 

For example, one could imagine using a PIM model to track the reliabilities of several separate 

installations of one software product. Then we could still observe inter-failure times (or failure- 

counts) at each installation and hence build up a sample u-plot from the pool of u-residuals so 

obtained. Whether to construct a separate u-plot from the residuals for each individual, or to pool 

the entire set and use a common plot for the recalibration of all, or even to construct some more 

complicated analysis of the joint distribution of a family of u-processes would be an interesting 

question. An appropriate decision about this would probably depend on details of the distinction 

between individuals and on the quantities of data available. One can imagine, for example, that 

imperfections in the regression part of the model could result in systematic differences in the shape 

of u- distribution emanating from the different individuals. For a PHM rather than PIM model we 

would be faced with the problem of having only one u from each individual, so that the us would 

inevitably have to be pooled. But it should be clear from the previous parts of this chapter that 

we feel that some kind of PIM model would be more likely to be of use in the software reliability 

application. 

5.2.3 Acquiring Data 

A problem of equal if not greater difficulty to the theoretical problems of whether in principle and, If 

so, how explanatory variables could be included in software reliability predictions appears to be the 
4We suggested during the discussion beginning on p78 that even a posterior distribution of some kind-in place of 

exact observation of the predicted RV-might be used for a kind of recalibration. 
5See list on p76 
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more practical problem of getting some data to test such models. See e. g. [4, p6l]. Perhaps a next 

step would be to produce some more specific requirements of (a) what kinds of data are most likely 

to provide positive results, and (b) approximately how much data from how many individuals would 
be required in order to objectively verify any relationship with reliability which exists. Clearly the 

number of distinct individuals on which data can be obtained imposes some kind of limitation on 

the number of parameters which can be included in any model. 

One possible source of data is experimentation, which suffers from the drawbacks of expense and 

perhaps unrepresentativeness due to the smallness of scale of the problems which can be tackled 

in an experiment. It seems probable that many factors of software reliability will undergo shifts 

in relative importance as applications of different scale and complexity are considered. On the 

positive side, with an experiment it becomes possible to attach greater importance to accurate 

measurement, this being the main purpose of the exercise. There would be less concern about 

the cost of degraded system performance resulting from the additional burden of measurement 

and collection of data. Also, particular care could be taken to reduce or randomise over sources 

of heterogeneity not represented in the model, and to apply statistical principles of experimental 

design. 

As a final resort, perhaps there may even be limited possibilities in simulation of software failure 

processes and explanatory variables. 
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5.3 'Similar Products' Model 

In this section we shall consider a different approach to the situation where we wish to augment the 

evidence that can be gained from the operational testing of a particular product within a particular 

environment by also taking into account the data on success/failure sequences either of other prod- 

ucts or of the current product executing under operational conditions which differ from the present 

conditions. Thus these other failure data sets may be records of the success (or not) in building and 

operating 'similar' products in the past. Alternatively, they may originate as records of execution 

of the current product in different environments. An important special case, of course, is the one 

where there is unreserved good news from these previous data sets-Le. where there have been no 

failures in any of the data sets up till the present time. 

As before the goal is to obtain a quantification of the reliability of a product within an operating 

environment. The model that is developed in this section, therefore, requires us to make certain 

assumptions about the failure process, and about how we represent our beliefs about certain model 

parameters. Essentially we have replaced the assumption of the last section that meaningful 'ex- 

planatory variables' vectors are available by assumptions about the availability of probabilistic prior 

beliefs of a particular mathematical form concerning the distribution of reliability variation between 

our 'individuals'. We acknowledge that these assumptions can be questioned, and are certainly very 

difficult to validate. However, we believe that they are reasonably plausible. More importantly, our 

main aim is to demonstrate that this kind of evidence can only improve our confidence in the relia- 

bility of a product quite modestly. Thus, we would regard a critique of our results on the grounds 

that they are not sufficiently conservative as being in the spirit of our own aims; suggestions, on the 

other hand, that the assumptions here can be modified in order to arrive at much higher confidence 

in product reliability we would regard with suspicion and we believe would demand careful analysis 

of extensive supporting data. It seems to us that, particularly in the case of safety-critical appli- 

cations, it is safest to adopt a conservative view of the informativeness of evidence unless there are 

scientifically valid reasons to believe the contrary. 

The model contained here may be applicable either to the data sets arising from a number of 

different software products, or from a single software product executing in a number of different 

operational environments. (Compare subsections 5.2.1.1 and 5.2.1.3 of §5.2 on explanatory variables 

regression models. ) The 'indifference' assumption discussed below is all that is required in either 

case. Thus we can think of our 'experimental unit' or 'individual' as a particular product operating 

in a particular environment. From each such (product, environment) unit, we observe operational 

data. For mathematical simplicity we have chosen to work now in terms of the 'discrete time' of 
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§2.1-a sequence of discrete demands on the software, each resulting in success or failure-so that 

the operational data arising from each (product, environment) unit is a binary sequence. We see 

no obstacle in principle to using the approach presented in this section with failure times or failure 

count data of the kind used in previous sections of this thesis. We are interested in using data from 

a family of such units to improve our ability to forecast a particular one of them, i. e. a particular 

one of the binary success-failure sequences. Here, we make what we see as the simplest assumption 

which allows this kind of learning from one sequence to another: An assumption of prior indifference 

between the members of our family of operational success-failure sequences. For example, we assume 

that we are without prior 6 beliefs of any kind which would cause us to identify some particular pair A 

and B of testing data sequences about which we could say 'I expect that sequence A will show greater 

reliability than sequence S'. Our model now explicitly says that such beliefs about comparisons of 

reliabilities between different sequences will emerge only after we begin to examine the numerical 

values of the failure-counts which those sequences contain. In particular, we use no other observable 

characteristic or measure in terms of which to differentiate between the expected reliabilities of these 

sequences: There are no 'explanatory variables' now. With this understanding of our meaning, we 

refer in what follows to a set of success-failure sequences about which we feel this indifference as 

a family of 'similar' sequences (emanating from a family of 'similar' (product, environment) pairs). 

So in our usage here the 'similarity' of the success-failure sequences within a family is nothing more 

than a prior statistical indifference between these sequences. Of course, this idea might elsewhere be 

extended by means of an ordering of the distinct sequences and some kind of process model for, say, 

increasing reliability expectations from one (product, environment) to the next. But our indifference 

assumption is simpler, whilst allowing us to explore mathematically the learning which might take 

place from one sequence to the next and, we believe, being a plausible model in some circumstances. 

In particular, even this simple model well illustrates the importance of prior belief-about the 

statistical relationship between these failure-success sequences-for any conclusions we might wish 

to draw about one such sequence from data on other products or operating environments. 

In the next section a doubly stochastic Bayesian model of the failures (if any) of a family of 
(similar' software success-failure sequences is constructed. The intention is to augment the relatively 

meagre evidence that can realistically be gained from testing of a particular product in a single 

environment. We can now take account also of the success (or not) in conducting similar opera- 

tional trials in the past. The analytical results which follow in §5.3.2 lead to an examination of an 
important special case in §5.3.3. §5.3.3 explores the conclusions which can legitimately be drawn 

6prior to observing the success-failure data itself 
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from observation of a number of sequences all of which contain no failure up till the present time. 

We examine this no-past-failure case in some detail, and, after a brief enumeration in §5.3.4 of some 

practical questions whose answers our model might be used to explore, we proceed in §5.3.5, to 

obtain some analytic and some numerical results for a few example cases of our general model. In 

discussing these special cases which arise from introducing specific parametric distributional assump- 

tions, we concentrate mainly on the no-failures case introduced in §5.3.3. Some considerations about 

the difficulties of choosing a measure of reliability are mentioned in §5.3.6. Our main conclusions 

are summarised in Chapter 6. The appendices contain some of the mathematical details required by 

this modelling approach, including, in Appendix B. 5 our procedure for calculating very high order 

non-central moments of the Beta distribution which we used for the numerical work of §5.3.5.2. 
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5.3.1 Modelling Approach 

We wish to use evidence we have obtained from building and operating previous products, or from 

previous operational use (in different environments) of our current product, in order to try to improve 

the accuracy of the predictions that we can make about the reliability either of an entirely novel 

product or a previously used product which now operates in a novel environment. To do this we 

must take account of two kinds of uncertainty. In the first place, there will be uncertainty concerning 

the actual reliabilities that were achieved by these earlier (product, environment) applications. Even 

in those cases where there is extensive operating experience, we shall never know the true reliability 

of a given product in a given environment and will have to use an estimate based upon the finite 

amount of operational data collected during its use within the environment concerned. In those 

situations where we are dealing with products that are likely to be very reliable in their intended 

environments, we shall probably only see a small number (or even none at all) of failures even in 

quite extensive periods of operation. The second source of uncertainty will concern the statistical 

csimilarity' to one another of the success-failure sequences that have been observed in the past and 

the 'similarity' of the one under study to these past sequences. Clearly it will be misleading (and 

give optimistic results) if we simply assume these earlier sequences, and the present one, are 'exactly 

similar' in the sense that they all arise from exactly the same true reliability [47). 

In what follows, we shall assume that the true per-demand probabilities of failure of the differ- 

ent sequences, past and present, can be assumed to be realisations of independent and identically 

distributed random variables. 

This assumption, although an idealisation, captures the essentials of what we mean by'similarity'. 

Thus, it means that the actual reliabilities of the different sequences will be different, as is clearly 

the case in reality. We would not expect the reliabilities of, say, two versions of a software-based 

telephone switch to be identical, even though we might be prepared to agree that the problems posed, 

and the quality of the processes deployed in their solution, and the operational environments in which 

they are situated were similar. The notion of 'similarity' in the eye of an observer here seems to be 

equivalent to a kind of 'indifference'. You might agree that two different success-failure sequences 

were similar for the purposes of the current exercise if you were indifferent between them in reliability 

terms: if you were asked to predict which of two (product, environment) pairs A and B would show 

the best reliability, you would have no preference. This is represented by their probabilities of failure 

per single demand being identically distributed random variables: any probability statements you 

would make about the reliabilities of demand sequences A and B would be identical. The important 

point here is that this interpretation of 'similarity' in terms of indifference does not mean that you 
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believe that the two sequences will show identical reliabilities - indeed you will know that the actual 

reliabilities of the sequences will differ. The two sources of uncertainty here are both important. 

However, it is the nature of the uncertainty concerning 'how similar' the sequences actually are that 

will be most difficult to estimate in practice, since this requires us to see as many different sequences 

as possible. That is, we would require operational data on a large number of (product, environment) 

pairs between any two of which, prior to inspection of actual failure data, we felt indifferent. But 

in practice, it is far more likely that we have large quantities of testing information about a few 

(product, environment) combinations than it is that we have information on many such testing 

sequences. 
Consider first the failure process of a single software success-failure sequence A. Assume a 

Bernoulli trials process model of the failures of this (product, environment) in a sequence of 'demands' 

with neither debugging, maintenance, nor significant variation in the 'stressfulness' of the software's 

operational environment. An example might be the installed software protection system of a nuclear 

reactor, where demands could be assumed to be sufficiently separated in time as to be treated as 

independent. For flexibility of expression we will use A to refer to both tile (product, environment) 

pair and the 'sequence' of successes and failures on successive demands on this software in this 

environment. Then strictly, 'sequence' means the exact probability law 7 governing the sequence, 

rather than the realised boolean values of the sequence. With this understanding, we can refer to 

A sometimes as a 'pair', at other times as a sequence, and even as a single number p which we have 

an interest in estimating as accurately as possible. Thus, in the first n trials of sequence A, let R be 

the random number of failures occurring and p be the probability of failure on demand. Then the 

distribution of R for fixed n and p is binomial: 

Rin, p - 
(n) 

P, (1 _ P)n-r (50) 
r 

Now think of p as unknown and construct a Bayesian model by assuming that p is a realisation of 

a random variable P having a parametric distribution 

P 10 - f;, (Plo) 

with parameter 0, possibly a vector. Here we can think of the shape of this distribution fp(pIO) for P 

as a representation of the general reliabilities of sequences in a particular family of 
(product, environment) pairs, perhaps representing the different failure histories of a single product 

executing in multiple environments. Alternatively this family might consist of the failure histories of 

a number of 'similar' products produced by a single development team, using a common development 
7by assumption in our model a Bernoulli trials process completely specified by a single numerical parameter p 
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method, and for similar applications. For example, a family of data sequences known to have highly 

variable reliability levels would correspond to a distribution f;, (plO) with a large variance, whereas, 
for another family of sequences, an expected high 'average' reliability figure would correspond to a 

small mean for fp(plO). If we fully understood the true variation in reliabilities of the sequences in 

each of these two success-failure sequence families then we could describe the two families by specify- 
ing two different P-distributions having the required characteristics, and index these P-distributions 

with two different O-values, 01 and 02, say. More generally, our parameter space 0, say, for 0, could 

be said to represent a set of different conceivable reliability characteristics each of which potentially 

characterises a different family of (product, environment) pairs. That is, given sufficient data on 

the reliability variation amongst the sequences of a particular family, a value of 0 (and hence a 

particular distribution fp(plO)) could in principle be assigned as descriptive of that variation. In 

this way, we have defined a model in which 0 can be thought of as a parameter characterising a 

family of (product, environment) pairs. For a (product, environment) chosen at random from those 

of a particular family (i. e. particular 0) and observed for the first n demands, it follows that (R, P) 

has joint distribution 8 
n P)n-, - (R, P) I n, 0 
)P, (PIO), (51) 

given n and 0. Integrating (51) over p gives the conditional distribution of R given n and 0 as 

RIn, 0-n pr (i - p)"-* fp(plO) dp (52) (r) 10 

or, expressed in terms of moments of fp(-10) (a form which will repeatedly be found in results later), 

Rln, 0 - 
(n) 

E[Pr(l _ p)n-rlo] (53) 
r 

Note from (52) that mixing over p using this fixed 0, not surprisingly, has the effect that the 

distribution for the number of failures which will be seen during a given sequence of demands is now 

more dispersed than a corresponding binomial distribution. We can quantify this effect precisely by 

verifying that from the distribution (52) we have mean 

E(R I n, 0] = nE[P 10] 

where 
E[PIO] = 

Jo 
pfp(plO) dp, 

and 
Var(Rln, 0) = nE[PIO](l -E[PI 0]) +n(n- 1)Var(PI 0). 

gNotice that we keep to the usual notational convention of upper case for a random variable and lower case for a 
numerical value obtained as a particular realisation. 
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In this sum, the left-hand term is the variance of a binomial distribution with the same maximum 

n and mean nE[P 10]. As one might expect, the right-hand 'excess' term depends on the variance 
1 

Var(PI 0) = (p - E[P 10])2 fp(p10) dp 
0 

of the mixing distribution fp(. 10). 

If we observe that R=r failures actually occur during n demands, then we can condition on 

this data by normalising (51) to give the updated distribution 

Pjr, n, O - 
P, (1 

_ P)n-, fp(plo) 
(54) 

fol pr (i - p)'-' fp (pIO) dp 

of the probability of failure on demand for this program, given 0, n and the observation r. 

The last eight equations describe properties of a general mixture of Bernoulli trials processes 

[23, pp213-4,217], where fp(. 10) is the mixing distribution. Note that although exchangeability9 of 

the original Bernoulli trials process has not been lost by mixing the processes, the property that 

non-intersecting sections of the process are independently distributed does not hold in general for 

the resulting mixed process. In fact the number R' of failures in a subsequent set of n' demands 

from the same sequence now has an updated distribution obtainable from (54) as 

f, (1 _ P)n+n'-r-r'f, (plo) dp 
R'lr, n, n1,0 

n 
1f1 pr (1 _ p)n-� 

(r') 

0 fp(p10)dp 

1 

(r1) 
E[Pr (1 - p)n-r 101 

given n, r. 

The distributions which we have considered up till this point are parameterised by 0. Under 

our chosen model, (55) is not a predictive distribution of future failures given past failure behaviour 

since it depends on the unknown value of the parameter 0. This deliberate O-dependence is intended 

to take account of the practical fact that we are unable with any confidence to accurately state 

the distribution fp (- 10) of failure probabilities of the (product, environment) pair within our family. 

This inability is captured in the model as our uncertainty about the (product, environment)-family 

parameter 0. This parameter uncertainty has yet to be expressed and incorporated into the picture. 

We now adopt a Bayesian approach to handling this dimension of the problem by supposing a prior 

distribution 

e- Priore(O), 

gThe property that any permutation of a portion of the boolean (success-failure) sequence has the same probability 
as the unpermuted sequence. Equivalently, we can say that the probability of a precise sequence of successes and 
failures during a specified interval of discrete time (say from the 10"' to the 20th demand, inclusive) can be expressed 
as a function of the number, only, of successes during that interval. 
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with support set 0E E). If we plan to observe and predict reliability only of a single software 
(product, environment), this extension actually adds very little, if anything, useful to the model as 

so far described, since, by integrating over 0, the model is reduced to a degenerate (101 = 1) case of 

the assumptions described earlier. (Simply replace fp(plO) by LEO fp(pjO)Prioro(O) dO in the distri- 

butions above. ) However, the idea of a prior distribution for 0 becomes a useful concept if we wish 

to address the problem of learning about a distribution of software reliabilities by observing multiple 

sequences of software failure behaviour from a single family (Ai), say, of (product, environment) 

pairs. We can then represent a conservativelO version of a process concept for their reliabilities, from 

one (product, environment) to the next, by modelling these sequences as individual failure processes 

of the Bernoulli-trials kind discussed above but with different pi, and an assumption that each of 

these pi arises independently given 0 for some unknown, common parameter value 0 characterising 

the entire family of (product, environment) pairs. We are then able to learn from observation of 

the early data sequences about the likely behaviour of another sequence through the medium of our 

improving knowledge of their common parameter 0. 

Thus 0 and p now play distinct roles in terms of the model concepts: Whereas each pi still captures 

a property of a single software testing sequence, 0 now represents a common unknown characteristic 

of the whole family of such sequences. To obtain the value of 0 would be to capture the reliability- 

relevant characteristic which these software pairs (product, environment) all have in common. For 

this multi-sequence model, there is now a real purpose behind including separate distributional 

assumptions for firstly 0, and secondly pi given 0. Below, we, do not in fact assume that 0 can ever 

be known1l. However, we assume that we hold probabilistic prior beliefs about 0 (i. e. beliefs about 

the possible distributions fp(. 10) of reliabilities of sequences belonging to the family (Ai)). Then, any 

observation of failure behaviour of any subset of the sequence (Ai) can be regarded as information 

about 0 which we will use in order to learn about 0 by the usual Bayesian learning mechanisms. Thus 

the second stage of our doubly stochastic model is to represent our prior beliefs about a subjective 

random variable 19 of which the true value 0 for our particular family of sequences is a single 

unknown realisation. Figure 8 depicts these conditional dependence relationships diagramatically. 

This popular DAG (directed acyclic graph) representation of conditional independence assumptions 

is equivalent to the assertion that the joint distribution of all the nodes is equal to the product of 
10in the sense that we refrain from making any stronger assumption of any kind of systematic development of 

reliability from one sequence to the next. For example, we do not assume an increasing trend in reliabilities of 
different sequences in the family 

IlLoosely, we can say that in order to know the value of 0 characterising a family (Ai) of executing software products 
(producti, environment. ), we would require a very large amount of operational failure data on each of a very large 
number of sequences belonging to that family. We could then accurately describe from empirical data the shape of 
the distribution fp( - 10) 
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the conditional distributions of each node conditioned on the values of its parents. Actually, we have 

tended to condition on the values (nj), k-I throughout our probabilistic analysis so that the ni-nodes 

Figure 8: Diagram of the dependencies of the model 

our mixtures and marginal distributions which assumes that both the distributions fp, for P given 

0, and the prior distribution, Prioro for 0, are continuous. The cases where either or both of these 

distributions are discrete are also of interest and correspond to the replacement of integrals by sums, 

or, alternatively, to the use of the Dirac delta function in specifying definitions for our densities fp 

and Prior&. 

Before proceeding to consider in §5.3.5 specific distributional assumptions appropriate for the 

Li. d. Pi given 19, and for the (product, environment) family parameter e itself, we obtain, in the 

following sections, a few consequences of these model assumptions in the general case. Observe 

firstly that, conditionally given 0 and (ni)ik_,, our independence assumption for the (Pi) tells us that 

the first k terms of our (Ri) sequence are jointly distributed 

k 
i=l 

1 «ni)k (ni) 10 1 
ý� (1 _ p)� -,., fp(p10) dp. (56) 

Once we are in possession of data in the form of observed failure behaviour of these k software 

products executing in their k environments (i. e., ri failures out of ni trials for each sequence Aj) 

can be thought of as degenerate, constant random variables. Note that we have used a notation for 
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then we can regard (56) as the likelihood function L (0; (ni, ri) jý 
j of the parameter 0 given this 

failure data. L(O; (ni, ri)ik-, ) is a product involving constant" combinatorial terms together with 

moments of the parametric distribution fp(. 10) 

k 
)k )k 0) ni p)n, -ri I ol Ri i=l 

I ((ni j=1 I 
('i )E [Pr' (1 (57) 

We find, not surprisingly, in the following sections that, using this Bayesian model, our reliability 0 
predictions turn out to depend heavily on our prior beliefs, and not only on the empirical reliability 

(ri)k data j=1 which is later observed. We have expressed the shape of these beliefs formally by our 

selection of the distributions (Ifp( - 10); OE()}, Prioro) comprising our model for the failure probabil- 

ities (Pj) of our family (Aj) of sequences of Bernoulli trials. There are several ways of understanding 

the entity ({fp( - 10); OE 6}, Priorg) less formally, which may help with the selection of appropriate 

distributions in the case of a particular family (Ai). To begin with, ({fp(- 10); OEe), Priore) should 

contain at least 

1. Our best guess, prior to observation, of the family average reliability level of the (Aj), 

i. e. the average reliability towards which our beliefs would hypothetically converge if we could acquire 

arbitrarily large amounts of data from each of arbitrarily many distinct (product, environment) 

pairs which were representative of this family. But (Jfp(- 10); OE191, Prioro) is much more than 

a complicated way of expressing a guess at the family average reliability. We emphasise that it 

contains at least two other dimensions of expressed prior belief, each of which should be verified 

against intuition, and against any available objective prior knowledge, if this model is to be applied. 

