
              

City, University of London Institutional Repository

Citation: Fring, A., Kostrykin, V. & Schrader, R. (1996). On the absence of bound-state 

stabilization through short ultra-intense fields. Journal of Physics B: Atomic, Molecular and 
Optical Physics, 29(23), pp. 5651-5671. doi: 10.1088/0953-4075/29/23/011 

This is the unspecified version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/954/

Link to published version: https://doi.org/10.1088/0953-4075/29/23/011

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


 

City Research Online

Original citation: Fring, A, Kostrykin, V & Schrader, R (0011). On the absence of bound-state 

stabilization through short ultra-intense fields. J.Phys. B29 (1996) 5651, doi: 10.1088/0953-

4075/29/23/011 <http://dx.doi.org/10.1088/0953-4075/29/23/011>

Permanent City Research Online URL: http://openaccess.city.ac.uk/954/

 

Copyright & reuse

City  University  London has developed City  Research Online  so that  its  users  may access the 

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are 

retained by the individual author(s) and/ or other copyright holders. Users may download and/ or print 

one  copy  of  any  article(s)  in  City  Research  Online  to  facilitate  their  private  study  or  for  non-

commercial research. Users may not engage in further distribution of the material or use it for any 

profit-making activities or any commercial gain. All material in City Research Online is checked for 

eligibility for copyright before being made available in the live archive. URLs from City Research 

Online may be freely distributed and linked to from other web pages. 

Versions of research

The version in City Research Online may differ from the final published version. Users are advised to 

check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact  

with the author(s) of this paper, please email the team at publications@city.ac.uk.

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk
http://www.city.ac.uk/


ar
X

iv
:q

ua
nt

-p
h/

96
04

00
9v

2 
 1

6 
Se

p 
19

96

Berlin Sfb288 Preprint No. 201

quant-ph/9604009

revised version

On the absence of bound-state stabilization

through short ultra-intense fields

A. Fring∗, V. Kostrykin† and R. Schrader∗ ∗

∗ Institut für Theoretische Physik

Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany

† Institut für Reine und Angewandte Mathematik

RWTH Aachen, Templergraben 55, D-52056 Aachen, Germany

Abstract

We address the question of whether atomic bound states begin to sta-

bilize in the short ultra-intense field limit. We provide a general theory

of ionization probability and investigate its gauge invariance. For a wide

range of potentials we find an upper and lower bound by non-perturbative

methods, which clearly exclude the possibility that the ultra intense field

might have a stabilizing effect on the atom. For short pulses we find almost

complete ionization as the field strength increases.
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1 Introduction

Fermi’s Golden Rule, as one of the central elements in quantum mechanics, has

served for many years for the understanding of photoionization rates of atoms

in weak radiation fields. Its origin is, however, perturbative and therefore when

applying very intense fields (with intensities which are greater or of the order

of one atomic unit 3.5 × 1016W/cm2) one leaves its range of validity. With the

advance of laser technology this high intensity region has become accessible to

real experiments in the form of laser pulses of 1ps or less, at frequencies ranging

from the infrared to the ultraviolet [1]. The prediction of atomic ionization rates

are of practical importance for instance in the study of gas breakdown [2].

In order to treat the new regime, several alternative approximation methods

have been proposed. On one side [3, 4, 5] they are based on a perturbation

around the Gordon-Volkov solution [6] of the Schrödinger equation. The question

of convergence of these series and their precise range of validity has not yet been

put on firm grounds. Despite these problems, these methods have been applied to

find numerical solutions for the ionization probabilities. On the other side there

exist a vast number of numerical studies, which make use of numerical solutions

of the Schrödinger equation, high-frequency approximations [7] or the Floquet

approximation [8]. Most computations have been carried out in one dimension

[9, 10], in the hope that the essentials of the full three-dimensional physics are

already present in this simplified situation. There exist arguments which put

them in question [11, 12], since in comparison with the full three dimensional

situation, they do not account for the full angular dependence and may provide

misleading results. Recently there have been full three dimensional computations

[13, 14, 15, 12, 16, 17]. But the complete problem has not been solved yet and as

it is pointed out in [18], “even the simplest one-electron atom in an intense laser

field presents too great a challenge for truly ab inito numerical work, and a variety

of compromises have been developed”. These compromises are partly located in
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the numerical methods themselves, but put partly constraints onto the physics,

such as for instance the introduction of mask functions or the approximation of

the continuum by cutting of the high energetic states.

