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Abstract

This thesis presents some extensions to existing methods of software reliability estimation and pre-
diction.

Firstly, we examine a technique called ‘recalibration’ by means of which many existing software
reliability prediction algorithms assess past predictive performance in order to improve the accu-
racy of current reliability predictions. This existing technique for forecasting future failure times of

software is already quite general. Indeed, whenever your predictions are produced in the form of

time-to-failure distributions, successively as more actual failure times are observed, you can apply
recalibration irrespective both of which probabilistic software reliability model and of which statis-
tical inference technique you are using. In the current work we further generalise the recalibration
method to those situations where empirical failure data take the form of failure-counts rather than
precise inter-failure times. We then briefly explore how the reasoning we have used, in this extension
of recalibration to the prediction of failure-count sequences, might further extend to recalibration of
other representations of predicted reliability.

Secondly, the thesis contains a theoretical discussion of some modelling possibilities for improving
software reliability predictions by the incorporation of disparate sources of data. There are well
established techniques for forecasting the reliability of a particular software product using as data

only the past failure behaviour of that software under statistically representative operational testing.

However, there may sometimes be reasons for seeking improved predictive accuracy by using data
of other kinds too, rather than relying on this single source of empirical evidence. Notable among
these is the economic impracticability, in many cases, of obtaining sufficient, representative software
failure vs. time data (from execution of the particular product in question) to determine, by inference
applied to software reliability growth models, whether or not a high reliability requirement has been
achieved in a particular case, prior to extensive operational use of the software in question. For
example, this problem arises in particular for safety-critical systems, whose required reliability is

often extremely high. An accurate reliability assessment is often required in advance of a decision
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whether to release the software for actual use in the field. Another argument for attempting to
determine other usable data sources for software reliability prediction is the value that would attach
to rigorous empirical confirmation or refutation of any of the many existing theories and claims
about what are the factors of software reliability, and how these factors may interact, in some given
context. In those cases, such as some safety-critical systems, in which assessment of a high reliability
level is required at an early stage, the necessary assessment is in practice often currently carried
out rather informally, and often does claim to take account of many difterent types of evidence—
experience of previous, similar systems; evidence of the efficacy of the development process; expert
judgement, etc—to supplement the limited available data on past failure vs. time behaviour which
emanates from testing of the software within a realistic usage environment. Ideally, we would like
this assessment to allow all such evidence to be combined into a final numerical measure of reliability
in a scientifically more rigorous way.

To address these problems, we first examine some candidate general statistical regression models
used in other fields such as medicine and insurance and discuss how these might be applied to pre-
diction of software reliability. We have here termed these models ezplanatory variables regression
models. The goal here would be to investigate statistically how to ezplain differences in software
failure behaviour in terms of differences in other measured characteristics of a number of different
statistical ‘individuals’, or ‘experimental units’: We discuss the interpretation, within the software
reliability context, of this statistical concept of an ‘individual’, with our favoured interpretation be-
ing such that a single statistical reliability regression model would be used to model simultaneously
a family of parallel series of inter-failure times emanating from measurably different software prod-
ucts or from measurably different installations of a single software product. In statistical regression
terms here, each one of these distinct failure vs. time histories would be the ‘response variable’
corresponding to one of these ‘individuals’. The other measurable differences between these indi-

viduals would be captured in the model as ezplanatory variable values which would differ from one

individual to another.

Following this discussion, we then leave general regression models to examine a slightly different
theoretical approach—to essentially the same question of how to incorporate diverse data within our
predictions—through an examination of models for ‘unexplained’ differences between individuals’
failure behaviours. Here, rather than assuming the availability of putative ‘explanatory variables’ to
distinguish our statistical individuals and ‘explain’ the way that their reliabilities differ, we instead

use randomness alone to model their differences in reliability. We have termed the class of models
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produced by this approach similar products models, meaning models in which we regard the indi-
viduals’ different likely failure vs. time behaviours as initially (i.e. a priori) indistinguishable to us:
Here, either we cannot (or we choose not to attempt with a formal model to) ezplain the differences
between individuals’ reliabilities in terms of other metrics applied to our individuals, but we do
still expect that the ‘similar products™ (i.e. the individuals’) reliabilities will be different from each
other: We postulate the existence of a single probability distribution from which we may assume our
individuals’ true, unknown reliabilities to have all been drawn independently in a random fashion.
We present some mathematical consequences, showing how, within such a modelling framework,
prior belief about the distribution of reliabilities assumes great importance for model consequences.
We also present some illustrative numerical results that seem to suggest that experience from previ-
ous products or environments, so represented within the model—even where very high operational
dependability has been achieved in such previous cases—can only modestly improve our confidence

in the reliability of a new product, or of an existing product when transferred to a new environment.
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Chapter 1
Introduction

1.1 Problem Area

The task of predicting the future failure behaviour of software as accurately as is possible, has,

over the last three decades or so, become increasingly recognised not only to be inescapable—
for project management, product reliability evaluation and certification, and software engineering
research reasons—but also to differ substantially from other reliability prediction tasks, [78, 18, 55,
57, 61]. This thesis addresses the area of software reliability assessment and prediction. By the term
“software reliability” in this thesis we refer to characteristics (observed or predicted) of the stochastic
process of software failures versus software “execution time”. This failure process may; be a discrete-
time process, in the case of “demand-based” systems, if we choose to measure execution time simply
by counting the number of demands on the software. (See §2.1.) More usually, the failure process
is modelled as a continuous time stochastic “point process” of discrete software failure “events”
embedded in a continous time metric representing execution time. (See §2.2.) In either of these two
cases, ‘reliability’ is here interpreted with an emphasis placed on the rate at which software failures
occur, rather than on how bad are the consequences or cost of particular failures.! For a discussion
of software incident/failure attributes see e.g. [70, ‘How to Measure Incidents, Failures & Faults’
on pp31-44]. Throughout this work we have in mind a software application of such difficulty, and
hence a resulting software system of such size and complexity, that it is unrealistic or uneconomic
to attempt to complete an exhaustive, deterministic analysis of all the potential modes and causes

of software failure. Such an analysis would involve a complete classification of individual inputs and

1Of course we could first classify failure events according to such criteria and then use the methods treated in this
thesis to analyse the rate of occurence of failures of any selected categories [94, pp348-50].
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outputs according to whether or not they would constitute software failure. If this were possible
then we would be in a position to think in terms of removing all faults and producing guaranteed
fault-free software for which reliability would not be an issue. This is generally not achievable :
We speak of fault-free software in the sense of software which could be safely assumed, usually in
advance of extensive operational use, to contain no faults. This is different from properties expressed
in terms such as merely: “there is a good chance that this software may contain no more faults”; or
“as it reaches the end of its operational life, having run over several years at many installations it is
at last beginning to look very likely in retrospect that this software contained no faults on the date
it was released”. The scenario of being able to assure in advance of use that a software product is
fault-free does not accord with current real-life experience and is believed by many to be unlikely to
do so for the foreseeable future, if ever. In the circumstances more familiar to developers and users
of non-trivial software products, for which complete understanding and full knowledge of flaws in
the product is beyond our reach, the case for a probabilistic analysis has been well made elsewhere.
See e.g. {50, 56, 78], [72, pp324-T].

Thus the problem domain addressed in this thesis is already a well established area of applied re-
liability theory in which many of the same operational reliability measures (see §2.2), such as failure
rate, are applicable as have been employed in the work on hardware reliability. However it should
be understood that it is software failures which are considered here. Such failures originate from
preceding human errors in the development of complex and purely logical entities. Software failures
are thus of a fundamentally different kind from the failures of hardware components caused by the
degradation of these through operational use. It has been shown, {69, 50, 52], both theoretically and
by observation of empirical reliability data, that we must expect the different natures of these two
classes of system failure to be reflected in differences in the resulting pattern of unreliability. Conse-
quently, the specific application to software has stimulated the development of new reliability models
and prediction methods having important differences from those of the longer established theory of
hardware reliability. Some of the salient features of software affecting its reliability behaviour which

have been identified and discussed elsewhere are: the ease with which the software components of

a system can be made to be very complex logically; the ease of modification or “softness” of soft-
ware; the immense diversity between different software products; the large amount of design novelty
commonly found in each new piece of software; and the difficulties associated with the interface
between the abstract, logical domain of formal languages, and the “real world”, physical domain of
the majority of software applications. It has been argued [53], that the essential features of what

has been called “software reliability theory” would be more accurately encapsulated if the word
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“software” was replaced by “complex design”. In this case software reliability prediction methods
could be taken to apply also to hardware design failures of complex hardware components.

We address the problem of stochastic modelling and prediction or forecasting of the point-process
of software failure events embedded in (continuous or discrete) software execution time, focusing on
two main extensions to existing techniques. The first of these consists of a further development of
current techniques of empirical evaluation and improvement (“recalibration”, {2, 59, 6]) of a pre-
dictor, involving principally an extension from continuous tnter-failure time data to the case of the
coarser “discrete” failure-count data. Results of numerical investigations are presented in support
of the techniques proposed. The second extension addressed in this thesis is an entirely theoretical
discussion of the potential for using disparate data when predicting software reliability. That is, we
examine some ideas and models that might enable us to incorporate, into our predictions of software
reliability, sources of data additional to the recorded behaviour of the failure vs. execution time pro-
cess of the single software product, whose future reliability we now wish to predict, operating in an
execution environment that is statistically representative of its present one. It is this latter source
of data alone that is typically used by many existing software reliability growth models. We seek to
explore ways to supplement this useful data source by using in addition some data of other kinds.
To do this we initially examine the potential for use in the software reliability prediction context
of certain already existing statistical techniques based on “proportional hazards” and “proportional
intensity” regression models. It is proposed that some of these general statistical regression tech-
niques may provide methods of incorporating supplementary data sources (in addition to merely past
failure-vs.-time behaviour) into our software reliability predictions under some circumstances. We
present arguments for and against the viability of such an approach, distinguishing some different
potential applications. We finish by leaving the context of pre-existing general statistical regression
models to propose a more specific model for unexplained random variation between the reliabilities
of ‘similar’ software products or execution environments. We examine how this model might be used

to improve the reliability predictions of any particular single member of such a ‘family of similar

(product, environment) pairs’.
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1.2 Layout of Thesis

Chapter 2: Previous Work

§2.1 briefly mentions a simpler modelling context sometimes used in which the software’s execution
is measured as of a sequence of discrete ‘demands’; rather than using the more common continuous-
time model for the cumulative amount of execution to which a software product has been subject.

§82.2,2.3 contain a review of existing techniques for forecasting a process of software failures in
continuous software execution time, using records of the early portion of that process as the sole
source of data for prediction of subsequent behaviour. The first of these two sections contains a brief
survey of some existing models of such a failure process. Some of the basic terminology, used in
later sections, relating to reliability of software is introduced and defined here. §2.3 reviews common
methods of deriving a reliability prediction algorithm from such a model.

82.4 discusses techniques for validation of a predictor against a particular failure data set. For

reasons which are explained, assessment of predictive performance of each predictive technique

assumes a particular significance when it is software whose failures are being predicted, and such
assessment of any particular software reliability prediction technique is unlikely ever to be completed
to a point where that prediction technique can thereafter justifiably be regarded as validated for
general use in predicting software failure processes. Particular attention has in the past been paid to
evaluation of a succession of short term predictions for the degree to which they possess the property
of being “well calibrated” in a sense which can be expressed as. a property of a certain sequence of
generalised residuals denoted (u,) and used to form the “u-plot”. These residuals form the basis of
the recalibration methods reviewed in §2.5 and later extended in Chapter 3.

§§2.6 & 2.7 are included as additional background material required for the work contained in
85.2. §2.6 contains a literature survey of some previous work addressing the problem of how data on
the past failure-vs.-time behaviour, of the particular software item whose future failure behaviour is
required to be predicted, might be supplemented by other data sources of various kinds in the pursuit

of more accurate reliability predictions. §2.7 discusses various statistical results and methods based

on two general regression models. These have been applied in several diverse contexts in which
“survival time” or “lifetime analysis” has been considered appropriate. Such random events and
processes range from insurance claims in actuarial work to patient responses following different
treatments in medicine. The discussion in §2.7 centers around work found in the statistical, rather

than software engineering, literature.

§2.8 considers some existing work on the prediction of failure-count sequences. Failure-count data
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amounts to less information available for input to a predictor than the more typical assumption of

the availability of complete inter-failure time data from the past portion of the point process of

software failures in continuous execution time.

Chapter 3: Extension to Discrete Predictions

Chapter 3 further pursues the problem introduced in §2.8 beginning with some observations on
difficulties encountered when attempting to carry over, essentially unchanged, to the failure-count
context the methods used previously for complete past inter-failure time information. §3.1 discusses
difficulties with the conversion of parametric reliability models and their related predictors to the
failure-count case.

883.2 & 3.3 return to the concept of calibration of a predictor and discuss the associated tool of the
u-plot. The notion of an ideal or ‘true’ predictor is introduced as a way of examining the calibration
behaviour that a ‘best possibly performing’ predictor might exhibit. Some difficulties with u-plot
based approaches are revealed in the transition to the failure-count case, when we attempt to define
u-plots and construct recalibrated reliability predictors from predictors that concentrate positive
predictive probability at discrete values of the variable to be predicted.

As a contribution towards overcoming these problems, §§3.4 & 3.5 consider alternative definitions
of the (u,) sequence and of the u-plot which are shown to have desirable properties for general
predictors of quantities possessing discrete (or mixed) predictive distributions including, as one
special case in particular, predictors based on software failure counts. §3.6 focuses on the potential
of such plots for use as tools for obtaining improved, recalibrated predictors. In particular, in §3.6,
the use of weighting, and of smoothing under gradient-constraints, are discussed, leading to the
proposal of further modifications to the recalibration mechanism. These last modifications are not
specific to recalibration of discrete predictions and can be applied also to the case of prediction of
continuously distributed quantities, such as the original software inter-failure times. §3.7 reviews
the extensions of the recalibration idea developed in Chapter 3 and discusses the extent to which

these suggest methods of recalibrating other kinds of predictions.

Chapter 4: Data Analysis

Chapter 4 reports a data analysis in prediction from failure-count data using the techniques devel-

oped in Chapter 3. The techniques were tested using both simulated and real software failure-vs.-time

data. Graphical output is collected in Appendix A.
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Chapter 5: Other Sources of Data

Taking the original case of complete information on a single failure-vs.-execution time history as a
kind of reference or standard data assumption for the software reliability prediction problem, the
work in Chapter 5 can then be seen as progress ‘in the opposite direction’ from that taken in §2.8 and
further pursued in Chapter 3. Thus, Chapter 5 considers the possibility of augmenting—rather than
depleting by the transition to failure counts—the information entailed by the much treated data
assumption of a single sequence of past inter-failure times. After a motivating problem description
for Chapter 5 given in §5.1, §5.2 picks up the ideas introduced in §§2.6,2.7 and discusses the question
of whether and how it may be feasible to identify and rigorously validate models for software reli-
ability prediction which are able to produce more accurate reliability predictions by incorporating
supplementary data sources (“explanatory variables”), rather than being restricted, as sole source
of data, to the use of the so-far-observed part of the process of failure events along the execution
time axis of the single software item whose reliability is to be predicted. For this purpose of incor-
porating additional sources of data supplementary to the inter-failure time sequence, the potential
merits of the two related classes of general statistical regression model, proportional hazards models
and proportional intensity Poisson process models, are discussed. These have been used in other
contexts for carrying out regression of event times on to associated explanatory variables. At several
places throughout §5.2-——and in particular in §§5.2.1.4 & 5.2.3—some reasons for the popularity of
the common approach of modelling only a single stochastic point process of failures in the case of
software are reviewed and some of the obstacles to doing anything more than this are described.
In §5.2.1 a number of alternative ways of conceptualising software reliability prediction problems in
terms of the standard structures entailed by each of the two classes of general statistical regression
models are identified, and it is concluded that the obstacles mentioned apply to greater or lesser
extents for each of these, the most favourable application being that of §5.2.1.3 in which different
software “operational environments” of a single software product play the role of “individuals” in
the terminology of the statistical models.

§5.3 explores of a different approach to incorporating other data into the reliability predictions
for a software product and its operating environment. In this case we concentrate on empirical reli-
ability data emanating from other software products or execution environments which are believed
to be ‘similar’ to the product and environment in question, whilst acknowledging that they will have
reliabilities which will differ from it. Here our term ‘similar’ can be thought of as a kind of ‘indif-
ference’ between distinct failure vs. time processes, whose precise meaning lies in the (conditional)

independence assumptions assumed to represent the reliability variation between the different failure



CHAPTER 1. INTRODUCTION 7

processes. In contrast to the approach taken in §5.2, there is no assumption now that we have access
to observable metrics or characteristics of the different (product,environment) pairs of our family,
and with which we can attempt to model any explanation for or correlate with their differences in

reliability behaviour.

Chapters 6 & 7: Conclusions and Suggestions for Further Work

Chapter 6 contains the main conclusions and Chapter 7 contains some suggestions for taking some

of the ideas further in the future.

Appendices

Appendix A contains the graphical results discussed in Chapter 4. Appendix B contains some

mathematical details suppressed for clarity of exposition in earlier chapters.
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Previous Work

2.1 Discrete Demand-Based Reliability Models

Perhaps the simplest mathematical framework in which to model reliability is the demand-based
one in which ‘time’ is represented simply as a count of the number of executions, or demands made
on an item of equipment or, in the case of this thesis, an item of software. With each in a succession
of demands, we may assume that the software executes the task required of it either successfully or
unsuccessfully, the latter case being termed a failure. This is not the most appropriate model for all
software, many examples of which are better conceived as operating continuously, but it does have
the advantage of a kind of simplicity in that the mathematics of the real line is not required for
the model of the time metric. The simplest model for this kind of failure process is the Bernoull
Trials process, where the probability p of failure is the same for each demand, and the outcomes of
demands which are distinct are always assumed to be statistically independent. See e.g. {22, §4.9],(28,
Ch. VI, VIII}. We make use of this simple model of successive executions in §5.3 of this thesis, but
otherwise concentrate on point-process models of the failure vs. execution time process. It should
be born in mind throughout §§2.2 and 2.3 that most of the discussion of parametric inference and

forecasting systems, though couched largely in terms of the mathematically more involved point-
process case, can easily be modified (and in fact simplified) to apply to the discrete demand-based

model framework.
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2.2 Continuous Time Point-Process Reliability Models

Throughout most of this thesis the underlying model with which we are concerned is the slightly more
complex ‘continuous time’ analogue of the above. This consists of a one dimensional stochastic point
process. For a formal mathematical definition, the standard one may be assumed. This involves a
sample space, §2, consisting of a set of elementary outcomes, w, each of which, in the case of a point
process model, consists of a single realisation of the process. Thus each w € § is itself some fully

specified deterministic arrangement of finitely or countably many! indistinguishable points along a

half line. A family, ¥, of subsets, F, of , including all straightforwardly defined subsets, each have

—_——— e, . e

time

Figure 1: One realisation, w, of a point process, ({1, X, P)

an associated probability, P{E]. £ is assumed to have the closure properties of a sigma algebra of sets.
The set function, P, satisfies the countable-additivity and other axioms of a probability measure,
(82]. In this way a formal framework may be built within which events of interest concerning the
arrangement, w, of indistinguishable points along the half line have coherently defined probabilities
of occurrence. Subject to the satisfaction of the axioms mentioned, it follows that any function,
X : © — R, which is measurable with respect to X, is a random variable (RV) having associated c.d.f.
FX(z) = Pl{w : X(w) < z}] (or P[X < z] for brevity, following the usual convention), expectation
E(X] = [, X dP etc.? It is also possible, using Radon-Nikodym derivatives, to define conditional

probabilities and expectations in the standard ways, [45, 27], having the standard properties.

The process of formal definition sketched in the previous paragraph produces the general tool of
a stochastic point process. In the context of software reliability modelling, the half line is interpreted
as an axis of cumulative software execution time, T, measured from time, 7 = 0, on the left. See
(68, p170] and [70, pp45-53] for further discussion of some more precise practical definitions of
this metric. The points of each process realisation, w, are the locations in cumulative execution
time at which successive software failures occur when a particular copy of a single item of software
is executed at a given installation site? using a given sequence of inputs to the software. The

possibility of modification to the software during its execution is not excluded, being in fact central

1For the purposes of modelling software failures we could also without loss of realism tighten this to exclude
accumulation points of the set of failure times.

2Here a general Lebesgue integral of the £-measurable function X is used, [21].

30f course, it may be possible to pool the sequences of failures occurring from copies of the same software running
at multiple sites into one single point process, provided it is possible to formulate a single aggregated execution time
metric with respect to which all of these events can be temporally located.
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to the software reliability growth models described below.

