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Abstract 

This thesis aims to investigate the effect oflongevity risk in the context of life 

annuities. It develops different tools and frameworks to measure this risk as a 

step to facilitate the risk management oflongevity risk. Particular attention is 

directed to stochastic modelling which allows the uncertainty of future 

projections to be incorporated. Hence, simulation methods are used to consider 

the distribution of the annuity cost, as well as the more often quoted point 

estimates. 

A theoretical extension of the use of the entropy measure applied in population 

biology by Demetrius (1976) has been developed to measure the effect of a 

proportionate change in the force of mortality on the cost of life annuity. The 

properties of the corresponding entropy measure have been then investigated 

using the Gompertz and the Sithole et al (2000) mortality projection models. 

Numerical results suggest that, at very high or low levels of mortality, the effect 

of mortality changes on the value of life annuity is of reduced importance. 

A full Bayesian model has been developed which incorporates the estimation of 

the parameters of both the Sithole et al (2000) and the Lee - Carter (1992) 

mortality projection models within the simulation of the annuity cost. This has 

been extended to an environment in which the future rates of interest are 

stochastic. The effect of parameter uncertainty of the Sithole et al (2000) 

mortality projection model has been considered and shown to be less important 

than the associated model uncertainty. 
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Chapter 1 

Introduction 

Mortality rates in developed countries have been persistently declining over time 

and are expected to continue to decline in particular at adult and older ages in 

many of these countries. However, given the irregularity of the rate of decline 

over time there is much debate regarding the most suitable method of forecasting 

the future.improvement in mortality. 

Further aspects of mortality trends can be captured by looking at the survival 

function curve. As noted by Olivieri (2001) and Pitacco (2004), mortality 

experience over the last decades shows some aspects affecting the shape of the 

curves representing the mortality as a function of the attained age. In particular, 

the following features have been noted: 

• An increasing concentration of deaths around the mode (at old ages) of 

the curve of deaths. This phenomena is known as rectangularization as 

the survival curve moves towards a rectangular shape. 

• Expansion of the survival function, where the mode of the curve of 

deaths moves towards very old ages. 
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• More recently, a further aspect has been observed; higher levels and 

larger dispersion of deaths at young ages (known as the young mortality 

hump). 

The above mentioned mortality trends clearly affect claim frequencies in life 

insurance. In particular, the first two aspects affect living benefits, whilst the last 

aspect affects death benefits. Rectangularization, the expansion phenomena and 

decreasing mortality profiles have been experienced in a number of countries: for 

a recent international comparison, refer to MacDonald et al (1998). 

Annuities are specially designed to meet a financial need for providing an 

income for the reminder of the life of the insured. In this case, we can see that 

the main risk that the providers of these contracts face is longevity risk. In the 

context of life annuities, longevity risk can be defined as the variation in actual 

financial experience from that expected, which is attributable to the actual 

mortality experience being lighter than that which has been assumed. With the 

likelihood of further reductions in future mortality rates and given the recent 

trends mentioned above, incorporating mortality improvements is essential for 

annuities as the cost of an annuity is very sensitive to the level of mortality 

assumed. 

15 



It is noteworthy that, as pointed by Pitacco (2004), mortality trends and relevant 

effects on life annuities were clearly perceived at the beginning of the 20th 

century. For instance, Nordenmark (1906) has pointed out that improvements in 

mortality must be carefully considered when pricing a life annuity and that in 

particular cohort mortality should be addressed to avoid underestimation of 

future liabilities. 

This thesis aims to investigate the effect of mortality improvements on the 

expected costs of annuities. This investigation is performed as an attempt to 

answer questions such as: given the improvement in future mortality rates, what 

is the effect of initial ages, gender, rate of interest and the level of mortality 

improvement on the additional cost implied? To this end, simulation methods 

are used to consider the distribution ofthe annuity cost, as well as the more often 

quoted point estimates. Then the entropy measure applied in popUlation biology 

by Demetrius (1976) is extended to measure the effect of any changes in the 

force of mortality on the cost oflife annuity for different interest rate scenarios 

and levels of mortality improvements. This is one of the main contributions of 

this thesis. The other main contribution is that we then develop a Bayesian model 

which incorporates the estimation of the parameters ofthe mortality projection 

model within the simulation of the annuity cost. This allows us to consider the 

effect of parameter uncertainty on the projected distribution ofthe annuity cost. 

This Bayesian model has been then extended to an environment in which the 

16 



future rates of interest are stochastic which will allow an integrated analysis of 

the effect of demographic and financial risks and their interaction on the cost of 

life annuities. 

The thesis is organised in seven chapters, which are briefly introduced below. 

Chapter 2 - Mortality projection methods and longevity risk in life annuity. 

Chapter 2 discusses the recent trends in mortality in particular mortality 

improvements over the past century and the corresponding effect on the cost of 

survival benefits hence the need arises to project future mortality and accurately 

allow for any further improvements. There are many approaches to forecasting 

mortality rates that are described in the actuarial literature. In chapter 2, we 

present some ofthe standard extrapolative approaches used in the actuarial 

literature. These represent the most commonly used forecasting models in 

actuarial applications. 

Chapter 3 - Analysing the distribution of life annuities using simulation 

techniques. In this chapter the effect of mortality improvement on the cost of 

life annuity is investigated using simulation techniques and scenario analysis. 

Simulations techniques are used to model a particular path that a group of 

persons may fonow during their life time by allowing the time of death for each 

person to be a random variable. Using this we can investigate the properties of 

17 



the distribution of outcomes. Scenario analysis has been used to investigate the 

effect of age at inception, gender, assumed interest rate and the level of mortality 

assumed on the distribution of annuity payments. The results are illustrated using 

UK life office pensioners data from the Continuous Mortality Investigation 

Bureau and mortality improvements have been allowed for using the Sithole et al 

(2000) mortality projection model. 

Chapter 4 - Entropy, Longevity and the cost of life annuity. Chapter 4 

extends the theory ofthe entropy measure applied in popUlation biology by 

Demetrius (1976) to measure the effect of a proportionate change in the force of 

mortality on the cost of a life annuity for different interest rate scenarios and 

levels of mortality improvements. This allows different sources of risk in a life 

annuity contract to be summarized in a one figure index. Numerical values for 

the entropy measure are derived using an approach which extends that of 

Keyfitz (1977). Results are illustrated using English life tables over the period 

from 1851 to 1991 and also by applying different mathematical models for 

mortality projections such as the Gompertz and the Sithole et al (2000) mortality 

projection models for both males and females aged 60 as an attempt to get a 

better understanding regarding the properties of the entropy measure. This is 

followed by testing the sensitivity ofthe results obtained with regard to the 

different factors that are likely to affect the value of the entropy measure. In this 

18 



study the effect of gender, age, assumed interest rate and the level of mortality 

improvement are investigated. 

Chapter 5 - Bayesian analysis of the changes in the cost of life annuity due 

to longevity risk. In Chapter 5 a full Bayesian model has been constructed to 

investigate longevity risk and the effect of mortality improvements on the cost of 

a life annuity. Simulated distributions of annuity payments are obtained in a 

manner similar to that in chapter 3 except that the Bayesian approach combines 

the estimation of the parameters ofthe mortality projection models together with 

the simulation of the annuity cost. The chapter starts by introducing the Bayesian 

approach to inference and Markov chain Monte Carlo (MCMC) method. Then a 

full Bayesian model is constructed to implement the corresponding MCMC­

Bayesian analysis needed to estimate the parameters of both the Sithole et al 

(2000) and the Lee-Carter (1992) mortality projection models, and hence obtain 

the corresponding simulated distributions of annuity payments. For the Sithole et 

al (2000) model, results are illustrated using UK life office pensioners data for 

both males and females aged 60, 70 and 80. The results have then been 

compared to the corresponding ones in chapter 3. Also, three different data sets 

have been used to perform the analysis using the Lee-Carter (1992) model. These 

are: England and Wales male mortality experience, 1950-1998 inclusive (Case 

A), UK mortality experience, 1961-2003 inclusive (Case B) and CMI data for 

female life office pensioners, 1983-1996 inclusive (Case C). An approach for 
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measuring the effect of parameter uncertainty is then presented and 

implemented. 

Chapter 6 - Stochastic Bayesian analysis of the investment risk in a 

portfolio of life annuity. Chapter 6 extends the analysis of the cost of annuity to 

an environment in which the future rates of interest are stochastic. This allows an 

integrated analysis of demographic and financial risks and their interaction. As in 

chapter 5, this analysis is performed in a Bayesian framework in which the 

parameters of both the financial model and the mortality projection models are 

estimated. The chapter starts by introducing the term structure of interest rates. 

This is followed by presenting some of the standard interest rate models in the 

literature, and then a full Bayesian model is constructed to estimate any involved 

parameters and simulate the corresponding distributions of the cost of annuity. 

Mortality improvements are allowed for using the Lee-Carter (1992) mortality 

projection model and the interest rate model used is the one developed by 

Ballotta and Haberman (2003) which makes use ofthe one factor Heath-Jarrow­

Morton framework for the term structure of interest rate. The analysis has been 

performed for female life office pensioners aged 60,70 and 80. 

Chapter 7 - Conclusions. The last chapter summarises the main findings and 

the conclusions in each of the previous chapters. Furthermore, a discussion of 

possible extensions and further work are presented. 
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Chapter 2 

Mortality projection methods and longevity risk in 
life annuities 

2.1 Introduction 

Over the past century mortality rates in the developed countries, including the 

UK, have improved remarkably (CharIton, 1997). There is still much uncertainty 

as to the processes that cause ageing and there is much debate as to whether there 

are upper limits to human longevity. However, it is clear that there is no 

conclusive evidence to suggest that current mortality rates are close to reaching 

any kind oflower bound (see Thatcher, 1999). This persistent decrease in 

mortality rates has become a major concern of annuity and pension providers, 

This'is particularly true for mortality improvements for post-retirement ages 

which have a significant financial impact as far as the cost of survival benefits is 

concerned, as a small percentage difference in mortality at these ages can 

translate into substantial extra cost. Under these conditions of improving 

mortality, the projection offuture annuitants' and pensioners' mortality is 

essential. To ignore improvements would be to endanger the financial stability of 

the insurer selling policies providing such survival benefits or defined benefit 

pensions schemes providing retirement benefits, taking into consideration that 
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longevity has a direct impact on the cost of survival benefits for both annuitants 

and pensioners. 

The effect oflongevity risk (Olivieri and Pitacco, (2002» is even more important 

with the combination of improving mortality and falling interest rates, which 

have shaken the annuity market in recent years, especially for products offering 

guarantees (Ballotta and Haberman, (2003». The calculation of expected present 

values thus requires an appropriate mortality projection in order to avoid 

underestimation of future costs. 

There are a number of broad approaches to forecasting mortality rates - using 

models based on the underlying biomedical process, causal models based on 

econometric-type relationships, and trend models that are extrapolative in 

character. We will consider only the last category in this chapter. 

Projecting the behavior of future mortality rates is a rather complicated process 

given that there are many factors that are likely to affect future mortality rates 

and that the effect of some ofthese (for example, social, economic, cultural and 

ethnic factors) maybe difficult to measure or even to model. These factors affect 

different people differently, which makes the process of forecasting the future 

course of mortality change a challenge. However, due to the importance of 

mortality projection as mentioned above, many attempts have been made and 
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many methods have been proposed for projecting mortality in the future. In 

general there is no single best method and the choice of the appropriate method 

will depend on the purpose ofthe projection and the quality and the quantity of 

the data available. 

This chapter is organized as follows: In section 2.2 various methods of projecting 

mortality are discussed. Section 2.3 will address some remarks. 

2.2 Mortality projection methods 

A number of projection models are described in the actuarial literature. The 

standard extrapolative approaches used in the literature include but not limited 

to: a) models based on the independent projection of age-specific mortality rates 

or forces of mortality, including mortality reduction factor models; b) relational 

models based on the logit transformation; c) models based on graduating 

mortality rates with respect to age for specific time period and then projecting 

the parameters; d) models based on graduating mortality rates with respect to age 

and time simultaneously; e) the Lee-Carter method. Description ofthese methods 

can be found in Lee and Carter (1992). Benjamin and Soliman (1993), Renshaw 

et al (1996) and Pitacco (2004). Further, Carmer and Wold (1935), gives an 

interesting historical reference ofthe early attempts to consider mortality trends 

together with presentations and discussions ofthe early projection models. 

23 



In this section, some of the standard extrapolative approaches used in the 

actuarial literature are presented. These represent the most commonly used 

forecasting models in actuarial applications. 

2.2.1 Projection by extrapolation of mortality rates (The 
Logarithmic Method) 

Projection by extrapolation of the mortality rates is considered the simplest 

method ofprojecting age-specific mortality rates and the most widely used. 

This method is based on the assumption that the proportionate reduction from 

one year to another in the age-specific death rate is relatively constant over a 

fairly extensive but not indefinite time period. This means that, if the mortality 

rate at age x is plotted for successive years, the curve would be close to a straight 

line. Usually a logarithmic transformation of the mortality rates is used to 

improve linearity, and the projection is then performed by plotting the logs of 

mortality rates over time and fitting a straight line to the data sequences. 

However, as the logarithmic decline of the mortality rate does not remain the 

same for indefinite periods oftime but tends to change, it is therefore necessary 

to examine the extent of the period over which the decline seems to be relatively 

constant. 

24 



Extrapolation may be performed either graphically or by mathematical formula. 

Under the graphical approach, mortality rates at each selected age x at recent 

time periods t are plotted against t. A smooth curve is drawn through the points 

and similar curves are drawn on the same graph for neighboring ages x. The 

curves are all then extrapolated to yield projected values of qx.t. Projected 

mortality rates at intervening ages are found by interpolation or by mUltiplying 

the base mortality rates (initial mortality rates) at those ages by the projected 

reduction factor at the nearest selected age. 

The most commonly used formula for mathematical extrapolation is: 

(2.1) 

where q x,l is the mortality rate at age x experienced in year (or time period) t , Px 

is the level of mortality at age x at a particular point in time, that is, the initial 

level of mortality and Yx' (0 < Yx < 1) is the annual rate of improvement in 

mortality at age x. 

The equivalent formula for the logarithmic transformation of qx.t is 

(2.2) 

where Bx = lnpx and ex = lnyx' 

Formula (2.1) allows the mortality rate at age x to decrease indefinitely towards 

zero. An alternative formula is preferred if an ultimate level of mortality at age x, 

ax, is assumed: 
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(2.3) 

This projection procedure can also be applied to quantities such as the central 

rates of mortality mx , the forces of mortality f.1x and the mortality odds 

qx/(l-qx)' 

Once the parameters of the mathematical formula have been estimated, the 

projected mortality rates are then calculated using formula (2.1) or (2.3) as 

appropriate. 

2.2.2 Mortality projections via reduction factors 

Reduction factors provide a tool that is widely used in actuarial practice for 

projecting mortality. For example, in the UK, the Continuous Mortality 

Investigation Bureau (CMIB) preferred approach to projecting mortality is via 

reduction factors. 

UK life offices have co-operated in the collection of mortality statistics for 

almost 180 years. The CMm has collected data from the majority of life offices 

since the 1920s, and from time to time has published graduated mortality tables 

for assured lives, annuitants and pensioners. In general, the Committee has 

considered it essential, when publishing the new tables for pensioners and 

immediate annuitants, to publish projection factors in order to allow for 
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improvements in mortality with the passage oftime because as noted earlier, 

improving longevity has a direct upwards impact on the cost of survival benefits 

for both annuitants and pensioners. 

The methodology proposed by the CMm for projecting the future improvements 

in the mortality of both Pensioners and Annuitants which has been used since the 

preparation of the "80" series - is as follows. For a given investigation period, 

data are graduated by fitting a "Gompertz-Makeham" class of fonnula: 

When r=O and s=2, this expression equates with Gompert's law, While when 

r= 1 and s=2 a Makeham equation is given. When r=O the polynomial tenn is 

absent and when s=O the exponential tenn is absent (Forfar et al 1988). 

The force of mortality at age x is given by, Jlx = GM(r,s). Then the projected 

rates are produced by applying time reduction factors to the tables resulting from 

the graduation (also known as the base tables). 

So for a life attaining age x after t years from the base year, the fonnula for the 

projected mortality rate at time t will be as follows: 
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(2.5) 

where 

qx,o is the value of qx in the relevant new 'base' table. 

RF(x,t) is the "reduction factor" for age x and time t. 

For the 1991-1994 mortality tables, the CMm has proposed a mortality 

improvement model for pensioners and annuitants, under which the rate of 

mortality at each age is assumed to decrease exponentially to an age specific 

limiting value, with the speed of convergence to the limit depending on age. 

The reduction factor model recommended by the CMIB for a life attaining age x 

after t years from the base year for all experiences is: 

with 

and 

RF(x,t) = a(x) + [1-a(x)].[I- f(x)PO 

a(x) = {; + (I-c). (x-lIO) 
1 50 

f(x) ={P (l10-x).p+(x-60).q 
50 

q 
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(2.6) 

x < 60 

60 ~ x ~1I0 

x > 110 

x < 60 

60 ~ x ~1I0 

x > 110 



where 

c = 0.13,p = 0.55, and q = 0.29. 

This mortality improvement model assumes that below age 60 the improvement 

in mortality depends only on the time in years from the origin (t), at ages 

between 60 and 110 the improvement in mortality is assumed to depend on both 

the age (x) and the time (t), while for ages 110 and above no improvement is 

assumed. 

Also no sex differential is assumed under this model, i.e. the improvement in 

mortality is considered to be the same for both males and females. 

We note that, the resulting reduction factors are constructed without a specific 

modelling structure (see Renshaw and Haberman (2003a», and that the 

. calculation of the reduction factors is based on a 20-year time span. 

A similar approach has been proposed by the Society of Actuaries in the USA to 

calculate the projected probabilities of death qx(Y) using the 1994 mortality 

rates as the base table and the improvement factors AAx as follows: 

(2.7) 
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Mortality projection via reduction factors represents a practical and convenient 

approach to mortality forecast, which has resulted in recent contributions to the 

modelling of reduction factors: see Renshaw and Haberman (2000) and Renshaw 

and Haberman (2003a). In the later paper, the Lee-Carter projection method (will 

be discussed later in section 2.3.6 ofthis chapter) is re interpreted within the 

context of mortality reduction factors. 

2.2.3 Projections based on parametric models 

This approach involves fitting a mathematical curve to the age progression of 

death rates over the whole life span. Many attempts have been proposed to find a 

mathematical function that can be considered as a law of mortality. One of the 

earliest attempts was that of Gompertz (1825) who argued on physiological 

grounds that the intensity of mortality increases in equal proportions in equal 

intervals of age, leading to an exponentially increasing force of mortality. viz: 

(2.8) 

where B, c are constants and B > 0, c > 1. 

Later on a development of Gompertz formula was made by Makeham (1860) by 

introducing a constant component (A) as well as the exponentially increasing 
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component for the force of mortality. as a reflection of the division of causes of 

death into two types, those due to chance and those due to deterioration, giving: 

(2.9) 

The use of Make ham based projected survival models has been utilised by 

Cramer and Wold (1935) to graduate and extrapolate Swedish mortality rates 

from 1801 to 1930 for lives aged between 30 and 90. 

However, it has soon been found to be difficult to obtain a satisfactory 

representation of the whole life span by using such a simple formula, and more 

complicated formulas have therefore been developed. For example, Thiele 

(1872) proposed the following formula: 

(2.10) 

where the first tenn is a decreasing Gompertz curve representing childhood 

mortality, the last term is a Gompertz curve representing old age mortality and 

the middle term is a normal curve representing mortality in adulthood. Perks 

(1932) introduced a new family of curves of the general form: 
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(2.11) 

Perks rationalised this procedure by finding an analogy between Gompertz law 

and the physical concept of entropy change. A review of Perks' curves can be 

found in Benjamin and Pollard (1980). 

More recently, the following formula proposed by Heligman and Pollard (1980) 

has produced good results over the whole age span: 

(2.12) 

The Heligman-Pollard model has eight parameters denoted by the letters A to H 

that need to be estimated from each observational data. This model is made up of 

three terms, each of which represents mortality behaviour for a specific stage of 

the life span: infancy, young adulthood and a Gompertz curve representing 

mortality at older ages. Hence, when considering mortality at the older ages only, 

the first two terms can be neglected so that the Heligman and Pollard law is very 

similar to the Gompertz law at the older ages (see Thatcher (1990), Congdon 

(1993». Despite the complicated formulation of the model and the number of 

parameters involved, this model has the important advantage of representing 

specific mortality patterns for different stages of life span with a single equation. 
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The Heligman-Pollard law, can be generalised in many ways, for example, 

Heligman and Pollard (1980) proposed the so-called Heligman-Pollard second 

law by changing the third term as follows: 

(2.13) 

Forfar and Smith (1988), have fitted the Heligman-Pollard curve to the graduated 

rates from English life tables (ELT) 1-13, for ages 0-85, for both males and 

females using both equation (2.12) and (2.13). 

Recently, Sithole et al (2000) have projected mortality rates for UK immediate 

annuitants and life office pensioners using generalized linear models. The Sithole 

et al (2000) projection models have been developed by fitting the Renshaw et al 

(1996) mortality model and represent an extension ofthe Gompertz-Makeham 

class offormulas as in equation (2.4). The Sithole et al (2000) projection models 

will be discussed in detail in chapter 3 of this study. 

In general, once a suitable formula for the experience under question is 

developed, it can be used for projection purposes as follows. Trends in the 

parameters are extrapolated to provide estimates of the parameters at future time 
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periods t. Projected age-specific mortality rates are then obtained by substituting 

the projected parameters and the various ages into the relevant formula. 

2.2.3 Projections using relational models 

Relational models involve relating life table measures with those from a standard 

life table. A relational approach can be particularly useful in cases where there 

are not enough detailed or reliable data to construct life tables. 

One way of using relational projection models can be by reference to model life 

tables, this approach can be implemented as follows. Firstly, a set of model life 

tables is chosen which, is believed, to represent and will continue to represent the 

mortality of the population of interest. The set of model tables may involve a 

single parameter or two or more parameters. In the single parameter case, the 

parameter of the system is measured in the population at each of several time 

periods. Any trend in the parameter is extrapolated graphically or by a statistical 

method to provide estimates of the parameter at future time periods. Projected 

age-specific mortality rates are obtained by entering the model life table system 

for the various projected values of the parameter. 

The first set of model tables was constructed by the United Nations in 1955. 

There are a number of model life tables that have been developed over the past 
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40 years, such as Coale and Demeny, 1966; Brass, 1971 and the Organization 

for Economic Corporation and Development, 1980. 

