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Abstract 

In this thesis it is developed and demonstrated the workings of a copula-based technique 
that allows the derivation of dynamic trading strategies, which generate returns with 
statistical properties similar to hedge funds. It is shown that this technique is not only 
capable of replicating fund of funds returns, but is equally well suited for the replication 
of individual hedge fund returns. Since replication is accomplished by trading futures on 
traditional assets only, it avoids the usual drawbacks surrounding hedge fund 
investments, including the need for extensive due diligence, liquidity, capacity, 
transparency and style drift problems, as well as excessive management fees. This 
replication technique is also used to evaluate the net-of-fee performance of 875 funds of 
hedge funds and 2073 individual hedge funds, up to an including November 2006. 
Comparing fund returns with the returns on dynamic futures trading strategies with the 
same risk and dependence characteristics, no more than 18.6% of the funds of funds and 
22.5% of the individual hedge funds in the data sample convincingly beat the 
benclunark. Besides the replication and evaluation of funds which already exist in the 
market, this technology can also be used to create new funds with previously 
unavailable return characteristics, the so-called `synthetic funds'. In a set of four out-of- 
sample tests over the period January 1998 - February 2007, it is shown that the 
replication-based strategies are indeed capable of accurately generating returns with a 
variety of properties, including negative correlation with stocks and bonds and high 
positive skewness. The synthetic funds also produce impressive average excess returns. 
Disappointing performance is leading hedge fund investors to look for cheaper 
alternatives to invest, such as indices of hedge funds. Unfortunately, investable hedge 
fund indices are nothing more than funds of funds in disguise, with performance similar 
or even worse than real funds of funds. The replication technology generates returns 
with statistical properties very similar to those of hedge fund indices, and a higher 
average return for most hedge fund categories, but without actually investing in hedge 
funds. 
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Introduction 

A hedge fund is a private fund which can take both long and short positions, leverage 

itself using derivatives and invest in any local or global market, with the goal of 

generating high returns, in absolute terms or compared with a benchmark. Unlike other 

investments, hedge funds are usually not regulated by any government commission. 

Over the last 10-15 years hedge funds have become very popular with high net worth 

investors and are currently well on their way to acquire a significant allocation from 

many institutional investors as well. During the period 1990-2006, the number of hedge 

funds has risen from around 500 to more than 9000, and the assets under management 

are estimated to have increased from 50 billion to more than 1.5 trillion of US dollars'. 

Initially, hedge funds were sold on the story of superior performance, where high skilled 

managers could `beat' the market. Seduced by this argument, private wealthy investors 

were responsible for the initial growth of the industry. Toward the end of the 1990s the 

performance of hedge funds started to deteriorate. Also, institutional investors with 

better risk management practices got more interested in these funds. Given the two 

reasons above, hedge funds began to be sold not on the promise of superior 

performance, but on the basis of the diversification argument, due to their low 

correlation with stocks and bonds2. 

Despite its popularity, investments in hedge funds come with some serious drawbacks. 

The first one is the lack of liquidity. Most hedge funds use lock-up clauses to tie in new 

investors for some period of time, up to five years3. After that, investors need to give a 

prior notice if they want to withdrawal their money, and in some cases they even need 

to pay an additional fee of up to 5%. The second major drawback is the lack of 

transparency. Hedge funds are usually `black box' investments, which turns more 

HFI Press Release. 
Z The current trend is to introduce retail investors to hedge funds as well. Since the typical retail investor is unlikely to appreciate 

the special nature of hedge fund investment, this will intensify the call for more profound regulation, which in turn will force the 

industry to reshape itself once again. 
3 Investors are becoming increasingly resistant to lock-up periods. According to Dyment et al. (2005), in 2004 68% of investors 

would only invest with managers with lock-ups of one year of less. In 2005, this rose to 77%. 
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difficult the assessment of their risk profile, and any change of style or strategy 

overtime. Moreover, some strategies can suffer from capacity problems, specially the 

arbitrage-related ones. This has already happened for the convertible arbitrage strategy, 

for example4. Another major drawback is the level of fees imposed by most hedge 

funds. The average fund charges a flat management fee of 2% plus an additional 

performance fee of 20% of gross returns. This is usually known as "2 plus 20". For 

example, considering an annual return of 10%, this would mean 40% of the gross 

returns being paid as fees. Funds of funds tend to charge an additional "1 plus 10" on 

top of the "2 plus 20" structure. 

If returns generated by hedge funds were far superior, the drawbacks discussed above 

would at least be compensated in some way. However, recent performance studies5 

show that the return-risk characteristics of hedge funds are no longer superior, but just 

different6. Then the question which naturally arises is whether it is possible to generate 

hedge fund-like returns mechanically trading cash, stocks, bonds and other asset classes. 

This so-called `replication' would eliminate the liquidity, transparency, capacity and 

excessive fees problems. 

Given these considerations, a new technique is introduced in Chapter 2. This technique 

extends the work of Amin and Kat (2003b), to replicate not only the marginal 

distribution of a given hedge fund, but also its dependence with the investor's existing 

portfolio distribution. 

The execution of the strategy is based on dynamic trading. The basic idea of dynamic 

trading was put forward a long time ago by Arrow (1964), who pointed out that, instead 

of following a buy-and-hold strategy, by trading more often investors can exert greater 

control over the evolution of the value of their investment portfolio. This is an 

extremely important observation as it implies that when a given payoff profile is not 

directly available in the market, either as an individual asset or as a combination of 

different assets, investors may still be able to create it themselves by trading the 

available primitive assets in a specific way. The idea of complementing a market by 

4The annual return of the HFRI Convertible Arbitrage Index was 1.18% in 2004 and -1.86% in 2005. 

5 These studies are briefly reviewed in Chapter 1 

6 See for example Amin and Kat (2003b), Bailey et al. (2004) or Fung et al. (2007). 
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dynamic trading was taken to the extreme in modern option pricing theory, which is 

rooted in the fact that, under certain simplifying assumptions, when investors can trade 

continuously, they will be able to generate any payoff profile imaginable. Black, 

Scholes and Merton used this observation to develop their famous option pricing 

formula. Over the 30 years that followed, others have used the same argument to price a 

large variety of other, more exotic options. The reasoning is always the same though. If 

it is possible to find a payoff function which, given the probability distribution of the 

underlying index or indices, implies the desired distribution, then the dynamic trading 

strategy which generates (returns that are drawings from) that distribution will also be 

found. 

Of course, there are a number of serious hurdles to take. First, the interest does not lie in 

any strategy. To maximize expected return, the cheapest possible strategy is wanted. 

Second, since the aim is to replicate not only a fund's marginal return distribution but 

also its relationship with the investor's existing portfolio, it will be necessary the use of 

bivariate distributions, which can take on a large variety of shapes and forms. Third, 

real markets are a lot less well behaved than assumed in the standard theoretical model. 

As a result, an inconsistency may arise between the determination of the desired payoff 

function, which is a purely empirical matter, and the subsequent derivation of the 

dynamic trading strategy generating that payoff. A second consequence of relying on an 

abstract model is that in practice these dynamic trading strategies may not be able to 

exactly generate the desired payoff. Therefore extensive out-of-sample tests of these 

strategies were performed, using daily data over the period 1985-2006. 

In Section 2.1 it is briefly discussed the theoretical setting in the form of Dybvig's 

(1988a) Payoff Distribution Pricing Model (PDPM), which is extended to a bivariate 

setting. In Section 2.2 the univariate replication is briefly reviewed. In Section 2.3, the 

determination of the desired payoff function is discussed, i. e. the payoff function, 

which, given the distribution of the assets to be traded, implies the desired return 

distribution. In Section 2.4 a number of simulation-based analyses is carried out, 

investigating how the size of the available data sample influences the accuracy of the 

procedure. In Section 2.5 the practical implementation of the procedure and the results 

of some out-of-sample tests are discussed. Three well-known hedge funds (of funds) 
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are replicated. Proofs relating to the univariate and bivariate PDPM can be found in 

Appendix A. 1 and A. 2. 

The replication procedure concentrates on replicating a fund's risk profile without 

explicitly considering the fund's expected return. The underlying assumption is that, in 

an efficient market, in the long run investors will receive a return in line with the risk 

that they have taken. This is why the empirical finding that hedge fund returns are not 

truly superior is fairly crucial. If they were superior, their risk profile could still be 

replicated, but it would not be possible to replicate their average as well. If it is superior, 

it cannot be replicated and vice versa. The latter observation points at another 

application of the replication technique discussed above: the evaluation of hedge fund 

returns. Explicitly constructed to offer the same risk profile, when the average replicated 

return is significantly higher than the average fund return, the fund is the inefficient 

alternative. 

Using this idea, the performance of 2073 individual hedge funds and 875 funds of hedge 

funds is evaluated in Chapter 3, up to and including November 2006. Section 3.1 

introduces the approach. In Section 3.2 one illustrative example is provided. In 

subsections 3.3.1,3.3.2 and 3.3.3 it is discussed the data description, distributional 

analysis and evaluation results for funds of hedge funds. In Subsections 3.4.1,3.4.2 and 

3.4.3 the same is discussed for individual hedge funds. 

In Chapters 2 and 3 the replication technique is used, respectively, to replicate and 

evaluate the returns of existing hedge funds. There is no reason, however, why the same 

technique could not be used to create completely new funds, providing investors with 

previously unavailable return characteristics. Finding and selecting new diversifiers is 

a very laborious and costly process. Typically, a fund's risk-return profile is not 

immediately obvious and investors may have to dig long and hard to gather sufficient 

information. This is where being able to create any type of risk-return profile pays off 

huge dividends, as it allows us to structure exactly what investors are looking for. No 

longer do investors have to work with what happens be available and guess what a 

fund's true risk-return profile is. Given an investor's existing portfolio, a special tailor- 

made strategy (or `synthetic fund' as these strategies will be called) can be structured, 
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that produces returns, which fit in optimally with what is already there. Clearly, this is a 

much more natural approach than the usual beauty parades held by investors. 

The above idea could be even taken one step further and, instead of creating a synthetic 

fund as an addition to an investor's existing portfolio, the investor's entire portfolio can 

be replaced by a synthetic fund. This means that investors no longer would have to go 

through the usual process of fording and combining individual assets and funds into 

portfolios in an, often only partially successful, attempt to construct an overall portfolio 

with the characteristics they require. Using dynamic trading technology, a synthetic 

fund that produced returns with exactly the characteristics they were after could be 

designed. 

In Chapter 4 it is tested whether, in practice, it is really possible to create synthetic 

funds, which generate returns with predefined statistical properties. In Section 4.1, four 

different synthetic funds with a variety of return characteristics are created and their 

out-of-sample performance are studied. In Section 4.2 some sensitivity analyses are 

performed to check the influence of the transaction costs, and the underlying chosen. 

Section 4.3 contains a brief comment on synthetic funds' alpha. 

Chapter 5 will deal with the so-called hedge funds indexation. Over the past 20 years, 
indexation of equity portfolios has become very popular with institutional as well as 

private investors. Strongly advocated by big names from academia as well as the 

industry, such as Princeton's Burton Malkiel and Vanguard's John Bogle, assets under 

management by index funds have grown from almost negligible in 1976, when the first 

index fund was introduced, to several trillions of dollars now. It is estimated that 

(excluding closet-indexers) currently 40% of institutionally managed assets are indexed, 

with US institutions quite far ahead of the rest of the world. 

The idea behind indexation is simple. Casual observation as well as large-scale 

academic research shows that the added value of traditional alpha chasing tends to be 

negative. Put simply, most traditional active managers are unable to earn back the fee 

that they charge their investors. This means that hiring these managers is counter- 

productive. On balance they will reduce the after-fee return. The above observation has 

lead many investors to abandon every form of security analysis and active trading 
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altogether. They just buy and hold the market in the form of some index-replicating 

portfolio. 

The rise of indexation over the past 20 years resulted from investors becoming aware of 

and admitting to the fact that the costs of traditional active management often exceed 

the value added. A similar process is currently undenvay in the alternative investment, 

and especially the hedge fund industry, where, as already discussed in this Introduction, 

fees tend to be a multiple of what they are in traditional investment management. The 

HFRI Fund of Funds Composite Index for example, returned 4.07% in 2000,2.8% in 

2001,1.02% in 2002,11.61% in 2003,6.86% in 2004,7.49% in 2005 and so far until 
October 2006 no more than 6.52%. Other well-known indices show a similar picture. 

Given the above, and very similar to what has happened in traditional investment 

management, more and more investors are currently looking to improve their after-fee 

return by cutting costs. This brings us to the concept of hedge fund indexation. There 

are many different hedge fund indices around these days, so why not simply buy one of 

those, just as one does for stocks and bonds? Unfortunately, there are several reasons 

why this is going to be problematic: 

1. As hedge fund managers seldom report to more than two databases, different 

indices cover different subsets of the hedge fund universe. This makes choosing 

an index to invest in far from trivial. 

2. Some of the better-known hedge fund indices contain over 1000 individual 

hedge funds. Some contain even more than 2000 funds. In addition, most index 

providers do not explicitly list their index's components, which means it is 

impossible to find out what funds to actually invest in. 

3. Most hedge fund indices contain a large number of funds that are closed for 

new, and sometimes even existing, investors. Also, most funds are highly 

illiquid due to lock-ups and notice periods. This makes any periodic rebalancing 

of an index-replicating portfolio highly problematic. 
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4. Most hedge fund administrators take a couple of weeks to work out the end-of- 

month Net Asset Value (NAV). This means that an index-replicating portfolio 

can only be rebalanced with a very significant delay. 

5. Buying a hedge fund index will only allow one to eliminate the fund of funds 

manager's fee, but not the fees of the underlying hedge fund managers, which 

tend to be twice as high. 

As a result of the above, the majority of existing hedge fund indices are simply not 

investable. Recently, several high profile index providers have attempted to solve this 

problem by introducing what they refer to as `investable' hedge fund indices. 7 

Unfortunately, the latter are nothing more than (more or less mechanically managed) 

funds of funds in disguise. Roughly speaking, investable hedge fund indices result from 

a joint venture between an index provider and a fund of funds manager. First, the 

manager puts together a portfolio of funds, in line with a number of criteria with respect 

to track record, 8 liquidity, valuation, transparency, capacity, etc. Subsequently, the 

index provider declares that portfolio to be the index. Apart from the obvious 

commercial incentive, the problem with investable indices is that there are not many 

hedge funds that fit all applicable criteria. As a result, investable indices are even less 

representative of the hedge fund universe than their non-investable counterparts. 

The main problem with all existing hedge fund indexation schemes is that they still 

require investors to invest in hedge funds, which leaves the main cost factor, i. e. 

managers' fees, unaffected. Obviously, this is not a satisfactory solution for investors 

looking for a cheaper alternative. To eliminate hedge fund managers' fees we need to 

find a way to obtain hedge fund index-like returns without actually investing in hedge 

fiends. This is possible by using the same replication machinery developed in Chapter 2. 

The returns generated by this approach will be statistically very similar to the actual 

hedge fund index returns. There is one important difference though: the synthetic fund 

returns are likely to arrive in a different sequence than the actual hedge fund index 

It is estimated that currently around $15 billion of the total $1200 billion invested in hedge funds is index-linked in some way. 

a Since indices are big business these days, there appears to be a tendency for providers of investable indices to initially only 

include funds with good track records. Since there is little or no persistence in hedge fund returns, this explains why the actual 

performance of some investable indices has been so much worse than their pro-forma historical performance. In addition, 

investable indices have not outperformed the average fund of funds, which is not surprising as they are funds of funds themselves. 
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returns. For investment purposes this should not make a difference, however, as all that 

matters in an investment context are the statistical properties of the returns on the 

various assets and asset classes, and not the exact sequence in which those returns come 

in. 

In Chapter 5 this idea is put in practice. Section 5.1 shows the main results and in 

Section 5.2, some sensitivity analyses are again performed to check the influence of the 

transaction costs, and the underlying indices chosen. 

Chapter 6 concludes based on the results obtained in the replication (Chapters 2 and 5) 

and evaluation (Chapter 3) of hedge funds and funds of funds and also on the creation 

(Chapter 4) of synthetic funds. 
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1. Literature Review 

As mentioned in the Introduction, two important applications of the copula-based 

method introduced in this thesis are hedge fund return replication and hedge fund 

performance evaluation. In this chapter we review previous research in both these areas. 

Early studies of hedge fund performance used traditional performance measures such 

the Sharpe ratio or Jensen's alpha. Ackermann et. al (1999) investigate the effect of 
incentive fees, location, and age on hedge fund performance. They find a positive 

relationship between incentive fees and performance, but no strong location or age 

effect. Brown et. al (1999) examine the perfonnance of offshore funds over the period 
1989-1995, finding positive risk-adjusted performance for offshore funds as a group. 
They fund below average returns for funds of funds though. Edwards and Caglayan 

(2001) analyse hedge fund performance over the period 1990-2001. They find that 

about 25 percent of hedge funds earn positive excess return and that the frequency and 

magnitude of funds' excess returns differ markedly by investment style. 

Because of the non-linearities and non-normalities present in hedge fund returns, the 

traditional performance measures used in the above studies are not appropriate. For 

example, most hedge fund managers use dynamic strategies, which are quite different 

from the buy-and-hold strategy used in traditional investments. Also, these managers 

often use derivatives, especially options, which also create a non-linear relationship 
between fund returns and market returns. Even if the underlying assets were normally 
distributed, these non-linearities would result in non-normally distributed fund returns. 
The basic problem is that CAPM and the Sharpe ratio are derived assuming that 
investors only care about the first two moments of the returns distribution, i. e. the mean 

and the variance. As observed in Brooks and Kat (2002), often the attractive mean- 

variance characteristics of hedge fund returns is accompanied by negative skewness and 

positive excess kurtosis, indicating an increased probability of a relatively large losses. 

As negative skewness and excess kurtosis are both non-desirable features in a return 
distribution, this implies that traditional performance measures will tend to overestimate 
the true risk-return performance of hedge funds. In addition, as noted by Amenc, 

Martellini and Vaissi (2003), this could lead hedge fund managers to implement `short 
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volatilities' strategies based on the sale of out-of-the-money put and/or call options. 

Using these strategies, the premium received by writing the options will increase the 

mean return while the risk (measured only by the second moment of the returns 

distribution) would be limited. Some authors have used modifications of the Sharpe 

Ratio, which take higher distributional moments into account. This includes 

Kouwenberg (2003), Gregoriou and Gueyie (2003) and Eling (2006). However, these 

measures do not incorporate the non-linear relationship with other asset classes in a 

portfolio context, they only look at the marginal return distribution. 

The style analysis technique first introduced by Sharpe (1992) for equity mutual funds, 

has also been used as a tool to replicate and evaluate hedge funds returns. Sharpe 

showed that only a limited number of asset classes are necessary to replicate the 

performance of a large sample of U. S. mutual funds. Once the relevant risk factors of a 

fund are selected and the sensitivities to these factors are estimated, one can construct a 

portfolio of stocks, bonds, cash and other securities, with the same sensitivities, which 

will then generate returns similar to the fund. 

A number of studies have used the factor model approach to evaluate hedge funds, 

including Fung and Hsieh (1997,2001), Schneeweis and Spurgin(1998), Liang (1999), 

Lhabitant (2001), Schneeweis et al. (2003), Capocci and Hubner(2004), Agarwal and 

Naik (2000a, 2000b, 2004), Hill et al (2004), Jaeger and Wagner (2005), Ibbotson and 

Chen (2006) and Hasanhodzic and Lo (2006). 

Fung and Hsieh (1997) incorporate factors which reflect strategy-specific return 

components and a quantity component (leverage). They apply their 12-factor model to 

3,327 mutual funds and 409 hedge funds/CTAs, finding that unlike mutual funds, hedge 

funds returns have low correlation with standard asset classes. Schneeweis and Spurgin 

(1998) propose factors that allow for the possibility of trending prices, short sales and 

intramonth volatility. Doing so, they find that hedge funds and CTAs provide beneficial 

diversification to stocks and bonds. Liang (1999) finds low correlation between 

different hedge fund strategies, and concludes that hedge funds offer a more attarctive 

risk-return trade-off than mutual funds. Capocci and Hubner (2004) use a large hedge 

fund database, with 2,796 individual funds. They consider the models used previously 

by Carhart (1997) and Aganval and Naik (2000a), concluding that around one fourth of 
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hedge funds delivers significant positive excess returns. This over-performance is, in 

most cases, constant over time, except during the 1997 Asian crisis. Aganval and Naik 

(2004) extend the span of one or more benchmarks from purely linear to non-linear by 

including a number of ordinary put or call options on those benchmarks into the return 

generating process. They show the extent of the understimation in the tail risk in the 

mean-variance framework. They also show that a wide range of hedge fund strategies 

exhibit returns similar to those from writing a put option on the equity index. Finally, 

Ibbotson and Chen (2006) use a traditional factor model to analyse about 3,500 hedge 

funds and find that the pre-fee average return of 12.72% cna be split into a fee (3.74%), 

an alpha (3.04%) and a beta return (5.94%) component. 

There are some serious problems with the factor-model approach, though. First, we 

often have little or no idea how a hedge fund's returns are actually generated. As a 

result, it is not clear which factors to use. One factor usually left out is liquidity. Many 

hedge funds act as market makers, buying illiquid assets and hedging the position with 

liquid ones. Omitting liquidity would therefore mean a loss of return potential in the 

replicating portfolio. In addition, some factors, such as volatility for example, can be 

difficult to trade in practice, with relatively high associated costs. Another problem is 

the assumption of a linear relationship between hedge funds and other asset classes. 

Although some authors have attempted to incorporate non-linearity introducing options 

in the replicating portfolio (as, for example, Agarwal and Naik (2004)), this also makes 

the execution of the replication strategies more complicated and expensive. 

As a result of the above, the explanation power of factor models is quite disappointing, 

especially for individual hedge funds. In Hasanhodzic and Lo (2006) for example, the 

variation in hedge fund returns explained by their six-factor model is very low for most 

categories: convertible arbitrage (17.3%), emerging markets (19.4%), equity market 

neutral (10.4%), event driven (19.5%), fixed income arbitrage (14.9%), global macro 

(14.8%) and long/short equity (21.6%). Although the procedure works better for funds 

of funds and hedge fund indices, a model that leaves 80-85% of a fund's return 

variability explained is unlikely to be a good starting point when its aim is to replicate 

month-to-month returns. 
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Table 1.1 summarizes the out-of-sample replication results of Schneeweis et al. (2003) 

for five equally-weighted indices of European hedge funds over the period Jan 2001 - 
March 2003. From Table 1.1 it is clear that, despite the much higher systematic 

component in the index returns, the factor model used is unable to accurately replicate 

the returns on the above indices. As to judge from the correlation between the index 

return and the replicating return, the best results are obtained for long/short equity and 

event driven. Given the straightforward nature of these strategies, this is not really 

surprising. More complex strategies, like fixed income and convertible arbitrage, do a 

lot worse, however. 

Index Replica 

Strategy Mean StDev Mean StDev Corr. index and replica 

Composite -2.97% 3.35% -7.07% 7.92% 43% 

Fixed Income 7.87% 2.96% 2.89% 2.58% 16% 

Long/Short -0.98% 3.83% -9.99% 7.13% 46% 

Event Driven -2.67% 4.79% -6.34% 6.97% 90% 

Convertible Arb 8.28% 1.82% 1.88% 1.54% 17% 

Table 1.1: European hedge fund index return replication. Source: Schneeweis et al. 

(2003, Exhibit 2a-2D. 

It is important to note that a high correlation between index return and replicating return 

does not guarantee that the replicating and index returns exhibit similar statistical 

properties. Looking at the standard deviations for event driven in Table 1.1, we see that, 

despite the 90% correlation, the standard deviation of the replicating returns is 46% 

higher than that of the index return. Obviously, this could cause major problems in 

portfolio risk management where the replica will typically be assumed to have 

properties similar to the target. 