Of the twenty or so, [17, 71, 26], |78, Chapters 9-11] existing point process models which have
been applied to the software reliability prediction problem, the majority are parametric families
of stochastic processes. In terms of the above general framework this means that a parameterised
family, {Pg : 8 € ©}, of probability functions is specified by the model. Here 8 is a parameter vector
of typical dimension about 1-3. For a given probability law P of a process, i.e. for a given value of the
parameter vector 6 in the case of a parametric model, several theoretical quantities determined? by
P are of particular interest from the point of view of reliability modelling. Four of these are R(t; |G),
f(t;7|G), 2(7|G:), and M(7), the reliability function, p.d.f. of time-to-next-failure, conditional hazard
rate, and process mean function, respectively. Before explaining the meaning and relevance of these
quantities, the purpose of the “G” on the right hand side of the conditioning sign will be briefly
explained in the following paragraph:

The purpose here is to emphasise that there does exist a rigorous underlying theory which guar-

. s . ‘g TRy b g
antees under very general circumstances® (a) the existence of conditional probabilities, conditional

expectations, conditional stochastic rates etc and (b) the satisfaction by these quantities of certain
general properties, such as that expressed by equations of the form E[E[Y|X]] = E[Y], which will
be employed in Chapter 3. Thus, in terms of the abstract model, (§2,%,P), of a point process
sketched on p9, G is a sub-sigma algebra of L (i.e. a subfamily of the family of sets comprising 2,
such that G itself satisfies the closure axioms required for it to qualify as a sigma algebra of sets).
The interpretation of such a G is that G defines a set of possible conditions of partial knowledge
about a realisation, w, of the process. Exact knowledge of w is equivalent to a complete description
of the number and positions of all points along the half line. For each £ € ¥ (i.e. each E C Q for
which P[E] is meaningful), a positive or negative answer to the question, “Is w € E?”, represents
an element of knowledge about the realisation, w, of the process. A complete set of answers to
all of the corresponding questions for every EF € G is the abstract representation of the result of
a certain kind of partial observation of the arrangement, w, of points along the half line. Thus, G
consists of those sets E € ¥ whose outcome (either w € F or w ¢ E) will be determined by the kind
of restricted observation concerned. Each potential state of affairs observed can be thought of as
equivalent to a boolean-valued function whose arguments are the member sets £ € §. For example,

the act of observing the positions of the earliest (left-most) n points, for some fixed n, however long

1For some conditional probabilities, rates and expectations, this is a slight simplification since such a quantity
is not uniquely determined by P. It is close to unique in that any pair of alternative candidates for the conditional
quantity (having the same random variable or event on the LHS of the conditioning, *|”, sign} are identical “P-almost
everywhere”, i.e. identical with P-probability 1, [45, 27).

SWe do not always assume that random variables are of the continuous or discrete classes in later chapters.
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this may take, constitutes a particular act of partial observation of a realisation w. This process
of observation would be represented by a sub-sigma algebra G defined as the family precisely of
those “binary” questions about any realisation w, for which P is defined and whose answer, “yes” or
“no”, is logically entailed® by knowledge of the positions of the earliest n points of the process (i.e.
G is the family of those subsets £ € ¥ which represent such questions). Another common partial
observation of a realisation is “observation of the process up till time 7", which has associated sigma
algebra denoted G, above.” Similarly, observation solely of the value of one random variable, X
(i.e. a Z-measurable function X : @ — R), as the conditioning knowledge, can be expressed in the
same form by setting G equal to G(X) the sigma algebra generated by X, [27, p160].® This notion
generalises without difficulty to multivariate random variables, X : 2 — R*, and further to random
vectors of random dimension, X : Q@ — |J;_, R¥, as discussed in [16, Chapter 1]. Having introduced
this notation for conditional quantities, we follow common convention in dropping it in most cases
in what follows and either adopting looser descriptions of the “conditioning partial knowledge” on
the right hand side of the “}|” sign or omitting this altogether if it is felt to be clear from context.
Sometimes we have adopted the practice of shortening the length of equations on the page by moving
the conditioning “ |G” or “ | X” down to form a subscript of the “P” or “E” to which it applies (e.g.
see p58, including footnote 19). However, despite the looseness of the notation often used, see [27,
ppl60-2], [21, pp139-40], 82, pp117-24] for theory assuring the existence and cooperative behaviour
of such “conditional” quantities under very general assumptions.

Returning to the quantities defined above, the reliability function, R(t; 7|G), is defined as the

conditional probability P [C(‘T’, T+t =0 l Q], where CI denotes the random variable which counts
the number of events occurring in the interval, I, and the usual notation is employed for open, closed

and half open intervals. Here G denotes some kind of observation of the behaviour of the realisation
prior to (to the left of) time 7, such observation often taking the form of complete knowledge of
event times in [0,7] or perhaps knowledge only of some event counts as discussed in Chapter 3.

The p.d.f., f(t;7|G), of time-to-next-failure is the density function corresponding to this reliability

function,

%,
—;;R(t, Tlg)
1

Jim —=P[C(r,7 +t]=0AC(r +t,7 +t+ Af]>0 | G]

®It is conventional to assume that the rules used to interpret “logically entailed” here will result in ¢ having the
closure properties of a sigma algebra—Just as it is conventional to assume that any probability function P is defined
on a sigma algebra.

"Thus, informally P{E|C,] denotes the conditional probability of an event E as this probability is assessed by an
observer whose original beliefs held at time 7 = 0 about the process corresponded to the probability law P and who
is “now standing at time 7" having fully observed the times of intervening events.

8In this case it is usual to substitute “ |X)" for “|G)"

f(t;7|G)
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where this limit exists (i.e. where, as is usually the case for the software reliability growth mod-
els discussed here, the time-to-next-failure is, given G, continuously distributed). A commonly
treated special case of these quantities, reliability function R(t; 7|G) and time-to-next-failure density
f(t; T|G), is that in which the conditioning observation”? G represents observation up to the time
T = Z?;ll t; of the n-140 fatlure. Here the indices, 7 or n, when appended to the time-to-next-
failure variable ¢t denote that the time is measured from a failure time (or from start of execution
T = 0 in the case of ¢;) to the time of the following failure, i.e. the variable t,, is the nth inter-failure
time of the software. This case is often equivalently referred to in terms of one-step-ahead prediction
of the inter-failure time process (Iy,). See also §2.4.2, and Figure 2 on p34.

The term, conditional hazard rate, is used to denote the stochastic failure rate at time 7 of

software whose past failure behaviour has been fully observed,

2(7|G7) f(0;7|G:)

_ 1
A%LI%_'_ -A—t-P[C(T,T +At] >0 I gr] :

This quantity may also be referred to in what follows as the conditional program hazard rate or the
software failure rate, the implication being, unless otherwise stated, a rate at time 7 conditional on
complete observation of failure behaviour, G,, prior to 7. 2(7|G,) is, of course, itself a real, non-
negative valued, stochastic process (but not in the case of NHPP failure processes—see below). The
failure process mean function is simply the unconditional expected number of failures prior to time,
7,i.e. M(7) = E[C[0,7]] = [, C[0,7] dP. Note that M(7) is a deterministic function of 7: From the
definition of conditional expectation, for fixed 7, t and G, it follows that R(¢; 7|G) and f(¢; 7|G) are G-
measurable random variables'? , z2(7|G;) is a G,-measurable random variable, and M(7) is a constant.
In the NHPP case only, we may assume the same for the conditional failure rate function—In which
case, we speak of the process intensily function and use the symbol A : z(7|G,) = A(7)—See §2.7.
The mean (MTTF) E[t; 7|G]!! of the time-to-next-failure distribution, frequently used to express the
reliability of hardware components, may also be of interest in expressing software reliability. This

quantity can be expressed in terms of either the reliability function or the p.d.f. of the time to next

failure distribution,

Elt; ]G]

/0 " (t7]C) dt
/0 " R(t:7(Q) dt (1)

?In this case G will be the sigma algebra generated by the random vector (T3, T3,..., Th-1).
191f a random variable is G-measurable, the interpretation is that its realised value is determined by the knowledge
denoted by the sigma algebra, G.

11 Almost always G = G, being intended
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It should be born in mind, however, that this mean alone is insufficient for the determination of
failure probabilities for many software reliability models, since an exponential assumption for the
time-to-next-failure distribution may be very inaccurate. For example, if the time-to-next-failure
distribution is of the Pareto family, as is the case for some models, then the mean time to next failure
may be infinite even in cases where the reliability is very poor, (50]. In such cases the median time to
failure, denoted m(7|G), satisfying R(m(7|G); 7 | G) = 3 may be preferred as a measure of reliability
at time 7. This point about mean vs. median time to next failure exemplifies a more general one :
There is no single agreed numerical ‘reliability measure’ of a software product at a given time!? .
This is an important consideration in many situations in which the apparent comparative reliability
level achieved will depend on how that reliability is expressed [63].

Existing software reliability point-process models can be classified in various ways into categories
such as the exponential order statistic models, [74]. The exponential order statistic models are based
on the idea of a population of faults, in the software, of fixed or parametrically distributed population
size. This population size, N say, if assumed fixed, forms one component of the vector 8. If the
population size is assumed random, then the parameter vector of its assumed distribution family—
frequently for example the mean, A, of a Poisson distribution—replaces /N as the component of 6.
These exponential order statistic models then go on to assume that the individual software faults in
this population will each first cause a software failure after independently, exponentially distributed
cumulative execution times. We may avoid the unwanted complication of repeat manifestation of
a single fault by assuming either: (i) that each fault is immediately and correctly removed on first
manifestation (with no further fault being introduced in the process) so that subsequent occurrence
is impossible ; or (ii) that repeat occurrences of a single fault are correctly diagnosed as such prior
to fitting the exponential order statistic model, so that the times of occurrence after the first may
be removed!® from the data-set. The assumption of exponentiality, along with an assumption,

in the earliest models, of time-to-failure distributions identical over all faults, have subsequently

been relaxed to form new models, e.g. the Littlewood model [53]. In various of these models, the
distribution of individual fault manifestation rates over this fault population may be specified either
as a deterministic parametric sequence of rates, as a random sample from a single parametric fault-
rate distribution, or more generally as the points in a general stochastic fault-rate process. Some of
these methods of relaxing the earliest and most simplistic model assumptions which appear at first
sight to be distinct, actually turn out to be equivalent, [74], i.e. to result in identical parametric

families, {Pg : § € ©}, of point process probability functions. Briefly for example, two equivalent

12 And this remains the case even supposing we agree to focus on a single probability model of the failure process.
13with the entailed loss of statistical information
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methods of achieving the same'? effective extension of model assumptions are: (a) to relax the
exponentiality assumption above, and (b) to retain the exponentiality assumption but to replace
the assumption of identical manifestation time distributions for all faults in the population, by
the assumption that the individual fault rates form an independent, identically distributed random
sample from some fault-rate distribution. This second technique is taken one step further in [74],
by considering the sequence of fault rates themselves to arise as a parameterised stochastic point

process.

There are also models, see e.g. [40, 62], which do not represent the software explicitly in terms
of its fault population, but consider rather the overall software failure rate from the outset, directly
modelling the effect of maintenance actions, following each software failure, by means of a random
sequence of software failure rates which come into effect sequentially after each successive software
failure. In the case of these models, the parameter vector, @, of the point process of failures is simply
identical to the parameter vector of the random sequence of software failure rates. The time to
next failure, given the current software failure rate, is assumed to be conditionally exponentially
distributed. Also, point process models from the well known NHPP class have been used for soft-
ware failure process modelling. By means of such models, which can be completely specified simply
by stating a parameterised, non-decreasing mean function, M(7;6) on the half line, {0,00), it is
effectively assumed that there is no instantaneous effect on program failure rate following the event
of software failure (and any subsequent corrective maintenance action). In fact these models are

characterised by the assumption that the reliability function, R(t,7|G) is a deterministic quantity

depending on 7 and ¢ only, and not on G, so that R(t,7|G) = R(t,7), (provided of course that G
contains information only on the locations of points outside the interval (7,7 + t|). Thus for an
NHPP model the numbers and patterns of events occurring in disjoint intervals are independent
random variables. However, these models too, or at least those of them for which M(t) is bounded
by a constant, can be derived in another way such that this effective assumption is not immediately
apparent {78, pp268-70]. Note also the comments on p47 concerning the importance of the distinc-
tion between a parametric process model and a derived prediction system in interpreting the term

“independent” when applied to events or variables.

14In fact the second is more restrictive than the first since the class of distributions which can be produced as a
mixture of exponentials is actually a restricted class, (27, p416).
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2.3 Forecasting Systems

2.3.1 Observation and Statistical Inference

Statistical inference procedures have been applied to software reliability models in order to provide
solutions to the software reliability prediction problem. The most commonly applied procedures:
mazximum likelihood “plug-in” and Bayesian prediction are illustrated in (53, 16, 10, 1, 78]. These
procedures can be interpreted in terms of the formal model described on p9. Briefly, whatever kind
of observation is undertaken, it can be thought of abstractly as a function, Y : @ — Y (i.e. a random
variable in the usual case where Y is a numeric-valued function), which maps distinct points w onto
a. common point ¥ in the observation space Y whenever these points w are not distinguished from
each other by the particular kind of observation concerned. For example, if observation ceases at
time 7, and two realisations, wi,ws2 are identical in the region of the half line to the left of 7, then

we will have Y (w;) = Y(w;). For each 8, there is induced!® a probability function P, defined for
subsets of ) by P} [S] = Pe[Y ~1(S)].

2.3.2 Maximum Likelihood Inference

y
A likelihood function is then constructed as a density, L(8,y) = %}(y), with respect to some

1

standard dominating measure’® v, defined on the observation space Y. In all cases found in the

literature listed in the bibliography, and also throughout the body of this thesis itself, ¥ may be taken
to be based on either Lebesgue measure for a continuous observation space (which is appropriate
when the observation takes the form of a vector of inter-failure times), or in the case of an observation
which is a vector of counts (Chapter 3), a counting measure will do for v. In either case, and for
many other imaginable hybrid observations, the very general Radon-Nikodym Theorem (21, pp139-
46] guarantees the existence of the likelihood function, L. A detailed exposition of the procedure for
the former case is given in [16, Chapter 1]. Using the well known maximum likelihood technique,
the maximum likelihood estimate 8 may be chosen to maximise L, once having observed the value,

y, of Y, and then probabilities of the form P;|-|G] used for purposes of prediction based on the
observation Y. (Here, if used for predicting future events'’, G denotes a sigma algebra which at

15j.e. determined from the first probability function P4 by the particular form Y of the observation

165 dominating measure is a measure with respect to which all of the probability measures {P} : § € ©} are
absolutely continuous [21, pl39], or, in other words, a measure with respect to which the desired measure-ratios
(those suggested by the term density of Pﬂ’ with respect to v) may be taken (without the possibility of zero-divide).

I.e. we are requiring that ¥{S) > 0 for all subsets S C Y to which at least one of the {Pa’ : @ € ©} assigns a positive
probability PY[S] > 0. '

17The unconditional probabilities Py{-] may remain of interest, even after Y = y has been observed, for inference
purposes such as producing confidence intervals and hypothesis testing concerning the value of 6.
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least contains the sigma algebra G(Y') generated by the function, Y. When G = G(Y), the notation

“ly)” will frequently be used to mean the realised value of this predictor once the value Y = y has

been observed.)

When the data Y takes the form of complete observation of the software failure point process prior
to current time, 7, then the likelihood function obtained from any one of the parametric models can
often be quite a complicated function of the model parameter vector, 8. Hence, whether a maximum
likelihood or a Bayesian approach is used for the inference and prediction problem, computer assisted

numerical techniques are usually found to be necessary in order to construct predictions, see e.g.

[10].

2.3.3 Bayesian Inference

In the case of Bayesian, rather than maximum likelihood, statistical analysis and prediction, an

additional model component is constructed in the form of a prior distribution for the parameter 6,
regarded now as a random variable. Thus a probability measure Q, say, is assumed to represent

the initial chances of @ taking values from a suitable space ©. The net result of this reinement is
effectively equivalent to a direct assumption of a probability law P for the failure process. Here P

is given by the mixture distribution

PIE) = | Po[E] dQ 2)

i.e. we now have a single derived probability law P for the process rather than a parametric family.
In practice the analysis and computations involved in forming reliability predictions, which as before
are based on conditional probability distributions given full or partial observation of the part of the
failure process prior to time 7 (representing “now”), are frequently carried out by means of an
intermediate stage consisting of the derivation of a posterior probability distribution Qf:|y| for 6

given the data y. This relies on Bayes’ Rule in a form such as

h(0ly) = K(4)L(6,5) 52 6),

where h(:|y) is a density for the conditional probability measure A — Q[A]y] with respect to the
dominating measure v on the space ©. Alternatively, directly in terms of posterior probabilities,

there is the form

QlAly] = k(y) [A L(8,) dQ,
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for the posterior probability that 8 occupies any measurable subset A of ©. In these two forms of
Bayes’ Rule k is a normalizing factor independent of 6 chosen such that Q[©|y] = 1. Having deter-
mined this posterior distribution for the parameter ©, predictive probabilities based on the condi-
tional distribution P[-|y] can be calculated by mixing the corresponding 6-parameterised quantities

over the set © of possible & values so that, where P;{- |y] would be used in an ML plug-in based

forecasting system?!®

, we now have, under the Bayesian inference system, k(y) [ Ps[- |y] dQ[6]y]
instead. Bayesian further conditioned probabilities P[-|G] (i.e. those conditioned on further hypo-
thetical information, such as would be a predictive reliability function or hazard rate function) can
be obtained similarly, where here, as in the corresponding ML case, it must be required (for the
prediction to be sensible) that the conditioning knowledge represented by G is consistent with Y
having been observed: G(Y) C G. In the Bayesian inference case, these would replace the simple
ML plug-in conditional probabilities of the form P;,,{-|G]. For example, when the information G

represents the observation of Y, plus the further hypothetical conditioning event E, which may be

observed subsequently to have occurred, then in the Bayesian case having observed y, we would use

predictive conditional probabilities such as

Jo PolE[Y =y]dQ[6]y]

in place of the ML version Pj,,[A|E] = P, [A N E] / P, |E].

P[A|E,Y =y =

2.3.4 Computational Considerations

Computationally the maximum likelihood method of obtaining predictive distributions reduces to
a (sometimes constrained) optimisation of the likelihood function which may often be simplified
by parameter transformations of ¢, partial differentiation with respect to components of the (trans-
formed) parameter vector, and transformations of the likelihood function itself such as log likelihood.

Obtaining Bayesian based predictive probabilities and distributions involves integrations over the

parameter space, ©O.

2.3.5 How to Express Reliability

Predictive probabilities or densities of various random variables may be desired depending on what
form the reliability prediction is to take, i.e. what future events are required to be predicted. Typ-
ically these will include predictive versions of the failure process quantities introduced on p10. By
this we mean that these quantities will be defined as for the original parametric model but in terms

189 being a function of the observation v, through the maximization of L(@,y) as explained on p15



CHAPTER 2. PREVIOUS WORK 18

now of the distribution Pj, in the ML case, or P from equation (2), in the Bayesian case. The
appropriate one of these two replaces Py as the process probability law used in the definitions of
these quantities. There is a narrow definition of ‘reliability’ in terms of the ‘reliability function’,
i.e. as the probability, under specified conditions, that there will be no further failures during a
period 7 of further execution. In practice, the term reliability is often used rather more loosely.
Statistics such as mean and median may be used to attempt to summarize important characteristics
of predictive distributions, though care needs to be exercised [50] in the interpretation of these. E.g.
mean or median times to next failure are often used as measures of reliability. It is common to
speak loosely of system reliability using terms such as: ‘a 10 to the minus 5 system’; or ‘a system
with MTTF!? 107’. Here the units implied would typically be failures/hour and hours of execution
time?0. It is of course possible to give a precise meaning to these terms, so some care is required in
comparing reliabilities. Within a rigorous modelling framework, statements of comparison such as:
‘System A is more reliable than system B’; or ‘data set I would yield a higher reliability estimate
for this system than would data set II' would need to be made more precise by explaining exactly
which mathematical reliability measure they refer to. See §5.3.6 and the comparison of alternative
stopping rules contained in [64] for further discussion of some situations in which care is needed in

distinguishing alternative strict interpretations of the general qualitative concept of ‘reliability’.

2.3.6 How Far Ahead to Predict

Related to this question of what precise form of quantity—whether reliability function, median time
to next failure, hazard rate, etc—derived from predictive distributions is of interest to the user of a

forecasting system, another important issue is the question of how far ahead to predict. Predictive
versions of quantities such as R(t; 7|G;) where s < 7 may be of interest at to an “observer standing

at time s” for example.

2.4 Predictive Quality

2.4.1 The Trustworthiness of Software Reliability Predictions

There are a number of evident reasons for expecting the prediction of software failure behaviour to
be a non-trivial problem. These include the diversity of software. The use of the single generic term

“software” conceals the potentially infinite variety of the logical components of the solutions to a large

19 mean-time-to-next-failure
20or perhaps, in the discrete demand-count setup discussed in §2.1, failures/demand and demands, respectively
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number of vastly different practical problems, developed by differing organizations, using different
methods and tools, executing on a range of different physical computers, running under different
operating systems, and so on .... Many items from the entire family of all software components
differ from each other in both application area and also in the level of difficulty or scale of each
problem, and hence in the level of human organisation required to develop the software solution.
Also, the fact that software is abstract and (other than for trivial programs) its development involves
significant and problematic human-communication?! tasks means that the laws (if any) which govern
its behaviour cannot be expected necessarily to be as regular and stable as those which enable the
relatively accurate prediction of the failure behaviour of many physical systems. For these reasons it
is essential in the case of software reliability prediction not to blindly trust the predictions emanating
from any particular predictive technique when it is first applied to any new software component.
Instead, the best statistical techniques which are available should be incorporated in methods of
assessing the quality of the predictions produced by each prediction method when applied to each

software component.

2.4.2 Repeated Short-Term Prediction : Prequential Forecasting Systems

In this thesis, as in previous work {2, 58], we concentrate on the quality of short-term predictions of
software failure-vs.-time behaviour. The techniques used in Chapters 3 & 4 centre on the assessment
of the statistical distribution of the vector, {(u,), of residuals obtained by substituting an observed
quantity in the c.d.f. of its own recent predictive distribution. Following Dawid, {20], we can define a
Prequential Forecasting System (PFS) for a random process (X,), n = 1,2, ..., by means of functions
(FX(zn;z™"')). The function F' is to be interpreted as the one-step-ahead predictive c.d.f. of X,
as its first argument, having observed the realisation X™~1 = z™~! of the process so far®?. Clearly
the function z — FX(z;z™"!) must be a valid c.d.f. (monotonic non-decreasing, right-continuous,
with limits 0 and 1 respectively as £ — —o0 or +00) defined by the PFS for all possible values of

z™~! for each n. §3.2 provides further details. We focus on the (u,) residual sequence given in terms

of a process realisation by

U, = FX(zp;z"1).