Another form of relational projection is projection by reference to a more 

advanced population, this can be done by considering a more advanced 

population with adequate mortality statistics, and with a mortality history that is 

similar to the population under study. The mortality characteristics ofthe 

population under study are then compared with those of the more advanced 

population and similarities are noted. For example, it may be that the mortality of 

the population under study is essentially the same as that of the more advanced 

population but with a time lag of some years which appears to be slowly 

shortening. Projections of mortality for the population under study are taken as 

those mortality rates already experienced by the more advanced population and 

(when necessary) projected for the more advanced population. 

Relational projections can also be performed by reference to an "Optimal" life 

table that is attainable under ideal conditions: Many people have addressed the 

question: "What is the optimal life table one could expect in respect of a given 

population?' and a variety of approaches have been adopted in an attempt to 

answer the question. The idea of an "Optimal" table was proposed by Bourgeois­

Pichat (1952) asking a similar question: "Can mortality decline indefinitely or 

there is a limit, and if so, what is this limit?". Determining a limiting table 
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requires a number of assumptions about the trend in various mortality causes, so 

that an analysis of mortality by the causes of death is required. Benjamin (1982) 

has made some 'extreme assumptions' about improvements in mortality by cause 

in an attempt to come up with a life table under optimal conditions. Using these 

basis and using England and Wales data, he estimated an ultimate expectation of 

life at birth of 81.3 for males and 87.1 for females. This approach can be used as 

follows: a suitable optimal life table attainable under ideal conditions is selected 

from those developed by other researchers or developed from the population's 

own cause-of-death data as done by Benjamin (1982), then a decision is taken as 

to how the popUlation will approach the optimal mortality schedule and over 

how long it will do so. 

A method of forecasting mortality that utilizes the relational method has been 

proposed by Brass (1971) and (1974). In order to express relationships among 

mortality of various populations, Brass (1971) focuses on the logit 

transformation of the survival function, namely 

A = .!. 10g(/o., -lx.I J 
x,I 2 / 

x,I 

(2.14) 

Brass notes empirically that Ax,I can be expressed in terms of the logit of a 

standard population, A: , via a linear relation of the form: 
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(2.15) 

The parameter at reflects the level of mortality while the parameter P, indicates 

the relationship of mortality across the different ages relative to the standard. 

The values of the parameters at and Pt are almost independent of the age x. So 

the problem of projecting mortality reduces to the problem of extrapolating the 

'two series at and Ph and then the projected values of the survival function can be 

derived from the inverse logit transformation. 

The assumption of linearity between the logit curves used in (2.15) does not 

always exist, Brass (1971) suggests that linearity in some cases can be obtained 

by using the differences between the logits for different time periods and the 

logit taken as the standard. Brass has used this system to obtain results for 

Sweden as well as England and Wales using generation data (Benjamin and 

Soliman (1993». 

Congdon (1993) has applied the relational approach for projection purposes by 

using male life tables for greater London over 1971-90. Equation (2.15) is fitted 

for each life table. The series of values for the parameters a, and Pt are then 

modeled by time series ARIMA methods. 
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2.2.5' Projection by cause of death 

Future mortality can be projected by extrapolating mortality by the various 

causes of death separately. This involves a considerable amount of work, but it 

can reduce the chance of certain errors in the projection of overall rates. This 

approach was first used by Pollard (1949) to project Australian national 

mortality. Pollard distinguished 13 cause groups: influenza, pulmonary 

tuberculosis, epilepsy, bronchitis and pneumonia, accidents, growths, intercranial 

lesions, diabetes, nephritis, appendicitis, diseases of the circulatory system, 

ulcers of the stomach and duodenum, and other causes. Mortality rates for these 

causes were calculated for selected ages for each of the years 1921-1938 and 

projected forward graphically towards 1970. In the event, the projected age­

specific mortality rates obtained by combining the projected age-specific rates by 

cause were significantly higher than the rates obtained by any other method. 

Pollard (1987) argues that the high mortality rate predicted reflects the rapidly 

rising mortality rates from circulatory system diseases and, to a lesser extent, 

accidents. 

Mortality can be projected by cause of death as follows. First, cause-of-death 

statistics are used to calculate age-specific mortality rates by cause at each of 

several recent time periods for selected ages. Then, the age-specific mortality 

rates by cause are projected separately for the selected ages. The projected age-
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specific mortality rates by cause are then combined to yield the projected 

mortality rates at the selected ages. Projected mortality rates at the intervening 

ages are found by interpolation. 

Projection by cause of death has its own attractiveness as a method as it offers a 

useful insight into the changing incidence of different causes of death. However, 

it is a complex approach to apply, as the correlation between different causes has 

to be allowed for. For example, heart diseases and lung cancer are correlated as 

both are linked to smoking habits. Carriere (1994) investigated the effect of 

removing heart and cerebrovascular diseases as a cause of death from the U.S. 

population. Assuming that these diseases were dependent on other causes, the 

dependence was modelled using the theory of copula functions. For a more 

precise definition refer to Carriere (1994) or Schweizer and Sklar (1983). 

It also has an inherent tendency to produce lower future improvement rates than 

experienced in the past. This is because the causes showing the greatest past 

improvements will become relatively less common causes of death as time 

passes. 

A further problem is the difficulty in identification of the cause of death for 

elderly people. Detailed cause of death records can be unreliable for the elderly, 
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largely because of misclassification. This means that the data will be of doubtful 

quality at those ages. 

2.2.6 Lee-Carter projection model 

In 1992 Lee and Carter proposed a simple model for describing the change in 

mortality as a function of a single time index. The model represents the log of 

the age specific central rate of mortality as the sum of two terms; an age-specific 

term that is independent of time and a second term which is the product of a time 

varying parameter reflecting the general level of mortality, and an age-specific 

component that represents the extent to which the mortality rate at each age will 

vary due to changes in the general level of mortality. The model is based on the 

equation: 

where 

mx.t is the central death rate of mortality for age x at time t; 

ax describes the average shape ofthe age profile over time; 

(2.16) 

/3x describes the pattern of deviations from the age profile when the 

parameter kt varies; 

kt describes the variation in the rates of death with time t; and 
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ex.1 is an error term with mean 0 and variance a; . 

The model cannot be fitted by a simple regression approach, since there is no 

observable variable on the right hand side of(2.16). Moreover, it allows for 

several solutions, and, to eliminate this identifiably problem, Lee and Carter 

suggest that Px and K, be normalized by imposing the following constraints; 

Ipx = 1 ; and Ik, = 0, which in turns forces each ax to be an average of the 
x , 

log central death rates over the calendar years in the data set. 

Model fitting proceeds as follows: 

1- Estimate ax as ax = 10g{n m~} , the logarithm of the geometric mean 
,,.1 

ofthe crude mortality rates, averaged over all t, for each age. 

2- Compute the matrix of statistics (zx,) = (Iog(mx,) -ax) and then estimate 

K, and Pxas the respective first right and first left singular vectors in the 

SVD of the matrix (zx,) subject to the above constraints. 

Taking the estimated values for ax and Px, the estimated K, will be adjusted so 

that the actual number of deaths is equal to the total expected number of deaths. 

In order to proceed to mortality projection, the time factor K, is modelled as a 

stochastic time series process using standard Box-Jenkins procedures. Lee 
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(2000) observes that in most applications of the method so far, Il, is modelled by 

an ARIMA (0, 1,0) process, or random walk with drift. Hence the forecast of 

each age-specific mortality rate s periods ahead from base period to can be 

obtained using the following equation: 

(2.17) 

where the 1\ indicates estimates of the associated parameters. 

Brouhns et al (2002a) and Brouhns et al (2002b) investigate possible 

improvements to the Lee-Carter method whereby the number of deaths are 

modeled as Poisson random variable. This extension of the Lee-Carter will be 

considered in details later in Chapter 5. 

2.2.7 The current practice of the CMIB and the use of penalised 
spline regression (P-splines) 

The most recent set of mortality projections (these for use with the"OO" series 

tables) were presented by the CMm in working paper 1 (CMI 2002). Since the 

'a(55)' tables were published in 1953, the CMm has customarily provided 

mortality projections when it has published mortality tables. The new projections 

were distinctive in three important aspects: Firstly, the projections allowed for 

the cohort effect, which is defined as the dependence of mortality improvement 
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rates on a person's year of birth. The cohort effect proved to be important in 

analyzing the UK mortality experience (see Willets (2004)). Secondly, these 

projections were extrapolations based on results of a methodology new to 

actuaries, namely penalised spline regression (P-splines). Lastly, three alternative 

projections were offered, instead of the traditional single projection. The three 

scenarios were called 'short', 'medium' and 'long' cohorts, differing in the 

length of time over which the cohort effect was assumed to persist. These 

periods were chosen arbitrarily and no probabilistic interpretation was possible. 

In working paper 3 (eM I March 2004), projections were contrasted based on 

time series models and regression models. Time series models were exemplified 

by the Lee-Carter mortality model (see section 2.2.6), and regression models by 

the penalised spline (P-spline). A brief description of this methodology is given 

below. 

The P-Spline model 

Consider the number of deaths at age x in calendar year t (D X.I) to have a 

Poisson distribution with mean (Ex.lllx.I)' where Ex., is the corresponding 

exposure to risk and Ilx.1 is the corresponding force of mortality. Using 

regression approach, the relationship between Ilx.1 and the variables x and t can 
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be expressed through the choice of some basis functions 

hI (x,t),h2 (x,t), .. h" (x,t), such that: 

(2.18) 

The question is, how can we choose a suitable set of basis functions hi (x,t) ,and 

what criterion do we apply to choose the best fitting regression coefficients 

ai .Splines represent one answer to these questions as they provide an alternative 

choice of basis functions. Splines have been used before in actuarial practice in 

the UK to graduate the last few English life tables (see Benjamin and Pollard 

(1980». A spline of degree m is simply a curve made up of segments of 

polynomials of degree m, such that where the segments join, their derivatives up 

to order m-l are equal. The term 'B-splines' is often used to denote a set of basis 

spline. A B-spline graduation require us to reach a balance between goodness of 

fit (achieved by adding more and more splines to the basis) and smoothness 

(achieve? by limiting the number of splines in the basis), another approach is 

penalised spline, or P-spline, which makes no attempt to keep the number of 

basis splines small instead we make sure that the basis is rich enough to provide 

a good fit. Then we impose an explicit penalty on lack of smoothness, 

represented conveniently by lack of smoothness in the progression of the 

coefficients ai • Then the precise number of basis functions almost ceases to 
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matter; the trade offbetween smoothness and the goodness of fit is achieved by 

choosing a large penalty (prefer smoothness) or small penalty (prefer goodness 

of fit). For more details on the use ofthe P- spline approach to mortality 

projection refer to Currie, Durban & Eilers (2004) and CM! working papers 1,3, 

15 and 20. 

2.3 Summary and Remarks 

There are many approaches and models that have been proposed to project 

mortality rates. The choice of the method to be used will depend on the data and 

their reliability, the resources available for the project and the purpose for which 

the projection is required. In general, no mortality projection basis can ever be 

correct. Also it is very important to bear in mind that many ofthe projection 

methods discussed in this chapter suffer from drawbacks. For example, and as 

noted by Brouhns et al (2002a) the use of a law-based approach to mortality 

forecast might not be appropriate if we consider the strong dependence between 

the estimated parameters, and hence, univariate extrapolation of the parameters 

might be misleading, and while a multivariate time series model for the 

parameters is possible it might lead to computational intractability. 

While the methodology suggested by Lee-Carter (1992) avoids these problems, it 

implicitly assumes - by using the ordinary least square method to estimate the 
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parameters- that the errors are homoskedastic, which is unrealistic because the 

logarithm of the observed mortality rate is much more variable at older ages. 

Regardless of the method ofprojection used, when projecting mortality at very 

old ages several problems arise, in particular, because of inaccuracies in the data 

available and variability due to small exposures to risk. As a result, the 

methodologies mentioned in this chapter usually restrict the range of ages under 

study. 
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Chapter 3 

Analysing the distribution of life annuities using 
simulation techniques 

3.1 Introduction 

Projecting the behaviour of future mortality rates is a complicated process given 

that there are many factors that are likely to affect future mortality rates and that 

the effect of some ofthese (for example, social, economic, cultural and ethnic 

factors) may be difficult to measure or even to model. These factors affect 

different people differently, which makes the process of forecasting the future 

course of mortality change a challenge. 

In this chapter we aim to investigate the effect of mortality improvements on the 

expected costs of annuities using simulation techniques, which are used to 

facilitate the investigation of the properties of the distribution of outcomes rather 

than limiting it to the expected values. These are useful in their own right. 

However, computer power has increased considerably, and with the rapid 

progress in computer technology and the decline in the real price ofthe hardware 

and the software, these have made simulation methods a cost-effective way for 
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representing the uncertainty associated with many actuarial problems and it is 

thus possible to investigate more properties of the distribution of outcomes. 

In general, simulation methods offer a very powerful tool for handling actuarial 

problems, as they allow the modelling of various scenarios that provide a spread 

of results and allow the computation of the likelih.ood of the outcomes. So we 

can use simulation techniques to model a particular path that a group of persons 

may follow during their lifetime, by allowing the time of death of each insured in 

the portfolio to be a random value, and then we will be able to obtain the 

underlying distribution of annuity payments of the whole group. Hence we can 

comment on the effect of the mortality risk in a life annuity portfolio. 

As a part of investigating mortality risk, factors affecting mortality risk need to 

be investigated as well. These include but are not limited to; age at inception, 

gender, assumed interest rate and level of mortality assumed. 

This investigation is performed as an attempt to answer questions such as: given 

the improvement in future mortality rates, which age ranges will contribute the 

most to the expected changes in annuity values, and what is the effect of initial 

age, gender, rate of interest and the level of mortality improvement on the 

additional cost implied? 
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The mortality projection model of Sit hole et al (2000), which is of type d). (see 

section 2.2), has been used in this chapter to allow for mortality improvements 

for both male and females pensioners. The results are illustrated using UK data 

from the Continuous Mortality Investigation Bureau (1998). 

The chapter is organized as follows. In section 2, a description of the mortality 

projection model of Sit hole et al (2000) is given. In section 3 a description of the 

simulation procedures and methodology used will be given in detail and the 

results of the simulations are then summarised and compared with those obtained 

using the analytical approach. In order to confirm the results obtained in section 

3, Section 4 will deal with testing the sensitivity of the results with regard to the 

different factors that are likely to affect the mortality risk in a life annuity. In this 

study the effect of age, gender, assumed interest rate and the level of mortality 

improvement on the mortality risk and hence on the cost of annuity is 

investigated. Lastly, section 5 discusses the overall conclusions and makes some 

recommendations. 

3.2 Mortality projection models of Sithole et al (2000) 

These models are an application ofthe structure suggested by Renshaw et al 

(1996), which is itselfan extension of the "Gompertz-Makeham" (GM) formula 

used by the Continuous Mortality Investigation Bureau (CMIB), with an age 

specific trend adjustment added. Using the framework proposed by Renshaw et 
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al (1996), the equation representing the force of mortality at age x in year t is as 

follows: 

(3.1) 

subject to the convention that some ofthe ri,} maybe pre-set to O. x', t' denote 

the age and time variables which have been transformed linearly and mapped on 

to the range [-1,1]. L.i is a Legendre polynomial generated by 

where n is an integer and n ~1. 

From equation (3.1), it can be, seen that the first multiplicative term takes the 

form ofa GM (0, s) formula. The second term maybe interpreted as an age 

specific trend adjustment term, provided that at least one of the rio} terms is not 

pre-set to zero. It is the product of r expressions that are very similar to a GM (0, 

s), with the difference that now each exponent is mUltiplied by a power of t ~ The 

optimum values of r and s can be obtained by comparing the improvement in the 

scaled deviance, resulting from successive increases in the values of rand s, with 

critical values for the ,l distribution with one degree of freedom. The optimum 
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values should be those after which the improvement in the deviance is not 

statistically significant. Full details are given in Sithole et al (2000). 

One difficulty that can arise is ensuring that the fitted model also leads to 

projected mortality rates that have a good shape. Thus, the model that provides 

the best fit to the historic observed data is not essentially the one to be used, 

since the smoothness, shape and the suitability of the model to be used for 

projections have to be taken into consideration. 

Sithole et al (2000) have developed models for projecting mortality 

improvements for two data sets (i.e. insured annuitants and pensioners) 

comprising both males and females by fitting the Renshaw et al (1996) model to 

eM! data. We will consider the second data set which relates to male and female 

life office pensioners 1 for the period from 1983 to 1996. 

From the analysis of deviance and the statistical significance of additional 

parameters introduced in the model in equation 3.1 and after taking into 

consideration the general shape ofthe fitted curve, a 6-parameter model found to 

I i.e. members of pension schemes administered by life insurance companies who, on retirement 
are compelled to annuitize: for a discussion of adverse selection in the UK market see 
Finkelstein and Poterba (2002). 
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be the best fit for both male and female life office pensioners, i.e. the model 

formula is 

(3.2) 

The values of the parameters can be estimated using the maximum likelihood 

method. Table 3.1 shows the parameter estimates for the model in 3.2 for both 

male and female life office pensioners. 

Table 3.1: Sithole et al (2000) parameters' estimates for life office 
pensioners' 6-parameters models 

Parameter Parameters' Estimates 

Female office Pensioners Male office Pensioners 

flo -3.1771 -2.5356 

p. 1.8380 1.8232 

pz -0.0259 -0.2649 

fl3 -0.0364 -0.0475 

a. -0.0830 -0.1257 

YII 0.0556 0.0967 

After the model that provides the best fit to the data has been determined and the 

values of the parameters have been estimated, then projections based on the 
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model over a 20-year period are considered. By using both the model and the 

character of the resulting projections, the model can then be revised in order to 

produce the reduction factors that can be used subsequently. 

The reduction factor model recommended here is defined in terms of a ratio of 

the forces of mortality rather than mortality rates as originally suggested by the 

CMIB. Thus, for a life attaining age x after t years from the base year, the 

formula for the projected force of mortality at time t will be as follows: 

J.lx.t = J.lx.o RF(x,t) 

where I1x.o is the value of I1x in the relevant 'base' table. 

Using the data set mentioned above, the models for the reduction factor, for life 

office pensioners, that have been developed by Sithole et al (2000) are as 

follows: 

• For Female life office pensioners: 

RF(x,t)=min [exp[(-O.05065I+0.000489x)t} , I} 

• For Male life office pensioners: 

RF(x,t}= min [exp[(-O. 078846+0. 000744x)t] ,I} 
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so that when the fonnula-based reduction factor exceeds 1, it is set to be 1. 

Table 3.2 shows the reduction factors calculated using these two models for 

selected ages (x) and time (t = 10) ahead ofthe base year. 

Table 3.2: Sithole et al (2000) reduction factors 

Age Reduction Factors 

t=10 

Female office Pensioners Male office Pensioners 

65 0.828068 0.737227 

70 0.848564 0.765168 

75 0.869567 0.794168 

80 0.891090 0.824268 

3.3 Analysing Annuity values using simulation 
techniques 

An Actuarial present value of an annuity represents an average of the interest 

discounted value of payments that is going to be received in the future, and even 

if the actuarial assumptions regarding interest rates have been met exactly, there 

will be a variation due to both Mortality and Longevity risks. Longevity risk 

mainly affects living benefits, especially at older ages, where a small percentage 
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difference in mortality at these ages translates into substantial extra cost. Hence, 

the calculations of expected values require an appropriate mortality projection in 

order to avoid under estimation offuture costs. However, the projection itself is 

affected by uncertainty, since future mortality changes are neither know nor 

easily predictable. In this chapter, we attempt to quantify this risk in various 

circumstances using simulation techniques, so that the whole distribution of 

annuity payments can be considered and risk measures such as standard 

deviation and coefficient of variation can be used. 

3.3.1 Methodology 

For both males and females, the calculations are based on a single life annuity 

with payments of £1 due at the end of each year and an interest rate of 6% pa 

payable to a person aged 60 years. The cost ofthe annuity is calculated to be the 

present value of payments made to the members of the portfolio. For each 

policyholder and for each year we generate a random number from a uniform 

(0,1) distribution. If the q-type probability of the policyholder is smaller than this 

number, we consider that the policyholder survives and we then record that the 

relevant survival payment is made for that year. If the policyholder survives for 

that year, another random number is generated and, if again this is bigger then 

the q-type probability for that interval, it is assumed that the policyholder 

survives again and the relevant payment is recorded. This process is continued 
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until the policyholder dies. All the payments made to this policyholder during 

hislher lifetime are then recorded and the present value (at outset) ofthe annuity 

payments received, for each policyholder, is calculated. This is carried out for all 

n policyholders. We now have a sum comprising all ofthe discounted payments 

made to the group of policyholders. It is assumed that the policyholders are all of 

the same age, and hence the n simulations can be regarded as applying to one 

single policyholder instead of one simulation for each of n policyholders. (These 

two approaches should lead to the same result.) 

For both male and female office pensioners, the simulation results for the two 

different sets of mortality rates are compared; the (1991-1994) life office 

pensioners tables without allowing for any future mortality improvement and the 

(1991-1994) life office pensioners tables with mortality improvement being 

allowed for using the log-link model suggested by Sithole et al (2000). In all 

cases, the maximum number of simulations that can be handled by Excel 

(65,000) has been used. 
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3.3.2 Simulation results 

3.3.2.1 Simulated distributions based on various mortality bases for female 
pensioners aged 60 

As mentioned above, a single annuity with annual payment of £1 payable each 

year to a female life office pensioner aged 60 is considered and a 6% pa interest 

rate is used for discounting annuity payments. 

Projected rates of mortality are produced by applying the reduction factors 

developed by Sithole et al (2000) to the q-type mortality rates from the base table 

«1991-1994) mortality table). An adjustment is needed, as the reduction factor is 

defined as a ratio of the forces of mortality rather than mortality rates. The 

approximation given by Waters and Wilkie (1987) for qx as a function of J.lx is 

used. 

q = 0.5(J.lx + f.JX+I) 
x 1 + 0.5 J.lx+1 

(3.3) 

Table 3.3 shows, the summary ofthe descriptive statistics ofthe distribution of 

present values of annuities under the two mortality bases assumed; the (1991-

1994) life office pensioners tables without allowing for any future mortality 

improvement (case A) and the (1991-1994) life office pensioners tables with 

mortality improvements being allowed for using the log-link model suggested by 

Sithole et al (2000) (case B). The table also shows the analytical value for the 

expected present value (EPV) which has been calculated in each case. 
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Table 3.3: Summary of the descriptive statistics of the simulated distributions- female pensioners aged 60 

(1) (2) (3) (4) (5) 1(1 )-(5)1/(5) 
Age and Mean value Standard Coefficient of Skewness Analytical EPV Percentage 

mortality basis deviation Variation Error 

60,A 11.411 3.1090 27.24% -1.37 11.40663 0.04% 

60,B 11.762 3.1370 26.67% -1.50 11.76808 0.05% 

-
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From table 3.3 it can be seen that the mean value ofthe distributions under the 

two different mortality bases is close to the analytical value obtained using a 

deterministic approach. This can be confirmed by the fact that the percentage 

error in the mean value is less than 0.1 %. The standard deviation for the 

distribution of annuity values when mortality improvements are allowed for 

using Sithole et al reduction factors (basis B) is higher than the corresponding 

one under basis A. However, the coefficient of variation - which is a more 

meaningful and reliable measure of variability- is lower for basis B than it is for 

basis A, reflecting the fact that the lighter the mortality assumed the less 

dispersed is the distribution of annuity payments and the more reliable the mean 

as an estimate of the annuity payments. Also, as expected, the distribution under 

basis B is more skewed to the left than the one for basis A. 