Several authors claim to have found the very surprising and counter-intuitive

result, that the bound state of the atom stabilizes as the field strength increases

[14, 15, 12, 17]. Similar results have also been obtained by many authors for

the one dimensional situation [9]. In fact these findings are so surprising that “a

dramatic shift in viewpoint is required to explain the physics of atoms in very

strong laser fields ” [19]. We shall comment on these results below and for the

moment refer the reader to the review article on these findings by Eberly and

Kulander [19] and one by Geltman [20], who takes the opposite point of view

that atomic bound states do not stabilize as the field strength is increased and

who asserts that the “conventional interpretation of the theory of the interaction

of radiation and atoms is quite sound even in this regime”. The latter point of

view is also supported in [21].

Evidence for atomic-stabilization in superintense laser fields has also been

obtained from the study of several classical dynamical systems [22].

Up to now there exist no data for intensities of one atomic unit, i.e. in the

high intensity region for which the theoretical predictions are made, such that

the controversy could be settled from the experimental side. So far there exist

some experiments for lower intensities 1013W/cm2, which provide evidence for

some sort of stabilization [23].

The controversy is mainly based on numerical results and a detailed theoretical

analysis of the problem which involves analytic expressions only does not exist so

far. The main intention of our paper is to provide an alternative approach to the

matter. We consider the Schrödinger equation for an atom in a linear polarized

electric field,

i
∂ψ

∂t
= (−∆/2 + V + z · E(t))ψ,
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where E(t) stands for the intensity of the field and is supposed to have finite

duration (for instance, 1 ps = 4.17×104 a.u.). We do not specify E(t) in more

detail: it can be, for instance, a pulse which contains a number of optical periods

(the frequency of which is determined by the frequency of the laser) possibly with

some turn-on and turn-off parts. Such kind of pulses were used in the search for

possible suppression of ionization. We note that 1 ps pulses have a duration

comparable with a classical Kepler period for the highly excited Rydberg states

(TK = 2πn3). Another example are half-cycle pulses with duration of about 500

fs, generated in the experiments of Jones et al. [24]. However, the maximal

intensity reached in these experiments was about 10−6 a.u., so that these pulses

are ultimately far from the ultra-intense limit.

We suppose furthermore that the wave function ψ(~x, t) is given by the bound

state wave function of −∆/2 + V before the pulse is turned on. One can easily

estimate that relativistic effects might be appreciable as soon as E(t) is so strong

that the classical theory predicts electron velocities approaching the speed of

light, or more precisely when in atomic units the electric field strength time the

frequency is of the order of the fine structure constant. According to the estimates

in [18] this occurs for typical frequencies for laser intensities E ≈ 1018W/cm2.

Our results below show that atoms do not become resistant to ionization when

exposed to short ultra-intense laser pulses. Our statements are of qualitative na-

ture, in the sense that they provide upper and lower bounds and do not predict

precise values of the ionization probabilities. The methods we use cover all pos-

sible pulses, i.e. also those which are very popular in the literature with smoooth

turn on and off. Our arguments cover all frequency regimes, including the high

frequencies for which stabilization is supposed to occur. For pulses which are not

switched on smoothly, our results typically hold for very short times of the order

of one atomic unit. With a smooth switch on of the pulse one may extend the

region of validity. We provide expressions for two upper bounds, (3.2) and (3.14)

valid in the region when (
∫ τ
0 E(t)dt)2 /2 (the classical energy transfer of the pulse)
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is smaller than the binding energy and the other valid without restriction. The

lower bound holds when (
∫ τ
0 E(t)dt)2 /2 > −E.