This, together with the use of Prequential Likelihood, including log Prequential Likelthood Ratio
plots, is in accord with Dawid’s “Prequential Principle” of concentrating attention on the compar-

ison between prediction and later-observed observation of the predicted quantity, when applying a

21u«Instead of imagining that our main task is to instruct a computer what to do, let us concentrate rather on
explaining to human beings what we want a computer to do.” [46]

22Here, introducing the notation ¢™ ‘= (¢1,...,Cm) for vectors.
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recursive prediction method. Thus we have deliberately avoided being overly distracted by questions
of goodness of fit and parameter estimation error for the parametric model on which the forecasting
system may be based, concentrating rather on the assessment and improvement of the performance

of the forecasting system as a whole when applied to a particular sequence of observations {20, 2].

2.5 Recalibration

In the case of recursive prediction involving the kind of predict—observe—predict... cycle, discussed
in [20], it has been found possible (see {10, 59, 11, 6]) to dynamically modify the predictions in order
to attempt to correct certain kinds of systematic inaccuracy which may become apparent with the
accumulation of data on the comparison of prediction with subsequent observation. The basic idea
used has been to attempt to modify (recalibrate) the predictive distribution of as yet unobserved
quantities in a way which is aimed directly at the correction of certain observed kinds of consistent
anomaly in the statistical behaviour of the sample of (u,) values forming the so-far-observed portion
of the (u,) sequence mentioned in §2.4. Thus it is hoped that the statistical properties of the
new (u,) sequence following this modification®® will be closer to the theoretical ideal statistical
distribution of these generalised residuals and that this, in turn, ought to mean that the predictive
distributions themselves will have been improved in the process. Further details of this previous
work are provided prior to novel extensions of the methods in §3.2. We follow the terminology of
[10, 59, 11, 6] in distinguishing a recalibrated PFS from the raw PFS on which it is based. The term
raw can usually be thought of as referring to prediction without the use of recalibration. However, it
has been found to be demonstrably useful in some previous work to consider recalibrating twice, i.e.
adding a second (identical) recalibration step to a PF'S which already incorporates one. Therefore,
it is strictly more correct sometimes to interpret a raw PFS as one to which we could, and perhaps

later will, add a recalibration step (or further recalibration step).

2.6 Incorporating Further Data

We turn now to the possibility of incorporating additional information, other than the so-far-observed
part of our single point process of failures, in our predictor for the future part of that process.
Previous work on explaining and predicting software reliability behaviour in terms of various kinds
of other data is briefly surveyed here. Several diverse sources of other data have been considered but

we suggest adopting the general terminology of “explanatory variables” denoted {z,) for these in

23i e. the equivalent {un) sequence for the “recalibrated” forecasting system



CHAPTER 2. PREVIOUS WORK 21

an attempt to force these various examples of related work, to the extent that this may be possible,

into the general framework introduced in §2.7. The following is a selection from published work in

this area.

2.6.1 Correlation Between An Operating System’s Failure Rate and Other

Time-Varying Operating System Parameters

Iyer and Rossetti [35, 88] investigate reliability variations of a single installation of the VM/SP
operating system running in a genuine application environment on an IBM 3081 over a 14 month
period. The explanatory variables here are thus time varying, £ = z(7) for a sample consisting

1" 24 (

of one sole “individua the entire operating system software). All the explanatory variables

are internal measures of system activity logged automatically by the system itself. The data is
not listed. The analysis is crude in the sense that it treats each explanatory variable in isolation,
and does not attempt to model the combined effect of more than one explanatory variable (by,
for example, removing the effect of z; on the failure rate before investigating any zs-effect). This
is perhaps a wise initial approach to a single data set. Some details of the procedure have been
omitted. As far as the details are specified, it appears that the time axis is divided into successive
five minute time intervals. For each candidate explanatory variable, say x;, this set of time intervals
is then partitioned into seven subsets according to which of seven strata contains the mean value
of 1(7) over a closely preceding time interval of length one hour. Then the proportion of the 5
minute time intervals in each stratum which contain an operating system failure is calculated. The
correlation coefficient is used as a measure of strength of relationship between the vector of seven z;
values and the vector of proportions of the corresponding sets of 5 minute intervals which do contain
failure. The same is done independently for the other explanatory variables, z,. For each separate
explanatory variable, x4, the variation between the seven values of this proportion is typically up to
one order of magnitude. The results for one particular explanatory variable, OVERHEAD, appear
to be more statistically significant than those for the others. Also, this variable exhibits a greater
proportionate variation (about three orders of magnitude) between its different strata. However,
on closer inspection it transpires that the authors have used elapsed time, (i.e. calendar time or
“real” time) as their fundamental time metric with respect to which all time intervals and reliability
observations are defined. They mention that OVERHEAD is a good approximation to execution time
for the operating system software. The strong correlation obtained between the value of OVERHEAD

and the empirical failure probability now appears merely as confirmation that operating system

24This standard statistical term, synonymous with “experimental unit”, is explained in §2.7.2
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software failure rates are more stable if defined in terms of operating system software execution time
rather than in terms of calendar time. This causes one to speculate as to whether the high correlation
of empirical failure rate, vs. the calendar time metric, with some other explanatory variables (e.g.
PAGEIN and SIO) might also be largely explainable in terms of a statistical association between the
values of these variables and the current rate of accumulation of operating system execution time
with respect to calendar time.

An alternative analysis of this or similar data, were it available, would convert all inter-failure
times to operating system execution time, using as good an estimate of this as could be obtained from
the OVERHEAD values logged. Then it would be possible to experiment with fitting and checking
a PIM?%° model using time-varying explanatory variables z,(7), see {83, 15]. Such an analysis, if
it proved successful in the positive sense, would have the advantage of representing reliability as a
function of the combined influences of a number of explanatory variables. That is it would attempt
to separate the influence of z; when looking for an z,—effect on reliability, and might in theory even

be used to examine so called “interactions” between the effects of 7 and x5 on reliability.

2.6.2 PHM Regression of Inter-failure Times Onto Fault Characterisics

Wightman and Bendell (93] discuss the application of PHM?® to inter-failure times with faults
identified as “individuals”. Thus they choose t; rather than 7, in the notation which will be used
in Chapter 3, as response variable. The authors’ approach does not fit straightforwardly within the
normal PHM scheme of regressing lifetimes onto individuals’ characteristics since the inter-failure
time preceding a fault is not actually equal to the true time for which that fault has been “in
hazard” (i.e. subject to the risk of manifestation and removal). Also, they suggest using the number
of previously observed failures due to other faults as an explanatory variable, which is likewise an
unusual way of applying PHM in which the observed survival time of a fault compared to that
of other faults, which would normally be thought of as a response variable in such an analysis,
has become incorporated in the definition of the fault’s explanatory characteristics. This analysis

seems to be based on the idea of defining the sample to be “the first n faults which will occur”
rather than an identified set of n known faults, each having explanatory variable values which are
measurable in advance of the response variable, time of occurrence. One consequence of this is
that any explanatory variables describing characteristics of a fault—with the exception of those
such as the rank of the fault in order of occurrence or the times-to-occurrence of preceding faults,

which variables are defined partially in terms of response variables—cannot be known in advance

25gee §2.7.2, p26
2650e §2.7.2, p26
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and therefore cannot be fed into a predictor since (quite apart from the fact that it is not generally
known what faults are present in software) it is certainly very unlikely to be known which of those
present will give rise to the next software failure. So this analysis is different in kind from the other

examples of PHM discussed below in §2.7 (such as the medical examples): There is no predefined
population of individuals whose explanatory variable values can be stated in advance of observation

of the response variable values.

2.6.3 Software Reliability and Exercise Frequencies of Code Containing

Each Fault

Andrew [4] extends existing reliability models by including frequencies, obtained by code instrumen-
tation, at which a suitably defined unit of code is exercised. These models are compared to existing

models using simulated failure and exercise frequency data.

2.6.4 Software Reliability and Software Module Transistion Rates

Several Markov chain models have been proposed for the effects on software reliability of the move-
ment of the locus of code execution between different software sub-modules. For example, Littlewood
[51] obtains asymptotic expressions for parameters relating to reliability using a semi-Markov struc-
tural model for transfer of control between submodules of a software product. The data input
required for these predictions consists firstly of past failure information for modules, along with
some estimate of module interface failure rates. Secondly, control transition rates are required for
transitions of execution from one module to another. These would most probably be obtained by
code instrumentation. [73] describes a model for the affect on reliability of interactions and stress
effects from multiple, simultaneous users transiting sequentially between multiple, shared software

modules.

2.7 Two General Regression Models

2.7.1 Generality and Mathematical /Analytical Tractability

Here we focus on candidate probabilistic models for extending the sources of data input to stochastic
point process models, introducing two different regression models found in the statistical literature.
These are proposed as models for generating software reliability predictions incorporating additional

data which supplements the previously recorded failure vs. time behaviour for the specific software
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under study. Neither of these models was designed with this application in mind, nor even specifically
for engineering reliability analyses. Both are actually general purpose models, more accurately
described as classes of models since they are flexible as to the number of different parameters
employed: This is a matter for experimentation and choice in a given application—so called model
identification. These two families of models are very much related and will be distinguished here
by the names “Proportional Hazards Model” (PHM), and “Proportional Intensity Model” (PIM).
Concerning terminology, note that the term “Proportional Hazards Model” is widely used, although
occasionally with a wider meaning than that given below (see e.g. |66, Chapter 9]). The term
- “Proportional Intensity Model”, {49], is less widely used. Both of these model families are suited
to general regression analyses, taking advantage of linearity and other mathematically simplifying
assumptions appropriate to the exploration of multiple and often little understood relationships or
postulated relationahips.

It should be noted that in the case of PHM, the application to software reliability analysis is

not new, {93, 79], though in some ways, because of the fundamental stochastic-process nature of

software failure behaviour, the application of PIM to software reliability would be more natural and
less problematic from the point of view of parameter estimation and model fitting, provided that

sufficient suitable data had been collected.

2.7.2 Description of PHM and PIM Models

Before describing these models in detail, the elements common to both of them, which characterise
them as regression models and suggest the application to software reliability, amongst several other
applications, are identified as follows. Both models expect equivalent data from each member of a
sample of “individuals” drawn from some population. This data should take the form of values for
each of a finite set of attributes which all individuals have in common. (For example, in a medical
application, these individuals could be patients suffering from a particular complaint, [85].) Each
attribute is possessed by every individual in the population, but to a level or measure which may
vary from one individual to another on some numerical (or other) scale. (See [66] for a discussion of
various scales of measurement and classification, and [30] for a more developed discussion specifically
in the context of software.) One scalar or sometimes vector attribute is singled out and termed the
“response” variable or “dependent” variable for the purpose of applying the model. In applications
this variable tends to be one whose value (a) can be thought of as being caused, or at least influenced,
by the combination of values for the remaining attributes of the same individual, and (b) is desired to

be predicted for certain individuals based on observation or measurement of the remaining attribute
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values for the individual in question. (As usual, the discovery of a systematic relationship by fitting
such a model to data is not necessarily interpreted as confirmation of a specific causal hypothesis.)
In an application the response variable is typically not observable until some point later in time
than the time of observation of the other attributes, for this individual. The remaining attributes,
apart from the response variable, are collectively termed the “independent” variables, “covariates”
or “explanatory” variables. If there are more than one of these then the term “multiple regression” is
often used. (Returning to the medical example, explanatory variables for each patient might include
patient age at initial onset of symptoms, smoker/non-smoker, whether or not there is a known family
history of the complaint, income bracket, etc, as well as perhaps the result of a biochemical test
conducted on all patients, and/or aspects of the treatment regime such as the administration and
dosage of drugs. The response variable might be survival time, time until remission from the illness,
or one of several other possibilities.) A regression model is often, but not necessarily always, defined
in such a way as to specify either a complete probability distribution or at least the first two moments
of a distribution for the response variable of any given individual in terms of the covariate values
for that individual. This is the case for both PHM and PIM models. Of course, this information
is not uniquely specified for models of a parametric class until a single model from the class has
been identified by specifying exact values for all model parameters. In certain classes of regression
models called “linear regression”, or perhaps “generalised linear regression” models (see [66]), the
covariates enter into the distribution of the response variable only via a single weighted sum of the
covariate values. The weights in this sum (the vector 8 below) are constant over the individuals of
the population, or at least over disjoint sub-populations termed strata. The weights, 3, are termed
regression coefficients. The PHM and PIM models are of this kind. Such a model assumption is seen
to be less restrictive than it might at first appear, on remembering that the attributes incorporated
as explanatory variables in the formal statistical regression model can, if required, be produced from
transformations of one or more primary, directly measurable attributes. In linear regression models
the regression coefficients play the role of model parameters to be estimated from data. Note that in
general, a regression model may incorporate other parameters to be estimated besides the regression
coefficients.

In the type of application to software reliability discussed here, observed reliability data (a
vector of inter-failure times) are selected to play the role of response variable. The individuals
are then the executable software items, segments or components (perhaps down to the level of
individual faults in software) to which these failures may be attributed—Or rather, since it is well

understood that observed reliability is not actually a property of the software alone but depends
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also on the environment or execution profile under which the software is operated, the individuals
will in general be (software component, usage environment) pairs. In the most general application
of these statistical regression models to software reliability, it is envisaged that the covariates could
be any measurable or estimable attributes of either the software itself (including its originating
development process), or its execution environment, or some attribute of the dynamic interaction
between these two (excluding reliability which has already been nominated as response variable of
the model). This is certainly not to suggest that it would be a profitable exercise to attempt to fit
such models for software reliability using just any choice of attributes as covariates. Also, because of
the general purpose nature of these models, assurance that they have any useful application to the
software reliability prediction problem could only be obtained by demonstrating an improvement
in predictive quality on several real data sets. Methods of validating the models in a particular
application are discussed in §2.7.3.

To fill in the remaining details of the PHM and PIM model assumptions: In the case of the

PHM model, the response variable, 7, is a non-negative scalar. The model specifies a probability

distribution for 7, described in this case in terms of its hazard rate function,

1
— . —— < < >
h(r) = lim_ ATP[T <T<LT1+Ar|T>1],
by the equation
h(r) = % Pho(1) (3)

where z is a p x 1 vector of covariate values, 8 is a p x 1 vector of regression parameters and hg is a
hazard rate function known as the “baseline hazard rate”. Following the usual convention, ‘I”, the
upper-case 7 (distinguished from ‘T", the upper-case t), is used to denote a random variable. The
interpretation of the PHM model as described here is that no more than one event per individual
may be observed. See [Pijnenburg 1991] for an “Additive Hazards Model” analogue of PHM.

The PIM model makes use of a point process response variable, {r; : j = 1,2,...}, where
0 <7 <79 <....This process is assumed to be distributed as a non-homogeneous Poisson process

(NHPP)?7, [5], with process intensity function,

1 .
L] — < .
Jim ATP[‘T <T; <71+ AT, for some j]

. 1 .
a.l-f-n.lo -A—;_-P[T <T; <7+ A7|Tj-1 £7AT; 2 7], forevery j,

A(7)

given by
A1) = e® P (1) (4)

27see pl4
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Recall from p14 that the event {7 < T; < 7+ Ar, for some j} here is independent of all earlier or
subsequent events.

When fitting either of these models to a sample of n individuals {A;}, indexed by i, the baseline
function, hg or Ay, is the same for all individuals, as are the regression parameters, 3, of course. Every
other term will be indexed by 1, i.e. : response variables, 7; for PHM and {7y ; : 7 =1,2,...} for PIM;
covariate vector z; ; and hazard rate hi(7) = e%#ho(7) for PHM; process intensity, \;(7) = e=:8 (1)
for PIM. (Under certain circumstances, such as model checking procedures, the population may be
divided into strata between which either the baseline function or possibly the regression parameters
are allowed to vary. See p31.)

Fitting procedures which allow the baseline function to be completely unrestricted exist for both
model families. Indeed one of the advantages of these models is the degree of separation which can be
achieved between the estimation of the regression parameters, 3, and the estimation of the baseline
hazard rate or process intensity in this unrestricted-baseline case (the so called semi-parametric

version of the model). Alternatively, a best fit for the baseline within some parametric family can

be obtained. An obvious initial selection of such parametric families for the baseline of the PIM
models is provided by those parametric NHPP models which have previously been applied as software
reliability models. For example the Weibull, lognormal, negative exponential, and Pareto intensity
models amongst others. (See e.g. {74, 78, 48].)

At this point, it is worth mentioning a possible confusion with regard to the naming of PIM and
PHM models in terms of the parametric family of their baselines : Suppose a model of time-to-first-
manifestation of each member of the population of faults initially present in an item of software
employs hazard rate function hy. Then the associated NHPP model formed as in [74] (by mixing
over a Poisson(u) distributed fault population size) has intensity function ufy where fy is the pdf,
not the hazard rate function, of the distribution indicated by ho, i.e. fo(7) = ho(r)e™ Jo ho(v)du  For
example, if the name “Weibull” is given to a model based on time-to-first-manifestation distribution
for each fault having hazard rate of the form ho(7) = abr®"!, then there is an NHPP model,
associated in the above sense, which has intensity function A() = pabr®='e=°"" and which could
therefore reasonably be called the NHPP version of “the Weibull model”. Potential terminological
confusion arises with the completely different but perfectly legitimate and interesting NHPP model
based on the “Weibull intensity” function, A(1) = abr?~1.

The PIM version of the Weibull model having intensity A\i(7) = e*#abr®=! is worthy of particular

attention for another reason. It lies at the intersection of the PIM and AF'T classes of explanatory-

variables-NHPP models. Here, by the AFT class is meant the “Accelerated Failure Time” class



CHAPTER 2. PREVIOUS WORK 28

of NHPP regression models for which the explanatory variables have the effect of accelerating or

decelerating the process of failure occurrence and reliability evolution against time,
Mi() = €5 2o (€% 1) (5)

Models of the AFT class are in general (i.e. for cases other than the Weibull intensity) less tractable
for statistical inference than PIM models. There is a corresponding class of AFT survival time
models [38] which bears the same relationship to the PHM class as the above AFT NHPP class
bears to the PIM class.

The following remarks about flexibility within the PIM model assumptions apply equally to the
PHM model. The proportionality assumption

A(T) = g(z,8)Ao(7)

is fundamental to the PIM models. However the form of the scaling factor, g(z,3) = e*? =

e,

e=1 e*+P«  does allow some flexibility through transformation of the explanatory variables. Indi-

vidual explanatory variables can be transformed to give for example a power law 7+ in place of %P
by a logarithmic transformation. Further, the assumption of independence for the intensity-scaling

effects of the different explanatory variables, g(z,8) = [I., 9s(zs, Bs), can be circumvented while

remaining within the PIM model structure by introducing artificial new explanatory variables rep-
resenting more complex explanatory variable “interactions” such as for example, in the case p = 2,
g(z, B) = eX1P1e72B20712812 where we may define the third explanatory variable as a bivariate func-
tion of the first two, for example x5 = x37,. Model extensions of this kind are discussed more
systematically in the context of generalised linear models, [66]. Such a model extension may be
suggested by inspection of suitably defined “residuals” (see the final paragraphs of §2.7.3) which
result from fitting an initial model which does not represent interactions.

Models with unrestricted baseline function are termed “semi-parametric” to distinguish them
from “fully parametric” versions in which the baseline is restricted to some parametric family. One,
not too serious, disadvantage of fully parametric versions is that some of the separation between
inference concerning the baseline and inference concerning the regression parameters is lost by the
parametric restriction on the form of the baseline, [49].

A refinement which can be applied to either model class without seriously impeding the model-
fitting and model-checking techniques is the use of time dependent covariates, £ = z(7), in equa-
tion (1) or (2), (38, Chapter 5|, {15, 83]. Clearly there may be potential in this case for detect-

ing a relationship between explanatory variables and response variable using a smaller sample of
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individuals—observations on the time-variability of z for a single individual supplementing the in-
formation obtained from the variability of z between individuals of a sample.

The pros and cons of these two model families for software reliability modelling and prediction

are discussed later, in Chapter 5.2.

2.7.3 PHM and PIM Model Fitting and Validation

The PHM and PIM model classes are designed for ease of estimation and model checking. The
details of the estimation procedures vary depending on factors such as whether a PHM or PIM
model is used, whether the family fitted is semi-parametric (arbitrary baseline) or fully parametric
(parametric baseline), with what parametric form, whether all individuals are uncensored in-hazard
for the same length of time. Some key techniques from the extensively developed statistical fitting
and validation methods for PHM and PIM models are briefly summarised in this section.

Before beginning this summary we give a few comments intended to clarify the notation. Where
possible both PIM and PHM model methods are indicated by a single equation. If the sample of m
individuals under study are indexed by ¢, ¢t =1...m, we use 7, § = 1...n;, to index the sequence of
events (failures in our software reliability context) observed in connection with individual i. Thus
the set of all observed event times for the entire sample of individuals is denoted by {7;;} by which
we mean {7;; : j=1,...,n4 ¢t =1,...,m}. Under the PHM model assumptions, it is clear that, for
each individual, n; = 0 or 1 so that in the PHM case all times 7;; are in fact 1;;. Thus, the second
subscript can be dropped to give {7;} when we refer to the PHM model only. When the expression
{7ij}, or {7:} for the PHM-only case, appears as a conditioning event on the right hand side of a |,
then the conditioning event is to be interpreted below only as a full sequence of observed event times,
i.e. without assignments of these event times to individuals. So in this specific context, a pooled
list of times for all individuals is conceived as given without knowledge of the values of either of
the associated suffices ij. (We emphasise that there is no suggestion that such ignorance concerning
the allocation of event times to individuals reflects the reality of the information available to the

observer: it is purely a hypothetical device for explaining the conditioning used in the formulation

and description of the Cox Partial Likelihood of equation (6).) We continue to use s, s = 1,...,p

3

to index the scalar components of both the regression parameter vector 8 and the m explanatory

variables vectors z;, 1 = 1,...,m. Double summations and products Hi. ; and Zi'j mean [];-, H?;l

and Y _, Z;‘;l, respectively, where, following the usual convention, H?=1 + =1 and E?=1 - = (.
For each time 7, the “risk set” R(7) is the subset of {1,...,m} containing the indices i of precisely

those individuals which are in hazard and uncensored at time 7, so that, as far as the observer is
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concerned, there remains a risk at time 7 — 47 that an observed event may befall individual 7 at time
T, for arbitrarily small §7.%8

It turns out [12, 49] that, roughly speaking, the order and comparative numbers in which different
individuals experience events determines E, without regard to more detailed information about the
actual times of occurrence. (Although the times matter more if z = z(7).) Given an estimate, 3, of
B, a good and perhaps optimal [49] estimate of the baseline function, Xo or hg can subsequently be

obtained. B is frequently estimated using the Cox Partial Likelihood, [13],

%P
LB) =] =———= (6)

i g zV_:lss'R(-r,u,)emp8
This product contains one factor for each observed event. Each such factor may be interpreted
as the conditional probability that it is individual i who experiences an event (individual i's 7P
uncensored event) at time 7;;, given that at times 7;; — &7, sufficiently closely preceding 7;;, the
individuals | € R(7,;) are precisely those which are “in hazard” (and uncensored), and given that
an unknown one of these individuals is {o experience an event at time 7;;. Given the event times,
and given the risk sets at each event time, L(3) is the probability of the ranks, i.e. the sequence of
tags rather than times, where each event is thought of as tagged with the name of the individual to
which it belongs. Thus, for explanatory variables which are constant in time, L(3) does not depend
on the event times, once the ranks are known. The score vector or gradient vector of the log Cox
Partial Likelihood, and the matrix of second derivatives can be calculated in the usual way and used
to obtain an estimate, E, iteratively by the Newton-Raphson method. Asymptotic theory for this
estimate of the regression parameter is discussed in [12, 13, 15], and can be used for model checking.