The Schneeweis et al. (2003) results are not unique. Table 1.2 shows to what extent the 

factor model used in Jaeger and Wagner (2005) was able to explain the variation in the 

well-known HFRI indices over the period Jan 1994 - Dec 2004. The message we get 

from table 1.2 is not different from what we saw before in table 1.1. Relatively 
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straightforward strategies, like long/short equity, score quite well, but more complex 

strategies, like managed futures and equity market neutral, come out a lot worse. 

HFRI Index Variation Explained 

Managed Futures 34.3% 

Equity Market Neutral 35.3% 

Fixed Income Arbitrage 40.5% 

Global Macro 49.7% 

Merger Arbitrage 52.9% 

Convertible Arbitrage 54.0% 

Distressed 68.4% 

Long/Short Equity 88.5% 

Table 1.2: Percentage of HFRI return variation explained. Source: Jaeger and 

Wagner (2005, Table 1). 

Given the failure of factor models, one could say that by trying to replicate hedge funds' 

month-to-month returns we are aiming too high. When an investor likes a hedge fund's 

returns, it is because of its statistical properties, such as mean, standard deviation, 

skewness and correlation with other asset classes. This implies that we do not 

necessarily have to replicate a fund's month-to-month returns. For most applications it 

will be enough if we can generate returns with the same statistical properties as the 

returns generated by the find. 

So far there has only been one study, which followed the above route. Based on the 

early theoretical work of Glosten and Jagannathan (1994) and Dybvig (1988a, 1988b), 

and primarily aimed at evaluating hedge fund performance, Amin and Kat (2003b) 

developed mechanical trading strategies, trading the S&P 500 and cash, which aimed to 

generate returns with the same marginal distribution as the returns of a given hedge 

fund. This innovative idea was an important step forwards from the factor model 

approach. A briefly review of such an univariate replication is provided in Section 2.2. 
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A new replication technique is introduced in Chapter 2. This technique extends the 

work of Amin and Kat (2003b) and aims to replicate not only the marginal return 

distribution of a given hedge fund of hedge fund index, but also its dependence with the 

investor's existing portfolio. The evaluation procedure explicitly takes transaction costs 

into account by, instead of a Black-Scholes type option pricing model, using the Boyle 

and Lin (1997) model. In factor model based evaluations, transaction costs are typically 

ignored, despite the fact that maintaining the replicating portfolio's factor loadings at 

their desired levels is likely to require significant periodic rebalancing. In addition, 

when dealing with hedge funds the risk factors used may be quite unusual and may 

therefore be accompanied by significant levels of transaction costs. 

The replication-based evaluation also takes account of the fund's dependence pattern 

with other asset classes. According to theory as well as casual empirical observation, 

expected return and systematic co-variance, co-skewness and co-kurtosis are directly 

related. In other words, it is not just the marginal distribution, but its dependence 

structure with other assets that determines an asset's expected return. An asset, which is 

highly correlated with stocks and bonds, offers investors very little in terms of 

diversification potential. As a consequence, there will be little demand for this asset. Its 

price will be low and its expected return therefore relatively high. On the other hand, an 

asset that offers substantial diversification potential will be in high demand. Its price 

will be high and its expected return relatively low. Although hedge funds are not priced 

by market forces in the same way as primitive assets are, they do operate in the latter 

markets. It therefore seems plausible that a similar phenomenon is present in hedge fund 

returns as well. This is confirmed by the results in Kat and Miffre (2006). 

In Chapters 2,3 and 5, the return series used in the replication procedure are not the 

hedge funds' raw returns. The reason is that, as shown in Brooks and Kat (2002) and Lo 

et al. (2004) for example, monthly hedge fund returns may exhibit high levels of 

auto correlation. This primarily results from the fact that many hedge funds invest in 

illiquid securities, which are hard to mark to market. When confronted with this 

problem, hedge fund administrators will either use the last reported transaction price or 

a conservative estimate of the current market price. This creates artificial lags in the 
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evolution of hedge funds' net asset values, i. e. artificial smoothing of the reported 

returns. As a result, estimates of volatility, for example, will be biased downwards. 

One possible method to correct for the above bias is found in the real estate finance 

literature. Due to smoothing in appraisals and infrequent valuations of properties, the 

returns of direct property investment indices suffer from similar problems as hedge fund 

returns. The approach employed in this literature has been to "unsmooth" the observed 

returns to create a new set of returns which are more volatile and whose characteristics 

are believed to more accurately capture the characteristics of the underlying property 

values. Nowadays, there are several unsmoothing methodologies available. Throughout 

this thesis the method originally proposed by Geltner is used (1991). 

In the evaluation procedure in Chapter 3 the sample contains live and dead funds. The 

reason for that is to minimize survivorship bias. Survivorship bias occurs if the database 

only contains information on "surviving funds". Ibbotson and Chen (2006) estimate 

survivorship bias in average returns to be 2.75% per year. In addition, Amin and Kat 

(2003a) mention that survivorship bias generates a downward bias in the standard 

deviation, and upward bias in the skewness and a downward bias in the kurtosis. Other 

studies attempting to quantify the degree and impact of survivorship bias are Brown et 

al (1992), Sclmeeweis and Spurgin (1996), Goetzmann and Park (1997), Fung and 

Hsieh (1997,2000), Brown et al (1997), Hendrick et al (1997), Brown et al (1999), 

Carpenter and Lynch (1999), Liang (2000), Horst et al (2001) and Baquero et al (2004). 

Although estimates vary due to the use of different databases and different definitions of 

survivorship bias, these studies suggest that when left uncorrected survivorship bias 

inflates average hedge fund returns by 2-3%. 
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2. Replication of Hedge Funds9 

2.1 Theoretical Setting 

In principle, a given payoff distribution can be generated by many different payoff 

functions. Different payoff functions come with different price tags, however. We 

therefore need to know more about the general characteristics of the cheapest 

alternative. This is where Dybvig's (1988a) Payoff Distribution Pricing Model (PDPM) 

comes in. The PDPM can be derived from a simple set of primitive assumptions: 

1) Investors' preferences depend only on the probability distribution of 

terminal, i. e. end-of-horizon, wealth. 

2) Perfect capital markets (no taxes, transaction costs or information 

asymmetries). 

3) Investors prefer more to less. 

This set of assumptions allows investors' preferences to depend on all moments of the 

distribution of terminal wealth. 

Suppose there are n possible states of the world. The state price of state i is the price of 

an elementary security which pays $1 if state i occurs and 0 otherwise. The state price 

density is defined as the price per unit of probability of terminal wealth in a particular 

state, and is given by the ratio of the state price and the probability of occurrence of that 

state. 

Consider, for example, a simple example with three equally probable states, with 

probabilities denoted as 7r, = g2 = ßt3 =3. Suppose that an individual has to choose one 

of the following payoff vectors for consumption at time 1: cl = (1,2,2), c2 = (2,1,2) 

and c3 = (2,2,1). These three consumption patterns have the same distribution of 

consumption, giving consumption of 1 with probability 1/3 and consumption of 2 with 

The material in this chapter appeared as Alternative Investment Research Center NVP 27, Cass Business School. 
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probability 2/3. Therefore, an agent with von Neumann-Morgenstern preferences would 

find all these consumption vectors equally attractive. However they do not cost all the 

same unless the state price density (and in this example, the state price) is the same in 

all stateslo 

Dybvig (1988a) shows that the cheapest way to obtain a given payoff distribution is to 

allocate terminal wealth as a decreasing function of the state-price density. The cheapest 

price to obtain this payoff is called payoff distributional price. In Dybvig (1988b), the 

author applies this result, assuming a binomial tree model for the underlying index, and 

shows that for a payoff function to be efficient it should allocate terminal wealth as a 

non-decreasing function of the final value of the underlying index. " Intuitively, this is a 

plausible result as it implies that payoff and index will be positively correlated, which, 

when it comes to actually generating the payoff, will serve to keep the required 

rebalancing trades down. 

We now propose a more general set of assumptions. Suppose that apart from being 

concerned about the terminal wealth obtained from some new investment opportunity, 

investors are also concerned about the dependence between this investment and their 

existing portfolio. This means replacing assumption 1 by: 

1) Investors' preferences depend only on the joint probability distribution of 

terminal wealth derived from the investment and their existing portfolio. 

Equivalently, since the distribution of the investor's existing portfolio will be given, we 

can say that: 

1) Investors' preferences depend only on the probability distribution of terminal 

wealth derived from the investment conditional on the distribution of terminal 

wealth derived from their existing portfolio. 

The non-satiation and perfect capital markets assumptions remain unchanged. Given 

this new set of assumptions, it is possible to derive an allocation rule for the cheapest 

10 Extracted from Dybvig and Ross (2003). 

11 Proof can also be found in Appendix A. I. 
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payoff function similar to the univariate case12. This time, however, the rule depends on 

the value of the investor's existing portfolio, which makes it a little more awkward to 

incorporate in the replication procedure. We will return to this issue in Section 2.3. 

Another important paper in this context is Cox and Leland (2000). The latter show that 

in a Black-Scholes (1973) world all path-dependent payoff functions are inefficient 

because they generate payoff distributions that can also be obtained with a path- 
independent payoff function, but at lower costs. Our replicating payoffs will therefore 

not only have to allocate terminal wealth in a specific manner, but always be path- 
independent as well. 

2.2 Univariate Replication 

In this section the univariate replication proposed by Amin and Kat (2003b) is 

briefly reviewed. 

When buying a fund participation, an investor acquires a claim to a particular payoff 
distribution. Therefore to evaluate the performance of a fund, one can compare the cost 

of the direct investment in this fund with the costing of replicating it. 

The first step of their approach is finding the payoff function which maps a 
benchmark portfolio return distribution into the fund distribution. Not any payoff 
function should be considered, but the cheapest one. 

In other words, what is wanted is the cheapest (path-independent) payoff function 

f* that replicates the end-of-month payoff Sr of the investment or strategy, using a 

benchmark index or portfolio, wlüch has end-of-month payoff Sp, i. e., 

P(f*(SP): g x)=P(SI <x), VxEE 91 (1) 

Instead of working with the end-of-month payoff, the function can be written in 

terms of log-returns (from a monthly initial investment of 100). This is interesting 

because it makes the statistical modelling procedure easier. The log-returns are denoted 

by XP =log 
sP 

, X1 = log 
S' 

and the resealed function by 
100 100 

f (x) = log 
f* (100 exp(x)) 

100 

'2 Proof is provided in Appendix A. 2. 
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The problem can be then restated as: 

P(f(XP)<_x)=P(X1 <_x)=Fr(x), VxE9t (2) 

The result in Dyvbig(1988a) implies that the cheapest function which satisfies (2) 

should be a non-decreasing function. It should be then given by: 

.f 
(x) = F, -(FP (x)), Vx E 91 (3) 

It is straightforward to prove that (2) holds: 

P(f(XP)<_x)=P(F 1(FP(Xp)): 5 x)=P(Fi 1(U)_<x), 

We know that U- Uniform[0,1], since Fp is continuous. This is the well-known 

probability integral transformation. We also know by the same reason that W= FI-1(U) 

has probability distribution F,. So P(F! '(U): 5 x) = P(X J <_ x) and the result holds. 

Everything can be rewritten in terms of end-of-month payoff now. The end-of- 

month replicated values from a monthly initial investment of 100 will be 

Sf =100 exp f (X, ) =f *(S, ), where f* (s) =100 exp f log 
100 . Sf will theoretically 

1( 

have the same distribution as the original investment end-of-month payoff SI. 

For example, simulating 500 observations from a Normal(0.01 ; 0.0152) distribution 

for Xpand 500 observations from a Johnson-SU(ý = 0, X=0.015, y=1.0,6 = 1.658) for 

XI, we can see in Figure 2 the function, and the original and replicated end-of-month 

payoff histograms. As it was expect, P is a non-decreasing function. 
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Figure 2.1. Cheapest payoff function and histogram of original and replicated 
payoffs for simulated data. 

After fording the function p, it can be priced, following Harrison and Kreps (1979), 

as the discounted risk neutral expected payoff. This can be done by two well-known 

approaches in derivatives pricing: Monte Carlo simulation or Binomial tree. This 

technology is widely used to price options in real world applications. 
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Amin and Kat (2003b) considered as their benchmark portfolio the S&P500 index, 

assuming a normal distribution for its returns. They used the empirical distribution to 

model the funds returns. They applied the replication method to evaluate 77 individual 

hedge funds and 13 hedge fund indices over the period May-1990 to April-2000. They 

found 12 hedge fund indices and 72 individual funds to be inefficient, in the sense that 

they could be replicated at a cheaper price. 

One critique of the Amin and Kat (2003b) approach is that due to their use of the 

S&P 500 index as the only risky asset, their replicas are all highly correlated with the 

US stock market. It can be clearly seen in Figure 2.1, for simulated data, that the replica 
is highly correlated with the benchmark portfolio. Therefore when comparing the 

original fund with the replica, the level of diversification provided by both series is very 
different. Given that hedge funds are nowadays primarily sold on the basis of their 

diversification benefits, replicating only their marginal distribution is not sufficient. 

Also, since their work focuses only in evaluation of hedge funds, they only applied 

their method in-sample. The out-of-sample performance of their technique was not 

examined. 

These two issues are addressed in this thesis. The next section of this chapter will 

extend their work for the bivariate case. Therefore the investor can compare the original 

fund and the replica not only on the basis of their marginal distribution, but also on the 

basis of the diversification benefit provided by both. Throughout the thesis the out-of- 

sample performance of this bivariate replication technique will be studied for individual 

funds and hedge fund indices. 

2.3 Determination of the Replication Strategy 

The replication procedure consists of a number of distinct steps. First, we collect return 

data on the fund to be replicated, the investor's portfolio, and the reserve asset (see 

Appendix A. 2). Second, we analyse the data to infer the joint distribution of the fund 

return and the investor's portfolio return. We refer to this as the `desired distribution'. 

We do the same for the joint distribution of the investor's portfolio return and the return 

on the reserve asset, which we refer to as the `building block distribution'. Third, we 

determine the cheapest payoff function, which turns the building block distribution into 
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the desired distribution. Fourth, we price the latter payoff function. Fifth, we derive the 

required allocations to the investor's portfolio and the reserve asset from the resulting 

value function. 

In this section we discuss the above steps in more detail. Before we do so, however, we 

provide a brief introduction to copulas and their use in multivariate dependence 

modelling. As will become clear, copulas are a crucial ingredient in the replication 

procedure as they allow us to easily capture a large variety of non-normal dependence 

structures. 

2.3.1 Copulas 

Recent research in finance has uncovered various deviations from not only univariate, 
but also multivariate normality13. One powerful and at the same time convenient way to 

model this is by the use of copulas, as it allows the decomposition of any n-dimensional 
joint distribution into n marginal distributions and a single copula function 14. Assume a 

random vector of two random variables. A bivariate copula can then be defined as 
follows. 

Definition 1: The copula C of the random vector (X, Y) is the joint distribution of the 

random vector (U, V), where U= FX(X) and V= Ft{ Y), and where Fx FY, are the 

distribution functions of X and Y respectively. 

The above definition implies that: 

Fx. r (x, y) = C(Fx (x), Fr (Y)), Vx E 9Z, yE 91, (4) 

where Fxy is the joint distribution of the random vector (X, Y). Intuitively, the copula 

function divides the characteristics of the joint distribution between the marginal 
distributions, which contain the univariate characteristics of each random variable, and 

13 Lon. -in and Solnik (2001) for example find clear evidence of asymmetric dependence in international equity markets. A similar 

conclusion can be found in Ang and Chen (2002) with respect to US stocks. 
10 Copulas have been widely used in the statistical literature. Joe (1997) and Nelsen (1999) provide a good introduction. Cherubini 

et al. (2004) discuss copulas in a finance context. 
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the copula, which contains all information concerning the dependence between these 

random variables. 

Next, we present' a key result in copula theory 15. Let 9t = 9R u {-oo, co} denote the 

extended real line. 

Sklar's Theorem: Let Fx y be a 2-dimensional joint distribution function with marginal 

distributions Fx and Fy. Then there exists a copula C such that for all (x, y) in 

T12 FX y (x, y) = C(FX (x), Fy (y)). If Fx and Fy are continuous then C is unique; 

othertivise, C is uniquely determined on Ran(Fx) xRan(Fy). Conversely, if C is a copula 

and Fx, Fy are distribution functions, then the function Fy defined by (4) is a joint 

distribution with margins Fx, Fy. 

From a multivariate financial modelling perspective, it is the converse of Sklar's 

Theorem that is most interesting, as it implies that any combination of two univariate 

distributions and a copula defines a valid bivariate distribution. This solves the problem 

that in statistics, although we do have a large set of flexible parametric univariate 

distributions available, the set of parametric multivariate distributions is quite limited. 

2.3.2 Estimation of the Desired and Building Block Distributions 

In the replication procedure we allow three different marginal distributions (Normal, 

Student-t and Johnson SU)16 and six different bivariate copulas. The first two copulas 

are part of the class of elliptical copulas, since they are derived from elliptical 

distributions. The normal copula is extracted from the bivariate normal distribution. If 

we combine the bivariate normal copula with two normal marginal distributions, we end 

up with the bivariate normal distribution. However, if either one or both marginal 

distributions are non-normal, then the joint distribution produced will be a completely 

different distribution. The Student-t copula, which is extracted from the bivariate 

Student-t distribution, is also an elliptical copula, but it differs from the normal copula 

in that it allows for some extreme dependence in the lower and upper tails. Since the 

is Proof of this theorem can be found in Nelsen (1999, p. 18). 

16 See Johnson (1949,1965) for details on the Su distribution. 
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Student-t copula is symmetric, however, this dependence must be the same for both 

tails. 

The next three families of copulas, Gumbel, Cook-Johnson and Frank, are part of the 

Archimedean copulas class, a rich class of copulas that allows for very different types of 

dependence. The Gunibel copula is asymmetric. It has more dependence in the upper 

tail than in the lower tail. The Cook-Johnson copula, also known as the Clayton copula, 

is also asymmetric, but with more dependence in the lower tail than in the upper tail. As 

shown by Longin and Solnik (2001) and Ang and Chen (2002), this is quite common 

behaviour in equity market returns. The Frank copula implies the same dependence 

between positive returns as between negative returns. Like the Normal and Student-t 

copulas, it allows for positive and negative dependence. The sixth and final copula is 

the syininetrised Joe-Clayton (SJC) copula, proposed by Patton (2006a). It is the most 

flexible of the copulas discussed here. It has two parameters, which separately control 

the dependence in the lower and upper tail. As a result, this copula can fit data with very 

different patterns of dependence in the tails. 
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Figure 2.2. Random drawings frone various copulas, assuming standard normal 
marginals and a linear correlation coefficient of 0.7. 

Figure 2.2 shows 500 simulated drawings from six bivariate joint distributions. In all 

cases, the marginal distributions are standard normal and the linear correlation is 0.7. 

Despite this, the plots show six different patterns of dependence, underlining the impact 

and different characteristics of each of the six copula families. Only in the bivariate 
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normal case is the linear correlation coefficient sufficient to fully describe the observed 

dependence structurel7. 

The estimation method that we use is known as the Inference Functions for Margins 

(IFM) method18. It is a two-step maximum likelihood method. Let (X, Y) be a vector of 

two random variables with joint distribution function Fxy and marginal distribution 

functions Fx and Fy respectively. The marginal distribution Fx depends only on the set 

of parameters ex and the same for Fy and ey. Let Oc be the vector of parameters of the 

bi-dimensional copula C. So the unknown vector of parameters is given by O= ((Dx, O y, 

Oc). We know from Definition 1 that FXY(x, y; (D)=C(FX(x; (91), FY(y; 02); OC). So 

the joint distribution Fxy is completely specified by the vector of parameters 0. 

Differentiating with respect to both variables, we have 

fxy (x, y) = c(FX (x), Fy (x)) fX (x) fy (y), where c(tt, v) = 
aC(tt, v) is the copula density. 

attav 

For a bivariate random sample of size T {(x; 
, y; )}T 

1, the log-likelihood function is 

therefore given by: 

TTT 

l(O)= 
, 
lnc(Fx(xt; (9x); Fy(y,; Or); Oc)+2, lnfx(x,; Ox)+2; ln. fr(y,; Or)" 

t=1 r=1 r=1 

Estimating all parameters at the same time would be very cumbersome and time- 

consuming. We therefore do so in two consecutive steps. First, we estimate the marginal 

set of parameters Ox and Oy (separately) by maximum likelihood. Subsequently, we 

create the series il, = Fx (x 
,; 

Ö) and V, = FY (y,; O) and estimate Oc by maximum 

T 
likelihood using the likelihood function l(0c)=jlnc(ü1; v,; 0c). 

r=1 

With three possible candidates for the marginal distribution and six for the copula, we 

have 54 possible joint distributions to choose from. To select the final model, we use the 

" Kat (2003) discussed this point in a hedge fund context. 
18 See Xu (1996) and Patton (2006b) for details on the statistical properties of this method. 
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Akaike information criterion (AIC)19. We considered some other selection criteria as 

well, including the quadratic distance between the estimated copula and the empirical 

copula for example. The advantage of the AIC, however, is that it penalises models with 

a large number of parameters. 

The copulas functions and marginal distributions used are listed in Appendix A. 3. 

2.3.3 Determination of the Desired Payoff Function 

Having selected the desired and building block distributions, the next step is to 

determine the cheapest payoff function, which turns one into the other. `Cheapest' 

means that we want the payoff function of the lowest possible price which generates the 

desired conditional distribution . In probabilistic terms, we want the cheapest function 

g* such that: 

P(SP <_ x, S* (SP, SR) 5 Y) 2z P(SP S X, Sr <_ Y), Vx, Y, (5) 

with SI denoting the end-of-month payoff of the fund, Sp the end-of-month payoff of the 

investor's portfolio, and SR the end-of-month payoff of the reserve asset. 

We start by assuming the current value of all assets is equal to 100. Rescaling to log- 

returns, this means looking for the cheapest function 

S(x, y)=log 
9* (100exp x), 100exp(y)) 

such that: 
100 

P(Xr 
_<x, B(XP, XR)ý y)=P(XP <_x, X, 

_<y)=F.., 
(x, Y), Vx, y, (6) 

with X, =log 
S' 

,x, = log 
sP 

, and XR =log 
SR 

Or equivalently, the 
100 100 100 

cheapest function g such that: 

19 See Akaike (1973) for details. 
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P(S(XP, XR)ýYI XP =x)=P(X, <_yI XP =x)=F, IP(YIx), Vx, Y (7) 

Now we use the extension of Dybvig model provided in Appendix A. 2, considering Sp 

and SR as the underlying indices. 

From Appendix A. 2., we know that the cheapest payoff function depends on the 

conditioning value x. As a result, the bivariate function g may not be a `smooth' 

function, i. e. the derivatives of this function will `jump' around the line x=x,,,;,,, making 

the execution of the replication strategy derived from the payoff function quite 

awkward. From Appendix A. 2. we find that the desired payoff function should only be a 

non-decreasing function of the reserve asset if 

PR- r>"P-x (8) 
6R UP 

for Vp E [-1,1] and where r denotes the risk-free interest rate. The expression on the left 

is nothing more than the Sharpe ratio of the reserve asset. From (8) it therefore follows 

that as long as the Sharpe ratio of the reserve asset is high enough and the correlation 

with the investor's portfolio low enough, the desired payoff function should be a non- 

decreasing function of the reserve asset. 

Assuming the reserve asset satisfies the above condition20, the function g in expression 

(7) is given by: 

g(x, y)=F, (FRIp(yIx)Ix), VyE91 (9) 

where F, ýP (y I x) denotes the pseudo-inverse of F11 (y I x). This is a composed 

function, with two non-decreasing components. The composition is therefore also non- 

decreasing, as required. 