The paper is organized as follows. In Section 2 we formulate a general theory

of ionization probability and prove its gauge invariance. We also make con-

tact to the various approximation methods based on perturbative expansions.

In Section 3 we briefly discuss these methods in the context of quantum me-

chanical one-particle Stark Hamiltonians and provide the proofs for the upper

and lower bounds for the ionization probability for a wide range of one-particle

potentials, which in particular include all potentials appearing in atomic and

molecular physics. In Section 4 we state our conclusions. In Appendix A we pro-

vide an upper bound for the Coulomb potential and in Appendix B we optimize

this bound for the ground state of the hydrogen atom.

2 The general theory of ionization probability

and its gauge invariance

In this section we will give a general discussion of the ionization probability

and its gauge invariance. Gauge invariance is of course necessary for observable

quantities and it is conventional wisdom for the case of the ionization probability.

However, we were not able to locate an explicit reference with a proof and will

therefore include a discussion on this issue. We will relate our arguments to

familiar concepts in scattering theory and explicitly discuss its relevance in the

context of the Stark Hamiltonian. In the last part of this section we will show

the gauge covariance of time-dependent perturbation theory. In order to convey

the general ideas we will avoid bulky mathematical notations in this section.

Let H(t)(−∞ < t < ∞) be a general time dependent selfadjoint Hamilto-

nian in some Hilbert space H and let U(t, t′) denote the resulting time evolution
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operator from t′ to t, i.e. U(t, t′) satisfies

i∂tU(t, t′) = H(t)U(t, t′)

U(t, t′)U(t′, t′′) = U(t, t′′) (2.1)

U(t, t) = 1

for all t, t′, t′′. In the context of the Stark Hamiltonians, U(t, t′) exists for all t, t′

and is unitary (see below).

Assume now that H(t) approaches an operator H+ for t → ∞ and H− for

t→ −∞, i.e.

H+ = lim
t→∞

H(t)

H− = lim
t→−∞

H(t) (2.2)

holds in a suitable sense. It is important to note that we do not assume H+ to

equal H−. In fact, for the Stark Hamiltonian in certain gauges, these operators

will in general differ (see below). In analogy to the scattering matrix (see below)

we define the abstract S-Matrix to be the following weak limit, i.e. the limit for

matrix elements (if it exists)

S = lim
t→+∞

t′→−∞

exp itH+ · U(t, t′) · exp−it′H−. (2.3)

In particular S exists trivially and is unitary if H(t) becomes stationary for all

large |t|, i.e. if H(t) = H+ for all t ≥ t+ and H(t) = H− for all t ≤ t− for suitable

finite t−, t+. In this case we will call H(t) a finitely pulsed Hamiltonian. S then

takes the form

S = exp itH+ · U(t, t′) · exp−it′H− (2.4)

for all t ≥ t+ and all t′ ≤ t−. In particular S is then unitary.

Let P+ be the orthogonal projection onto the subspace spanned by the bound

states of H+. P− is defined analogously in terms of H−. Then for any normalized

state ψ in the range of P− its ionization probability is defined to be

I(ψ) = ‖(1 − P+)Sψ‖2. (2.5)

5



Here ‖ψ‖ denotes the Hilbert space norm, i.e. ‖ψ‖2 = 〈ψ, ψ〉 For the case when

H+ = H− this agrees with the definition used in [25, 26, 27]. For a finitely pulsed

Hamiltonian we have

I(ψ) = ‖(1 − P+)U(t+, t−)ψ‖2 (2.6)

whenever ψ is a bound state of H−.