(Ifp (- 10) ; OE 19}, Prioro) also contains 

2. Our prior beliefs about the shape of the distribution of true reliabilities (as distributed around the 

average value assessed in 1. ) of this (Aj) family. How consistent will the reliabilities governing 

success and failure in the testing sequences Ai of our family eventually be found to be? 

Lastly, but of no lesser significance in terms of the reliability predictions emanating from our ap- 

proach, we recall that the entity (Jfp( - 10); OEE)), Priore) incorporates a Bayesian subjective param- 

eter distribution Prioro. Through this, the construction ((fp( - 10) ; OEE)), Priore) pays due regard 

to our stated measure of 

3. Our confidence (or lack of it) in own our ability to produce accurate a priori guesses at 1. and 2. 

How confident are we that both of these initial assessments are close to the truths that would 
Ili. e. not depending on 0 
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ultimately be discovered given unlimited data from an unlimited number of representative 
boolean valued sequences Aj? 

This third component of prior belief is a classic Bayesian subjective prior distribution describing 

our uncertainty about a model feature which in this case is effectively an entire continuous prob- 

ability distribution on the unit interval, and whose unknown true value characterises our whole 
family of (product, environment) pairs. This is perhaps also the component whose effects on the 

subsequent analysis are the most easy to overlook-or at least whose effects in our analysis can be 

the most difficult to follow intuitively. To simplify for the sake of illustration, suppose we make 0a 

one-dimensional real quantity (so that E) 9 R), and suppose that we happen to have used a param- 

eterisation of our family of fp( - 10) distributions that orders these distributions according to their 

means. Then, holding this parameterisation f fp( - 10) ; OEG) fixed, the act of choosing a relatively 

more dispersed distribution Prioro will correspond to a statement of relatively lower confidence in 

our ability to accurately guess the value of the family average of reliabilities (item 1. above). Simi- 

larly, if we adopt, say, the coefficient of variation of the unknown true distribution from which the 

Pi are drawn as a numerical representation of an important attribute of the shape (item 2. above) 

of this distribution of failure probabilities Pi around this mean value, and if we assume, again for 

simplicity, that our chosen 0-parameterisation now orders the distributions fp( - 10) instead accord- 

ing to their coefficients of variation rather than their means, then the choice of a relatively more 

dispersed Prioro will represent our relatively lower confidence in our ability to assess, a priori, the 

true amount of consistency amongst the different reliabilities of the members of our family (Aj). So 

in the case of such a parameterisation we could ask ourselves whether we already possess a thorough 

understanding of reliability variability within this kind of (product, environment) family. If so, then 

a highly concentrated Priorg distribution would be an appropriate choice. If instead we considered 

within-family reliability variation between the Ai to be rather difficult to assess, without spending 

some time accumulating an operational history of a number of sequences from the family concerned, 

then we should choose a larger spread for Priorg : and by so doing admit a greater variety of dis- 

tributions fp( - 10) on the unit interval which could each plausibly represent the true nature of the 

variation of failure probabilities between the sequences of our family. 

Of course, we do not have to use the exact 3 items defined above in order to informally decompose 

the structure Qf& 10); 0EeJ, Prioro) of our prior belief into a number of salient features whose 

effects will transmit themselves through the mathematical analysis of this model. The important 

point is that we must be aware of the profound implications-for the reliability predictions obtained 
in the following sections-that each one of these components of our prior belief model has. To 
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summarise the last paragraph, our 'similar products' model proposes a formal representation of prior 

beliefs about a family of (product, environment) pairs between which we are initially indifferent. This 

representation (Ifp( - 10); OE19}, Prioro) is expressive enough to allow us-in fact it requires us-to 

state with precision how much we know (and often the extent to which we are in fact ignorant) about 

the average level and the distribution of the achieved reliabilities of the members of this family. Given 

an available amount (k, nj, n2, .... nk) of testing, we go on in the following sections to show how 

this model of prior belief, combines with empirical testing data (ri, r2f .... rk) to yield predictions of 

future reliability of an individual success-failure sequence within the family. An important question 

running through the analysis of this model is the amount of improvement in our ability to assess 

high reliabilities that is achieved by incorporating data on other sequences within the family. It is 

of interest to examine formally the dependence of the answer to this question on the strength of 

our prior beliefs-particularly our prior beliefs about reliability consistency-concerning the family 

(Ai). 

5.3.2 Bayesian Updating of Distributions and Moments in the General 

Case 

To implement the Bayesian learning about egiven observation of (rj)jý we need to calculate the 

posterior distribution of 0 

01 (ni, ri) k' 
,- cL (0; (ni, ri» Priorg (0) i= 

where c is a function of (ri, ni )k 1 not involving 0, i. e. i= 

i9l (ni, ri) 

jo 1 
p" (1 - p)"-" fp(plO) dpl Priore(O) 

(58) 

p", (i - p)"'-r'fp(plO) dp] Prioro(O) dO 

Equation (58) draws the focus of attention away from failure probabilities Pj of sequences Ai by 

the integrations over p. But it is now of great practical interest to know an up-to-date distribu- 

tion for P given what has been observed (in order to make predictions about a particular new 
(product, environment), for example). Then our learning could be expressed directly in terms of the 

changing nature of the current uncertainty about a failure probability of some particular sequence. 

At this stage it is instructive to distinguish three different circumstances under which we will have 

learned, in different ways, about one of the failure probabilities, say Pk. These three different circum- 

stances will each result in an up-to-date Bayesian posterior distribution for this failure probability, 
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which may be compared with the prior marginal distribution of Pk 

Pk-I fp(PkIO)Priore(O)dO, (59) 
a OEE) 

which represents our initial state of uncertainty concerning the reliability of any given sequence, 
Ak , prior to any observation either of that or of any other (product, environment) pair's behaviour. 

At this point of no observation, (59) is the mixing distribution associated with our mixture-of- 

Bernoulli-trials model for future failure of Ak. This comparison of (59) with subsequent updated Pk- 

distributions determines the nature and limits of what we can learn from observed failure behaviour 

alone, be it of a single sequence or of a number of sequences from a particular (product, environment) 

family. 

Firstly the most trivial case-observing only the past failure behaviour of the specific 

(product, environment) pair of interest-has effectively already been covered by (54). Substitut- 

ing f0eq fp(pjO)Prioro(O) dO for fp(pIO) in (54) gives a conditional distribution 

prk )nA, -rk 

PA; Ink, rk -k 

(1 - Pk 
JOEO 

fp(pkIO)Priore(O) dO 

(60) 
f. 

E. 

101prf. 
(1 - P)TIA, -r' fp(plO) dp Priore(O) dO 

for Pk given nk and rk. Note that we will continually assume, as we have done in the denominator 

here, that the families of densities chosen are such that changes of the order of integration are 
legitimate. 

Secondly replacing k by k- 1 in (58) and then substituting this distribution in place of Prioro (0) 

in (59) (or, alternatively, directly substituting nk = rk =0 in (62) below) gives the distribution 

k-i 
fp(PÄ.. lo) 11 p rf (1 - p)" -' fp(p10) dp] Prioro (0) d0 

K, -1 

IOE 

9 

10, 

- (61) Pk 1 (ni, ri) =1 
m fli-rI fp(p10) Prioro (0) d0 

IOEG [k 1 
fülpli 

p) dp] 
i-1 

of Pk given observation of the failure behaviour (ni, ri )k-I only of other sequences (Ai)k-1 i-I i-I * 
Thirdly, replacing k by k-1 in (58) and then substituting this distribution in place of Prioro(O) 

in (60) gives the distribution 

k-1 1 
p�)nk -ri, f. (p10) dp Prioro(0) d0 Pk 

IOE 

e 
fp (Pk 10) 

ýi-1 10 1 

il 11, -", fp(p10) Priorg (0) d0 
IOEE) [ '% 101ýri 

p) dp] 

(62) 
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for Pk given observation both of the failure behaviour (nk 
, rk) of the sequence Ak itself and also of 

the failures (ni, ri )k-I of other sequences (Ai)k-I i=1 i=1 , 

We remark here that the effects of observation respectively of past and of the present software 
(product, environment) pair's failure behaviour on our beliefs about the present pair's per-demand 
failure probability Pk appear to obey a simple multiplicative property. Comparing the numerators 

of the four different probability densities of Pk given by equations (59-62) we see that these are in 

common proportions to each other13. The denominators appear to spoil these relationships, but the 

denominators are only normalising constants, i. e. they do not depend on Pk. We can use this fact to 

express the property more concisely in terms of the effect of the different observations on the extent 

to which we favour one value, say p', of Pk over another, say p". If, in this way, we compare the kk 

values of the densities at this arbitrary pair of Pk values, we see that 

)k-I pdf(p'kj(nj, ri)jý=, j) pdf(pk) pdf (p' nk, rk) pdf 
(p'k I (ni, ri i_ I k (63) 

pdf(p"I(ni, ri)k 1) 
pdf(p") pdf (p" nk, rk) )k-1) 

kkk pdf 
(pll I (ni, ri k 

provided, of course, that p" is not a point of zero density for any of these four densities. Equation k 

(63) perhaps becomes more intuitively meaningful if converted to the form 

pdf 
(P' (ni, ri)iý=, 

) 
pdf (p' nk rk) /pdf pdf 

(p' (ni, ri), 
ý, I 

df k pdf (Pk )l k k 
(P, 

k k. 

kkkk 
pdf (p") 

pdf 
(p" (ni, ri )k 

1)/ pdf (p") 
ýpdf 

(p" nk rk)/ pdf (p") pdf 
(p" (ni, ri) jý. - I kik 

(64) 

In practical terms this says that observation of both the present and previous sequences changes the 

'odds of Pk = p' vs. Pk = p"' by a factor which is the product of the corresponding changes in odds kk 

resulting from observing, respectively, only the present sequence, or only previous sequences". The 

same property is alternatively captured by the formula 

k 
pdf(pk Ink, rk) - pdf 

(Pk I (ni, ri)ik. -, 
')/pdf(pA., ) 

Pk I (ni, ri) i= I-I )k-1 
(65) 

fo pdf(Pk Ink, rk) -pdf 
(pk I (ni, ri i_, 

)/pdf(pk) dPk 

(defining this density to be zero wherever pdf (pk) is zero). 

On closer examination the model property captured by (63) and (64) is found to be merely 

an instance of a quite general result in Bayesian statistical modelling which applies wherever the 

construction of a probability model makes two observables, Y, and Y2, conditionally independent 

given the value of some model parameter C. Then if we ask the question: 'How do the Bayesian 

13The algebraic product, as functions of Pk, of the 'most informed' (62) and the 'least informed' (59) is equal to 
the product of the other two (60) and (61) arising from the Intermediate levels of information 

14 Of course, it is likely that for some pairs (p' 
, p") the two terms in curly braces may not be on the same side of kk 

unity, so that, for such pairs, when both sources of data are observed, a kind of cancellation will occur between the 
tendency of each kind of data separately to cause us to prefer p'. over p", or vice versa. k, 
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updated distributions of C for the three possible cases relative to observation or non-observation of Y, 

and Y2 compare with the prior distribution of CT, we obtain an answer of the above form. Our model 

is clearly of this kind for C= pk, YI = and Y2 = Rk. Note that no similar proportionate 

relationship holds when we consider updated reliability predictions, rather than updated distributions 

of the per demand failure probability Pk of the current sequence Ak. Below, on p128, we compare 

the effects of these same four 'states of observation' on explicit reliability predictions (equations (78- 

81)). Nor is it possible to further factorise the right-most term in equations (63,64) since under our 

model we do not have the required conditional independence, given the value of Pk for the current 

observation sequence Ak, of observations on distinct Previous Ai, i<k. 

We remark that the approach used to obtain (62) is not limited to providing us with the updated 

univariate distribution of a single sequence's failure probability. The updated joint distribution of 

say (Pk. 
-,, Pk) can be obtained from a bivariate form of the arguments. Since (60) and (61) are 

actually just special cases of (62) for certain of the ni set equal to zero, we will not go through 

the extension to the bivariate case separately for each of the three observation cases distinguished 

in (60-62). In the general case where the observations take the form (ni, ri)jý.,, which includes the 

three cases previously distinguished, we obtain an updated joint distribution 

)k (P,, 
- 1, Pk) I (ni, ri i=l 

i. -Iplk -pk. k- k- "if, (pIO) dpýrior. (o) dO fp(PJ. 
-I 

JO)fj. (PkIOýfj, ý. 
j'fj'P" 

(I-P)"' I. 

( [n (1-p)"' -I fl. (plO) dp]Priore(e) dO 

1) E 44 

(66) 

from which we can, if we wish, investigate the sign and magnitude of any correlation between PA., -, 

and Pk (or powers of these) conditional on the observed data. For higher dimensional joint posterior 

distributions of the (Pi), (66) extends in the way you would expect, to give for the k-dimensional 

joint distribution 
kk 

lflpr, (1 -r, 
i pi)n, 

[rl fp(p, 10)] Priore(O) dO 

(p)k k 
lpr, 

(1 _ P)n, -r, fp(plO) dp] Prloro(O) dO 

We will not pursue this investigation further, concentrating instead on the updated distribution of 

the univariate Pk, and its consequences for reliability predictions of the single sequence Ak given 

the various combinations of observations discussed above. 

Depending on the choice of the distribution family {fp(-10); OEG) and of the distribution Prioro, 0 
we may anticipate some analytic and computational difficulties in obtaining these updated distribu- 

tions for PL. However, we can perhaps more easily obtain expressions for the effect of the learning 
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on the moments of the distribution of Pk. In fact the moments of these three alternative updated 
Pl, -distributions (which will play the role of mixing distribution in Bayesian reliability prediction 
for Ak) are important since any probability prediction of future failures of Ak is equivalent to the 

expectation, with respect to one of these updated Pk-distributions, of the equivalent prediction con- 
ditioned on Pk; and the latter conditional probability will generally involve positive integer powers 

of Pk. (See e. g. (50). ) This follows because our model assumptions tell us that the three quantities 

past failure behaviour Of Ak. future failure behaviour of Aj,, failure behaviour of other sequences are 

conditionally independent given Pk. For example, the predictive probability of R=r failures in n 

further demands on Ak is obtained by substituting the appropriate one of (60), (61), or (62) for 

fp(pjO) in (52). 

More generally if: - 

1. the term observations refers to some partial or complete joint observation of past failure 

behaviours Of Ak and of other sequences Ai; and 

2. the term future failure behaviour of Ak refers to some pre-specified event concerning the 

pattern of future failure of sequence Ak; 

then we have 

P[Juture failure behaviour of Ak I observations] = 

E[ PVuture failure behaviour of Ak I Pk-I 
I 

observations (67) 

where, on the right-hand side, the value of the inner probability will be a function of Pk (calculated as 

for an ordinary Bernoulli trials process) and where the outer expectation is calculated with -respect to 

the updated distribution of Pk given 'observations', which distribution will be one of equations (60), 

(61), and (62) when 'observations' is of one of the three specific kinds we have discussed explicitly. 

For an alternative perspective on the same predictions we remark that we are not obliged to 

think of them in terms of the updated distributions (60-62) of Pk. We can instead use the doubly 

stochastic structure of our model and its two layers of conditional independence15 assumptions to 

show that a prediction of the form (67) will in fact assume a ratio form which can be understood 

directly in terms of two layers of nesting of probabilities and expectations with respect to our initial 

model distributions. In fact, our independence assumptions tell us that whenever 'observations' 

is of such a 'product' form that we can decompose it into Ai, k,, 
-I(past 

behaviour of Aj) (i. e. if it is 
15of (A) given 0 for the sequence family, and of success/failure on separate demands given Pj for a particular 

sequence Ai 
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actually a conjunction of separate events concerning each Ai in isolation) then (67) Cali be shown 

to be equivalent to the formula 

PVuture failure behaviour of Ak I observations) 
10) rlk= 11P [past failure behaviour ofAi 10] E [P Vuture and past failure behaviour Of Ak j 

E [Ilk 
IP 

[past failure behaviour ofAj 10] 

k-I 
E E(PVuture f. b. of Ak I PkI P [past f. b. of Ak I PkI 0) rjýP[pastf. b. of Aj I Pj) 1 0) 

k 

E JJE(P [past f. b. of Ai I Pj] 1 0) 
I 

i=1 

I 

(68) 

where this last form is a prediction expressed as a ratio directly in terms of the distributions used 

to construct the model. In both numerator and denominator the inner probabilities are calculated 

as for a Bernoulli trials process, the inner expectations are obtained using the distribution fp( - 10), 

and the outer expectations are taken with respect to our prior distribution Priore. 

Before making any observations, Pk has a marginal distribution whose Mth non-central moment 

is given by 

1 
E[Pk'] = 

E. 

1 
p'fp(p10)dpPriorg(0)d0 E [Pk' 10) Prioro (0) d0 (69) 

le 

0 

IOE 

0 

This moment of Pk is updated, by our three distinguished observation assumptions, to give expres. 

sions for the moments of the distributions (60), (61), and (62) which take the general form of ratios 

of expectations with respect to Prioro of multinomials in the moments of fp (which moments are of 

course functions of 19). This is a consequence of the fact that (60), (61), and (62) are simple linear 

transforms of this 0-parameterised p. d. f. of our assumed conditional distribution for Pk given 0. 

(Or it can also be explained as a particular case of (68). ) Specifically, taking the three observation 

cases in the same order as earlier, the m th updated non-central moment of Pk is 

E [Pk' Ink, rk) -- 

JlEO 
E[P'+", (1 - P)"-", JO] Priore(O)dO 

(70) JOEO 
E [Pr" (1 _ p)n, -rh 10] Priors (0) dO 

or k-1 

)k-l] 

19E9 
E[P'101 IIE[P"(1-P)"-r'10] Priore(0)d0 

E[Pk'I(ni, ri ., [k-1 

ýi-1 

lo]] 

19 

(71) 
10 fl B [P'", (1 - P) Priorg (0) dü 

EE) j_I 
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or 

i, ri) 
k E [Pk' (n 
%=, 

k-i 

E[P'+'k(1-P)"'-"JO] IIE[P"(1-P)"-r'l 0]] Priore(0) do 
IOE 

e 

ýi=l 

k (72) 
IIE[P"(1-P)"-"10] Prioro(0)d0 

IOEE) ýi=I 1 

respectively, under the three different assumptions: observation of Ak only; observation only of 

other sequences (Ai )k-1; or observation of all of (Ai)k 1. Note that here the left hand sides are i=1 i= 

updated expectations conditioned on observed data: The right-hand sides are ratios of unconditional 

expectations taken with respect to the original, prior 0-distribution Priore. The random variables 

whose unconditional expectations form these ratios are 'binomial-like' expressions in the moments 

of the distribution fp(. 10), which, being deterministic functions of e, inherit their distributions from 

our chosen Priore distribution. To emphasise this role played by these moments of Pk given 0, and 

at the same time to shorten equations (69-72) slightly, if we define 
1 

= 
10 

p'(1 - p) " fp (pl 0) dp, (73) 

then we can write 
E[Pk'l = E[, Un, Ol (74) 

E[Pk' Ink, rk] 
E[mm+, -,, nk-roj (75) E[. UrA:. nk-ri, 

l 

,0U, -,, ni - ro 

E [Pk' I (ni, ri (76) 

E 
ýk 

Ar,, ni 

E 
E 

[Pk' I (ni, ri )k 
j-11 

(77) 

Equations (67) and (68) tell us that up-to-date reliability predictions may similarly be expressed as 

ratios of expectations of moments of fp(. 10). Firstly, given no observation data at all, we have 

P[rkink) = 
nk) E[Ar,, 

n, -rl 
(78) 

(rk 

and, once having observed (only) that Rk = rk, if rk' is the number of failures predicted in a further 

n' demands on sequence Aki k 

[r' I n', nk, rk] = 
nk (79) kkI 

(rk) 
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For our other two observation assumptions we can write 

E 
k (nA., ) [rk I 

nk , 
(ni, ri) j. 