The score vector has a particularly simple form

dlog L
u(p) =
x|
= Z Ti = Z '—"'——e-l—rg‘n ‘
t,J lER(7i4) EkER(T;j) vk

the difference between ) .z; and its “conditional mean”. So 3 actually satisfies the equation
U (E) =0, or Zi’j Ty = E[ZM T | {7ij} : B] , with a suitable interpretation of the conditioning.

Given such an estimate, 8, a non-parametric estimate of the cumulative baseline

Ao(7) = /of Ao s

28 There is a minor issue here concerning the assumptions about the effect of the exact coincidence of an event with
the beginning or end of a period of censoring. However, it is a simply matter to sensibly defined the risk set in such
circumstances.
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is given by

Ao(my=> L (7)

T<T D leR(ni;) e®if
[49]. (This works for both PIM and PHM.)

It has been remarked elsewhere [2] that, if a software reliability model is primarily intended for
use in prediction of software failure behaviour vs. time, then empirical measures of the accuracy of
the resulting predictions are the “goodness of fit” measures which are of greatest practical interest
for that model. Needless to say, the same predictive quality comparison techniques [2], based on
u-plots, y-plots and prequential likelihood, as have been used for evaluating predictive quality of
software reliability models not containing explanatory variables are available both for assessing the
extent of any improvement resulting from the incorporation of explanatory variables and also for
making comparisons between explanatory variables models. However, some of the central ideas from
the extensive separate literature on model identification and validation?® techniques specific to the

PIM and PHM regression models are briefly surveyed here.

To check for the influence of a specific scalar covariate, note that the models do include the
case that one (or more) of the covariates, x,, say, may be extraneous in the sense that its value
has no effect on the distribution of the observations. This possibility is accounted for within the
framework of the model by setting the corresponding regression parameter, G,, to zero. Hence after
obtaining an initial fit, it is obviously of interest for each scalar covariate, s = 1,...,p, to carry out
a formal statistical test of the hypothesis, Hy : 85 = 0 which will detect whether each fitted scalar
regression parameter is significantly different from zero. This can be done using likelihood ratio test
statistics, making use of asymptotic results where appropriate, [13, 15]. Subject to the conditions
of the asymptotic theory, approximate x? tests can be used.

A proportionality check for the hazard or intensity functions can be carried out graphically by
plotting for each of two or more strata formed by grouping individuals according to bands of covariate

values:-

o log empirical cumulative hazard function®? in the case of PHM; and

¢ log empirical cumulative event-count, in the case of PIM,

against time. The proportionality assumption of the models predicts an approximately constant

29 “Validation” as used here refers to investigating the extent to which the various structural model assumptions
appear to be supported by the observed data, i.e. this is a slightly different matter from the single issue of the accuracy
of the reliability predictions emanating from the model and its associated inference procedure.

S0Empirical cumulative hazard is obtained for each stratum from a simplified version of equation (7) in which each
term in the sum is simply the reciprocal of the number of individuals in the risk set for that stratum at one of its
event times i.e. x; = 0 for all 1.
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vertical separation, particularly towards the right hand end where the variance is smaller. Alter-

natively Schoenfield [90] showed that a plot for each fixed s, 1 < s < p, of the scalar residuals,

Tis = Tig — E [x,-,, {r:} : 5] against 7; for the PHM could be used to check the proportional hazards
assumption. Note that S7% 7, = 0 from the equation U(B) = 0. Various errors of the model
assumptions can be represented by imagining the PHM model structure to hold good but with some
components of the regression parameter vector to be in truth time dependent. Now we can regard
Schoenfield’s plot as some points on the graph of a function 7,(7) defined at 7 € {7;} by 7,(7;) = 7y,.
If a constant 3 is fitted as above whilst the true 8 of equation (3) has some scalar component S,
which is actually a functions of time, 8, = ,(7), then Schoenfield shows that this is likely to be
reflected in positive values of 7,(7) for those regions in 7 where (,(7) is larger and negative values
of 75(7) for those regions where B,(7) is smaller. (See also [81].)

Kay [39] produces residuals e; = f;* hi(7) dt by substituting event times in their own predictive

cumulative hazard function in order to verify that the resulting {e;} themselves show an empirical

cumulative hazard function3! which is consistent with a sample of unit exponential random variables,

i.e. is approximately linear with unit slope and intercept O.

2.8 Failure-Count Data

It is frequently found in practice that complete inter-failure time data such as discussed above has
not been logged. It is then necessary to devise predictors of software failure behaviour which can
make do with only the coarser data that is available. Work exists in {1, 67] on maximum likelihood
plug-in predictors for software failures in the form of failure counts, i.e. counts of failures occurring
during consecutive execution time intervals. The approach has been to attempt to carry over,
essentially unchanged, the methods used previously for data in the form of execution time between
individual software failures, using identical underlying models for the point process of failures vs.
usage time metric. Thus, although the point process model of §2.2 remains the same, the observation
function Y :  — Y discussed in §2.3, which equally influences the form of the likelihood function,
is now a different and “less discriminating”3? one. In fact, when inter-failure times are replaced by
failure counts as the observation, then the observation function Y is sufficiently different that a new

33

observation space J and measure”” v are required. Further investigation of the software reliability

prediction problem in these circumstances is the major motivation for the work below in Chapter

31See footnote 30 on p3l.

32Y fails to distinguish between wji and w2 which give the same failure counts in each of a sequence of intervals
(Y (w1) = Y(w2)) even though the times of failures within those intervals may differ from w; to ws

331n the measure theoretic terminology of §2.3, Lebesgue measure no longer qualifies as a dominating measure v for
the measure Pg’ which now concentrates probability mass at discrete points.
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3. However, it is believed that the methods developed in Chapter 3 actually have wider application

than this.




Chapter 3

Extension to the Case of Discrete

Predictions

The purpose of this chapter is to address the modification of the theory and methods described in
§82.2-2.5 so that they may be applied in the case where the data available takes the form described
in §2.8 of failure-counts during each of a series of elapsed intervals of software execution time. The

main novel content concerns the extension of the methods in §§2.4 and 2.5 on U-plots used for

predictive quality assessment and recalibration of predictors.

3.1 Software Failure-Count Data

3.1.1 Different Forms of Failure-vs.-Time Data

The work contained in this chapter is primarily motivated by the need to estimate and predict
the reliability of software from failure-count observations, when inter-fatlure time observations are

not available. These two forms of software failure data are discussed in [1] and {67]. Figure 2

(a)

A ta ty ta ts tg tr ts ty time

(b)
my=3 mseg=2 my=2 time

Figure 2: Relationship between complete inter-failure time data and the coarser failure-count data

34
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illustrates the distinction between them. In (a), records of the time elapsed between individual
software failures are available to the observer whereas in (b) less complete information is provided in
the form of counts of the number of failures occurring during each of a sequence of contiguous time
intervals. Thus the word discrete in the title of this chapter refers to the observation of quantities
which can take discrete values (failure-counts). We are not discussing the discretization of the time

metric here. Our underlying stochastic model remains that of a point process in continuous time.
The first of the situations illustrated in Figure 2 has been more extensively studied than the second
although results based on maximum likelihocod are presented in [1] for several models applied to

failure-count data.

3.1.2 Inheriting an Inter-Failure Time Model, Unmodified for Use with

Faillure-Count Data

To model such a failure-count process, it is clearly in principle possible to use identical parametric
models to those used to model the complete point process of inter-failure times. Given any parametric
family, {Pg : @ € ©}, of probability functions for the full point process of inter-failure times, and
any deterministic division of the time axis into contiguous intervals, such as that illustrated in
Figure 2(b), there is a unique induced parametric family of probability functions for the resulting
process (M, ) of failure counts. In fact this is a special case of the family {P};6 € ©} defined in
§2.3 when Y is taken to be the function Y : w — (m,). Any partial observation Z : (m,) + z of the
failure-count process then defines an observation function Y : w +— z by composition, Y1 = Z oY,
and hence a “discrete likelihood function” L(8, z) = .‘?l;_gl corresponding to any existing parametric
model {Pg : 8 € ©} for the complete point process of failures. Here, v is some suitable dominating
measure! on the space ), the image space of the observation function Z : Y — ). This likelihood

function can be used to estimate and “plug in” the same parameter vector, &, as before, but now

using only the coarser data (so that a different estimate  is obtained). However, we note that:-

e The two likelihood functions for the same model parameters, using the continuous and the
discrete-data respectively, usually differ in functional form, (one being obtained from a param-
eterised family of densities of a continuous random quantity and the other from a parameterised
family of discrete probability functions). Therefore there is no guarantee that the analytical
and computational problems involved in the remaining stages in the derivation of a predic-

tor, subsequent to the formulation of the likelihood, will bear much resemblance between the

1A “counting measure” defined to assign a value 1 to each discrete point in Y; will make z — L(8, z) a discrete
probability function.
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inter-failure time and the failure-count cases.

e It follows that, if a workable prediction algorithm is sought, then it may be preferable not to
retain identical probabilistic assumptions for the underlying parametric failure point-process
(Q,Z,{Pg : 8 € ©}) in taking the step from continuous to discrete data. Ease of analysis? is
often one of the factors considered in the formulation of a point process model by its original
developers. If this is lost in moving from the continuous to the discrete data case, there
may be a case for abandoning or modifying the probabilistic model when faced with discrete
data. Some modelers have taken this view and modified the underlying probabilistic model
in some such way without comment. For example, in the presentation of a discrete-data
version of the likelihood for the JM model given in {1}, the assumptions about the behaviour
of the conditional hazard rate (2(7|G,) on p12) locally within each measurement interval have
been modified, simplifying subsequent analysis while approximately preserving (provided the
observation intervals are short) the global relationship between failure-rate and cumulative-

failures-observed which characterises the JM model.

e In particular, in passing from the continuous to the discrete-data case, two important questions
about the tractability of the likelihood function associated with any proposed modification to

the probabilistic assumptions are:-

(a) To what extent is it possible analytically to reduce the dimension of the parameter space
before carrying out a numerical search for the local maxima? (This reduction of dimension
being achieved, where possible, by parameter transformation and/or partial differentia-

tion.)

(b) Can it be demonstrated analytically that the global maximum (rather than a local max-

imum) of the likelihood function will always be obtained?

o Aside from this issue of model tractability, there may actually be a basis in the reality modelled
for some modification of the probabilistic model of the underlying failure point-process in the
case of failure-count observations. This is because there will often in practice be a relationship
between the reporting of software failures and the execution of corrective software maintenance
actions which are likely to affect subsequent failure behaviour. For example, it may be realistic
to assume that, in the failure-count observation case, attempts to correct any fault occurring
during one of the observation intervals illustrated in Figure 2(b) are not made instantaneously

following fault occurrence, as many common software failure point-process models assume,

2primarily ease of production of a prediction algorithm from a model, in our case
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but rather are delayed until the end-time of that interval. Such considerations may perhaps
provide further justification—i.e. aside from the mere need for mathematical tractability—for
some departure from the exact point-process assumptions used for analysis of inter-failure time

data.

3.1.3 Example : The Jelinski-Moranda Model

To illustrate some of the above general points about the transition from inter-failure time to failure
count data sequences we briefly, on the next four pages, discuss the case of the JM (Jelinski-Moranda)
model [36, 37]. This model is one of the earliest and most simplistic applied to software reliability
growth modelling. It is of the exponential order statistic class described in §2.2 on pl13. The size of
the fault population is constant, forming the first model parameter N. The faults are assumed to
cause software failure at independently exponentially distributed times 7 after the start of program

execution and then to be immediately and perfectly removed. The rate parameter ¢ of these IV

exponential random variables forms the second model parameter, so 8 = (N, ¢).

Inter-Failure Time Data

In the case of complete observation of all failure times between 7 = 0 and 7 = [, where | is a constant
observation interval duration, we can represent the observation y as the number, n, and the times,
0<11<T2< ... <1y <I, of failures observed. So this observation y = (n,7,...,7,) lies in a space Y
as described in {16]. The inter-failure times (¢;) shown in Figure 2 are the differences t; = 7y — 7.

The likelihood function is obtained as the parameterised probability density

L(Q,’y) = (ﬁ(N -1+ 1)) (ﬁ ¢e“¢1'i) e~ (N-n)¢l
=1 i=1
= (ﬁ(N -1 4 1)) Qsﬂe-[EI‘:.; Ti+(N—n)I]¢
i=1

iy,

evaluated at the observation y. The ML parameter estimate <N , ¢:> is obtained by maximizing L,

which is most easily performed by noting that

logL=—lN¢+Zlog(N—i+1)+nlog¢— [Zn-nl}q& (8)
1=1

t=1
For each fixed N 2> n, this function has a unique maximum at ¢ = h(N), say, where

n

h(N) = m (9)
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so that by substituting this value in (8) the problem is reduced to that of maximizing the univariate

function of N

n n
log L = ZIOg(N —t+1) —nlog (Z Ti + (N - n)l) +nlogn —n (10)
i=1 t=1
If we now define ( = 7 3 .-, 7i and substitute z = -:-l-h(N ) = 7 7z in (10), the problem becomes

one of maximising ¢(z) for z € (0,(~!] where

Zlog( _H-l) + n(logn — logl - 1)

'.l—"l

{(x)

|

Zlog(l +(n-¢—-1+1)x) +n(logn - logl ~ 1)

But £ is a sum of logarithms of positive linear functions of £ and hence is a sum of concave functions
and is thus itself concave. It follows that the ML solution is given by
0, if £/(0) < 0;
£=1{ ¢, ¢l >0, (1)
one of the two values adjacent to the unique solution of £/(z) = 0, otherwise.

Dealing with the three cases here in turn:-

z = 0 corresponds to the limit N — co and is an HPP model with rate % obtained as limy_,oo NA(N)

in (9);

z = (=1 is the other end point of the region of feasible = values and corresponds to N =n, ie. all

faults have been observed;

£'(z) = 0 Because £ is concave?, it follows that there must be exactly one such stationary point if
the maximum is not at either end point. Then the best z corresponding to integer N must be

the closest such z on one side or the other of the stationary point.

Failure-Count Data

Moving to the failure count case, assume the interval [0,l] is partitioned into k failure-count ob-
servation intervals by 0 = {g < [} < ... < [y = | which are treated as deterministic. To simplify
what follows introduce a notation d; = {; — [;_; for observation interval length. If the observation
consists of failure counts ¥, = (m;,...,mi)? for these intervals we use the notation ¢; = E;=1 m;

for cumulative failures observed. Thus ¢g = 0, and ¢ = n, retaining the notation n for the total

3In fact &'(z) is strictly decreasing.
4The number of scalar observations is no longer random being determined in advance by the number k of failure
count intervals, so the space Y of p35 is Nk,
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number of failures observed in time [ consistently with the previous case (equation (8)). If the same
point process model is assumed, then the general method of dealing with failure-count observations
mentioned above leads to a multinomial likelihood function with N for the number of trials and k+1
possible outcomes for each trial. These k +1 outcomes have probabilities 1 ~e~H¢, e~heé ~e=l2¢

e~lx-1¢ _ o-ld y e=i¢ respectively. Thus, now

N k _
LB,y) = ——————————— e (N=-n)TT (g~li-16 _ g=hLe)™
Gu) = 5, md! 1_____[1 ( )
- k
_— .(_[l.;=_'.1_kN_:z;l-—1-)-e(-zN+z?=l(l—h_l)mi)¢ H (1 _ e_d‘¢)m,

In changing to failure-count observations for this model we have finished up with a different and
in this case less tractable likelihood function. This is not surprising since Jelinski and Moranda
published their model together with a suggested inference procedure for the inter-failure time case,
and it could easily be that the publication of this precise model was in part due to their demonstration

of a workable inference procedure. Taking the logarithm, as for the inter-failure-time case, the

following form is obtained.

logL=-IN¢+ f(N)+g(¢) - K

where f(N) = .., log(N - i+ 1), g(¢) = Eleiqé + z:;lmi log (1 — e~%?#), (the identity
Sor (= li)m; = S ¥ . dic; has been used here), and K = Z:-;l 2 ;=1 logj. We can obtain

_ _9(9)
56 =0 for N-= )

and, interpolating between integer values of N,

0 log(L) 0 for

_J'(N)
ON ¢ =

!

but it is clear that this analysis, though feasible, is beginning to get quite involved at this point, due

to the awkward form of the ¢-term in comparison to the previous case.

A Modification of the Underlying Model for the Discrete-Data Case: The above illustrates
the differences and frequently, so it has been found, increased difficulty of an analysis based on the
likelihood function arising from the failure count case if we stick strictly to the idea of shifting
to a failure-count observation function whilst retaining ezactly the same underlying point process
models as have been developed for reliability modelling centering around a full inter-failure time

data sequence. It is observed that in [1] the point process model has been tacitly changed so that,

in his discussion of the modelling of failure counts based on what he refers to as the JM model, the

probabilistic model assumed by Abdel Ghaly is actually subtly different from that used in previous



CHAPTER 3. EXTENSION TO THE CASE OF DISCRETE PREDICTIONS 40

analyses of inter-failure time data. In fact Abdel Ghaly’s model uses probabilistic assumptions which
actually depend on the failure count intervals (i.e. the {l;)) which are used. His implied point-process
model (i.e. that implied by his statement of his version of the likelihood function for failure-count
observations) can most succinctly be described by specifying that the conditional program failure
rate function, z(7]|G,) described in §2.2, takes the same random value® when expressed in terms of
the past observations at 7 = [; as it would have under the assumptions of the true JM model, but,
unlike the original JM model, the rate now remains constant throughout the failure count interval
(I;,l;+1) irrespective of failures occurring during that interval, i.e. we have z(7{G;) = 2(l;|G;;) for
l;, < 7 < l;11. Thus the point process is, conditionally given failure times prior to [;, a Poisson
process throughout the period of the interval (I;,l;+1). This adjustment of model assumptions is
faithful to the fundamental conception of the JM model provided that the failure count intervals are
many and short®, and it results in a likelihood function for a failure count observation which can be

expressed as a product of Poisson probabilities

|
.::a_

L(B‘l yl)

mi!

[e-%——w-q") (dip(N ~ Ci—l))m—i]

1
P
—
&
315
S—
©-
o,

k
(H(N ~ Ci-l)mi) 6('1N+Ef=1 dici~1)¢d

1=1
and which consequently turns out to be considerably more tractable mathematically. It leads to log

likelihood
k ke
logL = -IN¢ + Zm,- log(N —¢i-1) + nlog¢ + Zdici_lcﬁ + K (12)

t=1 i=1

1=1

where K = 37 (m; logd; — 352, log j). It turns out that with this form of the likelihood we
have returned to an inference problem with, for each fixed N > n, a unique maximum of log L given

again by an explicit closed form expression ¢ = h{/N) where now

-
IN - Zf=l diC"_l

The remaining analysis is very similar to the inter-failure time data case. (13) can be substituted

A(N) (13)

for ¢ in the log likelihood formula (12) to give

k k
log L = Zm,; log(N — ¢;-1) ~ nlog (IN — Zdic,-_1) +nlogn-n+ K (14)

s=1] t=1]

5This value is z(l;1G1, ) = (N = ¢;)¢.

5In fact, as mentioned under one of the “bullet points” on p36, it could be interpreted as a deliberate representation
of delayed failure reporting and fault correction, which introduces the possibility of multiple occurrence of a single
fault during a single failure-count interval.
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and the problem is again reduced to the maximisation of a scalar function of N. Putting ¢ =

T ZLI d;c;—1 and substituting z = ﬁh(N ) = 'N_}-"E in (14) gives the function

k
E(_’I;) — Zmi log(l -+ (C - Ci..]_).fr) + n(logn - logl - 1) + K
=1

to be maximised from z € (0, ;—f_—c-] It can be seen, as for the inter-failure time case, that this
function is concave on this interval and therefore always has a maximum point which can easily
be determined. The cases in which the maximum is at the end points of z € (0, ;;%E] are easily

identified, by considering the sign of £’(z). Such considerations lead to the conclusion that the ML

11

fit is an HPP with rate 7 when ¢ < %ELI miC,—1, Or, in the opposite extreme case, the ML

k m; 1
ﬁ T
=1 neers S ot In other

olution is the “completed debugging” case, in which N = n, when %5
<iases N can be found numerically as an integer adjacent to the value corresponding to the unique

zero of £/(z) in the interval (0, -,;1—6) Equation (13) gives ¢ in terms of N.