Abstract gauge transformations are now introduced as follows. Let A(t) (−∞
< t <∞) be a one parameter family of unitary operators (suitably differentiable

in t). If ψ(t) is a solution of the Schrödinger equation

i∂tψ(t) = H(t)ψ(t)

then ψ′(t) = A(t)ψ(t) is a solution of the equation

i∂tψ
′(t) = i (∂tA(t))ψ(t) + A(t)i∂tψ(t)

= i(∂tA(t))A(t)−1ψ′(t) + A(t)H(t)A(t)−1ψ′(t) (2.7)

= H ′(t)ψ′(t)

with

H ′(t) = i(∂tA(t))A(t)−1 + A(t)H(t)A(t)−1 (2.8)

being formally selfadjoint. If U ′(t, t′) is the time evolution operator for H ′(t) then

obviously

U ′(t, t′) = A(t)U(t, t′)A(t′)−1. (2.9)

We note that the set of all gauge transformations form a non-commutative group

under the obvious multiplication rule (A1A2)(t) = A1(t)A2(t), with unit 1(t) = 1

and inverse A−1(t) = A(t)−1. The familiar interaction picture used in scattering

theory is now a special case. Indeed, to be more specific assume H(t) to be of

the form H(t) = H0 +HI(t), where H0 is the “free” Hamiltonian and HI(t) the

(possibly time dependent) interaction Hamiltonian. Set

A(t) = exp itH0. (2.10)
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Then

H ′(t) = H ′I(t) (2.11)

is the Hamiltonian in the interaction picture with

H ′I(t) = exp itH0 ·HI(t) · exp−itH0. (2.12)

In this case the limit (if it exists)

S(H,H0) = lim
t→+∞

t′→−∞

U ′(t, t′) = lim
t→+∞

t′→−∞

exp itH0 · U(t, t′) · exp−it′H0 (2.13)

is called the scattering matrix (S-matrix) for the pair (H,H0). Let us elaborate

briefly in what sense there is an analogy between the quantity (2.3) and the

case of ordinary potential scattering, i.e. where H0 is −∆/2 and HI(t) = V

is a potential. In the latter case H = H0 + V is compared with H0 in spatial

regions far out, i.e. where V is small and where the incoming and outgoing wave

packets are located for large |t|. In the case we are interested in presently, H(t)

is compared with H+ for large positive times and with H− for large negative

times. To summarize: In one case one compares Hamiltonians for large spatial

coordinates and in the other case for large time coordinates.

To apply this general concept of gauge transformations and gauge covariance

to our discussion of ionization, assume now in addition that A(t) approaches

suitably unitary operators A+ and A− when t→ +∞ and t→ −∞, respectively.

Then H ′(t) (see (2.8)) approaches

H ′+ = A+H+A
−1
+ (2.14)

and

H ′− = A−H−A
−1
− (2.15)

as t→ +∞ and t→ −∞ respectively.

By formal manipulations we therefore have

S ′ = A+SA
−1
− . (2.16)
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In particular if H(t) is finitely pulsed and if in addition A(t) is stationary for all

large |t|, then H ′(t) is also finitely pulsed, S ′ exists, is unitary and (2.16) holds.

In general, by (2.14) and (2.15), if P ′± are the orthogonal projections onto the

space spanned by the bound states of H ′±, we have

P ′± = A± P± A
−1
± . (2.17)

In particular A−ψ is in the range of P ′− if ψ is in the range of P−. Inserting (2.16)

and (2.17) gives the desired gauge invariance in the form

I ′(A−ψ) = ‖(1 − P ′+)S ′A−ψ‖2

= ‖A+(1 − P+)A−1
+ A+SA

−1
− A−ψ‖2 (2.18)

= ‖(1 − P+)Sψ‖2 = I(ψ),

since by assumption A+ is unitary. In the example we will be interested in

A− = 1. In this case H ′− = H− and (2.18) takes the simpler form I ′(ψ) = I(ψ).