A graphical presentation of the simulated distributions based on the two different 

mortality bases is shown in figure 3.1. 
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Figure 3.1: Distribution of annuity payments for female pensioners aged 60 based on two mortality bases 
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We observe, as we have mentioned above, that the basis allowing for 

mortality improvements produces a distribution that is more skewed to the 

left than the distribution obtained by using the (1991-1994) mortality tables 

with no allowance for mortality improvement. This reflects a higher expected 

present value ofthe annuity when we allow for mortality improvements. 

3.3.2.2 Simulated distributions based on various mortality bases for male 
pensioners aged 60 

As for female pensioners, a single annuity with annual payment of £1 payable 

each year to a male life office pensioner aged 60 is considered and a 6% pa 

interest rate is used for discounting annuity payments. Projected rates of 

mortality are produced by applying the reduction factors developed by Sithole et 

al (2000) to the q-type mortality rates from the base table «1991-1994) mortality 

table using the same approximation as before. 

Similarly to table 3.3, table 3.4 shows, the summary of the descriptive statistics 

of the distribution of present values of annuities under the same two mortality 

bases used before for female pensioners; the (1991-1994) life office pensioners 

tables without allowing for any future mortality improvements (basis A) and the 

(1991-1994) life office pensioners tables with mortality improvement being 

allowed for using the model suggested by Sithole et al (2000) (basis B). 
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Table 3.4: Summary of the descriptive statistics of the simulated distributions- male pensioners aged 60 

(1) (2) (3) (4) (5) 1(1 )-(5)1/(5) 
Age and mortality Mean value Standard Coefficient of Skewness Analytical EPV Percentage 

basis deviation variation Error 

60,A 10.320 3.350 32.46% -1.04 10.32564 0.05% 

60,B 10.967 3.463 31.58% -1.19 10.97443 0.07% 
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From table 3.4, it can be seen that, as for female pensioners, the mean value of 

the distribution for all ages under the two different mortality bases is close to the 

analytical value. Again, this can be confirmed by the fact that the percentage 

error in the mean value is less than 0.1 %, as it is for the case of female 

pensioners. We observe that the coefficient of variation for male pensioners is 

higher under the two mortality bases than the corresponding values for female 

pensioners. This reflects a higher variability in the distribution of the present 

value of annuity payments in the case of male pensioners. Also, as expected, the 

mean of the distribution of annuity payments for the two bases is less than the 

corresponding ones for female pensioners, reflecting the higher expected present 

value of the annuity value for female life office pensioners. As for female life 

office pensioners, the coefficient of variation is lower for basis B than it is for 

basis A, and the distribution of annuity payments under basis B is more skewed 

to the left than the one for basis A. 

A graphical presentation ofthe simulated distributions based on the two different 

mortality bases is shown in figure 3.2. 
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Figure 3.2: Distribution of annuity payments for male pensioners aged 60 based on two mortality bases 
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It can be seen that, the basis allowing for mortality improvements for male 

pensioners produces a distribution that is more left skewed than the distribution 

obtained by using the (1991-1994) mortality tables with no margin for mortality 

improvements. Again this reflects a higher present value of annuities after 

allowing for mortality improvements. It is also worth mentioning that the level of 

the skewness for the two mortality bases is less than the corresponding levels for 

female pensioners. This effect can be attributed to the lower mortality rates for 

females which lead to higher expected annuity values. 

Figure 3.2 shows that the distributions are somewhat more spread out than the 

corresponding ones for female pensioners (Figure 3.1), confirming the 

conclusion obtained above regarding the higher variability in the distribution of 

annuity payments for male pensioners. 

3.4 Sensitivity Analysis 

The value of annuity payments is dependent on many factors, such as age, rate of 

interest and the assumed level of mortality. Hence, the effect of these factors on 

the distribution of annuity payments needs to be investigated. Incorporating 

mortality improvements is essential but not enough by itself, as allowing for . 

mortality improvement using a certain model does not mean that annuity and 

pension providers are protected against longevity risk. In this section, we extend 
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the analysis of McCrory (1986) and undertake sensitivity tests in order to 

investigate how the performance of the model varies with changes in age, 

interest rate and the parameters of the mortality model. In each case, the 

distributions comparable to those in figure 3.1 and 3.2 have been derived. 

3.4.1 Changes in the distribution of annuity values with age 

This section investigates for each of the two bases A and B mentioned above 

how the distribution of annuity payments changes with age for both male and 

female life office pensioners. Since we are interested in analysing the mortality 

risk for pensioners, the ages that have been considered for sensitivity testing 

purposes are those above age 60. Simulated distributions of annuity payments for 

the two bases have been considered for ages 70 and 80 at inception. 

Table 3.5 shows, for ages 70 and 80 for both male and female life office 

pensioners, the summary of the descriptive statistics of the distribution of present 

values of annuities under the same two mortality bases used before; the (1991-

1994) life office pensioners tables without allowing for any future mortality 

improvements (basis A) and the (1991-1994) life office pensioners tables with 

mortality improvement being allowed for using the model suggested by Sithole 

et al (2000) (basis B). 
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Table 3.5: Summary of the descriptive statistics of the simulated distributions for different ages at inception 

(1) (2) (3) (4) (5) 1(1)-(5)1/(5) 
Age and Mean Standard Coefficient of Skewness Analytical EPV Percentage 

mortality basis value deviation Variation Error 
Female 70,A 8.7061 3.5320 40.57% -0.64 8.715579 0.11% 
Office 

Pensioners 70,B 8.9734 3.6059 40.18% -0.70 8.968883 0.05% 

80, A 5.8562 3.3292 56.85% -0.02 5.853390 0.05% 

80,B 5.9492 3.3909 57.00% -0.02 5.972037 0.38% 

Male 70, A 7.4722 3.5423 47.41% -0.36 7.462788 0.13% 
Office 

Pensioners 70,B 7.8617 3.7143 47.25% -0.41 7.881624 0.25% 

80, A 4.7579 3.1147 65.46% 0.25 4.762788 0.10% 

80,B 4.9475 3.2327 65.34% 0.23 4.946035 0.03% 

-
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From table 3.5 it can be seen that, as age at inception increases, the relative 

differences between the distribution of annuity payments that allow for future 

mortality improvements (basis B) and the distribution of annuity payments 

without an allowance for any future mortality improvements decrease, reflecting 

the decreasing effect of mortality improvements as age increases. It can also be 

seen from the table that the additional cost arising from incorporating future 

mortality improvements for age 80 is still important and is more significant in 

the case of male pensioners than it is for female pensioners. The table also shows 

that the standard deviation for female pensioners aged 70 is higher than the 

corresponding one for female pensioners aged 60 for the two mortality bases. It 

is also clear that the coefficient of variation has increased dramatically for the 

two mortality bases at age 70 and 80 compared to the corresponding values for 

female pensioners aged 60. Similarly for male pensioners, the coefficient of 

variation has increased dramatically for the two mortality bases at ages 70 and 80 

compared to the corresponding values for male pensioners aged 60. This reflects 

a higher relative level of variability in the distribution ofthe present value of 

annuity payments as age increases. 

As for the case at age 60, we observe that the coefficient of variation for male 

pensioners for all ages is higher under the two mortality bases than the 

corresponding values for female pensioners. This reflects a higher variability in 

the distribution of the present value of annuity payments in the case of male 
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pensioners. A graphical presentation ofthe simulated distributions based on the 

two different mortality bases for both female and male life office pensioners is 

shown in figures 3.3 and 3.4 respectively. 
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Figure 3.3: Distribution of annuity payments for female pensioners based on two mortality bases for ages 70 and 80 
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Figure 3.4: Distribution of annuity payments for male pensioners based on two mortality bases for ages 70 and 80 
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We observe that, for all ages, the basis allowing for mortality improvements 

produces a distribution that is more skewed to the left than the distribution 

obtained by using the (1991-1994) mortality tables with no allowance for 

mortality improvement. This reflects a higher expected present value ofthe . 

annuity when we allow for mortality improvement. However, the difference 

for ages 70 and 80 is not as great as it is for age 60, an effect which reflects 

the decreasing effect of mortality improvements as age increases. Moreover, 

we note that, for age 80, the distribution based on the (1991-1994) mortality 

tables exhibits a very similar pattern to that obtained after allowing for 

mortality improvements, as after age 80 the effect of mortality improvement 

is of lesser significance. In general, under the two mortality bases, the level 

of left skewness for ages 70 and 80 is less than for age 60 as the distribution 

of the present value of the annuity payments shifts to the left (with the 

expected value decreasing) as age increases. 

Also we note that for male pensioners at age 80, the two distributions are 

positively skewed. Although this feature is not observed for the case of female 

pensioners at age 80, it is not unexpected. Thus, we expect the distribution of the 

present value of annuity payments to change from a negatively skewed to a 

positively skewed distribution at some age. This reflects the fact that the present 

value of annuity payments decreases as age increases. In fact, at age 80, both the 

distribution of the present value allowing for mortality improvements and the 
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distribution based on the (1991-1994) mortality tables, which does not allow for 

mortality improvements, exhibit a similar pattern. This is because, after age 80, 

the effect of mortality improvements is of lesser significance. 

Figures 3.3 and 3.4 show that for all ages the distributions are somewhat more 

spread out than the corresponding ones for female pensioners, reflecting a higher 

variability for male pensioners. 

3.4.2 Changes in the distribution of annuity values with the rate 
of interest 

This section investigates for each model how the difference in the value of an 

annuity changes with changes in the interest rate. The simulated distributions of 

annuity values for both males and females life office pensioners have been 

produced at rates of interest 2%, 4% and 8%. For both male and female life 

office pensioners and at all the different assumptions of interest rates a single 

annuity with annual payment of £1 payable each year to pensioner aged 60 is 

considered, Mortality rates assumed are the projected rates of mortality produced 

by applying the reduction factors developed by Sithole et al (2000) to the q-type 

mortality rates from the base table ((1991-1994) mortality table). 

Table 3.6 shows, at different rates of interest, for both male and female life office 

pensioners aged 60, the summary of the descriptive statistics of the distribution 
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of present values of annuities under the mortality basis (B); the (1991-1994) life 

office pensioners tables with mortality improvement being allowed for using the 

model suggested by Sithole et al (2000). 
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Table 3.6: Summary of the descriptive statistics of the simulated distributions for different rates of interest 

(1) (2) (3) (4) (5) 1(1)-(5)1/(5) 
Rate of Mean Standard Coefficient of Skewness Analytical EPV Percentage 
Interest value deviation Variation Error 

Female 2% 18.325 6.456 35.23% -0.68 18.30006 0.136% 
Office 

Pensioners 4% 14.469 4.389 30.33% -1.10 14.45414 0.103% 
I 

6% 11.762 3.137 26.67% -1.50 11.76808 0.052% 

8% 9.8343 2.329 23.68% -1.91 9.827503 0.069% 

Male 2% 16.617 6.718 40.43% -0.48 16.59377 0.140% 

Office 
Pensioners 4% 13.326 4.715 35.38% -0.85 13.31154 0.109% 

6% 10.967 3.463 31.58% -1.19 10.97443 0.068% 

8% 9.264 2.631 28.40% -1.52 9.257328 0.072% 
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From table 3.6 it can be seen that, as the interest rate increases, the mean value of 

the distribution of annuity values decreases and more skewed to the left is the 

distribution of annuity values. As expected, this effect arises because at higher 

rates of interest, the effect on the expected present value of the annuity of 

mortality improvement is reduced by the greater discount applied to future 

payments (see McCrory, 1986). It can also be seen that (as is well known) the 

cost of life annuity is very sensitive to the rate of interest used in the calculation, 

with the mean value of the simulated distributions for a 2% interest rate being 

almost double the corresponding one for a rate of interest of 8% for female 

pensioners. We notice similar behaviour but with a lesser effect for male 

pensioners, indicating that the lower the mortality level the more sensitive the 

distribution of annuity payments to the changes of the rate of interest. 

Table 3.6 also shows that for both male and female pensioners and for all 

scenarios of interest rates used, the lower the rate of interest the higher the 

standard deviation and more importantly the higher the coefficient of variation of 

the distribution of annuity payments. This indicates higher variability in the 

distribution of annuity payments at lower rates of interest for the same level of 

mortality assumed. A graphical presentation of the simulated distributions based 

on the different interest rate bases for both male and female life office pensioners 

is shown in figure 3.5. 
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Figure 3.5: Distributions of annuity payments for female and male pensioners aged 60 at different rates of interest 
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Figure 3.5 displays the distribution of present values for rates of interest 2, 4, l> 

and 8% for both male and female pensioners. It is clear from the graphs that the 

distribution is much more spread at lower rates of interest, and as the rate of 

interest increases the distribution of annuity payments becomes more peaked-

this confirms the conclusion regarding the higher variability of the distribution of 

annuity payments at lower interest rates. This means that, for a given age and 

level of mortality, we would have much more confidence in the calculations of 

the present value at higher rates of interest. 

3.4.3 Changes in the distribution of annuity values with level of 
Mortality assumed 

This section investigates the effect of changing the parameters of the mortality 

proj ection model (in a particular way) on the distribution of annuity values. We 

consider the effect of a change in the level of mortality improvement used in the 

mortality projection model. All changes are compared with the original reduction 

factors implied by the models of Sithole et al described in section 2. 

Two cases will be considered, a 35% increase in the reduction factors, and a 35% 

decrease in the reduction factors (over a 65 year time horizon for an individual 

initially aged 55) for both males and females, Under the two cases, if we define a 

to be the reduction factor for a life attaining age x and after a period of t years 

from the base year, then 
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a = RF(x,/) = exp[(a + ,&)/] 

a ° is defined as 

where c is equal to 0.35 (assuming a lower level of mortality improvement) or-

0.35 (assuming a higher level of mortality improvement) when x=55 and 

duration 1=65. The value of a* can be found as follows: 

• a • 
( OJ a = log t -xp (3.4) 

Ifwe assume also that p=p., then (3.4) can be expressed as: 

(3.5) 

where a = RF(55,65). 

The revised reduction factor, Rpo (x, I) , for each model will be as follows: 

• For Female life office pensioners: 

c=0.35 

c = -0.35 

RFO (X,/) = exp[( - 0.046034006 + 0.000489x,] 

RFo (x, 1 ) = exp[( - 0.057278429 + 0.000489x,] 

• For Male life office pensioners: 

c = 0.35 

c=-0.35 

Rpo (x,t) = exp[( - 0.074229006 + 0.000744x, ] 

RFo (x,t) = exp[(- 0.085473429 + 0.000744x,] 

As before, we consider a life aged 60 and interest rate of 6% under each model. 
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Table 3.7 shows, for both male and female life office pensioners aged 60, the 

summary ofthe descriptive statistics ofthe distribution of present values of 

annuities under the (1991-1994) life office pensioners tables with mortality 

improvement being allowed for using the two mortality improvements bases; a 

35% increase in the reduction factors of the model suggested by Sithole et al 

(2000) ( case 1), and a 35% decrease in the reduction factors of the model 

suggested by Sithole et al (2000) (case 2). 
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Table 3.7: Summary of the descriptive statistics of the simulated distributions for different scenarios of mortality 
improvements 

Mortality (1) (2) (3) (4) (5) 1(1)-(5)\/(5) 
basis Mean Standard Coefficient of Skewness Analytical EPV Percentage 

value deviation variation Error 
Female 1 11.636 3.101 26.65% -1.49 11.626 0.086% 
Office 

Pensioners 2 11.989 3.173 26.46% -1.54 11.981 0.067% 

Male 1 10.838 3.412 31.48% -1.18 10.829 0.083% 
Office 

Pensioners 2 11.202 3.517 31.40% -1.22 11.190 0.107% 

--- ... -
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Table 3.7 shows, as expected, that the mean of the distribution of annuity 

payments is higher at lower level of mortality assumed (case 2) for both male 

and female pensioners. The distribution of annuity payments is more skewed to 

the left under (case 2) where greater improvement in mortality is assumed than 

the corresponding one under (casel) for both male and female pensioners. Again 

the coefficient of variation is lower for mortality improvement basis (case 2) for 

both genders, which verifies the conclusion we had earlier that the coefficient of 

variation is lower for the lighter mortality group which reflects lower variability 

in the distribution of annuity payments for this group. 

A graphical presentation of the simulated distributions based on the two different 

bases for mortality improvement for both male and female life office pensioners 

is shown in figure 3.6. 
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Figure 3.6: Distributions of annuity payments for female and male pensioners aged 60 for different scenarios of 
mortality improvements 

Dstrh.ti:nd Resa1:\ot!leCII: cftnrt nata8.y ilptMmrt bas 
Rm!IeAnlbBs.1D 

\ ., 

no 26 5.2 713 1Q4 130 15.6 182 
Ae!e'tvaedamAyP¥TBts 

.'-

E;U
. 

-C:H!1 
- - C:H!2 

83 

IlstrbJi:ndRe!lrt"*.eCII: cI'renrt nata8.y i1ptMnet lB!iI5 
MRAnicres.1D 

no 26 5.2 713 1Q4 130 15.6 182 
Resat8ectan.i:yJl¥11!tS 

~
. 

- C:H!1 
- - C:H!2 



Figure 3.6 shows that the distribution of annuity payments under basis 2 is 

shifted to the right with a longer left tail as compared to the corresponding one 

under basis 1 for both male and confinning what has been mentioned earlier. 

3.5 Summary and Remarks 

Using simulation techniques has the advantage of providing a better assessment 

for the risk under question, as it gives the whole distribution ofthe present value 

of annuity payments while the detenninistic approach uses only the mean value 

of the distribution which does not provide any infonnation regarding the level of 

the dispersion about the mean value. It also provides a very powerful tool in the 

sense that it allows modelling of different scenarios at the same time which gives 

a better understanding ofthe results obtained. However, it is worth mentioning 

that, an alternative approach for sensitivity analysis with respect to age at entry, 

gender, interest rate and the level of mortality improvements assumed would be 

by considering the probability distribution ofthe curtate random life time of 

individual annuity present value. However, using the simulation approach to 

construct the probability distribution of life annuity present value and to perfonn 

sensitivity analysis in this chapter was preferred for the reasons mentioned above 

and also because this approach can be extended into more complex contexts as it 

can be seen in chapter 5 and 6. 
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Using the simulated distributions, we can draw some conclusions regarding the 

mortality risk in the context of a life annuity portfolio: 

• Generally, there is less variation in the distribution ofthe present value of 

annuity payments for female pensioners than in the corresponding one for 

male pensioners, and for both genders the coefficient of variation 

increases with age. 

• As age at inception increases, the effect of mortality improvement 

decreases and the shapes of the distributions become similar to each 

other. 

• For younger ages at inception, the shape of the distribution of present 

value of annuity payments is negatively skewed. With increasing age, the 

distribution becomes less negatively skewed until, at some point, it 

becomes positively skewed, reflecting the fact that the expected present 

value of annuity payments is lower for older ages. This effect has been 

shown for males at around age 80. 

As we have mention in section 3.4 the distribution of annuity payments is very 

sensitive to the rate of interest used in valuations. This means that the lower is 

the rate of interest, the higher is the effect of the longevity risk on the present 

value of annuity payments. In other words, the effect on the present value of 

annuity payments of living longer than average is increased by the lower 

discounting applied to the future payments in a low interest environment. 
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As we have also mention in section 3.4 the distribution of annuity payments is 

very sensitive to the level of mortality improvement assumed valuations. It has 

been also noted that decreasing the reduction factors (i.e. assuming higher 

mortality improvements.) (Case 2) has a stronger effect on the additional cost of 

annuity than increasing the reduction factors by the same percentage since the 

mean value of distribution of annuity payments when reduction factors are as 

Sithole (2000) is closer to the mean value ofthe distribution that assumes a 

lower improvement in mortality (case 1) than the one assumes a higher 

improvement in mortality (case 2). 
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Chapter 4 

Entropy, Longevity and the Cost of Life 
Annuity 

4.1 Introduction 

The classical concept of entropy has been found to be very useful for describing 

the information available in living systems in a variety of contexts and is 

considered to be the bedrock of classical information theory (introduced by 

Shannon, 1948). For a concise discussion of the important mathematical 

concepts of information theory and entropy, see Khinchin (1957). One 

application of information theory is the concept of population entropy as a 

measure of the diversity ofthe population introduced by Demetrius (1976). 

Many demographers have considered analyzing the change in life expectancy 

over time. Pollard (1982, 1988), Arriaga (1984), Pressat (1985) and Andreev 

(1982, 2002) focused on discrete difference in life expectancy at two moments in 

time, while Keyfitz (1977) considered continuous changes in life expectancy and 

derived a formula that relates the time-derivative of life expectancy to the 

entropy of life table survivorship where the entropy measure is used as an index 
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to measure the effect of proportional change in the force of mortality on life 

expectancy. This approach extends the definition of the entropy of a population 

that has been derived and applied in population biology by Demetrius (1976) to 

measure the variability of the contribution of the different age classes to the 

stationary age distribution. 

In this chapter, the fonnula derived by Keyfitz (1977) will be extended to 

measure the effect of any changes in the force of mortality on the cost of life 

annuity for different scenarios of interest rates and levels of mortality 

improvements. This will allow different sources of risk in a life annuity contract 

to be summarized in a single figure index. 

The chapter is organized as follows. In section 4.2, a description of the definition 

of entropy in demography and how it can be extended to measure the effect of 

proportional change in the force of mortality on the cost of life annuity is given. 

In section 4.3, numerical values for the entropy measure for life annuities over 

the whole age range are obtained and analysed for different interest rates using 

English life tables over the period from 1851 to 1991 for both males and females. 

In section 4.4, numerical values for the entropy measure for life annuities are 

derived for different interest rates using different mathematical models for 

mortality projection for both male and female aged 60 as an attempt to gain a 

better understanding regarding the properties of the entropy measure. The 
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mortality models that are used in section 4.4 are: the Gompertz model and the 

Sithole et al (2000) model that has been described earlier in chapter 2. Section 

4.5 will deal with testing the sensitivity of the results obtained in section 4.4 with 

regard to the different factors that are likely to affect the value ofthe entropy 

measure. In this study, the effect of gender, assumed interest rate and the level of 

mortality improvement on the mortality are investigated. Lastly, section 4.6 

discusses the overall conclusions and remarks. 