3.1.4 Failure-Count Data, Reliability Prediction, & Prequential Forcast-

ing Systems

We now leave the illustrative JM example and return to the general case of failure-count data,
concentrating more specifically on the task of reliability prediction (see §2.3). A problem which
is encountered in the attempt to emulate the approach used for inter-failure time observations
concerns the difference, in the failure-count case, of the relationship between that which is observed
(i.e. the terms m, in the sequence of observations) and the type of predictions which are desired
to be produced from these observations. Many commonly accepted methods of expressing current
reliability, (reliability function, mean-time-to-failure, percentiles of time-to-failure distribution, and
conditional failure rate, see pl0) are defined in terms of the predictive distribution of the time to
next failure, given past observations. Thus, in the inter-failure time case, all that is required for the
estimation of a conventional mathematical representation of current reliability is a one-step-ahead
predictive distribution, FE (th;t™~1),” of the observed process (T},) itself, since it is the observed
quantity 7}, whose predictive distribution contains many of the software reliability measures in which
there is interest. For this reason tracking the reliability of a software product from inter-failure time
observations can be thought of in terms of a repeated cycle of the form: predict 7,,, observe T,, = t,,

predict 75,41, observe Ty,4+1 = tn41... . Expression of the problem in this particular form allows

7The sometimes suppressed t™~1-term to the right of the semicolon is made explicit in the notation of this thesis to
emphasise that the predictive distribution is thought of as a random entity, being a function of all the previous terms
in the process. t*~1 denotes conditioning information (G of P10) in the form of observation of the process realisation

w for exactly as long as it takes for the first n ~ 1 failures to occur. Regarding the superscript n — 1 notation, see
footnote 22 on pl9.
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the construction of a (U, ) sequence and hence of prequential likelihood, u-plots, and y-plots, giving
measures of predictive accuracy as well as improved, recalibrated predictors [10, 59, 11, 6]. In the
failure-count case however, estimation of current reliability expressed in the familiar mathematical
terms requires the prediction of a quantity which will never be directly observed, i.e. of the time to
next failure, given the previously observed failure counts. The approach taken to circumvent this
difficulty here has been to assume that it is still adequate in the failure-count case to represent the
current reliability in terms of the predictive distribution of the next term in the observed sequence, i.e.
the number of failures which will occur within an immediately subsequent execution time interval of
given duration. If this is accepted, then we are again in the situation of one-step-ahead prediction of
an observable sequence, i.e. we require to obtain predictive distributions, (F,f” (Mg, mn= 1)),. of failure
counts, for the given intervals. Later, we find that this approach—after a bit of extra work-——does
indeed enable us to derive something analogous to the recalibration procedure previously used to
predict reliability from inter-failure times. However, note that it is not our intention to imply by this
simplification that something analogous to recalibration cannot be performed successfully for more
general kinds of prediction. On the contrary, some proposals of ways in which this might be done
are included in §3.7. The point is rather that, as a first step towards recalibrating from failure-count
observations, we attempt to model as closely as possible the successful experience of recalibrating
inter-failure time predictions which was based on one-step-ahead prediction of inter-failure time
sequences. Hence we begin by producing predictive distributions for the next failure-count in our
observation sequence in order to frame the prediction task in the same mathematical form of a
Prequential Forecasting System (PFS) [20], or sequence of predictors (F; (zn;z""!)), the only
difference being that (z,) is now a sequence of failure-counts rather than a sequence of inter-failure

times.

3.1.5 Three Difficulties of the Failure-Count Case

Having formulated the reliability estimation problem in this way, there remain three important
further differences from the case of individual inter-failure time observations, when it comes to pre-
dictive quality assessment and recalibration. Only the third of these differences perhaps obstructs
the use of prequential likelihood plots for assessment and comparison of predictors, but all three
present potentially significant problems in the definition of a u-plot for assessment and for recali-
bration. The nature of these problems with u-plots in the failure-count case is briefly sketched here.
The problems are then explored in greater detail in the following sections of this chapter, along with

some proposed approaches to overcoming them.
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1. Varying Length Execution-Time Intervals: The first difference is the impact of the elapsed
execution-times (d,) corresponding to each successive failure-count. Any variability with n of these
times constitutes an additional deterministic source of variability in the observation sequence, (X,).
(The counts of failure occurrences during longer periods of executing the software will tend to be
larger, in comparing intervals located at around the same period in the evolution of the software.?)
However, the justification of a recalibration procedure based on the u-plot relies on some notion
of approximate constancy of the distribution of U, as n varies. (See §3.6.) Variability in interval

lengths complicates matters by interfering with this.

2. Constructing U-Residuals from Discrete Predictive c.d.f.s: The second sense in which
u-plots based on failure-count data differ from u-plots based on inter-failure time data arises from
the discreteness of the predictive distributions; or, more precisely, from the eventuality of a random
variable assuming a point value which has been correctly predicted with positive probability. The
resulting discontinuities in the predictive c.d.f.s F5 (z5; 2"~ !) are shown in §3.2 to cause correspond-
ing discontinuities and bias in the distributions of the U,,. It is later shown in §§3.4 & 3.5 that this
effect can be overcome by defining a u-plot in terms of the pairs (F,f{ (xp—;2"" 1), FX(2n; :1:“"1)).
This recaptures, in the discrete case, some of the desirable properties of the familiar u-plot applied

to the prediction of continuously distributed processes.

3. Small Size of the Sample of Observed U s Available for U-plot Construction: Another
quite simple practical problem is frequently encountered in approaching the recalibration of a set of
software reliability predictions based on failure-count data. Recalibration requires the accumulation
of a set of observed u,, from predictions of earlier terms in the sequence predicted. In particular, in
order for the u-plot, which forms the basis of the recalibration method, to be reasonably statistically
stable, a reasonably large collection of previous u,s must have been accumulated so that reliable
recalibration can commence. This remark applies particularly to the problem of achieving stability
in the tails of the recalibrated predictive distribution, since the proportionate accuracy of the tail-
probabilities is highly dependent on a small sample of the largest (or smallest) u,, values observed
so far. The need for a reasonably plentiful stock of past observation values x,, arises also from the
fact that the accumulation of u, values cannot even begin until sufficient early observations have
been made to first fit the mathematical process model and thus begin producing the successive raw

predictive c.d.f.s in terms of which the u, residual sequence is defined. In one typical data set

8As a first approximation the predictive distribution could be assumed to be, locally, and conditionally on the
past, G, Poisson with mean equal to some function of interval length.
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seen by the author, 193 failures of a software product had been recorded, but time of occurrence
information had been recorded only by counting the number of these 193 failures which occurred
during each of 17 contiguous observation time intervals. Had complete inter-failure time data been
recorded for these failures, it would have been straightforward to fit reliability growth models to
the data, successively adding one additional failure time to the set used for model fitting, in the
standard way required to apply an inter-failure time PFS, and hence accumulating a large set of u,
values, which could then have been used to improve the raw model’s predictions by incorporating a
recalibration step in a new PFS. In the actual case, having instead only the 17 failure counts, there
seems far less scope for including a useful recalibration step in the analysis due to the limited size of
the sample of u, resulting from one-step-ahead prediction of such a short sequence of observations
(m,). We have found however that the use of a constrained gradient of the u-plot smoother, as we
will propose in more detail in §3.6.6 below, contributes towards the stabilization of a u-plot based

on a small sample of predictions.

One would anticipate that the rate of evolution of software failure behaviour, per data point
of the sequence to be predicted, is generally likely to be higher for failure count data than for
complete inter-failure time data. This might perhaps pose further problems by interfering with the
desired approximate stationarity of the u, sequence when that sequence is to be used for purposes of
recalibration, again making things worse for the “would be recalibrator” of failure-count predictions.
One rather ad hoc proposal for recalibrating a predictor of rapidly evolving reliability data is to use
decaying weights as we suggest in §3.6.3.

Concerning the lengths of failure-count intervals, note that paragraphs 2 and 3 above constitute
two competing considerations: Shorter intervals, and a consequently larger set of predicted (and then
observed) counts, would tend to mitigate the problem identified in paragraph 3. On the other hand,
the problem of recalibrating failure-count predictions mentioned in paragraph 2 arises specifically
from the discreteness of the individual predictive distributions. It will be seen later that the effect of
this discreteness in biasing the u, distribution is far more pronounced if the failure-count intervals
are short. Suppose, for example, that, for some interval {l,~1,!,], three small values, m, = 1,2, 3,
are the only values of the failure count that are predicted with significantly large probabilities.
Then, each of these count values will produce a significant discontinuity in the associated predictive
c.d.f. (F,f” (- ;m“‘j‘l)). These few large discontinuities will contribute significantly to the bias in the
distribution of U, = FM¥(M,;m™~1). It is this bias in the distribution of the U-residual which is the
obstacle to discrete recalibration discussed in paragraph 2, and further examined in §3.3. However,

if the modified u-plot developed in §§3.4 & 3.5 solves this difficulty with discontinuities, then there is
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no longer an argument from paragraph 2 in favour of the predictive distributions being continuous,
or approximately continuous. It could then be argued strongly from the consideration discussed in
paragraph 3 that, for the purpose of producing raw predictions which can be effectively recalibrated,
the shortest possible failure-count time intervals should be used when collecting the failure count

data.

In the following sections of this chapter, we develop some initial approaches to overcoming the
difficulties sketched here, so as to extend the use of the recalibration procedure to failure-count-based
software reliability estimation. However, we feel there may well remain further scope for both other
analytic refinements, as well as further experimental work to confirm or refute the hypothesized
benefits of these various modifications for the efficacy of predictor recalibration in the discrete-data
case. Some ideas for further validation work on the approaches developed in the remainder of this

chapter are proposed later in chapter 7.

3.2 U-Plots

This section discusses the standard “u-plot”, [2], with an examination of the joint probability distri-
bution of the (U,) sequence under combined assumptions about the process being predicted and the
prediction system applied. For an informal overview of the purpose and uses of the u-plot, formed
from the application of a one-step-ahead prediction system which produces its predictions in the
form of predictive distributions, see §§2.4 and 2.5. Further details are given below. In {2, G, 10]
and (58] u-plots are used in order to assess the quality of one-step-ahead predictions based on inter-
failure time data, and are used further in order to improve the predictive quality by recalitbrating
the predictions (see also [11] and [59]). The main substance of this chapter consists of an extension
of this kind of technique suitable for application in the failure-count case. As explained on p42, we
concentrate on one-step-ahead prediction of the observed sequence itself, with a brief mention of
possible extension to longer term prediction and prediction of other quantities in §3.7.

Recall from §2.4.2 that a Prequential Forecasting System (PFS) for a random process (X,,),
n =1,2,..., is a sequence of c.d.f. functions (F,f (3:“;:1:“'1)) where F,ff is to be interpreted as
the one-step-ahead predictive c.d.f. of X, as its first argument, having observed the realisation
X"=1 = z"~! of the process so far. The function z — F;¥(z;z"~!) must be a valid c.d.f. (monotonic
non-decreasing, right-continuous, with limits 0 and 1 respectively as £ — —oo or +00) defined by
the PFS for all possible values of z™*~! and for each n.

In the examples of chapter 4, FX is defined only for n > ng = 6. Le. “raw” predictions are
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begun after 5 terms have been observed. The term “raw” is used in what follows to describe
predictors and their associated predictions when these do not rely on a recalibration stage in the
total prediction algorithm. In contrast, recalibrated predictions, which will be discussed in §3.6, are
begun in the examples of chapter 4 only after the realisations corresponding to 10 raw predictions
are first available, i.e. ng = 16 for our recalibrated predictors.

We restrict to proper c.d.f.s, (i.e. not allocating predictive probability to X, = *o0) in §§3.2-3.6,
in order to avoid having to mention too many special cases. There is no real obstacle to extending
the procedures to include improper c.d.f.s if desired. Indeed such c.d.f.s are examples precisely
of predictive probability concentrated at a point, for which purpose our “modified u-plot” and its
associated recalibration procedures described below in this chapter were designed. The usual (u,)
sequence [2, 6, 10, 58] can be thought of as a realisation of a process (U,), defined in terms of the

observed process, {Xn), and the PFS by substitution of successive observations in the predictive

c.d.f.
Up = FX(Xn; X™ 1), n2>nyg. (15)

Of course, the joint probability distribution of the resulting (U, ) process depends on both the PFS
(F,f(*; )), and on the true” probability distribution of the process (X,) to which the PFS is

applied.

3.2.1 Common Notation for Continuous, Discrete, and Mixed Case

In order to provide, as far as possible, a common framework for handling the two types of software
failure-vs.-time data mentioned in §3.1, we discuss in §§3.2-3.6 the definition and the use for predictor
recalibration of a “u-sequence” in the general case of predicting an arbitrary scalar random process
in discrete time, i.e. an arbitrary random sequence. This entails allowing for the cases in which the
next observation has a predictive distribution which is either continuous, or discrete, or mized. The
first two of these three alternatives correspond respectively to inter-failure time and failure-count
PFSs. The inclusion of the third might appear superfluous. It does not seem to introduce any
essentially new problems, however, as far as the techniques suggested in §§3.2-3.6 are concerned,
and does clarify the relationship between the “u-plots” and the recalibration algorithm discussed

in the above references, and those applied in Chapter 4 here to failure-count data. Also there is a

9There may be valid objections here to the notion of a ‘true’, unknown probability distribution for an observed
process of software failures. The important point for us here (about the proposition that such a thing exists) is that
it enables us to acknowledge explicitly within our mathematical formalisms that the PFS ( FX(-; -)) we have used
to define the {(u,) sequence may correspond to a process law that could in principle be improved, and to explore how
the nature of the inadequacies of this PFS will determine the stochastic behaviour of the process (U,) of ‘residuals’
resulting from the application of our imperfect PFS. See §3.2.3 below.
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possibility that the general, mixed case might find an application in another context. We represent
the probability distribution of a general scalar random variable by its c.d.f. and, to allow for the
case in which it does not possess a density function with respect to Lebesgue measure, make use of
Lebesgue-Stieltjes integrals (see e.g. {21, especially Chapter 9]) for probabilities and expectations. I.e.
we use a Stieltjes-like integral whose formal interpretation involves the use of a function of bounded
variation!? to define a Borel-measure on R with respect to which the integral can be formally defined
using the usual theory of integration with respect to an abstract measure. These integrals reduce to
the familiar finite or countably infinite sums in the discrete, failure-count case, and to integrals of
expressions involving continuous probability density functions in the case of continuous inter-failure
times. However, the available rigorous theory allows extension to the general, mixed-distribution
case when this is required.

In the case where the PFS provides predictive c.d.f.s F (z,;2™"!) which are continuous in the
argument z, (presumably indicating a belief on the part of the observer that the corresponding
conditional c.d.f. of the true distribution of the process (X, ) is likewise continuous), the u-plot and
y-plot can be employed in order to test whether the realised (u,) sequence appears consistent with
an i.i.d. uniform U|0, 1] joint distribution (see e.g. [2]). This approach is not always appropriate in
the discontinuous case for reasons which become apparent when we examine, in this section, the

distribution of the (U,,) process in this more general case.

3.2.2 The Probability Measure Defined by a PFS P

We think of a PFS for the process (X,) as being equivalent to an assumed probability distribution,
Pop, for the process, (see [20], p4). If ng > 1, then z"*~! will be observed before carrying out any
prediction and can be regarded as a directly observable parameter of P and of all other distributions,

probabilities and expectations considered in what follows. Thus P assigns probabilities!?

E[Xﬂu € Aﬂn! s *'Xﬂ € A"] =
f / / dFX (Zn; 1) A 11 (Zna+1;2™)AEN (T 2™ 71) (16)
:l'r'".“e.A Tug+1l EAn“-l-l Zn€EA,

to cartesian product sets. Pp represents a probabilistic model for the process, whose conditional

Th{)

distributions are used in making one-step-ahead predictions, even though the distribution Pp may
not be the basis of the derivation of the PFS—It is not, for example, in the case of a maximum

likelihood “plug-in” PFS. In fact, we note that, whether P is derived via ML or Bayesian analysis

10. d.f.s are trivially of bounded variation

11This repeated-integral construction of the probability measure Pp assumes that the PFS is such that the inter-
mediate integrals form integrable functions.
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of a parametric point process model {Pg : § € ©}, the distribution Pp implied by the forecasting
system may be quite distinct from any Py, and in particular, events which are independent under Py
for all 8 € © may be associated i.e. dependant under the distribution Pp. Thus the predictive c.d.f.
FX(z,;z™!) is now assumed to be identified also as a conditional c.d.f. FX(z,|z™~!) associated
with the joint distribution Pp. Actually the problem of formalising in a fairly general case the
relationship between a PF'S P and its associated or implied stochastic process probability law Pp :
> — [0,1] remains a topic of research interest among probability theorists {92]. There is also a
problem of the non-uniqueness of conditional probability measures defined for a single global process
measure Pp (see footnote 4 on pl0). For the remainder of this chapter we will ignore these matters
and attempt to motivate and explain the modified u-plot and recalibration techniques presented
on the assumption that our predictive c.d.f. functions may be written FX (z,|z"~!) (i.e. with %"
now replaced by “|”) and will satisfy all properties of conditional distributions corresponding to
the process probability measure Pp. Even where this assumption is incorrect, the algorithm for

2

construction of the modified u-plots and recalibrators'? remains precise and unambiguous in terms

of any given PFS, (F(-;-)).

3.2.3 Recalibration Conceived in Terms of a True PFS?

The procedure of employing the evolving u-plot, during an application of a PFS to a software failure
data sequence, for the purpose of “recalibration”, (i.e. producing a new and, it is hoped, better PFS
for the same data) is not easy to justify formally. Ideally in practice, the raw PFS employed ought
to encapsulate the observer’s current probability model for the process being observed. However,
the addition of a recalibrator to the prediction algorithm necessarily implies a willingness on the
part of the observer to entertain probability functions for the process which are at variance with P,
the one implicit in the raw PF'S. This idea seems awkward to handle theoretically since an observer
who is prepared to learn from the (U,) and thereby to produce a recalibrated PFS, must think in
terms of employing two inconsistent probability models for the process (X, ): firstly the probability
measure Pp implicit in the raw PF'S P, and secondly a higher level model which is able to include the
possibility that P may differ from the truth and which forms the basis of the recalibrated PF'S. Thus
the underlying “real-world” mechanism generating the observations may be assumed equivalent to
some unknown (and perhaps not unique) ‘perfect’ PFS Q for the process (X, ), where it is formally
accepted that we may find P # Q. At this point we should make a small digression to examine

this statement. We have expressed the development which follows, firstly of the probability law

12 A recalibrator is an algorithm for improving the predictive quality by “recalibration” of each prediction in the
light of what can be learned by observing predictive performance so far.
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of the (Uy,)-process, and secondly of recalibration and of what recalibration achieves, in terms of
this distinction between the PF'S P (and its associated probability law Pp) and some other ‘true’ or
‘real-world’ PFS Q for the process. The question can reasonably be asked of whether it is meaningful
to talk of the true probability law for something ‘real’, i.e. for a random process that is found in an
application of probability to a real problem. Where the experiment of observing this process is in
some sense ‘repeatable’ under ‘identical conditions’ then perhaps the law of large numbers can be
used to argue that there are true probabilities for events that could in principle be estimated to any
desired accuracy. The arguments below can be adjusted, to partially accommodate this potential
criticism of using a notion of ‘true PFS’ Q, by arguing instead that the raw PFS P we are using
may not be the best we could ever come up with for predicting this failure process. Then we can
describe @ instead merely as ‘some hypothetical better PFS than the one we already have’—Or
perhaps more correctly : ‘some better PF'S which exhibits superiority precisely of a kind which will
be detected by examination of u-plots’. We have not explored this issue as carefully as perhaps it
could be, but feel confident that such an adjustment to the interpretation of @ is possible and could
be used below to construct slightly diflerent developments of the main arguments. From this point
on, however, we will continue the discussion in terms of a probability law P g for the process which
is allowed to differ from our working (i.e. numerically implemented'®) PFS P and to which we will
refer using terms such as the best, true, ideal, perfect, etc PF'S, to indicate that Q is supposed to be
an unknown but superior representation of the true nature of the random behaviour of the empirical
software failure process. Note however that at least for the simulated failure-data sets in chapter 4
(i.e. for JM1, L1, and LV1 on p84) we do have an obvious interpretation of Q as the probability law

that was used to simulate the failure datald.

3.3 Behaviour of Us from an Ideal PFS

Having agreed to think of the situation in these terms an immediate question is: How should the
process (U, ) behave if we do have the perfect PFS, i.e. if P = Q7 This question is partially answered

in the general case by examining the following conditional distribution under this assumption that

P =0

E’_"[U.lr1l <ulz™ !l = P[FX(Xn|z""!) < ujz™]

P

13as a general point, the fact that to be useful a PF'S has to be both analytically derived and manipulated, and
computationally implemented is one good answer to the question: “Why are you not already using the ‘best' raw PFS
Q?!’

4 Denoted by TRUE in Table 3 on p88
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I

sup{F;y" (z|z"~1) : F;¥ (z|z""!) < u} (17)

Gn(ulz"™%),  say.

Here, we have used the fact that if W is a random variable with c.d.f. F', and m is a monotonic
non-decreasing function, then P[m(W) < a] = sup {F(w) : m(w) < a}!®. We will apply this fact
repeatedly in this chapter to obtain the one-step-ahead c.d.f. of U,, under various modifications to its
definition. The conditional c.d.f., G,, takes the form illustrated in Fig. 3(b), where for each n, the
pairs (Pnk,nk) correspond to any points ank of discontinuity of the conditional c.d.f. FX(z,|z""1)
in its first argument z,. The points a, are, in the most general case, functions of z"~! and, for

fixed "}, they are at most countably many in number. Thus!®
FX(z-|z""!) < FX(z+|z""!) only at z=au(z""'), k=1,2,...,

and at these points, we define

Pnk(z™™1) F¥ (ank—|z™"1)

n=1) FX(ank+|z™"1)

Onk (.‘L‘

F,‘:{ (anklx“'l).