-I 
7k [k-I 

(80) 

E 

k-I 

E 
#Urk+rA,, nk+nA, -rk-r, ' 

[r' I n, (ni, ri 
)k 

I 
nk 

I 

kk i= Ik 

(r 

k 
[=1 

E Ililri, 
ni-ri 

(Note that the updated Pk-moments (74-77) are merely a special case of this prediction : the 

probability that the next m demands result in a string of m successive system failures. ) In equation 

(78-81), the expectations occurring within the right-hand sides are taken with respect to the prior 

Prioro. So the conditioning observations are present in the right-hand expressions only through the 

specification of which moment-terms u,,. (0) comprise the products whose prior expectation is to be 

taken. Indeed, itmay be useful to think of the distribution fp(. 10), given a0 value, as represented 

by an infinite, 2-dimensional matrix of its moments u,,, (0). Then our choice of Prioro can be viewed 

as a distribution over these matrices. Our future reliability predictions will be expressed as product- 

expectations (over 0) of certain elements from these matrices, where these elements are selected 

from the matrix at positions determined by the values of the failure counts we have observed in the 

past and by the precise future failure-count value whose predictive probability we wish to obtain. 

5.3.3 An Upper Bound on Reliability Prediction : The Case of No Ob- 

served Failures 

Consider the special case in which no failures at all have been observed-neither failures of the 

(product, environment) pair for which we specifically wish to predict reliability, nor failures of other 

pairs (product, environment) within the same family. This case may have importance as an upper 
limit for the reliability levels which can be objectively measured In a given amount of observation 
time purely from observation of failure behaviour of sequences within the family. Specialising the 

equations above to this case is simply a matter of substituting the observation (ri) = (0). If we 

similarly specialise the form of our predictions by considering the Bayesian predictive probability of 

a further period of failure-free operation, we find that these predictions can be expressed in rather 

a simple form as ratios of expectations of products of the non-central moments'G of 1-P, with 
'6i. e. moments of the probability of successful completion of an individual demand 
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P coming from the distribution fp(. 10). So, conclusions about the best reliability levels potentially 

measurable using this model can be thought of as dependent exclusively" on our decision about what 

may be considered realistic assumptions for our subjective prior distribution of the moment-vector 

(#UO, l 9 MO, 2) PO, 3t ... 
)= (E[1-PIO], E[(1_p)210], E[(1-P)310],... ) (82) 

of the (product, environment) family. 

Assuming that we do begin by believing that our family is highly reliable (to be more exact, that 

any individual (product, environment) pair within the family is highly likely to be highly reliable), 

then the conditional distribution of P given 0 will be concentrated very close to 0 (for all except, 

perhaps, some values of the family parameter 0 which we consider to be very unlikely, i. e. that 

are assigned small probability (density) values Priore(O) by our prior for 0). Suppose a particular 

fp(. 10), i. e. a particular value of the parameter 0, were highly reliable. This 0 might correspond to 

say a particularly good design process, or perhaps a single product which is successful in achieving 
high operating reliability in a number of different operating environments. Then the first few at 
least of these moments 1LO, i ought to be very close to 1. But it now appears that it is the relative 

amounts by which we, at the outset, stochastically believe the higher moments are less than 1, and 

certain kinds of correlations in our beliefs about these moments (as functions of G) which determines 

how much our confidence in faflure-free operation for Ak should grow when we observe failure-free 

operation of other sequences (Ai)k-11. To understand precisely the sense in which the last statement 

is true substitute (rj) = (0) and rk' =0 in equations (78-81). This yields three expressions for the 

reliability function, i. e. the Bayesian predictive probability that the next m demands on AL will be 

failure-free, given previous observation of failure-free execution of respectively: Ak only; (Aj)jk. -j' ; or, 

)k lastly, all of (Ai i=,, These three alternative predictive probabilities of future consecutive successful 

demands on Ak should be compared with the unconditional 

E[ito,,.,, ], (83) 

the probability that the next m demands on Ak will be failure-free given no conditioning observation 

of either Ak or any other sequences. Indeed it is the comparison of (78) with (80), and the comparison 

of (79) with (81) which indicate the impact of evidence from other sequences on our beliefs about the 

probability of failure-free operation, or r7liability function, of sequence Ak - In each case, in our 'no- 

observed-failures' situation, the admission of evidence from sequences (Aj) introduces a common 
"As far as reliability prediction is concerned, the significance of our specification and paranieterisation (fp(-10); OE19) of a collection of possible P-distributions, and the significance of our choice of prior Priors over 

this collection, is contained entirely in the resulting distribution of the nionient-vector (82). 
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factor FIi=I 110, ni into the arguments of the unconditional E-operators in both the numerator and 
k-I 

the denominator. 

5.3.4 Some Questions About Model Implications 

Some particular questions of interest are: - 

* How does our confidence in Akbehave as a function of the number of previous sequences, when 
these have all been observed to contain no failures for an equal number ni =n of demands? 

For a fixed number k-1 of previous sequences, observed for fixed periods, how much does one 

failure in one sequence spoil things as far as our confidence in sequence Ak is concerned? Then, 

how much does one failure in each of two of these sequences affect our conclusions? And so 

on, for 1,2,3.... out of the k-l previous sequences exhibiting one failure each, and the rest 

no failures? 

Is it best, given a fixed number, in total, of demands on previous (product, environment) pairs, 

to know that fewer (product, environment) pairs have shown failure-free operation over a larger 

number of demands each, or that a larger number of such pairs have each worked perfectly 

over a relatively small number of demands each? How important is this distinction, in terms of 

its effect on the size of the amount by which our confidence in Ak is improved by observation 

of the previous sequences? 

Where there have been some previous failures, and again keeping the total number of previous 

demands constant, do we prefer to hear that those failures have been concentrated amongst a 

small number, or even a single, previous sequence, or is it less depressing news for tile current 

(product, environment) pair if we find that the previous sequences all showed a similar level 

of unreliability? (It seems obvious that, if we are especially interested in the reliability of the 

current sequence Ak, then, given the choice, we should in general prefer observed failures to 

have been found in previous sequences, i. e. to be failures associated with software products or 

environments other than the current one. ) 

* Which, if any, of the answers to the above four groups of questions holds quite generally for 

all possible parametric distribution families (fp(. 10); OEE)). and for all possible prior beliefs 

Priore? Does a preference for, say, all failures to have occurred In a single previous sequence, 

rather than for the same total number of failures to have been distributed between several 

previous sequences, depend on specific characteristics of our assumed prior distributions? 
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Extending further such consideration of the influence of our choice of Prioro, we might even ask, 
the family ffp(-10); OEE)} being assumed specified, about variation in the quantities of interest 

over the space of all pTiors Prioro, and, in particular, ask various, probably mathematically non- 
trivial, questions about extrema here. In practice Priore ought ideally to capture genuine prior 
belief. However, given that the conclusions from this model are likely to be highly dependent 

on the shape of our prior belief, it is important to try to gain a general understanding of 

more precisely how, and to what extent, various different distributions Priore will effect our 

conclusions. What are the extremes, in both the sense of extreme favourability and extreme 

unfavourability to high current reliability predictions, of the prior beliefs we might hold? Are 

the mathematical extremes here at all plausible in practice? Can we introduce geometric 

constraints on the shape of the prior distribution, such as unimodality, or continuous density 

function, or upper and lower limits on the values of Pi admitted as having positive probability, 

and how do such constraints effect the answers to our questions about extrema? 

There are several other similar questions that can be asked, given this general model structure. The 

next section contains some tentative results relating to some of the above questions in the context of 

some simple instantiations of this 'similar products' model. In terms of this basic model structure, 

there is of course an added complication to these questions: It may well turn out that the questions as 

we have just listed them are insufficiently precise. What precisely does 'high current reliability' mean 

in the last bullet point above? It might transpire that the answers will depend on specifically how we 

choose to quantify the reliability of the present (product, environment) pair. For example, in terms 

of the updated distribution (62) of Pk, or in terms of the associated's reliability function. And in 

each of these two cases, how do we compare two functions? Two alternative Ak-reliability functions 

resulting from different observed behaviours of previous sequences might cross at future demand 

M=104, for example. That is to say, the previous-sequence observations which give the greater 

confidence in the current sequence's long-term reliability may give lower confidence In its short-term 

reliability. In such a case, the set of previous-sequence observations which we would prefer to see 

would depend on factors such as our predicted operational lifetime of the (product, environment) 

pair Ak- 

'Busing equation (67) 
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5.3.5 Examples of Particular Choices of Prior Distributions for P given 

0, and for 0 

We shall retain throughout what follows our original assumptions that each sequence Ai constitutes 

a Bernoulli trials failure process with unknown parameter Pi, and that the (Pi) sequence is i. i. d. 

conditionally given an unknown sequence-family characterising parameter 0. To generate particular 

cases of our model we are then left with the tasks of choosing the distribution family ffp(. 10); OEE)j 

and the single prior distribution Prioro over this family. To begin with, we will investigate a simple 

two-point distribution fp(. 10) in §5.3.5.1. Though clearly a simplification, this model instantia- 

tion can be argued to have some practical relevance to attempts to certify 'ultra-high reliability 

(product, environment)s' as well as illustrating in a simple way the structure of our general model. 

5.3.5.1 Two-point fp, with 0 interpreted as mass at fixed points of support, one of 

which is p=O 

Suppose P 10 has a two-point distribution with 0 equal to the probabilityI9 assigned to p=0. So 

we assume 
P[Pi = 010] = 0; P[Pi = lrlo] =1-0. 

Thus we assume that, for each sequence Ai in the family, 0 is the probability that Pi = 0. For 

example, we could imagine a formal verification technique is applied to each software product and 

that this technique fails-to deliver a perfect (p = 0) (product, environment)-with an unknown 

probability 1-0. When this happens, we assume that the resulting program failure probability is 

known; for example ir = 10-1 might be used, if these are high-integrity products. This assumption of 

a single known value for p whenever p00 would perhaps better be relaxed by allowing a distribution 

for p, but it simplifies the application of our general model, retains sufficient flexibility to provide a 

useful illustration of the model, and could perhaps be justified on the grounds of conservatism by 

assuming a worst case value ir for the non-zero p. We can now apply our previous results to the 

analysis of this model. Though now containing a discrete distribution component, the model can if 

desired be obtained directly from the results of sections 5.3.1-5.3.2 by defining the common density 

of each of the Pi in terms of Dirac delta functions 20 

PI 0- fp(p10) =O 6(P) + (1 -0)6(P-lr), (84) 

19Contrast with the also interesting case where 0 defines the position of the points of support of fp-Or perhaps 
further generalisations where the positions and masses of two points of support for P are represented by a two or 
three dimensional 0. 

2OProvided we agree either to slightly extend our usual range 0 <- 
Ip<I 

of integration with retipect to p, or to 
modify the usual definition of the 6-functions so that 

. 
1" 6(p) dp and f 6(p - 1) dp should evaluate to I rather than 001 
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say, where 0< 7r <1 is fixed. 

)k The likelihood of 0 given periods (ni 
j=1 of observation of k sequences (c. f. equation (56)) is then 

L(O; (ni, ri)ik=, ) = 
11 

(ni) 

. 
r, 

g� (1 (1 - 0) . 
Il m- Irr (1 

- 0) + 0) 

Ki< 
ri 

15f! 5&, 

To within a factor which does not depend on 0 we can write this as 

L(O; ri)iÄ'=1) oc Lk (0) M- 7r)"' (1 - 0) + 01 

I<i<A:, 15i: 5h, 
, -j>0 i. 0 

Vt Case: General Prioro It follows that the posterior distribution of e given this data is now 

k Lk(0)Priora(0) 
01 (ni, ri)i=, ýTOEg Lk (0) Prioro (0) di 

In fact, since the parameter 0 has a direct interpretation here as a probability, we must have E) 9 

[0,11, and we can assume without loss of generality that Prioro is extended in such a way that 

E) = [0,1]. We shall assume this has been done for the remainder of this section. If there has been 

a failure in the observed part of the current sequence (i. e. if rk > 0), then the updated posterior 

distribution of Pk given our observation is trivially just Pk = 7r with certainty. In this case, future 

reliability prediction is simply that of a Bernoulli trials failure process with parameter 7r. In the 

interesting case where the current sequence Ak has so far exhibited no failure we have 21 

P 
[Pk 

=01 (ni, ri) nk, rk = 

f�' OLk-1(0)Priore(0)d0 
01 = 

fo' «1 
- 7r)" (1 - 0) +OILk-1(0)Priorg(0)d0 

0] 
f, ' (1 - 7r)"' (1 - 0)Lk-1(0)Prioro(0)d0 

P [P, 
= ir 1 (ni, ri) nk, rk ý0 fl «1 

_ �)nh 
t 0 

(1 - 0) + 01 Lk- 1 (0)Priol-o(0) d0 

Equation (67) tells us that this pair of probabilities may now be substituted in the following equation 

to obtain a reliability prediction for sequence Ak 

P [No failure in next m demands I (ni, ri)k-11 , nk, rk -"=Ol = 
1 

+P[P, = 7rl(ni, ri)k-1 , nk, rk= P[Pk =O l(ni, ri)iý. -11, nk, rk=0 0] (1 - irr (85) 

This is equivalent to the rk = r' = 0, n' =m case of equation (81), where for this model structure kk 

we have 
(1 - Ir) 8(1 -0)+0, if r=0, 

(8G) 
7rr(l - 7r)8(1 - 0), if r>0. 

Consider now the case in which our periods of observation have given rise to no observed failure of 
)k any of the family (Ai i=,, Expressing the up-to-date distribution of PL slightly more concisely using 

21This formula holds also for k=1 if we put Lo(O) =I 



CHAPTER 5. PREDICTION USING ADDITIONAL SOURCES OF DATA 135 

the 'odds' form mentioned in equations (63) and (64), we can compare it with the odds obtained 
from observation of only the present or only previous sequences. Cancelling some constants from 

the likelihood term Lk(O) which occurs in both the numerator and the denominator, we find that 

P [Pk 
=01 (ni)k' 

1, 
(ri)k 

1= 
(0)] 

+ Yk) fo ri 
ik 11 

)k 
1, 

( )k 
1=(0) P [Pk 

= 7r 
1 (ni 

i= ri Z= 
- fl rlk-1 Yk 

i-1(0 

P[Pk =OI(ni 
)k-1 

, 
(ri) k-1 

(0) fl lik-I(O + yi) 6 

fl Jik-ll(0 + y, ) (1 )k-1 )k-1 (0 11 [Pk 
= ir 1 (ni (ri 

=, (, i_ 
P [P� =01 nk, rk =OI (1 + Yk) P[Pk 01 

P [A = ir 1 nk, rk =O] Yk P[Pk 7r1 

(87) 

(88) 

(89) 

where the second term on the right-hand side of (89) is just the prior odds that Pk =0 (before any 

portion of any sequence has been observed) and where we introduce the notation 

Yi =i=1 (1 
- 7r)-ni -11 (90) 

Note that for this two-point model with 7r assumed known, improving reliability estimates of the cur- 

rent sequence translate directly into an improving up-to-date probability of current 

(product, environment) perfection. This can be simply expressed in terms of the odds values given 

by equations (87)-(89). If the prior odds of Ak-perfection is denoted o, and if equations (88) and 

(89) represent, respectively, improvements on this by factors of . 9, achieved by means of previous 

Ai-observation, and R', by means of direct observation of (product, environment) pair Ak i then we 
(1 + ! )-I =I will have a prior Ak-perfection probability of 0 

fo' OPrioro (0) dO, Improving to posterior 

Ak-perfection probabilities of (1 + gl-, ) 
1, (1 + F. -) - 

1, and, (1 + FRTO- . 70- go- 
-. ', respectively, under the 

three different observation scenarios of equations (60-62). Clearly, it is the factor R which is of 

particular interest since it represents the advantage to be gained from incorporating data on the 

previous Aj. There is a need to understand the way that this factor is determined by the combined 

effect of observations and of our prior distribution Priorg. 

If failures in some previous demand sequences Al 
.... 

Ak-1 have been observed then this is 

handled (irrespective of how many of these failures there were for each Ai which was seen to fall 

at least once) by replacing the corresponding factors (0 + yj) by (I - 0) in both the numerator 

and denominator of equations (87) and (88). The expression in terms of yj here brings to light an 

interesting limiting case 

Yi --ý 

(1 + Yk) + yi)OPrioro (0) (10 
k-1 0+ yi ) (1 Yk fol rli-l( - 0) Priorg (0) d0 

1k1 fý rli=-, (0 + yi) 0Priore(0) d0 

fo' rl, k. -1l(0 + yi) (1 - 0)Prioro(0) d0 

which is likely to be a good approximation to reality for pairs (product, environment) which are 

very reliable, and which is obtained by letting 7r --+ 0 and ni - oo (for those Aj which have been 
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observed not to fail) whilst holding ni7r constant for each of these sequences. In this limiting case, 
the updated distribution of Pk comes to depend only on the products ni7r, and not, other than 

via these products, on the values of ni and ir. Some idea of closeness to this limiting case can be 

obtained, in terms of the value of 7r, from the crude bounds 

<< (92) yi 

which are respectively obtained by applying the two well known inequalities 

1+x)"<e', n>O, x>O and 
(1 

_ 
lyn >Ct, O<x<n. (93) 

n 
For an interpretation of yj we can say that yj is a kind of inverse measure of the informativeness 

to us of our no-failures observation on sequence Aj. Precisely, yj is the odds of observing what has 

been observed (i. e. no failures) of sequence Aj, under the assumption that its true failure probability 

is P, =7r. So ri=O with a yj which is close to zero means that we have observed something about 

sequence Ai which would be extremely unlikely under the assumption Pi=7T. Conversely, ri=O with 

a very large yj means that, even if we somehow knew for certai, 122 that P, =7r, we would still be 

virtually certain not to observe any failures of Ai in the ni trials we have carried out. Equations 

(87-89) confirm that there is virtually no effect on our beliefs about Pj., arising from the observation 

that ri=O, if the value of yj is very large : In terms of inferences about Pk, large yj makes the 

the observation ri=O almost equivalent to no observation of sequence Ai (i. e. almost equivalent to 

ni =0)23. 

We developed our model of §§5.3.1-5.3.2 in a very general setting from which these two-point fp 

results are a very special case. However, even for this simple model instantlation, several interesting 

and non-trivial questions can be asked about how much extra confidence in a current sequence Ak 

can be gained from the observation that previous pairs (product, environment) have performed well. 

The information that previous products have been observed to perform perfectly In their assigned 

environments over finite observation periods (ni)k-I is a special case of obvious interest for reasons 

stated earlier. 
By concentrating first on this simple two-point case of our general model, we can avoid imme- 

diately having to grapple with many of the complications concerning alternative quantifications of 

reliability. For this two point model, it is effectively true to say that high reliability of the present 
(product, environment) Ak is unarguably equivalent to a large value of the updated probability 
P [Pk 

=0 I (ni, rj)jý-, 
]. So in the case of this 2-point model there does exist a single number which 

22the worst possible belief we can hold about Ai, however much observing we do, under this two-point model 23. ror a logically consistent definition of yi in the vacuous ni=o case, we might use yimoo on the understanding 
that we can then simply cancel from equations (87-89) all the Infinite factors involving yi 
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can be said to represent the current Ak reliability prediction. Thus we can unambiguously order 

the reliability predictions which would result from two different sets of past failure observations. 
For instance, (85) shows us that, with a fixed numerical value for 7r specified by the model, we will 

not experience the complication of two reliability functions, produced by different past-sequence 
behaviours, which cross at some number m of demands into the future. We proceed to examine 

some of the questions of §5.3.4 for this simple model. 

Firstly, we can easily see from (89) that observation of failure-free operation in sequence Ak, 

itself, will improve the odds that this sequence has Pk=O. The odds in favour of Pk=O increase by 

a factor 1+ 11Yk, or (1 - 7r)-11k. (We note that this factor is not influenced by our prior beliefs 

about 0. ) This remains true, and by an identical proportion (see comments on p124), irrespective of 

whether observation of previous sequences has occurred, and irrespective of what failure behaviour 

was observed for those sequences. Intuitively we might expect that observing perfect failure-free 

behaviour in previous sequences should improve the odds that PA, =O in a similar sort of consistent 

way, if not to the same extent. To confirm such an effect, and to investigate its magnitude we need 

to look at the ratio 
kk P [PK-=O 1 (n, )i, 
=� 

(ri)j=, = (0) P[Pk=Olnk, rk=01 

P[Pk. =7rI(ni)k 1, 
(ri)k 1=(0)] 

/ 

P[Pk=7rink., rk=01 
i= i= 

1 k-1 10 
Il(0 + yi) 0Prioro (0) d0 10 

0Priorg(0) d0 
i=l 

k-1 1 
Il(0 + yi) (1 - 0)Prioro(0) d017 (1 - 0)Prioro(0) d0 

0 

10 

i=l 

To do this we will first introduce some slightly more concise versions of our existing notation and 

make some definitions. Define 
k-1 
I10 + Yi) , 

01 =PA =01 =/ OPrioro (0) dO, and 02 2-- 1-1 1 (O)Priore(O) dO 
.0 i=1 (10 

Note that we know from the convexity of 1, using Jensen's inequality, and from I's monotonicity, 

that, for any Prioro, we must have 0 :5 01 :5 02 :51. In fact we will have strict inequalities here 

except in some degenerate cases such as yi=oo, or where Prioro is a single point mass. With this 

notation it can be shown that the ratio representing our Improvement of odds simplifies as follows 

A=1 

in l(0)0Priore(0) d0 
1-01 

2- 1+ 

10 l(0)0Priore(0) d0 - l(02)01 
(94) 

> 01 10 
1 (0) (1 - 0) Prioro (0) d0 0 110,1 (0) (1 - 0) Priorg (0) d0 
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where here the numerator and denominator of the ratio on the right-hand side are both positive and, 

together through this term, express the 'amount of benefit' obtained from observing the non-failure 

in the previous sequences. We know that the numerator of this ratio (i. e. of the amount by which 

the ratio .9 of the odds exceeds 1) on the right-hand side of (94) is non-negative because it expresses 

the covarianCeN of the random variables 0 and 1(19) :A random variable cannot be negatively 

correlated with any variable obtained by applying to it a non-decreasing function. In fact we can 

express this numerator as an integral of a non-negative function, in either of two slightly different 

ways 
11 10 
l(0)0Priore(0) d0 - l(02)01 ý 

10 (0 - 01) (1 (0) - l(01» Priore (0) d0 

1 
= 

10 
(0 

- 02) (IM 
- l(02»Priore(0) d0. (95) 

It is clear from (94) that the improvement in the odds that Pk=O which results from the previous 

sequence observations can be thought of as the result of three interacting influences: the o7iginal 

odds (prior to observation of either this or any other sequence) captured in terms of the value of 

01; the actual detailed description of the observation of previous sequences (both their number, and 

what is observed of each), which we can think of as being summarised by the function 1(0)"; and, 

going beyond the simple expectation 01, the exact shape Prioro of our prior beliefs about 0. In 

terms firstly of the previous sequence observations, we can see that 1(0)=constant, corresponding to 

a large yj value for each sequence observed, is equivalent to a lack of useful information observed 

from the previous sequences. At the opposite extreme, the function l(O) = 0-1 is the upper bound 

on the proportionate variability of I over the unit interval. This represents an upper bound on the 

improvement of our beliefs about ak th sequence that can arise from observation of periods of perfect 

operation of the k-1 previous sequences. 