4.2 Entropy and Mortality 

In this section, we will derive the formula for the entropy measure (11) for both 

the life expectancy at birth as obtained by Keyfitz (1977), and the corresponding 

formula in the case of a life annuity. 

4.2.1 Entropy for life expectancy at birth 

Entropy as defined by Demetrius (1976) is a single figure index used to measure 

the effect on life expectancy at birth due to a proportional change in the force of 

mortality over the whole age range. 

Suppose that the force of mortality flx at age x is multiplied by (1 + rp) , so that 

p; = J.Jx x (1 + rp), where rp is a constant change in the force of mortality at all 

ages Then the new probability of surviving till age x becomes 
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(4.1) 

where 

And the new life expectancy is 

• t» 

; 0 = fop J 1+ 9' ) da (4.2) 
o 

In order to find the effect of small changes in q; on the expectation of life, we 

consider the derivative of equation (4.2) with respect to q; 

t» 

= J(lnaPo)exp[lnaP o+q; Ina P o}ta 
o 
t» 

= f(lnaPo)exp[(l +q;)lnaPo ~a 
o 
t» 

= r(ln P ) p(I+9') da J' 1/ 0 1/ 0 
o 
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The quantity (4.3) cannot be positive, since a Po cannot be greater than 1 and 

a p~I+") is always positive. 

In the neighbourhood of rp = 0 we have 

(4.4) 

where H is the entropy measure (or information in other contexts) and can be 

thought of as minus the weighted average value of InaP 0' weighted by a Po. The 

ratio of the integrals in (4.4) is always negative, so that H is a positive quantity. 

The value of H can be as low as zero if all mortality was concentrated at a certain 

age. Thus, as mortality improves, we would expect a larger fraction of deaths to 

occur at older ages, reSUlting in a drop in the value of H so that it becomes closer 

to o. Keyfitz (1977) and Demetrius (1979) suggested that, ifthe force of 

mortality is the same at all ages, H will take a value of 1 and that will represent 

the maximum entropy. In other words, the value of H ranges between 0 and 1. 

However, as noted by other demographic researchers it is clearly possible that 

the entropy value can exceed unity. This could happen if the survival curve is 

characterized by extremely high death rates at young ages. In this case, a 
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reduction of mortality by a fixed factor at all ages can result in even larger gains 

in life expectancy, as individuals who survive the first few years ofHre can 

expect to live many more years. (see Goldman and Lord (1986, 1987) and 

Hakkert (1987). 

• 
Table 4.1 shows the value of the complete expectation of life at birth eo and the 

corresponding entropy measure H for males and females in the United States 

over the period 1919-21 to 1959-61. 

Table 4.1: Values for the complete life expectancy and the entropy measure 
for males and females United States ,~ 

Males Females 

• H • H 
eo eo 

1919-21 54.49 0.3804 56.41 0.3547 

1924-26 56.34 0.3401 59.01 0.3113 

1929-31 57.27 0.3272 60.67 0.2942 

1934-36 58.53 0.3105 62.58 0.2725 

1939-41 61.14 0.2747 65.58 0.2361 

1944-46 62.26 0.2632 68.11 0.2087 

1949-51 65.28 0.2260 70.86 0.1823 

1954-56 66.45 0.2134 72.61 0.1660 

1959-61 66.84 0.2083 73.4 0.1594 

Source: Computed from data III Keyfitz and Fheger (1968) 

From table 4.1, we can see that the higher the expectation of life the lower the 

value for the entropy measure H. This is because as life expectancy at birth rises, 
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it becomes less sensitive to changes in the force of mortality. This is why we 

expect the entropy measure H to decrease over time due to mortality 

improvements. It can be noted from the table that the value for H is lower for 

females than the corresponding one for males for the same reason. 

The theory developed above seeks to find the effect on expectation of life of a 

uniform proportional excess in the force of mortality, Px' This theory can be 

extended to find the corresponding entropy value for annuities as shown below. 

4.2.2 Entropy for Annuities 

Define p; to be the new force of mortality (as defined in 3.2.1), then the new 

value of a life annuity at age x becomes 

GO 

a; = J,px • exp[-&}it 
o 

GO 

= Je Px )(1+9') exp[- 81}it (4.5) 
o 

where £5 is the force of interest and p; = Px x (1 + <p) • 
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The effect of small change in rp on the corresponding value of life annuity at age 

x can be expressed in the same manner as in section 4.2.1 to be 

(4.6) 

We can then find an expression of the ratio between the value oflife annuity at 

age x when the force of mortality is jJ; and the corresponding one when the force 

of mortality is J1 x as follows 

(4.7) 

where the ratio is expressed as a function of rp, the proportional change in the 

force of mortality. 

Equation (4.7) can then be expanded using a Taylor expansion as follows 

/(rp) = /(0) +qf'(O) +!rp2 /"(0) +....... (4.8) 
2 

Using the result obtained in equation (4.6) 
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flu 
f(rp) -1 = -::L = -Hrp 

ax 

where 

GO 

- J(IogetPxX,pJexp[-&}it 
H = ---:0:.....-_______ _ (4.9) 

Here H is the entropy measure for an annuity and can be thought of as minus the 

weighted average value ofln,P x' weighted by,Px exp[-O't]. The ratio of the 

integrals in (4.9) is again always negative, so that H is a positive quantity. As 

before, for a constant force of interest 0' , the value of H can be as low as zero if 

all mortality were concentrated at a certain age. Thus, as mortality improves, we 

would expect a larger fraction of deaths to occur at older ages, reSUlting in a drop 

in the value of H so that it becomes closer to o. Again as discussed earlier as 

mortality increases the value of H increases, but the pace by which this happens 

is dependant on the concavity of the survivorship curve of the population in 

question. Also, as the value of 0' increases H is expected to decrease, as any 

change ofthe force of mortality is expected to have a lower effect on the cost of 

life annuity at high interest rates. 
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The theory developed in this section seeks to find the effect on the value of an 

annuity of a uniform proportional increase or decrease in the force of mortality 

over the age range. However, this is unlikely to be the case in practice as 

mortality changes in different proportions at different ages. One way to deal with 

this problem is to calculate the proportional change in the force of mortality that 

will have the same effect on the value of a life annuity as a set of different 

changes at different age~ suggested by a mortality model. 

4.3 Numerical results for H using English Life Tables 

In this section the values ofthe entropy measure H will be calculated using 

English Life mortality tables over the period from 1851 to 1991, so that the 

improvement in mortality can be taken into account. Calculations have been 

done for both males and females at different rates of interest. The rates of interest 

that have been used are 0%, 2%, 4%, 6% and 8%. Three scenarios for the age 

range have been considered in the calculations namely, calculating H over the 

whole age range (i.e. 0 - 110) and a subset of the age range (60-110 and 70-110). 
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4.3.1 Numerical results for H over the whole age range 

In order to calculate values for H we need to calculate the ratio of integrals in 

equation (4.9) which is not convenient for numerical purposes, and hence an 

approximation is needed to make the calculations more convenient. 

Define: 

and t E Jt=t~ exp( -&) (4.10) 

In this case and for numerical evaluation purpose, we calculate tQx from: 

,Q, =-lfi:' )=-In,P, (4.11) 

Then, the mean value theorem for integrals can be used, and we can replace the 

integrals in (4.9) by a sum of one-year integrals, leading to the following 

approximation: 

(4.12) 

Equation (4.12) can then be used to calculate the values of Hover the whole age 

range, i.e. when x=O. 
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Table 4.2 shows the values of the entropy measure, H, over the whole age range 

for females using different interest rates and English life tables over the period 

(1851-1991 ). 

Table 4.2: Entropy values over the whole age range - Females 

English Life Interest Rate 
Table 

(Females) 0% 2% 4% 60/0 8% 
1991 0.13763 0.06536 0.02948 0.01630 0.01124 
1971 0.15825 0.08513 0.05013 0.03527 0.02906 
1951 0.18431 0.10951 0.07200 0.05497 0.04722 
1931 0.29546 0.20531 0.15584 0.13011 0.11620 
1911 0.41575 0.31363 0.25583 0.22418 0.20592 
1891 0.54386 0.42841 0.35996 0.32021 0.29591 
1871 0.60370 0.47632 0.39873 0.35206 0.32248 
1851 0.64237 0.50796 0.42498 0.37429 0.34171 

Table 4.2 shows that, as mortality has became lighter, the value for H has 

decreased, reflecting the fact that in a low mortality environment any change in 

the force of mortality will have a smaller effect on the cost of life annuity as 

compared to the corresponding effect in a high mortality environment. And, as 

expected, the effect is of lesser importance at higher rates of interest, as we can 

see that, for the same mortality table used, the value of H decreases when the rate 

of interest increases. Table 4.3 shows the corresponding values for H for males. 
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Table 4.3: Entropy values over the whole age range - Males 

English Life Interest Rate 
Table 

(Males) 0% 2% 4% 60/0 8% 
1991 0.15576 0.07926 0.04213 0.02602 0.01916 
1971 0.18524 0.10556 0.06552 0.04725 0.03900 
1951 0.21369 0.13309 0.09115 0.07111 0.06152 
1931 0.33543 0.24201 0.18957 0.16149 0.14593 
1911 0.46447 0.35892 0.29805 0.26396 0.24392 
1891 0.60601 0.48756 0.41643 0.37442 0.34832 
1871 0.66110 0.53117 0.45144 0.40293 0.37184 
1851 0.68864 0.55498 0.47204 0.42093 0.38774 

Table 4.3 shows that a similar picture emerges for males. The value of H 

decreases as mortality improves, and again as the rate of interest increases the 

value of H decreases. It can also be seen from tables 4.2 and 4.3 that at all levels 

of interest rates and for all mortality levels the value of H is lower for males than 

females. 

A graphical presentation of the values for H for different English life tables and 

different rates of in~erest for both males and females is shown in figure 4.1. 
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In addition to the conclusions obtained earlier from tables 4.2 and 4.3, figure 4.1 

shows that for both males and females, at high levels of mortality (earlier years), 

any change in the force of mortality does not affect the entropy measure as much 

(the slope is not that steep). Moreover, this effect decreases with the increase in 

the interest rate such that at high mortality level the curve looks almost 

horizontal. The same applies when mortality is at a low level. However, when 

the mortality is neither very high nor very low, any change in the force of 

mortality will have a stronger impact on the value of the entropy measure. We 

can express this feature by dividing the curve into three sections - one on the far 

left where the mortality level is high (A) , one on the far right where the 

mortality level is low (C) and the section in the middle where mortality is neither 

high or low (B). For both A and C the slope of the curve shows that the value of 

H is inelastic, hence, changes in the force of mortality will not have a great effect 

on the value of H, while in B the slope is steeper reflecting the fact that the value 

of H is elastic, i.e. changes in the force of mortality will have a strong effect on 

the value ofthe entropy measure. 

4.3.2 Numerical results for H at older ages 

In this section, the values for H are calculated at older ages, namely at ages 60 

and 70, for both males and females. This would be of more interest, as far as 

longevity risk is concerned, than analysing the values of H that have been 
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calculated over the whole age range (i.e. at age 0) as it would give an idea about 

the effect of any change of the force of mortality on the cost of life annuity at age 

60 and 70 at different rates of interest. This would be more meaningful than the 

corresponding effect on the cost of life annuity at age 0, which was helpful in 

providing a better understanding regarding the properties ofthe entropy measure 

H. 

Equation (4.12) can then be used to calculate the values of H at older ages in the 

same manner as before but by using x=60 or x=70. 

4.3.2.1 Numerical values for H for females and males - age 60 

The entropy measure has been calculated for both females and males at age 60, 

at different rates of interest and using mortality rates from the English Life table 

over the same period as before. 

Tables 4.4 and 4.5 show the values of the entropy measure H for females and 

males at age 60 using different interest rates and English Life Tables over the 

period (1851-1991). 

102 



T bl 44 E t a e . : n ropy va ues Ii F or ema es - al!e 60 
English Interest Rate 

Life Table 
Females 0% 2% 4% 6% 8% 

1991 0.37663 0.30309 0.24542 0.20056 0.16575 
1971 0.39191 0.32088 0.26432 0.21954 0.18415 
1951 0.41319 0.34367 0.28772 0.24280 0.20675 
1931 0.45649 0.38500 0.32696 0.27992 0.24176 
1911 0.50177 0.42583 0.36423 0.31425 0.27361 
1891 0.53708 0.46164 0.39980 0.34906 0.30732 
1871 0.54043 0.46365 0.40088 0.34951 0.30735 
1851 0.54042 0.46310 0.39999 0.34843 0.30618 

Table 4.4 shows that the values of H are higher than the corresponding ones for 

females at age 0 reflecting the higher effect ofthe change in the force of 

mortality on the cost of life annuity in the higher mortality group. Again the 

higher the interest rate the lower is the effect of changes in the force of mortality 

on the cost of life annuity, and hence the lower are the values of H. We expect 

the value of H to decrease at lower levels of mortality so that for more recent life 

tables the values of H should be lower at all rates ofinterest. This is true except 

for the values of H that have been calculated using English life table at year 

1871, where the values of Hat all interest rates were slightly higher than the 

corresponding ones calculated using English life table at year 1851. 
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T bl 45 E t a e . : n rODV va ues ~ M I or a es - al!e 60 
English Life Interest Rate 

Table 
_(Males) 0% 2% 4% 6% 8% 

1991 0.44971 0.37382 0.31298 0.26434 0.22543 
1971 0.50313 0.42641 0.36414 0.31361 0.27250 
1951 0.49838 0.42714 0.36854 0.32038 0.28074 
1931 0.50284 0.43135 0.37259 0.32428 0.28448 
1911 0.54445 0.46890 0.40696 0.35610 0.31420 
1891 0.56787 0.49358 0.43209 0.38113 0.33877 
1871 0.56717 0.49114 0.42851 0.37686 0.33412 
1851 0.55978 0.48323 0.42038 0.36871 0.32608 

Table 4.5 shows that the values of H are higher than the corresponding ones for 

both males at age 0 and females at age 60 reflecting higher effect ofthe change 

in the force of mortality on the cost oflife annuity in the group which 

experienced higher mortality. As before, the higher the interest rate the lower the 

effect of changes in the force of mortality on the cost oflife annuity, hence, 

lower values of H. We expect the value of Hto decrease at lower levels of 

mortality so that for more recent life tables the values of H should be lower at all 

rates of interest, but again this was not always the case. The values of H have 

increased from 1851 to 1871 and then increased again from 1871 to 1891 for all 

rates of interest before they have started to decrease with the improvements in 

mortality until 1991 - except at a rate of interest of 0% - where H has increased 

again in 1971. 
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A graphical presentation ofthe values for H at age 60 for different English life 

tables and different rates of interest for both males and females is shown below 

in figure 4.2. 
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Figure 4.2: Entropy values for different English life tables at different rates of interest for both females and males at age 60 

Entropy values Females - age 60 Entropy values Males -age 60 

06 . __ .. ---- - 06 

I 055 055 : : ~ 05 
05 

045 
045 • • 

~ u U 0 4 
04

1 ""-~ 
.~-. ..... 

J: J: 035 

~ 035 ... --''' 
0.3 

~~ 
..... 

__ 8% 

03

1 
025 

0.25 0 .. 2 
.... 

0.2 1 ~ 0.'6 

0. '6 0.1 
'63) 1380 fil3() '900 2030 '63) 1380 fil3() '900 2030 

years year 

106 



From figure 4.2, we can see that as the rate of interest increases the value of H 

decreases for both males and females at all levels of mortality. Unlike the case 

when H was calculated over the whole age range (i.e. at age 0), the value of H 

does not always decrease approaching zero when mortality improves. In figure 

4.1 we have seen that H decreases as mortality improves but very slowly at both 

very high and very low levels of mortality to the extent that that the curve looks 

almost horizontal. A similar picture is observed here, for females at age 60 at a 

high level of mortality a considerable reduction in mortality is needed to 

decrease the value of H. Using the mortality rates of 1871 instead of 1851, 

although lighter, is not enough to decrease the value of H so it increased. When 

the reduction in mortality at this age becomes more considerable, the value of H 

started to decrease as mortality improves. 

The same happens in the case of males at age 60 at a both very high and very 

low levels of mortality, improvements in mortality rates are not sufficient to be 

translated into a material decrease in the value of H. 

We can conclude from this, that at very high and very low levels of mortality, the 

low value of H suggests that the cost oflife annuity is not responsive to changes 

in the force of mortality. On the other hand when the level of mortality does not 

lie in either extremity, any change in the force of mortality does affect the cost of 

a life annuity, and this leads to a higher value for H. Hence, the value of His 
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expected to be low at a very high mortality level till mortality improves enough 

such that the cost of life annuity is responsive to changes in mortality rates which 

will translate into an increase in the value of H, then any more improvements 

will have a lesser effect leading to a lower value for H. 

4.3.2.2 Numerical values for H for females and males - age 70 

The entropy measure H at age 70 has been calculated for both females and males 

at different rates of interest and using mortality rates from the English Life table 

over the same period as before. 

Tables 4.6 and 4.7 show the values of the entropy measure H for females and 

males at age 70 using different interest rates and English Life Tables over the 

period (1851-1991). 

T bl 46 E t a e . : n ropv va ues ~ F or ema es - a!!e 70 
English Life Interest Rate 

Table 0% 2% 4% 6% 8% 
1991 0.47921 0.41201 0.35639 0.31040 0.27233 
1971 0.51125 0.44676 0.39261 0.34711 0.30882 
1951 0.54388 0.48098 0.42779 0.38271 0.34438 
1931 0.58315 0.51998 0.46621 0.42034 0.38109 
1911 0.62284 0.55635 0.49991 0.45186 0.41079 
1891 0.64625 0.58218 0.52734 0.48024 0.43965 
1871 0.64680 0.58152 0.52576 0.47801 0.43694 
1851 0.64823 0.58211 0.52576 0.47757 0.43621 

Table 4.6 shows that the value of H decreases with the increase in the interest 

rates. As for the case for females at age 60, at very high level of mortality the 
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value of H has increased as mortality improves. This happens for years 1871 and 

1891. However, we note that it takes longer at age 70 for Hto start to decrease 

when mortality improves as compared to females at age 60. This is because at 

age 70 mortality rates are higher than the corresponding ones at age 60. 

The values of H are higher than the corresponding ones for females at age 60 and 

age 0 at all interest rates and for all levels of mortality. 

T bl 47 E t a e . : n rODV va ues ~ M I or a es - a2e 70 
English Interest Rate 

Life Table 0% 2% 4% 6%) 8% 
1991 0.57321 0.50578 0.44899 0.40108 0.36054 
1971 0.63256 0.56592 0.50928 0.46098 0.41965 
1951 0.61293 0.55242 0.50043 0.45562 0.41690 
1931 0.63241 0.57094 0.51812 0.47259 0.43320 
1911 0.65602 0.59145 0.53625 0.48888 0.44807 
1891 0.66521 0.60383 0.55085 0.50499 0.46515 
1871 0.66629 0.60274 0.54815 0.50111 0.46042 
1851 0.66581 0.60104 0.54558 0.49793 0.45682 

Table 4.7 shows that the values of H are higher than the corresponding ones for 

males at both age 60 and age 0 and females at age 70, reflecting the higher effect 

of the change in the force of mortality on the cost ofHfe annuity in the group that 

experiences higher mortality. The higher is the interest rate the lower is the effect 

of changes in the force of mortality on the cost ofHfe annuity, hence, the lower 

the values of H. 

At a very high level of mortality, the value of Hhas increased as mortality 

improves. Unlike males at age 60 and females at age 60 and 70 the value of H 
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has increased for all rates of interests at that low mortality level of 1971. One 

explanation could be that mortality has highly improved in this year for males at 

age 70 and more as compared to the rest ofthe cases, which have translated into 

a stronger effect on the cost oflife annuity at that age, hence, the higher value for 

H. In 1991 mortality has improved again, but the improvement was relatively 

less than the corresponding one in 1971, thus, the values of Hhas decreased 

reflecting a lower effect on the cost of life annuity at this level. 

A graphical presentation of the values for H at age 70 for different English life 

tables and different rates of interest for both males and females is shown in 

figure 4.3. 
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Figure 4.3: Entropy values for different English life tables at different rates of interest for both females and males at age 70 
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We can see that as the rate of interest increases the value of H decreases for both 

males and females at age 70 at all levels of mortality. Figure 4.3 shows that for 

bot~ males and females at age 70 at high levels of mortality the value of H 

increases with the improvements in mortality until it reaches a level when any 

more improvement is not going to cause a significant effect on the cost of life 

annuity. Thus, the values of H decrease as mortality improves. At low levels of 

mortality the values of H has increased for males in 1971 as we mentioned 

before it might be because there has been a remarkable improvements in 

mortality for males aged 70 and above at that year. This did not happen for 

females at age 70 one reason could be that they already experience a lower 

mortality level as compared to males at age 70 and it is less likely for a 

substantial improvement in the mortality to happen. 

4.4 Numerical results for H using a mathematical model 
for mortality and allowing for mortality improvements 

In this section, the values of the entropy measure H are calculated when 

mortality is assumed to follow a mathematical model instead of using mortality 

tables. This will allow us to better examine the different properties of H and how 

its value is affected by different factors. In section 4.4.1 mortality is assumed to 

follow the Gompertz model and improvements in mortality are allowed for using 

a reduction factor. For simplicity it is assumed that the reduction factor depends 

only on the time t from the base year. The reason behind the choice of the 
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Gompertz model is that it is a simple model, but at the same time it is reasonable 

for use at higher ages which are the ages, we are interested in, in this study. In 

section 4.4.2, mortality is assumed to follow the 1991-1994 mortality tables and 

a more sophisticated model is used to model mortality improvements, namely the 

Sithole et al (2000) mortality projection model discussed earlier in chapter 2. 

4.4.1 Gompertz law assumption 

We assume that the force of mortality is such that it follows the Gompertz's law, 

and then the base force of mortality at age x+t can then be expressed as 

Il!+t = exp[b + c(x + t)] (4.13) 

where b and c are parameters. If the reduction factor after t years the base year is 

defined as RF(t) = exp[- at] then the new probability for a life aged x to survive 

t years will be: 

,P; = ex{ -fp; •• dU] 

= exp[ - fexp[b + c(x + u>-au}iu] 

[ 
b(eXP(C - a) -1)] = exp -Il 
Z (c-a) 

(4.14) 
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Hence, 

00 

- I(loge,p·x x,p·x )exp[-&}it 
H = --"0'--_______ _ 

GO 

I,p; exp[-&}lt 

° 

, (J.l ) fexp ~ ((exp(c-a)t)-I) exp((c-a -c5)t)dt 
° c-a 

, (_ph ) 
fexp _x ((exp(c-a)t)-l) exp(-&).dt 
° c-a 

(4.15) 

So H(b,c,a,O) is a function ofb and c which represent the base mortality table, 

a which represents the level of mortality change and the force of interest 8 . 