Next, we have to prove that (7) holds: 

20 Extensive simulations showed that, under reasonable assumptions, this does not introduce any significant error if not true for 

some values of x. 
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P(g(XP, XR)<YI XP =x)=P(g(x) XR): 5 YI XP=x)= 
p (U 1 x) Y1XP= x), (10) P(FIýP (FIIP (X 

RI X) I x) ýYIXP= x) = P(Fii 

where U- Uniform[0,1] by the probability integral transformation. Then, by the same 

reasoning, FIýP(U I x) has the same distribution as XI given Xp = x, so we finally have: 

P(FrlP(UIx): ýg yIXP=x)=P(X1_<y1X, =x)=F11 (y1 x), (11) 

and (7) holds as required. 

In order to obtain the function g, we need to model the conditional distributions F1P and 
FRIp. Let CPI denote the copula between Xp and XI and let CPR denote the copula 
between Xp and XR. Then from (4) we have: 

F�, (x, y)=CP,, 
(F (x), F, (y)), xE9t, yE9z. (12) 

FP. 
R(x, Y)=CP. R(FP(x), FR (Y)), xE91) yEI 9R. (13) 

We can write the conditional distributions Fjp and FRCP as: 

KX " (y) =PI 
(ii, v) 

Flip (y x) = KP, ' (y), xE 91, yc 91, where 
ac 

au u=FP (x), v-F, (y) 

//_ ac art, v> FRCP ý. y I X) =KP .R (yý, aE 9Z, yr 91, where K ,R(ý- 
Pall 1. 

=Fp(x), v=FR(y) ' 

So the cheapest function g in expression (9) can be rewritten as: 

g (x, y) = KX-1>P. 1 (KX .R (y)) XE RR, yE 9Z . (14) 

We can now rewrite everything in terms of the end-of-month payoff to obtain the 

desired payoff function. The end-of-month replicated values from a monthly initial 

investment of 100 will be equal to: 
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Sg =g* (sp, sR) =100 exp g jog 
(SP 

1og sR (15) 
100 100 

Theoretically, the vector (Sp, Sg) will have the same joint distribution as the vector (Sp, 

SI), meaning that, as intended, we are not only replicating the end-of-month payoff of 

the fund, but also its dependence with the investor's existing portfolio. 

2.3.4 Pricing and Generating the Desired Payoff Function 

Having determined the desired payoff function, the next step is to price it. This is of 

course not a new problem. It is what arbitrage-based option pricing theory has 

concentrated on for the last 35 years. Following Harrison and Kreps (1979), the desired 

payoff function can be priced by calculating the discounted risk neutral expected payoff. 

Using the notation in the previous subsections, we would have the price i of function 

g* given by: 

V=1 EQ[g *(SPISRA 

where Q denotes de risk-neutral expectation, hence supposing that 

ý' 2 
P 

XP 
N 

r- 2 6p 
2 

°PR 
, 72 XR 

r- R OrPR °R 

2 

In the absence of transaction costs, the two most obvious methods to do so would be 

either bivariate Monte Carlo simulation or a trinomial tree21. 

But transaction costs need to be considered, otherwise it would be an unfair comparison 

between the replica and the original fund. Therefore we use the multivariate option 

pricing model of Boyle and Lin (1997). Their model examines the incorporation of 

transaction costs when there is more than one risk asset and it is costly to trade in each 

risk asset. A discrete time framework is used and the problem of option valuation if 

reformulated as a linear programming problem. The price of the payoff function will be 

called 'KP measure'. In Subsection 2.3.3 we assumed an initial investment of 100, so a 

21 See Jaeckel (2002) or Glasserman (2003) for an introduction to Monte Carlo methods. Details on the trinomial tree approach can 
be found in He (1990). 
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KP measure less than 100 would mean that the replication strategy is cheaper than the 

payoff fund, and the other way around if KP is greater than 100. 

Once we are able to price the desired payoff function, we can work out the controls of 

the dynamic trading strategy generating it by straightforward partial differentiation of 

the value function. In computational terms, we work backwards on the trinomial tree 

and estimate the delta using the values of the payoff function g* and the vector (Sp, SR) 

in the three states of the first step of the tree. 

Only after pricing the payoff function we know what the expected return on the 

replicating strategy will be. The desired payoff function explicitly aims to replicate all 

aspects of the desired distribution, except the fund's expected return. The latter follows 

from the expected return on the investor's portfolio and the reserve asset, the desired 

payoff function, and the pricing environment for the latter, i. e. interest rates, expected 

dividends, volatilities, etc. In other words, it is the capital market that sets the expected 

return on the replicating strategy. 

In Appendix A. 4 the influence of the moments of the reserve asset distribution and its 

correlation with the reference portfolio on the KP measure is examined. The conclusion 

is that we want the highest possible risk premium and the smallest possible volatility for 

the reserve asset, as one would expect. The influence of the correlation between the 

reserve asset and the reference portfolio is not so simple. 

2.4 Simulation Analysis 

Given the desired and building block distributions, the above results allow us to derive, 

price and generate the cheapest payoff function that turns one into the other. The 

procedure is exact, so by itself it does not require any testing. Taking this procedure into 

the real world and using it to replicate fund returns, however, we are confronted with a 

number of problems. First, we do not know the true population distribution. The best we 

can do is estimating it from a small data sample. Second, the latter distribution may not 
be stationary over time. Third, due to market imperfections and insufficient information 
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on the underlying price processes, we may not always be able to exactly generate the 

desired payoff function. 

In this section, we use simulation methods to study the error resulting from determining 

the desired payoff function from a relatively small sample, instead of from the 

population distribution. In these simulations, we assume that the population distribution 

is stationary and that it is possible to generate the desired payoff function without any 

error. In the next section we perform a number of out-of-sample tests on real-life data to 

also include the error contributions of non-stationarity and sub-optimal dynamic trading. 

In the simulations, we study two different cases, selected to capture different 

distributional conditions. Throughout, we assume that the returns on the investor's 

portfolio and the reserve asset are both normally distributed with the parameter values 

given below. In addition, we assume they are related through a Gaussian copula with a 

correlation coefficient of 0.3. 

Investor's portfolio 

Log-returns - Xp -- N(0.01 , 0.0433012) 

Mean= 12%p. a. 

Volatility = 15% p. a. 

Reserve asset 

Log-returns - XR -N(0.00833,0.0288672) 
Mean= 10% p. a. 

Volatility = 10% p. a. 

2.4.1 Gaussian Fund Marginal, Higher Dependence in the Lower Tail. 

Our first case assumes that the fund return is normally distributed, but that the 

relationship with the investor's portfolio is such that there is more dependence in the 

lower than in the upper tail. This could be the risk profile of a fund of funds with a bias 

towards risk arbitrage for example. The marginal distribution of the fund return and the 

relevant copula are specified as follows: 
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Fund 

Log-returns - XI -- N(0.015 , 0.0577352) 

Mean= 18%p. a. 

Volatility = 20% p. a. 

Copula (investor's portfolio, fund) = SJC (0.75,0.10) 

Replicated payoff 
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Figure 2.3. Contour plot payoff function from population distribution case 1. 
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Figure 2.4.3D plot payoff function from population distribution case 1. 

Give the desired and building block distributions, we derived the desired payoff 
function using the results of Section 2.3. Figure 2.3 and 2.4 depict the latter 

graphically, as a contour plot as well as a 3D graph. From the graphs we see that the 

desired payoff is an increasing function of the reserve asset (by construction) as well as 

the investor's portfolio. The strategy's controls will therefore tell us to hold long 

positions in both assets. As is especially clear from the contour plot, the payoff function 

is quite curved. This of course serves to generate the required difference in dependence 

between the upper and lower tail. 

To gain insight into the potential error when deriving the desired payoff function from 

only a small sample, instead of the population distribution, we took a sample of size N 

and derived a payoff function from it. Subsequently, we took 2000 observations from 

the building block distribution, and fed these observations through the latter payoff 
function to produce a joint distribution of replicated payoffs and the investor's portfolio. 
From the latter distribution we calculated the mean, standard deviation, skewness, and 
kurtosis of the replicated payoff as well as its correlation with the investor's portfolio. 
The above procedure was repeated 100 times, for different values of N (= 24,48,72,96, 
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120,240). Across each set of 100 runs, we subsequently calculated the mean, standard 

deviation and skewness of the replication errors, i. e. the differences between the above 

sample statistics and the true fund parameters. The results can be found in Table 2.1. 

Mean St. Dev Skewness Excess 
Kurtosis 

Corr. with 
Portfolio 

Fund 101.6805 5.8267 0.0000 -0.0447 0.7400 
Differences (re plicated - fund) 

Avg 24 -0.0315 0.0416 0.0174 0.0952 -0.0171 
Avg 48 0.1010 -0.0090 0.0156 0.0835 -0.0071 
Avg 72 0.1390 0.0689 0.0052 0.0843 -0.0020 
Avg 96 0.0151 0.0114 0.0187 0.0781 -0.0148 
Avg 120 0.0142 -0.0079 0.0038 0.0935 -0.0011 
Avg 240 -0.0209 -0.0118 0.0053 0.0595 0.0015 
SD 24 1.0386 1.0253 0.2052 0.4181 0.1234 
SD 48 0.8287 0.6701 0.1206 0.1641 0.0933 
SD 72 0.5975 0.5496 0.1099 0.1613 0.0726 
SD 96 0.5023 0.5620 0.1299 0.1712 0.0656 
SD 120 0.4733 0.4794 0.1026 0.1437 0.0576 

SD 240 0.3352 0.2918 0.0884 0.1465 0.0402 
SK 24 0.3765 -0.0241 0.9582 4.4101 -1.1399 
SK 48 0.3071 0.6894 0.3059 0.1667 -0.8320 
SK 72 

-0.2267 -0.3145 0.0991 0.1401 -0.5869 
SK 96 

-0.0114 0.2892 -0.1812 0.4813 -0.7360 
SK 120 -0.0748 0.4211 -0.1757 0.1810 -0.3530 
SK 240 -0.0991 0.3519 -0.1098 -0.0260 -0.4008 

Table 2.1. Variation due to payoff construction frone small sample case 1. 

To be able to properly interpret the entries in the table, the first row in Table 2.1 shows 

the mean, standard deviation, skewness, kurtosis and correlation of the fund payoff, as 
implied by the assumed fund return distribution. The rows that follow show, for various 

sample sizes N (= 24, .., 240) and each over 100 runs, the average (Avg), standard 

deviation (SD) and skewness (SK) of the replication errors. Table 2.1 confirms that the 

larger the sample, the more accurate the desired payoff function will be. It also shows 

that even with a relatively small sample the procedure still works quite well and is 

unbiased. For all parameters and sample sizes, the average error is statistically 

insignificant at 5% (-1.96 SD, + 1.96 SD). 
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2.4.2 Negatively Skewed Fund Marginal, Gaussian Copula 

Our second case is somewhat more extreme. It assumes that the fund return exhibits a 

high degree of negative skewness. To make up for that, however, it also has a relatively 

high mean and low correlation with the investor's portfolio. With a little imagination, 

this could be the risk profile of a fixed income arbitrage fund for example. The marginal 

distribution of the fund return and the relevant copula are specified as follows: 

Fund 

Log-returns - XI -- Johnson-SU (0.058604,0.046978,0.926426,1.390468) 

Mean= 18% p. a. 

Volatility = 20% p. a. 

Skewness = -2.0 
Excess kurtosis = 10 

Copula (investor's portfolio, fund) = Gaussian (0.2). 

Replicated payoff 
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Figure 2.5. Contour plot payoff function frone population distribution case 2. 
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Figure 2.6.3D plot payoff function from population distribution case 2. 

From the above population distributions we again derived the desired payoff function, 

which is graphically depicted in Figure 2.5 and 2.6. As required, the payoff is a positive 

function of the reserve asset. However, since the assumed correlation between the fund 

and the investor's portfolio is lower than the assumed correlation between the investor's 

portfolio and the reserve asset, the payoff is a negative function of the investor's 

portfolio. The strategy's controls will therefore want us to go long in the reserve asset, 

but short in the investor's portfolio. The slope of the payoff function increases as the 

investor's portfolio rises and the reserve asset drops, which serves to generate the 

required negative skewness. 

46 

Investor's Poi folio 



Mean St. Dev Skewness Excess 
Kurtosis 

Corr. with 
Portfolio 

Fund 101.6805 5.8604 -1.9851 9.8511 0.2000 

Differences (replicated - fund) 
Avg 24 

-0.0798 0.3568 1.1919 -0.0162 -0.0454 
Avg 48 0.0221 0.5960 1.2455 4.5453 -0.0341 
Avg 72 

-0.1577 0.3589 0.7876 -2.4691 0.0450 
Avg 96 

-0.0201 0.1341 0.7929 -1.9950 -0.0152 
Avg 120 0.0300 0.0985 0.6538 -1.6140 0.0090 
Avg 240 

-0.0762 0.1846 0.5238 -1.0256 0.0086 

SD 24 1.6094 2.0242 1.1313 19.8187 0.2882 
SD 48 1.3526 1.5985 1.7192 41.6658 0.2205 
SD 72 0.8821 1.2115 0.6218 2.9127 0.1374 

SD 96 0.7701 1.1864 0.6591 3.5340 0.1385 
SD 120 0.7622 0.9344 0.5907 2.7828 0.1136 

SD 240 0.3818 0.7366 0.6266 4.4289 0.0812 

SK 24 -0.2246 0.9298 3.9961 8.2333 -0.1064 
SK 48 0.0573 0.5893 5.6316 8.5348 0.1809 
SK 72 0.0405 0.6589 0.1550 -0.2631 -0.0549 
SK 96 0.0785 0.7394 0.9729 4.0508 -0.4042 
SK 120 -0.1274 0.4989 0.0159 0.2908 -0.1725 
SK 240 0.0587 0.6556 1.0541 5.0328 0.0376 

Table 2.2. Variation due to payoff construction frone small sample case 2. 

To gain insight into the potential error from deriving the desired payoff function from a 

small sample in this particular case, we repeated the procedure used earlier in case 1. 

The results can be found in Table 2.2. Not unexpectedly, given the much more extreme 

distributional assumptions, we see quite some variation for small sample sizes. 

Especially the replication of the assumed -2.0 skewness meets with some difficulty. 

Since, by definition, tail events only occur infrequently, many smaller samples will not 

contain enough information to estimate skewness accurately. This is reflected by the 

strong positive skew of the error distribution for small N. 

The above two case studies suggest that, depending on the distributions involved, the 

error from working with a small sample may sometimes be quite substantial. It is 

important to note though, that when applying the procedure in practice, one will 

typically re-estimate the payoff function periodically as new fund return data becomes 

available. Through time therefore, these errors may diversify away to some extent. 

47 



2.5 Out-of-Sample Tests 

We proceed with some out-of-sample tests. The out-of-sample tests that follow are all 

structured in the same way. Given a fund, we take the first 24 months of its track record 

as given, assuming we do not know anything about what is to come. If a fund's track 

record starts in January 1985 for example, we assume to be living on January 1st, 1987. 

Subsequently, we determine the desired payoff function from the available 24 monthly 

returns, calculate the accompanying strategy controls and set up the required positions. 

During the month, we adjust our portfolio on a daily basis, driven by the daily changes 
in the underlying index values. At the beginning of the next month, we include the 

hedge fund return over the previous month in our dataset and repeat the whole 

procedure, now using 25 monthly returns instead of 2422. The above is repeated until we 

arrive at the end of the series. 

Throughout we assume the investor's portfolio consists of 50% US equity, in the form 

of the S&P 500 tracking portfolio, and 50% long-dated US Treasury bonds. We use 

nearby Eurodollar futures as the reserve asset23. To minimize transaction costs, all 

trading is done in the futures markets24. Throughout, we trade the nearby futures 

contract, rolling into the next nearby contract on the first day of the expiry month, 

assuming transaction costs of lbp one-way25. The necessary volatility and correlation 

inputs are obtained from historical estimates, using all available data at the time of 

determining the desired payoff function. 

In what follows we discuss the out-of-sample replication results for three different 

hedge funds (of funds). We selected these funds because they are well known within the 

industry and among investors and because they have relatively long track records. The 

latter requirement stems from the fact that when comparing the statistical properties of 

the fund and the replicated returns we are basically comparing two bivariate 

22 In practice hedge funds typically take one or two weeks to report their end-of-month net asset value. For simplicity, we refrain 

from this complication here. 

23 The decision to use Eurodollar futures is primarily based on liquidity and simplicity, since these are illustrative examples. In 

Chapters 3,4 and 5a more diversified reserve asset will beused. 

24 S&P 500 (SP) and Eurodollar futures (ED) are traded on the CME, while T-bond futures (US) are traded on the CBOT. 

25 Commission costs in futures tend tobe extremely low, while quoted bid-ask spreads in the most liquid contracts are typically not 
high as well. 
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distributions, which is best done using as many data points as possible. All fund returns 

are net of fees and were taken from the TASS database. We do not charge any 

management fees in the replication strategy. 

2.5.1 Leveraged Capital Holdings N. V. 

Our first example concerns one of the first funds of hedge funds. Leveraged Capital 

Holdings (LCH) was started in 1969 (our return data, however, only start in 1985) by 

Georges Karlweis of Banque Privee Edmond de Rothchild in Geneva. Over the years, 

LCH has (been) invested in all well-known hedge fund managers, such as George 

Soros, Martin Zweig and Joseph DiMenna, and Michael Steinhardt. LCH is publicly 

listed on the Amsterdam Stock Exchange and in October 2005 had $1.32 billion under 

management (TASS database). 
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Figure 2.7. Contour plot payoff function Leveraged Capital Holdings. 
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ý: 

Figure 2.8.3D plot payoff function Leveraged Capital Holdings. 

Figure 2.7 and 2.8 show the payoff function used for the replication of the LCH return 

per October 2004 (the last month for which we have fund return data available) 26. 

Notice that the LCH payoff function is a lot more `lively' than the payoff functions 

encountered in the previous section. This underlines the complexity of real-life hedge 

fund returns. The graphs show that the desired payoff is a positive function of the 

investor's portfolio as well as the reserve asset, implying that the replication strategy 

will be long in both assets. We also see quite some variation in the slope of the payoff 

surface. Since the controls of the replication strategy are nothing more than the slope 

coefficients of the payoff value function, this signals the presence of `hot spots', where 

relatively small changes in the investor's portfolio and/or reserve asset will generate 

relatively large changes in the strategy's controls. 

26 The jagged profile in the bottom right-hand corner of the contour plot is due to some numerical instability in the extremes. A 

similar phenomenon is observed in the two cases that follow. 
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Figure 2.9. Scatter plot investor's portfolio returns versus Leveraged Capital 
Holdings returns (left) and replicated returns (right), 1987-2004. 

The left hand side of Figure 2.9 shows a scatter plot of the monthly returns on the 

investor's portfolio versus the LCH returns. The right hand side of Figure 2.9 shows a 

scatter plot of the monthly returns on the investor's portfolio versus the replicated 

returns. Comparing both plots, we see that they are very similar, which indicates that the 

replication strategy is indeed able to successfully replicate LCH's returns' statistical 

properties. We also see that the replication strategy is unable to replicate the three large 

losses that LCH reported in October 1987 (-22.52%), August 1998 (-11.45%) and April 

2000 (-10.83%). Since these are clearly outliers, it is not surprising that the replication 

procedure was unable to capture them out-of-sample. Given the size of these losses, it is 

unlikely investors will consider this a real shortcoming though. 

Mean St. Dev Skewness Skewness 
(robust) 

Excess 
Kurtosis 

Ex. Kurt. 
(robust) 

Corr. with 
Portfolio 

Kendall's 
Tau 

LCH 0.0095 0.0419 -1.9675 -0.1641 13.4015 0.3156 0.704 0.536 

Replica 0.0125 0.0355 -0.3541 -0.1681 0.7021 0.5736 0.728 0.571 

Univariate K-S Statistic = 0.056, (approximated) p-value = 0.884 

Bivariate K-S Statistic = 0.053, (approximated) p-value = 0.968 

Table 2.3. Monthly return statistics Leveraged Capital Holdings and replication 
strategy, 1987 - 2004. 
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Another indication of the accuracy of the replication strategy comes from comparing the 

actual mean, standard deviation, skewness and kurtosis of LCH's returns with those of 

the replicated returns. The latter statistics can be found in Table 2.3, together with the 

correlation and Kendall's Tau with the investor's portfolio. Since LCH's returns exhibit 

some clear outliers, apart from the standard skewness and kurtosis measures we also 

report more robust skewness and kurtosis measures27. To test whether the marginal 

distribution of the replicated returns and the joint distribution of the replicated returns 

and the investor's portfolio are significantly different from the original distributions, we 

use the univariate and bivariate Kolmogorov-Smirnov (K-S) tests28. 

Comparing the entries in Table 2.3, it is clear that, despite the obvious limitations, the 

statistical properties of LCH's returns have been quite successfully replicated. The 

replication strategy has not only replicated the marginal distribution of LCH's returns 
but also its relationship with the investor's portfolio. This is also the conclusion from 

both the K-S tests. Although slightly higher (14.76% pa versus 12.48% pa), the mean of 

the replicated returns is similar to that of the LCH returns as well. This confirms the 

assumption underlying the replication procedure that in the longer run investors receive 

a return which is in line with the risk profile they take on, irrespective of how that risk 

profile is acquired. 

Ü) 
. 0.1 

c 

w 
4J 00 
03 

U 
Q 
tv.. 

-0.1 

.......... ............................... ," 

0 : ý0ý4 e 
ti .. _ .'V 

0 

o 0.1 t. 

. 6.44 6 

v" 
" 

0.00 0.01 0.02 -0.3 . 0.2 "0.1 0.0 0.1 

Reserve asset returns Fund returns 
Figure 2.10. Scatter plot reserve asset returns versus replicated returns (left) and 
Leveraged Capital Holdings returns versus replicated returns (right), 1987 - 2004. 

27 See Hinkley (1975) and Crow and Siddiqui (1967). These measures are also discussed in Kim and White (2004). 

28 See Fasano and Franceschini (1987) for details. Since the mean is not explicitly replicated, we subtract the mean from both the 

fund and the replicated returns before performing these tests. 
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It is interesting to delve a bit further into the workings of the replication strategy. The 

left hand side of Figure 2.10 shows a scatter plot of the reserve asset returns versus the 

replicated returns. The positive relationship confirms the efficiency of the replication 

strategy (see Section 2.3). The right hand side of Figure 2.10 shows a scatter plot of the 

fund returns versus the replicated returns. The plot makes it clear that although the 

replicated returns have statistical properties, which are very similar to those of LCH, 

they come to the investor in a completely different order. It is exactly this feature of the 

replication process, i. e. giving up the requirement that returns need to be similar on a 

month-to-month basis as well, which allows us to do so much better than the standard 

factor model approach. 
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Figure 2.11. Evolution of controls Leveraged Capital Holdings return replication 
strategy, Dec. 2002 - Oct. 2004. 

Figure 2.11 shows the evolution of the replication strategy's controls over the period 

Dec. 2002 - Oct. 200429. The graph confirms that the replication strategy holds long 

positions in both the investor's portfolio and the reserve asset. It also shows that the 

number of units of the reserve asset held is much higher than for the investor's 

portfolio. 

29 The period Dec. 2002 - Oct. 2004 is representative for the period 1987 - 2004. A graph covering the full 1987-2004 test period 

would be too condensed to provide any worthwhile insights. 
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This is because the volatility of the Eurodollar future is quite low compared to that of 

LCH and the investor's portfolio. It therefore requires substantial leveraging. The 

strategy is quite dynamic, with the strategy's controls exhibiting a number of peaks and 

troughs. The latter are the result of a combination of strong inter-month index 

movement, a steep payoff function and monthly strategy resetting. For example, during 

April 2004 the value of the investor's portfolio dropped by almost 4%. As a result, the 

number of units of the investor's portfolio to hold rose from 0.90 at the start to 1.54 at 

the end of the month. At the same time, the number of units of the reserve asset to hold 

rose from 9.34 to 10.63. At the beginning of May, however, the strategy was reset to its 

starting values, meaning that the allocation to the investor's portfolio dropped to 0.85 

units and the allocation to the reserve asset to 9.58 units. 