Now, looking instead at the influence on 9 of the form of Priorg, we see that, for whatever set 

of past-sequence observations, (94) will have approximately the value 1 in the case where Priorg 

approaches the distribution of a degenerate, constant, random variable. Le. if we are already more 

or less certain before observation commences, that 0 ; zzs 01, then one sequence will have little to tell 

us about another. At the other extreme of the form of Priore for the same fixed mean 01, it seems 

that high levels of variation or spread in our prior subjectivee-distribution will have the opposite 

effect, magnifying to its limits the significance for sequence Ak of what we have observed from 

previous sequences (Ai)ik--, '. For a particular function 1(0), these limits are finite, and so we might 
24deriving from our assumed prior distribution Priorg 
25although, as we have already mentioned, it is the vector of products ni7r, or to be more exact, in the case where w is 

not very small, of Vi values defined by (90), which contains the significant part of the previous (product, environment) 
pairs' influence on our beliefs here, i. e. 7r as well as the ni determine I 
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investigate them further. But we do this as a way of obtaining a slack upper bound on how much 

previous sequences could ever tell us (within the two-point fp model of this section) rather than 

because we believe the extreme of Priorg-variance is likely to be a realistic model of a person's true 

prior beliefs about reliability variation within the family of software (product, environment) pairs. 
For fixed mean 01 the most extreme spread in prior beliefs about 19 is given by the distribution 

Prioro which consists of two point masses: 01 at (9=1 and 1- 01 at 0=0. It is easy to see that this 

Prior026, when substituted in the left-hand side of (94) gives the PA, =O odds-increase of 
k-I + yi (i - ir) - (96) 

Yi 

In considering the influence of the shape of Prioro on the usefulness of previous sequence ob- 

servations, a point worth making about the form of the obtainable odds-improvement (94) is the 

following. If we consider the set of probability distributions Prioro on the unit interval having some 

common fixed mean 01, and if we hold fixed the previous-sequence observations (i. e. specify some 

fixed function 1(0)), then, as we vary Priore within this set (which, mathematically, is a convex set 

in a suitable vector space of real measures), we will find that the extrema of (94) must be attained 

somewhere on the boundary of this set of distributions. This is because 2, regarded as a function 

of the distribution Prioro, has a monotonicity property along 'straight lines' in the set of candidate 

Prioro distributions : When Prioro is a mixture27, say, 

Prioro(0) -' API(O) + (1 - -X)P2(0) 90<A<19 
(97) 

of two probability distributions on the unit interval, having a common mean 01, but different values, 

Say R(Pl) < 9, (P2) , of the ratio (94), then the value R(Prioro) of (94) corresponding to the mixture 

will satisfy. 9(pl) < R(Prioro) < -9(P2). This in turn follows from the fact that the numerator28 and 

denominator of (94) are both non-negative-valued linear functionals of the probability distribution 

Prior029. This kind of reasoning can be used to confirm that (96) is indeed the maximum possible 

value of R for a fixed observation function I and mean 01 (and in fact, as we see in (96), that the 

value of this maximum is actually the same for all 0< 01 < 1). The value in (96) tends (using the 
k-1 same reasoning as for (92)) to a limit exp ( E, 
-, ni7r) as 7r --+ 0 keeping each of the the product 

terms ni7r in the exponent constant. In addition to this limiting value, we also have, for finite ni, 
k-1 an upper bound exp (Ei=l njT'7r) by the same reasoning as that used to produced (92). 

26strictly speaking a weighted sum of two Dirac delta functions, but note footnote 20 on p133 27the argument extends easily to more general mixtures than the discrete mixture of Just two distributions used 
here 

28use either the left-hand side of (94), or the right-hand side of (94) with the first form of the right-hand side of (95) used as the numerator 
29essentially we are using the identity 

.. 3ý jul + (I TT+- u) j (a convex combination) for any pair of ratios 
and A of positive numbers, where 14 W 



CHAPTER 5. PREDICTION USING ADDITIONAL SOURCES OF DATA 140 

It is difficult to imagine how a two-point Priorg, such as that required above to attain the 

maximum (96) effect of past sequences, could possibly arise in practice as a realistic model of 

subjective prior belief. Some further, more realistic restriction on the set of admissible shapes of the 

Prioro distributions which have some particular mean 01 is probably worth exploring. For example 
the question of how big (94) can become (for some fixed 01 and 1) when we require that the prior 
distribution Priore should be unimodal looks a more interesting one from a practical point of view, 

if, unfortunately, more difficult mathematically to solve. 

2"d Case: Parametric Restriction of Priore to Beta Family Consider a further model 

specialisation in the form of the assumption that Priore is a Beta distribUtion30 
. This assumption 

is convenient for numerical reasons since it allows us to expand out the O-polynomials in (87) and 

integrate analytically, term by term, using 

1 
0' (1 - 0) " Prioro (0) dO = 

O(a + m, b+ m) (98) 10 
6(a, b) 

aa+a+m-1bb+1 b+m' -1 
(a + b)Z-a+b+ 1) (a+ b+m - 1) (a+ b+ m) (a+b+ 7n+ 1) ... (a +b+tn +ml - 1) 

Hence problems of optimisation (of say the ratio (94)) within this parametric restriction of the choice 

of prior beliefs Prioro become scalar optimisation problems with respect to the two independent 

variables a and b, rather than mathematically more difficult optimisations in which the independent 

variable is a 'point' lying in a convex set of general probability measures (contained within a larger 

vector space of general measures on the unit interval). 

Note also that the Beta Prioro assumption contains, as the limiting cases a, b -+ 0 with a/b 

constant, the largest-variance 31 
, 2-point Prioro distribution of a given mean, as mentioned above, 

and also contains, as the cases a, b- oo with a/b constant, the degenerate Prioro under which there 

is no possibility to learn about Pk from observation of other Ai, i=1... k-l. 

It is of intereSt32 to fix the prior probability P[Pk=O] and to examine how variation of the 

parameters a, b of the Beta distribution for e, subject to such a constraint, afrects the amount 

that can be learned from previous sequences. In fact, fixing this prior probability is equivalent 

simply to fixing the ratio a/b, i. e. the prior odds, say o, that Pk. =O. If we reparameterise the Beta 

distribution in terms of this odds o and the parameter b, then, as we have just said, for fixed o, the 
30Not to be confused with the assumption, in the example of the next sub-section, that 0 is (a, b) the parameter-pair 

of a Beta distribution, where that Beta distribution is our fp-distribution for Pi given 0. 
31 the coefficient of variation of the Beta(a, b) distribution is VFITa-Ca -+b-+ TI)T 32because this will provide an upper bound on 'how much' a given amount of previous-senuence data can tell us, 

under this model : not because we wish to suggest that such an optimisation is a valid method of 'eliciting' the shape 
of genuine Bayesian prior beliefs, nor even that this bound will be closely approachable in a genuine analysis of real 
systems 
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greatest (or least) possibility, as measured by the ratio 9 of equation (94), for learning about the 

current (product, environment) pair from perfect behaviour of all observed previous Aj, 1 !5i<k, 

corresponds to the extreme limiting case b --+ 0 (or b --+ oo). In fact, for this model, we can 

verify that, as we might expect, in this situation where all previous sequences have shown perfect 

behaviour over their fixed observation periods, 9 is a monotonic non-increasing function of b. See 

Appendix B. 3 for the details of this proof. This g(b)-monotonicity provides us some information, 

at least in the Beta case, about what happens as we vary the shape of the distribution Priore, for 

fixed mean 01 (i. e. fixed o given by o= 01/(1 - 01)), between the two extreme cases of the constant 

(zero variance) prior distribution corresponding to 2=1 at one extreme, and the other extreme of 

the maximal-variance, 2-point distribution with mass only at 19=0,1 corresponding to the largest 

possible value of R, given by (96). Fixing o= a/b and varying b for our Beta Priorg is equivalent to 

moving along the line b= oa in the (a, b)-plane. In this plane of Beta distribution parameters, it is 

precisely the points inside the unit square (i. e. the pairs (a, b) with max(a, b) < 1) which correspond 

to bimodal Beta distributions. The Beta distributions corresponding to the outside or boundary of 

this square (those for which max(a, b) ý! 1) are unimodal Beta distributions. Hence, in the case of 

a Beta Prioro, we can conclude that, moving back from infinity (tile degenerate constant (9 = . +* I 

prior) along the line b= alo towards the origin gives a steadily increasing variance of Priorg, 

and simultaneously an increasing value of R, with both the maximal variance, and the maximal 

R, which can arise from a unimodal Beta prior, being attained on the boundary of the square at 

(a, b) = (1, ;1ý, if o 1, or at (a, b) = (o, 1), if o :51. Expressions for the accompanying .9 values 
0 

are obtained by substituting Priorg(O) oc (1 - 0)0- 1_1 and Priore(O) oc 0`1 In the formula (94). If 

this movement towards the origin of the (a, b)-plane is continued inside the unit square, then, as 

the origin is approached, increasingly extreme forms of bimodality in tile prior for 0 result in the 

variance of Priore approaching a maximum value of 0/(0 + 1)2 , and 9 approaching the extreme 

limiting case of (96). This latter extreme case has the rather absurd interpretation of all sequences 

being known to have the same Pi value in advance of observation, but with uncertainty somehow 

persisting (despite such a strong belief in uniformity of failure rates) as to whether the actual value 

of this universal failure probability is 0 or 7r. It seems that this smaller arising from the 

restriction to unimodal priors might be a more realistic upper bound on the attainable size of the 

improvement R. However, we have not answered the general question under a unimodal Priore 

of how large 9 can be for given fixed observations periods throughout which tile k-1 previous 

sequences have all been failure-free. We do not know flow much greater we might be able to make 

.9 if we experiment with unimodal Priorg outside the Beta family. Mathematically this appears to 
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be a difficult constrained optimisation problem. 
We can also use the analytic tractability gained by this Beta restriction on Priorg to investigate 

the question 33 of how the shape of our prior beliefs affect the preferred allocation of a fixed number 

of demands between a number of past ýproduct, environment) pairs Aj, i=1,2,. - -'k-1. The algebra is 

a bit awkward, but even with this Beta family assumption for Priore, and while limiting ourselves to 

the more tractable cases of small k, we are still able to establish the following result: Our prior beliefs 

about the (product, environment) perfection probability 0=P [Pi =0 10] are of sufficient importance 

that the answer to the question posed in the third bullet point at the beginning of §5.3.4 may be 'No', 

'Yes', or something more complicated, depending on the combined effects of the shape Priorg of our 

prior beliefs and the total amount N (or Z, see below) of past product data we have available. This 

establishes a principle that there are qualitative, as well as quantitative, questions concerning what 

our model says about the influence of observations of past (product, environment) pairs which cannot 

be answered until we have described the shape of our prior uncertainty about reliability variation 

between the (product, environment) pairs of our family (Ai). Suppose we have a total number N of 

demands to distribute between k- 1 previous (product, environment) pairs A, 
W 
A21 

... Ak-I and that 

our objective is to increase our confidence in the reliability Of Ak as much as possible. To simplify 

the notation slightly, we work in terms of Z= N(- log(l - 7r)), which we might choose to think of as 

a quantification of the total amount of past-sequence observation 'adjusted' for the difficulty of our 

task of discriminating between Pk=O and Pk=7r. (Clearly, the closer 7r is to zero, the more difficult 

it becomes to discriminate, by means of data, between the two possibilities Pk=O and Pk=7r. ) We 

can describe our allocation of this past data between the k-1 previous sequences by means of a 

vector (vi, v2,... vk-, ), with 0< vi :51, vI + v2 + ... + vk-I =1 where vi = ni/N. 

Taking first the simplest case of just two previous sequences, i. e. k=3, equation (94) (using (88) 

and (90)) can be written 

[e"ZO + (1 - 0)] [eV2Z0 + (1 
_ 0)] oa(1 _ 0)b- 1 d0 

_q =bý () (99) 
[e"IZO + (1 - 0)] [e112Z0 + (1 

- 0)] Oa-1 (1 - 0)b d0 

Expanding the products of square-bracketed terms and using (98), this reduces to 

(a + 2)(a + 1)e("+"2)z + (a + 1)b (eliz + e'12Z) + (b + I)b 
(100) (a +, 1)ae(vi +112)Z + a(b + 1) (ell, z+ eP2 Z) + (b + 2) (b + 1) 

Remembering that v, + v2 =1 and taking 'I as our measure of unevenness of allocation of IvI 75 
33The third bullet point at the beginning of J5.3.4 
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the N (or Z) past observations between Al and A2, we find that 

(a + 2)(a + 1)ez + 2(a + 1)bei cosh [(vi - -21)Z] + (b + 1)b 
(a + 1)aez + 2a(b+ 1)el cosh[(vl - ! )Z] + (b + 2)(b+ 1) 2 

a+l b (a+b+2) (eZ 

i -+, -+ (101) 
a (a + 1)aez + 2a(b + 1)ei cosh[(vi - 51)Z] + (b + 2)(b + 1) 

1 

and it is apparent that .9 is a monotonic function of I i/I - 
11 with bounds 
2 

Rl - 
(a+ 1)e' +b 

achieved at v, = 0,1 (102) 
aez+b+l 

-q2 - 
(a + 2)(a + 1)ez + 2(a + 1)bef + (b + 1)b 

achieved at v, (103) 
(a + 1)aez + 2a(b + 1)ef + (b + 2)(b + 1) 2 

We showed earlier that, irrespective of how much direct observation of A3 has been done, R. is the 

factor by which the odds that A3 is perfect are improved by the past sequence (in this case A, and 

A2) observation. Thus we conclude, for this simple k=3 case, that 

If our prior beliefs for 0 are Beta(a, b) with 
býb+') 

= ez, then our posterior probability that aý-a+--Ij 

P3=0 is unaffected by changes in allocation of a fixed total amount Z of past sequence obser- 

vation between Al and A2. In this case, the observation of Al and A2 improves our odds that 
A3 is perfect by a fixed factor .9= 

(*+%b, 
(b+l 

b(b+l) If our prior beliefs are Beta(a, b) with aT-. +-,, > ez then our posterior probability that P3=0 is 

a strictly increasing function of I vi - 11 (i. e. we prefer our previous observations to have been 
2 

allocated as unevenly as possible between the two previous sequences A, and A2). In this case 

we have 92 :! ý, R< 91 as we vary vi. If all of these previous observations are concentrated on 

only one past Aj, then the maximum possible improvement R of odds that P3=0 is attained 

as 9=. 91. 

+bb +I 
a 

If our prior beliefs are Beta(a, b) with a CQ 
< ez then our posterior probability that P3=0 

a a+ 
is a strictly decreasing function of Ivi 

- 11 (i. e. we prefer our previous observations to have 2 
been allocated as evenly as possible between the two previous sequences). Here we have 

R, :59< R2 as we vary vi. If these previous observations are exactly evenly allocated 

between A, and A2, then the maximum possible improvement Y. of odds that P3=0 Is attained 
as -q=-q2. (Of course this is only possible to do exactly when N is even. ) 

So, in general, we have shown that, supposing N and 7r to be given (so that Z is fixed) then we cannot 

answer the question about whether a person prefers the observation of previous 
(product, environment) pairs to be allocated evenly between those previous Aj without first clarify- 

ing the shape of that person's prior beliefs about the unknown perfection probability parameter 0. 
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However we can draw a few conclusions of a more general nature for this k=3 case. Suppose that 

the person's prior probability that a randomly selected Ai is perfect E[19] has been stated, and we 
know that their Prioro is in the Beta family. Then the ratio a/b is determined, and so, if E[e] >12 
i. e. if a>b, it must be true for any value of Z that 

b(b + 1) 
<< ez ý -(a -+l ) 

giving a preference for even allocation of observations between Al and A2, whatever the exact 

values of a and b. Similarly it can be shown that if . 21 -> 
E[O] > (1+ef)-l then the same preference 

will be found; whereas if E[G] < (1 + ez)-1 then the converse must apply and we will prefer the 

past observations to be concentrated as much as possible on a single Aj. In terms of the stated 

prior expectation for G, the remaining possibility (1 + ez)-1 < E[O] < (1 + efi-1 corresponds to 

the situation in which the preference may be for or against even distribution of past observations 

between A, and A2, depending on the exact values of the parameters a, b and the value of Z. These 

b b+1 
.1 

conclusions follow easily, with the restriction to a Beta Priore, from the facts that $ will lie 

between 2 and a2 for all a>0, b>0, and that the prior expectation is defined in terms of the Beta b bT 

parameters by E[O] = (1 + 
a) 

-1. 

We can, without too much difficulty, gain some understanding of what happens when we are 

considering the effects of the allocation of a fixed amount of observations between thme previous 

sequences AjA2, A3, i. e. in the case k=4. We take the Euclidean distance (which is proportional 

to the sample standard deviation of {vj, v2, v3 1) 

V(VI 
_ 

1)2 +(_ 1)2 +(_ 1) 2= VI, 2 + V22 + V2 _1 3 V2 3 V3 3133 

between the points (vi, v2, v3) and Q, 1,1) as a measure of how unevenly the past observations 333 

are distributed between the three available previous (product, environment) pairs AI, A2A. The 

2 maximum allowable value of r is clearly 31)2+(1 3 Equation (94), with the 3' 
1-3)2 

+ Q)2 

Beta(a, b) Priore, now expands to 

R= 
(a+3)(a+2)(a+I)eO+(a+2)(a+1)6e' '(e-'Iz+, -'2z+e-'3z)+(a+l)(b+l)b(e'IZ+C'22+e'3z)+(b+2)(b+l)b 

(a+2)(a+l)aez+(a+l)a(b+l)e2ý(e-'12ý+e-12"+e-'3'ý')+a(b+2)(b+l)(e'lz+C'22f+C'3m)+(b+3)(b+2)(b+l) 

(a+3Xa+2Xa+l)eo+(a+2Xa+l)be2f(e(i-'1)2+ýi-'2)z+e(i-'3)z)+(a+lXb+l)bei(ý'1-1)z+W'2-i)-'+W's-i)l)+(b+2Xb+l)b 

(a+2Xa+l)aez+(a+l)a(b+l)e234(e(i--I)Z+gi--2)Z+e(i-. 3) ")+a(b+2Xb+l)ef(e("-i)x+, ('a-i)E+W'3-i)")+(b+3Xb+2Xb+l) 

(104) 

Note, for a, b fixed, and fixed (vj), we have a limiting case, representing an upper bound on R, 

of limZ_,,.. 9 = (a + j)/a, where j is th e number of the vi that are non-zero. This limiting case 
corresponds to conclusive information that j of A,, A21 A3 are perfect, accompanied by a complete 
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absence of operational observation on the other 3-j previous (product, environment) pairs. The 

expression (104) is more difficult to analyse as a function of (vj, v2, v3) (with v, + v2 + v3 = 1) than 

its one-dimensional counterpart (101) because of R's dependence on the direction as well as the 

modulus r of the 3-vector (vi - -1) of differences from the uniform allocation of observations between 3 
the previous three sequences Al, A21 A3. However, as a first approach to understanding something 

of the behaviour of this expression we can try replacing both numerator and denominator 34 by low 

order Taylor expansions in the vi. For some argument values, such as Z sufficiently small', and 

the Beta parameters a and b lying within certain ranges, this results in an approximate form for 

R in a case where both the numerator and denominator depend much more on the modulus of 
(VI - 1, i, D than they do on its direction. In fact, we are able in each case (i. e. for both 3 V2 -3 V2 -3 

numerator and denominator) to contain the influence of the direction of this vector entirely within 

a remainder term which is negligible under these conditions on the parameters. Furthermore, in 

each case, this dependence on r can be approximated by a non-negative quadratic whose minimum 

is at r=O. This approximation, though somewhat simplistic and consequently restricted in terms of 

the range of parameter values for which it is accurate, is sufficient to guide us in the identification 

of some examples, analogous to the alternatives found in the k=3 case above, where the uniform 

allocation of observations to previous sequences, is either a global minimum, or a global maximum 

of R, as desired. However, for this k=4 case, we can also show that for certain values a, b, Z, the two 

remainder terms which, only, are the terms influenced by the direction as well as the modulus r of 

the deviation (VI - 1,1,1ý from uniformity may become larger and acquire a significant 3 V2 -3 V2 -3 

role in determining R's behaviour. In some of these cases, in contrast to what we found above for 

the k=3 situation, the uniform allocation vi = 1, i=1,2,3, may turn out to be neither the global 3 

minimum nor the global maximum point of R. 