Clearly the range of values that a can take is such that c is greater than a other 

wise the probability of survival in 4.14 will be greater than 1. H can be 

calculated for different levels of b, c, a and 8 in order to test the effect of the 

base table used, the level of mortality improvements and the force of interest on 

the value of H. 

Each of the integrals in (4.15) can be written as an incomplete gamma function, 

by several changes of variables. The formula and the derivation can be seen in 

Appendix (1). Alternatively, numerical approximation for integrals can be used 

to evaluate the integrals so that we obtain numerical values for H for different 
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levels of c, a and 8 . This can be done through standard statistical packages. In 

this section calculations have been carried out using a software known as 

Mathematica, which is a computational software popular in both social and 

natural sciences research. 

Calculations for H have been performed for female pensioners at age 60. The 

base mortality table used is the (1991-1994) mortality table. To perform the 

calculations we need to have values for Jl~ ,c, a and 8 . The value for Jl~ can 

be taken directly from the base mortality table (i.e. 1991-1994 tables), and the 

Gompertz model can be fitted to estimate c as follows: 

The force of mortality is defined as Jl!+1 = exp[b + c(x + I)], 

where C can be thought of as the slope of the regression line that relates InJ.l!+I 

with age, x. We have defined the reduction factor at time t to be 

RF(t) = exp[-at] so that the higher the value of a the lower the RF, hence the 

lower are the future rates of mortality. When a is positive, the RF will be less 

than 1, and when it is negative the RF will be more than 1, i.e. mortality rates are 

increasing. We will use a range of(O.07, -0.07) for the value of a . 

The force of interest 8 will take values from 0% to 10% in order to test the effect 

ofthe change of the rate of interest on the value of H. 
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The value for ,u~ using the 1991-1994 tables for femal es is 0.00552155. A 

regression line has been fitted and the value of the slope obtained, and the 

estimate for c is 0.085 . 

A graphical presentation of the values of H when c=0.085 for different values 

of a and (j is given in figure 4.4. 

Figure 4.4: Values for H when mortality follows the Gompertz law for 
different rate of interest and levels of mortality improvements 
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Figure 4.4 shows that the value of H decreases when the force of interest, (j , is 

increasing, reflecting the decreasing effect of mortality improvement on the cost 

of life annuities at high levels of interest rates. It can also be seen that at zero or 

low levels of interest the value of H increases with the improvement in mortality 
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Figure 4.5: Values for H for different values of c and a - mortality follows the Gompertz law 
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Figure 4.5 shows that for all different values of c when the force of interest is 

equal to zero the value of H increases with the improvement in mortality until it 

reaches a point behind which the improvement in mortality does not have a 

significant effect on the cost of life annuity. Hence the value of H starts to 

decrease with the improvement in mortality rates. When c is equal to 0.08 

(assuming lower mortality level for the base table) the values of H are higher 

than the corresponding ones when c= 0.09 (assuming higher mortality level for 

the base table) when the reduction factor is greater than 1 (a is negative) and it 

is the other way round when the mortality improves and the reduction factor is 

less than one (a is positive). This confirms our conclusion before in section 4.3 

that the cost ofa life annuity for the high mortality group (c=0.09) would be less 

responsive (hence have lower values for 11) to changes in the force of mortality 

than the corresponding one when c= 0.08 at very high levels of mortality. While 

at low level of mortality it is the other way round: the cost ofa life annuity for 

the high mortality group (c=0.09) would be more responsive (hence have higher 

values for H) to changes in the force of mortality than the corresponding one 

when c= 0.08. 

When the force of interest increases to 4% the effect of any change in the force 

of mortality on the cost of a life annuity is less dramatic, resulting in lower 

values for H for all different scenarios of mortality base table. Also the value for 

H decreases with the improvements in mortality. 
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One advantage of using a mathematical model for the rates of mortality is that it 

enables us to investigate further the mathematical properties ofthe derivative of 

H with respect to the different variables concerned, i.e. with respect to c, a 

and 0 . Hence, this should help us to better understand the behaviour of the 

entropy measure H. The numerical values ofthe partial derivative of H with 

respect to different levels ofthe improvement factor a are consistent with 

results that we have obtained so far, which confirms the conclusions that we 

have reached regarding the relationships between different variables. The 

expressions for the partial derivatives of H together with the numerical values 

are given in appendix (2). 

4.4.2 Mortality according to the (1991-1994) mortality table for 
female pensioners with mortality improvements allowed 
for using Sithole et al (2000) 

In this section, the mortality base table is the 1991-1994 mortality table and 

mortality improvement is allowed for using the Sithole et al (2000) mortality 

projection model for pensioners mentioned in chapter 2. 

Again, the value of H has been calculated for different interest rates and different 

levels of mortality improvements. 

The Sithole et al (2000) reduction factor can be written in the form 

RF(x,t) = exp[(-a + /It}] 
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To consider different levels of mortality improvement, we will allow a to vary. 

The value of a as in Sithole et al (2000) reduction factor is 0.050651, and H has 

been calculated with values of a over the range from 60% to 140% of the 

corresponding value of the Sithole et al (2000) reduction factor. 

A graphical presentation of the values of H at different rates of interest and for 

different values of a is given in figure 4.6. 

Figure 4.6: Values for H at different rates of interest and mortality 
improvements allowed for using tbe Sitbole et al (2000) model 
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Figure 4.6 shows again that the value of H decreases when the rate of interest 

increases for all rates of interest. At higher rates of interest the value of H 
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increases with the increase in the rates of mortality, while at lower rates of 

interest, the value of H falls with the increase of the rates of mortality until it 

reaches a point where the increase in mortality rates has a greater effect on the 

cost oflife annuity. At this point, the value of H starts to increase again. We note 

that the levels of the improvement factor a considered in figure 4.6 lead to very 

low values of mortality. The pattern of results shown is similar to that we have 

obtained using the English Life Tables as well as those obtained using the 

Gompert~ law of mortality. 

4.5 Summary and remarks 

In this chapter, the entropy measure (ll) applied in population biology by 

Demetrius (1976) is extended to measure the effect of any changes in the force of 

mortality on the cost of life annuity for different interest rate scenarios. This 

allows different sources of risk in a life annuity contract to be summarized in a 

single figure index so that the effect of different sources of risk in a life annuity 

contract can be measured and analysed. 

The entropy measure, H, has been calculated under different mortality and 

interest rates assumptions. Also, it has been calculated over the whole age range 

(age 0) and at older ages (ages 60 and 70). For all cases, the lower the rate of 

interest, the higher the value for H. Indicating a higher effect oflongevity risk on 
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the present value of annuity payments. This reflects the importance of longevity 

risk in the contents of life annuity especially in a low interest environment. 

At very high or low levels of mortality, the numerical results for H suggest that 

the effect of mortality changes on the value oflife annuity is ofless importance. 

This reflects the fact that when mortality is already very high or very low, any 

change (whether an increase or a decrease in the force of mortality) is less likely 

to have a significant effect on the cost of life annuity. This means that -

theoretically - even if mortality continues to improve it will reach a level beyond 

which any more improvements would not affect the cost of survival benefits by 

much. 

It would be of interest to investigate the mathematical properties of the 

derivative of H with respect to the different variable concerned in order have a 

better understanding regarding the way H behaves and being able to answer 

questions such as, at a given level of interest rate, what would be the level of 

mortality that is considered too high or too low such that the cost oflife annuity 

is less likely to respond to and further changes in the force of mortality. 

The model for H can be extended to reflect the effect of the uncertainty of future 

returns on the cost of life annuity, by incorporating a model for the interest rate. 

Also, so far we have used scenario analysis to test the sensitivity of results due to 
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the change of the main factors affecting H. Using simulation techniques would 

allow us to consider parameter and model risk for both mortality projection and 

interest rate models. 

It is worth mentioning that there are some limitations related to the use of the 

entropy value to measure of the effect of change of mortality on the cost of life 

annuity. Namely, if the survival function is already very rectangular shaped 

(hence His close to zero), an expansion of the survival function will have a a big 

impact on the cost of life annuities but this would not be captured by the entropy 

measure. Also, in the case of complete rectangularization ofth~ survival 

function, H is going to be zero regardless of the age at which all members ofthe 

population die. 
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Chapter 5 

Bayesian Analysis for changes in the cost of life 
annuity due to longevity risk 

5.1 Introduction 

In chapter 3 the present values oflife annuities have been analyzed using a 

simulation-based approach. Using the simulated distributions, conclusions 

regarding the mortality risk in the context of a life annuity portfolio have been 

drawn. In this chapter we adopt a Bayesian approach that combines the 

estimation ofthe parameters ofthe Sithole et al (2000) mortality projection 

models and the Lee-Carter projection methodology (both of which have been 

described in details in chapters 2 and chapter 3) together with the simulation of 

the annuity cost. 

As noted by Congdon (2003) Bayesian methods in econometrics, including 

applications to linear regression, serial correlation in time series, and 

simultaneous equations, have been developed since the 1960s with the seminal 

work of Box and Tiao (1973) and Zellner (1971). Fully Bayesian methods now 

increasingly offer a more comprehensive and a robust approach to modeling as 

compared to the classical approach to modeling. Bayesian analysis of data has 
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been greatly facilitated in the last decade by advances in computing power, 

which have allowed the wider usage of Bayesian applications excessively in 

health, social and physical sciences. Although Bayesian statistical methods may 

be seen as the most convenient method for the implementation and analysis of 

many models arising in actuarial science, it was not until recently that they have 

been fully used following the improved scope for estimation via iterative 

sampling methods and the development of Markov chain Monte Carlo (MCMC) 

simulation methods like the Metropolis-Hastings algorithm and the Gibbs 

sampler (Gelfand et al. (1990». 

This Chapter is organized as follows: the Bayesian approach to inference and a 

review ofthe basis of Markov Chain Monte Carlo (MCMC) method is discussed 

in section 2. In section 3 a full Bayesian model is constructed to implement the 

corresponding MCMC- Bayesian analysis needed to estimate the parameters of 

the Sithole et al (2000) models. This is then used to forecast future mortality 

rates and simulate the annuity cost. An approach for measuring the effect of 

parameter uncertainty (estimation error) is presented and implemented. The same 

analysis is carried in section 4 using a Bayesian version of the Lee-Carter 

mortality projection methodology. 
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5.2 The Bayesian approach to Inference 

5.2.1 Bayesian Inference, basis and advantages 

The Bayesian method of inference treats all unknown parameters in any 

statistical model as random variables and assigns a prior distribution to each 

parameter and then derives their distribution conditional upon the known 

information. 

Suppose we have observed data y and unknown parameters o. In order to make 

a probability statement about 0 given y, we must begin with a model providing a 

joint probability distribution for 0 and y which can be expressed as the product of 

the prior p(e) and the sampling distributionp{y I 0). Following Bayes' theorem 

the posterior density p(e I y) is equivalent to: 

p(O I y)cx: p(e)p{y I e) (5.1) 

Thus the posterior distribution p(O I y) is proportional to the product of the 

sampling distribution and the prior distribution. 

Generally, Bayesian inference methods have a number of advantages. Firstly, 

they are not dependent on the assumption of asymptotic normality which 
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underlies classical estimation methods such as maximum likelihood, Thus, under 

this framework, we can calculate the probability that a parameter lies in a given 

interval or the probability of a hypothesis about any of the parameters in the 

model even when the true parameter density is for example skewed or even 

multi-modal and can't assumed to be normal. Secondly, Bayesian analysis has 

the advantage of allowing the introduction of extra information that is based on 

accumulated knowledge through the specification of prior distributions for the 

parameters. 

5.2.2 Markov Chain Monte Carlo (MCMC) and Gibbs Sampling 

In Bayesian inference, in order to update knowledge about the parameters it is 

necessary to take samples from the posterior density. When the prior distribution 

and the likelihood are conjugate, a simple analytical result provides a method for 

sampling the unknown parameter. On the other hand in the case of non conjugate 

priors or when there are many parameters involved, the joint posterior 

distribution is complex and might not be available in a closed form. In many 

cases, Bayesian inference requires multi-dimensional integrations of the joint 

posterior distribution with respect to each ofthe parameters involved, and such 

numerical integrations until recently made Bayesian analysis problematic. 
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MCMC methods provide a unifying framework in which such complex problems 

can be analyzed. The basic philosophy behind MCMC is to take a Bayesian 

approach and carry out the necessary numerical integrations using simulation 

techniques in order to create a stream of simulated values of each quantity of 

interest. 

Consider a vector random variable B=(O" ••• , OJ<) with ajoint distribution f(O" ..• , 

OJ<). Suppose frO) has a complicated and analytically intractable form, and the 

expected value of some integrable function h(O) is sought. Even if this 

calculation cannot be performed analytically, it is still possible that the 

probabilistic model associated withf(O) may be simple enough to permit 

independent random draws O(t) ,1=1, •.. ,n. If this is the case, then the desired 

expectation can be approximated using the sample average. 

I.e. 

(5.2) 

This procedure is called Monte Carlo integration. Unfortunately, many 

complicated models will not readily permit independent random draws. In this 

case a MCMC method is used to simulate realizations from a Markov chain that 

is constructed so that its stationary distribution is the posterior distribution. Thus, 

this Markov chain hasf(O) as its stationary distribution (see, for example, Gilks 
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et al 1996). Various algorithms exist for carrying out the required simulations, 

including the Metropolis-Hastings algorithm that was first described by Hastings 

(1970). as a generalisation ofthe Metropolis algorithm developed by Metropolis 

et al (1953) by allowing jumping rules to be asymmetric which could be useful 

in increasing the speed ofthe random walk (see Gelman et al (1995) for more 

details) One of the simplest MCMC sampling methods is the Gibbs sampler 

which is in fact a special case of the Metropolis-Hastings algorithm and was 

devised by Geman and Geman (1984) and subsequently introduced to the 

statistics literature by Gelfand and Smith (1990). Gibbs sampling draws samples 

of each parameter in the posterior density, while regarding all other parameters 

as constants. This can be done as follows: As before, consider a vector random 

variable 0=(01 •••• , OJ with ajoint distribution [(01, •••• OJ, where each 01 is a 

random variable with a marginal distribution[(OI) and 

[( 01 I 01, ... ,01_1,0;+1, ... ,0,,) is the full conditional distribution of 0i given the 

remaining variables. Given an arbitrary vector of starting values 

0(0) = (01(0) , ••• , 01°» ,the first iteration of the Gibbs sampler proceeds by making 

random draws from the full conditional distributions as follows: 
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() (I) ..... f«() I ()(O) ()(O» 
I I 2 , ... , Ie 

() (I) ..... f«() I ()(I) ()(O) ()(O» 
2 2 I' 3 , ••• , Ie 

() (I) f«() I ()(I) ()(I) ()(O) ()(O» 
/..... I I , ••• , I-I' i+1 , ••• , Ie 

() (1) ..... f«() I ()(I) ()(t) ()(t) ) 
Ie Ie t' 2 , ••• , Ie-I 

This completes the first iteration of the algorithm and defines a transition from 

()(O) to ()(I) = «()t(1) , ••• , ():t», After t iterations we have ()(t) = «()/') , ... , ()it) , and the 

resulting sequence of dependent draws ()(I) ,()(2) ,()m ,... can be then used as 

described in equation (5.2). 

How many iterations or how long a MCMC simulation should be run is a 

function of the particular application. In any case, the convergence ofthe MCMC 

simulation has to be monitored and the first portion of the simulated Markov 

chain is normally discarded in order to reduce the effect ofthe starting values. 

In order to carry out the MCMC-Bayesian analysis, a specialized software 

package that performs Bayesian inference using Gibbs sampling known as 

WINBUGS has been used in this chapter. A useful review of actuarial 

application ofMCMC methods using WINBUGS given by Scollnik (2001). 
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5.3 Analyzing annuity values in a Bayesian framework 
using the Sithole et al (2000) mortality model 

5.3.~ Methodology 

Unlike the case in chapter 3, where the simulated distributions of annuity values 

were calculated using the maximum likelihood estimates for the Sithole et al 

(2000) mortality projection models, in this section, a fully Bayesian model is 

used to estimate the parameters of the Sithole et al (2000) models to forecast 

future forces of mortality, and hence produce the full distribution of annuity 

values. We begin by noting that there are a number of sources of error in 

assessing the effect of mortality improvements on the cost oflife annuity, such 

as the ones in this chapter. These include: 

Process error: the actual outcome for a particular portfolio is different fro~ that 

expected simply because deaths are random events. 

Estimation error: the model used is correct, but the true parameters values are 

different from their estimated values. 

Model error: the underlying model used does not reflect the actual improvement 

in mortality. 
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Judgement error: error relating to using any subjective judgement in the choice 

of a distribution, data set used for inference ... etc. 

Process error is relatively easy to deal with using, for example, simulation 

methods, and this was one ofthe sources of error that has been investigated in 

chapter 3. 

Chapter 3 also contained a limited investigation into a combination of estimation 

error and model error, using an approach often used by actuaries: scenario 

analysis. Changing the mortality improvement model, as done in chapter 3, could 

reflect the fact that either the parameter estimates or the model itself do not 

represent properly mortality changes in the future. 

In a Bayesian approach, it is possible to consider estimation error and model 

error explicitly, and we concentrate on estimation error in this section. A full 

investigation of model error would postulate a reasonable number of possible 

models of future mortality rates, assigning to each a prior probability: this is 

beyond the scope of this chapter. 

Estimation error could be accounted for by simulating from the sampling 

distribution of the parameters of the model ofSitihole et al. It is usual to assume 
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that the parameter vector has (asymptotically) a multivariate normal distribution 

whose covariance matrix could be estimated. Given this estimated covariance 

matrix, it would be possible to simulate values of the parameters from their joint 

distribution, and then simulate annuity values using these parameter values as in 

chapter 3. This would lead to an increase in the variability ofthe distribution of 

annuity values, reflecting the underlying parameter uncertainty (or estimation 

error). 

In this chapter, Bayesian methods are used as an alternative. We prefer to use the 

Bayesian approach because, as mentioned earlier, it is not then necessary to 

make an assumption of normality, and because these methods would also allow 

us to extend the investigation to include, for example, estimation error. Thus, this 

section also considers the use of Bayesian methods to assess the effect of 

parameter uncertainty (estimation error) on the distribution of annuity values. 

We start by using a fully Bayesian model to estimate the parameters of the 

Sithole et al (2000) models, and hence forecast future forces of mortality. Then, a 

portfolio of persons is considered and we allow the time of death for each person 

to be a random variable and then calculate the present value of annuity payments 

for each person and obtain the mean value of the simulated distribution of 

annuity payments. This can be carried out in the same manner as mentioned 

earlier in chapter 3, except that it is performed in a Bayesian framework and that 
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the parameters of the mortality projection model have to be estimated first using 

Bayesian inference techniques. 

In line with the calculations performed in chapter 3, we will consider the eMI 

data which relates to male and female office pensioners for the period from 1983 

to 1996. And for each age for both male and female life office pensioners, we 

will consider a single life annuity with payments of £1 due at the end of each 

year and an interest rate of 6% pa. 

5.3.2 Prior distributions and estimation of the parameters of 
Sithole et al (2000) mortality projection models 

Within the Bayesian framework, we treat all model parameters as unknowns and 

we specify prior information via appropriate probability density functions. 

Generally speaking, the choice of the prior distributions depends on the opinions 

and knowledge regarding the parameters involved, so it is impossible to choose a 

distribution that will necessarily be appropriate under all circumstances. In many 

cases it is more convenient to use prior distributions that can be guaranteed to 

playa minimal role in the posterior distribution. Such a prior density is described 

as vague, diffuse or noninformative. In this section, noninformative priors for the 

parameters have been used. The most common reason behind using 

noninformative priors is that there may be very little information on the 
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parameters, and we would like the prior distribution to reflect this lack of 

infonnation. Or in other cases, although we have substantial prior infonnation it 

is considered more objective to present a posterior distribution that reflects only 

sample infonnation, instead of biasing it with our prior views. Finally, it is 

frequently very difficult to fonnulate an appropriate infonnative prior and using 

noninfonnative in this case represents a convenient way out ofthis difficulty. 

Let 8 denote the parameter vector fJ=(PO,PI,Pl,PJ, al,YIJ), where PO,PI,Pl,PJ, al 

and YII are the 6 parameters ofthe Sithole et al model with prior probability p(8), 

and lety denote the data vector which, in this case will be the eMI life office 

pensioners' experience. y will represent the female office pensioners' experience 

when we estimate the parameters for female pensioners and it will represent the 

male office pensioners' experience when we estimate the parameters for male 

pensioners. 

Our prior assumption for all of the 6 parameters is a nonnal distribution with 

mean 0 and a very large variance2
, i.e. non-infonnative priors as we have 

mentioned above. 

The descriptive statistics of the distribution of the estimated parameters values 

for both male and female office pensioners are shown in table 5.1. Also graphical 

2 The inverse of the variance is 1.0E-6 
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presentations of these distributions for both male and female pensioners are 

shown in figures 5.1 and 5.2 respectively. 

Table 5 1° Summarv of the descriptive statistics of the parameters of Sithole . . 
et al (2000) -male and female pensioners 

Male ~ensioners Model Female Pensioners model 
Parameter Estimate Standard Parameter Estimate Standard 

(mean) deviation (mean) Deviation 

l30 -2.535 0.003822 130 -3.177 0.005547 

PI 1.822 0.01069 l31 1.838 0.01157 

l32 -0.2639 0.009513 l32 -0.0263 0.01379 

Ih -0.04892 0.01169 Ih -0.03614 0.01524 
al -0.1257 0.003409 a. -0.08306 0.007964 

'YII 0.09621 0.00982 'YII 0.05582 0.01725 

It can be seen from table 5.1 that the mean values of the distributions obtained 

using Bayesian inferences are very close to the maximum likelihood estimates 

obtained by Sithole et al (2000) (see chapter 3) for all parameters. 
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Figure 5.1: Distributions of the parameter values of the Sithole model - male 
pensioners 
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Figure 5.2: Distribution of tbe parameter values of tbe Sitbole model ­
female pensioners 
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5.3.3 Analyzing annuity values 
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As well as estimating the parameter values, we can include a group of 

prospective pensioners in the Bayesian model, in order to examine the statistical 

properties of their future remaining life times in a similar manner to that 
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described earlier in chapter 3. The only difference is that the simulated 

distributions of annuity values will be obtained using the whole distribution of 

each ofthe 6 parameters ofthe Sithole et al (2000) projection model. 

