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Abstract

In this thesis it 1s developed and demonstrated the workings of a copula-based technique
that allows the derivation of dynamic trading strategies, which generate returns with
statistical properties similar to hedge funds. It 1s shown that this technique is not only
capable of replicating fund of funds returns, but is equally well suited for the replication
of individual hedge fund returns. Since replication is accomplished by trading futures on
traditional assets only, it avoids the usual drawbacks surrounding hedge fund
mvestments, ncluding the need for extensive due diligence, liquidity, capacity,
transparency and style drift problems, as well as excessive management fees. This
replication technique is also used to evaluate the net-of-fee performance of 875 funds of
hedge funds and 2073 individual hedge funds, up to an including November 2006.
Comparing fund returns with the returns on dynamic futures trading strategies with the
same risk and dependence characteristics, no more than 18.6% of the funds of funds and
22.5% of the mdividual hedge funds i the data sample convincingly beat the
benchmark. Besides the replication and evaluation of funds which already exist in the
market, this technology can also be used to create new funds with previously
unavailable return characteristics, the so-called ‘synthetic funds’. In a set of four out-of-
sample tests over the period January 1998 — February 2007, 1t 1s shown that the
replication-based strategies are mdeed capable of accurately generating returns with a
variety of properties, including negative correlation with stocks and bonds and high
positive skewness. The synthetic funds also produce impressive average excess returns.
Disappointing performance 1s leading hedge fund investors to look for cheaper
alternatives to invest, such as mdices of hedge funds. Unfortunately, investable hedge
fund indices are nothing more than funds of funds in disguise, with performance similar
or even worse than real funds of funds. The replication technology generates returns
with statistical properties very similar to those of hedge fund indices, and a higher
average return for most hedge fund categories, but without actually investing in hedge
funds.
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Introduction

A hedge fund is a private fund which can take both long and short positions, leverage
itself using derivatives and invest i any local or global market, with the goal of
generating high returns, i absolute terms or compared with a benchmark. Unlike other

investments, hedge funds are usually not regulated by any government commission.

Over the last 10-15 years hedge funds have become very popular with high net worth
investors and are currently well on their way to acquire a significant allocation from
many institutional investors as well. During the period 1990-2006, the number of hedge
funds has risen from around 500 to more than 9000, and the assets under management

are estimated to have increased from 50 billion to more than 1.5 trillion of US dollars’.

Initially, hedge funds were sold on the story of superior performance, where high skilled
managers could ‘beat’ the market. Seduced by this argument, private wealthy investors
were responsible for the initial growth of the industry. Toward the end of the 1990s the
performance of hedge funds started to deteriorate. Also, institutional ivestors with
better risk management practices got more interested in these funds. Given the two
reasons above, hedge funds began to be sold not on the promise of superior
performance, but on the basis of the diversification argument, due to their low

correlation with stocks and bonds®.

Despite its popularity, investments in hedge funds come with some serious drawbacks.
The first one is the lack of liquidity. Most hedge funds use lock-up clauses to tie in new
investors for some period of time, up to tive years”. After that, investors need to give a
prior notice if they want to withdrawal their money, and in some cases they even need
to pay an additional fee of up to 5%. The second major drawback is the lack of

transparency. Hedge funds are usually ‘black box’ investments, which turns more

! HFI Press Release.
? The current trend is to introduce retail investors to hedge funds as well. Since the typical retail investor is unlikely to appreciate
the special nature of hedge fund investment, this will intensify the call for more profound regulation, which in turmn will force the
industry to reshape itself once again.

* Investors are becoming increasingly resistant to lock-up periods. According to Dyment et al. (2005), in 2004 68% of investors

would only invest with managers with lock-ups of one year of less. In 2005, ttus rose to 77%.

12



difficult the assessment of their risk profile, and any change of style or strategy
overtime. Moreover, some strategies can suffer from capacity problems, specially the
arbitrage-related ones. This has already happened for the convertible arbitrage strategy,
for example®. Another major drawback is the level of fees imposed by most hedge
funds. The average fund charges a flat management fee of 2% plus an additional
performance fee of 20% of gross returns. This 1s usually known as “2 plus 20”. For
example, considering an annual return of 10%, this would mean 40% of the gross
returns being paid as fees. Funds of funds tend to charge an additional “1 plus 10” on

top of the “2 plus 20” structure.

If returns generated by hedge funds were far superior, the drawbacks discussed above
would at least be compensated in some way. However, recent performance studies’
show that the return-risk characteristics of hedge funds are no longer superior, but just
different®. Then the question which naturally arises is whether it is possible to generate
hedge fund-like returns mechanically trading cash, stocks, bonds and other asset classes.
This so-called ‘replication’ would eliminate the liquidity, transparency, capacity and

excessive fees problems.

Given these considerations, a new technique is introduced in Chapter 2. This technique
extends the work of Amin and Kat (2003b), to replicate not only the marginal
distribution of a given hedge fund, but also its dependence with the investor’s existing

portfolio distribution.

The execution of the strategy is based on dynamic trading. The basic idea of dynamic
trading was put forward a long time ago by Arrow (1964), who pointed out that, mstead
of following a buy-and;hold strategy, by trading more often investors can exert greater
control over the evolution of the value of their investment portfolio. This i1s an
extremely important observation as it implies that when a given payoff profile is not
directly available in the market, either as an individual asset or as a combination of
different assets, mvestors may still be able to create it themselves by trading the

available primitive assets in a specific way. The idea of complementing a market by

* The annual return of the HFRI Convertible Arbitrage Index was 1.18% in 2004 and -1.86% in 2005.
> These studies are briefly reviewed in Chapter 1
S See for example Amin and Kat (2003b), Bailey et al. (2004) or Fung et al. (2007).
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dynamic trading was taken to the extreme in modern option pricing theory, which is
rooted 1n the faét that, under certain simplifying assumptions, when investors can trade
continuously, they will be able to generate any payoff profile imaginable. Black,
Scholes and Merton used this observation to develop their famous option pricing
formula. Over the 30 years that tollowed, others have used the same argument to price a
large variety of other, more exotic options. The reasoning is always the same though. If
it is possible to find a payoff function which, given the probability distribution of the
underlying index or indices, implies the desired distribution, then the dynamic trading
strategy which generates (returns that are drawings from) that distribution will also be

found.

Of course, there are a number of serious hurdles to take. First, the interest does not lie 1n
any strategy. To maximize expected return, the cheapest possible strategy is wanted.
Second, since the aim i1s to replicate not only a fund’s marginal return distribution but
also its relationship with the investor’s existing portfolio, it will be necessary the use of
bivariate distributions, which can take on a large variety of shapes and forms. Third,
real markets are a lot less well behaved than assumed 1n the standard theoretical model.
As a result, an inconsistency may arise between the determination of the desired payoff
function, which i1s a purely empirical matter, and the subsequent derivation of the
dynamic trading strategy generating that payoff. A second consequence of relying on an
abstract model is that in practice these dynamic trading strategies may not be able to
exactly generate the desired payoff. Therefore extensive out-of-sample tests of these

strategies were performed, using daily data over the period 1985-2006.

In Section 2.1 it is briefly discussed the theoretical setting in the form of Dybvig’s
(1988a) Payoff Distribution Pricﬁlg Model (PDPM), which 1s extended to a bivariate
setting. In Section 2.2 the univariate replication is briefly reviewed. In Section 2.3, the
determination of the desired payoff function i1s discussed, i.e. the payoff function,
which, given the distribution of the assets to be traded, implies the desired return
distribution. In Section 2.4 a number of simulation-based analyses 1s carried out,
investigating how the size of the available data sample influences the accuracy of the
procedure. In Section 2.5 the practical implementation of the procedure and the results

of some out-of-sample tests are discussed. Three well-known hedge funds (of funds)
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are replicated. Proofs relating to the univariate and bivariate PDPM can be found in

Appendix A.1 and A.2.

The replication procedure concentrates on replicating a fund’s risk profile without
explicitly considering the fund’s expected return. The underlying assumption is that, in
an efficient market, in the long run investors will receive a return in line with the risk
that they have taken. This is why the empirical finding that hedge fund returns are not
truly superior is fairly crucial. If they were superior, their risk profile could still be
replicated, but it would not be possible to replicate their average as well. If it 1s superior,
it cannot be replicated and vice versa. The latter observation points at another
application of the replication technique discussed above: the evaluation of hedge fund
returns. Explicitly constructed to offer the same risk profile, when the average replicated
return is significantly higher than the average fund return, the fund 1s the inefficient

alternative.

Using this idea, the performance of 2073 individual hedge funds and 875 funds of hedge
funds 1s evaluated in Chapter 3, up to and including November 2006. Section 3.1
introduces the approach. In Section 3.2 one illustrative example is provided. In
subsections 3.3.1, 3.3.2 and 3.3.3 1t 1s discussed the data description, distributional
analysis and evaluation results for funds of hedge funds. In Subsections 3.4.1, 3.4.2 and

3.4.3 the same is discussed for individual hedge funds.

In Chapters 2 and 3 the replication technique is used, respectively, to replicate and
evaluate the returns of existing hedge funds. There is no reason, however, why the same
technique could not be used to create completely new funds, providing investors with
previously unavailable return characteristics. Fhldillg and selecting new diversifiers is
a very laborious and costly process. Typically, a fund’s risk-return profile is not
immediately obvious and investors may have to dig long and hard to gather sufficient
information. This 1s where being able to create any type of risk-return profile pays off
huge dividends, as it allows us to structure exactly what investors are looking for. No
longer do mvestors have to work with what happens be available and guess what a
fund’s true risk-return profile is. Given an investor’s existing portfolio, a special tailor-

made strategy (or ‘synthetic fund’ as these strategies will be called) can be structured,
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that produces returns, which fit in optimally with what is already there. Clearly, this is a

much more natural approach than the usual beauty parades held by investors.

The above 1dea could be even taken one step further and, instead of creating a synthetic
fund as an addition to an mvestor’s existing portfolio, the investor’s entire portfolio can
be replaced by a synthetic fund. This means that investors no longer would have to go
through the usual process of finding and combining individual assets and funds into
portfolios in an, often only partially successtul, attempt to construct an overall portfolio
with the characteristics they require. Using dynamic trading technology, a synthetic
fund that produced returns with exactly the characteristics they were after could be

designed.

In Chapter 4 1t 1s tested whether, m practice, it 1s really possible to create synthetic
funds, which generate returns with predefined statistical properties. In Section 4.1, four
different synthetic funds with a variety of return characteristics are created and their
out-of-sample performance are studied. In Section 4.2 some sensitivity analyses are
performed to check the mfluence of the transaction costs, and the underlying chosen.