2.5.2 Calamos Multi-Strategy Fund L. P. 

The second example is a convertible arbitrage fund. The Calamos Multi-Strategy Fund 

(CMSF) was established in 1989 by convertible bond experts John and Nick Calamos. 

For most of its life CMSF has pursued a convertible arbitrage strategy. Since 2004, 

however, CMSF has adopted a long/short equity strategy as well. Managed primarily 

for the personal accounts of the Calamos family and a small group of friends, the fund is 

relatively small with $14.1 million under management (TASS, October 2005)30 

30 Although the fund is only small, we decided to include it because the Calamos family is very well known for their work on 

convertibles and convertible afbitrage. See for example Calamos (1998) and Calamos (2003). 
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Figure 2.14. Scatter plot investor's portfolio returns versus Calamos Multi- 
Strategy Fund returns (left) and replicated returns (right), 1991 - 2004. 
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Mean St. Dev Skewness Skewness 
(robust) 

Excess 
Kurtosis 

Ex. Kurt 
(robust) 

Corr. with 
Portfolio 

Kendall's 
Tau 

CMSF 0.080 0.0213 0.2357 0.0154 2.6296 1.6937 0.509 0.337 

Re lica 0.094 0.0170 0.6656 0.0582 2.2128 0.9525 0.506 0.388 
Univariate K-S Statistic = 0.103, (approxi mated) p-value = 0.322 
Bivariate K-S Statistic = 0.087, (approximated) p-value = 0.719 

Table 2.4. Monthly return statistics Calamos Multi-Strategy Fund and replication 
strategy, 1991 - 2004. 
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The desired payoff function for CMSF as per October V, 2004 is shown in Fig 2.12 and 

2.13. At first sight, it looks similar to that for LCH, but, as is easiest seen from the 

contour plot, there are some significant differences as well. Figure 2.14 shows the same 

scatter plots as in Figure 2.9. Comparing both plots, we again see that they are very 

similar, indicating the replication strategy performs quite well. This is confirmed by the 

entries in Table 2.4. As before, all parameters are very similar, including the means and 

the correlation with the investor's portfolio. Both the univariate and bivariate K-S test 

confirm that there is no significant difference between the original and replicated 

distributions. Figure 2.15 shows the same scatter plots as in Figure 2.10. We again see a 

positive relationship between the reserve asset returns and the replicated returns, 

confirming the efficiency of the replication strategy. The plot of the fund returns versus 

the replicated returns shows a random scatter, making it clear that although the 

replicated returns have similar statistical properties as CMSF, they come in a 

completely different order. 

2.5.3 Rocker Partners L. P. 

Most hedge funds' returns are positively correlated with the equity market. Our final 

example therefore concerns a dedicated short seller, the returns of which are likely to be 

negatively correlated with the stock market. Rocker Partners (RP) was started in 1985 

by David Rocker. While RP maintains both long and short positions, the general focus 

is on short selling. The fund is therefore popular with investors as a hedge against their 

long biased investments. RP currently has $611.1 million under management (TASS, 

October 2005). 

57 



Replicated payoff 

0 1 2 
.. 

5 1 : 
-109.42 

10331 

55 63 : -107.25: 
106 18 

105.73 

. .. .. 
104 00 

7ýr65 . ^1073 ý5 0ý 
X595 

. 
_ 

. 
102.02: 

105 95 
-101.01 ý: tU5.115 

. 
100 00_ ai 
9301 ä 

'94.02 

, 115- 9608 
125 95.12 

r 9 i.. 1 H 
% 93.24. 

92.31: 

: 91: 33 
4S 9ß . 

'g: .. O :O :OG: 0, 

Reserve: Asset: 

Figure 2.16 . Contour plot payoff function Rocker Partners. 

1'20 

110 

160 

payof ?o 
60 

50 

Invest f's r (i , ýý 

I 

Reserve: assen 
............................... . ........ .. 

Figure 2.17.3D plot payoff function Rocker Partners. 

58 



0.3 

C 0: 2 

0.1 

L 
ý. 

0a 

. 
LL 

ysý "64 "h 

" 

-0.2. 
405 0.00 0.05 0.10 

Investor's portfolio returns 

0j '0.3 

L 

0.2 
4 t! 

ß- 0.1 

a). 4J 
Ü_ 0.0 

D- 
W-0.1 
Y 

-0.2 

0 

-ei 
4>. 

% 
94, 

" N' 

-0. G5 0.00 0.05 0.10 

Investor's portfolio returns 

Figure 2.18. Scatter plot investor's portfolio returns versus Rocker Partners 
returns (left) and replicated returns (right), 1987 - 2004. 
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Mean St. Dev Skewness Skewness 
(robust) 

Excess 
Kurtosis 

Ex. Kurt. 
(robust) 

Corr. with 
Portfolio 

Kendall's 
Tau 

RP 0.0058 0.0684 -0.2456 -0.0992 1.5588 1.3862 -0.302 -0.179 

Replica 0.0083 0.0430 0.8377 -0.0385 5.0043 1.5521 -0.346 -0.196 
Univariate K-S Statistic = 0.117, (approxi mated) p. value = 0.101 
Bivariate K-S Statistic = 0.111, (approximated) pvalue = 0.295 

Table 2.5: Monthly return statistics Rocker Partners and replication strategy, 1987 

- 2004. 
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The desired payoff function for RP as per October 1", 2004 can be found in Figure 2.16 

and 2.17. From these graphs we see that the payoff function for RP is quite different 

from what we found for LCH and CMSF. Of course, the payoff is a positive function of 

the reserve asset. The RP payoff, however, is a negative function of the investor's 

portfolio. The replication strategy will therefore go long in the reserve asset, but short 

the investor's portfolio. This is of course what one would expect for a short seller, 

whose returns are likely to be negatively correlated with the market. From Figure 2.18 

and Table 2.5 we see that the replication strategy performs in the same way as before. 

The replicated return statistics are again similar to those of the fund returns. Even the 

negative correlation with the investor's portfolio is closely replicated. Figure 2.19 paints 

a similar picture as Figures 2.10 and 2.15. 
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3. Evaluation of Funds of Funds and Hedge 
Funds31 

3.1 Preliminary comments 

All performance evaluation studies in finance follow the same general procedure. First, 

using a fund's track record and possibly some additional data over the same period as 

well, the fund return is characterized in some way. With the Sharpe ratio this is done by 

calculating the volatility of the fund return. With alphas this is done by estimating a 

fund's exposure to the relevant risk factors. Second, based on this characterization, a 

benchmark return is determined and compared with the actual average fund return over 

its track record. With the Sharpe ratio the benchmark return is derived from the average 

index return and the volatility of the index, while with alphas it derives from the 

average returns of the risk factors. 

The replication-based evaluation procedure presented here is not different. It is just a 

different characterization. Where other approaches use volatility or factor loadings, this 

one uses the desired payoff function. Where other approaches use the average return on 

the index or the chosen risk factors, this one use the average interest rate, building block 

volatilities and correlation over a fund's track record to set a benchmark. What is 

different, however, is that there is no unrealistically strong assumptions concerning the 

exact nature of a fund's risk exposure or the behaviour of markets in general. As shown 

in Section 2.4, a fairly limited set of returns will often be enough to obtain a sufficiently 

good estimate of the desired distribution and the efficiency measure. As such, this 

procedure is quite robust. 

Another point worth noting about the above evaluation procedure is the fact that it 

explicitly takes transaction costs into account by, instead of a Black-Scholes type option 

pricing model, using the Boyle and Lin (1997) model. In factor model based 

evaluations, transaction costs are typically ignored, despite the fact that maintaining the 

replicating portfolio's factor loadings at their desired levels is likely to require 

31 The material in this chapter appeared as Alternative Investment Research Center WP 40, Cass Business School. 
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significant periodic rebalancing. In addition, when dealing with hedge funds the risk 

factors used may be quite unusual and may therefore be accompanied by significant 

levels of transaction costs. 

3.2 An Example 

To clarify the above, let's look at a worked-out example. XYZ is a well-known fund of 

hedge funds, which started in 1985. Given XYZ's monthly, net-of-fee returns since 

1985, the first step is to model the joint distribution of XYZ and the investor's portfolio, 

as well as the joint distribution of the investor's portfolio and the reserve asset. Before 

we can do so we need to decide what exactly the investor's portfolio and the reserve 

asset are, as well as unsmooth the raw fund return data. 

Let's assume that the representative investor's portfolio consists of 50% S&P 500 and 

50% long-dated US Treasury bonds. Let's also assume that all exposure management is 

done in the futures markets. Futures have several advantages over cash, in particular 

high liquidity and low transaction costs, which is extremely important given the 

dynamic nature of the KP replication strategies. We trade S&P 500 futures on the CME 

and T-bond futures on the CBOT. To keep things simple, we use nearby Eurodollar 

futures (CME) as the reserve asset. 

Standard Skewness Excess 1M Auto 
Deviation Kurtosis Correlation 

XYZ smooth 0.0370 -1.726 11.505 0.138 

XYZ unsmooth 0.0424 -1.746 11.581 0.008 

Table 3.1. Risk statistics XYZ. 

Table 3.1 shows the marginal risk characteristics of the raw and unsmoothed XYZ 

returns. From the table, we see that XYZ's raw returns exhibit negative skewness and 

positive auto correlation. Application of the unsmoothing procedure eliminates the 

autocorrelation and produces returns with the same degree of skewness, but with a 

substantially higher volatility (annualised 14.7% vs. 12.8% for the raw returns). 
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We are now ready to infer the desired and the building block distribution. Using the 

same methodology as in Chapter 2, we find that the best fit (according to the AIC) is 

provided by the following set of marginals and copulas32: 

XYZ: Student-t (µ = 0.0101,6 = 0.0406, df = 4.0544) 

Portfolio: Normal (µ = 0.0101, a=0.0282) 

Reserve: Johnson (ý = 0.003 1, ?=0.0046, y= -0.60,6 = 1.599) 

Copula (XYZ, portfolio): Normal (p = 0.754) 

Copula (portfolio, reserve): Gumbel (a = 1.3349) 

Given the above distributions, we can derive the desired payoff function following the 

methodology developed in Chapter 2. The result is depicted in Figure 3.1 and shows 

that the desired payoff is an increasing function of both the investor's portfolio and the 

reserve asset, implying that the replication strategy will take long positions in both 

assets. Subsequently, we price this payoff function using the Boyle and Lin (1997) 

model, assuming transaction costs in the futures markets are lbp one-way. This 

produces a value for the KP efficiency measure of 99.53, meaning that, seen over the 

whole life of the fund, XYZ's returns are not as miraculous as many investors may have 

thought. Trading S&P 500, T-bond and Eurodollar futures, investors could have 

generated the same risk profile as XYZ and obtained a higher average return at the same 

time. 

32 Copula functions and marginal distributions defined in Appendix A. 3. 
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replicated returns (right). 

To see how well the derived payoff function succeeds in replicating the desired 

distribution, Figure 3.2 shows a scatter plot of the investor's portfolio return versus the 

XYZ return (left) as well as a plot of the portfolio return versus the replicated return 
(right). The two plots are very similar, suggesting that the replication has indeed been 

successful. We see that the replication strategy is unable to replicate the three large 

losses that XYZ reported during the sample period. This is not surprising as these are 

clearly outliers, which simply cannot be captured by a parametric model like ours. 
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Mean St. Dev Skewness Skewness 
(robust) 

Excess 
Kurtosis 

Ex. Kurt. 
(robust) 

Corr. with 
Portfolio 

Kendall's 
Tau 

XYZ 0.0102 0.0424 -1.7463 -0.1600 11.5812 0.4366 0.714 0.540 

Replica 0.0150 0.0388 0.1184 -0.1269 1.2691 0.6889 0.721 0.548 

Univariate K-S Statistic = 0.054, (approximated) p-value = 0.862 

Bivariate K-S Statistic = 0.056, (approximated) p-value 0.924 

Table 3.2. Statistics XYZ and replicated returns. 

A further indication of the accuracy of the replication strategy comes from comparing 

the mean, standard deviation, skewness and kurtosis of XYZ's returns with those of the 

replicated returns. The latter statistics can be found in Table 3.2, together with the 

correlation and Kendall's Tau with the investor's portfolio. Since the XYZ returns 

exhibit a few negative outliers, apart from the standard skewness and kurtosis measures, 

we also report a more robust skewness and kurtosis measure33. To test whether the 

marginal distribution of the replicated returns and the joint distribution of the replicated 

returns and the investor's portfolio are significantly different from the original 

distributions, we use the univariate and bivariate Kohnogorov-Smirnov (K-S) tests34 

Comparing the entries in Table 3.2, it is clear that the statistical properties of XYZ's 

returns have been successfully replicated. The replication strategy has not only 

replicated the marginal distribution of XYZ's returns but also its relationship with the 

investor's portfolio. The same conclusion follows from both the K-S tests. 

Having clarified the procedure to be used, we proceed with the evaluation of the 

performance of 875 funds of hedge funds and 2073 individual hedge funds. Since funds 

of funds are distinctly different from individual hedge funds, we do so in two separate 

parts. Section 3.3 deals with funds of funds. Section 3.4 deals with individual hedge 

funds. 

" Seel inkley (1975) and Crow and Siddiqui (1967) for details. 

34 See Fasano and Francesehini (1987) for details. 
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3.3 Funds of Hedge Funds 

3.3.1 Funds of Hedge Funds: Data Description 

Our sample consists of 875 funds of hedge funds with a minimum of 4 years of history 

available. All data were obtained from The Barclay Group as per November 2006. 

Funds denominated in another currency than USD are converted to USD, i. e. the 

perspective taken is that of a USD-based investor. Table 3.3 provides some information 

on the start and end dates of the track records of the funds in our sample. 

Jan 1985 Jan 1988 Jan 1991 Jan 1994 Jan 1997 Jan 2000 Jan 2003 Jan 2006 Nov 2006 
Start after 870 863 834 775 613 381 0 0 0 

End before 0 0 0 0 0 0 46 122 218 

Table 3.3. Fund of funds start and end date details. 

Table 3.3 shows that, reflecting the increasing popularity of hedge funds in the second 

half of the 1990s, the majority of funds started after 1994. Most hedge fund databases, 

first started collecting data around the mid to late 1990s. As a result, they contain no 
funds that stopped reporting before that date. Out of the 875 funds in our database, 218 

funds stopped reporting before November 2006. This confirms that, although lower than 

for individual hedge funds, the attrition rate in funds of funds is still quite high. 

4-5Y 5-6Y 6-7Y 7-8Y 8-9Y 9-10Y 1OY-11Y 11Y-12Y 12Y-14Y 14Y+ 
No. funds 211 137 106 83 66 52 61 53 48 58 

Table 3.4. Length fund of funds track records. 

Table 3.4 provides details on the length of the available fund of funds track records. Out 

of the 875 funds in the sample, only 220 have 10 or more years of history. This again 

reflects the fact that most funds of funds are still relatively young and attrition can be 

significant. 
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3.3.2 Funds of Hedge Funds: Distributional Analysis 

A crucial stage in the evaluation procedure is the proper modelling of the distributional 

characteristics of the fund, the investor's portfolio and the reserve asset. This means 

that, although not explicitly designed to do so, the evaluations provide a wealth of 

information on the distributional properties of fund of funds returns. Table 3.5 

summarizes how often (out of a total of 875 funds) a given marginal or copula was used 
in the evaluations for modelling the fund return marginal and the joint distribution of 

the fund and the investor's portfolio return. 

Mar finals No. Copulas No. 
Normal 40.7% Normal 29.4% 

Student-t 47.1% Student 6.0% 

Johnson 12.2% Gumbel 8.0% 

SJC 9.6% 

Cook-Johnson 19.7% 

Frank 27.3% 

Table 3.5. Distributional characteristics fund of funds returns. 

Table 3.5 confirms that, despite an often substantial degree of diversification in the 

larger funds, the majority of fund of funds returns are far from normally distributed. 

Out of 875 funds, 519 (59.3%) funds' marginal return is better modelled by a Student-t 

or Johnson distribution than a normal distribution. In addition, for only 257 (29.3%) of 

the 875 funds is the relationship with the investor's portfolio (consisting of 50% S&P 

500 and 50% T-bonds) best modelled by the normal copula. This emphasizes how 

important it is to evaluate fund of funds performance using a method, which does not 

rely on the assumption of normally distributed returns. 

3.3.3 Funds of Hedge Funds: Replication and Evaluation Results 

As in the example in Section 3.2, in the evaluations we assume that the representative 
investor's portfolio consists of 50% S&P 500 and 50% long-dated US Treasury bonds, 

with all exposure management done through collateralised nearby futures contracts. The 

reserve asset is taken to consist of a basket of nearby Eurodollar (CME), 5-year note 

(CBOT), 10-year note (CBOT), S&P 500 (CME), Russell 2000 (CME) and GSCI 
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(CME) futures. We chose this particular basket for no other reason than that is well- 

diversified over three asset classes and therefore contains relatively little 

uncompensated risk. To compensate for their low volatility, the Eurodollar and 5-year 

note futures are leveraged by a factor 5 and the 10-year note futures by a factor 4. 

Transaction costs on all futures contracts are assumed to be 1bp one-way. Commission 

costs in futures tend to be extremely low, while quoted bid ask spreads in the most 
liquid contracts are typically not much higher than a few basis points. The quoted 

spread, however, is not necessarily a good approximation for the actual transaction costs 

experienced. The time-sensitivity of the required trades is typically quite low, as these 

trades are primarily exposure adjustments and are not meant to capture a specific short- 

term profit opportunity. It is therefore not necessary to trade on the first available bid or 

ask. Over time, competing with the market makers and trying to buy on the bid and sell 

at the offer could yield a very substantial saving in transaction costs. In fact, in managed 
futures trading programs, like Man's well-known AHL program for example, good 

execution tends to account for a very significant part of the bottom line P&L. 

For the pricing of the payoff functions, we use average 1-month USD Libor as the 

relevant interest rate, while estimating the required volatilities and correlations over the 

period covered by the track record of the fund that is being evaluated. The interest rate 

data was obtained from Datastream, while the futures data was obtained from 

Commodity Systems Inc. (CSI). 
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Figure 3.3. Scatter plot fund vs. replicated standard deviation. 
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Figure 3.4. Scatter plot fund vs. replicated skewness. 
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Figure 3.5. Scatter plot fund vs. replicated correlation with investor's portfolio. 

To get an idea of the accuracy of the replication procedure, Figure 3.3 - 3.5 show 

scatter plots of the fund standard deviation (Fig. 3.3), standard skewness (Fig. 3.4) and 

correlation with the investor's portfolio (Fig. 3.5) versus the replicated values for all 

875 funds. As is clear from these graphs, on average the replication of these parameters 

is unbiased and quite accurate. Not surprisingly, the replication of skewness can be 

difficult at times as fund returns may contain one or more outliers, which will have a 

major impact on the standard skewness statistic, but which cannot be replicated. We 

encountered this problem before in the example in Section 3.2. 

Figures 3.3-3.5 also provide additional information on the risk-return profile of the 

funds in our sample. From Figure 3.4 for example, we see that for most funds of funds 

estimated skewness lies somewhere between -1 and +1. Likewise, from Figure 3.5 we 

see that the majority of funds are positively correlated with a portfolio of 50% stocks 

and 50% bonds. Most correlation coefficients lie between 0.2 and 0.6, indicating that 

many funds of funds' returns are a lot less `market neutral' than is often suggested. 35 

35 
In this context it is important to note that at least for some of the more complex distributions encountered (see Table 3.5), the 

correlation coefficient will not be a particularly good measure of dependence and may underestimate the true level of dependence. 
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Figure 3.6. Histogram KP efficiency measure 875 funds of funds. 

Figure 3.6 shows a histogram of the values of the KP efficiency measure obtained for 

the 875 funds of funds in our sample. From the graph we see that the majority of funds 

produce a value for the efficiency measure that is below 100. The average value for the 

KP efficiency measure over all 875 funds is 99.80. We tested the statistical significance 

of the above efficiency measure results by calculating bootstrapped 95% confidence 

intervals. Distinguishing between three cases, we obtained the following results: 

" The confidence interval is entirely lower than 100 - 531 funds (60.7%). 

" The confidence interval contains 100 - 181 funds (20.7%). 

0 The confidence interval is entirely higher than 100 - 163 funds (18.6%). 

This confirms that the majority of funds of hedge funds have not provided their 

investors with returns, which they could not have generated themselves in the futures 

market. 
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Figure 3.7. Percentage of funds of funds that stopped reporting before November 
2006 as function KP efficiency measure. 

Since lack of performance is one of the main reasons for funds to close down, Figure 

3.7 shows the percentage of funds that stopped reporting to the database as a function of 

their KP measure. From the graph we see that there is a strong relationship. Out of the 

48 funds with a KP measure below 99, no less than 24 (50%) stopped reporting. Out of 

the 273 funds with a KP measure higher than 100, only 27 (9.9%) did so. A similar 

relationship is observed in the average KP measures of live and dead funds. The average 

KP measure over the 218 dead funds is 99.64, while over the 657 funds still alive the 

average is 99.86. 
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Figure 3.8. KP efficiency measures over split track record. 

Another question concerns the performance of funds of funds through time. Especially 

after two years of somewhat disappointing results, it is often claimed that overall hedge 

fund performance is deteriorating, with the massive inflow of capital over recent years 

being the most obvious cause. We therefore split the track record of all funds of funds 

with 8 or more years of history in two equal parts and calculated the KP measure over 

each part. The result is plotted in Figure 3.8. 

The average KP measure over the first period is 99.91, while over the second, more 

recent, period the average is 99.89. This suggests that on average fund of funds 

performance has changed little over time. This is not entirely true though as Figure 3.8 

reveals a clear tendency for funds with a relatively high (low) KP measure in the first 

period to produce a relatively low (high) KP measure in the second. As the assets under 

management of funds that do well can be expected to grow substantially (organically as 

well as through additional inflows) and vice versa, this fmding supports the idea that 

increased fund size has a negative impact on future performance. 
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3.4 Individual Hedge Funds 

3.4.1 Individual Hedge Funds: Data Description 

Our individual hedge funds sample consists of 2073 funds with a minimum of 4 years of 
history available. As before, all data were obtained from The Barclay Group as per 
November 2006 and funds denominated in another currency than USD are converted to 

USD. We study all funds together, as well as the various strategy groups separately, so 

we can detect possible differences between them. The strategy classification used and 

the number of funds within each strategy group can be found in Table 3.6. Table 3.7 and 
3.8 provide some information on the start and end dates of the track records of the funds 

in our sample. 

Category No. funds 
Convertible Arbitrage 80 
Distressed Securities 55 
Emerging Markets 182 
Equity Long 309 
Equity Lon Short 411 
Equity Market Neutral 65 
Equity Short Bias 20 
Event Driven 96 
Fixed Income Arbitrage 149 
Global Macro 80 
Merger Arbitrage 5 
Multi-Strategy Arbitrage 104 
Mutual Fund Timing 34 
Other 242 
Sector Funds 165 
Statistical Arbitrage 26 
Total 2073 

Table 3.6. Strategy classification and number of hedge funds. 
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Start after: Jan 1985 Jan 1988 Jan 1991 Jan 1994 Jan 1997 Jan 2000 Jan 2003 

Convertible Arbitrage 79 79 76 69 50 24 0 
Distressed Securities 55 55 51 48 36 24 0 
Emerging Markets 181 178 173 159 114 53 0 
Equity Long 306 298 279 251 186 96 0 
Equity Long/Short 409 403 388 351 267 153 0 
Equity Market Neutral 64 63 57 53 48 22 0 
Equity Short Bias 20 20 18 14 9 2 0 
Event Driven 94 92 85 73 50 31 0 
Fixed Income Arb. 149 148 145 135 108 55 0 
Global Macro 78 73 72 65 53 27 0 
Merger Arbitrage 53 51 49 46 31 12 0 
Multi-Strategy Arb. 104 104 101 91 66 35 0 
Mutual Fund Timing 34 34 33 33 27 6 0 
Other 239 235 224 183 82 30 0 
Sector Funds 164 161 154 136 108 64 0 
Statistical Arbitrage 25 25 25 22 14 6 0 
Total 2054 2019 1930 1729 1249 640 0 

Table 3.7. Hedge funds start date details. 