Taking the two vi-dependent summands in the numerator obtained above, it is shown in Ap- 

pendix B. 4 that if we define 

, og 
1) 

_ ýý (105) ýa+2 6 

then a Taylor expansion of degree 2 at the point (. 1,1,1) in Pj, i=1,2,3 (still assumed confined to 333 

the plane vl+v2+v3 = 1), with remainder term, gives us 
33 

(a+2)(a+I)be"j EeQ-'i)z+(a+1)(b+1)bef I: e("-I)zl= 
i=1 i-I 

34We note that the denominator is obtained from the numerator by replacing a, b by a-1, b+I so the reasoning 
only has to be done once. 

35Z will tend of necessity to be small for small 7r (which we hope 7r should be for highly reliable systems) since it 
becomes infeasible to carry out the very large number of demands then necessary to make Z larger 
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+ 
Z333 

eT (a + 1) b V-(a + -2)(b + 1) 16 
cosh(a) + cosh(a) Z2r2 

3 
(Vi - sinh [a +u (vi - DZI 

for some value 0<u<1 (u probably varies with a, b, Z and the vi but is confined to the unit 

interval). Of the terms inside the curly brackets, the final, remainder term is the only term that 

depends on the allocation proportions vi in a way not confined purely to a dependence on the 

modulus r. Hence, this term, and a corresponding term (with different u) in the analogous Taylor 

expansion of the denominator of 9, are the two which when small enough to ignore, lead to a much 

simplified behaviour of R. Note that this approximation (obtained by disregarding the remainder 

term) is best thought of as a quadratic in r-not rZ-because the coefficients are functions of Z, 

but not of r. We will not look in detail36 at the general conditions affecting the size of the two 

remainder terms as proportions respectively of the numerator and denominator of a. We. merely 

clarify the situation a little by remarking that we can expand 

Z3 3131 

3 
(v' - 3) sinh [a +u (vi - 5) Z] 

Z331313 1)3 

sinh(ci) E (vi - -) cosh [u (vi - j) Z] + cosh(a) 1: (vi 5 sinh [u (vi - 
1) Z] 

333 

that the three different arguments of the hyperbolic function in each sum all fall in an interval of 
3 length less than Z, and that, simply by virtue of the constraints vi ý! 0, vi =1 we can obtain 

by elementary calculus the constraints 

(_ r3 
_1+r 

23 1)3 r32 
< max < 

36 - V6- ,9 (vi -ý- 76=: 5 
Thus, we have reduced .9 to an expression of the form 

1+ Cjr2 V27 
R -ý- K1+ C2r2 with K, Cl, C2 > 0, and 05r <- 3 (106) 

where (K, C1, C2) can be thought of as a transform of the parameters (a, b, Z) of our model, but 

with the caveat that this approximation (106) is accurate (enough to serve as a useful model of the 

behaviour of the more complicated function R of (104)) only within some subdomain--defined by 

the requirement that the two neglected remainder terms should be sufficiently small-of the set of 

all possible values a, b, Z>0. Then it is straightforward to conclude that if we hold a, b, Z fixed 

at some point within this subdomain, and vary the allocation vector (vi), we will find 9 to be a 

monotonic function of r with r=O being the global maximum, or minimum, respectively, as CI < C2 

or C, > C2. 

31Lengthier analyses are possible, such a transformation of (vi-1) to polar coordinates (r, o) allowing a further 
expansion of both the numerator and the denominator ofm' into double series, each of whose terms is of the form 
ajjri(Cs9in")(jO) where 0 is an angle describing the direction of the vector (vi-1) in the plane E, 3 

I Pj =I (i. e. using So 
a Fourier series expansion in terms of 0). 
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1.263 

We have plotted 9 as a function of (vj, v2, v3) below for four different example values of (a, b, Z). 

Note that in each case it is the exact value (104) which is plotted. The approximation (106) was 

merely used as a guide to obtaining values of a, b, Z which achieve the three alternative general 

forms which R seems to display in this k=4 case, classified here as: decreasing from max at r=O 

with approximate rotational symmetry37; increasing from min at r=O with approximate rotational 

symmetry; and a third, catch-all category of 'other' more complex general behaviour. 

If r is small and the parameters (a, b, Z) are within the right range, e. g. Z, a(a, b, Z) and 

a(a- 1, b+ 1, Z) are not too large, then we have seen from (106) that R will be approximately an 

increasing function of r if C1 > C2, and a decreasing function if C1 < C2. Figure 9 shows two graphs 

illustrating this case. In these graphs, the base is the equilateral triangular surface: vj, v2, v3 > 0, 

1.167 

Left pIot : (a, b, Z) = (5,0.25,2); 

147 

1.814 

-11.549 

Right plot : (a, b, Z) = (0.25,5,2) 

Figure 9: PlOtS Of 9 VS. VI+V2+V3=1 

vl+v2+v3 = 1. The vertical axis is the gain 9 of (104) obtained from observing that the three 

previous (product, environment) pairs have not failed. In the left plot we have (Cl, C2) = (. 03,16). 

In the right (Cl, C2) = (38,13). 

Figure 10 shows examples where the situation is more complex with the remainder terms be- 

ginning to play a significant role so that we lose our approximate rotational symmetry of the plot. 

The left hand plot illustrates a case where the situation of even allocation among three previous 

(product, environment) pairs is intermediate (in terms of how much extra confidence it buys us in 

the current Ak) to the cases of the same number of previous demands being either concentrated 

on a single previous (product, environment) pair, or being evenly allocated between two previous 

pairs. The right hand plot in Figure 10 is included to make the point that we are not suggesting 

that such odd behaviour of R will necessarily occur everywhere outside the domain of accuracy 
37i. e. approximately circular contours 
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Left plot : (a, b, Z) = (0.25,20,5.3); 

Figure 10: Plots of .9 vs. vl+v2+v3=1 

of our approximation (106). Here, tile remainder terms are large but we still do have relatively 

uncomplicated behaviour in the sense that there is a global maximum at (vi) = (1,1,1), with aa 333 
decreasing function of r. 

It is worth underlining that it is often the interaction between prior beliefs and amount of past 

(product, environment) data that determines which of the cases illustrated in these plots applies; 

rather than either one of these things alone. These findings about the effects of the shape of a 

Beta Prioro on the preference for an even or an uneven allocation of previous sequence observations 

between 2 or 3 previous sequences raise two interesting questions which in this paper we have not 

explored: - 

9 What, if anything, can we say generally about the preferred allocation among larger numbers 

k-1 of previous sequences? 

To what extent are the precise results we found here arbitrary, accidental consequences of 

the fact that we happen to have restricted our priors to the Beta family? Perhaps some of 

these results are in fact particular cases of effects that could be stated In a framework of more 

general geometric constraints on the Prioro distribution without the need to constrain Priore 

to a particular parametric family? 

5.3.5.2 Use of a Beta family for fp 

The Beta-family of distributions 

fp(plo) 
Ip 

(i P)I- 0=(a, b), a, b>o #(a, b) 

Right plot : (a, b, Z) = (1,20,10) 
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is conjugate to both the binomial and the negative binomial (including geometric) distributions 

and also provides a unique representation 38 of each possible39 (mean, standard deviation) pair for a 

random variable P confined to the interval 10,1]. If we use this as our f;, distribution family, we 

obtain a mixed process for the failures in each single sequence for which the probability of r failures 

in n demands is given by equation (53) to be 

RIn, a, b 
(' ), O(r + a, n-r 

0 (a, b) 

obtained by integrating over p the joint distribution of equation (51) which would be 

(,, )p,, +a- 1 (1 - p)n-"+'- (R, P) In, a, býr0 
(a, b) 

in this case. 
The likelihood (57) resulting from observation of k products operating in k allocated environments 

is 

(Rj), ý= ((ni) a, b) 
k nj) fl(a + ri, b+ nj - ri) (ri 

t3(a, b) 

with 

Lk (a, b) =k 
0(a + ri, b+ nj - ri) 

Ma, b) 

as an expression proportional to the likelihood of (a, b). 

Having decided to investigate the Beta fp, the choice of Priorg over E), the positive quadrant"O, 

remains problematic. In real life there would be an 'expert' from whom we would wish to elicit tile 

distribution that truly reflects his/her a priori belief. This is not an easy task in such a complex 

model, and the expert may find it difficult to represent his/her beliefs in a distribution for (a, b). A 

way out of this difficulty is to assume that the expert is 'ignorant', and use that prior distribution 

which represents ignorance. Even this is a non-trivial task. As an example we consider the simple 

case of distributions uniform on some finite rectangle with sides parallel to the a and b axes, 
I if al <a< a2, bi <b< b2 

Prioro (a, b) = a2-al)(b2-bl) 1 
10, 

elsewhere. 

Firstly we can examine characteristics of the prior distribution (59) for Pk implied by these model 

assumptions, 

Ph , 
la2lb2pa- 1 (1 -p)b-1 db da 

.6- al)(b - bl) 
at bi P(a, b) (a2 2 

38provided that limiting cases of the Beta parameters a, b are Included 
39i. e., all pairs in the closed half disk ((p, a) ; p, a ý: 0A (1, - J)2 +'72 :5 
40possibly extended to include points representing a, b --* oo with a/b constant, and a, b --o 0 with a/b constant, to 

include the all the limiting cases of the Beta family 
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a+ The first and second non-central moments of PIa, b are -*g and a Ha++' 
+1y. These may be 

integrated analytically with respect to our ignorance Prioro (a, b) (first expanding in partial fractions 

with respect to b in the case of the second moment) to give the first two cases of equation (69). But 

the centrally important effect of our model is to represent the effect of observed failure behaviour on 
both the distribution of Pk-, and perhaps even more of interest, the reliability function, or probability 

of a future period of failure-free behaviour of a given length. The prior reliability function is given 

from equations (73) and (78) by 

b 
P[Xk > n) = E[/10, 

n] = 
ja2 fb2,6(a, b+ n) db da 

al bi P(a, b) (a2-al)(b2-bl) 

.h 

ja2 jb2 b(b + 1) ... (b +n- 1) db da 

, 11 b, (a+b)(a+b+l) ... (a +b+n- 1) (a2 - al)(b2 - bl) ' 

where the first failure of Ak occurs on the Xth k demand. 

Now to explore the effects of learning from observation we examine the realisations under these 

particular distributional assumptions of: firstly the posterior distributions for Pk given by equations 
(60-62); and secondly the predictions Of Xk, the time to next failure Of Ak using equations (79- 

81)41. In the most general case of arbitrary periods of observation of some finite number of previous 

sequences, each of the probabilities entailed by these questions takes the form of the ratio of a pair 

of integrals (over the chosen rectangle in the (a, b)-plane), where the integrands in the numerator 

and denominator are each equal to some product of terms of the form 

Ann-r(a, b) =E [pr(l p)n-, I a, b] =Ip, (1 - P)n-,, 
P a-1 (1 - p)b-I d, P= 

0(a + r, b+n- r) fo 
#(a, b) 0(a, b) 

a(a + 1) ... (a +r- 1)b(b + 1) ... (b +n-r- 1) 
(a + b)(a +b+ 1) ............... (a +b+n- 1) 

In practice, since this kind of inference is most likely to be called for in dealing with very high 

reliability systems, the values ni of n used with these sequences are likely to be rather large, and 

the values of r are likely to be small, and ideally zero. So some very large products will be involved 

in the above term. We found that from the numerical point of view, both the asymptotic form of 

the log-gamma function, and also the Euler-Maclaurln series for sums of form 

n-1 
1: log 1-y where 0y 
j-0 X+j 

were useful in approximating and bounding the integrals of these terms for large n. (See Ap- 

pendix B. 5 for details. ) For the sake of illustrating the algebraic form of the formulas, however, we 

41-given that we choose to concentrate on the no-failures case, for reasons of its Interest as an upper bound on 
assurable reliabilities. To explore the case where past failures have been observed, we would simply uHe the obvious 
analogues of (79-81), derived similarly from (60-62) and (67) 
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give examples of the predictions of our model for hypothetical cases in which a very small number 

of observations have been seen. Suppose we wish to predict the probability that A4 will fail r times 

in its next 6 demands. In the absence of any knowledge of the past we obtain the distribution 

R_ 
(6) ja2 f b2 a(a + (a +r- 1)b(b + 1) ... 
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If we retract the information about the past 2 out of 4 failures of A4 (i. e., suppose it has not 

been seen), and instead suppose that pairs Ai, A2, and A3, have been observed to fail 0 times out 

of 2,2 times out of 3 and 1 time out of 4, respectively, then our posterior distribution of P4 is 
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If this information about Al, A2, and A3 is supplemented by the knowledge that A4 has failed 
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P4 

f a, 2 q 2( ILI fb6i 

and 

I 6\ 
Ix 

\rJ 
fa2 b2 

aI 
fb', t 

fcj2ftb2ý 

X T7, -"rP., 4m X 
____________________________________ 

\f b(b+1) \f o(o+l)h .J "(+ l)(h+2) �j 1,1 
('+h)(, +,, +1)(,, +I. +2)(.. +1. +3) A +l. )(. ++i) A (.. 4-I. )(.. +b+ I)(,, +b+2) A .. +')(.. ++ 1)(.. +I+(.. +l. +j 1(.. a )(', 2 -'&) 



CHAPTER 5. PREDICTION USING ADDITIONAL SOURCES OF DATA 152 

The above example is intended to provide an illustration of the general form of the results for 

this Beta fp( - la, b) case with prior Priore uniform on a rectangle. Table 4 shows some results that 

are more representative of what we might see when dealing with real safety-critical systems. These 

illustrative numerical results are based upon the observation of three previous sequences, each for 

a period of 101 demands without a single failure. In Table 4 we can see how various different 

Region of Uniform Prior Given no Data 
Given no failure of 

this 
(product, envir. ) 

Given no failure of 
previous 3 

(product, envir. )s 

Given failure neither 
of this nor of previous 

3 (product, envir. )s 

al a2 bi b2 E[P41 R(10') 
- 

E[P41 R(10') EIP4] R(10') EIP41 R(10') 
0 1 -7 -2 -. 2384 . 6229E-1 . 3966E-1 . 9585 . 1388E-1 . 7498 . 1047F. 1 . 9893 
0 1 1 10 . 1037 . 6828E-1 .1 577E -1 . 9547 . 5398E .2 . 7499 . 4062r-2 . 9883 
0 1 1 100 . 2077E-1 . 

8048E-1 
. 3020E-2 . 9469 . 1019E-2 . 7500 . 7655s-3 . 9862 

0 1 1 1000 . 3207E-2 . 9877E-1 . 4636E-3 . 9355 . 1556z-3 . 7500 . 1168E-3 . 9831 
0 2 1 2 . 3692 . 3114E-1 . 3966E-1 . 9585 . 

1388E-1 
. 7498 . 1047E-I . 9893 

0 2 1 10 . 1781 . 3414E. 1 . 
1578E-1 

. 9547 . 5398E-2 . 7499 . 4062E-2 . 9883 
0 2 1 100 . 3833E-1 . 4024E-I . 3020E -2 . 9469 . 1019E-2 . 7500 . 7655E. 3 . 9862 
0 2 1 1000 . 6091E-2 . 4939E -1 . 4637E -3 . 9355 . 1556E-3 . 7500 . 

1168E. 3 
. 9831 

. 
01 

. 
0101 10 10.1 

. 
9990E-3 

. 8700 . 9990E -3 . 9931 . 9990E -3 . 8700 . 9990E -3 . 9931 
0 b/999 1 1000 . 5002E-3 . 1824 . 2056E -3 . 9401 . 9494E-4 . 7545 . 7593E -4 . 9832 
0 b/99999 1 1000 . 50OOE-5 . 9689 . 4947E-5 . 9977 . 4843E-5 . 9703 . 4791E -5 . 9978 
0 b/9999999 1 1000 , . 50OOE-7 . 99968 , . 4999E-7 . 

9! )9977 
, . 

499SE-7 9 9968 . 4998E- 7 . 999977 
--1 
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Table 4: Effect on Reliability Predictions of Observation of Non-Failure of Previous 
(product, environment) Pairs 

assumptions for Prioro affect the strength of the inferences concerning a fourth sequence in the same 

family which can be drawn from this sort of evidence of high reliability of three previous, similar 

(product, environment) pairs. 

All the results in the Table involve assuming uniform distributions over different regions of the 

(a, b)-space. We have excluded values of b smaller than one, since these entail Beta distributions 

with infinite density at 1; but we have allowed values of a smaller than one, since infinite density at 

the origin seems plausible. The region in the positive quadrant where a and b are both large can also 

be ruled out, since any point here corresponds to a Beta distribution with very small variance-Le. it 

implies that different sequences will have essentially identical probabilities of failure upon demand, 

which runs counter to the spirit of this whole exercise. 

The first nine rows of the Table involve several rectangles of the kind described above. The 

ninth row shows a small rectangle, effectively approximating to a known point value for (a, b). Rows 

10 to 12 show thin 'wedges' adjacent to the b-axis. The informal reasoning here Is that it may be 

reasonable to believe a priori that the mean E[P I a, b) of the distribution of probability of failure on 

demand does not exceed a certain value 0 :5 E[P I a, b] :5M<1, say, and this is equivalent to the 

restriction to Sb :5 4M-. We used M= 10-31 10', and 10-7. Once again, all points in the wedge 

are given equal weight. 

In the Table we show how 'the reliability' of a (product, environment) pair A4 is affected by the 
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type of evidence that could be available. For brevity here we have chosen to present the mean of 

the distribution of P4, and the reliability function evaluated at 107 demands (i. e. the probability of 

surviving this number of demands), in each of the four cases: given no data; given only evidence of 

failure-free operation of this sequence; given only evidence of failure-free working of earlier sequences; 

and given both these latter items of evidence. 

The most interesting and important results concern the different predictions of future operational 

behaviour, expressed as the probability R(10') of surviving 107 further demands without failure: 

the information from the perfect working of previous sequences makes only a modest contribution to 

our confidence in the current sequence when compared with actual evidence of failure-free working 

during that sequence itself (compare columns 8 and 10). Thus when we only have evidence from 

the previous Ai, I<i<3, although this is of extensive perfect working for each, it only allows us 

to claim, in the case of the rectangular priors, about 0.75 probability of similarly extensive perfect 

working (i. e. surviving 107 demands) for the new sequence 42 
. 

The evidence from previous perfect working during the same sequence, however, is more informa- 

tive. It allows us to be much more confident that this product will work perfectly in this environment 

in the future: the probability of it surviving 107 demands, given that it has already survived 107 

demands, exceeds 0.9 in all cases. 

On the other hand, the small increase in confidence that comes from experience of previous 

sequences may be useful in the case of safety-critical systems, especially as it is likely to come with 

little or no cost to developers. Thus, in the first row of the Table, the a prioTi belief of tile 107 demand 

survival is . 062, this increases to . 96 after we have actually seen the (product, environment) survive 

107 demands, and to . 99 when we are told, in addition, that three other (product, environment) 

pairs have also survived 107 demands. Putting it another way, this evidence of survival in previous 

sequences has reduced the chance of a failure in the next 107 demands by a factor of 4 (from . 04 

to . 01) compared with the result based only on the evidence from operational experience of this 

sequence. 
We have shown the columns for the means of the various distributions for P4 mainly as it warning 

that these can be misleading if used to represent 'the reliability' of the pair A4. Thus the mean 

probability of failure on demand can be quite large (0.24 in the first line prior distribution), but still 

the chance of surviving 107 demands may be non-negligible (0.063 In this case). The informal reason 

is that the distribution is such that the mean is not a good summary statistic, and in particular 

cannot be used in a geometric distribution to approximate to the more complex model that applies 
42We conjecture that some limiting result may be indicated here : perhaps the probability that sequence Ak will 

survive its first X demands, given that k -I previous sequences have done so, tends to (k - 1) /k as X --, oo. 
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here. 

In fact, decreasing values of E[P4] do not necessarily imply increasing chance of surviving 107 

demands, as might naively be expected: see, for example, columns 7 and 8 of rows 1 to 4. Imagine 

that we have two experts, let us call them James and Peter, represented by two different prior 
distributions (rows of the Table), who observe the system to survive for 107 demands. They are 

then asked to tell us how reliable the system is. If the question is posed as 'what is the mean of P4? ', 

then James is more optimistic than Peter; if, however, the question is posed as 'what is tile chance 

of surviving a further 107 demands', Peter is more optimistic than James. Such (only apparent) 

paradoxes underline the importance of using the right formulation for our purposes when we ask 

questions about the reliability of a system. 