Section 4.3 contains a brief comment on synthetic funds’ alpha.

Chapter 5 will deal with the so-called hedge funds indexation. Over the past 20 years,
indexation of equity portfolios has become very popular with institutional as well as
private investors. Strongly advocated by big names from academia as well as the
industry, such as Princeton’s Burton Malkiel and Vanguard’s John Bogle, assets under
management by index funds have grown from almost negligible in 1976, when the first
index fund was introduced, to several trillions of dollars now. It i1s estimated that
(excluding closet-indexers) currently 40% of institutionally managed assets are indexed,

with US institutions quite far ahead of the rest of the world.

The idea behind indexation is simple. Casual observation as well as large-scale
academic research shows that the added value of traditional alpha chasing tends to be
negative. Put simply, most traditional active managers are unable to earn back the fee
that they charge their investors. This means that hiring these managers is counter-
productive. On balance they will reduce the after-fee return. The above observation has

lead many investors to abandon every form of security analysis and active trading
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altogether. They just buy and hold the market in the form of some index-replicating

portfolio.

The rise of indexation over the past 20 years resulted from investors becoming aware of

and admitting to the fact that the costs of traditional active management often exceed
the value added. A similar process is currently underway in the alternative investment,
and especially the hedge fund industry, where, as already discussed in this Introduction,

fees tend to be a multiple of what they are m traditional investment management. The

HFRI Fund of Funds Composite Index for example, returned 4.07% 1n 2000, 2.8% in
2001, 1.02% 1n 2002, 11.61% in 2003, 6.86% in 2004, 7.49% in 2005 and so far until

October 2006 no more than 6.52%. Other well-known indices show a similar picture.

Given the above, and very similar to what has happened in traditional investment
management, more and more investors are currently looking to improve their after-fee

return by cutting costs. This brings us to the concept of hedge fund indexation. There

are many different hedge fund indices around these days, so why not simply buy one of
those, just as one does for stocks and bonds? Unfortunately, there are several reasons

why this 1s going to be problematic:

1. As hedge fund managers seldom report to more than two databases, different
indices cover different subsets of the hedge fund universe. This makes choosing

an index to mvest in far from trivial.

2. Some of the better-known hedge fund indices contain over 1000 individual
hedge funds. Some contain even more than 2000 funds. In addition, most index
providers do not explicitly list their index’s components, which means it is

impossible to find out what funds to actually invest in.

3. Most hedge fund indices contain a large number of funds that are closed for

new, and sometimes even existing, investors. Also, most funds are highly
1lliquid due to lock-ups and notice periods. This makes any periodic rebalancing

of an index-replicating portfolio highly problematic.
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4. Most hedge fund administrators take a couple of weeks to work out the end-of-
month Net Asset Value (NAV). This means that an index-replicating portfolio

can only be rebalanced with a very significant delay.

5. Buying a hedge fund index will only allow one to eliminate the fund of funds

manager’s fee, but not the fees of the underlying hedge fund managers, which

tend to be twice as high.

As a result of the above, the majority of existing hedge fund indices are simply not
investable. Recently, several high profile index providers have attempted to solve this
problem by introducing what they refer to as ‘mvestable’ hedge tund indices.’
Unfortunately, the latter are nothing more than (more or less mechanically managed)
funds of funds in disguise. Roughly speaking, imnvestable hedge tfund mdices result from
a joint venture between an index provider and a fund of funds manager. First, the
manager puts together a portfolio of funds, n line with a number of criteria with respect
to track record,’ liquidity, valuation, transparency, capacity, etc. Subsequently, the
index provider declares that portfolio to be the index. Apart from the obvious
commercial incentive, the problem with investable indices 1s that there are not many

hedge funds that fit all applicable criteria. As a result, investable indices are even less

representative of the hedge fund universe than their non-investable counterparts.

The main problem with all existing hedge fund indexation schemes 1s that they still
require investors to invest in hedge funds, which leaves the main cost factor, i.e.
managers’ fees, unaffected. Obviously, this 1s not a satisfactory solution for mvestors
looking for a cheaper alternative. To eliminate hedge fund managers’ fees we need to
find a way to obtain hedge fund index-like returns without actually investing in hedge
funds. This is possible by using the same replication machinery developed m Chapter 2.
The returns generated by this approach will be statistically very similar to the actual
hedge fund index returns. There is one important difference though: the synthetic fund

returns are likely to arrive in a different sequence than the actual hedge fund mdex

” It is estimated that currently around $15 billion of the total $1200 billion invested in hedge funds is index-linked in some way.

® Since indices are big business these days, there appears to be a tendency for providers of investable indices to initially only
include funds with good track records. Since there is little or no persistence in hedge fund returns, this explains why the actual
performance of some investable indices has been so much worse than their pro-forma historical performance. In addition,

investable indices have not outperformed the average fund of funds, which is not surprising as they are funds of funds themselves.
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returns. For imvestment purposes this should not make a difference, however, as all that
matters in an mvestment context are the statistical properties of the returns on the
various assets and asset classes, and not the exact sequence in which those returns come

in.

In Chapter 5 this 1dea 1s put in practice. Section 5.1 shows the main results and in
Section 5.2, some sensitivity analyses are again performed to check the influence of the

transaction costs, and the underlying indices chosen.

Chapter 6 concludes based on the results obtained in the replication (Chapters 2 and 5)
and evaluation (Chapter 3) of hedge funds and funds of funds and also on the creation

(Chapter 4) of synthetic funds.
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1. Literature Review

As mentioned m the Introduction, two important applications of the copula-based
method mtroduced in this thesis are hedge fund return replication and hedge fund

performance evaluation. In this chapter we review previous research in both these areas.

Early studies of hedge fund performance used traditional performance measures such
the Sharpe ratio or Jensen’s alpha. Ackermann et. al (1999) investigate the effect of
incentive fees, location, and age on hedge fund performance. They find a positive
relationship between incentive fees and performance, but no strong location or age
ettect. Brown et. al (1999) examine the performance of offshore funds over the period
1989-1995, tinding positive risk-adjusted performance for offshore funds as a group.
They find below average returns for funds of funds though. Edwards and Caglayan
(2001) analyse hedge fund performance over the period 1990-2001. They find that
about 25 percent of hedge funds earn positive excess return and that the frequency and

magnitude of funds’ excess returns differ markedly by investment style.

Because of the non-linearities and non-normalities present in hedge fund returns, the
traditional performance measures used in the above studies are not appropriate. For
example, most hedge fund managers use dynamic strategies, which are quite different
from the buy-and-hold strategy used in traditional investments. Also, these managers
often use derivatives, especially options, which also create a non-linear relationship
between fund returns and market returns. Even if the underlying assets were normally
distributed, these non-linearities would result in non-normally distributed fund returns.
The basic problem 1s that CAPM and the Sharpe ratio are derived assuming that
investors only care about the first two moments of the returns distribution, i.e. the mean
and the variance. As observed in Brooks and Kat (2002), often the attractive mean-
variance characteristics of hedge fund returns is accompanied by negative skewness and
positive excess kurtosis, indicating an increased probability of a relatively large losses.
As negative skewness and excess kurtosis are both non-desirable features in a return
distribution, this implies that traditional performance measures will tend to overestimate
the true risk-return performance of hedge funds. In addition, as noted by Amenc,

Martellini and Vaissi (2003), this could lead hedge fund managers to implement ‘short
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volatilities’ strategies based on the sale of out-of-the-money put and/or call options.
Using these strategies, the premium received by writing the options will increase the
mean return while the risk (measured only by the second moment of the returns
distribution) would be limited. Some authors have used modifications of the Sharpe
Ratio, which take higher distributional moments into account. This includes
Kouwenberg (2003), Gregoriou and Gueyie (2003) and Eling (2006). However, these
measures do not incorporate the non-linear relationship with other asset classes in a

portfolio context, they only look at the marginal return distribution.

The style analysis technique first introduced by Sharpe (1992) for equity mutual funds,
has also been used as a tool to replicate and evaluate hedge funds returns. Sharpe
showed that only a limited number of asset classes are necessary to replicate the
performance of a large sample of U.S. mutual funds. Once the relevant risk factors of a
fund are selected and the sensitivities to these factors are estimated, one can construct a
portfolio of stocks, bonds, cash and other securities, with the same sensitivities, which

will then generate returns similar to the fund.

A number of studies have used the factor model approach to evaluate hedge funds,
including Fung and Hsieh (1997, 2001), Schneeweis and Spurgin(1998), Liang (1999),
Lhabitant (2001), Schneeweis et al. (2003), Capocci and Hubner(2004), Agarwal and
Naik (2000a, 2000b, 2004), Hill et al (2004), Jacger and Wagner (2005), Ibbotson and
Chen (2006) and Hasanhodzic and Lo (2006).

Fung and Hsieh (1997) imcorporate factors which reflect strategy-specific return
components and a quantity component (leverage). They apply their 12-fact0r model to
3,327 mutual funds and 409 hedge funds/CTAs, finding that unhke mutual funds, hedge
funds returns have low correlation with standard asset classes. Schneeweis and Spurgin
(1998) propose factors that allow for the possibility of trending prices, short sales and
intramonth volatility. Doing so, they find that hedge funds and CTAs provide beneficial
diversification to stocks and bonds. Liang (1999) finds low correlation between
different hedge fund strategies, and concludes that hedge funds offer a more attarctive
risk-return trade-off than mutual funds. Capocci and Hubner (2004) use a large hedge
fund database, with 2,796 individual funds. They consider the models used previously

by Carhart (1997) and Agarwal and Naik (2000a), concluding that around one fourth of
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hedge funds delivers significant positive excess returns. This over-performance is, in
most cases, constant over time, except during the 1997 Asian crisis. Agarwal and Naik
(2004) extend the span of one or more benchmarks from purely linear to non-linear by
including a number of ordinary put or call options on those benchmarks into the return
generating process. They show the extent of the understimation in the tail risk in the
mean-variance framework. They also show that a wide range of hedge fund strategies
exhibit returns similar to those from writing a put option on the equity index. Finally,
Ibbotson and Chen (2006) use a traditional factor model to analyse about 3,500 hedge
funds and find that the pre-fee average return of 12.72% cna be split into a fee (3.74%),
an alpha (3.04%) and a beta return (5.94%) component.