The resulting distributions of the present value of annuity payments may then be 

compared with the corresponding ones in chapter 3, and also the mean values 

may be compared to the present value of annuity payments obtained analytically 

using the 1991- 1994 pensioners' mortality tables and allowing for mortality 

improvements using the Sithole et al reduction factors that has been calcu~ated 

using the maximum likelihood estimates of the parameters. This will be 

implemented for ages 60, 70 and 80 for both male and female life office 

pensioners. At each age we will consider a single life annuity with payment of £1 

due at the end of each year and a rate of interest of 6%. 

A summary of the descriptive statistics of the simulated distribution of annuity 

payments in the Bayesian framework for both male and female life office 

pensioners is shown below in table 5.2. The prediction error is the standard 

deviation of the distribution of the predicted annuity values, and includes both 

estimation and process error. 
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Table 5.2: Summary of the descriptive statistics of the simulated 
d' t 'b f f ~ I d ~ I r~ ffi IS rt u Ions 0 annUltv payments or rna e an ema e leo Ice pensioners 
Age Male pensioners Model Female Pensioners model 

Mean Prediction Mean Value Mean Prediction Mean Value 
Value Error obtained Value Error obtained 

analytically analytically 

60 11.000 3.508 10.974 11.800 3.161 11.768 
70 7.960 3.718 7.882 9.087 3.508 8.969 
80 5.011 3.230 4.946 5.940 3.302 5.970 

It can be seen from table 5.2 that the mean values ofthe distributions are close to 

the corresponding analytical values as well as being close to the corresponding 

values that have been obtained in chapter 3 for all ages examined for both 

genders (see basis B results in tables 3.4 and 3.5). It is also clear that the 

prediction error, as a proportion ofthe mean, increases dramatically with age for 

both males and females, reflecting a higher level of variability as age increases. 

For males it is 31.9%, 46.7% and 64.5% for ages 60, 70 and 80 respectively, and 

for females it is 26.6%, 38.6% and 55.6% for ages 60, 70 and 80 respectively. A 

graphical presentation of the distributions of annuity values for both male and 

female pensioners at age 60 is shown in figures 5.3. 

141 



Figure 5.3: Distribution of annuity values for male and female pensioners 
age 60 
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The distributions in figure 5.3 can be compared to the corresponding figures in 

chapter 3 (see basis B in figures 3.1 and 3.2), The distributions in figure 5.3 

generally show similar characteristics to those in chapter 3, namely, the 

distribution of annuity payments for male pensioners is less skewed and more 

spread than the corresponding one for female pensioners. 

5.3.4 Convergence diagnostics 

Monitoring and assessing the convergence of the MCMC simulation is an 

important part of any MCMC based analysis and it requires considerable care as 

it is very difficult to say conclusively that a chain has converged, although easier 

to diagnose when it definitely has not converged. 
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A MCMC simulation converges when its output, from that point on, comes from 

the true stationary distribution ofthe Markov chain, or, equivalently, when 

inferences for quantities of interest do not depend on the starting point of the 

simulations. Once sufficient draws have been taken to summarize the posterior 

distribution, then, if the model has converged, further samples from a 

parameter's posterior distribution should not influence the calculation of the 

mean. 

Once we are satisfied that the simulation has converged, the first portion of the 

simulated Markov chain is discarded in order to reduce the effect ofthe starting 

values. These discarded or "bum-in" iterations are the pre-convergence 

iterations. The subsequent updates give the samples from the posterior 

distributions. For the Sithole et al (2000) mortality projection model the number 

of updates that the simulation has to be run is such that the Monte Carlo error for 

each parameter is less than 5% ofthe sample standard deviation. The number of 

bum-in iterations was 1000 for all cases, and the total number of updates 

afterwards was 20,000. 

Graphical techniques are commonly used to check the convergence ofMCMC 

simulations. One way to do that is by examining the trace and history plots of the 

sample values versus iteration number to look for evidence of when the 

simulation appears to have stabilised. Also several chains with different starting 
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values can be run simultaneously. In this case, we can be reasonably confident 

that convergence has been achieved if all of the chains appear to be overlapping 

on one another. 

Figure 5.4 gives the history plot for the 6 parameters of the Sithole et al (2000) 

mortality projection model for both male and female pensioners after the bum in 

iterations, while figure 5.5 gives the corresponding trace plot but using two 

different sets of initial values (i.e. using two chains). 
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Figure 5.4: History plot for tbe parameters of tbe Sitbole et al (2000) 
mortality projection model 
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Figure 5.5: Trace plot for the parameters of tb e Sithole et al (2000) 
mortality projection model 
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From figure 5.4 we can see that, after the bum in iterations, the simulation 

appears to have stabilised for all of the parameters indicating that convergence 

has occurred. This is continned by using two chains of starting values (figure 

5.5) where the simulations appear to exhibit the same behaviour through the 

iterations irrespective of the initial values used. 

Alternatively, convergence of multiple chains can also be assessed using more 

fonnal diagnostics such as the Gelman-Rubin (1992) convergence statistic (the 

Gelman-Rubin scale reduction factors), which is included in WINBUGS. The 

scale reduction factors compare variations in the sampled parameter values 

within and between chains. The intuition is that the behavior of all of the chains 

should be the same, such that the variance within the chains should be the same 

as the variance across the chains. Thus, the statistic involves two steps: 

1) Estimate the model with a variety of different initial values for the 

parameters and iterate for n iterations after the bum-in iterations. 

2) Take the n draws of the m parameters and calculate the following 

statistics: 

Within chain variance W = 1 ft(O; -~ y 
m(n -1) j_1 /-1 

Between chain variance B = _n_ f (~ -oy 
m -1 j_1 

Estimated variance V( /I) = (1- ~)w + ~ B 

The Gelman-Rubin Statistic .JR = ~V::) (5.3) 
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where 

0; is the ith sample ofthe jth chain. 

~ is the mean ofthe jth chain. 

jj is the overall mean (the average of the chain means ~ ) 

Before convergence, W underestimates the total posterior variance in 0 because 

it has not fully explored the target distribution (i.e. the distribution obtained 

when convergence is achieved). V (e) on the other hand overestimates the 

variance in Obecause the starting points are over-dispersed relative to the target 

density. Once convergence is reached, W and V(e) should be almost equivalent 

because variation within the chains and variations between the chains should 

coincide since in this case the output from all chains is indistinguishable, so that 

R should approximately be equal to one. 

For a detailed description of the Gelman and Rubin method as well as other 

convergence diagnostics, a useful review can be found in Cowles and Carlin 

(1996). 

The Gelman-Rubin (1992) convergence statistic plotted against iteration number 

for the Sithole et al (2000) parameters for both male and female pensioners is 

given in figure (5.6). 
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Figure 5.6: The Gelman-Rubin convergence statistic for the parameters of 
the Sithole et al (2000) mortality projection model 
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Figure 5.6 shows that the value ofthe Gelman-Rubin statistic is equal to one for 

all ofthe 6 parameters of the Sithole et al (2000) for both male and female 

pensioners, indicating convergence of the different chains. 

As an integral part ofthe convergence check, the autocorrelations between the 

draws of consecutive samples of all the parameters involved need also to be 

checked. One cause of autocorrelation is that the parameters in the model may be 

highly correlated, so the Gibbs sampler will be slow to explore the entire 

posterior distribution. Typically, the level of autocorrelation will decline with an 

increasing number oflags in the chain, i.e. instead of considering a realization 

from every iteration we retain every nth sample to reduce autocorrelation. In this 

section, in order to get samples with no significant autocorrelations, only one 

realization in every 10 iterations has been taken from each parameter. 

The autocorrelation function measures how correlated the values in the chain 

with their close neighbours. An independent chain will have approximately zero 

autocorrelation at each lag. 

Autocorrelations up to lag 50 for the Sithole et al (2000) parameters for both 

male and female pensioners are shown in Figure 5.7 indicating that there is no 

significant autocorrelations remaining in the samples. 
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Figure 5.7: Tbe autocorrelation function for the parameters of tbe Sitbole et 
al (2000) mortality projection model 
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5.3.5 Measuring the effect of parameter uncertainty 

In section 5.3.3, the distribution of the present value of annuity payments was 

calculated, using parameter values that have been estimated within the model 

itself. This means that, unlike the case in chapter 3, parameter uncertainty has 

been accounted for, rather than using fixed values in the simulation that are the 

point estimates of the parameters. 

As a measure of parameter uncertainty, we can compare the results from the 

Bayesian model with the simulation results when the values of the parameters 

are fixed at the maximum likelihood estimates obtained by Sithole et al (2000). 

The prediction error of the simulated distribution of annuity payments in a 

Bayesian framework for both male and female life office pensioners can then be 

divided into process and estimation error as shown below in table 5.3. 

Table 5.3: Estimation error of the mean value of the simulated distribution 
of annuity payments 
Age Male Pensioners Model Female Pensioners model 

Process Estimation Prediction Process Estimation Prediction 
Error Error Error Error Error Error 
(1) (2)* (3) J11 J2)* 131 

60 3.431 0.731 3.508 3.106 0.587 3.161 
70 3.700 0.365 3.718 3.500 0.237 3.508 
80 3.229 0.080 3.230 3.289 0.293 3.302 
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It can be seen from table 5.3 that in this case estimation error is not very 

significant because of the nature of the data (a large data set) while the process 

error is clearly more important. Model error has not been considered, but we 

would expect it to be significant. 

5.4 Analyzing annuity values in a Bayesian framework 
using the Lee-Carter (1992) mortality projection model 

In this section, the Lee-Carter mortality projection methodology that has been 

described in chapter 2 will be extended using the Poisson log-bilinear model of 

Brouhns et al (2002) and then fitted in a Bayesian framework to perfonn a 

similar analysis to the one in section 3 of this chapter. 

As mentioned in chapter 2, the Lee-Carter (1992) model is a simple model that 

describes the change in mortality as a function of a single time index. The model 

represents the log of the age specific central rate of mortality as the sum ofan 

age-specific component that is independent of time, and the product of a time 

varying parameter reflecting the general level of mortality (also known as 

mortality index) and an additional age-specific component that describes how 

rapidly or slowly mortality at each age varies due to changes in the mortality 

index. The main statistical tool for fitting the model is least squares estimation 

via singular value decomposition (SVO) ofthe log age specific observed forces 

of mortality. However, using least squares SVD implies that the error tenns in' 
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the model (equation 2.16) are assumed to have a homoscedastic additive 

Gaussian structure. This is not a reasonable assumption as the logarithm of the 

observed force of mortality is much more variable at older ages than at younger 

ages because of the much smaller number of deaths at older ages. Thus, Renshaw 

and Haberman (2003 a,b) and Brouhns et al (2002) have implemented alternative 

approaches based on a heteroscedastic Poisson non-additive error structure. 

Renshaw and Haberman (2003 a,b) have also presented are-interpretation ofthe 

model underpinning the Lee-Carter methodology for forecasting mortality where 

a parallel methodology based on generalized linear modeling is introduced and 

the two methods are compared in terms of structure and assumptions. On the 

other hand, Brouhns et al (2002) have implemented a suggestion of Alho (2000), 

which enables the bilinear structure of the Lee-Carter model to be fitted by 

optimizing the Poisson likelihood. The structure ofBrouhns et al (2002) has been 

employed to forecast mortality for French male population using a Bayesian log 

bilinear Poisson regression model by Czado et al (2005). We seek to perform a 

similar analysis with a different underlying Bayesian structure in terms of the 

prior distributions assumed for different parameters. Also, the analysis is 

extended to incorporate the calculations of annuity values. 

We continue with a description of the Poisson log-bilinear model ofBrouhns et 

al (2002), which will be implemented in a Bayesian framework to estimate the 
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parameters of Lee-Carter (1992) projection model, and hence calculate annuity 

values in a similar way as in section 5.3. 

For a discussion of various extensions, applications and problems associated 

with the classical Lee-Carter (1992) mortality projection model, the reader is 

referred to Lee (2000). 

5.4.1 Poisson log-bilinear model of Brouhns et al (2002) 

Brillinger (1986) and Alho (2000) showed that the Poisson distribution is a good 

candidate to model the number of deaths at different ages. The approach of 

Brouhns et al (2002) describes an extension to the Lee-Carter approach whereby 

the number of deaths D xt is modelled as a Poisson random variable, such that: 

(5.4) 

Where Ext is the exposure-to-risk and Pxt is the force of mortality. The function 

Px" is then modelled as: 

Px" =exp(a.r+p.rk,}. (5.5) 
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Hence the force of mortality is assumed to have the log-bilinear form: 

(5.6) 

Note that the meaning of the parameters ax, Px and kt are essentially as defined in 

the classical Lee-Carter model (2.16) (see chapter 2), and that only the random 

part of the model has been modified. The parameters hence are estimated by 

maximising the log-likelihood. The time series part of the Lee-Carter 

methodology is not modified and is thus used to forecast kt• 

The Poisson likelihood function can then be used in a Bayesian modelling 

context. In line with what has been done in section 5.3, all of the unknown 

parameters a x ,Px and K, are treated as random variables and a prior probability 

density will be assigned to each of the parameters. Then their posterior 

distribution can be derived, conditional upon the known information, which in 

this case is the numbers of deaths D xt and the exposure-to-risk Ext' 
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5.4.2 Model and prior distributions 

5.4.2.1 Likelihood function 

Using the Poisson log-bilinear model we can see from equations (5.4) and (5.5) -

and as noted by Czado et al (2005) - that the likelihood function of the three 

parameters a ,p and K is 

L(a,p,K) = nn exp(-Ex, exp(ax + Px1(,)~Ex, exp(ax + PxK,»D~ 
x , Dx,' (5.7) 

ex:: nn exp(- Ex, exp(ax + Px K,) + Dx,(ax + Px K,» 
x , 

where a ,p and K are three vectors with number of elements equal to the 

number of age groups in the case of a and P , and equal to the number of 

calendar years I for K. 

5.4.2.2 Prior distributions for the parameters 

We start first by specifying a distribution for a . We recall from chapter 2 that ax 

describes the average shape of the age profile over time and that it represents the 

logarithm ofthe geometric mean ofthe crude mortality rates, averaged over all 

calendar years I, for each age. i.e. ax = 10g{rr m[;}. So it is appropriate to 
,-I 
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assign a prior density function that will guarantee that the values for a at each 

age x are always negative, and this can be done as follows: 

We define a x such that; a x = loge (a x) and we assign a Gamma probability 

density function for a x' i.e. 

ax ..... Gamma(ma'O'~) 

where the values assigned to ma and O'~ are such that the prior distribution is 

noninformative, i.e. has a large variance. 

As for Px' which represents the age-specific pattern of mortality change, and 

indicates the sensitivity of the logarithm of the force mortality at age x to 

variations in the time index. The prior assumption that has been used for P is a 

noninformative normal distribution with mean zero and a large variance: 

Pol ..... Norma/(O, 0';) 

This means that we start with the assumption that there are no mortality 

improvements that will occur for the population under the study, but the fact that 

the prior distribution is noninformative means that the data of the population 

under the study will be allowed to transform the prior distribution if 

improvements do occur. 

The structure that has been used for the prior assumptions regarding the time 

index K is as follows: 
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5.4.3 Estimation of the Lee-Carter (1992) parameters 

Three different sets of data have been considered for estimating the parameters 

of the Lee-Carter (1992) mortality projection model. In each case, the data 

contain the number of deaths together with the corresponding exposure, cross 

classified by individual calendar year and by age as follows: 

Case A: England and Wales Male Mortality Experience, 1950-1998, inclusive, 

with age grouped and classified as {<I, 1-4,5-9, 10-14, ... ,80-84, 85+}. 

Case B: UK male mortality experience, 1961-2003 inclusive, with age classified 

by individual year, 0-101 inclusive. 

Case C: CMI data for female life office pensioners, 1983-1996 inclusive, with 

age classified by individual year, 60-95 inclusive. 

Using the likelihood function and the prior distributions mentioned in section 

5.4.2 the Lee-Carter model has been fitted to the data in the three cases A, B and 

C. The parameters of the Lee-Carter (1992) are estimated for the three cases but 

the analysis for the third case (Case C) only is extended to calculate annuity 

values, so that the results can be compared to the corresponding ones in section 

5.3. 
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The values of ax , Px and 1<, for each case, are displayed in figures 5.8, 5.9 and 

5.1 0 respectively. 
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Figure 5.8: Estimates for ax - different cases 
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The pattern in the estimates of ax is almQst identical for cases A and B, as in both 

cases the data were over the whole age range, while in case C the data were for 

age 60 and above. The fitted values of ax represent the average of InPx.1 over 

time t so that expaxis the general shape of the mortality schedule. So, for cases 

A and B the graph for ax resembles the general shape of the mortality curve with 

the value of ax increasing with the increase in age except at very young ages and 

at the age range 18-25 where mortality is known to be higher .Case C involves 

only ages 60 and above, and so the graph of ax is increasing with age. 
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Figure 5.9: Estimates for flx - different cases 
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fill represents the age-specific patterns of mortality change. It indicates the 

sensitivity of the logarithm of the force of mortality at age x to variations in the 

time index K" In principle, {3x could be negative at some ages x, indicating that 

mortality at those ages tends to rise when faIling at other ages. In practice, this 

does not seem to happen over the long run. Again over the whole age range 

(Cases A and B), the values of fill decrease with age at the beginning reflecting 

less sensitivity to variation in mortality due to time. It even becomes negative at 

age 30 (Case B) indicating an increase in mortality. For case C, fill has a 

decreasing trend but remain positive reflecting an improvement in mortality for 

ages 60 and above. From figure 5.9 it can be seen that the highest improvements 

happen at age 1 and the age range 60-70. 
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Figure 5.10: Estimates for K, - different cases 
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1(, represents the time trend. The actual forces of mortality change according to 

an overall mortality index Kt modulated by an age response /Jx • The shape of the 

(Jx profile tells which rates decline rapidly and which slowly over time in 

response of change in 1(, .We can see that 1(, deceases over time linearly. We can 

see that in bpth cases A and B the linear function of kappa over time changes 

slope to reflect faster improvements in mortality after the change in the slope 

somewhere around mid 1970s to confirm what has been observed by Renshaw 

and Haberman (2003a) for male experience in the UK. Renshaw and Haberman 

(2003b) have investigated the same data sets in cases A and B, the fitted values 

of 1(, obtained in figure 5.10 are more or less the same as those of Renshaw and 

Haberman (2003b). Both cases A and B, deal with population data over the 

whole age range while in case C the data set consists of female life office 

pensioners at age 60 and above, so it was natural to extended the analysis to 

calculate annuity value for case C only as it is the most relevant case. Hence, in 

case C the graph shows also the predicted values of kappa. The actual period that 

have used for projection was kind of short (14 years). 

5.4.4 Analysis of annuity values 

In line with the calculations performed in the section 5.3, we will consider the 

CMI data which relate to female office pensioners for the period from 1983 to 

1996 (case C) in order to analyze the cost oflife annuity. Again we will consider 
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a single life annuity at ages 60, 70 and 80 with payments of £1 due at the end of 

each year and a rate of interest of 6 percent. 

A summary of the descriptive statistics of the simulated distributions of annuity 

payments for female pensioners using a Bayesian version of the Lee-Carter 

(1992) mortality projection model is shown below in table 5.4. 

Table 5.4: Summary of the descriptive statistics of the simulated 
distributions of annuitv navments for female nensioners usinl! the Lee-
Carter 1992) nroiection model 

Age Female Pensioners model 
Mean Value Prediction Error Coefficient of variation 

60 11.97 2.866 23.94% 

70 9.184 3.315 36.10% 

80 5.916 2.98 50.37% 

We can see from table 5.4 that, for all ages, the values ofthe prediction error and 

coefficient of variation are lower than the corresponding ones when using the 

Sithole et al(2000) model (see Table 5.2), reflecting a lower variability in the 

distribution of annuity payments when the Lee-Carter mortality projection model 

is used. It can also be seen that the mean value ofthe distribution is higher for 

ages 60 and 70 than the corresponding ones using the Sithole et al (2000) model, 

while at age 80 it is slightly lower. This could be because the Lee- Carter (1992) 

mortality projection model, when fitted to the data in case C, produced higher 

mortality improvements at younger ages as compared with the Sithole et al 

(2000) model for the same data set. 
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5.4.5 Convergence diagnosis 

Convergence have been checked for the three cases; A, B and C. In this section, 

we will show the convergence diagnosis for Case A only (i.e. England and Wales 

Male Mortality Experience, 1950-1998, inclusive, with a age grouped and 

classified as {<I, 1-4,5-9, 10-14, ... ,80-84, 85+}). For more details regarding 

the convergence diagnosis for cases B and C, the reader can contact the author of 

this thesis. 

As in the pervious section, the number of updates for the simulation is such that 

the Monte Carlo error for each parameter is less than 5% of the sample standard 

deviation. Only one realization was taken of each parameter by each 10- iteration 

block after a bum in period of5000 iterations. The total number of updates was 

100000 iterations reSUlting in a sample size of 100000/10 = 10000. Due to the 

structure of the prior distributions the draws of consecutive samples will be 

inherently correlated. So testing for autocorrelation will not help in the diagnosis 

of convergence. Hence, only the trace and history plots ofthe sample values 

versus iteration number and the Gelman Rubin statistic can be used to check the 

convergence ofMCMC simulations. 
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Figure 5.11 gives the history plot for some selected parameters of the mortality 

projection model of Lee-Carter (1992) after the bum-in iterations, while figure 

5.12 gives the corresponding trace plots using two sets ofinitial values. 
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Figure S.l1: History plot for some selected parameters of the Lee-Carter 
(1992) mortality model 
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Figure 5.12: Trace plot for some selected parameters of the Lee- arter 
(1992) mortality model 
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From figure 5.11 we can see that, after the burn in iterations, the simulation 

appears to have stabilised for all the parameters when a single chain of starting 

values have been monitored indicating convergence. On the other hand, using a 

trace plot for two chains of starting values (figure 5.12) shows that the 

convergence does not seem to be achieved for the beta parameters. This suggests 

that it may be necessary to run more iterations. Note that for Kappa the initial 

values have been generalized by WINBUGS itself (i .e. no initial values have 
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been given) this is because the average of the logarithm of the crude mortality 

rates at each age x could be used as initial values for ax, and a natural choice for 

the initial values of Px is lit where t is the number of calendar years, while for k, 

the choice of the initial values would have been totally subjective, hence we 

preferred to generate it using WINBUGS, and this is why it is not possible to 

have a multiple chain trace plot for kappa. 

The Gilman-Rubin statistic can hence be used to assess convergence in a more 

formal way than the graphical methods used in the history and trace plots. Figure 

5.13 shows the plots ofthe Gilman-Rubin convergence statistic versus iteration 

numbers for some selected parameters of the mortality proj ection model of Lee­

Carter (1992) after the bum-in iterations. 