5.3.6 Some Remarks about Expressing Reliability in Terms of the Similar 

Products Model Structure 

The use here of Bayesian reasoning, representing the modeller's uncertainty about an 'unkown, true 

reliability' parameter such as Pi raises some interesting features of the general question mentioned 

in §2.3.5. This question concerns the strict interpretation of a concept such as 'reliability' in terms 

of the precise mathematical model structure. We have taken the decision to extend an originally 

Bernoulli Trials process model with simple geometrically distributed time-to-failure distributions 

by including explicitly within the mathematics a probabilistic representation of our own subjective 

uncertainty about each Bernoulli trials parameter Pi. One of the consequences of this decision is 

that our subjective uncertainty about the Pi may never now remain static, so long as some form of 

observation is allowed to take place. Hence, as has been apparent in the formulas derived above (e. g. 
(79-81)), our predictive distributions of time to next failure are no longer restricted to the geometric 

family. Then if we retain the notion of geometric time to failure as a psychological standard of 

comparison, we must be careful when we speak of 'a 10 to the minus 5 system' to be clear whether 

we intend 'a system whose probability of failure on the next demand is identical to that of a geometric 

random variable with parameter 10-5'; or 'a system whose MTTF is that of a geometric random 

variable with parameter 10-l'; or perhaps 'a system whose median (or, say, upper 99.9 percentile) 
is that of a geometric random variable with parameter 10"; etc. 

It follows from (67) that the Bayesian predictive distribution of the process of future failures of 

a particular sequence, based on our model, will always take the form of a mixture of Bernoulli trials 

process distributions. Such mixture processes are exchangeable". (Conversely [23, p217] states that 
43See footnote 9 on p117. 
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there are no other exchangeable, boolean valued, infinite random sequences than those obtained by 

mixing Bernoulli trials processes. ) A few properties of these mixture processes were given earlier in 

equations (52-55), with fp(. 10) playing the role of mixing distribution in these equations. Since these 

mixed processes form a more general class than the class of Bernoulli trials processes used as a model 
for each Ak given its parameter Pki the theoretical possibility is introduced that it may also require 

some care to compare two different predictions which may emanate from our model (i. e. resulting 
from two different hypothetical findings from observation). How do we state unambiguously that 

one observation scheme gives rise to a prediction of 'higher program reliability' than another? If we 

were dealing with pure Bernoulli trials process predictions, then we would be able to say, for two 

predictions with parameters (i. e., per-demand failure probabilities) say 7r, and 72, with 7rl < 7r2, 

that prediction 1 predicts 'higher reliability' than prediction 2 in every possible sense: mean time 

to failure, median time to failure, failure rate, reliability function, etc. On the other hand for many 

exchangeable process predictions such as will be produced by a Bayesian analysis of our model, the 

mean time to failure does not exist (is infinite). Also we may well find that the median time to 

failure of prediction I may be greater than the median for prediction 2, whilst the order of say the 

75%-iles could be reversed, i. e. the two reliability functionS44 obtained from two different observation 

schemes, such as two of equations (79-81), as functions of45 nk, could conceivably cross over, so that 

prediction 1 asserts better short term reliability than prediction 2 but the comparison might turn 

out to be reversed for longer term reliability predictions. 

We might choose to compare predictions based on different observation assumptions in terms 

of their instantaneous 'reliability' measure, given (for the observation scenarios we have considered 

explicitly) by the nk. =1 case45 of expressions (79,81). However, in doing so we should bear in mind 

that such a measure does not necessarily tell us which prediction has the highest up-to-date 'mission 

44 for a mission of a given length4-5 n' > 1. It may be possible to overcome some survival probability' k 

of these difficulties by suitable restrictions upon the mathematical forms of Priore and fp, but these 

would need to be 'obviously reasonable' in their own right. Clearly it would be wrong for example 

to force an unreasonable (i. e. not believed) prior upon a human expert. 

4411eliability function (or 'mission survival probability') is the rk=O case of (79,81) (or rk=O case of (78,80)), 
thought of as a function of the mission length nA: (or nk). 

45or nk in the notation of equations (78,80) ' 



Chapter 6 

Summary of Main Conclusions 

This thesis develops some enhancements to existing techniques for software reliability prediction, and 

predictive quality assessment. Firstly, in the frequently treated case in which we use as sole source of 

data the failure vs. execution time history of a single product operating within a stable environment 
(which may incorporate debugging activity), we have developed a method of transferring to the 

context of coarse failure-count data the u-residual-based recalibmtion technique studied previously 

[2, G, 10,11,59,581 within the context of continuous predictive c. d. f. s for prediction of software 

inter-failure time sequences. With this motivation, a method of defining a "u-plot" for any PFS 

applied to a scalar random process in discrete time has been given. This definition extends the usual 

definition given in [2] in two senses: - 

(i) by applying to the case of a general predictive distribution, rather than being restricted to 

continuously distributed predictions only; 

(ii) by introducing flexibility into the definition of the u-plot using (a) unequal weights wj for 

different observed ui and (b) bounds e and I on the derivative of the fit, if smoothing is 

employed. 

This "Modified U-Plot" reduces to the previous case on setting wi = wj for all ij and C 0. 

Apart from this widening of the scope of application, the purposes of the modified plot are as for 

the familiar plot in [21 and [591: - 

(i) to assist in the analysis of predictive performance. (There is probably little point here in 

smoothing or in using unequal wi. ) 

(ii) to produce a means of recalibration for any PFS. 

156 
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We have investigated the performance of the resulting recalibrated PFS experimentally for prediction 

of software "failure-count" sequences-for which the predictive c. d. f. s are purely discrete. There Is 

evidence for the following conclusions concerning the performance of the recalibration procedure on 

the data sets and PFSs examined: - 

(I) The recalibrated PFS is almost invariably "better calibrated" than the raw PFS in the sense 

that it produces a modified u-plot (unsmoothed, with weights wi all equal) which is closer to 

the 45"-Iine. 

(ii) Assessed in terms of other measures of comparative predictive performance, the recalibration 

procedure sometimes gives a dramatic improvement in quality of prediction. In other instances, 

the results are less conclusive in favour of recalibrated predictions. Greater improvement in 

prediction seems more often to result from recalibrating in cases where the modified u-plot 

of the raw predictions deviates further to one side of the 45*-Iine, (say for K-distý: . 15, as a 

rough guide). 

(III) Variability in the weights wi was investigated here only by "owing them to decrease expo- 

nentially for less recent ui, thus introducing a "decaying memory" effect in the prediction of 

the JU,, } sequence. As would be expected, using too small a scale factor, r, results in the 

recalibrated predictor becoming swamped by the 'noise' in the last few observed failure counts 

with a consequent degradation in predictive performance. However, it seems generally to be 

the case that the value for r which gives the best recalibrated predictor Is strictly less than 

1, (as assessed by K-dist and PLR-The X2 distance measure provides less support for this 

conclusion. ) The value of this best r seems to depend on the other chosen characteristics of 

the recalibrator, i. e. on whether a smoother is used and on the values selected for the bounds 

c and 8. 

(iv) When using a smoothed recalibrator, the introduction of small positive values for either or 

both of the bounds e and 8, generally improves the predictive quality as measured by the 

x 2-distance or the PLR, particularly when a smaller r is used. No particular values for these 

bounds appear to give a performance which is best consistently over different failure-data sets 

and raw PFSs. It is sometimes found that, without the incorporation of a positive value for e 

in the smoother, events may occur (fairly early in the sequence of observations) to which the 

recalibrated predictor assigns a predictive probability of zero. This, of course, results in a log 

prequential likelihood value of -oo. 
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In this thesis, we also have discussed some approaches to augmenting the sources of data that 

might be used by mathematical models for software reliability assessment and prediction. One major 

motivation for seeking some formal approach of this kind is to make the process of assessing highly 

reliable systems, such as for example some safety-critical systems, more open to analysis. Currently, 

particularly in those cases where complex software is involved, such reliability assessments have a 

high degree of informality and rely on expert judgement. In these cases it may be difficult to analyse 

in any precise manner how the final judgement has been reached, and much has to be taken on trust 

based on the achievements, qualifications, reputation and experience of the experts involved. There 

is some evidence of experts being unduly optimistic about their judgemental abilities [33]. A more 

formal means of argumentation would, provided it remained accessible to domain experts and was 

able to take some account of their assessments, have the advantage that assumptions and reasoning 

processes would become visible and could be recorded and later scrutinized and checked by others. 

With this aim, we have firstly proposed that some existing general purpose regression models which 

have found diverse application elsewhere might be employed to extend the scope of data input to 

software reliability predictors. Three different categories of application have been distinguished in 

which "explanatory variables" are used as data supplementary to observed failure histories vs. time. 

Of these three, we believe that one holds the greatest promise of yielding positive practical results 

for at least some instances of the software reliability prediction problem. This would involve the 

incorporation of data capturing variation in execution environment for a single software product, 

either between installations or over time at each single installation. The desire to apply such models 

in this application so as to validate or refute them empirically is frustrated by the lack of data. 

Two alternative explanations for this lack of data are: It may reflect a realistic perception that our 

understanding of and ability to predict software reliability cannot be improved by the availability of 

such data sufficiently to recoup the costs involved in its collection and analysis; On the other hand, 

the absence of data might result from a failure to appreciate its potential value, or uncertainty as 

to how best to proceed with its collection and analysis. 

Our second proposed approach to modeling data other than the failure vs. execution time history 

of a software product operating in a particular environment treats a small part of this general problem 

of incorporating diverse empirical evidence by providing a representation, and means of composition, 

of just one important type of additional evidence that is commonly used to make claims for software 

reliability: evidence from previous experience of testing other pairs (product, environment) that 

are held to be 'similar' to the pair for which predictions are now specifically required. Whilst we 

make no great claims for the realism of the precise assumptions of what we have called the 'similar 
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products' model, our analysis does indicate the way in which a formal model of this kind could be 

used to question whether an optimistic conclusion drawn from past experience might be ill-founded. 

Essentially, if you were to claim that great trust could be placed in a particular system because 

of past experience of other environments or systems, you would have to justify this by trying to 

claim that your independence assumptions and prior distributions were reasonable. Our 'similar 

products' model depends upon the reasonableness of our probabilistic representation of a notion of 

statistical 'similarity' between different demand sequences. In this we have employed the idea of 

a random sample of unobserved per-demand failure probabilities Pi drawn independently from an 

unknown parent distribution - about which we have Bayesian prior beliefs - as a proposed method 

to formalize the kind of extremely informal claims that experts make when they argue that the 

failure behaviour of one demand sequence can be used as a means of inferring the likely behaviour 

of another. Justification of such assumptions of similarity in particular cases is, of course, outside 

the direct scope of our studies-presumably it will come, in the case of software, from knowledge 

of the application domain (the problems being solved were similar), the development process (the 

methods used were similar), the design teams (they were the same or of comparable competence), 

etc. As far as prior distributions are concerned, it is clear that some of the examples we have used 

could be said to be 'unreasonable' in the sense that they represent beliefs about the reliability, prior 

to seeing any evidence, that are very strong. In presenting this 'similar products' model, we have 

produced some purely illustrative numerical examples. Clearly further work is needed to identify 

classes of practically 'plausible' prior distributions. 

Despite these caveats about assumptions, we believe that our 'similar products' model might be 

used to provide a curb on the enthusiasm of experts: specifically, the use of 'similarity' arguments 

to make stronger claims than would be warranted via the model should be treated with suspicion. 

The 'similar products' model illustrates that comparisons between different predicted reliabilities 

can be highly dependent upon the precise way in which those reliabilities are formulated. This 

observation resembles similar conclusions obtained in a different context, concerning stopping rules 

for software testing [631. 



Chapter 7 

Suggestions for Further Work 

With regard to software reliability prediction based purely on past reliability behaviour of a single 
(product, environment) combination, the 'Modified U-Plot' work contained in chapters 3 and 4 of 

this thesis stimulates the following questions and ideas for potential improvements and further 

investigations: - 

(I) For the case of simulated failure data, the results presented in this thesis were each obtained by 

the simulation, using pseudo-random numbers, of only one single failure count sequence from 

the given reliability growth model, and are thus subject to the effects of random Variation. 

The use of simulated data from one model as input to another, whilst less convincing in one 

obvious sense than the application of models to the prediction of real software failure data, 

nevertheless does provide an opportunity to remove this source of uncertainty. More exact 

statements of relative performance of the various recalibrators could be obtained by analysing 

a large random sample of data sets generated independently from the same model, (i. e. same 

joint distribution for the failure-count sequence). This would be particularly interesting in 

cases where the "true" PFS is used as a standard of comparison. For example, large-sample 

mean and standard-error plots of the discrete log prequential likelihood ratios taken over a 
batch of process realisations based on different seeds to the pseudo-random number generator 

would be capable of providing more definite conclusions on the relative performance of different 

choices of the recalibrator parameters r, e, and & over various time sub-ranges of a simulated 
failure data process. 

(ii) Again in the case specifically of simulated failure-count (or Inter-failure time) data, it would be 

interesting to experiment with recalibration of the "true" PFS. Presumably no improvement in 

160 
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predictive quality should be achievable by this means. To confirm that there is no improvement 

would be a useful validation of our predictive quality assessment methodology. It would also 
be of interest to examine the nature and extent of any degradation in performance through 

recalibration here. (The previous point about the value of a statistical analysis of the results 

of repeated runs using different random number seeds is clearly relevant again here. ) 

(iii) It seems likely that improved prediction would be obtained by optimising the choice of f, 6 

and r by perhaps maximising past prequential likelihood. This idea is supported particularly 
by the fact that, although values c>0, J>0, and r<I usually seem to result in improved 

prediction, the experimentally optimal values of those tried in Chapter 4 for these parameters 
(see Table 3) vary from one data set to another. The only obstacle in the path of such a 

refinement would be that of computational load, but this is not a serious restriction in many 

cases-for example, all three of the raw PFSs used in the numerical work of Chapter 4 rely on 
"ML plug-in" prediction which reduces numerically, in these cases, to a search for the unique 

zero of a single monotonic scalar function over an interval. (The monotonic function is in each 

case explicit and in closed form. ) 

(iv) Perhaps, without going to the lengths suggested in (iii), there is an argument for allowing e 

and 5 to be decreasing functions of n (the index of the current observation). The reasoning 

behind this suggestion is explained on p74. (See footnote 33. ) 

(v) Any new measures of predictive quality that might be found for discrete (or mixed) PFSs 

would assist in assessing these recalibrators. 

(vi) In all of the numerical examples of Chapter 4, the failure-count data used was in fact pro- 

duced from a complete set of explicit inter-failure times (whether real or simulated). Thus, 

unrealistically, it was possible to choose the failure-count time intervals-and these were taken 

to be of equal length. It is not clear what the effect on the performance of the recalibration 

procedure would be if these intervals varied in length during the period of observation of re- 
liability, as they are likely to do in practice when only failure-count data is being recorded. 
(For example, the elapsed CPU time of a computer system between the taking of successive 

cumulative failure-count recordings may well be variable. ) It Is suspected that the effect is 

likely to be detrimental to the performance of the recalibrator. This Is because, for a given 
PFS and failure process, the true distribution for U,, conditional on observed failure counts, 

Mn-1, will in general be affected by the length dn of the Interval during which the failure count 
M,, is to be observed. Thus, in transferring from inter-failure to failure count prediction, an 
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additional source of variation in the conditional distribution of Un has been introduced, wher- 

ever the intervals vary in lengthl. The recalibration procedures described above include no 

means of taking account of such an effect. The form of this relationship between interval 

length and distribution of U,, may be difficult to analyse, being determined by details of tile 

PFS and of how it takes account of interval length in its prediction of failure count. Thus a 

further difficulty is introduced into any attempt to produce a predictive distribution for U,, 

empirically on the basis only of past observed behaviour of Un-1, (which is the basis of the 

recalibration technique). To take a much simplified case, consider a failure process which is 

known to follow an HPP laW2 with rate parameter say it, and assume that it is predicted using 

a PFS P which is the ML plug-in HPP PFS for the failure-count process determined by a 

given sequence of observation intervals. Then it follows that, in the notation of Chapter 3, the 

predictive c. d. f., F, ý, (i. e. the conditional distribution of M" given Af 1-1 = ml- I under P) is 

Poisson with parameter Pd, say, where d,, is the length of the n"' interval during which Mn 

failures will be counted, and P is the ML estimate, based on the observations mn - 1, of it, the 

HPP rate parameter. Given our artificial assumption that the true distribution of the failure 

process is HPI'[p], it follows that under the consequent distribution Q for the failure-count 

process IM. }, the true conditional c. d. f., H, say, of M,, given M n- I= m'- 1 is Poisson with 

parameter tLd,,. It can be easily shown using definition (27) that the true conditional c. d. f., 

GS'2 say, of U,, given AP-1 = Mn-1 is then the piecewise linear function defined by the values 

GSQ (ulm'- 1) =19 

Hn(Mlmn-1), 

if u<0; 

if u>1; 

if u= FAI (Mlmn- 1), m=0,1,2 

at its vertices. The dependence of this c. d. f. on the length, d,,, of the next failure-count 

interval is illustrated for a particular example in Fig. 11. Here, the true c. d. f. of U', given 

Mn-l = Mn-1 is plotted for interval lengths, d,, = 100,200,300,600,1000. In this figure, tile 

true rate of the failure process is u= 10-2, and tile ML estimate based on Mn-i Is assurned 

to be jýj, = 1.2 x 10-2. No attempt has been made in this thesis to find a way in which the 

procedure for recalibrating a particular raw PFS for a failure-count process could be changed 

in order to sensibly allow for such unequal duration of the counting intervals. A crude solution 

might be to use smaller values for the weights wj the greater the discrepancy between tile the 

length dj of the time interval during which mj was counted, and tile length d,, of time allowed 
I With any luck, in practice this problem might perhaps be to some extent alleviated by the probable use (by the 

collectors of failure-count data) of shorter failure count interval lengths d,, during periods when the software failure 
rate is higher. 

2known to us, for the sake of this example, but not known to the person making the predictions 
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Figure 11: True one-step-ahead conditional c. d. f. of U,, in terms of Interval length d,, 0 
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for the count M,, currently being predicted. It seems plausible that there might be a more 

sophisticated, practical way of taking into account the effect of interval length in forming a 

plot with which to recalibrate, though preliminary thoughts along these lines seem to suggest 
the question of whether, in the case of failure-count processes, the next count M,, -depending 
as it does on a given interval length-is really the quantity of greatest Interest for prediction. 

(vii) Chapter 3 is focused mainly on the problem of one-step-ahead prediction of the observed scalar 
sequence itself. This problem can be extended in at least two ways: (a) to longer term pre- 

diction, and (b) to prediction of other related quantities. It seems likely that some kind of 

similar recalibration approach to improving raw predictions might prove useful in either of 

these two larger problem areas. See §3.7 for a suggested approach to such extensions. In the 

special context of failure-count observation, examples of such extensions include prediction 

of the continuous variables: mean-time-to-failure, failure-rate, and reliability function, either 

immediately or after a specified further time has elapsed, as well as quantities such as time 

required to achieve a target reliability. For further details on some of these alternative quan- 

tities for prediction (discussed in the context of a particular model) see for example [53, §3 

pp316-319]. 

(viii) The recalibrator described in §3.6-including the two extensions, (weights, ivi, and bounds, e 

& ! )-was defined for any scalar PFS and could be applied, in particular, to the problem of 6 
inter-failure time prediction. That is, investigations of the kind reported in for example [6,111, 

and [59] could be repeated on the same data sets after the incorporation of either or both of 

these refinements in the recalibrator. 

(ix) The following sua estion is unrelated to the main purpose of the current 159 thesis but arises on 

noting the degree of success achieved by the use of decreasing weights (wi) In the definition 

of the recalibrator. The use of these weights can be viewed simply as an ad hoc method of 

making each prediction of the PFS more responsive to observations in the recent than In the 

distant past-in the belief that the modelling assumptions made are not accurate enough to 

hold well over longer time spans. Perhaps something similar could be done at the stage of raw 
PFS, rather than being left until the recalibration phase. For example, could an ML-plug in 

PFS be improved by changing the form of the objective function, (log likelihood), from 

£(0) = 1: logpi(xilx i-1; 0) 
i 
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to 

40) =E Wi log Pi (xi 1xi - 1; 0), 
i 

where wi ý: 0? Since the usual large-sample asymptotic optimality properties of NIL estimators 

are unlikely to be very applicable in the case of software reliability growth, it does not seem 

clear that any important theoretical property would be lost by such a change, the value of 

which would be assessed in terms of performance measures of the resulting PFS. 

(x) As another aside, we mention an alternative and simpler approach to the problem of forming 

predictions from failure-count observations and of recalibrating those predictions: The sugges- 

tion, probably more valid when the failure-count time intervals are many and short, would be 

simply to invent individual inter-failure times by distributing the failures counted, using some 

suitable rule, throughout each failure-count interval. Inter-failure time PFSs could then be 

applied to this data using familiar techniques (see [2,6,10,11,59,58]), which could include 

recalibration methods. 

(xi) Related to the previous suggestion, there is a well known general iterative statistical estimation 

method, known as the Expectation-Maximisation or EM-algorithm, designed for fitting a model 

when part of the usual observation has been lost. Perhaps this could be applied when faced 

with failure-count data to repeatedly: - 

1. estimate (using the theoretical mean) that part of the log-likelihood function which in- 

volves precise inter-failure times, given model parameter estimates and observed failure- 

counts and; 

2. then use existing ML software for fitting continuous inter-failure time model parameters 

which maximise the resulting likelihood; and so on, back to 1. 