There are some serious problems with the factor-model approach, though. First, we
often have little or no i1dea how a hedge fund’s returns are actually generated. As a
result, it 1s not clear which factors to use. One factor usually left out 1s liquidity. Many
hedge funds act as market makers, buying illiquid assets and hedging the position with
liquid ones. Omitting liquidity would therefore mean a loss of return potential in the
replicating portfolio. In addition, some factors, such as volatility for example, can be
difficult to trade in practice, with relatively high associated costs. Another problem is
the assumption of a linear relationship between hedge funds and other asset classes.
Although some authors have attempted to incorporate non-linearity introducing options
in the replicating portfolio (as, for example, Agarwal and Naik (2004)), this also makes

the execution of the replication strategies more complicated and expensive.

As a result of the above, the explanation power of factor models 1s quite disappointing,
especially for individual hedge funds. In Hasanhodzic and Lo (2006) for example, the
variation in hedge fund returns explained by their six-factor model 1s very low for most
categories: convertible arbitrage (17.3%), emerging markets (19.4%), equity market
neutral (10.4%), event driven (19.5%), fixed mncome arbitrage (14.9%), global macro
(14.8%) and long/short equity (21.6%). Although the procedure works better for funds
of funds and hedge fund indices, a model that leaves 80-85% of a fund’s return
variability explained is unlikely to be a good starting point when its aim is to replicate

month-to-month returns.

22



Table 1.1 summarizes the out-of-sample replication results of Schneeweis et al. (2003)
for five equally-weighted indices of European hedge funds over the period Jan 2001 —
March 2003. From Table 1.1 it 1s clear that, despite the much higher systematic
component in the index returns, the factor model used 1s unable to accurately replicate
the returns on the above indices. As to judge from the correlation between the index
return and the replicating return, the best results are obtained for long/short equity and
event driven. Given the straightforward nature of these strategies, this 1s not really
surprising. More complex strategies, like fixed mcome and convertible arbitrage, do a

lot worse, however.

Index Replica
Strategy Mean | StDev Mean StDev Corr. index and replica
Composite -2.97% | 3.35% -1.07% | 7.92% 43%
Fixed Income | 7.87% [2.96% |[2.89% |2.58% |16%
Long/Short | -0.98% |3.83% [-9.99% |7.13% |46%

Event Driven 267% | 479% |-634% |697% |90%

Convertible Atb | 828% |1.82% |1.88% |1.54% |17%

Table 1.1: European hedge fund index return replication. Source: Schneeweis et al.
(2003, Exhibit 2a-21).

It 1s ijmportant to note that a high correlation between index return and replicating return
does not guarantee that the replicating and index returns exhibit similar statistical
properties. Looking at the standard deviations for event driven in Table 1.1, we see that,
despite the 90% correlation, the standard deviation of the replicating returns is 46%
higher than that of the index return. Obviously, this could cause major problems in
portfolio risk management where the replica will typically be assumed to have

properties similar to the target.

The Schneeweis et al. (2003) results are not unique. Table 1.2 shows to what extent the
factor model used m Jaeger and Wagner (2005) was able to explain the variation in the
well-known HFRI indices over the period Jan 1994 — Dec 2004. The message we get

from table 1.2 is not different from what we saw before in table 1.1. Relatively
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straightforward strategies, like long/short equity, score quite well, but more complex

strategies, like managed futures and equity market neutral, come out a lot worse.

HFRI Index Variation Explained
Managed Futures 34.3%
Equity Market Neutral 35.3%
Fixed Income Arbitrage | 40.5%

Global Macro 49.7%
Merger Arbitrage 52.9%
Convertible Arbitrage | 54.0%
Distressed 68.4% )
Longm 88.5%

Table 1.2: Percentage of HFRI return variation explained. Source: Jaeger and
Wagner (2005, Table 1).

Given the failure of factor models, one could say that by trying to replicate hedge funds’
month-to-month returns we are aiming too high. When an investor likes a hedge fund’s
returns, it is because of its statistical properties, such as mean, standard deviation,
skewness and correlation with other asset classes. This implies that we do not
necessarily have to replicate a fund’s month-to-month returns. For most applications it
will be enough if we can generate returns with the same statistical properties as the

returns generated by the fund.

So far there has only been one study, which tollowed the above route. Based on the
early theoretical work of Glosten and Jagannathan (1994) and Dybvig (1988a, 1988b),
and primarily aimed at evaluating hedge fund performance, Amin and Kat (2003b)
developed mechanical trading strategies, trading the S&P 500 and cash, which aimed to
generate returns with the same marginal distribution as the returns of a given hedge
fund. This innovative idea was an mnportant step forwards from the factor model

approach. A briefly review of such an univariate replication is provided in Section 2.2.

24



A new replication technique 1s introduced i Chapter 2. This technique extends the
work of Amin and Kat (2003b) and aims to replicate not only the marginal retum
distribution of a given hedge fund of hedge fund index, but also its dependence with the
investor’s existing portfolio. The evaluation procedure explicitly takes transaction costs
into account by, instead of a Black-Scholes type option pricing model, using the Boyle
and Lin (1997) model. In factor model based evaluations, transaction costs are typically
ignored, despite the fact that maintaining the replicating portfolio’s factor loadings at
their desired levels 1s likely to require significant periodic rebalancing. In addition,
when dealing with hedge funds the risk factors used may be quite unusual and may

therefore be accompanied by significant levels of transaction costs.

The replication-based evaluation also takes account of the fund’s dependence pattern
with other asset classes. According to theory as well as casual empirical observation,
expected return and systematic co-variance, co-skewness and co-kurtosis are directly
related. In other words, it is not just the marginal distribution, but its dependence
structure with other assets that determines an asset’s expected return. An asset, which 1s
highly correlated with stocks and bonds, offers investors very little in terms of
diversification potential. As a consequence, there will be little demand for this asset. Its
price will be low and its expected return therefore relatively high. On the other hand, an
asset that offers substantial diversification potential will be m high demand. Its price
will be high and its expected return relatively low. Although hedge funds are not priced
by market forces in the same way as primitive assets are, they do operate in the latter
markets. It therefore seems plausible that a similar phenomenon is present in hedge fund

returns as well. This is confirmed by the results in Kat and Miffre (2006).

In Chapters 2, 3 and 5, the return series used in the replication procedure are not the
hedge funds’ raw returns. The reason is that, as shown i Brooks and Kat (2002) and Lo
et al. (2004) for example, monthly hedge fund returns may exhibit high levels of
autocorrelation. This primarily results from the fact that many hedge funds mvest in
1lliquid securities, which are hard to mark to market. When confronted with this
problem, hedge fund administrators will either use the last reported transaction price or

a conservative estimate of the current market price. This creates artificial lags in the
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evolution of hedge funds’ net asset values, i.e. artificial smoothing of the reported

returns. As a result, estimates of volatility, for example, will be biased downwards.

One possible method to correct for the above bias 1s found in the real estate finance
literature. Due to smoothing in appraisals and infrequent valuations of properties, the
returns of direct property investment indices suffer from similar problems as hedge fund
returns. The approach employed in this literature has been to “unsmooth” the observed
returns to create a new set of returns which are more volatile and whose characteristics
are believed to more accurately capture the characteristics of the underlying property
values. Nowadays, there are several unsmoothing methodologies available. Throughout

this thesis the method originally proposed by Geltner 1s used (1991).

In the evaluation procedure in Chapter 3 the sample contains live and dead funds. The
reason for that is to minimize survivorship bias. Survivorship bias occurs if the database
only contains information on “surviving funds”. Ibbotson and Chen (2006) estimate
survivorship bias in average returns to be 2.75% per year. In addition, Amin and Kat
(2003a) mention that survivorship bias generates a downward bias in the standard
deviation, and upward bias in the skewness and a downward bias in the kurtosis. Other
studies attempting to quantify the degree and impact of survivorship bias are Brown et
al (1992), Schneeweis and Spurgin (1996), Goetzmann and Park (1997), Fung and
Hsieh (1997, 2000), Brown et al (1997), Hendrick et al (1997), Brown et al (1999),
Ca;penter and Lynch (1999), Liang (2000), Horst et al (2001) and Baquero et al (2004).
Although estimates vary due to the use of different databases and different definitions of
survivorship bias, these studies suggest that when left uncorrected survivorship bias

inflates average hedge fund returns by 2-3%.
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2. Replication of Hedge Funds’

2.1 Theoretical Setting

In principle, a given payott distribution can be generated by many different payoff
functions. Different payoff functions come with different price tags, however. We
therefore need to know more about the general characteristics of the cheapest

alternative. This 1s where Dybvig’s (1988a) Payoft Distribution Pricing Model (PDPM)

comes in. The PDPM can be derived from a simple set of primitive assumptions:

1) Investors’ preferences depend only on the probability distribution of
terminal, 1.e. end-of-horizon, wealth.

2) Perfect capital markets (no taxes, transaction costs or information
asymmetries).

3) Investors prefer more to less.

This set of assumptions allows investors’ preferences to depend on all moments of the

distribution of terminal wealth.

Suppose there are n possible states of the world. The state price of state i is the price of
an elementary security which pays $1 if state i occurs and 0 otherwise. The state-price
density i1s defined as the price per unit of probability of terminal wealth in a particular
state, and 1s given by the ratio of the state price and the probability of occurrence of that

state.

Consider, for example, a simple example with three equally probable states, with

e s 1 g s
probabilities denoted as 7z, = 7, = 7, = —. Suppose that an individual has to choose one

3
of the following payoff vectors for consumption attime 1 : ¢; = (1, 2, 2), c2 = (2, 1, 2)
and ¢; = (2, 2, 1). These three consumption patterns have the same distribution of

consumption, giving consumption of 1 with probability 1/3 and consumption of 2 with

? The material in this chapter appeared as Alternative Investment Research Center WP 27, Cass Business School.
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probability 2/3. Therefore, an agent with von Neumann-Morgenstern preferences would
find all these consumption vectors equally attractive. However they do not cost all the
same unless the state price density (and in this example, the state price) is the same in

all states'®.

Dybvig (1988a) shows that the cheapest way to obtain a given payoff distribution is to
allocate terminal wealth as a decreasing function of the state-price density. The cheapest
price to obtain this payoff is called payoff distributional price. In Dybvig (1988b), the
author applies this result, assuming a binomial tree model for the underlying index, and
shows that for a payoff function to be efficient it should allocate terminal wealth as a
non-decreasing function of the final value of the underlying index."' Intuitively, this is a
plausible result as it implies that payoff and index will be positively correlated, which,
when it comes to actually generating the payoff, will serve to keep the required

rebalancing trades down.

We now propose a more general set of assumptions. Suppose that apart from being
concerned about the termunal wealth obtained from some new investment opportunity,
investors are also concerned about the dependence between this investment and their

existing portfolio. This means replacing assumption 1 by:

1) Investors’ preferences depend only on the joint probability distribution of

terminal wealth derived from the mmvestment and their existing portfolio.