We can see from figure 5.13 that the value of the Gelman-Rubin statistic is 

effectively equal to one for all ofthe selected parameters of the Lee-Carter 

(1992) mortality projection model indicating convergence of the different chains. 
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Fie;ure 5.13: The Gelman-Rubin convergence statistic for some selected 
parameters of the Lee-Carter (1 992) mortali ty model 
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5.5 Summary and remarks 

In this chapter, the Bayesian approach to inference is used to investigate the 

impact of mortality risk on the cost of a life annuity portfolio. We believe that 

using Bayesian methods-is the best way to investigate mortality risk as it allows 

for the inclusion of different types of errors, namely, process, estimation and 

model errors. These methods also allow for great flexibility and they are not 

dependent on the assumption of asymptotic normality which underlies other 

estimation methods. 

A full Bayesian model has been constructed to implement the corresponding 

MCMC-Bayesian analysis needed to forecast future mortality rates and simulate 

the corresponding distributions of annuity payments using both the Sithole et al 

(2000) and the Lee-Carter (1992) mortality projection models. 

The mean value of the distribution of annuity payments obtained in the Bayesian 

framework using the Sithole et al (2000) mortality projection model is close to 

the mean values ofthe corresponding distributions in chapter 3 for all ages for 

both males and females. In all ofthe cases investigated, the mean value obtained 

in the Bayesian framework was slightly higher (except for female pensioners age 

60). On the other hand, the coefficient of variation ofthe distributions of annuity 

payments produced using the Sithole et al (2000) mortality projection model in 
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the Bayesian framework is lower than the corresponding ones in chapter 3 

(except for male pensioners age 60) reflecting a lower variability in the 

distribution of annuity payments when the Bayesian approach to inference is 

used, even when the parameters are being estimated within the model (i.e. 

estimation error is added to the total variability). 

An approach to measure parameter uncertainty (estimation error) has been 

allowed for by comparing the prediction error of the simulated distributions 

obtained from the Bayesian model when the parameters values of the Sithole et 

al (2000) are estimated within the model itself with the prediction error of the 

simulated distributions obtained when the values of the parameters are fixed at 

the maximum likelihood estimates. The reduction in the prediction error should 

then represent the estimation error- from table 5.3 we can see that the estimation 

error was not very significant. 

Measuring model uncertainty is beyond the scope of this thesis, but as an 

attempt to get a taste of model uncertainty (or the effect on the distribution of 

annuity payments due to using a different mortality projection model) a 

Bayesian version of the Lee-Carter (1992) mortality projection model has been 

used to carry out a similar analysis as the one using the Bayesian Sithole et al 

(2000) mortality projection model and produce distributions of annuity payments 

for female life office pensioners for the period from 1983 to 1996 (Case C). The 

176 



resulting distributions of annuity payments has produced a mean value which is 

higher than the corresponding ones using the Bayesian version of the Sithole et 

al (2000) mortality projection model at ages 60 and 70, and a lower value at age 

80. The coefficient of variation was lower at all ages reflecting lower variability 

in the distribution of annuity payments when using the Lee-Carter (1992) 

mortality projection model in a Bayesian framework. 

Lastly, convergence has been tested as it represents an integral part of any 

MCMC based analysis. In this chapter, graphical methods have been used to 

assess convergence. These include trace and history plots, autocorrelation 

between consecutive draws has been also checked for the parameters ofthe 

Sithole et al (2000) mortality projection model, while it did not seem reasonable 

to check for autocorrelation between consecutive draws of the parameters ofthe 

Lee-Carter (1992) mortality projection model due to the structure ofthe prior 

distributions ofthe parameters. The Gelman-Rubin statistic has been also used 

as a formal test to assess convergence. 

177 



Chapter 6 

Stochastic Bayesian analysis of the investment risk 
in a portfolio of life annuities 

6.1 Introduction 

We have been considering longevity risk in context ofHfe annuities and 

throughout the previous chapters a fixed rate of interest has been used to measure 

the effect of longevity risk on the cost of a life annuity. In chapter 3, the 

investment risk has been investigated using sensitivity analysis based on 

scenarios. The aim of this chapter is to extend the analysis of the cost of life 

annuity to an environment in which the future rates of interest are stochastic, 

which will allow an integrated analysis of demographic and financial risks and 

their interactions. 

In the actuarial literature, stochastic mortality and interest rate models for one 

policy only have been proposed by Panjer and Bellhouse (1980, 1981), Devolder 

(1986), Dufresne (1990), Norberg (1990, 1991). Generalizing the results to a 

portfolio is a complicated process. Some work has been done in this area, see for 
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example, Waters (1978), Frees (1990), Norberg (1993), and Parker (1994a, 

1994b). 

Selecting a stochastic model for the rate of return is not a straight fonvard task. It 

depends on the investment strategy and on how it is used. For example, if all the 

assets are invested in short-term fixed income securities with no default risk, 

then a model such as the Cox-Ingersoll-Ross (1985), which does not allow 

negative rates, might be acceptable. When the goal is to find the market value of 

some security, then term structure models would be suitable. It is also worth 

mentioning that when considering valuation models for annuities, or other 

insurance liabilities the key assumptions associated with financial models such 

as frictionless trading, efficient markets and the existence of a secondary market 

are highly suspect. 

In this chapter, we will consider the effect of both longevity and investment risk 

on the cost of life annuities in a Bayesian framework. Future mortality 

improvements are modeled using the Lee-Carter (1992) projection model in a 

Bayesian framework as described in chapter 5. The interest rate model used is 

the one developed by Ballota and Haberman (2003), which makes use of a one 

factor Heath-larrow-Morton framework for the term structure of interest rate. 
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This chapter is organized as follows. Section 2 gives a review of the tenn 

structure of interest rates and different models for stochastic behavior of the 

interest rate will be discussed. Section 3 provides an analysis of annuity values in 

a stochastic mortality and interest rate environment in a Bayesian framework, 

together with a full description of the financial model that is used in the analysis 

is given. Section 4 provides some concluding comments. 

6.2 Term structure of interest rate and Interest rate 
models 

The modeling of the tenn structure of interest rates has produced a variety of 

approaches since the advent of arbitrage-free pricing theory and it continues to 

occupy the efforts of both academics and practitioners. Unlike other asset classes 

(for example, equities), where the lognonnal Black-Scholes framework is 

universally accepted, no such agreement exists with regard to interest rate 

modeling. One reason for this is that the phenomenon we are attempting to 

model- the random fluctuation of the whole yield curve - is much more 

complex than the movements of a single stock or index price. One can intuitively 

relate this to the difference in the dynamics of a scalar variable (in the case of an 

index) and a vector (representing the yield curve). Interest rates are not a one 

dimensional object. In the market there are bonds with maturities between 0 and 

30 years or even more. The interest received depends on the time to maturity. 

Generally speaking, the interest rate paid for a bond with many years to maturity 
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is higher than that for a bond which is close to maturity. We thus need to model 

interest rates using stochastic processes. 

A second reason is more fundamental as far as the market in interest rate 

derivatives is concerned. Which consists of caps/floors and swaptions that the 

market prices using the Black-Scholes framework which assumes that forward 

Libor and swap rate are lognormal but the discount factors are non-stochastic. 

Thus, these instruments must be regarded as independent, where the volatility 

matrix for swaption prices is independent from the volatility curve associated 

with the cap/floor market. Also, the assumption of simultaneous lognormal 

behavior in the Libor and swap rates is not mathematically easy to reconcile. 

6.2.1 Definitions and Notation 

A zero coupon bond (sometimes referred to as a pure discount bond) is a bond 

with no coupon payments. Assume there is a complete set of zero-coupon bonds 

with maturities Tin the full time interval [0,1'*] , given at time t a set of zero-

coupon-bond prices {P,(T),t < T < T*}, the term structure of interest rates is the 

set of yields to maturity {r, (T),t < T < T*}, where r,(T) is defined as 

1 . 
r,(T) = --logP'(T) 

T-t 
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for 1 < T < T· . Clearly, Pr (T) = 1 for all T. 

The short rate (spot rate) is the rate of interest charged on instant borrowing and 

lending. The short rate is a theoretical entity which does not exist in real life and 

can not be observed. The short interest rate r, is defined as 

r, = r, (I) = limr-+t r, (T) (6.2) 

The forward rate is the rate which an investor can be promised today for 

borrowing or lending in the future. Define the instantaneous forward rate to be: 

a 
I(I,T) = --logP'(T) aT (6.3) 

The function I(I,T) corresponds to the rate we can contract for at time t on a 

riskless loan that begins at time T and is returned an instant later. The short rate 

r, is contained in the forward rate structure sincer, = 1(1,/). Note that zero 

coupon bond prices and forward rates represent equivalent infonnation as we can 

see in equation (6.4). 

P,(T) = ex{ -!f(t.S)ds J (6.4) 
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6.2.2 Interest rate models 

Interest rates and their dynamics provide probably the most computationally 

difficult part of modem financial theory. When choosing a model, one could 

pose some questions such as: 

• Does the dynamics imply positive rates for the short rate r, ? 

• Is the model mean reverting? (i.e. fluctuating around a long term mean) 

• What does the volatility structure implied by the model look like? 

• How suited is the model for Monte Carlo simulations? 

These points are essential for the understanding of the theoretical and practical 

implications of interest rate models and hence specifying dynamics, volatilities 

and whether a one-factor or a multi-factor model should be used as well as the 

choice of the bond pricing framework to be used, which is determined partly by 

the actual variable used to describe the model, and can be categorized into three 

families: spot rate, forward rate and market models. 

Although all three of these prescriptions are mathematically consistent (by 

definition of a term structure model), each approach leads to distinct 

development, implementation and calibration issues. 
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In this chapter, we will restrict the discussion to default-free tenn structures, and 

interest rates driven purely by Brownian motion (i.e. not including jump 

processes). We can require that the interest rate market (or equivalently the bond 

market) from an economic point of view to follow the principles below: 

• The zero-coupon bond price is strictly positive; 

• No default is possible so P(T,T) =1; 

• There is no arbitrage in the market. 

At the same time we require the model for interest rate to: 

• Capture a wide range of realistic future tenn structures; 

• Be numerically efficient and practical to use within risk 

management systems. 

Spot rate models (pioneered by Vasicek (1977» attempt to describe the bond 

dynamics through directly modeling the short-tenn interest rate. Heath Jarrow 

and Morton (HIM) (1990, 1992) established a general framework where the 

above principles are satisfied. This framework directly uses the arbitrage free 

dynamics ofthe entire zero bond or equivalently, the tenn structure of forward 

rates to price interest rate derivatives. Market models are a class of models 

within the HIM framework'that describe variables directly observed in the 
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market, such as the discretely compounding Libor and swap rates. These 

approaches have historically developed according to this order. It can be seen 

that the models have evolved along this path ofincreasing sophistica~ion (from 

spot models initially to market models). In this section, we will briefly discuss 

the similarities and differences in terms of formulation of each model category 

(spot rate, forward rate and market models). 

In all ofthe model categories, the yield curve is described through stochastic 

differential equations driven by a diffusion term and a drift term. Based on the 

arbitrage-free principle, the market price of risk is removed by the choice of the 

drift. This is performed in different ways. Spot rate models match the initial yield 

curve that implicitly holds information on investor choice and hence the market 

price of risk, through the drift function. Models formulated with instantaneous 

forward rates explicitIyrelate the choice of volatility function to the form of the 

drift (imposed through the HJM condition), in order for the no-arbitrage 

principle to hold. Similarly, for market models the drift is adjusted to ensure that 

the model remains arbitrage-free. 
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6.2.2.1 Short rate (spot rate) models 

Historically it has been the short interest rate that has been modeled as the basic 

process. The first generation of models developed was generally spot rate-based. 

This choice was due to a combination of mathematical convenience and 

tractability, or numerical ease ofimplementation. Furthermore, the most widely 

used ofthese models are the one-factor models, in which the entire yield curve is 

specified by a single stochastic state variable, in this case the spot or short-term 

rate. An example of these includes the model due to Vasicek (1977), whereby the 

short rate is modeled as a normal mean reverting process with constant 

parameters. Vasicek (1977) assumed that the instantaneous spot rate under the 

risk neutral measure follows an Omstien-Uhlenbeck process with constant 

coefficients, hence: 

dr(t) = k[O -r(t)]d/ +orJW(/), reO) = ro (6.5) 

wherero' k, {} and a are positive constants and Wet) is a standard Brownian 

motion. Integrating equation (6.5), we obtain for eachs;5;; t, 

I 

ret) = r(s)e-kCt-,) + 0(1- e-kCt-,» + a je-k(/-U)dW(u) (6.6) 
, 

Thus, ret) conditional on a filtration F, (s;5;; t) normally distributed with mean 

and variance given respectively by 
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E{r(t)IF,} = r(s)e-1(t-J) + 0(1- e-1(t-S» 

2 

Var{r(t)IF,} = ;k [I_e-U(t-S)] 

This implies that, for each time t, the short rate r(t) can be negative with a 

(6.7) 

positive probability, which represent a major drawback of the Vasicek model. 

However, the analytical tractability that is implied by a Gaussian density is not 

achieved when assuming other distribution for the process r(t) . As a 

consequence of(6.7), the short rate r(t) is mean reverting, since the expected rate 

tends, for t going to infinity, to the value 0 . 

The general equilibrium approach developed by Cox-Ingersoll-Ross (CIR) 

(1985) led to the addition ofa square-root diffusion term to the Vasicek (1977) 

model. The resulting model has been a benchmark for many years because of its 

analytical tractability and the fact that, contrary to the Vasicek(1977) model the 

short rate is always positive. The model formulation under the risk neutral 

measure IS 

dr(t) = k[O -r(t)]dt +cr~r(t)dW(t), r(O) ='0 (6.8) 

where 'o,k, 0 and cr are positive constants, the condition 2kO> cr 2 has to be 

imposed to ensure that the short rate remains positive. 

Ho & Lee (1986) pioneered an arbitrage-free lattice approach for interest rate 

models taking initial term structure of interest rate as an input. Hull & White 
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(1990) extended the Vasicek model to fit both the current tenn structure and 

volatilities of interest rates. In their model the short rate follows a nonnal mean 

reverting process with time dependent parameters. The Hull & White (1990) 

model is popular in practice as it produces closed fonn solution for bond prices. 

Black, Oennan & Toy (BOT)(l990), combined the mean reverting property of 

the short rate with a lognormal distribution. The major appeal of the model is the 

transparent calibration procedure to the yield and volatility curves. However, the 

cost of that was mutually dependent mean reversion and volatility tenns. Black­

Karasinski (1991) rectified this shortcoming of the BOT model by allowing for 

independent parameters. For a detailed description of the different models 

proposed, together with their extensions, the reader can refer to Bjc;rk (1998). 

All of the above models are driven by one-dimensional stochastic processes. 

Moreover, the volatility structure in them is always detenninistic and stationary. 

In reality, the log returns of zero coupon bonds of different maturities are not 

perfectly correlated. Multi-factor models can take this into account. The use of 

mUltiple factor and path dependent volatility functions gives a certain flexibility 

since it can incorporate changes in the level and the slope of the tenn structure, 

though with each extra factor there is a considerable increase in complexity. In 

practice, we have to trade offprecision and numerical tractability. 
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6.2.2.2 Forward rate models 

An alternative approach to modeling the tenn structure was offered by the Heath, 

Jarrow and Morton (HJM) (1992) structure. In contrast to the short rate 

approach, they model the entire yield curve as a state variable, providing 

conditions in a general framework that incorporates all the principles of 

arbitrage-free pricing and discount bond dynamics. Moreover, the HIM model 

uses all the infonnation available in the initial tenn structure. The HIM 

methodology uses as the driving stochastic variable the instantaneous forward 

rates, the evolution of which is dependent on a specific (usually detenninistic) 

volatility function. 

Because of the relationship between the spot rate and the forward rate, any spot 

rate model is also an HIM model. In fact, any interest rate model that satisfies 

the principles of arbitrage-free bond dynamics must be within the HIM 

framework. 

Heath, Jarrow and Morton (1992) assumed that, for a fixed maturity T, the 

instantaneous forward rate f(t,T) evolves under a given measure according to 

the following diffusion process: 

df(t,T) = a(t,T)dt + a(t,T)dW(t), 

f(O,T) = fM (O,T) 
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where fM (O,T) is the market instantaneous forward rate at time t = 0 for 

maturity T, and where W = (~"'" WN ) is an N-dimensional Brownian motion 

allowing the model to consider various factors. a(t, T) is the drift function and 

a(t,T) is the volatility function. 

The advantage of modeling forward rate as in (6.9) is that the current term 

structure of rates is by construction an input of the selected model. 

Heath, Jarrow and Morton proved that, in order for a unique equivalent 

martingale measure to exist, the function a can not be arbitrarily chosen, but it 

must be equal to a quantity depending on the vector volatility a and on the drift 

rates in the dynamics of N selected zero coupon bond prices. In particular, if the 

dynamics in (6.9) are under the risk neutral measure, then we must have 

TNT 

a(t,T) = u(t,T) lu(t,s).ds = La;(t,T) lu;(t,s)ds 
I i-I I 

(6.10) 

So that the integrated dynamics of f(t, T) under the risk neutral measure are 

fully specified once the vector volatility function a is provided, such that; 

, T , 

f(ttT} = f(OtT) + lcr(utT) lu(u,s)dsdu + Icr(s,T)dW(s) 
o. 0 

N , T N I 

= !(OtT) + ~ lul(u,T) lUI (u,s)dsdu + ~ Iu;(s,T)d~(s) 
I-I o. ,-I 0 

(6.11) 
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Given these dynamics of the instantaneous forward rate f(t,T) , application of 

Ito's lemma gives the following dynamics of the zero coupon bond pricep' (T): 

dp, (T) = p, (T}[r(l)dl- (fU(I,S)ds }W(t)] (6.12) 

where ret) is the instantaneous short tenn interest rate at time t, that is 

" , 
ret) = f(/,t) = f(O,t) + f C1(u,/) fa(u,s)dsdu + fa(s,t)dW(s) 

o. 0 

N " N , 

= 1(0,/)+ I fa; (u,t) fa/(u,s)dsdu + I fa; (s,t)dW;(s) 
~I o. I~ 0 

(6.13) 

6.2.2.3 l\larket models 

Market models are considered one of the most popular families of interest rate 

models due to the agreement between these models and market formulas for two 

basic derivative products (caps and swaptions). Hence, market models are more 

appealing in this context than HJM framework which is based on continuously 

compounded rates and is therefore fundamentally different from actual forward 

Libor and swap rates as traded in the market. The lognormal HJM model is also 

well known to exhibit unbounded behavior (producing infinite values) in contrast 

to the use of lognormal Libor distribution in Black's formula for caplets. The 

construction of a mathematically consistent theory of a term structure with 

191 



discrete Libor rates being lognonnal was achieved by Sandmann & Sondennann 

(1993). Brace, Gatarek & Musiela (1997) and Iamshidian (1997) (BGMlJ) 

developed a unifying framework, the market model, based on HIM, for forward 

LmOR rates assuming simple compounding of LIBOR rates instead of 

continuous compounding of forward rates under the HIM which would result in 

an exploding process. This approach is arbitrage free and has a closed fonn 

solutions for European swaptions. 

6.3 Bayesian analysis of annuity values in a stochastic 
interest rate environment 

In this section, a fully Bayesian model is used analyze annuity values in the same 

manner as in chapter s. The difference is that, instead of considering longevity 

risk only, the effect of investment risk will be allowed for through the modeling 

of the interest rate used in discounting as a stochastic process. The Lee-Carter 

mortality projection methodology, using the Poisson log-bilinear methodology 

(described in chapter 5), will be used in a Bayesian framework to forecast future 

forces of mortality, and hence produce full distribution of annuity values. The 

likelihood function and the prior assumptions for the parameters of the mortality 

model are as in chapter S. The analysis has been perfonned using the CMI data 

for female life office pensioners, 1983-1996 inclusive, with age classified by 

individual year, 60-95 inclusive, so that the results can be compared to the 

corresponding ones (case C) in chapter S. 
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We will start by describing the financial model used together with the prior 

distribution of its parameters. 

6.3.1 The financial model 

The financial model used is the same as the model used by Ballotta and 

Habennan (2003) to evaluate guaranteed annuity options. 

Under the condition of a frictionless market with continues trading, no taxes, no 

transaction costs, no restrictions on borrowing or short sales and perfectly 

divisible securities. Assume that the evolution of the forward rate is modelled in 

a single-factor Heath-Jarrow-Morton (HJM) framework (Heath et al (1992», i.e. 

where the volatility function u ,(/,T) is a F, adapted satisfying 

T Iu;(s,nds < cx>and (Iv, : I ~ 0) is a standard one dimensional Brownian 
o 

motion. Under these assumptions, the price of a zero coupon bond with 

redemption attime Tis p, (T) = exp( - ,[(I,S)ds ) and the money market 

, 
account is given by B, = exp( I r, ds) where r, is the short rate. 

o 
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We assume that the volatility of the forward rate follows an exponentially 

decaying structure, such that 

a/CttT) = CT e-A(T-I) (6.15) 

where CT > 0, A. > O. Hence, the forward rate dynamics is given by 

(6.16) 

Under these assumptions it follows that the short rate processed can be expressed 

as: 

(6.17) 

Equation (6.17) shows that the exponentially decaying structure of the forward 

rate volatility leads to a mean reverting fonn ofthe short rate that closely 

resemble an extended version of the Vasicek(l977) model. 

Notice that sincev E [O,t], then: 

, T T J e -A(.-v) du = J e -A(.-t)-A(I-v) du = e -..t(l-v) J e -..t(u-I) du 

o I I 

(1 -A(T-,») 
=e-..tcI-V) -e A. = e-..tCI-V)y(t,T) 

(6.18) 

(
1 -.l(T-,») 

where y(t,T) = -eA.' 
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Using equation (6.17) and following, for example, Jarrow and Turnbull (1994) 

and Chiarella and Kwon (2001), we can establish that 

(r, - 1(0,/»)- N(m, (/),U, (I») 

where 

Therefore 

P. (T) = Po (T) e -(112)r
2
(I.T)u;(t)-r(I.T)(r,-/(0,1» 

I Po(t) (6.19) 

Although Equations (6.17) and (6.19) are similar to the expressions derived by 

Vasicek (1977), they differ in the fact they are obtained taking the initial term 

structure as exogenous, while for the Vasicek model the initial term structure is 

endogenous. 

Full details regarding the model and its detailed derivation can be found in 

Ballotta and Haberman (2003). 
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6.3.2 Methodology and prior distributions 

For the mortality model, we will use the same likelihood function and prior 

assumptions ofthe Lee-Carter (1992) mortality projection model as in chapter S. 