The main proposals for further work arising from the study of methods of incorporating other 

information in software reliability predictions are contained in §§5.2.1.3,5.2.1.4 & 5.2.3. The first 

is to produce more detailed data requirements and data collection procedures for characterising 

software operational environments of software which runs either at multiple installation sites, or 

under measurably time-varying conditions at a single site. The second is to acquire some such data, 

either by deliberate experimentation on a small scale, or from cooperative users and maintalners of 

real-world application software, and to experiment with the model fitting, identification and checking 

procedures discussed in §2.7.3. 
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Regarding the 'similar products' model of §5.3, further work is needed to identify classes of eD 
'plausible' prior distributions, even for the case in which the expert professes 'complete prior ig- 

norance'. For example, in §5.3.5.1 or §5.3.5.2, rather than addressing the raw (a, b) parameters, it 

may be easier for the subject to think in terms of a reparameterisation - the mean and coefficient 

of variation are possibilities. Another area of future work concerns the further exploration of the 
impact of different kinds of evidence upon the conclusions. For example, in our examples in §5.3 we 

concentrated most of our attention on what is in many respects the most interesting case : that of 

complete perfection of operation of the previous sequences. This is the best news that it is possible 

to have, but it would be interesting to look more carefully at some cases where there have been 

failures in the earlier sequences. In particular, there are some interesting 'calculus of variations' 

style mathematical optimization problems that arise - for example what are the extrema of the 

conclusions concerning the reliability of a given product within the family as a function of shape 

of prior distribution? One might fix certain basic properties of the prior distribution, such as the 

mean initial value of Pi, or the variance of this distribution, or both. One might constrain to prior 
distribution unimodality or to prior distributions having continuous pdf on [0,11. Taking such an 

assumption as a constraint for mathematical optimization problems, what happens as you vary the 

shape of the 'prior beliefs entity' Qfp( - 10); 0EE)J, Prioro) within the abstract space of functions in 

which it lies? By posing and solving mathematical problems such as this, it might become possible 

to gain insight into the limits of the possible influence that prior belief can exert over the model 

conclusions emanating from our 'similar products' model. 
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Appendix B 

Mathematical Details 

§13.1 contains details of the recalibration algorithm described in §3.6. More specifically this consists 

of some information about Chan & Snell's spline smoothing algorithm [10, Chapter 5], and the 

way that we have modified this here, so as to tighten the gradient constraints imposed. §13.2 

concerns the calculation of 'recalibrated means', in the sense of means or expectations calculated 

with respect to one of the recalibrated predictive distributions F,, *X(x,, Ix"-I) discussed in §3.6. 

(See in particular equation (34) on p65). We calculated some recalibrated expectations in order 

to produce the predictive expectation plots and the X2 predictive quality measures presented in 

Chapter 4, and Appendix A. 

§§B. 3-B. 5 contain three detailed mathematical derivations required during the discussion of the 

similar products models (respectively on pages 141,145, & 150 of §5.3). 

B. 1 The U-plot Spline-Fitting Algorithm used for Recalibra- 

tion 

B. 1.1 Chan and Snell's Monotonic, Bi-cubic, Spline-Fitting Algorithm 

In producing the recalibrators, the smoothing of the curve u -+ S, I (u) defined by (29), (30), was 
done by re-using software written by Chan and Snell for the purpose of recalibrating inter-failure 

time predictions [11]. A brief description of the algorithm coded in this software now follows. 

225 
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The smoothed fit is obtained from a set of data points ((xj, yj); j=0,1,. - -, rI by first param- 

eterising in terms of the "normalised cumulative chord" 
) -2+ (y, y2 

Pi (107) 
)2 + (ly y _1)2 

(Something will be said later about the selection and ordering of the points (xj, YA'. The "prime" 

notation used here denotes "matrix transpose" since in describing the smoothing procedure, we 

choose to think in terms of column vectors representing points in the plane. ) Cubic spline functions, 

s,, (p) and s, (p), are then fitted separately by least-squares to the two data sets {(pj, xj)') and 

J(pj, yj)'} to forma smooth parametric path in the plane, c(p) = (sx(p), sy(p))', which approximates 

the data (xj, yj)'. The definition of the sum-of-squared-residuals objective function, the placement 

of knots, and the imposition of the constraints are all carried out independently for the two data 

sets, so that two quite separate constrained least-squares problems are solved in obtaining the two 

cubic spline functions s,, and sy. The procedure involved is described for the (pj, xj)' data set as 

follows-the method for the (pj, yj)' data being exactly equivalent. The objective function is 
r 

SSQR = E(xi - s. (pi))'. 
i=1 

The spline-fitting algorithm is based on using a set of seven cubic B-splines as a basis for the space 

of cubic splines on the chosen knot set, (see [101 and [841). The initial choice of knots satisfies 

0= A-3 = A-2 = A-I = AO < Al < A2 < A3 < A4 = A5 = A6 = A7 = 1. Thus the spline fit is defined 

over the interval 0<p<1 with three internal knots. The internal knots are chosen so that .1 of the 4 

values pj lie in each of the four subintervals created. The placement of four coincident knots at each 

end point is a numerical device to prevent the B-spline generating algorithm from automatically 

constraining s., and its first two derivatives to be zero at these end-points. The insertion of these 

coincident knots causes the space of cubic splines spanned by the basis of B-splines to allow complete 

freedom for the values of s, s' and s" at 0 and 1, although s., (O) and s.,, (I) are constrained during 
XX60 

fitting by a different means as below. If the fit is particularly bad the algorithm will add extra 

knots until it improves. The constraints chosen can be represented as a finite set of simultaneous 

linear constraints on the seven B-spline coefficients, simplifying the computational problem. They 

., 
(0) = 0, s. (1) = 1, and s' (p), which is a quadratic spline on the same knot set jAj), are that sX 

has no negative coefficients in its quadratic B-spline expansion. This last constraint implies that sx 

is monotonic non-decreasing. (It is in fact a stronger constraint, easier to implement numerically. 

There are no problems with the fitted s. being constant over an interval of positive length since 

it can be shown using basic properties of B-splines that such an interval would have to be of the 

form (Aj, Aj), which is never in practice the best fit to the data within the specified constraints. So 
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unless the data set is extremely unusual it can be assumed that the fitted s. is strictly monotonic 

increasing. ) 

These constraints on s. and s. result in a fitted path p- c(p) which defines a strictly monotonic 

smooth function G: x i--+ sy(s-l(x)) with G(O) = 0, G(1) = 1. Then the "smoothed u-plot" is the X 
graph of G on [0,1]. 

B. 1.2 Method of Imposing Tighter Gradient Constraints 

In order to make available the potential improvement mentioned at the end of §3.6, it is necessary 

to find a modification of this smoothing procedure which allows G to be further restricted so that 

its derivative satisfies a constraint of the form 

1 
O<F<G' <ý <00. (108) 

A straightforward extension of the previous method suggests solving for cubic spline functions s,, 

and sy which minimise 
r 

SSQR = E(xi 
- sx(pi))' + (yi - sy(pi))'. (109) 

i=1 
subject to the constraints that sx and s., both assume the values 0 at 0, and 1 at 1. To ensure that 

the new derivative constraint (again strengthened for numerical reasons) is also satisfied, we could 

require that the two quadratic spline functions -f s' + s' and s' - Js' have no negative coefficients XyXy 
in their quadratic B-spline expansions. It would then follow that s'. ý! fsx' and sx 2! &s;, which X 
together are equivalent to the required constraints on G'. 

It is perfectly feasible to efficiently solve such a problem by parameterising in terms of the 

coefficients in the cubic B-spline expansions of s., and sy, which is the approach used in Chan's 

and Snell's software for the previous problem. However this would require extensive modification 

to Chan's and Snell's software since what were previously two separate contrained least-squares 

problems in five dimensions would have to be replaced by a single problem in ten dimensions since 

the derivative constraints on s,, can no longer be separated from those on Sy. (Also both S. and S. 

would need to be defined using a common knot set, which currently does not always happen with 

Chan's and Snell's software. ) For these reasons a shortcut is taken in obtaining the results presented 

in Chapter 4, allowing Chan's and Snell's existing software to be used with only minor modifications. 

The cost of this is that the norm in terms of which the objective function replacing (109) is defined 

is "distorted" by an amount depending on the size of f and 6. Geometrically this shortcut works by 

"stretching" the data points (xj, yj) away from the 45"-Iine, fitting the smooth increasing curve as 

before, and then compressing the curve back towards the 45'-Iine, thereby tightening the bounds on 
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its derivative. The transformed data points are given by 

xj ) 
=A 

(xj), 

yj Yi 

where 
A 

We restrict to 0<6, f<1 so that the inverse tran 

-6 TZ-6 

3formation is 

77 1 77 

where 5= 11911, f=7,,, and V ý! 0,77 ý: 0, V +, q < 1. Geometrically A moves a point along the 

direction (±t9,: F77)' until its distance, in that direction, from the line "y = x" has been increased by 

a factor 1i. Cubic splines S., and S., are then fitted separately by the original algorithm to the 

data sets {(pj, Xj)'} and f(pj, Yj)'J, defining a strictly monotonic increasing function whose graph 

is the path p --ý C(p) = (S. (p), S,, (p))'. T'ransforming back by 

s. (P) 
A-' 

S-(P) 

SV(P)) 
= 

(SYCV)) 

gives a function G defined as before by G= sy o sx-1 satisfying the constraints (108). 

The effect of this transformation on the original norm in (109) is as follows. In the "transformed 

space" of (Xj, Yj)' the objective function is 

r 
E(Xj 

_ Sx(pj))2 + (y _ Sy(pj))2 SSQR j 

which, in terms of the original data {(xj, yj)'I, is a sum of the form 

r Xj - sx(pj) SSQR E (xj - s. (pj), yj - sy (pj)) A'A 
j=l 

( 

yj - sy(pj) 

Xj S. (pj) 2 
F- 

-( 
SY(Pj) 

) IýA'A 

j= I yj 

) 

where this norm, 11 ' IIA'A, has elliptical contours, (each contour being the image under A-1 of a 

circle. ) For the choices of e and 5 used in Chapter 4, the significance of the alteration in the norm is 

limited. This can be checked in any particular case since the direction of the major axis of a contour 

is 
19(l - 19) + 77(l - 77) + -, /('0' + 77'){(l - V)' + (1 - 77)'} 

-2077 +V+ 77 

and the ratio of the major to the minor axis is 

2{ 1(1)_(1_)} 

-1. 
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Fi-Ure 35: Geometrical description of linear transformation used in obtaining, bounds on derivative 
00 

of smoother 

Fi-Ure 35 illustrates how the unit square and its inscribed circle are transformed under A-1, and 0 
indicates geometrically the relationship between (5, e) and (6,77). In this figure, the square P, Q, 

has sides of length 1. A maps P to P1, Q to Q1, and the ellipse shown onto the inscribed circle of 

the square. 

B. 1.3 Selection of Data Points for Spline-Fitting Algorithm 

In obtainina the smoothed recalibrators, the data points {(xj, yj)'; j=1,..., rl were obtained by 
0 

dividing 10,11 into 50 equal intervals with mid-points mj (indexed in increasing order) and either 

setting xj = mj or yj = mj, and then reading off the other member of each pair from the unsmoothed 0 
function S,, defined in §§3.5 and 3.6, (with either constant or exponential weights. wi, as discussed 

in §3.6). It appears that for the failure data and raw PFSs chosen, of these two possibilities for 
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obtaining the (xj, yj), equally spaced xj give better PL performance of the recalibrated predictor 

than equally spaced yj-the results presented in §4.2 were obtained with equally spaced xj. In 

equation (107) xO = yo =0 were used. 

B. 2 Moments and Expectations from a Recalibrated Predic- 

tive Distribution 

The method of recalibration proposed in this thesis involves defining a recalibrated c. d. f. Fn*x (X,, IXn-1) 

by composing the corresponding raw (i. e. unrecalibrated) c. d. f. FflX,, jXn-1), obtained at a given 

stage of one-step-ahead prediction, with a Modified U-Plot function Gns' (. I Un-1) = Sn-1 based on 

earlier u-residuals of the raw PFS. Thus, the numerical calculation of a recalibrated c. d. f. value at a 

particular numerical argument requires only that we are able to evaluate individual numerical values 

of: (i) the raw c. f. d.; and (ii) the U-Plot function S,, -,. Likewise, the calculation of percentiles of 

the recalibrated predictive distribution involves only the calculation of values of the inverses of the 

same two functions at specified numerical arguments. We assume that these problems are easily 

solved for the raw c. d. f. 1. It is clearly not difficult' to calculate values and inverse values of S,, -, 

implemented as a sample c. d. f. of past uis. Neither the incorporation of weights wi in the definition 

of S,, -,, as in equation (29), nor the replacement of Heaviside functions by the uniform c. d. f. s of 

(30), then pose any serious problems either. We still are limited to a non-decreasing polygonal S, 1 

function, possibly with discontinuities at which it is defined to be right-continuous. When S,, 
-, is 

smoothed with cubic B-splines it merely becomes necessary to know how to find a root of a cubic 

polynomial3, which is also straightforward. So there appear to be no significant problems with the 

numerical calculation of values of recalibrated c. d. f. s or percentiles. 

The problem of the calculation of moments of recalibrated distributions is not quite so easy. 

We have proposed our recalibration procedure as quite generally applicable to arbitrary discrete, 

continuous or mixed one-step-ahead predictive distributions for a sequence of scalar quantities. In 

the numerical work here with failure-count prediction, however, only the first mentioned of these 

three cases has actually been needed. We will now briefly discuss the problem of numerical calculation 

of recalibrated expectations 4 in the general mixed case, and, in more detail, as we have used it in 

I -always Poisson or Binomial for the raw failure-count PFSs explicitly discussed in this thesis. 
20f course, not all percentiles are necessarily defined for a distribution whose c. d. f. contains discontinuities; and 

it can be argued that some percentiles are not uniquely defined when the c. d. f. is constant on subranges of R. But 
neither of these restrictions has any special connection with the use of recalibrated distributions. 

3This continues to be the case when gradient-contraints c and -11 are imposed, because linear combinations of cubic 
polynomials are cubic polynomials. 

4i. e., simply ordinary probabilistic expectations but starting from a probability distribution which contains a 
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Chapter 4 for discrete failure count prediction. 

231 

We can simplify the situation by forgetting about the predictive nature of our distribution, and 

the fact that it involves residuals from past terms in a sequence : The question addressed here 

is essentially simply that of how to calculate expectations with respect to a distribution, say F*, 

obtained as SoF where F is a given c. d. f., and S is a non-decreasing function satisfying S(O) =0 

and S(1) = 1. If our distribution is that of a non-negative RV X, then we can generally apply the 

formula 
00 

E[XI R(x) dx where R(x) =1- F(x) = P[X>xl. 
0 

The restriction to non-negative RVs is not an important limitation here since in other cases we 

can simply calculate the difference of expectations of the two non-negative RVs Xlfo,,,,, )(X) and 

-Xl(-,,., o)(X) (repectively max(X, O) and max(-X, O)). Continuing to use the * superscript to 

refer to recalibrated versions, it is easy to see that 

=I oR, where 1(v) =1- S(l - v), 0: 5 v: 5 1. 

The graph of I is just the graph of S rotated 180' about the point (. 1, . 1)5. Thus the recalibrated 22 

expectation is 

E*[XJ = 
or 

l(R(x)) dx. (112) 

This integral could be evaluated using a numerical integration algorithm. However, the function I 

may be of a form such that we can locally approximate IoR by a linear function of R. If this is the 

case, and if the raw distribution is one which is analytically tractable (as for us will often be the 

case, for example, if it is obtained by ML plug-in from a known model) then it may be easier, either 

over the entire range of integration or for just selected sub-intervals of this range, to approximate 

recalibrated expectations in terms of known raw expectations. Clearly the details of the best method 

of evaluating (112) for an arbitrary mixed-distribution of X will depend on all sorts of considerations 

such as the location and number of the points of concentrated probability mass in this distribution, 

and indeed, in the general case, the potential presence of accumulation points of this set of points. 

However, for the relatively simple discrete failure-count case, we found that we could divide the 

interval of integration into two sub-intervals, one requiring direct calculation of a sum of a small 

finite number of terms, and the other approximable in terms of the corresponding 'raw expectation' 

(the expectation of the distribution prior to the recalibration step). For any non-negative RV we 

can fix a number, a say, and express the expectation as the sum of a 'mean restricted to [0, a]' and 

recalibration step within its definition. 
5we will use independent variable v to denote a quantity corresponding to 1-u, i. e. measuring a horizontal distance 

from the RBS of a u-plot. 
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a 'mean excess above a'. 

E[XI = E[min{X, a}] + E[maxjX - a, 0}1 . 

Doing so exactly corresponds to dividing the interval of integration in (112) to give 
Co 

E* [X] = 
10 l(R(x» dx +a l(R(x» dx 

232 

In fact, for our purpose with failure-count predictions we can use an integer, say a=m, and define 

L,,,, U.. by 
L,, = inf 

I(V) 
Un = sup 

I(V) 

O<v: 5R(7n) V O<v: 5R(m) V 

so that for bounds on the recalibrated 'mean excess above m' in terms of the corresponding raw 

quantity we have 

L.. R(x) dx <j l(R(x))dx<U,,, j R(x)dx (113) 
00 

where the raw term f: R(x) dx is generally known analytically. For example if the raw distribution 

of X is Poisson with parameter A, then we have 

00 M-1 
R(x)dx =A -m+e-" 

1: (m-i)-i-l 

i=O 

As m is increased here, the sum 

l(R(X)) dx 
i=O 

has increasingly more terms requiring to be calculated numerically; but the bounds in (113) become, 

at the same time, tighter due to the accompanying reduction in the interval [0, R(m)]. For a polygonal 

recalibrator function, arising from the unsmoothed modified u-plot S, the bounds Lm and UM can 

be obtained by checking only the values at vertices. For a spline-smoothed monotonic' S, extrema, 

of the function LU' when reparameterized in terms of p (or better 1-p for a slight simplification) 
V 

must be sought. This means checking the end point p=1, and any internal knot locations at 

values of p that correspond to v <- R(m), and the stationary points of the ratios of cubics, if any 

of these fall within this search interval. (In practice, it is in the majority of cases easy to take 

m large enough that all B-spline internal knots correspond to v> R(m), in which case - because 

s,, (1) = sy (1) =1- we may then cancel a common factor 1-p from the cubic ratio corresponding 

to the right-most polynomial component of each of the two splines and obtain instead a ratio of 

quadratics only, whose extrema must be obtained. ) In either case, whether cubic or quadratic 

6of the kind discussed in §13.1, denoted there by the function G: x o-4 sy(s; '(x)) with sy(p), and sý(p) being the 
two cubic splines defined in terms of the normalised cumulative chord p of equation (107) 
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rational function, analytic differentiation easily yields formulas for the internal extrema, if any, 

lying within the search interval s. -'(F(m)) :5p<1. In the case of the more tightly gradient- 

constrained smoother (positive c and/or 5 on p227) the locations (in terms of the parameter p) Of 

any such internal extrema are, conveniently, unchanged from the e=5=0 case: Geometrically (see 

Figure 35), the linear transformation A of equation (111) maps straight lines through (l, l) onto 

other straight lines through (l, l), preserving the order of their gradients. Since 1ý') is simply the V 

slope of such a line passing through the point (1 - v, S(l - v)) on the smoothed u-plot, it is easy 

to see that the p-location of the extrema is unchanged by the act of executing the transformation 

A- 1 (after using Chan's and Snell's least-squares spline fitting procedure, as indicated earlier in this 

appendix, on the A-transformed unsmoothed u-plot data-points). 