Equivalently, since the distribution of the investor’s existing portfolio will be given, we

can say that:

1) Investors’ preferences depend only on the probability distribution of terminal
wealth derived from the investment conditional on the distribution of terminal

wealth derived from their existing portfolio.

The non-satiation and perfect capital markets assumptions remain unchanged. Given

this new set of assumptions, it 1s possible to derive an allocation rule for the cheapest

' Extracted from Dybvig and Ross (2003).

'! Proof can also be found in Appendix A.1.
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payoff function similar to the univariate case'®. This time, however, the rule depends on
the value of the mvestor’s existing portfolio, which makes it a little more awkward to

imcorporate 1n the replication procedure. We will return to this issue in Section 2.3.

Another mmportant paper in this context is Cox and Leland (2000). The latter show that
in a Black-Scholes (1973) world all path-dependent payoff functions are inefficient
because they generate payoff distributions that can also be obtained with a path-
independent payoff function, but at lower costs. Our replicating payoffs will therefore
not only have to allocate terminal wealth in a specific manner, but always be path-

independent as well.

2.2 Univariate Replication

In this section the univariate replication proposed by Amin and Kat (2003b) is
briefly reviewed.

When buying a fund participation, an investor acquires a claim to a particular payoff
distribution. Therefore to evaluate the performance of a fund, one can compare the cost
of the direct mvestment in this fund with the costing of replicating it.

The first step of their approach is finding the payoff function which maps a
benchmark portfolio return distribution into the fund distribution. Not any payoff
function should be considered, but the cheapest one.

In other words, what is wanted is the cheapest (path-independent) payoff function

f * that replicates the end-of-month payoff S; of the investment or strategy, using a

benchmark index or portfolio, which has end-of-month payoff Sp, i.e.,
P(f*($p)<x)=P(S,<x),VxeR (1)
Instead of working with the end-of-month payoff, the function can be written in

terms of log-returns (from a monthly initial investment of 100). This is interesting

because it makes the statistical modelling procedure easier. The log-returns are denoted

by X, = log(-l%%} X, = log(l—SO’—O-] and the rescaled function by
f *(100exp(x))
) =log| ———— :
J(x) g[ 100 )

*2 Proof is provided in Appendix A.2.
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The problem can be then restated as:
P(f(Xp)<x)=P(X,<x)=F,(x), VxeR (2)
The result in Dyvbig(1988a) implies that the cheapest function which satisfies (2)

should be a non-decreasing function. It should be then given by:

f(x)=F 7 (Fp(x)), Vxe R (3)

It 1s straightforward to prove that (2) holds:

P(f(X,)<x)=P(F (Fp(Xp)) <£x)=P(F(U) < x),

We know that U ~ Uniform]0,1], since Fp is continuous. This is the well-known
probability integral transformation. We also know by the same reason that W = F, " (U)
has probability distribution F,. So P(F I"l (U)<£x)=P(X, £x) and the result holds.

Everything can be rewritten i terms of end-of-month payoff now. The end-of-
month replicated values from a monthly initial investment of 00 will be

\)

S, =100exp f(X,)= f*(S,), where f*(s)=100exp f [log(mj] . ¢ will theoretically

have the same distribution as the original investment end-of-month payoff. S;.

For example, simulating 500 observations from a Normal(0.01 ; 0.0152) distribution

for Xpand 500 observations from a Johnson-SU(E = 0, A = 0.015, vy = 1.0, § = 1.658) for

X1, we can see i Figure 2 the function f* and the originai and replicated end-of-month

payoff histograms. As it was expect, f* 1s a non-decreasing function.

Cheapest payoff function f [nyestment end-ctmonth payoff  Replicated end-of-month-payoff
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Figure 2.1. Cheapest payoff function and histogram of original and replicated
payofls for simulated data.

After finding the function f* it can be priced, following Harrison and Kreps (1979),
as the discounted risk neutral expected payoff. This can be done by two well-known
approaches in derivatives pricing: Monte Carlo simulation or Binomial tree. This

technology 1s widely used to price options in real world applications.
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Amin and Kat (2003b) considered as their benchmark portfolio the S&P500 index,
assuming a normal distribution for its returns. They used the empirical distribution to
model the funds returns. They applied the replication method to evaluate 77 individual
hedge funds and 13 hedge fund indices over the period May-1990 to April-2000. They
found 12 hedge fund indices and 72 individual funds to be inefficient, in the sense that
they could be replicated at a cheaper price.

One critique of the Amin and Kat (2003b) approach is that due to their use of the
S&P 500 index as the only risky asset, their replicas are all highly correlated with the
US stock market. It can be clearly seen 1 Figure 2.1, for simulated data, that the replica
1s highly correlated with the benchmark portfolio. Therefore when comparing the
original fund with the replica, the level of diversification provided by both series is very
different. Given that hedge funds are nowadays primarily sold on the basis of their
diversification benefits, replicating only their marginal distribution 1s not sufficient.

Also, sice their work focuses only in evaluation of hedge funds, they only applied
their method mm-sample. The out-of-sample performance of their technique was not
examined.

These two issues are addressed 1n this thesis. The next section of this chapter will
extend their work for the bivariate case. Therefore the investor can compare the original
fund and the replica not only on the basis of their marginal distribution, but also on the
basis of the diversification benefit provided by both. Throughout the thesis the out-of-

sample performance of this bivariate replication technique will be studied for individual

funds and hedge fund indices.

2.3 Determination of the Replication Strategy

The replication procedure consists of a number of distinct steps. First, we collect return
data on the fund to be replicated, the investor’s portfolio, and the reserve asset (see
Appendix A.2). Second, we analyse the data to infer the joint distribution of the fund
return and the investor’s portfolio return. We refer to this as the ‘desired distribution’.
We do the same for the joint distribution of the investor’s portfolio return and the return
on the reserve asset, which we refer to as the ‘building block distribution’. Third, we

determine the cheapest payoff function, which tumns the building block distribution into
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the desired distribution. Fourth, we price the latter payoff function. Fifth, we derive the
required allocations to the nvestor’s portfolio and the reserve asset from the resulting

value function.

In this section we discuss the above steps in more detail. Before we do so, however, we
provide a brief mtroduction to copulas and their use in multivariate dependence
modelling. As will become clear, copulas are a crucial ingredient in the replication
procedure as they allow us to easily capture a large variety of non-normal dependence

structures.

2.3.1 Copulas

Recent research m finance has uncovered various deviations from not only univariate,
but also multivariate normality"’. One powerful and at the same time convenient way to
model this 1s by the use of copulas, as it allows the decomposition of any n-dimensional
joint distribution into n marginal distributions and a single copula function'®. Assume a
random vector of two random variables. A bivariate copula can then be defined as

follows.

Definition 1: The copula C of the random vector (X,Y) is the joint distribution of the
random vector (U, V), where U = Fx(X) and V = F({Y), and where Fx, Fy, are the

distribution functions of X and Y respectively.

The above definition implies that:

Fyy(x,)=C(Fx (X), F, (), Vxe R, ye R, 4

where Fxy is the joint distribution of the random vector (X,Y). Intuitively, the copula
function divides the characteristics of the joint distribution between the marginal

distributions, which contain the univariate characteristics of each random variable, and

'} Longin and Solnik (2001) for example find clear evidence of asymmetric dependence in international equity markets. A similar

conclusion can be found in Ang and Chen (2002) with respect to US stocks,
'* Copulas have been widely used in the statistical literature. Joe (1997) and Nelsen (1999) provide a good introduction. Cherubini

et al. (2004) discuss copulas in a finance context.

32



the copula, which contains all information concerning the dependence between these

random variables.

Next, we present a key result in copula theory". Let R =R {—eo,e0} denote the

extended real line.

Sklar’s Theorem: Let Fxy be a 2-dimensional joint distribution function with marginal

distributions Fx, and Fy. Then there exists a copula C such that for all (x,y) in

R? Fyy(x,y)=C(Fy(x),Fy(y)). If Fx and Fy are continuous then C is unique;

otherwise, C is uniquely determined on Ran(Fx) X Ran(Fy). Conversely, if C is a copula

and Fx, Fy are distribution functions, then the function Fxy defined by (4) is a joint

distribution with margins Fy, Fy.

From a multivariate financial modelling perspective, it 1s the converse of Sklar’s
Theorem that i1s most interesting, as it implies that any combination of two univariate
distributions and a copula defines a valid bivariate distribution. This solves the problem
that in statistics, although we do have a large set of flexible parametric univariate

distributions available, the set of parametric multivariate distributions is quite limited.

2.3.2 Estimation of the Desired and Building Block Distributions

In the replication procedure we allow three different marginal distributions (Normal,

Student-t and Johnson SU)'® and six different bivariate copulas. The first two copulas
are part of the class of elliptical copulas, since they are derived from elliptical
distributions. The normal copula is extracted from the bivariate normal distribution. If
we combine the bivariate normal copula with two normal marginal distributions, we end
up with the bivariate normal distribution. However, if either one or both marginal
distributions are non-normal, then the joint distribution produced will be a completely
different distribution. The Student-t copula, which i1s extracted from the bivariate
Student-t distribution, is also an elliptical copula, but it differs from the normal copula

in that it allows for some extreme dependence in the lower and upper tails. Since the

' Proof of this theorem can be found in Nelsen (1999, p. 18).
16 See Johnson (1949, 1965) for details on the Su distribution.
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Student-t copula 1s symmetric, however, this dependence must be the same for both

tails.

The next three families of copulas, Gumbel, Cook-Johnson and Frank, are part of the
Archimedean copulas class, a rich class of copulas that allows for very different types of
dependence. The Gumbel copula 1s asymmetric. It has more dependence in the upper
tail than in the lower tail. The Cook-Johnson copula, also known as the Clayton copula,
is also asymmetric, but with more dependence in the lower tail than in the upper tail. As
shown by Longin and Solnik (2001) and Ang and Chen (2002), this is quite common
behaviour in equity market returns. The Frank copula implies the same dependence
between positive returns as between negative returns. Like the Normal and Student-t
copulas, it allows for positive and negative dependence. The sixth and final copula is
the symmetrised Joe-Clayton (SJC) copula, proposed by Patton (2006a). It is the most
flexible of the copulas discussed here. It has two parameters, which separately control
the dependence in the lower and upper tail. As a result, this copula can fit data with very

different patterns of dependence in the tails.