End before: Jan 2000 Jan 2003 Jan 2006 Nov 2006 

Convertible Arbitrage 0 5 25 35 
Distressed Securities 0 6 10 16 
Emerging Markets 1 18 37 65 
Equity Long 0 30 65 110 
Equity Long/Short 0 57 138 183 
Equity Market Neutral 0 3 20 27 
Equity Short Bias 0 2 9 10 
Event Driven 0 6 26 40 
Fixed Income Arb. 0 21 48 62 
Global Macro 0 12 23 27 
Merger Arbitrage 0 8 25 29 
Multi-Strategy Arb 0 8 28 43 
Mutual Fund Timing 0 3 22 25 
Other 0 192 200 207 
Sector Funds 0 24 57 75 
Statistical Arbitrage 0 6 12 14 
Total 1 401 745 968 

Table 3.8. Hedge funds end date details. 
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Table 3.7 shows that the majority of funds started after 1994. Only 143 funds started 

before January 1991, and only 19 before January 1985. Table 3.8 shows that out of 

2073 funds, no less than 968 funds stopped reporting before November 2006. This 

confirms that the attrition rate in hedge funds is very substantial36 

Length Track record: 4-5Y 5-6Y 6-7Y 7-8Y 8-9Y 9-10Y 10-12Y 12-14Y 14Y+ 
Convertible Arbitrage 22 19 15 9 3 4 5 2 1 
Distressed Securities 9 11 7 7 5 4 5 4 3 
Emerging Markets 50 28 27 23 8 12 16 6 12 

Equity Long 63 62 52 31 29 23 24 18 7 
Equity Long/Short 82 69 62 34 37 24 49 29 25 
Equity Market Neutral 8 4 12 11 7 8 12 2 1 
Equity Short Bias 4 1 2 3 2 3 1 3 1 
Event Driven 17 12 14 8 6 9 7 7 16 
Fixed Income Arbitrage 33 22 22 14 13 9 12 7 17 

Global Macro 13 12 8 11 4 6 7 7 12 
Merger Arbitrage 17 10 6 7 2 6 4 3 0 

Multi-Strategy Arbitrage 24 7 16 11 7 6 19 6 8 
Mutual Fund Timing 4 12 7 3 4 1 2 1 0 
Other 40 37 32 32 21 10 35 17 18 
Sector Funds 35 18 20 15 15 10 21 13 18 
Statistical Arbitrage 5 4 4 1 1 2 3 2 4 
Total 426 328 306 220 164 137 222 127 143 

Table 3.9. Length of hedge funds track records. 

Table 3.9 provides details on the length of the available hedge fund track records. Out 

of the 2073 funds in the sample, only 492 have more than 10 years of history. This 

again reflects the fact that most funds are still relatively young and attrition levels can 

be very significant. 

3.4.2 Individual Hedge Funds: Distributional Analysis 

A crucial stage in the evaluation procedure is the proper modelling of the distributional 

characteristics of the fund, the investor's portfolio and the reserve asset. This means 

that, although not explicitly designed to do so, the evaluations provide a wealth of 

36 Not all funds that stop reporting into a database do so because they close down. The majority does so, however. For more details 

on hedge fund and fund of funds attrition see Kat and Amin (2003a). 
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information on the distributional properties of fund of funds returns. Table 3.10 

summarizes how often a given marginal distribution or copula was used in the 

evaluations for modelling the fund return marginal and the joint distribution of the fund 

and the investor's portfolio return. 

Marginal Distri bution Copula 
Norm Stud John Norm Stud Gumb SJC Cook-J Frank 

Convertible Arbitrage 46.3% 45.8% 7.9% 39.4% 15.0% 9.4% 10.0% 11.3% 15.0% 
Distressed Securities 47.3% 46.1% 6.7% 33.6% 20.0% 10.0% 11.8% 13.6% 10.9% 
Emerging Markets 45.6% 47.3% 7.1% 43.4% 15.4% 7.4% 9.6% 11.8% 12.4% 
E uit Long 50.3% 44.2% 5.5% 40.3% 20.2% 8.9% 8.3% 7.9% 14.4% 
Equity Lon Short 51.8% 43.4% 4.8% 36.0% 17.6% 13.4% 10.3% 7.4% 15.2% 
Equity Market Neutral 50.3% 46.7% 3.1% 33.1% 25.4% 10.8% 10.8% 10.8% 9.2% 
Equity Short Bias 45.0% 50.0% 5.0% 50.0% 17.5% 7.5% 5.0% 2.5% 17.5% 
Event Driven 41.7% 51.4% 6.9% 28.6% 28.6% 7.8% 9.9% 13.0% 12.0% 
Fixed Income Arb 48.3% 45.6% 6.0% 36.6% 17.4% 14.1% 11.7% 9.4% 10.7% 
Global Macro 50.0% 42.1% 7.9% 31.3% 20.6% 13.1% 11.9% 10.6% 12.5% 
hier er Arbitrage 46.7% 43.6% 9.7% 43.6% 17.3% 3.6% 10.9% 20.0% 4.5% 
Multi-Strategy Arb 43.9% 48.1% 8.0% 41.3% 15.9% 7.7% 10.6% 13.9% 10.6% 
Mutual Fund Tin-iing 50.0% 41.2% 8.8% 45.6% 8.8% 4.4% 5.9% 7.4% 27.9% 
Other 63.1% 30.9% 6.1% 49.0% 8.5% 4.1% 9.5% 15.1% 13.8% 
Sector Funds 48.1% 47.5% 4.4% 35.2% 18.2% 14.2% 10.6% 7.3% 14.5% 
Statistical Arbitrage 53.8% 44.9% 1.3% 51.9% 13.5% 11.5% 7.7% 5.8% 9.6% 
Total 50.3% 43.8% 5.9% 39.2% 17.3% 9.9% 9.9% 10.3% 13.4% 

Table 3.10: Overall distributional characteristics hedge fund returns. 

Table 3.10 confirms that the majority of individual hedge fund returns are far from 

normally distributed. Out of 2073 funds, 1030 (49.7%) funds' marginal return is better 

modelled by a Student-t or Johnson distribution than a normal distribution. In addition, 

for only 813 (39.2%) of the 2073 funds is the relationship with the investor's portfolio 

of 50% S&P 500 and 50% T-bonds best modelled by the normal copula. This 

emphasizes once more how important it is to evaluate hedge fund performance using a 

methodology, which does not rely on the assumption of normally distributed returns. 

3.4.3 Individual Hedge Funds: Replication and Evaluation Results 

For the evaluation we make the same assumptions as before. The representative 

investor's portfolio consists of 50% S&P 500 and 50% long-dated US Treasury bonds 

and the reserve asset of nearby Eurodollar, 5-year note, 10-year note, S&P 500, Russell 

2000 and GSCI futures. Transaction costs on all futures contracts are assumed to be lbp 

one-way. 
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Figure 3.9-3.11 plot the standard deviation, standard skewness measure and correlation 

with the investor's portfolio for all 2073 funds. As is clear from these graphs, on 

average the replication of these parameters is unbiased and quite accurate. Taking into 

account the high sensitivity of the conventional skewness measure, the results in Figure 

3.10 are quite satisfactory. 
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Figure 3.9. Scatter plot hedge fund vs. replicated standard deviation. 
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Figure 3.10. Scatter plot hedge fund vs. replicated (conventional) skewness. 
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Figure 3.11. Scatter plot hedge fund vs. replicated correlation with investor's 

portfolio. 

Figures 3.9-3.11 also provide additional information on the risk-return profile of the 

funds in our sample. From Figure 3.10 for example, we see that for most hedge funds 
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estimated skewness lies between -1 and +1. Likewise, from Figure 3.11 we see that the 

majority of hedge funds are positively correlated with a portfolio of 50% stocks and 
50% bonds. Most correlation coefficients lie between 0 and 0.6, again indicating that 

many hedge funds' returns are a lot less `market neutral' than often suggested. 

No. Inefficient Equivalent Efficient Mean StDev Skew 
Convertible Arbitra e 80 43 (53.8%) 16 (20.0%) 21 (26.2%) 99.816 0.447 -1.517 
Distressed Securities 55 16 (29.1%) 12 (21.8%) 27 (49.1%) 100.064 0.585 -1.997 
Emerging Alarkets 182 124(68.1%) 30(16.5%) 28(15.4%) 99.422 1.010 -1.350 
Equity Long 309 214 (69.2%) 58 (18.8%) 37 (12.0%) 99.472 0.878 -0.675 
]Equity Lon Short 411 271 (65.9%) 85 (20.7%) 55 (13.4%) 99.608 0.778 -1.365 
Equity Market Neutral 65 49 (75.4%) 13 (20.0%) 3 (4.6%) 99.659 0.503 -0.804 
Equity Short Bias 20 15 (75.0%) 5 (25.0%) 0 (0.0%) 99.592 0.656 0.506 
Event Driven 96 37 (38.5%) 24 (25.0%) 35 (36.5%) 100.009 0.915 6.488 
Fixed Income Arbitrage 149 82 (55.0%) 33 (22.2%) 34 (22.8%) 99.803 0.701 -0.565 
Global Macro 80 58 (72.5%) 15 (18.8%) 7 (8.7%) 99.595 0.716 -0.547 
Merger Arbitrage 55 22 (40.0%) 14 (25.4%) 19 (34.6%) 99.998 0.364 1.421 
Multi-Strategy Arbitrage 104 36 (34.6%) 22 (21.2%) 46 (44.2%) 100.078 0.475 -0.988 
Mutual Fund Timing 34 17 (50.0%) 8 (23.5%) 9 (26.5%) 99.670 1.025 -3.043 
Other 242 72 (29.8%) 46 (19.0%) 124 (51.2%) 100.171 1.097 -0.088 
Sector Funds 165 108 (65.4%) 39 (23.6%) 18 (10.9%) 99.437 1.110 -0.957 
Statistical Arbitrage 26 17 (65.4%) 6 (23.1%) 3 (11.5%) 99.826 0.288 -0.066 
Total 2073 1181 (57.0%) 426 (20.5%) 466 (22.5%) 99.816 0.447 -1.517 

Table 3.11. Hedge fund evaluation results. 

We tested the statistical significance of the KP efficiency measure results by calculating 

bootstrapped confidence intervals, distinguishing between three cases: (1) Inefcient, 

i. e. confidence interval entirely lower than 100, (2) Efficient, i. e. confidence interval 

entirely higher than 100, and (3) Equivalent, i. e. confidence interval contains 100. Table 

3.11 summarizes the evaluation outcomes. From the table we see that for only 22.5% of 

all funds the KP measure is convincingly higher than 100. In other words, and similar 

to funds of funds, the majority of hedge funds have not provided their investors with 

returns, which they could not have generated themselves in the futures market. 

The percentage of efficient funds varies considerably between the different strategy 

groups, with equity short bias producing the least (0%) and the category `other' the 

most (51.2%) efficient funds. Distressed securities (49.1% efficient) and multi-strategy 

arbitrage (44.2% efficient) stand out as well. When interpreting these results, one has to 

keep in mind that the available dataset on hedge funds is limited and that most funds 
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have relatively short track records. The idea behind the KP measure is that in the longer 

run investors receive a return that is fair compensation for the bottom-line risk that they 

have taken, irrespective of how that risk profile is obtained. For many hedge funds, 

however, we may not have enough data to be able to properly observe `the longer run'. 

The shorter the track record, the more the efficiency measure may be influenced by 

sampling error37, in both the fund and the assets traded in the replication strategy. The 

relatively high proportion of efficient funds in distressed securities and multi-strategy 

arbitrage for example may have been partly due to the combination of falling interest 

rates and shrinking credit spreads observed over recent years. 

The last three columns of Table 3.11 show the mean, standard deviation and skewness 

of the frequency distribution of the efficiency measure values observed within each 

strategy group. For most strategies the distribution is negatively skewed, implying that 

within each group some funds have shown extremely bad performance relative to what 

could have been achieved trading a basket of liquid futures contracts. From the table we 

also see that especially the efficiency measures of strategies whose returns are known to 

be relatively volatile exhibit a relatively high standard deviation. Global macro and 

emerging markets for example exhibit relatively high standard deviations, while the 

opposite is true for convertible arbitrage, equity market neutral and merger arbitrage. 

Likewise, highly negative skewness is observed in exactly those strategies that are 

known to be most susceptible to shocks, such as distressed securities, convertible 

arbitrage, and emerging markets. 

37 Note that this applies to all performance evaluation procedures, not just the KP measure. 

81 



0 live   Dead 

700 

Goo 

500 

400 

300 

200 

»o 

Q r 

a u 

VV 
7 
Q 
u 

LL 

96.5-97.0 97.0-97.5 9T. E-93.0 98.0-98.5 SS. 639.0 59. O-J9.6 55.5-100.0100.0-100.5100.5-101.0101.0.1015101.5-102.0 

KP Me2sure 

Figure 3.12. Histogram KP efficiency measure 2073 individual hedge funds. 
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Figure 3.13. Percentage of individual hedge funds that stopped reporting before 

November 2006 as function KP efficiency measure. 
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Figure 3.12 shows the frequency distribution of the efficiency measure values found in 

all 2073 hedge funds38, while Figure 3.13 separates out the percentage of funds that 

stopped reporting to the database before November 2006. From the graph we see that 

there is a strong relationship. Out of the 294 funds with a KP measure below 99, no less 

than 166 (56.5%) stopped reporting. Out of the 681 funds with a KP measure between 

100 and 101, only 285 (41.8%) did so, with probably a significant number of these not 

really closing down but simply stopping reporting. A similar relationship is observed in 

the average efficiency measure values of live and dead funds. The average KP measure 

over the 892 dead funds is 99.66. If we assume that all funds with a KP measure above 

100 did not really die, but simply stopped reporting, the average KP measure for dead 

funds drops to 99.13. Over the 1181 funds still alive on the other hand, the average is 

99.75 
Track Record 

(months) 
Mean StDev Skew Kurt 

48 - 71 99.80 1.05 0.12 9.62 
72 - 95 99.56 0.95 -1.05 5.77 
96 - 119 99.65 0.74 -1.26 3.24 
120 - 143 99.80 0.56 -1.11 3.02 
144+ 99.79 0.55 -1.17 1.90 

Table 3.12. Distribution KP measure as function length of track record. 

To investigate whether there is any indication of older funds doing better than younger 

funds or vice versa, we sorted the funds in our sample on the length of their track 

record. Table 3.12 shows the statistics of the resulting frequency distributions of the KP 

measure. From the means we see that on average age has little or no impact on 

performance. The standard deviation, skewness, and kurtosis measures all drop when 

we move to funds with a longer track record, suggesting significant differences. On the 

other hand, with more data available, sampling error is less of an issue, which could 

well explain (at least part of) the declining dispersion of observed KP measure values. 

3S Histograms for the various strategies show a similar picture and are therefore not reported. 
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Figure 3.14: KP efficiency measures over split track record. 

Finally, we split the track record of all funds with 8 or more years of history in two 

equal parts and calculated the KP measure over each part. The result is shown in Figure 

3.14. Over all funds, the average over the first period was 100.18 while over the second, 

more recent, period the average was only 99.67. This indicates a very substantial 

deterioration in average hedge fund performance over time. As for funds of funds, 

Figure 3.14 reveals a tendency for hedge funds with a relatively high (low) KP measure 

in the first period to produce a relatively low (high) KP measure in the second. This 

again supports the hypothesis that increased fund size tends to have a negative impact 

on future performance. 
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4. Creation of synthetic funds39 

As said in the Introduction, there is no reason why the replication technique developed 

in Chapter 2 could not be used to create completely new funds, providing investors with 

previously unavailable return characteristics. Some examples of the so-called `synthetic 

funds' will be discussed in this chapter. 

4.1 Out-of-Sample Tests 

In this section we study the out-of-sample performance of four different synthetic funds, 

the details of which are shown in Table 4.1. Throughout we assume that the synthetic 

funds in question are created to further diversify a larger traditional portfolio consisting 

of 50% S&P 500 and 50% T-bonds. 

Volatility Skewness Excess 

Kurtosis 

Correlation with 

Investor's Portfolio 

Fund 1 12% 0.00 0.00 0.00 

Fund 2 12% 2.00 10.00 0.00 

Fund 3 12% 0.00 0.00 -0.50 
Fund 4 Fund 1 with -5% floor on monthly return 

Table 4.1. Overview of the four synthetic funds studied. 

The first case is quite straightforward. It concerns a synthetic fund that generates returns 

with a volatility of 12%, no significant skewness or kurtosis and zero correlation with 

the investor's existing portfolio of 50% stocks and 50% bonds. This risk profile is 

similar to that of a well-diversified portfolio of commodity futures40. Fund 2 is the same 

as fund 1 except that apart from zero correlation we also aim for a significant degree of 

positive skewness41. Fund 3 is also similar to fund 1, except that in this case we aim for 

even lower correlation with stocks and bonds. With a correlation of -0.5, this is similar 

to the risk profile of an investment in pure stock market volatility42. Finally, in fund 4 

39 The material in this chapter appeared as Alternative Investment Research Center \VP 36, Cass Business School. 

40 See Kat and Oomen (2006a, 2006b) for details on the statistical behaviour of commodity futures investments. 

41 We have to raise excess kurtosis to 10 since it is very difficult to generate significant skewness without extra kurtosis. 

42 See Carr and Wu (2006) or Kat and Tassabeliji (2006) for details on volatility investment. 
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we floor the monthly fund 1 return at -5%. This is similar to the risk profile of some of 

the hedge fund and commodity-linked notes that are offered by the main alternative 

product providers. 

In the above we have not set a target for the expected fund return. The reason for this is 

that synthetic funds are not designed in isolation. Given interest rates, volatilities, 

correlations, etc., some parameter choices are feasible, while others are not, as the fund 

parameters have to be in line with the prevailing pricing environment in the global 

capital markets. Practically speaking, this means we can choose all parameters 

ourselves, except for one, which is subsequently determined by the capital markets. In 

all four cases studied we fully specify the funds' risk profiles, while leaving the 

expected return for the capital markets to determine. Once a fund's risk profile is 

specified and the accompanying dynamic trading strategy has been derived, we can of 

course calculate its expected return, but strictly speaking the latter is not part of the 

target. 

With the reference portfolio given, the most important decision left is the composition 

of the reserve asset. Unfortunately, there is no universally optimal reserve asset43. What 

makes a good reserve asset depends very much on the composition of the reference 

portfolio and the expected return on the various asset classes. More specifically, and 

apart from liquidity, what should we be looking for in a good reserve asset? First, since 

it is the main building block of every trading strategy, its statistical properties need to be 

stable. This means a well-diversified portfolio will generally be preferred over a single 

asset. Second, since we'll always be long the reserve asset, it needs to have an attractive 

expected return relative to its risk level. In simple terms, the reserve asset needs to have 

a high Sharpe ratio. Note that this may be achieved in many different ways, ranging 

from a de-leveraged portfolio of high volatility assets to a highly leveraged portfolio of 
low volatility assets. Third, although not absolutely necessary, it helps when the reserve 

asset shares some of the skewness and kurtosis characteristics of the target, as a reserve 

asset without any skewness or kurtosis may have difficulty generating fund returns, 

which do display a significant degree of skewness or kurtosis. 

13 In Appendix A4 the influence of the moments of the reserve asset distribution and its correlation with the reference portfolio on 

the KP measure is examined. 
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Since the outlook for the various asset classes as well as the composition of the 

investor's portfolio will change over time, in practice the choice of the reserve asset is a 

dynamic process, producing time-varying allocations. Unfortunately, the latter process 
is very difficult to simulate in a backtest without the suggestion of data mining. In what 

follows, we therefore assume that the composition of the reserve asset is fixed though 

time44. More specifically, we assume the reserve asset consists of an equally-weighted 

portfolio of 3-month Eurodollar, 5-year note, 10-year note, T-bond, S&P 500, Russell 

2000 and GSCI futures45. This captures three main asset classes. The resulting portfolio 

is quite well diversified, with, over the period Jan/1998-Feb/2007, an annualised 

volatility of 9.41%. Throughout, we trade the nearby futures contract, rolling into the 

next nearby contract on the first day of the expiry month, assuming transaction costs of 

1bp one-way. 

Before we look at the results of the backtests, it is important to note that there can be 

temporary discrepancies between the target parameters chosen and the sample 

parameters generated. We might be after a standard deviation of 12%, but when 

calculating the standard deviation from the returns actually generated we might find 

11% or 13% instead. This is nothing unusual though. When tossing a coin, the chances 

of heads and tails are 50/50. This does not mean that when tossing a coin a limited 

number of times one will always find an equal number of heads and tails. In a small 

sample, heads may dominate tails or vice versa. When the number of observations 

increases, however, this is likely to be corrected as the sample becomes more 

representative for the distribution it is taken from. 

In the above context, it is also important to note that over the last decade financial 

markets have exhibited some quite bizarre behaviour. Over 1995 - 1999 the S&P 500 

rose by 212% and the Nasdaq by 447%. Subsequently, over 2000 - 2002, the S&P 500 

fell by 40%, and the Nasdaq by no less than 68%. Short-term USD interest rates 

exhibited similar behaviour, dropping from 6.8% in 2000 to 1.1% in 2004, and rising 

" Note that not allowing for tactical considerations in the selection of the reserve asset means that we may underestimate the 

returns that could have been achieved in practice. In reality, for example, it may not have been rational to be long interest rate 

futures when 1-month USD Libor stood at no more than 1.1%, as was the casein early 2004. 

45 Since the volatility of the various asset classes is quite different, before forming the portfolio, we leveraged the Eurodollar and 

5Y note by a factor 5, and the l0Y note by a factor 4 to give these components a level of volatility more in line with stocks and 

commodities. 
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back to 5.3% in 2006. Commodity price rises caused the GSCI to rise by 138% over 

2002 - 2006. Finally, the last decade also saw its fair share of crises: Russia, LTCM, 

9/11, Iraq, etc. Obviously, all of this has a serious impact on our tests and should be 

taken into account when interpreting the results. 

4.1.1 Fund 1 

Let's assume a USD-based investor lived in January 1998 and started synthetic fund 1. 

Before we look at what kind of returns he would have generated over time, Figure 4.1 

shows the payoff function, which the investor will be aiming to produce as per January 

1998. From the graph we see that the desired fund payoff is an increasing function of 

the reserve asset, but a declining function of the investor's portfolio. Since the slope of 

the payoff function determines what positions to hold in the investor's portfolio and the 

reserve asset, this means that we'll be long the reserve asset and short the investor's 

portfolio. The reason for this is that the correlation between the reserve asset and the 

investor's portfolio exceeds the zero correlation that is targeted for the synthetic fund 

return. To reduce the correlation to the desired level, we therefore have to short the 

investor's portfolio46. 

Figure 4.1. Target payoff synthetic fund 1, January 1998. 

a6 Note that this makes the price of the reduction in correlation dependent on the risk premium on the investor's portfolio. 
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Figure 4.2 shows the evolution of the standard deviation of the synthetic fund return 

over the period January 2000 - February 200747, with the straight line representing the 

target value of 12%. The graph clearly shows that over the entire 7-year period the 

standard deviation of the synthetic fund return stayed close to the target value. There are 

a couple of small jumps, for example corresponding with the bursting of the NASDAQ 

technology bubble in March 2000, but these are quickly corrected over time. 
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Figure 4.2. Standard deviation synthetic fund 1, January 2000 - February 2007. 