A generally similar approach may work equally well for recalibrated higher moments and recal- 

ibrated expectations of many other quantities. In the general mixed case we might decompose the 

expectation into a sum of expectations restricted to (possibly more than two) sub-intervals that 

form a partition of the positive real line and use equations such as, for example 

E*[9-(X)I(a, b)(X)] ý- 
lja, 

b) 
9- (x) d(1 o R) (x) 

= l(R(x» dg(x) + l(R(a»g(a) - l(R- (b»g- (b) 

where I is a 180'-rotated u-plot of some kind (perhaps smoothed, and certainly a monotonic function 

on the unit interval with 1(0) =0 and 1(1) = 1) and g must be of bounded variation on [a, b). (See 

the integration-by-parts formula (25) on p54. ) Here, the analogous unrecalibrated expectation would 

look the same with all the I's ommitted, so that bounds or approximations for I on each interval 

[R(b-), R(a)] might again be used to bound or approximate the recalibrated expectation of g- (X) 

in terms of the analogous raw expectation. 
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B. 3 Proof that the Best Attainable Improvement 9 of the 

Odds that Pk=O which is Obtained by Incorporation of 
Previous Demand-Sequence Data is, for Fixed Prior e- 

Mean, an Increasing Function of our Prior Variance of 
0 

This proof concerns the influence of the spread of our prior distribution for 0 on the improvement in 

P[Pk=O] which results from taking account of fixed observations of non-failure of previous sequences. 
See pl4l for a more complete statement of the context. We will show this result specifically for 

the two-point P-distribution of §5.3.5.1 where, under our further restriction of §5.3.5.1 to a Beta 

assumption for Priore, the result translates into the property that R of equation (94) is a decreasing 

function of the Beta parameter b, for o= a/b fixed. So we work in terms of the reparameterised 
Beta Prioro 

oob-1(1 - 0)b-1 01 
Prior, 9 (0) =ß (ob, b) 1-01 =o (see p137). (114) 

Questions remain about the precise form and extent of any generalisations of the monotonicity result 
beyond this case. On expanding the polynomial 1(0) = Ek-I ci Oi, the left-hand side of (94) becomes i=O 

rk-1 ciO(ob +i+1, b) 
oEk-1 j=O ciß(ob + i, b+ 1) 

(115) 

Since we are assuming that the k-1 previous products have all performed perfectly in their respective 

environments over the numbers of triaIs observed for each, 1(0) remains defined as on p137 so the 

coefficients (ci) are all non-negative. Now, holding the odds parameter o constant and differentiating 

9 with respect to b, we can verify a non-increasing function R(b) for all b>0 as follows. 

a-q 
i9b 

k-i k-1 
Z 

ci [oO(ob+i+1) + O(b) - (o+1)0(ob+b+i+1)1 ß(ob+i+l, b) E cjß(ob+j, b+1) 
i=O j=O 

k-1 k-1 

-Z cjß(ob+j+l, b) Z e, [oiP(ob+i) + ik(b+1) - (o+1)iO(ob+b+i+1)] ß(ob+i, b+1) (116) 
j=O i=O 

1 

/0 jk-1 2 

E ciO(ob+i, b+l) 
i=O 

I 

where 7P is the digamma function (put r=0 in (134)) and where we have used the relations 

(a, b) = P(a, b) [? P(a) - V)(a + b)), W (a, P(a, b)[V)(b) - ? P(a 
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The two double sums of the numerator of (116) can be expanded out and their corresponding terms 

subtracted to express the numerator as a single double sum of the form 
k-Ik-1 

Numerator EE tijc-tcj 
i=O j=O 
k-I k-1 
E t,, C, 2 + (118) SE E(tij + tji)cicj - i=O i=1 j<i 

We proceed to show that neither of the summands in the second form (118) can be greater than 0. 

In examining the terms of (118) it simplifies matters to first extract from tij a positive factor 

Sij 
b 

O(ob + i, 43(ob + j, b) = 
r(ob + i)r(ob + j)r(b + 1)r(b) (119) 

(ob +b+ i)(ob +b+ j) r(ob +b+i+ 1)r(ob +b+j+ 1) 

which is symmetric in i, j. It can then be shown by selecting the relevant terms from the numerator 

of (116) and using the recurrence formula ? P(z + 1) = V)(z) + 11z that tiilsii = -ilb < 0. To do the 

same for the off-diagonal sums of pairs of terms from (118) is slightly more cumbersome. Selecting 

the relevant terms from (116) and simplifying in a similar way, we are left with (assuming without 

loss of generality that i>j> 0) 

tij + tji 
= (i-j)fo[iP(ob+i) - 0(ob+j)] - (o+1) [O(ob+b+i+l) -, O(ob+b+j+l)] 

i+j (120) 
sij b 

The problem here is the curly-bracketed term: V) is monotonic increasing and the fact that o+1 >o 

suggests that this term might be negative, finishing our task rather easily. But perhaps the ratio 
(o + 1)lo is insufficiently large to compensate for the fact that the function ?P is concave. To 

verify that the whole expression (120) cannot be positive we manipulate it as follows, beginning by 

expanding the two O-differences 

tij + tji i-I 
0 0+1 i+ 

(i-j)l: 
( 

b+h (o+l)b+h+l b Sij h=j 0 

h=j 

(ob 
+ý 

i 
(i 

(ob + h) 
h=j 

0+1 + (i A 0+1 o)i+j 
(o + 1)b + h) 

((o+l)b+j 
ob+i b 

-h (i + j)o(o + 1)b 2+ ii(i +i+ 2b + 4ob) < ((o + 1)b + h) b(ob + i) ((o + 1)b + j) 

We can therefore finally conclude that 2; 2b :50, making Ra monotonic non-increasing function of Ob - 

b>0 for o= a/b fixed. Examining the reasoning above, we see that R will almost always be a 

shictly decreasing function of b, the exceptional cases occurring only when we consider a few special 

or limiting conditions on the number k-1 of previous sequences, the Beta parameters o, b, and the 

possibility of zero values for the coefficients (ci) in the expansion of the polynomial 1(0). For R(b) 

to be constant over some b-interval would require all terms in the sum (118) to be zero inside that 

interval. 
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BA Taylor Expansion of Numerator of Improvement 9 in 

Odds of Ak-Perfection that Results From Observation 

of (A,, ---i Ak-1) 

We wish to expand the two middle terms of the numerator of (104) on p144 as a Taylor series 

in powers of (l. 'I, 1,2 1 V3), at, the point (1,1, . 1). Our expansion is required to hold only within the 
333 

plane vl+v2+v3 = 1. It is clear, from the development on p145 that what it remains to do, is to 

show that the Taylor expansion for the term 

/ -a+-2 3 
(ý, -vi) Zf -b+-l 13 eitL ̀ýý e+ e- u %ý e(i - Dz (121) V T+--1 Z-, V 7+-2 Z-, 

i=l i=l 

is given by the series 

Z2 2+ 
Z3 3 1)3 1 

s=6 cosh(a) + cosh(a) r (vi -3 sinh [a +u (vi - 3) 
Z] (122) 

By (105) we can write t as 

33 

e-"Ee(3-'ý)Z+eEe(vj-ý, )Z (123) 

3 

2 cosh [a + (vi - Z] (124) 

F(Z), say. (125) 

We can now use a Taylor expansion for the function F 

2 
UZ) 

Z3, 
F(Z) = F(O) + F'(O)Z + F"(O)L +F (3)( - where O<u<l 

26 

with 
2 E3 J(Vi _I)ncosh[a+(vi--! )Z], n=0,2,4.... 

F (n) (Z) = 
i= 33 ý2 

E3 
I(Vi _j)nsinh[a+(vj-I)Zj, n=1,3,5,... i= 33 

to deduce the result that t=s for some O<u<l (with u depending on a, b, Z and (vi)). The first 

order term is zero because E3 
j(vS _. I) 1: 3 

j= 3 i=1 Vil -i=0 

B. 5 Numerical Approximation to Very High Order Non-Central 

Moments of the Beta Distribution 

We require for the purpose of numerical integration in §5.3.5.2 to have an efficient algorithm for 

calculating the expectation of (1 - P)' for large n when P is distributed with a Beta distribution 



APPENDIX B. MATHEMATICAL DETAILS 237 

with parameters a, b. Thus we require an algorithm to calculate7 

A0, n (a, b) = O(a, b) 
r(b + n) r(a + b) 
IP(b) T(a +b+ n) 

b(b + 1) ... (b +n- 
(a + b)(a +b+ 1) ... (a +b+n- 

Problems with overflow, long computation times, and loss of precision due to subtraction of very 

similar numbers were experienced when attempting to compute using standard beta, gamma and 

log-gamma library functions in the obvious ways directly from the forms above. To avoid these 

problems some bounds are obtained below by directly working with the specific function go, (a, b). 

Firstly, we note that 
n-1 

log (ILo,,, (a, b)) 1: log 1-a 
i=O a+b+i) 

so we can apply the 'integral test' approximation to sums of any strictly decreasing function 

In 
< 

n-1 n 
f(t)dt Ef(i)<f(0)-f(n)+ f (t) dt, 

i=O 

where f (t) log (i -a), to give the interesting bounds 
a+b+t 

. 
F[t t-4 (t - 1) log(t)] < log (MO,, (a, b)) < F[t -t log(t)] (126) 

where F (or, strictly, -1: *a, b, n) is the linear functional given by 

. %[91 = -g(a+b+n) +g(b+n) +g(a+b) -g(b), for functions g, 

i. e., intuitively, F applies to its scalar function argument a difference operator the 'spacing' of whose 

differences is specified by a and n and the 'location' of application of which is specified by b. Note 

that, when Ps argument g can be differentiated twice, the identity 

Ian 
F[g] =-" 

(127) 
J9 (tl + t2 + b) dt2 dt, 

will sometimes be used in what follows to demonstrate monotonicity of expressions which involve F. 

Since we are interested in cases where n (and sometimes b also) are large compared to a, there are 

likely to be subtraction problems with numerical accuracy in calculating the bounds in (126) and 

some other bounds and approximations which also turn out to be defined by the application of F to 

7AIthough, for our purposes we are only interested in integer n, we note in passing that moments of non-integer 
order are perfectly well defined and that for the Beta distribution we have the curious symmetry ILO, n(a, b) ý po,, Kb), 
apparent from the Gamma-function representation here. 
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some function. These can be solved by rearrangement and perhaps also Taylor series approximations. 
E. g. for the upper bound, if n is much larger than a we can use 

-(a+ b+n)log(a+b+n) + (b+n)log(b+n) +(a+ b)log(a+b) -blog(b) 
a+b+ný 

-a log(a +b+n) - (b + n) log T-) + (a + b) log(a + b) -b log(b) 
+n 

-unless b is also much larger than a, in which case 

-(a+ b+n)log(a+b+n)+ (b+n)log(b+n)+ (a+ b)log(a+b) -blog(b) 

-a log a+b+n ( 

a+b 

) 

+b 
[-1 (a)2 

+1 (a)3 (b + n) 
[-1 (a )2 

+1(a3 -3 T -2 T+-n -3 b+n 

should produce an accurate answer. Once these rather minor subtraction problems have been tackled, 

the resulting boundS8 

(b + n) (b+n-1)(a + b)(a+b-1) (b + n) (b+n) (a + b) (a+b) 

b(b-1)(a +b+ n)(a+b+n-1) 
< AO, n(a, b) < bb (a +b+ n) (a+b+n) 

(128) 

on /-10, n (a, b) can be used for many values of n and ranges of (a, b) to produce quite tight bounds on 

the reliability predictions discussed in §5.3.5.2. These bounds are themselves in the ratio 

an 
b(a +b+ n) 

so that, for example, when a is small compared to b, we know that these bounds are at least 

correspondingly accurate approximations to po,,, (a, b). Returning to our application in §5.3.5.2, it 

is worth remarking that such values of a and b give very plausible distributions for P to characterise 

a family of (product, environment) pairs designed for very high reliability. 
But, for those values, e. g. when k is small, where these bounds are not known to give satisfactory 

accuracy, we can use the more genera19 and tighter bounds obtained using the Euler-Maclaurin 

summation formula, as follows. 

Abramowitz and Stegun [3, p2571 give bounds on the remainder S, (t) of the asymptotic expansion 

of the log-gamma function 

iog(r(t)) = (t - 1) log(t) -t+1 log(27r) + 
B2k 1- 

(129) 22 r- 
2k(2k - 

1) t2M 
+ Sr(t) 

k=1 

Here, BO, BI, B2 
9 ... are the Bernoulli numbers 1, - 1, . 1, 

..., see [3, ppS04-1 0]. Note that if the 26 

terms in negative powers of t here, and the remainder term S, (t) are all neglected, and the re- 

maining part of the right-hand side of (129) is then substituted in the definition of log (po,,, (a, b)), 
8but note the improvement to the upper bound mentioned later on p241 9in that they are useful over a wider region of (a, b, n) 
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we obtain the approximation F[t ý-+ (t - -1) log(t)], where we have used the same linear functional 2 

notation J" introduced above. It is straightforward to show'O that this asymptotic approximation to 

log (po,,, (a, b)) lies between the two 'integration test' bounds obtained above. If, in place of (129), we 

consider instead the slightly easier problem of asymptotic approximation to difference of two values 

of the log-gamma function at arguments separated by an integer", then we can obtain information 

about the corresponding remainder term directly from the Euler-Maclaurin summation formula 12 

[91, pp478-82] 

n-1 In 
f (t) dt +f 

(0) 
-f 

(n) 
+ 

'" B2k 
f(2k-1) (n) 

_ f(2k- 1) (0» + Zf (i) =0 022ý 
(2k)! 

i=O k=l 

where 
13 

(t) n-1 

Qr 
B2r+ E f(2r+l) (i + t)dt (131) Jo 
(2r + 1)! 

i=O 

which holds for any function f possessing the appropriate derivatives. (130) and (131) can be 

obtained from the integral form of the remainder terms for the ordinary Taylor series calculated for 

f and also for its derivatives using unit displacement from the series expansion point. (See [911 for 

details. ) Applying this formula to the functions f (x) = log(b + x) and f (x) = log(a +b+ x) and 

subtracting yields the formula 

log (, uo,,, (a, b)) = 
It - (t - 

12 ) log (t) I 

r B2k (132) +E-++I) 
k=1 2k(2k - 1) (a +b+ n) 

2k I (b + n)2'ý-' (a + b)2k-I b2k-I 

+R, 

with remainder 

R, =1 
B2r+ I (t) V)(2r) (t +a+b+ n) + V)(2r)(t +b+ n) + V)(2r) (t +a+ b) - 

V)(2r) (t + b) dt. lo 
(2r + 1)! 

(133) 

In this remainder term, B2r+l(t) is the Bernoulli polynomial [3,804-6], and 

d2r+l 
log(r, (t)) (134) 

dt2r+l 

loeither directly by subtraction, or by using (127) with g(t) = (t + c) log(t), 9"(t) =1- _' , monotonic decreasing 
t tT 

in c 
"This integer is the order of the (1 - P)-moment. Does the E-M series which results (i. e. equations (132) and 

(133)) also hold exactly for non-integer n? For our purposes, this does not matter. 
12Note that we do not use the E-M formula as given in (3, p8061 since this contains errors. 
13There are some alternative forms for the remainder in the Euler-Maclaurin summation formula. Note that, unlike 

some others which require r>1, the form Qr of remainder used here continues to be correct for r=0 (provided that 
the 'empty sum' convention That Fok=l -=0 is used in (130)). 
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is the polygamma function [3, pp258-60]. The term in the integrand in square brackets is actually 

a shorthand, based on the basic polygamma recurrence relation 

11 (t ++n- 1)m+') 

for the expanded form (in which it was derived, as (131)). 

The partial sum in (132) is a sum of alternating terms, since, for each term, the bracketed part 
[t ,- (2k- 1)] 

_, t is negative, and the even Bernoulli numbers (excluding Bo) are known to alternate 
in sign. We can show that, as one might hope to find, the sequence of remainder terms (R, ) of the 

approximation also alternates. To see this notice firstly that the square-bracketed term, ý(t), say, in 

(133) is a positive decreasing function of t. This fact is a consequence of putting 9= V)(2r) in (127) 

(and replacing b by b+ t), since then we have g" = V)(2r+2) and the even polygamma functions 14 are 
known to be increasing (and negative) on the positive real axis. Alternatively, we obtain the same 

conclusion by leaving C(t) in its original expanded form and rearranging the terms to give 

n-I 
(2r)! 1: 11 

i=O 

( 
(t +b+ i)2r+l (t +a+b+ i)2r+l 

which is positive decreasing in t by the convexity of the inverse power function. The second re- 

quirement to deduce that (R, ) alternates in sign is the well-known property of the odd Bernoulli 

polynomials. [3, pp804-5) tells us that B2r+I (t) has a zero at t= . 1, has sign (- 1)1+1 on the interval 2 

0<t<1 and satisfies the identity B2r+l(l - t) = -B2, +I(t)- Putting the above facts together we 2 

can deduce that the integrand in (133) has sign (-l)r+l on the interval 0<t< . 1, sign (-l)r on 2 

<t<1 and conclude that 

1)'+ 1 R, 
1 (-l)'+'B2r+l(t) 

ý(t) dt 
10 

(2r + 1)! 

0 

(_I)r+IB2r+l(t), 
(I) (-l)r+lB2, +, (t) ý(! ) dt (2r + 1)! 2 dt + 

i (2r + 1)! 2 

. 21 
(-l)'+IB2r+l(t) 10 

(2r + 1)! 

0 

Thus R, has sign (-1)'+1 and we can conclude that we have obtained bounds 

F[t - (t - . 21) 
log(t)) 

2s+I B2k 

k=1 
2k-I 2k 

+ + F- 
Fk-(2k- 1) (a +b+ n) 

+ Tb 
+ n) I (a + b)2k-I b2k-I 

< log (po,,, (a, b)) 

14meaning the functions (134) with r ýý 1 
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< 'r[t ý--+ (t - . 1) log(t)] 2 
2s B2k 

)2k-I 
+ 

)2k 1+ +ý Tk (2 -k- 1) (a +b+n (b +n (a + b)2k-- I b2k-1 
k=l 

for s=0,1,2,... (135) 

Note that the s=0 case tells us that, in fact, F[t - (t - 1) log(t)] is a strict upper bound for 2 

log (, uo,,, (a, b)). This enables a simple improvement to the right-hand side of (128). 

Since we have now shown the sequence RO, RI, R2 ... to be alternating in sign, we have immedi- 

ately 

JR, j < JR, - R, +Il 
B2r+2 111 

= 
)2r+l 

+ 2r+l (2r + 2)(2r + (a +b+n (b + n) 
+ 7a + b)2r+l b2r+l 

(_I)rB2r+2 11 
)2r+l )2r+l 

+ 
(2r+2)(2r+l) 

((a+b+n 

(b +n (a + b)2r+l b2r+l 

< 
(_l)rB2, +2 11< (-l)'B2r+2 

(136) 
(2r + 2)(2r + T)- 

(P-r+1 
- ýa + -b)2r+l (2r + 2)(2r + 1)b2r+1 

as a crude bound on the error of our approximation, so that, surnmarising our findings about the 

remainder term, we can say that 

0< (_I)r+lRr < 
(_l)rB2r+2 

(137) 
(2r + 2)(2r + 1)b2r+1 

In the numerical results presented in §5.3.5.2, we chose to work with r=3 and r=4 to give us 

our lower and upper bounds (respectively) on uo,,, (a, b). With these numbers of terms in the series, 

(137) becomes 
11 

-1-188bg < R4 <0< R3 < 
1680V 

(138) 

Two further problems remained to be addressed in order to implement an algorithm. The first 

problem is that of the size of the error bounds when b is small. Although for high reliability software 

families we would probably not expect an asymptote in the distribution of PI(a, b) at P=1, we might 

nevertheless in our prior distribution for (a, b) wish to assign a very small quantity of probability 

to such values. For this reason we prefer to use a numerical algorithm for po,,, (a, b) which is able 
to cope well with values of b close to or even less than 1. Fortunately, there is a relatively painless 

solution to this requirement. Examination of the remainder term (133) leads one to conclude that for 

small b the remainder is largely accounted for by the Euler-Maclaurin series' comparative inability 

to approximate the first few terms of the original series E'-'(Iog(b + i) - log(a +b+ i)). This i-O 
suggests removing these few terms from the sum, say remove the first j terms. 

log(iLo,,, (a, b)) log (b + i) - log (a +b+ i) + log (iLo,,, j (a, b+ 
(i=O 
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Then these removed terms can be calculated directly, and the Euler-Maclaurin approximation used 

only for the later part of the sum which is equal to log (po,,, 
-j 

(a, b+ j)). For j large enough so that 

we have b+j greater than about 5 or 6, the new Euler-Maclaurin remainder will be very small. 
To be precise, for b+j>5 as we in fact used in §5.3.5.2, we have from (138) an Euler-Maclaurin 

remainder satisfying 

-4.310><10-1() < R4 <0< R3 < 7.61940-9. 

Using this approach we avoided ever having to use the expansion (132) with any value of b<5. 

The second of the two problems mentioned is purely computational and has to do with the 

avoidance of a loss of precision on subtraction of very similar numbers, which could occur in several 

places due to the multiple occurrences of differences of the form Y, and to the fact that a, b and 

n may differ by quite large orders of magnitude. Our approach to avoiding such problems for the 

. F[t (t - -1) log(t)] term in (132) is to write it as 2 

a+b+n + b) 1) log 
(a+b+n) 

. F[t (t - -1) log(t)] = -a log 
)+ (b- ')Iog(ý- 

-(b+n-- 2( a+b 2b2b+n 

except when b> 100a in which case we note that the second and third of these three terms will 

begin to become very similar. (They are both asymptotic to a as 1-0. ) Therefore, under this b 

condition we replace each by a Taylor series approximation with a subtracted to give 

. F[t ý-4 (t - 1) log(t)] = -a log a+b+n + h(a , 
a) 

-h 
(a, a 

2 a+b b+n 

where 

10, Y) = -Y 
Y-1 

Y+1 Y- 
1)Y+1)(X-Y)+1) (((((6 

-5) 4) 3i2i 

Note also that the terms in the Euler-Maclaurin sum itself are also of the Y form and so could 

likewise give rise to imprecision via subtraction. We avoid this problem by removing a factor a, 

rewriting (also for computational efficiency reasons) 1 (1 / (a + b) 2k -I-1 /b2k -12, 
a) as a function of a 

and b(a + b), and similarly rewriting ; 1; (-l/(a +b+ n)2k-1 + 11(b + n)2k-1) as a function of a2, 

and (b + n)(a +b+ n), to give, for r=4 

4 
1: B2k 

)2k I 
k=1 

2k-I 
++ 

2k(2k - 1) 

( 

(a +b+ n) (b +n (a + b)2k-I b2k-I 

= a[l((b+n)(a+b+n), a 2) - I(b(a + b), a2 

where 
1 3x +y 5x (x + y) + y2 7x (x +, Y)2 + y3 I(X'Y) ý -12x - 'iý6-07 + -1260x5 168OX7 
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