‘NHermal copula {P =10.7} __ :15(ud_'e_iit-t_i_:;:ypuln_ (P=0.1,v=231.9) o Gumbel copula 1a=1.3)

Figure 2.2. Random drawings from various copulas, assuming standard normal
marginals and a linear correlation coefficient of 0.7.

Figure 2.2 shows 500 simulated drawings from six bivariate joint distributions. In all
cases, the marginal distributions are standard normal and the linear correlation is 0.7.
Despite this, the plots show six different patterns of dependence, underlining the impact

and different characteristics of each of the six copula families. Only in the bivariate
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normal case is the linear correlation coefficient sufficient to fully describe the observed

17
dependence structure .

The estimation method that we use i1s known as the Inference Functions for Margins
(IFM) method™. It is a two-step maximum likelihood method. Let (X,Y) be a vector of
two random variables with joint distribution function Fxy and marginal distribution
functions Fx and Fy respectively. The marginal distribution Fy depends only on the set

of parameters Oy and the same for Fy and ©Oy. Let O¢ be the vector of parameters of the

bi-dimensional copula C. So the unknown vector of parameters i1s given by © = (O, Oy,
Oc¢). We know from Defmition 1 that F,,(x,y;0)=C(F;(x;0,), F,(y;0,);©,). So

the joint distribution Fxy 1s completely specified by the vector of parameters ©.

Differentiating with respect to both variables, we have
oC(u,v) . .
for (X, y) =c(F, (X), Fy, (x)) f, (X) fy (¥), where ¢(u,v) = s is the copula density.
Hav

For a bivariate random sample of size T {(xl.,yl.)}il, the log-likelihood function is

therefore given by:

T T T
I(©) = EIHC(FX (%39 ) Fy (3,304 );:0¢) + Elnfx (x:;@x)'*‘zlnfy()’:;ey) ;
=] r=1 1=1

Estimating all parameters at the same time would be very cumbersome and time-
consuming. We therefore do so in two consecutive steps. First, we estimate the marginal

set of parameters Ox and Oy (separately) by maximum likelihood. Subsequently, we

create the series if, = F, (x,;(:) ») and v = F,( y,;(:)y) and estimate ©¢ by maximum

T
likelihood using the likelihood function (O, ) = 2111 c(it;;v,;9.).
1=1

With three possible candidates for the marginal distribution and six for the copula, we

have 54 possible joint distributions to choose from. To select the final model, we use the

'7 Kat (2003) discussed this point in a hedge fund context.
1% See Xu (1996) and Patton (2006b) for details on the statistical properties of this method.
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Akaike information criterion (AIC)"”. We considered some other selection criteria as
well, including the quadratic distance between the estimated copula and the empirical

copula for example. The advantage of the AIC, however, is that it penalises models with

a large number of parameters.

The copulas functions and marginal distributions used are listed in Appendix A.3.
2.3.3 Determination of the Desired Payoff Function

Having selected the desired and building block distributions, the next step is to
determine the cheapest payoff function, which turns one into the other. ‘Cheapest’
means that we want the payoff function of the lowest possible price which generates the

desired conditional distribution . In probabilistic terms, we want the cheapest function

g * such that:
P(Sp=x,8%(5p,0) S y)=P(Sp=x,5,=y), Vx,y, ' (5)

with §; denoting the end-of-month payoff of the fund, Spthe end-of-month payoff of the

investor’s portfolio, and S the end-of-month payoff of the reserve asset.

We start by assuming the current value of all assets is equal to 100. Rescaling to log-

returns, this means looking for the cheapest function

*
o (x, y) = log| £ L00eXP(0), 109exp(¥)) | o ) that:
100 |
P(Xpsx,8(Xp, Xg)sy)=P(Xpsx,X,2y)=F,(x,y), Vx,y, (6)
with X, =1o —Si— X,=1lo ﬁ- and X, =1lo S—R Or equivalently, the
1= 8 700 )" 7 T8 100 | R =08 700 | T )

cheapest function g such that:

19 See Akaike (1973) for details.
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P(g(Xp, Xp) < y| Xp=x)=P(X, Sylxpzx)=E|P()’lx): VX, y (7)

Now we use the extension of Dybvig model provided in Appendix A.2, considering Sp

and Sy as the underlying indices.

From Appendix A.2., we know that the cheapest payoff function depends on the
conditioning value x. As a result, the bivariate function g¢ may not be a ‘smooth’
function, i.e. the derivatives of this function will ‘jump’ around the line x=x,,;,, making
the execution of the replication strategy derived from the payoff function quite
awkward. From Appendix A.2. we find that the desired payott function should only be a

non-decreasing function of the reserve asset if

Mg —T S _fuP_x (8)
OR Op |

for Vo e [—1,1] and where r denotes the risk-free mterest rate. The expression on the left

1s nothing more than the Sharpe ratio of the reserve asset. From (8) it therefore follows
that as long as the Sharpe ratio of the reserve asset 1s high enough and the correlation
with the investor’s portfolio low enough, the desired payoff function should be a non-

decreasing function of the reserve asset.

Assuming the reserve asset satisfies the above condition®, the function g in expression

(7) is given by:
g(x,y) = FI;‘(FRlP_(y | X)| x), Vye R )

where F,‘l}l,(y|x) denotes the pseudo-inverse of F”P(y|x). This 1s a composed

function, with two non-decreasing components. The composition is therefore also non-

decreasing, as required.

Next, we have to prove that (7) holds:

20 Extensive simulations showed that, under reasonable assumptions, this does not introduce any significant error if not true for

some values of x.
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P(g(Xp Xp)Sy|Xp=x)=P(g(x,Xp)<y| X, =x)=
P(Fip(Fyge (X | 9 [0Sy | Xp = x) = PFRpU |9 < [ X =), (10)

where U ~ Uniform[0,1] by the probability integral transformation. Then, by the same

reasoning, F ,ﬁ, (U | x) has the same distribution as X7 given Xp = x, so we finally have:
P(FppU|x)Ly|Xp=0)=P(X,; S y|X; =2)=Fp(y] %), (11)

and (7) holds as required.

In order to obtain the function g, we need to model the conditional distributions Fp and
Frp. Let Cpy denote the copula between Xp and X; and let Cpr denote the copula

between Xp and X. Then from (4) we have:

Fo ,(%,)=Cp,(Fp(x),F;(¥),xe R, ye NR. (12)

FP.R(x!y):'CP,R(FP(x)aFR(y)):xEgiayeER' (13)

We can write the conditional distributions Fpp and Fgp as:

oC, , (1, v)
FI]P(y \ X) = Kf‘l (y),xe R, ye R, where Kf'I (y) = '_“""'—"'—Pgu u=F, (x)v=F; ()
- - 9C, , (u,v)
Fep(] %) =x5(y),xe R,ye R, wherek, " () = T o |ueR R -

So the cheapest function g in expression (9) can be rewritten as:
g(x,y) = &P (PR () ) xe R, ye R (14)

We can now rewrite everything in terms of the end-of-month payoff to obtain the
desired payoff function. The end-of-month replicated values from a monthly initial

mvestment of 100 will be equal to:
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) )
S, = g %*(5p,5,) =100exp g| logl == |log| —=-||. 15
g = 8 *(Sp,Sz) PS( 2[100} 8(100)) (15)
Theoretically, the vector (Sp, S,) will have the same joint distribution as the vector (Sp,

S1), meaning that, as intended, we are not only replicating the end-of-month payoff of

the fund, but also its dependence with the investor’s existing portfolio.
2.3.4 Pricing and Generating the Desired Payoff Function

Having determined the desired payoff function, the next step i1s to price it. This is of
course not a new problem. It 1s what arbitrage-based option pricing theory has
concentrated on for the last 35 years. Following Harrison and Kreps (1979), the desired
payoff function can be priced by calculating the discounted risk neutral expected payoff.
Using the notation in the previous subsections, we would have the price ¥ of function
g* given by:

]
L4 =?EQ[8 “(Spyror)l;

where Q denotes de risk-neutral expectation, hence supposing that

A
[XPJ___N 22 | Op Opg

2
Ok Opr  Op

r'_-.-.-.—.

2

In the absence of transaction costs, the two most obvious methods to do so would be

either bivariate Monte Carlo simulation or a trinomial tree?!.

But transaction costs need to be considered, otherwise it would be an unfair comparison
between the replica and the original fund. Therefore we use the multivariate option
pricing model of Boyle and Lin (1997). Their model examines the incorporation of
transaction costs when there 1s more than one risk asset and it is costly to trade in each
risk asset. A discrete time framework is used and the problem of option valuation if
reformulated as a linear programming problem. The price of the payoff function will be

called ‘KP measure’. In Subsection 2.3.3 we assumed an initial investment of 100, so a

2! See Jaeckel (2002) or Glasserman (2003) for an introduction to Monte Carlo methods. Details on the trinomial tree approach can
be found in He (1990).
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KP measure less than 100 would mean that the replication strategy is cheaper than the

payoff fund, and the other way around if KP is greater than 100.

Once we are able to price the desired payoff function, we can work out the controls of
the dynamic trading strategy generating it by straightforward partial differentiation of
the value function. In computational terms, we work backwards on the trinomial tree
and estimate the delta using the values of the payoff function g* and the vector (Sp, Sy)

in the three states of the first step of the tree.

Only after pricing the payoff function we know what the expected return on the
replicating strategy will be. The desired payoff function explicitly aims to replicate all
aspects of the desired distribution, except the fund’s expected return. The latter follows
from the expected return on the investor’s portfolio and the reserve asset, the desired
payott function, and the pricing environment for the latter, i.e. interest rates, expected
dividends, volatilities, etc. In other words, 1t 1s the capital market that sets the expected

return on the replicating strategy.

In Appendix A.4 the mfluence of the moments of the reserve asset distribution and its
correlation with the reference portfolio on the KP measure is examined. The conclusion
is that we want the highest possible risk premium and the smallest possible volatility for
the reserve asset, as one would expect. The ifluence of the correlation between the

reserve asset and the reference portfolio 1s not so simple.

2.4 Simulation Analysis

Given the desired and building block distributions, the above results allow us to derive,
price and generate the cheapest payoff function that turns one imto the other. The
procedure 1s exact, so by itself it does not require any testing. Taking this procedure into
the real world and using it to replicate fund returns, however, we are confronted with a
number of problems. First, we do not know the true population distribution. The best we
can do 1s estimating it from a small data sample. Second, the latter distribution may not

be stationary over time. Third, due to market imperfections and insufficient information
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on the underlying price processes, we may not always be able to exactly generate the

desired payoff function.