Figure 3(b) illustrates the behaviour of G,(-|z™~!) which results from two such points of disconti-
nuity in FX(-]z"~1). Also indicated is the effect on Gp(- |z"~1) of an interval on which F;3' (- |z"~!)
is continuous. The c.d.f. of a uniform U[0,1] random variable is indicated by the broken line for
comparison. It can fairly easily be shown from (17) that, if we adopt the symbol Gy for the c.d.f. of

a U[0, 1] random variable and employ the “indicator function” notation

Is(2) 1, ifze€S;
S\2) =
0, otherwise,

so that
Go(u) = ulp 11(u) + J(1,00) (1),

then

Gn(ulz™" ') =

Dk, if Pk < u < gni for some k;
(18)

Go(u), otherwise.

This follows by well known properties of all c.d.f.s : Any u € [0,1] is either contained in an interval

[Prk,qnk] or is the image of a point of continuity of FX (-|z™~!). These cases can be considered

15which follows from the “continuity” or “o-additivity” axiom for measures.
161t is well known [21] that functions of bounded variation, which include all univariate c.d.f.s, possess at most
countably many points of discontinuity, and possess left-handed and right-handed limits everywhere.
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separately, remembering that F.X (-]z"~!) is non-decreasing and right-continuous, to arrive at (18).

This c.d.f. can be expressed as a sum of a finite or countable number of terms??

Gn(ulz"™!) = Go(u) = D _(u = Par)(p,.qm) (1)
k

Go(u) — z P (1), say. (19)
k

3.3.1 Biasing Effect of Discontinuities on the U-Distribution

It is now apparent that the conditional distribution of U,, given X"~1 = z"~1 which is uniform if the
predictive c.d.f. is continuous, receives a bias towards larger values of U, if there are discontinuities
in F,f , i.e. single points of positive predictive probability, P, [Xﬂl == anklx”“l] > (0. Perhaps, if the
discontinuities are small, the uniform distribution will be a reasonable approximation to G, (- |z™~})
giving justification to the use of standard u-plots, y-plots and the Kolmogorov-Smirnov test statistic
to assess the correctness of the hypothesis that the distributions P and Q above are equal. In the
application where (X,,) is a software failure-count process however, it is hoped that, at least after the
initial stages of testing, high predictive probabilities will be assighed to particular discrete values,
(e.g X, = 0 or X,, = 1), making the assumption that G,(u|z"!) is the U[0,1] c.d.f. under the

hypothesis P = Q more difficult to justify, (see Fig. 3).

3.3.2 The Mean as an Indication of the Seriousness of this Bias

An indication of the level of severity in this effect of discontinuities in the predictive ¢.d.f. on the

conditional distribution of U,, is provided by the conditional expectation

E[U,|z"} / udGp(ulz"~!
B[Uaz""] = | udGn(ula™)

[ -3 [ udbn, by (19)
u€(0,1] k. YUE(Pnk Guk]
1 Quk
'/0 wduy — z (/ udu + an(q)nk(qftk+) - q’nk(‘?nk-)))
P

|

k nk
1 qzk ‘sz
= 3-) (n—'é'—”" + gnk (Pnk — an))
K
= % + %Z(an - pnk)zi (20)
k
n - n-112
= 3+ 1Y P[Xn = X"t = 2]
k

which further demonstrates the concluding statement of the previous paragraph.

17in the general case of a completely arbitrary continuous, discrete, or mixed scalar predictive c.d.f. F',f‘ (:]z™=1)
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3.4 Alternative Definitions of U

The question arises of whether the definition (15) of the (U,) process could be altered, in cases
where FX can possess discontinuities in its first argument, so as to provide distribution properties
which are less dependent on n, (through variation in the pnk, gnx), and consequently more amenable

to statistical testing. This section discusses properties of some alternative (U,).

3.4.1 An Alternative Definition which Reverses, Rather than Removes,

this Bias

The asymmetry of the deviation of G,{u|z™~1), as a function of u, from the function Gg(u), apparent

in Figure 3, suggests an alternative definition of (U, ) obtained on replacing (15) by
Ul = FX(Xn=|X""1), n>no,

the left-handed limit F3X (Xp—=|X""!) = limzx, -~ FX (z|X™"!). In terms of the conditional proba-
bilities of the joint distribution, P, this amounts to changing the definition of u,, given the realisation

", from

Up = E[Xn < mnlxn-l = Iﬂ-l] (21)

to

ul = I:[Xn < zp| X"l =2, (22)

The argument of §3.2, slightly amended, now leads to the conditional c.d.f. for U! on the hypothesis
P=0

Gy (ulz™™")

sup{F¥ (z]z"~1) : F¥ (z~]z""1) < u)

{ Onks if P < u < gni for some k;

Go(u), otherwise,

Go(u) + Z(an —= u)I[Pnk:q'uh)(u) -
k

With this definition it turns out that U] is biased downwards
B[U4e"] = § = § 3" (0nk = P’ (23
k

It requires only a trivial sign change in the derivation of (20) to demonstrate this.
We mention that another way of viewing the (U,) is by means of the (U,,) for a different process.
It can be seen that if (Y},) is a process deterministically related to (X, ) by functions continuous and

strictly monotonic-decreasing in their first argument y, = dn(zn;z™~!), with the induced probability
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distribution PY, then U}, from the (X,) process with PFS P is simply 1 — U, from the (Y,) process
with PFS PY.

3.4.2 Elimination of the U-Bias

There does not seem to be much to choose between (21) and (22), but at least viewed together they
suggest a way of eliminating the bias from the conditional distribution of U,, by simply redefining it

as the mean of these two values

Un

F(F (@a~|X""1) + F (zal X))

|

I;’[Xn < za|X! = m“"'l] + %I;’[Xn =z,|X""! = :z:“"l] . (24)

This results in a conditional c.d.f. when P = QO

Gn(ulz*™!) = sup{F}(z|z""!): }(F¥(z~|z""!) + F (z|z""1)) < u)
"
Gnks  if 1(pnk + gnk) < u < gni for some k;
= Prk s if Pnk < U %(pnk + qﬂk) for some k;

Go(u), otherwise,

illustrated in Figure 4, and a conditional expectation, E, [Un|rz“"1] = -%, which is independent of
n and unaffected by discontinuities in the predictive c.d.f., making this definition of (U,,) preferable
to the previous two. In Figure 4 the PFS remains as in Figure 3(a): it is the change from equation

(21) to (24) which is responsible for Figure 4 replacing 3(b).

3.4.3 A Formalisation in Terms of Integration by Parts

In fact, (20), (23) and the last result can be rigorously obtained in the general mixed-distribution

case directly from the integration by parts formula for Lebesgue-Stieltjes integrals,

/S G. dH + fs H_ dG = [S d(GH), (25)

where the function definitions are G, : z — G(z+), H. : £ — H(z~), and GH : z = G(z)H(z) and
G and H are defined and of bounded variation on a (finite or infinite) interval containing S [21]!8.

13The Lebesgue-Stieltjes measure [21, p156] implied by the symbol dG above is defined independently of the values
of the function G at its points of discontinuity, being determined rather in terms of the one-sided limits G4 and G.
(It is, trivially, invariant also under addition of a scalar constant to G). This measure may be employed as a rigorous
formalisation of the construction of a probability distribution given any function having the basic properties of a c.d.f.
(although it equally has application to the definition of signed and non-finite measures). It can be obtained by a
general measure extension procedure once it has been defined on finite intervals by definitions such as ug {(a,d]) =
G4 (b) — Gy{a), etc. The measures, integrals, and the integration-by-parts equation (25) are guaranteed to apply at
least to all Borel subsets S of the interval over which the functions G and I{ are defined.
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Puni Tl Pn2 n2 1 U,

Figure 4: Conditional c.d.f. of unbiased version of U,
For any function, H, of bounded variation over an interval containing S, it follows by putting G = H

fH+dH+fH_dH=/dH2.
S S S

Also, from basic definitions, [21],

/H+dH—/H_dH
S S S

k

) “(H(ak+) - H(ax-))?
k

in (25) that

H"l' "'"H_ dH

g

j H, —H.dH, {ax:k=1,2,...} being the
{ax} discontinuity points of H in S,

and it follows that

fSH+dH = L{[ dH? + ¥, (H(ax+) - H(ax~))?)

/;H- dH =1 {[;dH? = 3", (H(ax+) ~ H(ax~))?}

which if applied to the function FX(.|z"~!) over S = R, gives the results obtained above for the
conditional expectations of U,, under the three alternative definitions.
Alternatively these expectations can be obtained by inspection of the graphs of the c¢.d.f.s (see

Figures 3 and 4 using the well known result that for a c¢.d.f. F' of any non-negative random variable
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/;m rdF(z) = ./Um R(z)dz (26)

where R(z) = 1 — F(z) is the reliability function of X. Thus the mean of the random variable is
equal to the area bounded by the vertical axis “z = 0", the line “y = 1", and the graph of F' (where
discontinuities would be joined by vertical lines.) The fact that this identity (26) continues to hold

for arbitrary non-negative random variables can actually be shown from (25), and some additional
reasoning, on putting G(z) = z and H(z) = 1 — F(z). (Essentially the same result was also quoted
as equation (1) on p12.) This enables the three results about bias to be verified by inspection of the

graphs of the conditional c¢.d.f.s of U,.

3.4.4 A Randomised Definition of U Removing Both Bias and Discont:-
nuity

A further modification to the definition of (U, ), reminiscent of procedures used for handling discon-
tinuities in other contexts (e.g. {41, §20.22]), is to define U,, to be a point selected randomly from
within the interval [FX (zn—|z"1), F3 (z,]z"~1)], instead of using an end-point or the mid-point
of this interval as in the three definitions discussed so far. For this purpose, assume that (£,) is an
i.i.d. uniform U[0, 1] process which is assumed independent of the (X, ) process (a realisation of (£,)

could be generated by the observer), and redefine
tn = (1 = &) F (Zn—|2" 1) + En Fy (zn)z™ 1) (27)

To obtain the resulting revised c.d.f., Gn{un}z™~ 1), on the hypothesis P = Q, we fix a number u, and

consider probabilities, conditional on X™~! = z"~1, of events in the space of (X,,£,) as follows:-

E (1- €n)Fri{(Xn"|$n—1) + Ean(an.’B“*l) < U;
E, : FXXnlz"") <u;

- X X —jpyn-l
: X _|yn—1 < X n-l1 < __,,,u,,, _,,F___" ( n ,_!_m_,,_, ,,_)____,,,
E2 Fn (Xﬂ- |$ ) Su< Fn (}"'1'1“’r ) A £ﬂ- - Fﬁ\'(xn|xn—l) — Fﬁ"{(xn_lxn—l)'

Then E = E1 U E,, Ey N E; =0, P[E}] is given by the RHS of (18), and

U == Pnk .

0, otherwise.

It follows that

Gn(ulz™~ 1) = P[E] = P[E,] + P[E3] = Go(u), (28)
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1.e., with this “randomised” definition, U, is conditionally a uniform [0, 1] random variable, given
"1,

In one sense this final definition of the process (U,) seems preferable to those preceding it
in that it has recaptured the uniform-conditional-c.d.f. property of U,, which held in the case of
continuous predictive distributions but at first appeared to have been lost in attempting to extend the
application to a PF'S producing arbitrary predictive distributions. It is also apparent, however, that
in this last definition a random component—whose value is meaningless as far as the performance of
the PFS is concerned—has been added to the (U, ). This must have some detrimental effect on the
usefulness of, for example, a u-plot used as a means of capturing graphically something of the nature
of the bias in the output from a PEF'S applied to a particular data set. Also, if the sequence, (U,,),
were incorporated in a recalibration procedure, it is to be expected that any resulting recalibrated
PFS would be subject to extra noise effects from the {(£,).

In the next section, a “Modified U-Plot” is suggested which makes use of the idea of the above

(U,), without requiring a realisation of (£,). Thus the doubts mentioned in the previous paragraph
do not arise. A further theoretical interpretation of this modified plot is attempted in §3.6, and in

Chapter 4 results are presented based on this plot, after additional modifications have been developed

also in §3.6 and Appendix B.

3.5 Modified U-plot

As mentioned at the end of §3.4, a plot can be produced via the definition (27) of (U,) without
having to generate a noise sequence {£,). The definition of this plot can be presented as an extension
of the definition already familiar for the continuous FX case by, rather artificially, thinking of the
familiar definition in terms of posterior c.d.f.s of the U;;1 = 1,...,n. Later on p78, it is suggested
that this device indicates an approach to recalibration of predictions in other more general contexts.
In the familiar continuous case, (27) reduces to u, = FX (z,|z""!) which is the standard definition
of u,. Then, the standard u-plot, regarded as a function, is the sample distribution function of
(u;);—, (which we continue to write as u™.) This function, S, : R — [0, 1], can be expressed using

the Heaviside notation as

Sn(U) = z w;H(u — ui), where Wy = 1

n-no+1l?

=N
which trivially can be rewritten

Sa(u) = ) wiG,(ulz’), (29)

1=ng



CHAPTER 3. EXTENSION TO THE CASE OF DISCRETE PREDICTIONS 58

where G;(-|z*) is used to denote the c.d.f. (under the assumption that P = Q) of U;, conditional
on X* = z*. Expressed in this form the definition will extend to the general mixed FX case, i.e.
(29) can be used as the basis of a Modified U-Plot defined for any scalar PFS applied to any data
with U,, defined now by (27), (and therefore possibly not an observable quantity). Thus G,(:|z")
will be the c.d.f. of a uniform U{p,k, gnx| random variable, whenever z,, = an for some k, and a
constant random variable otherwise. This follows from the fact that (27) defines U,, such that U,,
conditioned on X™ = z™, is distributed U[0, 1] for any m < n, and U[F3 (z,—|z™~ 1), FX (T4 )z 1)]
for any m > n, (provided P = Q). So instead of thinking of U,, as a deterministic function of X",
we think of it as having a posterior c.d.f. given X™ = z™ which, depending on z™, may or may not
turn out to be a Heaviside function. The “u-plot” is defined in terms of these posterior c.d.f.s which

take the form

1, if u > FX(zi]z*~1);
. 1y - X T;— :ri-l . . .
Gi(ulm‘) - ngﬁm’ if FiX(Ii—l.'B‘ 1) <u<L F,-X(:r;[:r‘ 1); (30)
0, if u < Fi‘x (Ii*-l.’li‘i_l).

The resulting S, is equal to a mixture of cumulative probability distribution functions, and must

therefore itself be a c.d.f. Moreover if P = Q, then S, is a random function with, for v any fixed

number,!®
ElSa)] = ) wiE[Gi(ulX")]
= Z Wy E [G,(uIX‘)]

|
[
1S
>
s
| S,
22
x
l
=T
S
A
£,
e
e}

|
[]=
IS
x
it
?
g
-~
A
E.

I
]
&
t
Q
=
°3

L

by (28)

|
£
¢
s
Q
=
E

{
D
O
~
£
)

(31)

So it has been shown that a function, S,,, can be defined by means of (27) and (29) which—regarded
as a Modified U-Plot—extends to the case of a general PFS, the definition used in (2], whilst

19The notations El'], PI-1, B (-1and P '], where V and W are random variables, are used here to mean E[-],

P|-], E[-|W] and P[-|W], respectively, explained in Chapter 2 p10. Thus, strictly speaking, given that we are assum-
ing for the joint process {Xn,(n) 8n underlying probability law with respect to which expectations and probabilities
are defined, the “V” in these expressions is superfluous but is included as a reminder that the numerical value of the
random variable or expression inside the square brackets is fully determined by a realisation of the pair (V, W).
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preserving the property of expectations lying on the 45°-line under the hypothesis that P = Q. It
is also of interest to see how this plot relates to that which would have been obtained had the (£,)

been explicitly generated. We can reexpress (29) as

Sa(u) = > wi P[U;i<u] (U still defined by (27))
0 £,14°
- Z Wy E“:‘I?"[Ui c (—OO, u]]

T

i

w; E [I(-m,u] (Ut)]

Eﬂ- l*"“

g™ ™

= Z wi E [H(u-Uy)
= E i wiH(u - U,)] : (32)

i=n,

So the definition (29), (30) is equivalent to assigning S, (u) to be the expectation of the value which
would have been obtained from the same realisation %, by actually generating a realisation of ™,
and using the sample c.d.f. of the resulting 4™ values obtained from (27). Equations (31) and (32) and
the attempt at the end of this section to further emphasize the relationship to the continuous case by
relating the Modified U-Plot to the u-plot of a hypothetical underlying process for which continuous
predictive c.d.f.s would be appropriate, suggest using some measure of “distance” between S, and
Go as a comparative measure of predictive performance of different PFSs on a common data set,
just as has been done, in for example 2], for continuous inter-failure time prediction. However, the
present work provides no basis for carrying out a formal statistical hypothesis test of P = Q, from
the Modified U-Plot alone?® in the general mixed (or discrete) case since, although the point-wise
expectation of S,(u) has been shown by (31) to be wu, still, the effect on the distribution of the
Kolmogorov distance for plot (29), has not been analysed when H(u — u;) is replaced by equation
(30)’s G;(u]z*), for those u; which are incompletely observed. The Kolmogorov distance is therefore
interpreted as an indicator of predictive quality in the same way as in [2}, although now without the
force of a formal statistical hypothesis test. As to the sign of the deviation, it should be born in
mind that failure counts are a kind of reciprocal observation of inter-failure times, so that optimistic
predictors of failure-count, (those which over-estimate future software reliability), will have u-plots
which deviate below the 45°-line—which would indicate pessimism if the predictions had been of
inter-failure times, as in [2].

In appearance the plot described above is piece-wise linear, having gradient changes at points

200f course a formally correct randomised test could be obtained using the u-plot produced by actually generating
the £, of equation (27).
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u = P, and ¢, for those ¢ with z; = a;; for some k; and having discontinuities of size w; at u = u;
for other i. Its slope at u, obtained from (29), is

dSﬂ_ wy
du B z (th = ptk) ’

noSIEn

wE€(pip i)
wlitnre a § ik, ),

where defined. If in the application of a PF'S, every observed value x; has been correctly predicted
on the basis of z*~!, with non-zero probability, then the plot here described will be a continuous
function. This is the likely situation with software failure-count data?!. Examples of plots obtained

are presented in Appendix A.

3.5.1 An Alternative Interpretation in Terms of a Hypothetical Continuous-

Valued Process

Before going on to describe its use for recalibration in §3.6, we mention an alternative way of
viewing the (U,) sequence defined by (27), which gives more meaning to the introduction of the
random quantity &;. The basic idea here is to suggest that there may be a quantity underlying the
observations which can be represented as a process (Z,) whose conditional c.d.f.s are continuous.
The (X,) could then be thought of as that part of (Z,) which is available to the observer, i.e. as
the result of incomplete observation of the process (Z,). &, would represent the information lost in
the step from Z, to X,,. Suppose that the following conditions hold:-

(i) (Xn,Z,) is a two dimensional random process, (Z,,) having marginal joint distribution Pe.

(i) For each n, X, is a deterministic function of Z™ by means of a sequence of functions (v, ) each

non-decreasing in its first argument

X1 =v1(21), X2 =v2(Z22, X1), -+ s Xn = Vn(Zn, X" 1), 00

(iii) The marginal probability distribution for (X,,), which is determined by P# and the functions
(vn), is P.

Figure 5 illustrates the function v,(-,z™~!) which maps the interval {b,q, cno] onto the single point

ano, the interval (¢no,bn1) monotonically onto (ang,an1), and [bn1,cn1] onto the point a,; where

it is assumed that a,o and a,; are two adjacent points at which positive predictive probability is

2l Exceptions do exist, such as ML plug-in based PFSs in which the size of the initial fault population is a finite
(or at least allowably finite) model parameter: then a failure count may be observed after having a zero assigned
predictive probability. The JM model on p37 is an example.
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Figure 5: Interpretation of £, in terms of a hypothetical underlying continuously distributed quantity
In

assigned, by P, to X, given that X"~ = z"=!, The points b,; and c,; are allowed to depend on

z"~1, It now follows from the assumption that PZ has continuous predictive c.d.fs

FZ(zn|2"Y) = P[Z, < 2,]2™" ! = 2™71],

X

that the associated (UZ) process (defined according to the original form (15) with Z replacing X),
has conditional c.d.f.s P,z [UZ < u|Z™"! = 2"~1] = Go(u). It then follows that (30) above also
defines the conditional c.d.f. of U? given z", i.e. (27) defines U, having the same conditional distri-
bution given z™ as has UZ, defined according to the standard definition, (15), for the hypothetical
process (Z,),

ny __ Z n
PUn < ulz ]—S[Un < ulz™].

This suggests that, provided it is agreed to accept the existence of such an unobserved process (Z,),
then U, defined by (27) can be identified with UZ, defined in the original manner, for the (Z,)
process. Thus the modified u-sequence is nothing more than the familiar u-sequence for prediction
of the process (Z,) using the PFS PZ. And the modified u-plot s — S, (s) is the point-wise posterior

expectation of the ordinary u-plot (29) of the incompletely observed {Z,) process with respect to
this “extended” PFS P<.