Figure 4.3 shows the evolution of the skewness of the synthetic fund return over the 

same period, while Figure 4.4 shows the evolution of the correlation between the 

synthetic fund and the investor's portfolio. From these graphs it is clear that, as with the 

standard deviation, over the entire period studied the skewness and correlation of the 

synthetic fund return never deviated far from their target values. Given the at times 

tempestuous and erratic behaviour of markets, this is quite a remarkable achievement. 

d' Although the fund starts trading in January 1998, the graph in figure 1 (as well as the figures that follow) starts in January 2000 

because to meaningfully estimate standard deviation we need at least 24 observations. 
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Figure 4.3. Skewness synthetic fund 1, January 2000 - February 2007. 
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Figure 4.4. Correlation synthetic fund 1, January 2000 - February 2007. 
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Figure 4.5. Average return synthetic fund 1, January 2000 - February 2007. 

So far, we have not said anything about the synthetic fund's mean return. Given the 

relatively low correlation with the investor's portfolio, one might expect the fund to 

have provided a relatively low mean return. With the exclusion of the last couple of 

years, this is also the case with commodities for example. Figure 4.5 shows the 

evolution of the average return on the synthetic fund over the period January 2000 - 
February 2007. From the graph we see that over the period studied the fund's average 

return converged to around 10%, which is significantly more than what the average fund 

of hedge funds produced over the same period. We start with a negative average return 
in 1998-1999, which was quite a troublesome period with crisis in Russia followed by 

the near-collapse of LTCM. When interpreting the beginning of the graph we have to 

keep in mind that the fund's track record only starts in January 1998. By January 2000 

we therefore only have 24 observations available, meaning that the negative returns 

experienced in October 1998 and the following months have a relatively strong impact 

on the mean. 
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50/50 Fund 1 10% Fund 20% Fund 30% Fund 

Mean Return 7.07% 10.16% 7.39% 7.71% 8.02% 

Volatility 7.65% 11.57% 7.02% 6.61% 6.47% 

Skewness -0.21 0.10 -0.15 -0.07 0.03 

Sharpe ratio 0.44 0.56 0.52 0.60 0.66 

Table 4.2. Properties overall portfolio with varying allocations to synthetic fund 1, 

January 1998 - February 2007. 

Since the synthetic fund is meant to be a diversifier for a larger, traditional portfolio, its 

performance should be evaluated in a portfolio context as well. One simple way to do so 

is by looking at the performance of the investor's portfolio with and without an 

allocation to the synthetic fund. Table 4.2 shows the properties of the investor's original 

50% stocks - 50% bonds portfolio and the synthetic fund, as well as various mixes of 

the original portfolio and the fund. Comparing the fund with the investor's original 

portfolio, we see that over the period studied the fund produced a higher mean return, 

but with higher volatility. When mixing the original portfolio with the fund, due to their 

zero correlation, the volatility of the resulting portfolios drops substantially, producing 

Sharpe ratios that far exceed that of the investor's original portfolio. This confirms the 

attraction of the synthetic fund as a portfolio diversifier. Although it may not make for 

the most attractive stand-alone investment, in a portfolio context the synthetic fund 

certainly delivers. 

The statistical properties of the synthetic fund returns over the period January 1998 - 
February 2007 have been very much in line with the target values set out at the start, but 

how much trading was required to accomplish this? Since futures have relatively short 

maturities and we are looking at monthly returns, there are three reasons for trading in 

our synthetic fund: (1) normal day-to-day exposure adjustment during the month, (2) 

resetting of all positions at the start of every new month, and (3) periodic rolling over of 

the nearby futures contract. Taking all three together, the second column in Table 4.3 

shows the average daily trade size for the above synthetic fund over the period January 

1998 - February 2007, assuming an initial fund value of $100 million. The third column 

shows the average daily trade size excluding the periodic rollovers. This gives an 
indication for the required trading volume if, instead of the nearby contract, we were to 

92 



trade longer-dated futures contracts. From Table 4.3, we see that on average managing a 

$100m synthetic fund does not require very much trading at all. The numbers of 

contracts in Table 4.3 are only a very small fraction of the typical daily market volume. 

This confirms that liquidity problems are highly unlikely, even when the fund size was a 

lot larger than $100m. 

Futures 

Contract 

Average Daily Trade Size 

(Number of contracts) 

Average Daily Trade Size 

(Excl. periodic rollover) 

S&P 500 13 11 

Russell 2000 8 6 

Eurodollar 36 33 

5-year Note 77 73 

10-year Note 62 58 

T-Bond 44 41 

GSCI 28 25 

Table 4.3. Average daily trade size synthetic fund 1, January 1998 - February 

2007. 

4.1.2 Fund 2 

The second synthetic fund is similar to fund 1, except that apart from zero correlation 

with the reference portfolio we now also aim for a substantial degree of positive 

skewness in the fund's returns. Figure 4.6 shows the payoff function as per January 

1998. Not surprisingly, it is quite similar to that of fund 1. The desired fund payoff is 

again an increasing function of the reserve asset and a declining function of the 

investor's portfolio. The payoff for a combination of a low value of the investor's 

portfolio and a high value of the reserve asset is much higher than before, however. The 

reason why especially this corner has been lifted is that the investor's portfolio exhibits 

some negative skewness itself, which makes it easiest to deliver the desired positive 

skewness in this way. 
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Figure 4.6. Target payoff synthetic fund 2, January 1998. 

Since the volatility and correlation targets for fund 2 are the same as for fund 1, the 

volatility and correlation results are very similar as well. For brevity we therefore do not 

report these here. Figure 4.7, however, shows the evolution of the skewness of the 

synthetic fund return. It shows that in 1998-2000 we lose some skewness due to the 

equity bear market, but in 2002 we regain that thanks to the equity bull market. Over the 

entire period studied, the skewness of the synthetic fund return never deviates far from 

its target value. Figure 4.8 shows the evolution of the average return on the synthetic 

fund. The graph looks very similar to that in Figure 4.5, except that it begins just a little 

more negative and converges to a slightly lower level in the long run, which can be 

interpreted as the price paid for the improvement in skewness. 
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Figure 4.8. Average return synthetic fund 2, January 2000 - February 2007. 
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Figure 4.7. Skewness synthetic fund 2, January 2000 - February 2007. 
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50/50 Fund 2 10% Fund 20% Fund 30% Fund 

Mean Return 7.07% 7.73% 7.14% 7.20% 7.27% 

Volatility 7.65% 12.04% 7.01% 6.61% 6.51% 

Skewness -0.21 2.32 -0.11 0.14 0.60 

Sharpe ratio 0.44 0.33 0.49 0.53 0.54 

Table 4.4. Properties overall portfolio with varying allocations to synthetic fund 2, 

January 1998 - February 2007. 

Table 4.4 shows how synthetic fund 2 performed in a portfolio context. We see that as a 

stand-alone investment the fund does not score very well. When mixed with the 

investor's original portfolio, however, it does much better. The overall portfolio's 
Sharpe ratio rises substantially and with a larger allocation it also eliminates the slight 

negative skewness found in the investor's original portfolio. The change in skewness is 

less than one might have expected, given the 2.23 skewness of the fund. For this to 

happen the allocation to the synthetic fund needs to be larger. A 50% allocation (not 

reported in Table 4.4) would produce a skewness of 1.70 for the overall portfolio. 

4.1.3 Fund 3 

Fund 3 is again similar to fund 1, except that this time. we aim for seriously negative 

correlation. The payoff function for fund 3 as per January 1998 is shown in Figure 4.9. 

Comparing this graph with the payoff function for fund 1 as shown in Figure 4.1, we 

see that both are quite similar. This shows that it does not necessarily take a very large 

change to the payoff function to obtain significantly different results. 
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Figure 4.9. Target payoff synthetic fund 3, January 1998. 

Figure 4.10 shows the evolution of the correlation between the synthetic fund and the 

investor's portfolio, while Figure 4.11 shows the average return. The graph in Figure 

4.10 shows that the correlation of the synthetic fund return stayed close to its target 

value over the full 7-year period. Figure 4.11, however, shows that this does not come 
for free as the average return of the fund converges to no more than 6%. Intuitively, 

this is plausible. An asset, which has negative correlation with stocks and bonds, makes 
for a highly effective diversifier in a stock/bond portfolio. As a consequence, investor 

demand will be high, the asset's price will be high and its expected return 

correspondingly low. Of course, the expected return on our synthetic fund is not set 
directly by the market, but the expected return on the assets that are traded in the fund 

are, which is how the positive link between correlation and expected return filters in. 

It is interesting to compare our synthetic fund with a direct investment in stock market 

volatility through the purchase of variance swaps. Carr and Wu (2006) show that over 

the period 1990-2005 such a strategy would have generated a highly negative mean 

excess return. A similar conclusion is found in Kat and Tassabehji (2006). Despite the 

fact that volatility returns tend to exhibit strong positive skewness, this makes our 

synthetic fund much more attractive than a long-only volatility investment strategy 

would have been. 
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Figure 4.10. Correlation synthetic fund 3, January 2000 - February 2007. 
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Figure 4.11. Average return synthetic fund 3, January 2000 - February 2007. 
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50/50 Fund 3 10% Fund 20% Fund 30% Fund 

Mean Return 7.07% 6.51% 7.01% 6.96% 6.90% 

Volatility 7.65% 11.27% 6.44% 5.45% 4.82% 

Skewness -0.21 0.42 -0.16 -0.11 -0.05 
Sharpe ratio 0.44 0.25 0.51 0.59 0.66 

Table 4.5. Properties overall portfolio with varying allocations to synthetic fund 3, 

January 1998 - February 2007. 

Due to the high price of negative correlation, the fund's mean return is low relative to 

its volatility, resulting in a Sharpe ratio of no more than 0.22. This makes fund 3 quite 

an unattractive investment on a stand-alone basis. Mixing the fund with the investor's 

original portfolio, as reported in Table 4.5, we see a familiar picture, however. Adding 

the synthetic fund to the investor's original portfolio, the overall portfolio's volatility 
drops sharply, but without a corresponding loss in mean return. As a result, the 

portfolio's Sharpe ratio rises very substantially. It is interesting to note that, as to judge 

from the resulting Sharpe ratios, fund 1 and 3 are equally effective in diversifying the 

investor's original portfolio. This confirms that the drop in mean excess return from 

lowering the synthetic fund's correlation with the investor's original portfolio is market- 

conform 

4.1.4 Fund 4 

The last fund we study is again similar to fund 1, but this time we put a -5% floor under 

the monthly fund return. This is similar to buying an out-of-the-money put option. 

There are a number of important differences between buying real puts, and synthesizing 

puts through dynamic trading, however. An option is a legally binding contract between 

two counterparties that entitles the holder of the option to a specific payoff. As a result, 

apart from credit risk, buying puts provides a `hard' floor, i. e. it fully protects against 

returns falling below the chosen floor level. Since we do not really buy puts, but simply 

integrate the hedging strategy for a put into the fund strategy instead, our floor is `soft' 

in the sense that it could be breached if the market came down substantially over a short 

period of time. This may not sound good, but having a soft floor comes with a number 
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of important benefits, which for a long-term investor will typically outweigh the 

downside of a soft floor. First, partly because of their `hard' nature, options are 

expensive. The buyer of an option pays implied volatility, while when executing the 

accompanying hedging strategy, one pays spot volatility. The latter is typically a few 

percent lower than implied volatility. Synthesizing a put ourselves instead of buying one 

outright therefore helps to keep the fund's risk premium at an acceptable level. Second, 

since we work with bivariate payoffs, we will need a bivariate put as well, i. e. a put with 

a payoff depending on the investor's portfolio as well as the reserve asset. To buy such 

an option we will have to turn to the over-the-counter (OTC) options market, which 

implies paying additional margin to the investment bank that takes the other side, a high 

degree of illiquidity, and additional operational hassle. 
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Figure 4.12. Scatter-plot synthetic fund 4 return versus investor's portfolio return, 

January 2000 - February 2007. 

Figure 4.12 shows a plot of the fund average return versus the average return on the 

investor's portfolio over the period January 1998 - February 2007. Apart from the 

random scatter that comes with the targeted zero correlation, the graph clearly shows the 

impact of the floor. It also shows that, despite the fact that the protection provided is 

`soft', it is highly effective. 
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The few returns that do end up below -5% only do so to a limited extent. Another way 

to evaluate the workings of the floor is to compare the excess return on fund 4 with that 

on fund 1. This is done in Figure 4.13. The graph in Figure 4.13 confirms that without 

actually buying put options we have created a payoff profile, which closely resembles 

that of a portfolio protected with ordinary puts. On the upside the returns of fund 1 and 
4 are very similar, but on the downside fund 4's losses are stopped out around the floor 

level. 
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Figure 4.13. Scatterplot synthetic fund 4 return versus synthetic fund 1 return, 

January 2000 - February 2007. 

Comparing Figure 4.14, which shows the evolution of the average return of fund 4, with 

Figure 4.5, we can see that the long-term average return for fund 4 lies around 1% 

higher than that for fund 1. Specially the period 1998-2000, in the beginning of the 

graph, was better for fund 4, with the protection of the floor. 
. 
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Figure 4.14. Average return synthetic fund 4, January 2000 - February 2007. 

50/50 Fund 4 10% Fund 20 % Fund 30 % Fund 

Mean Return 7.07% 11.22% 7.49% 7.90% 8.32% 

Volatility 7.65% 11.12% 7.01% 6.58% 6.40% 

Skewness -0.21 0.40 -0.12 0.00 0.16 

Sharpe ratio 0.44 0.67 0.54 0.63 0.72 

Table 4.6. Properties overall portfolio with varying allocations to synthetic fund 4, 

January 1998 - February 2007. 

Table 4.6 places fund 4 in a portfolio context. Apart from the usual diversification 

benefits, it shows that, in terms of the parameters shown, the diversification properties 

of fund 4 are slight superior to those of fund 1 or fund 3. This has happened because of 

the protection which the floor provided in the troublesome period of 1998. 
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4.2 Sensitivity analyses 

In this section is examined the influence of the transaction costs, the reference portfolio 

and the reserve asset on the replication results. Fund 1 is used to check the influence of 

these factors. 

4.2.1 Transaction Costs 

Depending on the targeted properties and the way markets behave, the replication 

technique introduced in Chapter 2 tend to be quite dynamic, so an obvious question to 

ask is whether the high turnover in the trading strategies is not excessively costly. 

Mean StDev Skew Corr 

Synthetic 0b s daily 10.24% 11.57% 0.10 0.03 
Synthetic 4b s, daily 10.08% 11.56% 0.10 0.03 
Synthetic 14b s daily 9.67% 11.56% 0.10 0.03 
Synthetic 50b s, daily 8.12% 11.54% 0.10 0.03 
Synthetic 0b s2 daily 10.01% 11.54% 0.08 0.03 
Synthetic 4b s, 2 daily 9.93% 11.54% 0.08 0.03 
Synthetic 14b s, 2 daily 9.74% 11.54% 0.08 0.03 
Synthetic 50b s2 daily 8.96% 11.53% 0.08 0.03 
Synthetic 0b s, 3 daily 9.92% 11.53% 0.07 0.03 

Synthetic 4b s3 daily 9.85% 11.53% 0.07 0.03 
Synthetic 14b s, 3 daily 9.70% 11.53% 0.07 0.03 
Synthetic 50b s, 3 daily 9.20% 11.52% 0.07 0.03 

Table 4.7. Sample properties zero correlation fund returns over the period 
January 1998 - February 2007. 

Table 4.7 shows the sample properties of the returns on the Zero Correlation Fund for 

various bid-offer spreads (0bps, 4bps, etc. ) and rebalancing frequencies (daily, once 

every 2 days, and once every 3 days) over the period January 1998 - February 2007. 

Note that the case of a 50bps spread is included for illustrative purposes only. In 

practice one would not expect to trade on such a wide spread very often. 
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There is no significant impact of transaction costs and/or the rebalancing frequency on 

the risk profile. For realistic cost levels, the results are still quite satisfactory, especially 
for lower rebalancing frequencies. 

4.2.2 Reference Portfolio 

The replication technique designs futures trading strategies that generate returns with 

predefined statistical properties, including the dependence with the so-called reference 

portfolio, i. e. the portfolio with respect to which dependence is measured. In most 

applications the reference portfolio will be the investor's existing portfolio. This brings 

up the question how much the bottom line result depends on the reference portfolio. In 

other words, to what extent do investors who start off with different reference portfolios 

end up with significantly different results? 

Since the replication strategies will typically be used to diversify a larger, more 

traditional portfolio, the reference portfolio is taken to consist of three different mixes of 
S&P 500 and T-bond futures. More specifically, the portfolio weights 20/80,50/50 and 
80/20 are considered. As before, it is assumed that throughout the reserve asset consists 

of an equally-weighted portfolio of 3-month Eurodollar, 5-year note, 10-year note, S&P 

500, Russell 2000 and GSCI futures. 48 

50/50 Reference Portfolio 80B/20E Referen ce Portfolio 
Mean StDev Skew Corr Mean StDev Skew Corr 

Synthetic 0b s, daily 10.24% 11.57% 0.10 0.03 14.03% 11.83% -0.05 0.09 
Synthetic 4b s daily 10.08% 11.56% 0.10 0.03 13.84% 11.83% -0.05 0.09 
Synthetic 14b s, daily 9.67% 11.56% 0.10 0.03 13.28% 11.82% -0.04 0.09 
Synthetic 0b s2 daily 10-01% 11.54% 0.08 0.03 14.07% 11-81% -0.07 0.09 
Synthetic 4b s, 2 daily 9.93% 11.54% 0.08 0.03 13.96% 11.80% -0.07 0.09 
Synthetic 14b s, 2 daily 9.74% 11.54% 0.08 0.03 13.68% 11.80% -0.07 0.09 
Synthetic 0b s3 daily 9.92% 11.53% 0.07 0.03 14.37% 11.81% -0.07 0.09 
Synthetic Ups, 3 daily 9.85% 11.53% 0.07 0.03 14.30% 11.81% -0.07 0.09 
Synthetic 14b s3 daily 9.70% 11.53% 0.07 0.03 14.09% 11.81% -0.07 0.09 

Table 4.8: Sample properties Zero Correlation Fund returns over the period 
January 1998 - Febuary 2007. 

°d Since the volatility of the various asset classes is quite different, before forming the portfolio, we leveraged the Eurodollar and 

5Y note by a factor 5, and the 10Y note by a factor 4 to give these components a level of volatility more in line with stocks and 

commodities. Note that this will increase the trading volume in these contracts. 
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Table 4.8 shows the results for the Zero Correlation Fund. The target in this case is to 

generate normally distributed returns with 12% volatility and zero correlation with the 

reference portfolio. Although the means for the two reference portfolios are somewhat 

different, the standard deviation, skewness and correlation results match the target very 

well in both cases. The 80/20 reference portfolio seems to require more trading than in 

the 50/50 case, as the mean drops slightly faster when the bid-ask spread increases. The 

results for a 20/80 mix are very similar and therefore not reported. 

4.2.3 Reserve Asset 

The reserve asset is the core portfolio of the trading strategy and therefore the main 

source of uncertainty. Although over time the strategy will move in and out of the 

reserve asset, it will never short it. Given its important role, the natural question to ask 

is how sensitive the replication results are to the choice of reserve asset. 

Since hedge funds are typically used to diversify larger, more traditional portfolios, we 

will take the reference portfolio to consist of 50% S&P 500 and 50% T-bond futures. 

Although investors are completely flexible in their choice of reserve asset, it is 

important to keep in mind that the reserve asset is the core portfolio of the strategy. It 

should therefore offer a good ratio between expected return and risk. Unless the investor 

has strong views, it should be well diversified, i. e. not contain too much uncompensated 

risk, and offer a satisfactory risk premium. Put simply, a reserve asset with a good 
Sharpe ratio will also make for a good expected return on the resulting trading strategy. 

In this subsection two different reserve assets are considered. Reserve Asset 1 consists 

of an equally-weighted portfolio of 3-month Eurodollar, 5-year note, 10-year note, S&P 

500, Russell 2000 and GSCI futures, where, to compensate substantial differences in 

volatility, we leveraged the Eurodollar and 5-year note by a factor 5, and the 10-year 

note by a factor 4. Reserve Asset 2 is much simpler and consists of an equally weighted 

portfolio of 1-month Libor, Russell 2000 and crude oil futures. 
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Reserve Asset 1 Reserve Asset 2 
Mean StDev Skew Corr Mean StDev Skew Corr 

Synthetic 0b s, daily 10.24% 11.57% 0.10 0.03 10.86% 11.45% -0.01 -0.03 
Synthetic 4b s, daily 10.08% 11.56% 0.10 0.03 10.76% 11.45% -0.01 -0.03 
Synthetic 14b s daily 9.67% 11.56% 0.10 0.03 10.51% 11.45% -0.01 -0.03 
Synthetic 0b s, 2 daily 10.01% 11.54% 0.08 0.03 10.92% 11.45% -0.01 -0.03 
Synthetic 4b s2 daily 9.93% 11.54% 0.08 0.03 10.88% 11.45% -0.01 -0.03 
Synthetic 14b s, 2 daily 9.74% 11.54% 0.08 0.03 10.76% 11.44% -0.01 -0.03 
Synthetic 0b s3 daily 9.92% 11.53% 0.07 0.03 10.80% 11.44% -0.02 -0.03 
Synthetic 4b s, 3 daily 9.85% 11.53% 0.07 0.03 10.77% 11.44% -0.02 -0.03 
Synthetic 14b s, 3 daily 9.70% 11.53% 0.07 0.03 10.67% 11.44% -0.02 -0.03 

Table 4.9. Sample properties Zero Correlation Fund returns over the period 
January 1998 - February 2007. 

Using Reserve Asset 1 and 2, Table 4.9 shows the sample properties of the replicated 

returns on the Zero Correlation fund for various bid-offer spreads (0bps, 4bps, etc. ) and 

rebalancing frequencies (daily, once every 2 days, and once every 3 days) over the 

period January 1998 - February 2007. The risk parameters for both reserve assets are 

very close, with small differences in the mean return. Reserve Asset 2 does slightly 
better than Reserve Asset 1. 

4.3 Synthetic Fund Alpha 

Since the trading strategies are purely mechanical and do not involve any proprietary 

trading secrets, synthetic funds are not set up to generate alpha in the traditional sense, 

i. e. beat the market. Because of synthetic funds' mechanical nature, however, investors 

can do without expensive managers. Given the typical level of fees in alternative 
investments and the improbability of most managers being sufficiently skilled to make 

up for them, this means that although our synthetic funds' pre-fee returns may not be 

superior, their after-fee returns could very well be. In the end, efficient risk management 

and cost control are much more certain routes to superior performance than trying to 
beat the market while paying excessive management and incentive fees. 
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Although not explicitly designed to beat the market, synthetic funds do allow for 

tactical input through the choice of the reserve asset, which could therefore form a 

second source of alpha. Strictly speaking, the latter cannot be attributed to the fund, 

however, as it derives from inputs that are completely exogenous to the fund itself. 
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5. Hedge Fund Indexation49 

In this chapter the replication technique introduce in Chapter 2 is used to test whether is 

possible the replication of hedge-fund indices of three major indices providers. 

5.1 Synthetic Hedge Fund Index Returns 

Having developed a potentially workable approach to hedge fund indexation, the big 

question of course is how it performs in practice. In this section we therefore take a 

detailed look at the returns from replicating a number of well-known hedge fund indices 

up to October 2006. 

Having cleaned up the autocorrelation, we have to decide what futures contracts to trade 

to produce our synthetic hedge fund index returns with. In the replication terminology, 

this means we need to select our `reference portfolio' and our `reserve asset'. The 

`reference portfolio' is the portfolio with respect to which we will measure correlation. 

Since hedge funds are typically used to diversify larger, more traditional portfolios, we 

will take the reference portfolio to consist of 50% S&P 500 and 50% T-bond futures. In 

the remainder of this chapter, when we talk about correlation, we mean the correlation 

between the index (or its replica) and this particular port folio. The `reserve asset' is the 

core portfolio of the replication strategy and therefore the main source of uncertainty. 

Since the outlook for the various asset classes will change over time, in practice the 

choice of the reserve asset is a dynamic process, producing time-varying allocations. 