In this section, we use simulation methods to study the error resulting from determining
the desired payoff function from a relatively small sample, instead of from the
population distribution. In these simulations, we assume that the population distribution
1s stationary and that it is possible to generate the desired payoff function without any
error. In the next section we perform a number of out-of-sample tests on real-life data to
also include the error contributions of non-stationarity and sub-optimal dynamic trading.
In the simulations, we study two different cases, selected to capture different
distributional conditions. Throughout, we assume that the returns on the investor’s
portfolio and the reserve asset are both normally distributed with the parameter values
given below. In addition, we assume they are related through a Gaussian copula with a

correlation coefficient of 0.3.

Investor’s portiolio

Log-returns - Xp ~ N ( 0.01, 0.043301%)
Mean = 12% p.a.

Volatility = 15% p.a.

Reserve asset
Log-returns — Xg ~ N ( 0.00833 , 0.028867°)

Mean = 10% p.a.
Volatility = 10% p.a.

2.4.1 Gaussian Fund Marginal, Higher Dependence in the Lower Tail.

Our first case assumes that the fund return is normally distributed, but that the
relationship with the investor’s portfolio is such that there 1s more dependence in the
lower than in the upper tail. This could be the risk profile of a fund of funds with a bias
towards risk arbitrage for example. The marginal distribution of the fund return and the

relevant copula are specified as follows:
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Fund

Log-returns — X; ~ N ( 0.015 , 0.057735%)

Mean = 18% p.a.

Volatility = 20% p.a.

Copula (investor’s portfolio, fund) = SJC (0.75, 0.10)

Replicated payoff

Invester's portfollo.
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Figure 2.3. Contour plot payoll function from population distribution case 1.
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Figure 2.4. 3D plot payoff function from population distribution case 1.

Give the desrred and building block distributions, we derived the desired payoff
function using the results of Section 2.3. Figure 2.3 and 2.4 depict the latter
graphically, as a contour plot as well as a 3D graph. From the graphs we see that the
desired payoff 1s an increasing function of the reserve asset (by construction) as well as
the mvestor’s portifolio. The strategy’s controls will therefore tell us to hold long
positions in both assets. As is especially clear from the contour plot, the payoff function
1s quite curved. This of course serves to generate the required difference in dependence

between the upper and lower tail.

To gai insight into the potential error when deriving the desired payoff function from
only a small sample, instead of the population distribution, we took a sample of size N
and derived a payoff function from it. Subsequently, we took 2000 observations from
the building block distribution, and fed these observations through the latter payoff
function to produce a joint distribution of replicated payoffs and the investor’s portfolio.
From the latter distribution we calculated the mean, standard deviation, skewness, and
kurtosis of the replicated payoft as well as its correlation with the investor’s portfolio.

The above procedure was repeated 100 times, for different values of N (= 24, 48, 72, 96,
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120, 240). Across each set of 100 runs, we subsequently calculated the mean, standard
deviation and skewness of the replication errors, 1.e. the differences between the above

sample statistics and the true fund parameters. The results can be found in Table 2.1.

Mean St. Dev |Skewness| Excess | Corr. with

_ Kurtosis | Portfolio

Fund 1101.6805 | 5.8267 | 0.0000
Differences (replicated - fund)

Avg 24 -0.0315 | 0.0416 0.0952
Avg 48 0.1010 | -0.0090 0.0835
Avg 72 0.1390 | 0.0689 | 0.0052 | 0.0843 -0.0020
Avg 96 0.0151 | 0.0114 | 0.0187 | 0.0781 | -0.0148
Avg 120 0.0142 | -0.0079 | 0.0038 | 0.0935 | -0.0011
Avg 240 | -0.0209 | -0.0118 | 0.0053 | 0.0595 | 0.0015
SD 24 1.0386 | 1.0253 | 0.2052 | 0.4181 0.1234
SD 48 0.8287 | 0.6701 | 0.1206 | 0.1641 0.0933
SD 72 0.5975 | 0.5496 | 0.1099 | 0.1613 0.0726
SD 96 0.5620 | 0.1299 | 0.1712 | o0.0656
0.4733 | 0.4794 m 0.1437 0.0576
SD 240 0.3352 | 0.2918 | 0.0884 0.0402
SK 24 0.3765 | -0.0241 | 0.9582 m
!SK 48 0.3071 | 0.6894 | 0.3059 -0.8320
ISK 72 -0.2267 | -0.3145 -0.5869
ISK 96 -0.0114 | 0.2892 0.4813 -0.7360
!SK 120 | -0.0748 | 0.4211 0.1810 -0.3530
SK 240 | -0.0991 | 0.3519 .0.0260 | -0.4008

Table 2.1. Variation due to payoll construction from small sample case 1.

To be able to properly interpret the entries in the table, the first row in Table 2.1 shows
the mean, standard deviation, skewness, kurtosis and correlation of the fund payoff, as
implied by the assumed fund return distribution. The rows that follow show, for various
sample sizes N (= 24, .., 240) and each over 100 runs, the average (Avg), standard
deviation (SD) and skewness (SK) of the replication errors. Table 2.1 confirms that the
larger the sample, the more accurate the desired payoff function will be. It also shows
that even with a relatively small sample the procedure still works quite well and is

unbiased. For all parameters and sample sizes, the average error is statistically

insignificant at 5% (-1.96 SD, + 1.96 SD).
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2.4.2 Negatively Skewed Fund Marginal, Gaussian Copula

Our second case 1s somewhat more extreme. It assumes that the fund return exhibits a
high degree of negative skewness. To make up for that, however, it also has a relatively
high mean and low correlation with the mvestor’s porttfolio. With a little imagination,
this could be the risk profile of a fixed mncome arbitrage fund for example. The marginal

distribution of the fund return and the relevant copula are specified as follows:

Fund

Log-returns — X1 ~ Johnson-SU (0.058604, 0.046978, 0.926426, 1.390468)
Mean = 18% p.a.

Volatility = 20% p.a.

Skewness = -2.0

Excess kurtosis = 10

Copula (investor’s portfolio, fund) = Gaussian (0.2).
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Figure 2.5. Contour plot payoff function from population distribution case 2.
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Figure 2.6. 3D plot payoff function from population distribution case 2.

From the above population distributions we again derived the desired payoff function,

which 1s graphically depicted in Figure 2.5 and 2.6. As required, the payoff is a positive

function of the reserve asset. However, since the assumed correlation between the fund

and the investor’s portfolio is lower than the assumed correlation between the investor’s

portfolio and the reserve asset, the payoff 1s a negative function of the investor’s

portfolio. The strategy’s controls will therefore want us to g0 long in the reserve asset,

but short in the investor’s portfolio. The slope of the payoff function increases as the

investor’s portfolio rises and the reserve asset drops, which serves to generate the

required negative skewness.
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Mean St. Dev |{Skewness| Excess | Corr. with
_ Kurtosis | Portfolio

Fund 101.6805 | 5.8604 | -1.9851 | 9.8511 0.2000

~_____ Difterences (replicated - fund)
Avg24 | -0.0798 | o0.3568 -0.0454
Avgd48 | 0.0221 | 0.5960 45453 | -0.0341
Avg72 | -0.1577 | o0.3589 0.0450
Avg 96 -0.0201 | 0.1341 -1.9950 | -0.0152

o 120
Ave 240
D 24
D 48

0.0300
-0.0762
1.6094

0.0985 1.6140 | 0.0090
0.1846 | 0.5238 | -1.0256 | 0.0086
19.8187 | 0.2882

1.7192 | 41.6658 | 0.2205

0.6218 | 2.9127 | 0.1374
1.1864 | 0.6591 | 3.5340 | 0.1385

0.9344 | 0.5907 | 2.7828 | 0.1136
0.7366 | 0.6266 | 4.4289 | 0.0812 ‘
0.9298 | 3.9961 | 8.2333 | -0.1064
0.5893 | 5.6316 | 8.5348 | 0.1809

0.6589 | 0.1550 | -0.2631 | -0.0549
0.7394 | 0.9729 | 4.0508 | -0.4042

0.4989 0.0159 0.2908 -0.1725

Avg 240

0.8821

SK240 | 00587 | 06556 | 1.0541 | 5.0328 | 0.0376 |

Table 2.2. Variation due to payoff construction from small sample case 2.

To gain insight into the potential error from deriving the desired payoff function from a
small sample in this particular case, we repeated the procedure used earlier in case 1.
The results can be found in Table 2.2. Not unexpectedly, given the much more extreme
distributional assumptions, we see quite some variation for small sample sizes.
Especially the replication of the assumed —2.0 skewness meets with some difficulty.
Since, by definition, tail events only occur infrequently, many smaller samples will not
contain enough mmformation to estimate skewness accurately. This is reflected by the

strong positive skew of the error distribution for small V.

The above two case studies suggest that, depending on the distributions involved, the
error from working with a small sample may sometimes be quite substantial. It is
important to note though, that when applying the procedure in practice, one will
typically re-estimate the payoff function periodically as new fund return data becomes

available. Through time therefore, these errors may diversify away to some extent.
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2.5 Out-of-Sample Tests

We proceed with some out-of-sample tests. The out-of-sample tests that follow are all
structured in the same way. Given a fund, we take the first 24 months of its track record
as given, assuming we do not know anything about what is to come. If a fund’s track
record starts in January 1985 for example, we assume to be living on January 1%, 1987.
Subsequently, we determine the desired payoff function from the available 24 monthly
returns, calculate the accompanying strategy controls and set up the required positions.
During the month, we adjust our portfolio on a daily basis, driven by the daily changes
in the underlying index values. At the beginning of the next month, we include the
hedge fund return over the previous month in our dataset and repeat the whole
procedure, now using 25 monthly returns instead of 24*%. The above is repeated until we

arrive at the end of the series.

Throughout we assume the investor’s portfolio consists of 50% US equity, in the form
of the S&P 500 tracking portfolio, and 50% long-dated US Treasury bonds. We use
nearby Eurodollar futures as the reserve asset”. To minimize transaction costs, all
trading is done in the futures markets®*. Throughout, we trade the nearby futures
contract, rolling into the next nearby contract on the first day of the expiry month,
assuming transaction costs of 1bp one-way”. The necessary volatility and correlation
inputs are obtained from historical estimates, using all available data at the time of

determining the desired payotf function.

In what follows we discuss the out-of-sample replication results for three different
hedge funds (of funds). We selected these funds because they are well known within the
industry and among investors and because they have relatively long track records. The
latter requirement stems from the fact that when comparing the statistical properties of

the fund and the replicated returns we are basically comparing two bivariate

*? In practice hedge funds typically take one or two weeks to report their end-of-month net asset value. For simplicity, we refrain
from this complication here.