3.6 Further Modifications for Recalibration

In this section the use of the Modified U-Plot described in §3.5 for improving failure-count predictions

by recalibration techniques is discussed. There are certain problems with the idea of recalibrating
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failure-count predictions which are mentioned—for example, the problem of unequal duration of
failure-count time intervals. Arguments for attempting to use some kind of recalibration technique
despite these problems, are the consistent success achieved in the inter-failure time case, [59], and the
problem mentioned in {2] of the apparent non-existence of widely applicable “best” raw software reli-
ability growth models. In view of such problems this section is intended to comprise an investigation
of some techniques for recalibrating a PF'S, complemented by a data analysis in Chapter 4 indicating
the effectiveness of these techniques. Some success in recalibration of failure-count predictions is
evident in the numerical results of §4.2 for both simulated and real failure data. In fact, both the
definition of the Modified U-Plot and its method of use for the purpose of recalibrating predictive
distributions could be applied as described here in the general case of arbitrary mized predictive
distributions. However numerical results have been obtained only for the case of the purely discrete
predictive c.d.f.s appropriate for prediction of failure-count processes. Ior the other special case
in which the predictive c.d.f.s are purely continuous, both the Modified U-Plot and the technique
of recalibration given in this chapter become equivalent to those discussed in [11] and [59], where
they are applied to inter-failure time data. In addition, the two further enhancements to the u-plot,
described below, and intended to improve its use in recalibration, remain applicable in the general
mixed case and, in particular, might be useful in the case of inter-failure time prediction—although
perhaps slightly less so than they are shown to be in the failure-count context by the numerical
results of §4.2. The second of these two enhancements—the technique of introducing tighter con-
straints on the derivative of the smoothed plot—is probably most beneficial when the number of
past predictions (i.e. the number of “u”s observed) is small, which will more commonly occur with
failure-count data than with individual inter-failure times.

The description of the recalibration technique which will be given later in this section, including
the two optional modifications mentioned, originates from the following general understanding of

the role of recalibration in improving predictive distributions, (c.f. [6, 10, 11, 20, 59, 7] and [56}):

3.6.1 A PFS P as: (i) a Probability Model for (X,); or (ii) a Transfor-
mation between (X,) and (U,)

An observer generates one-step-ahead predictive c.d.f.s (FX (- I:r"'l)) for a process, (X,), using a
raw PF'S which, as explained in §3.2, is here assumed equivalent to a joint distribution, Pp, for (X,,),
with the conditional c.d.f.s of Pp equal to the predictive c.d.f.s from the PF'S. However, the fact that
the observer is prepared to consider a recalibrated version of this PFS indicates that the observer

is treating P as a provisional probabilistic model only, and retains a “higher level” model of the
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situation. According to this higher model (X, ) arises from a true®? joint probability distribution,
Po, which is unknown and from which Pp may differ. Thus, on moving to the higher model, the
role of P is changed from being the probabilistic law for the process (X, ). Rather, P can be loosely
regarded as defining a transformation, known to the observer (via (27) in our generalised-u case),

between the processes {X,,) and (U,). Therefore any value of Q, the unknown true joint distribution

for {Xn), should induce a similarly unknown joint distribution, S© say, for the (U,) process
((Xn), Q) = ((Un),59). (33)

The result of this transformation was considered in §§3.2 & 3.4 only for the special case Q = P,
((Xn) P) = ({Un),S"),

say.

3.6.2 Recalibration Viewed as Replacement of the model for (U,)

The recalibrated PFS can now be viewed as resulting from a decision to replace the PFS S% for
(U, )—which would be logically consistent with belief in P for (X, )—by a crude PFS, &" say, for
(U,) which is chosen by the observer independently of any specific modelling assumptions which
were involved in the original justification of the raw PFS P for (X,). Having replaced S by S*
as the probabilistic model for (U,), the recalibrated PFS, P* say, for the (X,) process becomes
determined by a requirement for consistency of the probabilistic model representations of the PFSs

for the two processes (X,) and (U,),
((Xn), P*) = ((Un),S").

(N.B. Here, the definition of each realisation (u,) in terms of (z,) has remained unchanged, still

being given by (27) using the unchanged raw PF'S, P.)

Some Requirements for a Fully Rigorous Argument

The above description is intended to motivate the recalibration techniques described below by em-
phasizing the central task of choosing a PFS S* for the (U,) process independently of the assumptions
involved in the raw PFS, P. However, it is not strictly accurate—particularly for the cases where
definition (27) is used for a PF'S P which can assign concentrated predictive probability. In order to

provide a rigorous development (which has not been done here) along the same lines, in the general

case, the following problems would need to be dealt with:-

22Byut see remarks in §3.2.3.
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(i) The equivalence of a PFS (i.e. sequence of c.d.f.s (FX(-]-))) to a joint probability distribution,
as mentioned on p48, is not 1-1. Many sequences of conditional c.d.f.s may define the same joint
distribution. We can assume, provided the sequence (F; (-|-)) may correctly be regarded as
conditional c.d.f.s consistent with the probability measure P» (defined by equation (16)), that,
by standard properties of conditional probability?? the sequence of functions (F*(-|z"~1))
which arise for a given realisation of (X,,) will be, with P-probability one, identical to that
arising from any given other PFS consistent in the same way with the joint distribution, Pp.
However, the phrase “with probability 17 may be less reassuring than usual in our situation

here since this probability is Pp-probability, and we are not assuming Pp to be the true

distribution of (X,)**.

(ii) Even after fixing upon a single sequence of c.d.f. functions corresponding to P, the transfor-
mation between z™ and u" provided by (27) is not deterministic, because of §;, in cases where
one of the z; has been predicted with positive probability. It is also the case in general that
many n-vectors z" may map onto one u™ since a c.d.f. function FX(-|z*~!) is not necessarily
1-1. All we can say with certainty about the general case is that any sequence of functions
corresponding to P defines a correspondence between any z" and a set of possible u", and

between any u™ and a set of possible z".

The form of the relationship between the PFS S*, (sequence of functions (Gﬁ'(uﬂlu"*l)), say),
and the recalibrated PFS P*, (say (FaX(zn|z""!))), can be obtained by noting that, given the
observation X"~ ! = z"~!, the two events: X, < z,, and U, < F2(znlz™~!) are identical. (Here
there is a problem from (ii) above if F.X(-|z™~1) is constant on an interval extending to the right
from z,.) Then, provided we read the condition “- [u™~1" as “given that u™~! lies in a set consistent

only with X*~! = z"~!", we can derive

Fr:x (-'En‘mn-l)

P[X, < zp|z""]

P.

P [Un £ F3 (znlz" ") "]

23 A countable intersection of probability-one events has probability one. So, it sufflices to show, that for each
individual integer n and (using also right-continuity of c.d.f.s) for each rational first argument z, (to the left of the
‘), the two predictive c.d.f.s will agree (as functions of the vector z™~! to the right of the ‘|') with Pp-probability 1.
This weaker statement will follow after verifying that assumption (16) for a process measure Pp implies that, for any
fired number z,, the c.d.f. FX(zn|-), when regarded as a function of the vector argument to the right hand side of the
‘|’, satisfies the properties of a ‘Radon-Nikodym derivative' of the measure E + Pp [{w: Xn(w) S zn A X"~} {w) € E]
with respect to the measure E — Pp{{w: X"~1(w) € E]. Now rely on the theorem {21, p139] that two equivalent
Radon-Nikodym derivatives can only differ on a zero-measure subset of the domain of their argument variable—in this
case of the variable ™=, where the measure concerned in our case here (i.e. the second of the above two measures)
is clearly just Pp-probability.

?4In measure theory terminology, we might even not have absolutely continuity [21, p139] of P g relative to Pp, in

which case having to ignore a “Pp-probability 0” collection of exceptional cases might represent a significant weakness
if that collection of process realisations has positive P g-probability.
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= Gy (FY(znlz" "), (34)

which states the familiar result [59] that the recalibrated predictive c.d.f. of X, given z,_-; is
obtained by the function-composition of the observer’s predictive c.d.f. G5 (- |u"~1) for U, with
the raw predictive c.d.f. FX(-|z"~1) for X, given Xn-1 = Zn—3. This recalibration procedure
is the same as that used in the references cited on p62, provided that the standard u-plot given
in those references is interpreted as the observer’s predictive c.d.f. G5 (-|u™~?!) of U,. Thus in
the case of inter-failure time prediction, the PFS &* has been defined by setting the predictive
c.d.fs GS7(-|u~1) equal to the sample c.d.f. of all the u; values observed up to current time (or
a smoothed version of this). For the case of an arbitrary raw PF'S we generalise this technique by
setting G5 (-|u™~!) equal to the modified u-plot function, S,—1, defined by (29) and (30). Again
here it is assumed understood that references to the “observed u™~!” (as well as conditioning of the
form “-|u™~!” in probability statements and predictive c.d.f.s) must be regarded as a shorthand
for “observation that 4™~ ! lies within the set of possible values consistent with the observed value
of zn—17”,

A small point about definition (34) is that there are some special circumstances in which—to
be logically consistent—we must allow the recalibrated predictive distribution F* (z,]z"~!) to be
‘improper’. E.g. positive “S*-predictive probability” concentrated at U, =1 can cause F*X (z,|z""?)
to assign positive probability to the prediction X,, =00, even when the corresponding raw distribution
FX(z,]|z""1) is not improper in this sense. In other respects we do have good c.d.f.-behaviour of
F*X(-|z"~1) (monotonic non-decreasing, and right-continuous) inherited from similar behaviour of
both FX(-|z*~1) and G§ (- |u™~1!). However, when we consider the effect of definition (34) on left
hand limit values, we find that the situation becomes complicated due to the lack of left-continuity
for general c.d.f. functions. In particular, to take one interesting case which crops up in the numerical
examples of chapter 4, when we consider the extreme, large values of X,, and U,,, we find that we

can, for the recalibrated predictor, rely only on

lim F!X(zq|z"!) =

Ty —O0

{Gﬁ'(slu""l), if FX (z,]z"~!) attains s for some finite z,,;

GS (s —|u™~1), otherwise,

where s = limg, o0 FiX (Tn]z™~1). So, even for a ‘proper’ raw predictor (a predictor with s=1), the

presence of a discontinuity G (1 - |{u™~!) < G5 (1]u™~!) corresponding to concentrated predictive
probability of the PFS &* at the value U,,=1 will produce an tmproper recalibrated predictor whenever
the proper raw distribution FX (:z:n+|a:""1) represents an unbounded (above) RV. That is to say, a
proper, unbounded raw predictive distribution becomes tmproper upon récalibmtion whenever the PFS

S* assigns positive predictive probability to the extreme event Up=1 corresponding to X,=00. In
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this case, the logically consistent interpretation of (34) is simply that the recalibrated predictor
FrX(-|z"~!) predicts a value of co for X, with a positive probability equal to that with which
GS (Unlu™—!) predicts the extreme event U,=1. There are other related special cases, such as that
a zero S*-predictive probability on a neighbourhood of U,=1 can result in a proper (or bounded)
recalibrated predictor where the original raw predictor lacked the same property of being proper
(or bounded). Another case, perhaps more difficult to interpret in the application to failure count
or inter-failure time prediction, would be the event that GS (- |[u™~!) might concentrate predictive
probability at the small end extreme U,=0. Logically, according to (34), this appears to demand
the interpretation that the recalibrated predictor is assigning positive probability to a value for X,
which is off the small end of the scale of values predicted by the raw PFS—perhaps in the form of a
prediction that X, = — oo with positive probability. Depending on how the recalibrated probabilities
embodied in the PFS §* are obtained, various of these awkward cases can be argued to be improbable
or impossible to occur. In particular, the gradient constraints described in §3.6.6 can be used to
eliminate the possibility of S*-probability concentrated at point values. These considerations seem

similar to those concerning recalibration of small probabilities discussed below in §3.6.5.

3.6.3 Weighting the U-Plot Sum when it is Used for Recalibration

One alternative to the use of equal weights in (29) is for the observer to represent, by the assignment
of different weights w;, any intuitive belief they may hold that certain of the previous U; should be
modelled under &* as being more strongly associated with U, than others. Thus it is possible to
arrive at a predictive distribution of U, under an alternative S* by taking S,.1, from (29), as the
predictive c.d.f. of U,, but now with the w; varying in some systematic way to reflect the intuition
of the observer. In obtaining the results of §4.2, weights were used which decrease exponentially the
less recent the prediction F{X(-|z*~!) from which u; (or rather its posterior c¢.d.f. G;( - |z*), given by
(30)) was obtained, so that

rn=1=4(1 - 1)

1 —-prn-no

n-1
Git (ulu™1) = Z w;Gi(ulz'), where w; =

1=nNg

0<r<l. (35)

Thus a decision can be taken to be influenced more heavily by the most up-to-date observation of
how the realisation {u,) of the process (U,) is behaving. Figure 6a on p67 provides some empirical

evidence to support this approach. In this figure the functions

Sa(u) = )  £Gi(ulz®), n=15,25,3545,55

1=n-9
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Figure 6a: Evidence of trend in (U,) for DJIMAG PFS applied to SS3 data
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are shown for the DJMAG PFS (see p85) applied to the SS3 data set (see p84 and Table 2 on p86).
Interpreted as empirical approximations to the marginal distributions of the U; values taken from
each of these 5 disjoint :-sequences, the corresponding 5 plotted functions seem at least consistent
with some kind of systematic trend over time in the distribution of the (U, ). Hence, we can informally
regard Figure 6a as evidence which suggests an explanation for the effectiveness—as applied to this
particular combination of data and PFS (see Chapter 4)—of recalibrators based on the exponential
sequence of weights given in equation (35).

Of course, any formal test of such a “trend” hypothesis for the (U,,) would need to take account
of the “censoring” involved here: The (U,) of §3.4.4, adopted throughout §3.5, were defined in
such a way (27) as to be incompletely determined by observation of the {(z,). The indeterminacy
of our randomized U,-sequence, as described in §§3.4.4-3.5.1, creates complications in the task of
statistically formalizing a test for trend. These complications are related to the similar difficulties
mentioned on p59 of formally testing the significance of deviations of the Modified U-Plot from
the ideal uniformity of Up-distribution corresponding to the 45°-line. We briefly, in the following
section, investigate the utility, under such difficulties, of a ‘y-plot’ as a test for trend, illustrating the
discussion in terms of testing for the trend that, on visual inspection at least, appears to be present

in the (u,) data as represented in Figure 6a.

3.6.4 ‘Y-plot’ Tests for Trend in the Case of Discrete® Predictions

A commonly used [59, 54, 10], {7, p28], [65, p140] statistical test for systematic trend in a standard
(un) sequence (i.e. a fully observable (u,) sequence emanating from a continuous PFS applied to, for
example, a sequence of one-step-ahead inter-failure time predictions) is based on a transformation
of the vector of observed (u,) values whose sample c.d.f. is plotted as a ‘y-plot’. Let us assume there
are K of these observed u,, and index them u,,, Un,+1,- .- Un,+K -1 (remembering that prediction

begins at observation sequence index ng > 1). Then the y-plot is formed of the transformed sequence

Z log(1 — u;)

1=np

Yn = o n=ng,...,Ng+HK -2 (36)
Z log(1l — u;)
1=n
ﬂn+K—1

Here, each y, is a function of the entire sequence (u;) of observed U s; so notice that,

1= 1)

unlike the u, residual whose value depends only on ‘the past'®®, the value of the ‘transformed

25The reasoning used here applies equally to Mixed Predictions
onzx; for1 < n

26
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residual’ y,, is dependent, via the denominator of (36), on the number of subsequent predictions
that are to be made before the statistical test for trend will be applied (predictions of those X;
with n < ¢ < ng+K—1), as well as on the eventual realised values of these later-predicted elements

of the (X,) sequence. Under the usual null hypothesis that the (U;)’f‘"*'K"l are independently

1=1

distributed from an identical uniform probability distribution (corresponding to a PFS of the (X,)

which is ‘perfect’ or ‘true’, and which nowhere concentrates predictive probability mass at a point

value—see §3.3 on p49), the (y,):‘f:f{ % become distributed as the order statistics of a random

1[0, 1} sample of size one less than the size K of the ()oK =1

1="Np

sample??. Significant deviation
of this (y,):‘_E:K sample from such uniformity, as measured by the Kolmogorov-Smirnov distance
(sometimes shortened to ‘KS-distance’, or ‘Kolmogorov-distance’) of the sample c.d.f. of these (y;),

no+ -1

has been used elsewhere to test for systematic trend in the sequence (u,-),-=n"

. (Littlewood and
Keiller [59] point out that any such trend might be interpreted in terms of a failure of the PFS to
capture correctly some trend in the reliability data—in their case an inter-failure time sequence—to
which the PFS is being applied.)}

The immediate difficulty with transporting this y-plot technique into the generalised context
of our Modified U-Plot is that we have resorted to a randomized u-residual (27) each time that
predictive probability has been concentrated at a point value z, immediately prior to this value
being realised, X,,=z. Then the corresponding u, in (27) is incompletely observed. So long as there
is at least one such randomized u,, for which we will finally have only a posterior distribution—
not an exact numerical value, then all of our (y;)™**~? become RVs (V)M +X=2 gor which we,

1I=1 =N

likewise, have only posterior distributions with which to work. (In fact, at the end of our sequence
no+K—2 ‘ (:r‘)ﬂni-f{-l

of observations, we have a joint, posterior distribution (Y i=na i=no

for the Y-vector,
whose components will be statistically associated.) Recall from §3.5 that, in this generalised discrete-
or mixed- prediction case, under a hypothesis of ‘perfection’ of our PF'S (notated as P = Q in §§3.2-
3.5), and prior to obtaining any observation evidence of the form (X,) = (z,), our randomized
U, are distributed i.i.d. uniformly Y{0,1]. Under the same ‘PFS perfection’ hypothesis, but now
conditionally at the end of the prediction/observation process, given observations (z,);

updated distribution of our randomized U, says that they are now conditionally indepcndently,

non-identically, uniformly distributed

Un | (X701 Ulpok, gni] (37)

27Briefly, under the null hypothesis, a u — ~ log(1 - u) transformation creates i.i.d. exponentially distributed RVs.
Thinking of these as the spacings of successive points of an HPP process in time, we may consider the time interval

from time zero, up to the time of the K th of these points, and condition on its length. It is a well known property {14,
p27] of the HPP process that the positions of the intermediate K'-1 points within this interval are then conditionally
distributed as order statistics of a (K —1)-sized random sample from a uniform distribution.
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where k is determined by the value of the observed z,, and may below be dropped from the notation
without ambiguity. See Figure 3(a) on p51. For the data illustrated in Figure 6a, we have tabulated
these ‘observed u-intervals’ [pn, ¢»] as the central columns in Table 1 on p72. Clearly the development
of a ‘y-plot-based’ test for trend in the randomized (u,) would require that some thought should
be applied to the consequences, of this posterior Uy,-distribution (37), for the induced posterior
distribution of the (Y,) vector, defined by (36), under the same null hypothesis of a perfect PFS.
Firstly, we can see easily from (36) that y, is a monotonically increasing function of each u; with

no < 1 < n, and a monotonically decreasing function of each u; with n < i1 < ng+K -1, yielding the

bounds of the posterior marginal distribution of Y, | (-'E:)?;:HK 5
> log(1 - pi)
min __ _____._____L"‘l__________________
In = o+ K~ 1 (38)
Z log(1l — p;) + Z log(1 - ¢:)
$ =T i=n+1
n
D log(l - ¢:)
max 1=nn
Un T n np+K-~-1 (39)
D log(l-g)+ > log(l-p)
t1=n i=n+l

With a little more effort®®, the mean value of this same posterior Y,-distribution

no+ K -1

(:E‘l ﬂi,::{ 1] - volume(C) ./ [ Z log Lo u‘ Z log(l - Ui)]

1=1n0 i'=ﬂn

B[,

may be obtained by numerical integration, where C is the K-dimensional hyper-cube defined by

pi < ui <gqi,i=nog,...,no+K~=1. The numerical values for these three y™", E[Y, | data], ym*,

obtained using the same data set that was used to produce Figure 6a, are tabulated as the righthand
columns of Table 1 on p72. These three columns are plotted in Figure 6b in the form of three
corresponding sample c.d.f.s (but note the cosmetic adjustment mentioned in footnote 30). That is,
for each value of the ordinate P, if we draw a horizontal line across the figure at that P-value, it will
intersect the three graphs shown at the minimum, mean, and maximum, respectively, of the posterior
distribution of the point at which the y-plot (i.e. the sample c.d.f.—were the exact values comprising

the sample (Y.,.,.,),,l__ﬁ known) corresponding to our unobservable, randomized (U,)>> ¢ Would intersect

T =

the same horizontal line. As in the case of the Modified U-Plot, which we earlier defined similarly as

the posterior mean of an unobservable plot%? associated with randomised residuals, it is not obvious

28The dimension of the integral may be high, but the integrand is a well-behaved, bounded, smooth function,
monotonic in each argument wu;.

29similarly, but not quite equivalently: Even if we restrict to equal weights w; in the definition (29), (30) on p57
of the Modified U-Plot, still we used there (see also (32) on p59) the posterior expectation of the sample c.d.f. of an

‘incompletely observable sample’; whereas the middle plot in Figure 6b corresponds rather to the sample ¢.d.f. of the
posterior expected order statistics of an ‘incompletely observable sample’.



CHAPTER 3. EXTENSION TO THE CASE OF DISCRETE PREDICTIONS 71

how to interpret the middle plot of Figure 6b in a manner enabling a formal statistical test for trend
to be obtained. As for the U-plot case, we provide no answer, in this thesis, to the general problem of
formally interpreting our “E[Y]-plot” in the discrete- (or mixed-) data cases. Fortunately, however,
in the case of this particular data set, the deviation from the 45°-line is sufficiently pronounced that
even the extremes (38), (39)—between3which the unobservable ¢.d.f. of the true Y;-sequence must
of course lie—can be used to formally reject a hypothesis of uniformity for the (Y,) with a high
degree of confidence. The Kolmogorov-Smirnov distance (KS-distance, or KS-statistic) [41, §30.49,
pA77], [80, 75] is one test statistic commonly used in this context. In the case of the data illustrated
in Figure 6b, we know that the KS-statistic (of the unobservable sample c.d.f. of the randomized
(Yﬂ)iiﬁ values) must be at least .2283. We are assured of this because the most ‘vertically distant’
point on our “y™* c¢.d.f.” from the 45°-line may be easily verified from the numbers in Table 1 to
occur immediately before the step positioned at the value 55" on the horizontal axis. This is the 23rd
y™"_value (because we began prediction at n = ng = 6), i.e. it is the step up to level %% on the P-axis
(the vertical axis of the graph). So, without reference to the posterior y-plot distribution shape or
to the computed values of the posterior y-means, but knowing only the ertremes y™" and y™2* of
this distribution, our lower bound on the KS-distance is the distance between the points (y5y", 22

and (y2in, ymin) on Figure 6b. Coincidentally, this lower bound of 0.6773—22 = 0.2283 is equal (to 4
significant digits) to the 1%-critical value of the Kolmogorov-Smirnov test®! for a sample of this size
(yn, n = 6,...,54, so the sample size is 49 [80, 75]). We can conclude, in the case of this data shown
in Table 1 and Figure 6a, that there is a formally confirmed deviation of our ‘randomised y-plot’
below the 45°-line, which is at least as significant as the 1%-level. The (Y,,) are therefore statistically
‘too large’ to be accepted at the 1%-level as a sample from a parent distribution uniform on the
interval [0,1]. This in turn means that the randomised (U,) show a significantly decreasing trend,
as Figure 6a earlier seemed to suggest that they might, so that the DJMAG predictions obtained

with this discrete SS3 data set are tending towards increasing pessimism (smaller u-values) as time

progresses.