Unfortunately, the latter process is very difficult to simulate in a backtest without the 

suggestion of data mining. In what follows we therefore assume that the composition of 

the reserve asset is fixed though time. More specifically, we assume the reserve asset 

consists of an equally-weighted portfolio of 3-month Eurodollar, 5-year note, 10-year 

note, S&P 500, Russell 2000 and GSCI futures. 50 

49 The material in this chapter appeared as Alternative Investment Research Center \VP 38, Cass Business School. 

50 Since the volatility of the various asset classes is quite different, before forming the portfolio, we leveraged the Eurodollar , 5Y 

note by a factor 5, and the IOY note by a factor 4 to give these components a level of volatility more in line with stocks and 

commodities. 
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Given the above choices, we replicated the returns on the Edhec, CISDM and HFRI 

indices. The CISDM and HFRI indices are calculated in the usual way, i. e. as portfolios 

of a (large) number of individual hedge funds. 51 The Edhec indices, however, are 
indices of indices, calculated as the first component of a principal component analysis 

of a large number of competing hedge fund indices. 52 

Table 5.1-5.3 show the sample properties of the monthly excess returns (over 1-month 

LIBOR) of the Edhec, CISDM and HFRI hedge fund indices as well as the synthetic 
funds designed to replicate them, over the period March 1999 - September (Edhec), 

May (CISDM), October (HFRI) 2006. When interpreting these results, it has to be kept 

in mind that the available hedge fund indices typically suffer from a variety of upward 
biases, including: 

" Self-reporting bias: Only the more successful funds will report to a database. 

" Survivorship bias: Some index providers remove funds that close down from 

the index's history. 

" Selection bias: Database and index providers may have strict criteria to decide 

which funds to include in the database and/or index. 

" Backfill bias: When a fund enters a database, typically its complete track record 
is included. 

Although estimates very quite widely, it is generally thought that the combined upward 
bias in hedge fund indices due to the above adds up to 2-3% per annum. In this context 

two other observations are of interest as well. First, most hedge funds only report to one 

or two databases. This means that there is little overlap between databases and the 

indices derived from them. Second, it is not uncommon for recorded perfonnance for 

the same fund to vary between databases. Together, this means that indices from 

different index providers may exhibit significantly different behaviour, with differences 

in monthly return sometimes exceeding 5% or even more! 

s Although the CISDM indices reflect the performance of the median, instead of the average fund. 

52 Details on the composition and construction of the Edhec indices can be found in Edhec (2004). 
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Index Synthetic Fund 

Edhec Index Mean StDev Skew Corr Mean StDev Skew Corr 

Convertible Arbitrage 9.22% 6.59% 0.03 0.23 8.68% 6.54% 0.12 0.23 

Distressed Securities 13.40% 6.78% 0.40 0.44 10.79% 7.13% 0.59 0.46 

Emerging Markets 16.23% 13.42% 0.04 0.65 18.37% 14.15% 1.13 0.66 

Long/Short Equity 10.02% 8.64% 0.39 0.58 11.32% 8.74% 0.68 0.59 

Equity Market Neutral 7.93% 2.52% 0.74 0.28 5.52% 2.29% 0.38 0.30 

Fixed Income Arb. 6.83% 2.86% -0.22 0.24 7.26% 3.07% -0.21 0.24 

Global Macro 8.82% 5.44% 0.81 0.40 9.41% 5.55% 1.07 0.42 

Merger Arbitrage 8.03% 4.21% -0.97 0.44 6.50% 4.05% -0.25 0.43 

Short Selling 2.10% 21.39% 0.00 . 0.63 21.08% 23.85% 0.51 -0.60 

CTA Global 6.11% 9.37% 0.07 . 0.11 12.98% 9.60% 0.07 -0.10 

Funds of Funds 8.96% 6.88% 1.06 0.48 10.09% 7.13% 1.37 0.48 

Table 5.1. Sample properties Edhec index and synthetic fund returns over the 

period March 1999 - September 2006. 

Index Synthetic Fund 

CISDM Index Mean StDev Skew Corr Mean StDev Skew Corr 

Convertible Arbitrage 8.91% 5.45% -0.20 0.24 6.83% 5.14% -0.23 0.27 

Distressed Securities 12.62% 6.21% 0.37 0.50 9.62% 6.34% 0.40 0.52 

Emerging Markets 15.42% 11.47% 0.28 0.62 16.64% 12.11% 1.50 0.62 

Long/Short Equity 10.19% 9.10% 0.83 0.56 11.85% 9.55% 1.17 0.60 

Equity Market Neutral 7.76% 2.94% 0.65 0.34 6.27% 2.79% 0.18 0.34 

Fixed Income Arb. 7.34% 1.56% 0.29 0.23 3.85% 1.60% 0.36 0.35 

Global Macro 6.98% 4.15% 0.95 0.44 6.55% 3.93% 0.51 0.46 

Merger Arbitrage 7.94% 3.96% -0.14 0.44 6.14% 3.84% -0.16 0.45 

CTA (equal weighted) 6.97% 8.42% 0.36 -0.02 11.79% 8.48% 0.13 -0.07 

Funds of Funds 7.53% 4.41% 0.23 0.48 6.99% 4.24% 0.99 0.49 

Table 5.2. Sample properties CISDM index and synthetic fund returns over the 

period March 1999 - May 2006. 
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Index Synthetic Fund 

HFRI Index Mean StDev Skew Corr Mean StDev Skew Corr 

Convertible Arbitrage 8.59% 5.53% 0.00 0.20 7.49% 5.42% -0.01 0.22 

Distressed Securities 13.27% 7.72% 0.32 0.48 12.36% 8.10% 0.43 0.49 

Emerging Markets 18.63% 16.94% 0.09 0.67 22.65% 18.14% 1.12 0.67 

Long/Short 11.48% 10.68% 0.88 0.57 13.52% 11.26% 1.13 0.61 

Equity Market Neutral 6.26% 2.92% 0.60 -0.01 6.77% 2.98% 0.22 -0.06 
Fixed Income Arb. 7.81% 3.61% 0.09 0.49 7.70% 4.00% 0.21 0.50 

Global Macro 9.05% 6.50% 0.53 0.30 10.38% 6.75% 0.60 0.30 

Merger Arbitrage 8.03% 4.10% -0.67 0.38 7.05% 3.71% -0.27 0.35 

Short Selling 4.15% 23.37% 0.05 -0.56 24.03% 26.64% 0.73 -0.53 

Funds of Funds 8.40% 7.25% 0.66 0.50 11.63% 7.46% 1.50 0.49 

Table 5.3. Sample properties HFRI index and synthetic fund returns over the 

period March 1999 - October 2006. 

To facilitate comparison, in the above tables the entries in bold are the cases where the 

average return on the synthetic fund exceeds that of the index. The entries in normal 
font are the cases where the average return on the index exceeds that of the synthetic 

fund. 

From table 5.1-5.3, we can draw a number of very interesting conclusions: 

" Our synthetic funds beat the Edhec indices 8 out of 11 times, the CISDM indices 

3 out of 8 times, and the HFRI indices 6 out of 9 times. Given the upward bias 

present in these indices, this is an extremely good result. If we assumex the 

average index return is upwardly biased by 2.5%, then almost all synthetic funds 

would comfortably outperform the indices they are designed to replicate. 

" Without exception, the volatility of the index return and the correlation with the 

50/50 stock/bond portfolio are very accurately replicated. 
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" Keeping in mind the sensitivity of the traditional skewness measure for extreme 

observations and the fact that we only have 92 observations available, skewness 
is very satisfactory replicated as well. 

" Across the three index families, the emerging markets, long/short, global macro, 

short selling and funds of funds indices are consistently dominated by their 

replicating synthetic funds. 

The entries in table 5.1-5.3 are calculated as per the end of September (Edhec), May 

(CISDM), October (HFRI) 2006. However, the synthetic funds started in March 1999. It 

is therefore interesting to have a look at the evolution of the various sample parameters 

over time. The results for the Edhec funds of funds index are reported figure 5.1-5.4. All 

4 graphs start in March 2001 as with less than 24 observations reliability would simply 
be too low. 
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Figure 5.1. Average return Edhec funds of funds index and replicating synthetic 
fund, March 2001 - September 2006. 
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Figure 5.3. Skewness Edhec funds of funds index and replicating synthetic fund, 

March 2001 - September 2006. 

------------------------- 

_r 

f 
J 

i 

' ---'---- _. ___ý.... T_. ____.. _"'____--------- --T------ ------------- _... _..... ___"------'----r----------'° 

113 



0.6 

0.6 

0.5 

6.5 

0.4 

0.4+- 
Mar-0 Mär-02 Mar-03 Mar-04 Mar-05` Mar-05 

- Synthetic 
= ECHEC 

Figure 5.4. Correlation Edhec funds of funds index and replicating synthetic fund 

with portfolio of 50% S&P 500 and 50% T-bonds, March 2001 - September 2006. 

The graphs in Figure 5.2-5.4 show that the synthetic fund matches the risk parameters 

of the Edhec funds of funds index directly from the start. The graphs also show that the 

synthetic fund is quite capable of following the changes in the index parameters over 

time. From Figure 5.3 we see that the difference in skewness reported in Table 5.1 only 

arose over the last year. Before that, the match was almost perfect. Finally, Figure 5.1 

shows that over time the synthetic fund's average return has been consistently higher 

than that of the index. Similar results were obtained for all other indices. 

From the above it is clear that for all 3 families of hedge fund indices the replication 

approach more than achieves its objective of providing investors with returns with the 

same characteristics as hedge fund indices, but without actually investing in hedge 

funds. In all cases, risk profiles are very similar and, taking into account the upward 

bias present in these indices, the average return is markedly better. In addition, for a 

moment assuming these indices are investable, the synthetic fund returns have no 
liquidity or transparency problems, which, as argued in Kat (2006), makes them even 

more valuable. 

........................................................................................................................................................... 
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5.2 Sensitivity analyses 

As in Section 4.2, in this section is also examined the influence of the transaction costs, 

the reference portfolio and the reserve asset on the replication results. To obtain a good 

impression of how these factors influence the bottom line, we study two significantly 

different cases, the HFRI Equity Market Neutral index and the HFRI Long-Short index. 

The former has low correlation with the market, and particularly with the reference 

portfolios considered, while the latter has not. 

5.2.1 Transaction Costs 

Depending on the targeted properties and the way markets behave, the replication 

technique introduced in Chapter 2 tend to be quite dynamic, so an obvious question to 

ask is whether the high turnover in replication trading strategies is not excessively 

costly. 

Table 5.4 shows the sample properties of the replicated returns on the HFRI Equity 

Market Neutral index for various bid-offer spreads (0bps, 4bps, etc. ) and rebalancing 

frequencies (daily, once every 2 days, and once every 3 days) over the period March 

1999 - October 2006. Note that the case of a 50bps spread is included for illustrative 

purposes only. As discussed earlier, in practice one would not expect to trade on such a 

wide spread very often. 
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Mean StDev Skew Corr 

HFRI EMN Index 6.26% 2.92% 0.60 -0.01 
Synthetic 0b s daily 6.79% 2.98% 0.22 -0.06 
Synthetic 4b s, daily 6.75% 2.98% 0.20 -0.06 
Synthetic 14b s, daily 6.65% 2.97% 0.19 -0.06 
Synthetic 50b s daily 6.30% 2.96% 0.11 -0.06 
Synthetic 0b s, 2 daily 6.83% 3.00% 0.20 -0.07 
Synthetic 4b s2 daily 6.81% 2.99% 0.19 -0.07 
Synthetic 14b s, 2 daily 6.77% 2.99% 0.18 -0.07 
Synthetic 50b s2 daily 6.60% 2.99% 0.16 -0.07 
Synthetic 0b s, 3 daily 6.65% 2.98% -0.01 -0.07 
Synthetic 4b s, 3 daily 6.64% 2.98% -0.01 -0.07 
Synthetic 14b s3 daily 6.60% 2.98% -0.02 -0.07 
Synthetic 50b s, 3 daily 6.49% 2.97% -0.04 -0.07 

Table 5.4. Sample properties HFRI Equity Market Neutral index and synthetic 
fund returns over the period March 1999 - October 2006. 

From the above table we can draw two interesting conclusions. First, the risk profile 

generated is largely independent of the level of transaction costs as well as the 

rebalancing frequency. Second, the impact of transaction costs on the mean is small and 
drops when rebalancing less often. Note that even with a 50bps spread the synthetic 
fund would still have beaten the index. 

Mean StDev Skew Corr 

HFRI L-S Index 11.48% 10.68% 0.88 0.57 
Synthetic 0b s, daily 13.55% 11.26% 1.13 0.61 
Synthetic 4b s daily 13.48% 11.26% 1.13 0.61 
Synthetic 14b s, daily 13.18% 11.25% 1.13 0.65 
Synthetic 50b s, daily 12.14% 11.23% 1.13 0.61 
Synthetic 0b s2 daily 13.10% 11.25% 1.15 0.61 
Synthetic 4b s, 2 daily 13.04% 11.25% 1.15 0.61 
Synthetic 14b s2 daily 12.86% 11.25% 1.15 0.61 
Synthetic 50b s, 2 daily 12.34% 11.24% 1.15 0.61 

Synthetic 0b s3 daily 12.78% 11.24% 1.14 0.61 
Synthetic 4b s, 3 daily 12.73% 11.24% 1.14 0.61 

Synthetic 14b s, 3 daily 12.65% 11.24% 1.14 0.61 
Synthetic 50b s3 daily 12.29% 11.23% 1.15 0.61 

Table 5.5. Sample properties HFRI Long-Short index and synthetic fund returns 

over the period March 1999 - October 2006. 
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Table 5.5 shows the sample properties of the replicated returns on the HFRI Long-Short 

index. Again, we see that the risk profile generated is independent of the level of 

transaction costs as well as the rebalancing frequency. The impact of transaction costs 

on the mean is slightly stronger than before, as the index being replicated is a lot more 

volatile. For realistic spreads, however, the results are still very satisfactory, with 

average costs again dropping with the rebalancing frequency. As in the previous case, 

the synthetic fund would have beaten the actual index even with a 50bps spread. 

5.2.2 Reference Portfolio 

As said in Section 4.2, in this section we study how much the bottom line result depends 

on the reference portfolio. 

As before, the reference portfolio is taken to consist of three different mixes of S&P 500 

and T-bond futures. More specifically, the portfolio weights 20/80,50/50 and 80/20 are 

considered. It is assumed that throughout the reserve asset consists of an equally- 

weighted portfolio of 3-month Eurodollar, 5-year note, 10-year note, S&P 500, Russell 

2000 and GSCI futures. 53 

Table 5.6 shows the sample properties of the replicated returns on the *-RI Equity 

Market Neutral index for reference portfolios consisting of a 50/50 and 80/20 mix of T- 

bonds and S&P 500 over the period March 1999 - October 2006. The results for a 20/80 

mix are very similar and therefore not reported. 

53 Since the volatility of the various asset classes is quite different, before forming the portfolio, we leveraged the Eurodollar and 

5Y note by a factor 5, and the 10Y note by a factor 4 to give these components a level of volatility more in line with stocks and 

commodities. Note that this will increase the trading volume in these contracts. 
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50/50 Reference Portfolio 80B/20E Reference Portfolio 
Mean StDev Skew Corr Mean StDev Skew Corr 

HFRI EMN Index 6.26% 2.92% 0.60 -0.01 6.26% 2.92% 0.60 0.07 
Synthetic 0b s, daily 6.79% 2.98% 0.22 -0.06 6.38% 2.88% 0.04 0.04 
Synthetic 4b s, daily 6.75% 2.98% 0.20 -0.06 6.33% 2.88% 0.04 0.04 
Synthetic 14b s daily 6.65% 2.97% 0.19 -0.06 6.18% 2.88% 0.04 0.04 
Synthetic 0b s, 2 daily 6.83% 3.00% 0.20 -0.07 6.43% 2.88% 0.07 0.04 
Synthetic 4b s2 daily 6.81% 2.99% 0.19 -0.07 6.40% 2.88% 0.08 0.04 
Synthetic 14b s, 2 daily 6.77% 2.99% 0.18 -0.07 6.36% 2.88% 0.07 0.04 
Synthetic 0b s3 daily 6.65% 2.98% -0.01 -0.07 6.43% 2.88% 0.07 0.05 
Synthetic 4b s, 3 daily 6.64% 2.98% -0.01 -0.07 6.41% 2.88% 0.07 0.05 
Synthetic 14b s, 3 daily 6.60% 2.98% -0.02 -0.07 6.36% 2.88% 0.06 0.05 

Table 5.6. Sample properties HFRI Equity Market Neutral index and synthetic 

fund returns over the period March 1999 - October 2006. 

From Table 5.6 we see that for either reference portfolio the volatility and correlation of 

the synthetic fund match those of the index almost exactly. The means are quite similar 

as well. Comparing the results for different bid-ask spreads it appears that the 80/20 

case requires a little more trading than the 50/50 case though, as the mean drops slightly 

faster for the 80/20 than the 50/50 portfolio when the bid-ask spread increases. 

50/50 Reference Portfolio 80B/20E Referen ce Portfolio 
Mean StDev Skew Corr Mean StDev Skew Corr 

HFRI L-S Index 11.48% 10.68% 0.88 0.57 11.48%_ 10.68% 0.88 0.15 
Synthetic 0b s, daily 13.55% 11.26% 1.13 0.61 15.30% 11.31% 0.92 0.14 
Synthetic 4b s daily 13.48% 11.26% 1.13 0.61 15.08% 11.31% 0.92 0.14 
Synthetic 14b s, daily 13.18% 11.25% 1.13 0.65 14.50% 11.29% 0.91 0.14 
Synthetic 0b s2 daily 13.10% 11.25% 1.15 0.61 12.93% 11.03% 0.66 0.13 
Synthetic 4b s, 2 daily 13.04% 11.25% 1.15 0.61 12.81% 11.02% 0.66 0.13 
Synthetic 14b s2 daily 12.86% 11.25% 1.15 0.61 12.56% 11.02% 0.66 0.13 
Synthetic 0b s, 3 daily 12.78% 11.24% 1.14 0.61 13.61% 11.10% 0.71 0.14 
Synthetic 4b s, 3 daily 12.73% 11.24% 1.14 0.61 13.54% 11.10% 0.71 0.14 
Synthetic 14b s3 daily 12.65% 11.24% 1.14 0.61 13.32% 11.09% 0.71 0.14 

Table 5.7. Sample properties HFRI Long-Short index and synthetic fund returns 

over the period March 1999 - October 2006. 
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Table 5.7 shows the sample properties of the replicated returns on the HFRI Long-Short 

index. Despite the much higher volatility of this index, the results for both reference 

portfolios are again very similar. In both cases the standard deviation, skewness and 

correlation of the synthetic fund almost exactly match those of the index. Again, we see 

that the 80/20 case requires more trading than the 50/50 case, as the drop in mean due to 

a higher bid-offer spread is slightly more pronounced in the 80/20 case. 

5.2.3 Reserve Asset 

As in Subsection 4.2.3, we study how sensitive the replication results are to the choice 

of reserve asset. 

As before, in this subsection two different reserve assets are considered. Reserve Asset 

1 consists of an equally-weighted portfolio of 3-month Eurodollar, 5-year note, 10-year 

note, S&P 500, Russell 2000 and GSCI futures, where, to compensate substantial 

differences in volatility, we leveraged the Eurodollar and 5-year note by a factor 5, and 

the 10-year note by a factor 4. Reserve Asset 2 is much simpler and consists of an 

equally weighted portfolio of 1-month Libor, Russell 2000 and crude oil futures. 

Using Reserve Asset 1 and 2, Table 5.8 shows the sample properties of the replicated 

returns on the HFRI Equity Market Neutral index for various bid-offer spreads (0bps, 

4bps, etc. ) and rebalancing frequencies (daily, once every 2 days, and once every 3 

days) over the period March 1999 - October 2006. Comparing the entries at both sides 

of the table, it is clear that the differences are very minor. Reserve Asset 2 appears to be 

slightly better in replicating the positive skewness found in the HFRI EMN index. This 

is due to the fact that the returns on Reserve Asset 2 are slightly more skewed than those 

on Reserve Asset 1, which makes it easier to produce skewed synthetic fund returns. 
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Reserve Asset 1 Reserve Asset 2 
Mean StDev Skew Corr Mean StDev Skew Corr 

HFRI EMN Index 6.26% 2.92% 0.60 -0.01 6.26% 2.92% 0.60 -0.01 
Synthetic 0b s, daily 6.79% 2.98% 0.22 -0.06 6.54% 2.84% 0.37 -0.09 
Synthetic 4b s daily 6.75% 2.98% 0.20 -0.06 6.50% 2.84% 0.36 -0.09 
Synthetic 14b s, daily 6.65% 2.97% 0.19 -0.06 6.44% 2.84% 0.37 -0.09 
Synthetic 0b s, 2 daily 6.83% 3.00% 0.20 -0.07 6.47% 2.84% 0.32 -0.09 
Synthetic 4b s2 daily 6.81% 2.99% 0.19 -0.07 6.46% 2.84% 0.32 -0.09 
Synthetic 14b s, 2 daily 6.77% 2.99% 0.18 -0.07 6.42% 2.84% 0.31 -0.09 
Synthetic 0b s3 daily 6.65% 2.98% -0.01 -0.07 6.68% 2.84% 0.44 -0.09 
Synthetic 4b s, 3 daily 6.64% 2.98% -0.01 -0.07 6.67% 2.84% 0.44 -0.09 
Synthetic 14b s3 daily 6.60% 2.98% -0.02 -0.07 6.64% 2.84% 0.44 -0.09 

Table 5.8. Sample properties HFRI Equity Market Neutral index and synthetic 

fund returns over the period March 1999 - October 2006. 

Reserve Asset 1 Reserve Asset 2 
Mean StDev Skew Corr Mean StDev Skew Corr 

HFRI L/S Index 11.48% 10.68% 0.88 0.57 11.48% 10.68% 0.88 0.57 
Synthetic 0b s, daily 13.55% 11.26% 1.13 0.61 11.68% 10.93% 0.93 0.57 
Synthetic Ups, daily 13.48% 11.26% 1.13 0.61 11.58% 10.93% 0.92 0.57 
Synthetic 14b s, daily 13.18% 11.25% 1.13 0.65 11.33% 10.92% 0.92 0.57 
Synthetic 0b s2 daily 13.10% 11.25% 1.15 0.61 11.50% 11.11% 0.81 0.56 
Synthetic 4b s, 2 daily 13.04% 11.25% 1.15 0.61 11.46% 11.10% 0.90 0.56 
Synthetic 14b s2 daily 12.86% 11.25% 1.15 0.61 11.22% 11.09% 0.86 0.56 
Synthetic 0b s, 3 daily 12.78% 11.24% 1.14 0.61 12.48% 10.99% 1.14 0.57 
Synthetic 4b s, 3 daily 12.73% 11.24% 1.14 0.61 12.46% 10.99% 1.14 0.57 
Synthetic 14b s3 daily 12.65% 11.24% 1.14 0.61 12.38% 10.99% 1.14 0.57 

Table 5.9. Sample properties HFRI Long/Short index and synthetic fund returns 

over the period March 1999 - October 2006. 

Table 5.9 shows the sample properties of the replicated returns on the HFRI Long-Short 

index. Despite the much higher target volatility, the results for both reserve assets match 

up very well. The mean returns for Reserve Asset 2 are slightly lower than for Reserve 

Asset 1, but the risk parameters are very close. 
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6. Conclusion 

Much of investors' current interest in hedge funds derives from the fact that traditional 

asset classes seem to lack opportunity these days. With fresh memories of double-digit 

returns, this has driven investors towards commodities, emerging markets, credit-based 

structures, and of course hedge funds. Having generated high returns in the early years, 

the average return on hedge funds over the last 10-15 years has been quite impressive 

and many investors seem more than happy to use this as a guide for future returns. 

Given today's low risk premiums, as well as the current size of the hedge fund industry 

itself, a repeat of the last 10-15 years is extremely unlikely, however. 