*¥ The decision to use Eurodollar futures is primarily based on liquidity and simplicity, since these are illustrative examples. In
Chapters 3,4 and 5 a more diversified reserve asset will be used.

* S&P 500 (SP) and Eurodollar futures (ED) are traded on the CME, while T-bond futures (US) are traded on the CBOT.

2 Commission costs in futures tend to be extremely low, while quoted bid-ask spreads in the most liquid contracts are typically not
high as well.

438



distributions, which 1s best done using as many data points as possible. All fund returns
are net of fees and were taken from the TASS database. We do not charge any

management fees in the replication strategy.
2.5.1 Leveraged Capital Holdings N.V.

Our first example concerns one of the first funds of hedge funds. Leveraged Capital
Holdings (ILCH) was started in 1969 (our return data, however, only start in 1985) by
Georges Karlweis of Banque Privee Edmond de Rothchild in Geneva. Over the years,

LCH has (been) mvested 1 all well-known hedge fund managers, such as George

Soros, Martin Zweig and Joseph DiMenna, and Michael Steinhardt. LCH is publicly
listed on the Amsterdam Stock Exchange and in October 2005 had $1.32 billion under

management (TASS database).
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Figure 2.7. Contour plot payoff function Leveraged Capital Holdings.
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Figure 2.8. 3D plot payoff function Leveraged Capital Holdings.

Figure 2.7 and 2.8 show the payoff function used for the replication of the LCH return
per October 2004 (the last month for which we have fund return data available)®.
Notice that the LCH payoff function is a lot more ‘lively’ than the payoff functions
encountered in the previous section. This underlines the complexity of real-life hedge
fund returns. The graphs show that the desired payoff is a positive function of the
mvestor’s portfolio as well as the reserve asset, implying that the replication strategy
will be long m both assets. We also see quite some variation in the slope of the payoff
surface. Since the controls of the replication strategy are nothing more than the slope
coefficients of the payoff value function, this signals the presence of ‘hot spots’, where
relatively small changes in the investor’s portfolio and/or reserve asset will generate

relatively large changes in the strategy’s controls.

?® The jagged profile in the bottom right-hand comer of the contour plot is due to some numerical instability in the extremes. A

similar phenomenon 1s observed in the two cases that follow.
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Figure 2.9. Scatter plot investor’s portfolio returns versus Leveraged Capital
Holdings returns (left) and replicated returns (right), 1987-2004.

The left hand side of Figure 2.9 shows a scatter plot of the monthly returns on the
investor’s portfolio versus the LCH returns. The right hand side of Figure 2.9 shows a
scatter plot of the monthly returns on the investor’s portfolio versus the replicated
returns. Comparing both plots, we see that they are very similar, which indicates that the
replication strategy 1s indeed able to successfully replicate LCH’s returns’ statistical
properties. We also see that the replication strategy is unable to replicate the three large
losses that LCH reported i October 1987 (-22.52%), August 1998 (-11.45%) and April
2000 (-10.83%). Simce these are clearly outliers, it is not surprising that the replication
procedure was unable to capture them out-of-sample. Given the size of these losses, it is

unlikely investors will consider this a real shortcoming though.

Mecan | St. Dev | Skewness | Skewness| KExcess Ex. Kurt. | Corr. with| Kendall’s
(robust) | Kurtosis | (robust) | Portfolio Tau

LCH 0.0095 | 0.0419 | -1.9675 | -0.1641 | 13.4015 | 0.3156 0.704 0.536

Replica | 0.0125 | 0.0355 | -0.3541 | -0.1681 0.7021 0.5736 0.728 0.571
Univariate K-S Statistic = 0.056, (approximated) p-value = 0.884

Bivariate K-S Statistic = 0.053, (approximated) p-value = 0.968

Table 2.3. Monthly return statistics Leveraged Capital Holdings and replication
strategy, 1987 - 2004.
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Another indication of the accuracy of the replication strategy comes from comparing the
actual mean, standard deviation, skewness and kurtosis of LCH’s returns with those of
the replicated returns. The latter statistics can be found in Table 2.3, together with the
correlation and Kendall’s Tau with the investor’s portfolio. Since LCH’s returns exhibit
some clear outliers, apart from the standard skewness and kurtosis measures we also
report more robust skewness and kurtosis measures®’. To test whether the marginal
distribution of the replicated returns and the joint distribution of the replicated returns
and the investor’s portfolio are significantly different from the original distributions, we

use the univariate and bivariate Kolmogorov-Smirnov (K-S) tests™.

Comparing the entries i Table 2.3, it is clear that, despite the obvious limitations, the
statistical properties of LCH’s returns have been quite successfully replicated. The
replication strategy has not only replicated the marginal distribution of LCH’s returns
but also its relationship with the mvestor’s portfolio. This i1s also the conclusion from
both the K-S tests. Although slightly higher (14.76% pa versus 12.48% pa), the mean of
the replicated returns 1s similar to that of the LCH returns as well. This confirms the
assumption underlying the replication procedure that in the longer run investors receive
a return which 1s in line with the risk profile they take on, irrespective of how that risk

profile 1s acquired.
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Figure 2.10. Scatter plot reserve asset returns versus replicated returns (left) and
Leveraged Capital Holdings returns versus replicated returns (right), 1987 - 2004.

?7 See Hinkley (1975) and Crow and Siddiqui (1967). These measures are also discussed in Kim and White (2004).

*® See Fasano and Franceschini (1987) for details. Since the mean is not explicitly replicated, we subtract the mean from both the

fund and the replicated retums before performing these tests.
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It 1s 1nteresting to delve a bit further into the workings of the replication strategy. The
left hand side of Figure 2.10 shows a scatter plot of the reserve asset returns versus the
replicated returns. The positive relationship confirms the efficiency of the replication
strategy (see Section 2.3). The right hand side of Figure 2.10 shows a scatter plot of the
fund returns versus the replicated returns. The plot makes it clear that although the
replicated returns have statistical properties, which are very similar to those of LCH,
they come to the mnvestor i a completely different order. It is exactly this feature of the
replication process, i.e. giving up the requirement that returns need to be similar on a
month-to-month basis as well, which allows us to do so much better than the standard

factor model approach.
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Figure 2.11. Evolution of controls Leveraged Capital Holdings return replication
strategy, Dec. 2002 — Oct. 2004.

Figure 2.11 shows the evolution of the replication strategy’s controls over the period
Dec. 2002 — Oct. 2004%. The graph confirms that the replication strategy holds long
positions in both the investor’s portfolio and the reserve asset. It also shows that the
number of units of the reserve asset held i1s much higher than for the investor’s

portfolio.

2> The period Dec. 2002 — Oct. 2004 is representative for the period 1987 — 2004. A graph covering the full 1987-2004 test penod

would be too condensed to provide any worthwhile insights.
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This 1s because the volatility of the Eurodollar future is quite low compared to that of
LCH and the investor’s portfolio. It therefore requires substantial leveraging. The
strategy is quite dynamic, with the strategy’s controls exhibiting a number of peaks and
troughs. The latter are the result of a combination of strong inter-month index
movement, a steep payotf function and monthly strategy resetting. For example, during
April 2004 the value of the investor’s portfolio dropped by almost 4%. As a result, the
number of units of the investor’s portfolio to hold rose from 0.90 at the start to 1.54 at
the end of the month. At the same time, the number of units of the reserve asset to hold
rose from 9.34 to 10.63. At the beginning of May, however, the strategy was reset to its
starting values, meaning that the allocation to the investor’s portfolio dropped to 0.85

units and the allocation to the reserve asset to 9.58 units.

2.5.2 Calamos Multi-Strategy Fund L.P.

The second example is a convertible arbitrage fund. The Calamos Multi-Strategy Fund
(CMSF) was established in 1989 by convertible bond experts John and Nick Calamos.
For most of its life CMSEF has pursued a convertible arbitrage strategy. Since 2004,
however, CMSF has adopted a long/short equity strategy as well. Managed primarily
for the personal accounts of the Calamos family and a small group of friends, the fund is

relatively small with $14.1 million under management (TASS, October 2005)"".

*0 Although the fund is only small, we decided to include it because the Calamos family is very well known for their work on

convertibles and convertible arbitrage. See for example Calamos (1998) and Calamos (2003).
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Figure 2.12. Contour plot payoff function Calamos Multi-Strategy Fund.
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Figure 2.14. Scatter plot investor’s portfolio returns versus Calamos Multi-
Strategy Fund returns (left) and replicated returns (right), 1991 - 2004.
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Figure 2.15. Scatter plot reserve asset returns versus replicated returns (left) and
Calamos Multi-Strategy Fund returns versus replicated returns (right), 1991 -

2004.
Mean- St. Dev Skewn.css Skewness Kendall’s
Tau
0.337

CMSF | 0.080 | 0.0213 | 0.2357

Replica 0.094 | 0.0170 | 0.6656 2.2128 0.9525 0.506
Univariate K-S Statistic = 0.103, (approximated) p-value = (.322

Bivariate K-S Statistic = 0.087, (approximated) p-value = 0.719 o

Excess Ex. Kurt | Corr. with
Kurtosis | (robust) | Portfolio

2.6296 1.6937 0.509

0.388

Table 2.4. Monthly return statistics Calamos Multi-Strategy Fund and replication
strategy, 1991 - 2004.
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The desired payoff function for CMSF as per October 1%, 2004 is shown in Fig 2.12 and
2.13. At first sight, 1t looks similar to that for LLCH, but, as is easiest seen from the
contour plot, there are some significant differences as well. Figure 2.14 shows the same
scatter plots as 1 Figure 2.9. Comparing both plots, we again see that they are very
similar, indicating the replication strategy performs quite well. This is confirmed by the
entries i Table 2.4. As before, all parameters are very similar, including the means and
the correlation with the mnvestor’s portfolio. Both the univariate and bivariate K-S test
confirm that there 1s no significant difference between the original and replicated
distributions. Figure 2.15 shows the same scatter plots as in Figure 2.10. We again see a
positive relationship between the reserve asset returns and the replicated returns,
confirming the efficiency of the replication strategy. The plot of the fund returns versus
the replicated returns shows a random scatter, making it clear that although the
replicated returns have similar statistical properties as CMSF, they come in a

completely different order.