As for the investment model, equation (6.19) will be used to find at time t the set 

of zero-coupon-bond prices {P, (T), t < T} , which can then be used as the 

discount factors for different durations Tin the future. We are going to use the 

set of zero coupon bond prices at time t =1 , i.e. we need to find the values for 

~ (T), where {I < T}. By substituting t =1 in equation (6.19), ~ (T) can be 

expressed as; 

where 

(
1-e-,t(T-J)) 

y(l,T) = l 

(rt - 1(0,1»)- N{m,(1),O",(I») 

(6.20) 
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As in Ballotta and Haberman (2003), in order to compute the initial bond prices 

Po (T) a flat initial term structure is assumed and fixed at 4%, i.e. 

1(0,.) = 10 = 0.04. The prior distribution chosen for A. is the uniform distribution 

over the range (0.1,0.15). The Gamma distribution naturally was used as the 

prior distribution forO', with a mean of 0.01 and a small variance (in line with 

what have been assumed in Ballotta and Haberman (2003». Note that these 

assumptions were made so that the model resembles the current market 

conditions in the UK. 

6.3.3 Numerical results 

In line with the calculations performed in chapter 5, we will consider the CMI 

data which relate to female office pensioners for the period from 1983 to 1996. 

We will consider a single life annuity at ages 60, 70 and 80 with payments of £1 

due at the end of each year. 

The estimated values for the parameters ofthe mortality projection model 

a x ,fix and K, are obviously the same as results for case C in chapter 5 as the 

same set of data, likelihood function and prior assumptions are being used. 

As for the interest rate model, figure 6.1 shows the zero coupon bond prices 

~ (T) at time t=1 for different future durations Tthat have been calculated using 

equation 6.20. 

197 



Figure 6.1: Estimated values for zero coupon bond prices at time t=1 for 
different maturities T 
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Figure 6.1 shows that as T increases the value of ~ (T) decreases. The values of 

zero coupon bonds at time 1 for different durations T represent the discount 

( 

1 J(T-I) 
factor at time T-l , i.e. ~ (T) = - . . Note that the financial model 

1 + 1 

described 6.3.1 allows negative rates of interest, which could result in a discount 

factor which is higher than I. A constraint was imposed to prevent this from 

happening and as shown in figure 6.1 the Zero coupon bond prices are behaving 

as they suppose to. Figure 6.2 shows the interest rates implied by the 

corresponding zero coupon bond prices. 
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Figure 6.2: Interest rates implied by zero coupon bond prices at different 
maturity time T 
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It can be seen from figure 6.2 that the rate of interest is higher than 6% for early 

durations and then it decreases, approaching the long term mean of 4%. 

A summary of the descriptive statistics of the simulated distributions of annuity 

payments for female pensioners using a Bayesian version of the Lee-Carter 

(1992) mortality projection model in a stochastic interest rate environment is 

shown below in table 6. 1. 
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Table 6.1: Summary of the descriptive statistics of the simulated 
distributions of annuity payments for female life office pensioners 

Age Female Pensioners model 
Mean Value Prediction Error Coefficient of variation 

60 12.11 3.104 25.63% 

70 9.061 3.345 36.92% 

80 5.836 2.917 49.98% 

We can see from table 6.1 that the mean value of the distribution of annuity 

payments at age 60 is higher than the mean value of the corresponding 

distribution which assumed a fixed rate of interest of 6% for discounting the cash 

flows (table S.4). The reason is that, although at early durations the rate of 

interest used in discounting is higher than 6%, resulting in a lower value for the 

cash flow for these durations as compared to the case when a fixed rate of 6% is 

being used. This effect has been offset by using a lower interest rate, and hence a 

higher value of the cash flows at later durations (see figure 6.2). This results in 

an overall increase in the mean value of the distribution at age 60. On the other 

hand, the mean value of the distribution of annuity payments at ages 70 and 80 is 

lower than the corresponding ones when the rate of interest was fixed at 6% 

because the rate of interest used was on average higher than 6% in most of the 

years. It can also be seen from table 6.1 that the coefficient of variation at ages 

60 and 70 is higher than the corresponding ones in chapter 5 reflecting a higher 

variability in the distribution of annuity payments when the rate of interest is 

treated as a random quantity. At age 80, the coefficient of variation is lower than 
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the one in chapter 5 as the additional variability attributed due to the randomness 

of the interest rate used in compounding is ofa lesser importance than both ages 

60 and 70 because the interest rate is on average much higher than 6%, and the 

higher the rate of interest the lower the variability of the distribution of annuity 

payments. 

6.3.4 Convergence diagnostics 

In this section, we will consider the convergence ofthe parameters of the 

financial model only. As before, the number of updates that the simulation has to 

be run for is such that the Monte Carlo error for each parameter is less than 5% 

of the sample standard deviation. In this chapter the number of bum-in iterations 

was 5000, and the total number of updates afterwards was 100,000 and to reduce 

any effect of autocorrelation between consecutive samples we retain only one 

realization in every 10 iterations for each parameter. As in chapter 5, trace and 

history plots ofthe sample values versus iteration and the Gelman Rubin statistic 

were used to check the convergence ofthe MCMC simulations of the financial 

model. The autocorrelations between the draws of consecutive samples of all the 

parameters involved was also checked for. 

Figure 6.3 gives the history plot for some parameters ofthe financial model and 

some of the zero coupon bond prices at time t=1 for different durations Tin the 

201 



future (P., (T) )at selected durations after the burn in iterations, while figure 6.4 

gives the corresponding trace plots using two sets of initial values. 

Figure 6.3 : History plot for tb e parameters of the financial model and zero 
coupon bond prices (P(1, T) at time t=1 for some selected maturities T 
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Figure 6.4: Trace plot for the parameters of the financial model and z ro 
coupon bond price (P (1, T)) at time t=1 for some selected maturitie T 
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From figure 6.3 we can see that, after the burn-in iterations, the simulation 

appears to have stabilised for all observed variables indicating that convergence 

has occurred. This has been confirmed by using two chains of starting values 

(figure 6.4) where the simulations appear to exhibit the same behavior through 

the iterations irrespecti e of the initial values used. 
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Figure 6.5 shows the plots of the Gelman-Rubin convergence statistic er u 

iterations number for the parameters of the financial model and zer c upon 

bond prices (P(J, T) at time t= 1 for some selected maturities T. 

Figure 6.5: Gelman-Rubin convergence statistic for the pararn ter of th 
financial model and zero coupon bond prices (P(1,T)at time t=l for om 
selected maturitie T 
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We can see from figure 6.5 that the value of the Gelman-Rubin statisti 

effectively equal to one, indicating convergence ofthe different chain . 
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The autocorrelations between the draws of consecutive samples need to be 

checked as well to ensure that the Gibbs Sampler will not be slow to explore the 

entire posterior distribution. As we mentioned before, the autocorrelation 

function measures how correlated the values in the chain are with their close 

neighbours. An independent chain will have approximately zero autocorrelation 

at each lag. 

Autocorrelations up to lag 50 for some parameters of the financial model at 

selected durations show that there is no significant autocorrelations remaining in 

the samples. (See figure 6.6). 
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Figure 6.6: Autocorrelation function for the parameters of the financial 
modeJ and zero coupon bond prices (P (1, T)) at time t=1 for some selected 
maturities T 
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6.4 Summary and remarks 

In this chapter, the analysis of the change of the cost of life annuity has been 

extended to an environn1ent in which the future rates of interest are stochastic 

which allows an integrated analysis of both longevity and investment risks and 

their interaction. This analysis is performed in a Bayesian framework, with 

future mortality improvements being modeled using the Lee-Carter (1992) 

projection as described in chapter 5. The interest rate model used is the one 
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developed by Ballota and Habennan (2003), which makes use of a one factor 

Heath-Jarrow-Morton framework for the tenn structure of interest rate. The data 

used are the eMI data for female life office pensioners, 1983-1996 inclusive, 

with age classified by individual year, 60-95 inclusive, so that the results can be 

compared to the corresponding ones of case e in chapter 5. 

The reSUlting rates of interest are higher than 6% for early durations and then 

decreases, approaching the long tenn mean of 4%. This leads to a higher mean 

value for the distribution of annuity payments at age 60 as compared to the 

corresponding one in chapter 5 (case e), while at ages 70 and 80 the mean values 

of the distribution of annuity payments are lower than the corresponding ones in 

chapter 5 (case e). This is because the remaining life time is longer at age 60 as 

compared to ages 70 and 80, so that the higher interest rates that have been used 

to discount cash flows at early durations are offset by lower rates at the later 

durations. At ages 70 and 80, the remaining life time is on average not long 

enough for this to have an effect. 

The coefficient of variation of the distributions of annuity payments is higher at 

ages 60 and 70 than the corresponding ones in chapter 5 (case e), reflecting a 

higher variability in the distribution of annuity payments that could be attributed 

to treating the interest rate used for discounting at different duration as a random 

variable instead offixing it to 6% as before. At age 80 the coefficient of variation 

was slightly lower than the corresponding one in chapter 5 (case e), as the effect 
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of the additional variability due to modeling the rate of interest as a stochastic 

quantity is of lesser importance especially when the rate of interest used was on 

average higher than 6%. 
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Chapter 7 

Conclusions 

7.1 Summary 

This chapter is organised as follows: the main findings and the conclusions in 

each of the previous chapters are summarised in this section. Section 7.2 presents 

a discussion of possible extensions and further work. 

Chapter 3 - Analysing the distribution of life annuities using simulation 

techniques. In this chapter simulation techniques have been used to obtain a 

distribution of annuity payments by modelling a particular path that a group of 

persons may follow during their life time by allowing the time of death for each 

person to be a random variable. The effect of age at inception, gender, assumed 

interest rate and the level of mortality have been investigated using scenario 

analysis. The properties ofthe distributions of outcomes of each of the scenarios 

have been analysed using UK life office pensioners' data from the Continuous 

Mortality Investigation Bureau and mortality improvements have been allowed 

for using the Sithole et al (2000) mortality projection model. 

Using the simulated distributions, we can draw the following conclusions: 

209 



• The distribution of the present value of annuity payments for female 

pensioners is less variable than in the corresponding one for male 

pensioners at same age. 

• As age at inception increases, the coefficient of variation increases and 

the effect of mortality improvement decreases and the shapes of the 

distributions become similar to each other. 

• For younger ages at inception, the shape of the distribution of present 

value of annuity payments is negatively skewed. With increasing age, the 

distribution becomes less negatively skewed until, at some point, it 

becomes positively skewed. 

• The effect on the present value of annuity payments of living longer than 

average is increased by the lower discounting applied to the future 

payments in a low interest environment. 

• Decreasing the reduction factors (Le. assuming higher mortality 

improvements.) has a stronger effect on the additional cost of annuity 

than increasing the reduction factors by the same percentage. 

Chapter 4 - Entropy, Longevity and the cost of life annuity. The aim of this 

chapter is to develop a theory that extends the use of the entropy measure applied 

in population biology by Demetrius (1976) to measure the effect of a 

proportionate changes in the force of mortality on the cost oflife annuity at 

different levels of interest rate and mortality improvements, this represent the 
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first main contribution of this chapter. Using this new theory allows different 

sources of risk in a life annuity contract to be summarized in a one figure index 

(i.e. the entropy measure ll). The approach of Keyfitz (1977) has been extended 

to obtain numerical values for H. This has been applied to the English Life 

Tables over the period from 1851 to 1991 and also by applying different 

mathematical models for mortality projections such as the Gompertz and the 

Sithole et al (2000) mortality projection models for both males and females aged 

60. 

The numerical results for H suggests that, at very high or low levels of mortality, 

the effect of mortality changes on the value of life annuity is ofless importance. 

This reflects the fact that when mortality is already very high or very low, any 

change (whether an increase or a decrease in the force of mortality) is less likely 

to have a significant effect on the cost of life annuity. This means that­

theoretically - even if mortality continues to improve it will reach a level beyond 

which any more improvements would not affect the cost of survival benefits by 

much. 

Chapter 5 - Bayesian analysis of the changes in the cost of life annuity due 

to longevity risk. In Chapter 5, the effect oflongevity risk has been investigated 

in the context of life annuities in a Bayesian framework. The simulated 

distributions of annuity payments are obtained in a manner similar to that in 
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chapter 3 except that the Bayesian approach combines the estimation of the 

parameters of the mortality projection models together with the simulation of the 

annuity cost, so that parameter uncertainty will be allowed for. The analysis has 

been performed using both the Sithole et al (2000) and the Lee-Carter (1992) 

mortality projection models. An approach to measure the effect ofparameter 

uncertainty has been introduced in this chapter. 

Numerical results showed that, the mean value of the distribution of annuity 

payments obtained in the Bayesian framework using the Sithoie et al (2000) 

mortality projection model is close to the mean values of the corresponding 

distributions in chapter 3 for all ages for both males and females. And that, In all 

of the cases investigated, the mean value obtained in the Bayesian framework 

was slightly higher (except for female pensioners age 60). On the other hand, 

the coefficient of variation of the distributions of annuity payments produced 

using the Sithole et al (2000) mortality projection model in the Bayesian 

framework is lower than the corresponding ones in chapter 3 (except for male 

pensioners age 60) reflecting a lower variability in the distribution of annuity 

payments when the Bayesian approach to inference is used, even when the 

parameters are being estimated within the model (i.e. estimation error is added to 

the total variability). 
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Parameter uncertainty (estimation error) has been measured for the Sithole al 

(2000) mortality projection model, and numerical results suggested that 

estimation error was not very significant (see table 5.3). 

An approach to measure parameter uncertainty (estimation error) has been 

allowed for by comparing the prediction error of the simulated distributions 

obtained from the Bayesian model when the parameters values of the Sithole et 

al (2000) are estimated within the model itself with the prediction error ofthe 

simulated distributions obtained when the values of the parameters are fixed at 

the maximum likelihood estimates. The reduction in the prediction error should 

then represent the estimation error- from table 5.3 we can see that the estimation 

error was not very significant. 

A Bayesian version of the Lee-Carter (1992) mortality projection model has 

been used to carry out a similar analysis as the one using the Bayesian Sithole et 

al (2000) mortality projection model and produce distributions of annuity 

payments. The resulting distributions of annuity payments has produced a mean 

value which is higher than the corresponding ones using the Bayesian version of 

the Sithole et al (2000) mortality projection model at ages 60 and 70, and a lower 

value at age 80. The coefficient of variation was lower at all ages reflecting 

lower variability in the distribution of annuity payments when using the Lee­

Carter (1992) mortality projection model in a Bayesian framework. 
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Chapter 6 - Stochastic Bayesian analysis of the investment risk in a 

portfolio of life annuity. In chapter 6 a model for the rate of interest assumed 

has been incorporated to reflect the effect of the uncertainty of future returns on 

the cost of a life annuity. As in chapter 5, this analysis is perfonned in a 

Bayesian frame work in which the parameters of both the financial model and 

the mortality projection models are estimated. Mortality improvements are 

allowed for using the Lee-Carter (1992) mortality projection model and the 

interest rate model used is the one developed by Ballotta and Habennan (2003). 

In chapter 5 a rate of interest of 6% has been used for discounting annuity 

payments for all durations. On the other hand, the resulting rates of interest using 

the stochastic model are higher than 6% for early durations and then started to 

decrease approaching the long tenn mean of 4%. This leads to higher mean value 

of the distribution of annuity payments at age 60 as compared to the 

corresponding one in chapter 5 (case C), while at ages 70 and 80 the mean values 

of the distribution of annuity payments are lower than the corresponding ones in 

chapter 5 (case C). This is because the remaining life time is longer at age 60 as 

compared to ages 70 and 80, so that the higher interest rates that have been used 

to discount cash flows at early durations are offset by lower rates at the later 

durations. At ages 70 and 80, the remaining life time is on average not long 

enouih for this to have an effect. 
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The coefficient of variation of the distributions of annuity payments is higher at 

ages 60 and 70 than the corresponding ones in chapter 5 (case C), reflecting a 

higher variability in the distribution of annuity payments that could be attributed 

to treating the interest rate used for discounting at different duration as a random 

variable instead of fixing it to 6% as before. While at age 80 the coefficient of 

variation was slightly lower than the corresponding one in chapter 5 (case C), as 

the effect of the additional variability due to modeling the rate of interest as a 

stochastic quantity is oflesser importance especially when the rate of interest 

used was on average higher than 6%. 

7.2 Areas of Further Research 

Investigate the effect ofmodel uncertainty. Measuring model uncertainty 

is beyond the scope of this thesis. Two mortality projection models have been 

used in chapter 5 in order to illustrate the effect of choosing one model instead of 

the other but this is not sufficient as an investigation of the effect of model 

uncertainty. A full investigation of model uncertainty would postulate a 

reasonable number of possible models of both future mortality and interest rates, 

giving each a prior probability in the Bayesian framework. 

Considering the Cohort effect. It could be of interest to extend the 

Bayesian analysis of annuity payments using the Lee - Carter (1992) projection 
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methodology to the modeling of age-period-cohort effect that proved to be of 

high significance for UK experience (Willets (2004». Note that the extension of 

the Lee-Carter model to incorporate a cohort effect has been considered by 

Ranshaw and Haberman (2006). 

Bayesiall modelling of the entropy measure (H). This could help to 

better understand the way Hbehaves. For example, it would be useful to be able 

to answer questions such as: at a given level of interest rate, what would be the 

level of mortality that is considered too high or too low such that the cost of a 

life annuity is less likely to respond to any further changes in the force of 

mortality. 
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Appendix (1) 

Using Incomplete gamma function to find values 
of H - Mortality follows the Gompertz law 

Equation (4.15) can be written as 

where 

Put 

b b I 
H= -Px +~._ 

c-a c-a J 
(Ai.i) 

I = lex{;~~ ((exp(c-a)t)-l»)exp((c-a-o!).dt 

J = lex{ ;~~ ((exP(c-a)t)-I)]exP(-&').dt 

y = exp[(c - a)t] ::) dy = (c - a)y ::) dy = (c - a)y.dt 
dt 

y" =exp[(c-a-8,1 ::) xlogy=(c-a-8)t ::) 
(c-a-8) 

X=~---":" 

(c-a) 

and m = exp(c-a)s 

By changing variables I can be expressed as 
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I = Jy (e-a) exp Jix y Y 
m (e-a-6) (- b J d 

I (c-a) y(c-a) 

Im~ (_b J = -- Jy(e-a) exp IIx y dy 
c-a I (c-a) 

1 m 
=-Jy-Pexp(-oy)dy (A1.2) 

c-a, 

where 

P=~ 
c-a 

b 

CT = Jill 
(c-a) 

In the same manner a change of variables is also used for J, in this case y is 

defined as above but x is different such that 

y1l =exp[(-o}] => xlogy=-& => 
-0 

x=--
c-a 

So J can be expressed as 

m~ (_b J d J = fy(e-a) exp Jill y Y 
I (c-a) y(c-a) 

-6 ( b J 1 m --I _ 
= __ fy(e-a) exp 1111 y .dy 

c-a I (c-a) 

= _1_jy_p_1 exp(-oy)dy 
c-a, 

(Al.3) 

Where p and (J' are as defined above. 
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From equations (AI.2) and (AI.3) 

1 m 
b - fy-.o exp(-oy}Jy 

H = - p! + ~ *_c_-_a--:..I _____ _ 

c-a c-a 1 m

f -- y-.o-I exp( - oy}Jy 
c-a t 

m 

b b fy-.o exp{-oy}iy 
= -Px +~*~I~--------­

c-a c-a m f y -.0-1 exp{ - oy }Jy 
t 

b b I 
= -Px +~*_2 

c-a c-a J 2 

If we define Z such that 

dZ dZ Z=oy ::) -=0" ~ -=dy 
dy 0" 

By another change of variables 12 can be expressed as 

m 

12 = fy-.o exp{-oy}Jy 
I 

7( Z)-.o dZ 
= - exp(-Z)-

0' 0" 0" 

om 

= 0".0+1 fz-.o exp(- z}Jz 
0' 

And J2 can also be expressed as 
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'" 
J 2 = Jy-P-I exp(-oy)dy 

1 

7(Z)-P-1 dZ 
= - exp(-Z)-

u U U 

"'" = U P+
2 JZ-P-I exp(- z)dz (A1.6) 

u 

So finally, using equations (AI.5) and (AI.6) the Entropy measure (ll) in (AI.4) 

can be expressed as 

"'" 
b b u P+

1 JZ-p exp(- z)dz 
H = - f.Jx + ~ * _---'u"-____ _ 

c-a c-a "'" 
u P+

2 JZ-P-I exp(-Z)dz 
u 

om 

b b JZ-p exp(- z)dz 
=-f.Jx+~*~u~ ________ _ 

c - a c - a ""'J (\-1 U Z-P-' exp -ZJUZ 
u 

= _ p! + p!. [jz-p exp(-Z)dz - fz-P exp(-Z)dZ] 

c-a c-a [om (1' J u f Z-P-' exp( - z)dz - f Z-P-I exp( - z)dz 

It can be seen that, all the integrals in (AI. 7) are of the form of a lower 
incomplete gamma function. 
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Appendix (2) 

Partial derivatives of the entropy measure (Il) 

Using the Gompertz law assumption (section 4.4.1), the entropy measure H can 

be expressed as follows: 

b b 

H = -Px +~ 
c-a c-a 

f exp( ~ (exp(c - a)l) }xp((c - a - 0, }dl 

fex{ ;~~ (exp(C-a)I)}xP(-<'it).d1 

where b and c represent the base mortality table, a represents the level of 

(A2.1) 

mortality change and 8 is the force of interest. Given that the value for p: is 

taken from the base table directly, hence it is a constant. Thus, H(c, a, 5) is a 

function of a , c and 8 . 
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The partial derivative of H with respect to a 

8H 
8a 

b b 
-JJx +~ 

(c-a)2 c-a 

Iex{ ~(exP(,-a)t)}xp«c-a -8)}dt 

Jexp(- JJ! (exp(c-a)t)lexp(-&).dt 
o c -a ') 

Rexp(- p! (exp(c-a)t)+(c-a -0)J1- t - JJ! (exp(c-a)t)+t p! (exp(c-a)t)).dt 
lib I c-a c-a c-a 
+~ 0 , (b ) 

- Jexp - Px (exp(c-a)t) exp(-&).dt 
o c-a 

I 
'Jexp(- jl! (exp(c -a)t)+ (c-a -o)tJ.dtR- p! (exp(c- a)t )+t jl! (exp(c - a)t))exp( - p! (exp(c -a)t )IJexP(-&).dt 

lib c-a c-a c-a c-a r-x 0 0 ---
c-a (Iex{ ~~~ (exP(c-a)t)JexP(-.2)dt), 
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Figure A2.1: The partial derivative of H with respect to alpha at different 
interest rates 
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