30We found that, if one attempts to plot at this resolution exactly the steps of a step function (and at the same
time distinguish the three plots by means of dashed line styles), then the graphing package produces an unsatisfactory
line. So Figure 6b was plotted by joining with straight line segments only the front (i.e. upper, left) corners of each
‘step’ (of the sample c.d.f. functions, for each of the three quantities that are tabulated in the ‘Y-values’ column of

Table 1). l.e. there is a small discrepancy (maximum vertical size 315 : 80 just visible at the resolution of this figure)

between the plots shown and the true region known to contain the sample ¢.d.f. graph of the unobservable (yn)i‘Lﬁ
sequence. This pictorial discrepancy is present only on the plots of Figure 6b, and does not affect either the numerical
values in Table 1, or the calculation of the lower bound on KS-distance, both of which we obtained exactly (to the
number of digits shown in Table 1), using the exact, step-function sample c.d.f.s., as required by the rigorous KS test
procedure.

3ltwo-sided, single-sample
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There have been several other tests proposed for identifying trend in the spacings of a point-
process. For example, the ‘Laplace test’ [7, 65], or the various tests mentioned in [14, Chapter 3]. We
will not further pursue the notion of formal U,-trend-tests for our randomized (U,,) in this thesis,
contenting ourselves with the initial thoughts and example given above about extending the ‘y-plot’
method, and with our proposal that the possibility of systematic trend in the (U,) provides one
potential justification for considering the use of unequal weights w; in a Modified U-Plot (29) on

p57 when it is to be used for recalibrating a PFS.

Failure Counts [/-values Y-values
Index Count

n m, Pu Gn y::““ E[Yn] y::'“x

6 4 0.4070 0.6019 0.007289 0.0116 0.01744

7 2 0.0954 0.2457 | 0.008709 0.0146 0.02270

8 10 0.9966 0.9990 0.08971 0.1152 0.1489

9 3 0.2432 0.4402 0.09407 0.1221 0.1587
10 4 0.4743 0.6686 0.1039 0.1361 0.1775
11 5 0.6817 0.8260 0.1214 0.1592 0.2070
12 7 0.9120 0.9615 0.1586 0.2047 0.2617
13 10 0.9917 0.9971 0.2325 0.2900 0.3586
14 5 0.4965 0.6702 0.2442 0.3045 0.3752
15 8 0.9021 0.8533 0.2822 0.3477 0.4227
16 8 0.8645 0.9306 0.3157 0.3852 0.4630
17 5 0.3774 0.5505 0.3246 0.3955 0.4739
18 4 0.4002 0.5747 0.3343 0.4064 0.4854
19 14 0.999] 0.9997 0.4508 0.5286 0.6099
20 7 0.5525 0.6966 0.4663 0.5447 0.6255
21 9 0.8022 0.8850 0.4963 0.5752 0.6549
22 3 0.0339 0.0917 0.4973 0.5763 0.6558
23 7 0.5776 0.7190 0.5145 0.5934 0.6719
24 7 0.5649 0.7077 0.5313 0.6101 0.6872
25 7 0.5536 0.6976 0.5478 0.6262 0.7019
26 3 0.0466 0.1195 0.5493 0.6276 0.7030
27 10 0.9211 0.9604 0.5975 0.6741 0.7459
28 13 0.9860 0.9939 0.6773 0.7496 0.8150
29 3 0.0296 0.0818 0.6784 0.7506 0.8156
30 3 0.0379 0.1005 0.6798 0.7517 0.8164
31 6 0.4118 0.5718 0.6924 0.7628 0.8254
32 8 0.7210 0.8298 0.7200 0.7874 0.8462
33 1 0.0018 0.0130 0.7201 0.7875 0.84G2
34 2 0.0211 0.0730 0.7212 0.7883 0.8467
35 1 0.0045 0.0288 0.7216 0.7886 0.8468
36 2 0.0396 0.12206 0.7234 0.7900 0.8476
37 1 0.0084 0.0487 0.7240 0.7904 0.8478
38 0 0.0000 0.0111 0.7242 0.7905 0.8479
39 6 0.7523 0.8669 0.7560 0.8179 0.8702
40 4 0.3832 0.5769 0.7694 0.8286 0.8782
41 4 0.3916 0.5858 0.7832 0.8397 0.8862
42 1 0.0153 0.0792 0.7844 0.8405 0.8866
43 3 0.2387 0.4342 0.7933 0.8472 0.8911
44 4 0.4488 0.6441 0.8101 0.8603 0.9005
45 7 0.8997 0.9547 0.8630 0.9035 0.9350
46 3 0.2377 0.4329 0.8726 0.9102 0.9392
47 1 0.0196 0.0967 0.8742 0.9112 0.9396
48 4 0.4764 0.6707 0.8935 0.9252 0.9493
49 3 0.2738 0.4797 0.9048 0.9330 0.9541
50 0 0.0000 0.0244 0.9052 0.9332 0.9541
51 2 0.1302 0.3108 0.9117 0.9373 0.9562
92 b 0.7296 0.8605 0.9475 0.9635 0.9750
53 1 0.0300 0.1353 0.9501 0.9649 0.9755
54 1 0.0332 0.14063 0.9529 0.9664 0.9760
55 5 0.8191 0.9184

Table 1: Investigation of Y-Plot as Measure of Trend in the U-Data of Figure 6a
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Figure 6b: Distribution of ‘y-plot’ for DJIMAG PFS applied to SS3 data

3.6.5 A Difficulty of Recalibrating Very Small Probabilities

It perhaps seems unreasonable to assume that the predictive c.d.f., G5 (- |u™~?), should possess
discontinuities, or discontinuities in derivative, at the points, mentioned in §3.5, where Sy,.1 does.
For this reason we have applied the same smoother, based on the use of B-splines and used in [11],
to S,,_; before using it as GS (-|u™~!) in order to recalibrate. The results obtained are presented
in §4.2.

A modification of this smoother has been implemented, in an attempt to overcome the following
weakness in the recalibrator as so far described. A large random variability in the recalibrated
predictive probability of unlikely events results from the above method of defining G5 (- {u™~1).
This may be especially noticeable in the case of discrete predictive c.d.f.s. The importance or
otherwise of this variability depends in part on whether it is considered desirable to predict unlikely
events as accurately as likely ones, with probabilities which are proportionately not too far in error.
If this is so, then the random variability can be partially corrected by the smoothing procedure as it
stands, but further improvement has been obtained (as measured by discrete prequential likelihood).
If a “small” (in probability terms) subset, A say, of [0,1] is considered and if the number n -1 of

observed u; is not large, then there is a high probability that the proportion of the u; in u"~! which
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fall in A is not at all representative of the ‘true probability’ of such an event occurring, nor, more
importantly, of the observer’s subjective “recalibrated” probability (i.e. under his alternative model
S*) that the nexrt U, is about to fall in A. This is simply because, in percentage-error terms, a
reliable estimate of the probability of an unlikely event is not given by the proportion of occurrences
in a small number of trials3?. For example, in the context of discrete predictions it is frequently
the case that the recalibrated predictive probability of one discrete outcome for X,,, given z"1,
corresponds to the predictive probability, based on S*, of U, lying in such a small subset of [0, 1].
(This can be verified from the u-plots in Chapter 4.) To take a hypothetical example in which
X, takes non-negative integer values only, suppose A is the interval [0,.01] and the event X3¢ = 0
or 1 given z!% corresponds to Ujg lying in A (i.e. suppose Fys(1|z!®) = .01). Then the current

recalibration procedure would assign a recalibrated predictive probability of

0, if u; > .01 is observed for ng <1 <15

Fyf(1)z'%) = {

w; at least, if u; < .01 is observed for some ng <1 <15

either of which events (and especially the first) has a significant probability even if the raw PFS is
perfect, (in which case Fi (1|2°) = .01 would be the “perfect” prediction.) This example illustrates
why Pge [U,-. € Alu”“'l] cannot safely be obtained empirically from S,-1 when Pg. [UﬂL € Alu‘""l]
is small and n is not large. Attempting to do this results in large random fluctuations in the
proportionate adjustment from Pgr [U1r1 € Alu“'l] to Pg. [Un € Alu"“l] during the recalibration

step.

3.6.6 A Solution using a Gradient-Constrained U-Plot for Recalibration

To get round this problem the smoothed G2 (- |u™~1!) can be restricted to belong to a family with
upper and lower bounds on first derivative. Another way of saying the same thing is that bounds on
the ratios of recalibrated and unrecalibrated predictive probabilities of all events of the (U,,) process,

one-step-ahead, can be imposed

n-— n-— 1 n-—
eg[UneAm I]SB[UnGAIu 1]535[UHGA|u Y, (40)

say, where 0 < ¢,6 < 1%. Although the introduction of the bounds € and § has been jus-

tified by considering unlikely events, U, € A, where A is small, it follows (in the general case

by considering the Radon-Nikodym derivative for the two measures A — Pg. [Un € A[u“"l] and

32The coefficient of variation [44] of the proportion of successes in n Bernoulli trials with parameter p is l:—PE ~

(np)~% asp — 0.

330One further extension which has not been implemented in obtaining the results of Chapter 4, would be to allow ¢
and & to decrease as time progresses since, as n increases, the larger sample u™~?! will allow S*, defined without the
last refinement, to produce more accurate predictive probabilities for U, lying in smaller sets A.
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A Per [Un € A|u“"‘1]) that this necessarily entails imposing the same bounds on the ratio of
these two predictive probabilities for all events A C [0,1]. It will be noticed that, for a discrete
PFS, the bounds € and § can be directly interpreted in terms of the logPLR*? plot of recalibrated

versus unrecalibrated predictors. The logPLR plot (see for example Figure 14b) will have successive

ordinates, v, say, which must satisfy
Yn-1 T loge SUYn S Yn-1-— 10g5

The details on the method of imposing these bounds on the slope of the smoothed function
GS™(-|u™~!) used for recalibration are given in Appendix B. This method and the use of unequal
weights w;, are the two enhancements mentioned on p62 at the beginning of this section, and can

be introduced into the recalibration procedure either separately or in combination.

3.7 Implications for Recalibration of Other Predictions

This chapter concludes with a review of the ideas which have been used to extend the method of
recalibration to arbitrary one-step-ahead scalar predictive distributions. By choosing to view the
recalibration method in terms of prediction of the outcomes of sequences of events, rather than the
values of sequences of random variables, it is suggested that recalibration might be further extended,

including as an example an application to the direct recalibration of failure rate predictions.

3.7.1 Recalibrating a Raw Predictor of a Sequence of Analogously Pre-
dicted, Equi-probable Events

Suppose we concentrate now on a sequence of individual events (Ey) i.e. we have a discrete time
metric n, which may if we like be derived in some way from an underlying continuous time model
(Q, £, P), and we know that at discrete-time n = 1 we will have observed whether of not E; occurred,
etc. Thus we assume that E, € G, where G,, denotes observation up to ‘time’ n (so that G,-; is
a sub-sigma algebra of G, for each n). Then an interpretation of the phrase “well-calibrated” for a
sequence of one-step-ahead probabilistic predictions (assumed derived from a particular PFS P) as

to the occurrence or otherwise of each of these events is usually thought of [19] as something like

-;11- ; Ig, isclose to -:; ZE[Eilgi-ll : (41)

1=1

34This is the analogue for two competing PFSs of the likelihood ratio for two competing parameter values from a
parametric family of models. See (48) on p83 for a definition.
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or perhaps even

1 n 1 n
;;I&-;;gwdg.-ﬂ-»o as 1 — 00, (42)

in some form of stochastic convergence®®. Here, as on p50, we use indicator function notation, so

that Ig, is the random variable whose value is

{ 1, if event E; occurs:;

0, otherwise.

In practice, of course, there is usually only one unique realisation of the process available, and,
for that data sequence, well-calibratedness is simply an empirical property. Then the concept of
stochastic convergence of (42) is not applicable. Although, such theoretical considerations might
still be useful in providing arguments to say how close is ‘close’ in (41); or, when comparing two
PFSs on the same event-sequence, to say whether one has ‘significantly’ outperformed the other in
the sense of (41).

Given a sequence {F,) of events which have each been analogously predicted with equal probability
p, this kind of definition of “well-calibrated” has been used to form the basis of a definition of
recalibration for current predictive probabilities of as yet unobserved events. By “analogously”

predicted, we mean ideally that®°
e the events E,, of the sequence are themselves in some sense analogous to each other,

e the states of knowledge G, -1 or observation on the basis of which each event has been predicted

are in some sense analogous relative to the event being predicted for each event in the sequence,

e the conceptual and probabilistic model, inference procedure, and resulting forecasting system
P (which may have been composed into a single automated algorithm) are likewise similar or

identical for the prediction of all events of the sequence.

When these conditions hold, it is intuitively appealing, and forms the basis of the methods discussed
in {2, 6, 10, 58, 19] that the definition (41) of well-calibratedness should be extended, for such
sequences of equi-probable event predictions, and provided n is sufficiently large, to an equation

which assigns the left hand side of (41)

P(EnialGnl = = Iz, (43)

j=1
as a recalibrated predictive probability of the next event E, ;1 in the sequence.

35In [19] it is shown that a PFS which may be identified with the true conditional probabilities of a stochastic
process measure P (see §2.2) is well-calibrated in this second sense using “P-almost sure” convergence of the limit.
3%or, at least, that the triples {(E,, data, -1, prediction-method,) are believed to be evolving systematically with n
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3.7.2 Recalibration of a Predictor of Random Variables Interpreted as

Recalibration of Predictors of some Associated Event-Sequences

This notion of the property of being well-calibrated has been used in [2, 6, 10, 58] as the basis
of a procedure for re-calibration of a probabilistic predictor, as discussed in §3.2. The work con-
tained in these references in fact describes the recalibration of a sequence of predictive distributions
(FX(-|Xn-1)) of continuous scalar random variables, (X,)—rather than a sequence of predictive
event-probabilities—within an iterative predict— observe— predict... set-up which is in other re-
spects identical. The methods used in the references to define a property of well-calibratedness
and also to recalibrate predictions of such a continuous quantity can easily be expressed in terms
of analogous methods for the less complex event sequences introduced in this section. It is only
necessary to focus on a few particular event sequences from amongst all such sequences which could
be defined along the lines of E, = {w : Xn(w) € A,n} for some set A, (where the set3? A, is
allowed to be defined in terms of observations G, -1). The method used is effectively to construct
for all fixed pairs of numbers pg € [0,1] and p € [0,1 — po], a sequence (E, (po,p)) of events defined
in terms of the pair of percentiles 100ps% and 100(pg + p)% of the raw predictive distribution of
X,. That is, to define the event Ep(pg,p) = {w : an < Xpn < bn}, where FX (a,]z™~!) = po and
FX(bylz"™!) = pp + p; n = 1,2,... . Then a recalibrated prediction of the event E,4; assigns,
by (43), the left hand side of (41) to be Pp+«{F,+1(po, p)|z"], the recalibrated probability of E, 4
given that X™ = z™. A recalibrated predictive c.d.f. for the random variable X, 4, is then the c.d.f.
which assigns this recalibrated probability to events E, +1(po, p) for all pg and p. Note that it is only
sequences of events defined in a this way, in terms of a pair of percentiles which are fized for all n,
that are correctly recalibrated according to (43) by this method. Other sequences of equi-probable
(i.e. equi-probable in the view of the evolving predictions of the raw PFS) events must inevitably
be assigned recalibrated probabilities which do not satisfy (43)3®. But note also that, fortunately,
for a raw predictor of a continuous scalar process (X,), it is trivial to show that, for each n, all
of the recalibrated probabilities produced®® are not only intuitively sensible (in the sense of (43))
predictive probabilities for each such sequence of events, but also are “coherent” [19, 31] to the
extent that they constitute a genuine predictive probability distribution of the random variable X,,

i.e. the additivity and other axioms are satisfied by the recalibrated probabilities assigned to these

37To be clear: the question of ‘which set A, is' may be determined by past observations, but the outcome as to
whether or not A,, contains X,, will not be determined until X, is observed.

381n the terminology used earlier, we can say that we here interpret ‘analogous’ events to mean events identically
defined in terms of percentiles of the successive c.d.f.s of the raw, continuous PFS.

39by selecting different values of pg and p
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events by the predictive c.d.f. This is a consequence of the fact that, to define a probability distri-
bution for a scalar quantity, it is only necessary to specify some non-decreasing function satisfying
the properties of a c.d.f. And we can see that our recalibration procedure—defined by applying (43)
to event sequences defined from raw percentiles—turns out (use (43 with pg = 0)) to simply ‘adjust’
the raw predictive c.d.f. by composing with a monotonic function as in (34), using (35) with equal

weights w;.

3.7.3 The Problem of ‘Missing Events’ in the Failure-Count Case, or more

Generally the Mized c.d.f. Case

Viewed in the above terms, the problem arising in the extension to mixed or discrete predictive
c.d.f.s, can be expressed as a shortage, for some pg, p pairs, of such past events E;(pg, p) which we
would wish to have been first predicted, and then observed, by the time a prediction of E, 41 (pg, p)
is required. Thus in the general non-continuous case, for some or perhaps all i < n, the desired
percentiles pg, po + p of the past predictive distributions F* (-] X;-1) do not exist. In the case of
failure-count observations, this is because the richness of the family of events of the mathematical
process model, being at this stage naturally the result of an attempt to model the richness of the
family of potentially observable events in the real world, has been reduced by the move to the cruder,
less discriminating failure-count observations. (For failure-counts there may be the additional and
separate problem for recalibration, that as well as the absense of exact 100p-percentiles of the raw
predictive distributions for some p and i = 1, 2,...,n, there will also be a smaller number n of past
predictions than would have been the case if individual inter-failure time data had been collected—

Refer back to paragraph 3 on p43, and footnote 32 on p74.)

3.7.4 Solution by: (i) Enriching the Mathematical Process Model; and

(ii) Using Posterior Expectations in Place of Full Observations

In §§3.4,3.5 the problem of this deficiency of the supply of previously predicted and subsequently
observed events for use on the right hand side of (43) has effectively been overcome by expanding
the probabilistic model to include additional events in as “natural” and plausible a way as could be
found. Since the selection of the events to be represented within the original model was determined
by those events whose occurrence, or not, is fully determinable in the real-world observation process,
it follows that the price paid for this extension necessarily involved the problem of unobservable or

“fictitious” events having been added. Therefore, in order to include these new events on tle right
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hand side of (43), a substitute is sought for the now unobservable term Ig,. For this purpose it
can be considered that, although such an event E, added in a mathematically natural way to the
model, is not observable, this is far from saying that it is thought of by the observer as being
stochastically independent of all events whose occurrence or otherwise will be observed subsequent
to the probabilistic prediction of E by an extended raw prediction system which we might apply to

the extended model. Hence the added event E may have a posterior probability, given a period of
intervening observation, which differs from the probability with which it was predicted prior to that
period of observation. Then a tentative proposed solution to the problem of the non-observability
of F is to replace the now unobservable random variable Ig in (43) by its posterior expectation,
given the most up-to-date intervening observations. It is stressed that term “posterior expectation”,
as used rather loosely here, should not be interpreted with respect to the raw PF'S process model
P only, since the whole purpose of the recalibration step is to replace that badly calibrated model
with a better one by some kind of ad-hoc remodelling of the process, or some aspect of it, in an
alternative, and probably rather cruder way.

To sum up this way of perceiving the recalibration method used for discrete or mixed prediction
in §§3.4-3.6, there are two steps to circumventing the problem of the shortage or absence at stage
n of historically equi-probably predicted, analogous events {(E;(p,po));—~, compared to the more

straightforward situation with the prediction of continuously distributed quantities:-

e Embed the process model in a larger one which is richer in events by adding non-observable
events. Ideally but not necessarily these could concern some unobservable aspects of the

conceptual model of the real world.

e For those terms Ig on the right hand side of (43) for which FE is such an added event, replace
Ig by the posterior probability P*[E|observations to date]. Here, this conditional probability
is to be thought of as a probabilistic prediction or, more likely, ‘backwards’ estimate of the
chances of E’s occurrence with respect to some process model which may differ in some respects

from the raw model being recalibrated—i.e. P* here is something analogous to S* on pG3.

The above way of describing the recalibrator of discrete and mixed predictions developed in
§83.4-3.6 is mentioned in the hope that it may suggest methods of generalising the recalibration
technique beyond situations in which the one-step-ahead predict—observe—+predict. .. cycle applies.
There is interest in longer term predictions of software reliability and it is tentatively suggested that
perhaps the method of using up-to-date posterior probabilities of events in the “recalibration set”

{E\,E,,...,E,} in place of their observed indicator function values Ig, may provide some kind of
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weaker recalibration technique for longer term predictions. We have not persued this idea further

here.

3.7.5 Direct Recalibration of Failure-Rate Estimates

That these methods do suggest ways of recalibrating quantities other than the predictive distribution
of the next term in the observation sequence (X,) itself is exemplified by the following proposed
method of recalibrating point predictions of instantaneous program failure rate (leaving aside the
question of how these quantities r,41jn say, themselves may have been o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>