2.5.3 Rocker Partners L.P.

Most hedge funds’ returns are positively correlated with the equity market. Our final
example therefore concerns a dedicated short seller, the returns of which are likely to be
negatively correlated with the stock market. Rocker Partners (RP) was started in 1985
by David Rocker. While RP maintains both long and short positions, the general focus
is on short selling. The fund is therefore popular with investors as a hedge against their

long biased investments. RP currently has $611.1 million under management (TASS,
October 2005).
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Figure 2.18. Scatter plot investor’s portfolio returns versus Rocker Partners
returns (left) and replicated returns (right), 1987 - 2004.
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Figure 2.19. Scatter plot reserve asset returns versus replicated returns (left) and
Rocker Partners returns versus replicated returns (right), 1987 — 2004.

- Mean | St. Dev | Skewness | Skewness| Excess
(robust) | Kurtosis

0.0058 | 0.0684

Ex. Kurt.
(robust)

Corr. with| Kendall’s
Portfolio

-0.0992 | 1.5588 1.3862

nlica | 0.0083 | 0.0430 | 0.8377 | -0.0385 [ 5.0043 1.5521
Univariate K-S Statistic = 0.117, (approximated) p-value = 0.101
Bivariate K-S Statistic = 0.111, (approximated) p-value = 0.295

Table 2.5: Monthly return statistics Rocker Partners and replication strategy, 1987
- 2004. .
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The desired payoff function for RP as per October 1%, 2004 can be found in Figure 2.16
and 2.17. From these graphs we see that the payoff function for RP is quite different
from what we found for LCH and CMSF. Of course, the payoff is a positive function of
the reserve asset. The RP payoff, however, is a negative function of the investor’s
portfolio. The replication strategy will therefore go long in the reserve asset, but short
the investor’s portfolio. This is of course what one would expect for a short seller,
whose returns are likely to be negatively correlated with the market. From Figure 2.18
and Table 2.5 we see that the replication strategy performs in the same way as before.
The replicated return statistics are agam similar to those of the fund returns. Even the
negative correlation with the mvestor’s portfolio 1s closely replicated. Figure 2.19 paints

a similar picture as Figures 2.10 and 2.15.
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3. Evaluation of Funds of Funds and Hedge
Funds”’

3.1 Preliminary comments

All performance evaluation studies in finance follow the same general procedure. First,
usig a fund’s track record and possibly some additional data over the same period as
well, the fund return i1s characterized in some way. With the Sharpe ratio this is done by
calculating the volatility of the fund return. With alphas this is done by estimating a
fund’s exposure to the relevant risk factors. Second, based on this characterization, a
benchmark return is determined and compared with the actual average fund return over
its track record. With the Sharpe ratio the benchmark return is derived from the average

index return and the volatility of the index, while with alphas it derives from the

average returns of the risk factors.

The replication-based evaluation procedure presented here i1s not different. It is just a
different characterization. Where other approaches use volatility or factor loadings, this
one uses the desired payoft function. Where other approaches use the average return on
the mndex or the chosen risk factors, this one use the average mterest rate, building block
volatilities and correlation over a fund’s track record to set a benchmark. What is
different, however, 1s that there 1s no unrealistically strong assumptions concerning the
exact nature of a fund’s risk exposure or the behaviour of markets in general. As shown
in Section 2.4, a fairly limited set of returns will often be enough to obtain a sufficiently
good estimate of the deswed distribution and the efficiency measure. As such, this

procedure 1s quite robust.

Another point worth noting about the above evaluation procedure is the fact that it
explicitly takes transaction costs into account by, instead of a Black-Scholes type option
pricing model, using the Boyle and Lin (1997) model. In factor model based
evaluations, transaction costs are typically ignored, despite the fact that maintaining the

replicating portfolio’s factor loadings at their desired levels is likely to require

! The material in this chapter appeared as Alternative Investment Research Center WP 40, Cass Business School.
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significant periodic rebalancing. In addition, when dealing with hedge funds the risk
factors used may be quite unusual and may therefore be accompanied by significant

levels of transaction costs.

3.2 An Example

To clarify the above, let’s look at a worked-out example. XYZ is a well-known fund of
hedge funds, which started in 1985. Given XYZ’s monthly, net-of-fee returns since
1985, the first step is to model the joint distribution of XYZ and the investor’s portfolio,
as well as the joint distribution of the investor’s portfolio and the reserve asset. Before
we can do so we need to decide what exactly the investor’s portfolio and the reserve

asset are, as well as unsmooth the raw fund return data.

Let’s assume that the representative investor’s portfolio consists of 50% S&P 500 and
50% long-dated US Treasury bonds. Let’s also assume that all exposure management 1s
done in the futures markets. Futures have several advantages over cash, 1n particular
high liquidity and low transaction costs, which i1s extremely important given the
dynamic nature of the KP replication strategies. We trade S&P 500 futures on the CME
and T-bond futures on the CBOT. To keep things simple, we use nearby Eurodollar

futures (CME) as the reserve asset.

‘ Standard | Skewness Excess 1M Auto
Deviation Kurtosis |Correlation
XYZ smooth | 0.0370 | -1.726 | 11.505 0.138

XYZunsmooth | 0.0424 | -1.746 | 11581 | ©-008

Table 3.1. Risk statistics XYZ.

Table 3.1 shows the marginal risk characteristics of the raw and unsmoothed XYZ
returns. From the table, we see that XYZ’s raw returms exhibit negative skewness and
positive autocorrelation. Application of the unsmoothing procedure eliminates the
autocorrelation and produces returns with the same degree of skewness, but with a

substantially higher volatility (annualised 14.7% vs. 12.8% for the raw returns).
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We are now ready to infer the desired and the building block distribution. Using the
same methodology as in Chapter 2, we find that the best fit (according to the AIC) is

provided by the following set of marginals and copulas’:

XYZ: Student-t (1 =0.0101, 6 =0.0406, df = 4.0544)
Portfolio: Normal (n=0.0101, 6 = 0.0282)

Reserve: Johnson (¢ = 0.0031, A = 0.0046, y=-0.60, 0 = 1.599)
Copula (XYZ, portfolio): Normal (p = 0.754)

Copula (portfolio, reserve): Gumbel (a = 1.3349)

Given the above distributions, we can derive the desired payoft function following the
methodology developed i Chapter 2. The result is depicted in Figure 3.1 and shows
that the desired payoff 1s an increasing function of both the mvestor’s portfolio and the
reserve asset, implying that the replication strategy will take long positions in both
assets. Subsequently, we price this payoft function using the Boyle and Lin (1997)
model, assuming transaction costs in the futures markets are 1bp one-way. This
produces a value for the KP efficiency measure of 99.53, meaning that, seen over the
whole life of the fund, XYZ’s returns are not as miraculous as many investors may have
thought. Trading S&P 500, T-bond and Eurodollar futures, investors could have
generated the same risk profile as XYZ and obtained a higher average return at the same

time.

*2 Copula functions and marginal distributions defined in Appendix A.3.
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Figure 3.2. Scatter plot investor’s portfolio returns versus XYZ returns (left) and

replicated returns (right).

To see how well the derived payoff function succeeds in replicating the desired
distribution, Figure 3.2 shows a scatter plot of the investor’s portfolio return versus the
XYZ return (left) as well as a plot of the portfolio return versus the replicated return
(right). The two plots are very similar, suggesting that the replication has indeed been
successful. We see that the replication strategy is unable to replicate the three large
losses that XYZ reported during the sample period. This is not surprising as these are

clearly outliers, which simply cannot be captured by a parametric model like ours.
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Mecan | St. Dev | Skewness | Skewness| Excess Ex. Kurt. | Corr. with| Kendall’s
(robust) | Kurtosis | (robust) | Portfolio Tau

0.0102 | 0.0424 | -1.7463 | -0.1600 | 11.5812 | 0.4366 0.714 0.540
Renlica | 0.0150 | 0.0388 | 0.1184 | -0.1269 | 1.2691 0.6889 0.721 0.548
Univariate K-S Statistic = 0.054, (approximated) p-value = (0.862
Bivariate K-S Statistic = 0.056, (approximated) p-value 0.924

Table 3.2. Statistics XYZ and replicated returns.

A further indication of the accuracy of the replication strategy comes from comparing
the mean, standard deviation, skewness and kurtosis of XYZ’s returns with those of the
replicated returns. The latter statistics can be found in Table 3.2, together with the
correlation and Kendall’s Tau with the investor’s portfolio. Since the XYZ returns
exhibit a few negative outliers, apart from the standard skewness and kurtosis measures,
we also report a more robust skewness and kurtosis measure™. To test whether the
marginal distribution of the replicated returns and the joint distribution of the replicated
returns and the investor’s portfolio are significantly different from the original
distributions, we use the univariate and bivariate Kolmogorov-Smirnov (K-S) tests™",
Comparing the entries in Table 3.2, it i1s clear that the statistical properties of XYZ’s
returns have been successfully replicated. The replication strategy has not only
replicated the marginal distribution of XYZ’s returns but also its relationship with the

investor’s portfolio. The same conclusion follows from both the K-S tests.

Having clarified the procedure to be used,-we proceed with the evaluation of the
performance of 875 funds of hedge funds and 2073 mdividual hedge funds. Since funds
of funds are distinctly different from individual hedge funds, we do so in two separate
parts. Section 3.3 deals with funds of funds. Section 3.4 deals with individual hedge

funds.

3 See Hinkley (1975) and Crow and Siddiqui (1967) for details.

3 See Fasano and Franceschini (1987) for details.
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3.3 Funds of Hedge Funds

3.3.1 Funds of Hedge Funds: Data Description

Our sample consists of 875 funds of hedge funds with a minimum of 4 years of history
avallable. All data were obtamned from The Barclay Group as per November 2006.
Funds denomunated in another currency than USD are converted to USD, i.e. the
perspective taken 1s that of a USD-based investor. Table 3.3 provides some information

on the start and end dates of the track records of the funds in our sample.

Jan 1985 Jan 1988 Jan 1991 Jan 1994 Jan 1997 | Jan 2000 | Jan 2003 | Jan 2006
834

— 863 613 | 381 | o

End before 0 46

0

Table 3.3. Fund of funds start and end date details.

Table 3.3 shows that, reflecting the increasing popularity of hedge funds in the second
half of the 1990s, the majority of funds started after 1994. Most hedge fund databases,
first started collecting data around the mud to late 1990s. As a result, they contain no
funds that stopped reporting before that date. Out of the 875 funds in our database, 218
funds stopped reporting before November 2006. This confirms that, although lower than

for individual hedge funds, the attrition rate in funds of funds is still quite high.

4-5Y | 5-6Y | 6-7Y | 7-8Y | 8-9Y | 9-10Y |10Y-11Y|11Y-12Y 12Y-14Yl 14Y+ I
48

No. funds | 211 | 137 | 106 | 83 | 66 | 52 | 61 53 58 |

Table 3.4. Length fund of funds track records.
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