Investing in alternatives comes with many drawbacks, including due diligence, 

liquidity, capacity, transparency and style drift problems, and excessive management 

and incentive fees. As long as investors believe they will be rewarded with (close to) 

double-digit returns, they will take these problems for granted. However, when reality 

kicks in and investors realize that hedge funds are no longer the money machines they 

once were (thought to be), their attitude will undoubtedly change. The above drawbacks 

will become more and more important and may ultimately become a reason to say 

farewell to hedge funds altogether and migrate to other alternative asset classes like 

emerging markets for example, which has shown stellar performance over the last 3 

years. 

Although something cannot be created out of nothing, in Chapter 2 it was shown that it 

is possible to design dynamic trading strategies, which generate returns similar to those 

of individual hedge funds and funds of hedge funds. Since this is accomplished by 

trading (futures on) traditional assets only, these strategies avoid the typical drawbacks 

surrounding hedge fund and other alternative investments. As such, the synthetic hedge 

fund returns are clearly to be preferred over real hedge fund returns. 
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In Chapter 3 the hedge fund return replication technique was used to evaluate the net-of- 

fee performance of 875 funds of hedge funds and 2073 individual hedge funds. The 

results indicate that the majority of hedge funds and funds of hedge funds have not 

provided their investors with returns, which they could not have generated themselves 

by mechanically trading a basket of liquid futures contracts. Over time, it can be 

observed a substantial deterioration in overall hedge fund performance. In addition, it 

was found a tendency for the performance of successful funds also to deteriorate over 

time, which supports the hypothesis that increased fund size tends to hurt future 

performance. 

Overall, only 22.5% of the 2073 individual funds and 18.6% of the funds of funds in the 

sample were able to beat the benchmark. This means that in terms of the KP measure 
individual hedge funds and funds of hedge funds are not too different. At first sight this 

may seem odd. With funds of funds putting on an additional layer of fees, one would 

expect the results for funds of funds to be substantially worse than for individual hedge 

funds. However, funds of funds diversify and given the low correlation between 

individual hedge funds, this means that the risk characteristics of fund of funds returns 

are typically a lot more conservative than those of individual hedge funds, which is 

reflected in the efficiency measure outcomes. 

Compared with the various. hedge fund performance evaluation studies that have been 

carried out over the last couple of years, these results are quite unusual. Often, the 

conclusion from hedge fund performance studies is that hedge funds generate superior 

returns, not inferior. This once again indicates how tricky factor model based 

performance evaluation can be. As long as one cannot be sure that all relevant risk 

factors are accounted for, it is impossible to know whether unexplained returns are 

indeed true alpha or just unexplained because one or more risk factors were left out or 

specified incorrectly. The methodology in Chapter 3 is more robust, as it relies on a 

simple principle: "if it can be replicated, it cannot be superior". Of course, some 

assumptions were necessary as well, but these are less crucial for the final outcome of 

the evaluation than the kind of assumptions required to make factor model based alphas 

work. 
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Should investors rush out to buy into those funds with the highest KP measures? 

Although tempting, the answer is no. The core problem of performance evaluation is 

separating luck and skill. With a limited set of data, however, it is impossible to make a 

clean cut, whatever the method used. The KP measure is founded on the idea that in the 

long run, risk and return are related, irrespective of how a given risk profile is obtained. 

When there are not enough data available to properly observe `the long run', however, 

the efficiency measure becomes prone to sampling error. If the available dataset is 

limited, it is very hard to identify the presence of any extreme (but compensated) risks 

for example, since by definition extreme events only occur infrequently. A fund 

manager may have been taking the most horrific risks, but if so far he has been lucky, 

the premium collected for taking on those risks will show from his track record, but the 

risk will not. Likewise, one or more risk factors may have done extremely well over a 

prolonged period of time. This will bias the available sample, which in turn may have a 

significant impact on the outcome of the evaluation. 

Since performance evaluations over relatively short time periods will always leave us 

with a considerable degree of uncertainty, a high KP measure should first and foremost 

be interpreted as a signal that further due diligence is warranted. One can only speak of 

truly superior performance if such follow-up research shows that the good evaluation 

outcome was not simply due to luck. In other words, that the manager in question has 

generated the observed excess return without taking any extreme risks and that all the 

relevant risk factors behaved in a more or less representative manner during the period 

under consideration. Questions like these can typically not be answered satisfactorily 

within a purely quantitative framework and require a thorough understanding of hedge 

fund strategies. No matter how sophisticated the econometrics, proper performance 

evaluation will therefore always remain a combination of science and art. 
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Finally, it has to be noted that although in terms of the returns delivered to investors, 

most funds of funds do not seem to add value, this does not mean there is no economic 

reason for funds of funds to exist. Most private and smaller institutional investors do not 

have the skills and/or resources required to perform the necessary due diligence that 

comes with hedge fund investment. In addition, given typical minimum investment 

requirements, small private investors will often lack sufficient funds to build up a well- 
diversified hedge fund portfolio. They therefore have no choice. If they want hedge 

funds, they will have to go through a fund of funds. 

Large institutions do have a choice. Most of them, however, will still prefer to go the 

fund of funds route. This is quite surprising given the amount of fees that could be 

saved by skipping the middlemen. Apart from believing that fund of funds managers 

add enough value to justify their fees (which research has shown to be unlikely), part of 

the reason that many large institutions still go for funds of funds lies in the fact that the 

interests of institutional asset managers are typically not correctly lined up with the 

interests of those whose money they manage. As a result, job protection becomes an 
important consideration. By investing in a fund of funds, instead of picking hedge funds 

themselves, institutions avoid having to take responsibility for the bottom-line fund 

selection. In the end, all they can be held responsible for is the decision to invest in 

hedge funds and the selection of the fund of funds that they invested in; risks, which can 

easily be hedged by not making a move until others do, hiring a big name consultant 

and a big name fund manager, as most institutions do. 

In Chapter 4, four out-of-sample tests were carried out of the Chapter 2 synthetic fund 

creation technique. The test results show that the resulting strategies are indeed capable 

of accurately generating returns with a variety of properties, including zero and even 

negative correlation with stocks and bonds. Under difficult conditions, the tests also 

yield impressive average excess returns for the synthetic funds studied. Combined with 

their liquid and transparent nature, this confirms that synthetic funds are an attractive 

alternative to direct investment in alternative asset classes such as (funds of) hedge 

funds, commodities, etc. Undoubtedly, investors will need time to come to grips with 

the concept, but given their benefits, there is no doubt synthetic funds have a bright 

future ahead of them. 
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Disappointing performance is leading hedge fund investors to look for cheaper 

alternatives. Hedge fund indexation has been suggested as a possible solution. 

Unfortunately, investable hedge fund indices are nothing more than funds of funds in 

disguise, with performance similar or even worse than real funds of funds. The core 

problem of hedge fund indexation is that as long as one still invests in hedge funds, the 

cost factor that indexation is meant to eliminate will still be there. In Chapter 5 it has 

been shown that it is possible to generate returns with statistical properties that are very 

similar to hedge fund indices, but without actually investing in hedge funds. The 

proposed strategies only trade liquid futures contracts and therefore not only offer 

investors an accurate replica, but at the same time solve many other problems typically 

surrounding hedge fund investments, such as illiquidity, lack of transparency, limited 

capacity, etc. 

The effect of the transaction costs, the choice of the reference portfolio and the reserve 

asset was examined in Sections 4.2 and 5.2. There was almost no influence of these 

factors on the risk profile of the synthetic funds. 

Although we use copulas, a non-parametric implementation of the replication technique 

approach is also possible. Instead of copulas, the two joint distributions could be 

estimated using a kernel approach for example, subsequently deriving the exotic 

option's payoff function using a numerical procedure instead of the parametric 

distributions. This is a possible way for future developments. 
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Appendices 

A. 1 PDPM - Univariate Case 

Suppose we lived in the standard model with one stock, one bond, perfect markets, a 

positive equity risk premium, and where the stock price follows a binomial tree with n 

steps, with time increments dt. In one step, for each node, the stock price can move up 

by a factor it =1 +, u At +6 At or down by a factor d=1+, u At -o It with the same 

probability. After it steps, the initial price So will have evolved into one of tt+1 possible 

values So u", So u"-'d', So tIn-2d2, ..., So d, which we label as states 1,2, 
..., n+1 

respectively. The bond returns rdt over each period, with r denoting the riskless rate. 

What is the state price for each of the above n+1 states? Suppose we are at time t=0 and 

want to replicate the payoff of some particular investment. The stock price is So and the 

bond value is B. Suppose the value of the investment one step ahead is either vl if the 

stock price goes up, or v2 if it goes down. In order to replicate the investment, we need 

an investment of vs shares and vB bonds: 

JS0(1 + pAt +Q Ot)vs+B(1+rAt)vB =v1 
So (1 + pAt -Q Ot)vs + B(1 + rAt)vB = V2 

Solving and reordering this result, we have the following one-period pricing 

relationship: 

Sovs + BvB =1 1- 
('u - r)At 

vl +11+ 
('u r )At ]V2: 

- Pivi + Pzvz 1 2(1 + r&t) 6 Ot 2(1 + rht) 6 

where pl and p2 are the state prices. Dividing the state prices by the probability of each 

state, which is 'h, we obtain the following state-price density: 

1 (, u-r)At 
and p2 

11+(, u-r)At 
p1 = 1- = (1 + rAt) Q Ot (1 + rAt) Q Ot 
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Note that, assuming a positive risk premium, So(1 +, uAt + 6. \ft-) > So (1 +, uAt - 6ý, [T) 
, 

we have pi < pl. If we repeat this for all nodes in the tree, we find that for the last step 

the state-price density is inversely related to the terminal values of the stock. In state 1, 

the stock has the highest value Sou' , but the state-price density assumes the lowest 

value, while in state n+1 the stock has the lowest value So d' but the state-price density 

function assumes the highest value. 

Now we are set to use Theorem 1 of Dybvig (1988a). By this theorem, the cheapest 

payoff function allocates terminal wealth as a non-increasing function of the state-price 

density. Combining this with the above, the cheapest payoff function should therefore 

allocate terminal wealth as a non-decreasing function of the value of the stock. 
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A. 2 PDPM - Bivariate Case 

Now assume that instead of one, we have two risky assets we can trade, which we will 
refer to as "the investor's portfolio" and "the reserve asset". The prices of both are 
denoted as Sp and SR respectively. We denote the mean and standard deviation of the 

terminal wealth provided by the investor's portfolio as Up and crp. Likewise, we denote 

the mean and standard deviation of the terminal wealth provided by the reserve asset as 

, uR and 6R .p denotes the correlation coefficient between the two assets. 

From assumption 1 (Section 2.1) we know that all investors are concerned about is the 

conditional distribution of the terminal wealth given S. As a direct consequence of this . 
assumption, we need therefore to study the question how to allocate terminal wealth 
between states for each value Sp = x. 

Supposing normality for the investor's portfolio and the reserve asset, we know that the 

distribution of R given Sp =x is a normal distribution with mean (X_ PR +p Rý 
'up) 

P 

and standard deviation QR 1- p2 . We can use a binomial model to approximate this 

distribution. Doing so, we can perform the same analysis as in the univariate case to 

obtain the state-price density for the first step of the tree. Suppose that the initial price 

of the reserve asset is SR, o. Then the prices for the two nodes are 

SR. 
1=SR. O 

1+ ýR+/ýýR(x-ýP) t+UR 1-p2ý 

P 

and 

SR. 
2 - 

SR 
01+I PR +p ýR 

ýX - SUP 
ýt- 6R 1- p2 

ý. 

\P 
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The state-price density is therefore given by: 

11 
(PR+ p 

66 RP (x-ýP)-r)iXt 

p' - (1 + rOt) 6R 1- p2 Ot 

and 

/ R (x-, up)-r)Ot 
1 

1+ 

(I 
R+P66p 

p2 - ýl+rat) 6R 1-P2 At 

Clearly, much depends on the value of p. Suppose p>0. In that case p, < p2 if 

x> 
SUP 

+ (r -, UR) 
OP 

= x,,,,,,, and pl > p2 otherwise. In other words, the allocation rule 
PUR 

for the cheapest payoff function will depend on the value of the investor's portfolio. If x 

> x,,,;,,, the rule is to allocate terminal wealth as a non-decreasing function of the value 

of the reserve asset, just as in the univariate case. If x<x,,,, however, the rule is to 

allocate terminal wealth as a non-increasing function of the value of the reserve asset. 

When p<0, we see a similar phenomenon. In that case pl < p2 if 

x <, up + (r -PR) 
0=x,,, 

, and pl > p2 otherwise. This means that if x<x,,..., the 
PUR 

rule for the cheapest payoff function is to allocate terminal wealth as a non-decreasing 

function of the value of the reserve asset. When x> however, the cheapest payoff 

function allocates terminal wealth as a non-increasing function of the value of the 

reserve asset. 
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A. 3 Copulas and marginal distributions 

In this appendix we list the six copula families used and also the moments of the 

marginal distributions. 

For all copula definitions we assume it E [0,1], vE [0,1]. 

The normal copula is given by: 

-1(u)-ý (v) 

CGQ("IV; P)= ff12 exp 21 
(s2-2pst+t2) dtds, 

_ý 21r 1-p (1 _P2) 

where (D-' (. ) is the standard normal inverse distribution and pE (-1,1) is the linear 

correlation coefficient 

The Student-t copula is given by: 

z9+2 
te'(u)to '(v) 222 

l+s -2pst+t dtds 

_. _. 21 - p2 g(1 P2) 

where t. l is the Student-t inverse distribution with i9 degrees of freedom. 

The Gumbel copula is given by: 

CG (ic, v; a) = ex - 
[( ln(u))° + (ln(v))° r- 

,a>1. 

The Cook-Johnson copula is given by: 

Cý, (u, v; a) = 
(a_a 

+ V-a -1) a, a> o 
X 

The Frank copula is defined by: 

CF (cc, v; 0): - _! 1o1+ 
(e-' 1)(e-a 

l 
-1) 0#0. 
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The SJC copula is based on the Joe-Clayton copula, which is given by: 

CJc (i[, v; zL zU) =1- , )"]-y +[i-(1-v), `]-y -1 
YYr ) "K 

, where 

x=1/1og2(2-2U), y=-1/1og2(rL), and ZU E (0,1) and 2L E (0,1). 

The SJC copula is then given by: 

CSJC(11IV; 2L, ZU) 
ý(CI("IV; 

CL, ZU)+CJC(i-ll9l-V; ZU, VL)+ll+V -1) 

The probability density function of the normal distribution is given by: 

fx (x) -1 ex - 
12 

(x -, u) 2xE 91. The normal model is symmetrical around 
2zra 2Q 

the mean and it has only two parameters, the mean µ and the standard deviation ß. 

The probability density function of the Student-t distribution is given by 

y+l 1v+, 1 
2 l2J 

fx (x) =v2 1+ 
(x 

C)xE 
91. The mean of the distribution is g and 

c, 2 

its standard deviation is given by 
2 

The parameter v is known as degrees of 

freedom. It controls the excess kurtosis of the distribution, which is given for v> 4 by 

k= 
E[(X -'uý4]z 

-3= v6-4 E[(X -, u) . This distribution is also symmetrical. 

The Johnson-SU family of distributions is defined by the following transformation: 

X=ý+A sinn 
Z8Y, 

X>ý, where Z is a random variable with standard normal 

distribution. 

The moments of the distribution are given by: 

1 
2 

E(X)=e+2e2a (e e, 5) 
2 
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V(X)=E(X-E(X))2= 
4 es2(e 8 +e8)-es2(e 8-e8)2_2 

-39 
3y 3y 5 3y yy 3y 

E(X - E(X)) 3=8{e 2S2 (e 05 -e s) - 3e 2s2 (e 5-es+ es -e s) + 

3 3y yy 3y 1yy 

2e262 (e s -3e s +3e5 -e s)+3e252 (e S -es) 
} 

Skewness(X) = 
E(X - E(X))3 

V(X)3/2 

E(X - E(X)) 4= 16 
248 

{ e52 (e 
1 

3 4y 2y 2y 

6e32(e a -2e a +2-2e6 
1rr 2y 

-3e82 (e S -es)2 -12(e s- 

4y 4y 5 4y 2y 2y 4y 

+e-1 4e7 (e s -e s -es +e6)+ 

4y 2 4y 2y 2y 4y 

+es)+es2(-3e +8e -24+8e8 -3e8 
2y 

-e6)+30 
} 

Excess Kurtosis(X) = 
E(V 

X 

(X ))4 
-3 

It seems more complicated that it really is. If we specify a proper set of skewness 

and excess kurtosis, we can calculate the parameters y and 8 necessary to obtain these 

moments, since they do not depend on X or ý. After that, we can calculate X specifying 

the variance of the distribution and finally we can obtain ý specifying its mean. 
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A. 4 Influence of the Reserve Asset distribution parameters 

In this appendix we will study the influence of choice of the reserve asset in the price of 

the payoff function. 

First we are going to set some notation: 

Sp : investor's portfolio end-of-month payoff 

SI: fund end-of-month payoff 

SR : reserve asset end-of-month payoff 

Log-returns: Xp =1n 
SP 

,XI =1n 
SI 

and XR =1n 
SR 

100 100 100 

Moments: E(X 
p) =, up, Var(XP) = oP 

E(X1)=ßt1, Var(XI)=6, 

E(XR) _PR, Var(XR)=6R 

Corr(X P, 
XR) = IOPR , Corr(X., X 

1) =Pp, 

r: risk-free interest rate. 

g* is the cheapest payoff function such that: 

P(S < x, g* (SP SR) Y) = P(SP 
_< X, s, _< Y), ex, yE 912. 

The KP measure is the price of the function g*: 

ý// =r EQ[g *('SPISR)], 

where Q denotes de risk-neutral expectation, hence supposing that 

62 
1 r- P 

62 XQ 
N2P PR 

XRJ 
N ftr_&. L, 

0l'l? UR 

2 
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The function g* can be rewritten in terms of log-returns, 

g* (exp(100x, 100y)) 
g (x, y) =1n 100 

Which 

implies g* (x, y) =100ex 91 100 '1 100 

By (9) in subsection 2.3.3, we know that the cheapest payoff function g is defined by 

g (XI y) = Fx Ix, (FxRIx, (y I x) I x). 
The price of this payoff function is given by 

i_ 
100 

EQ[exp(g(XP, XR))] = 
100 

EQ[h(XP, XR)l , where h(x, y) = exp(g(x, y)). 

We know that a continuous function m(x, y) can be written using Taylor approximation 

around a point xo, yo: 

(00) (x-xo)`(y-YO)' 
m(x, y) = m(xo, yo) + 'n (xo, yo) 

i=1 j=1 i! j! 

Using a first-order approximation for the function h(X p, X R) around the risk-neutral 

means (EQ [X p 1, EQ [X R 1) , we have: 

I1(XP, 
`YR)=h(EQ[Xp], 

EQ[XR])+ÖXl`XP-EQfXp]) +y(XR -EQ[XR]) 

Taking expectations, we have EQ [h(X p )] = h(EQ [X p ], EQ [X R D* 

22 

Substituting EQ[Xp]=r- -, EQ[XR]=r- and 22 

h(x, y) = exp[FxllxP (FxRlxP (y 1 x) 1 x)], we have: 

22 . 62 
EQ[h(XP, XR)] = exp(FXI'lx, 

FXRIXP(r- 

21 r- 2 r- 2 

The price of the payoff function (KP Measure) is then approximated by: 

222 100 
eXp(FX, IXP 

(FXRIXP ýY - 
6R I 6P) Ir 

r222 
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`f' is a function of Jip 
, 

/2 1, /1R' 0 P' 01 
90 R' 

Ppi 
9 JOPR' r 

We want to study the selection of the reserve asset, so we will concentrate on the 

parameters PR 10 RI /"PR and assume the others as given. With this assumption, the 

I 
function I x1 x. will not change, so we only need to study the effect of 

62 62P 62 P 
/R' 0 R' PPR On 

FX 

RIX P 
"! _2r2r_ 

2" 

Supposing normality of Xp and XR , from probability theory we have: 

U, 2 2 

RIX P- r2N IUR 
+ PPR Rr 

JuP 2 
6R (1 %0PR 

P 

So 

22 CYP2 
FXRIXP (I- 6R I'. 6Pý 

222 
22 

r2 
/uR IPPR 

6R 

(r UP 
2 

P 

6R 1-APR 

where 1 is the standard cumulative normal distribution. Since c is strictly increasing, 

we only need to study its argument. 

a) parameter PR (mean of the reserve asset) 

If everything else is constant, the quantity in (17) is decreasing on , UR, so the price of 

the payoff function (16) is also decreasing on , /R. This is not a surprise. If we have a 

reserve asset with a higher mean, then it will be cheaper to build the required payoff 

function. 
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b) parameter 6R (volatility of the reserve asset) 

Considering everything else constant, the argument of (17) can be written as a function 

of OR : 

r -, uR 11 
K(6 )_--a+ constant R R1 

PPR 6R 211 
-p PR 

The derivative of this function is given by: 

1,1 
K'(ß'R) =a 

62 
-2 which is greater than zero if UR < 2(, uR - r) T 

-PPR 

uRR-r 

The conclusion is: 

If cT < 2(, UR - r) , then K (OR), and consequently the price of the payoff function 

IP is increasing on OR. 

If U2 > 2(uR - r) , then K (O R) , and consequently the price of the payoff function 

IP is decreasing on OR* 

Figure A. 1 is a contour plot which shows the relationship between PR 10R and 
YJ 

. 

On the upper half of the graph, o< 2(UR - r) holds, so the price 
V is increasing on 

0R *On the bottom half of the graph, 6R > 2(, uR - r) holds, so the price 
IP is 

decreasing on 0R. 
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Figure A. I. Contour plot of the KP measure as function of the reserve asset risk 

premium and the reserve asset volatility. 

If the risk premium is large enough (greater than '7/R2 ), then we want the highest 

possible risk premium and the smallest possible volatility for the reserve asset, as it was 

also expected. 

c) parameter OpR (correlation between the reserve asset and the investor's 

portfolio) 

Considering everything else constant, the argument of (17) can also be written as a 

function of OpR : 

-0.54%. 

0.40%. 

=0.33%: 2. 

d -0.26%. 

0: 12/ 

--0.02% 4)y 

--0.16% 

--0.37% 
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- , 
UR UR 1 PpR r -, up 6P 

APPR) 
---- 

6R 2 1- PP2= 
2 

R1 
PPR 6P 2 

The derivative of this function is given by: 

r PR 
_ 

6R PPR r lip 6P 1 
AI(PPR) _ 

6R 23 1- p2R up 231 PPR 

Which is positive if 

PPRC 

r/J 6P 

6P 2 
1 PR 6R 

6R 2 

The conclusion is: 

lup - ý+ p 

6P 2 
_ 11R - ý- a, supposing positive risk premiums. 

6R 2 

J1P-1, 
+, 

6P 

6P 2 

If 
PPR 

ýR - i" 

2 

then the function 2(PPR) is increasing on PPR, and 

6R 2 

consequently the price of the payoff function is IP is increasing on PPR. 

If ~ PR 

'uP - j' 6P 

6P 2 

JUR - j- 6R , then the function 2(pPR) is decreasing on pPR , and 

6R 2 

consequently the price of the payoff function is Y' is decreasing on PPR . 

If either the denominator or numerator is negative, than the relation is first decreasing 

and then increasing. 
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Figure A. 2 is a contour plot which shows the relationship between PR, IDpR and 
1P 

. 
The risk premium of the investor's portfolio is positive. In the upper half of the graph, 

the denominator is also positive, so we can see that the price 
IP is increasing on PPR 

up to certain point (around PPR = 0.25), and then decreasing on PPR . In the bottom half 

of the graph the denominator is negative, so the inverse relation is observed (first 

decreasing on pPR and then increasing on it). 
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Figure A. 2. Contour plot of the KP measure as function of the reserve asset risk 

premium and the correlation between the reserve asset and the reference portfolio. 
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