From the proof we see that gauge invariance is an important regulating principle

in the following sense. One has to choose the projection P+ in (2.5) and not P−

in order to obtain gauge invariance.

We now apply these concepts to the theory of the time dependent Stark

Hamiltonian. In order to make notations more transparent we choose a linearly

polarized electric field, which does however not limitate our discussion since more

general fields may be simply obtained by replacing z → ~x and E(t) → ~E(t)

(~x ∈ IR3, ~E ∈ IR3), such that particular other choices, like for instance, circular

polarized light may be easily be derived from there. We do, however, assume a

dipole approximation, such that the electric field becomes a function only of time

and thus is independent of space. Then using atomic units h̄ = e = me = c·α = 1

we consider on the Hilbert space L2(IR3, d3x) the 3 time-dependent Hamiltonians

H1(t) = −∆

2
+ V + z · E(t)

H2(t) =
1

2
(−i∇− b(t)ez)

2 + V (2.19)
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H3(t) = −∆

2
+ V (~x− c(t)ez) .

Here V is an arbitrary potential. ez is the unit vector in the z-direction and

V (~x−~y) is the shifted potential, i.e. the multiplication operator on wave functions

given as (V (~x− ~y)ψ)(~x) = V (~x− ~y)ψ(~x). Also E(t) is the electric field, assumed

to vanish unless 0 ≤ t ≤ τ (i.e. t− = 0 and t+ = τ > 0 in the notation above).

Apart from this condition the pulse E(t) may be arbitrary. We only make the

mathematical restriction, that E(t) is piecewise continuous, which means that

the pulse may have jumps and all commonly used enveloping shapes, for instance

cosine squared, smooth adiabatic turn on and off, etc., are included. Then the

following quantities a(t), b(t) and c(t) are well defined

b(t) =
∫ t

0
E(s)ds (2.20)

c(t) =
∫ t

0
b(s)ds = tb(t) −

∫ t

0
sE(s)ds (2.21)

a(t) =
1

2

∫ t

0
b(s)2ds . (2.22)

Note that b(τ)ez describes the classical momentum transfer of the pulse, such

that 1
2
b(τ)2 is the classical energy transfer. Also c(τ)cz is the classical displace-

ment caused by the pulse. Then H2(t) is obtained from H1(t) by the gauge

transformation

A2←1(t) = exp ib(t)z.

H1(t) is obtained from H3(t) by the Kramers-Henneberger transformation [28,

29, 30].

A1←3(t) = T (t) = exp−ia(t) · exp−ib(t)z · exp ic(t)pz. (2.23)

Therefore we call H3(t) the Hamiltonian in the Kramers-Henneberger gauge.

We note that a corresponding transformation in Quantum Electrodynamics was

introduced by Pauli and Fierz already in 1938 but with a different motivation

[31]. The Hamiltonian H1(t) is usually referred to as the Hamiltonian in the

length- or electric field gauge, whereas H2(t) is denoted as the Hamiltonian in

the velocity-, radiation- or Coulomb gauge.
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As a consequence H2(t) is obtained from H3(t) by the gauge transformation

A2←3(t) = A2←1(t)A1←3(t) = exp−ia(t) · exp ic(t)pz. (2.24)

The general gauge transformation Aj←i(t) for Hi(t) → Hj(t) is then obtained

from the rules

Aj←i(t) = Ai←j(t)
−1

Aj←k(t) = Aj←i(t)Ai←k(t). (2.25)

H1(t) and H2(t) are finitely pulsed. Note however that in general H3(t) is not

finitely pulsed and hence has not always a proper limit as t → +∞. This is

due to the fact that b(t) is constant for t ≥ τ such that c(t) grows linearly in

t ≥ τ whenever b(τ) 6= 0, as is apparent from (2.21). Nevertheless the Kramers-

Henneberger gauge is quite useful as we shall see below. These observations are

related to the fact that A2←1(t) becomes stationary for large t but in general not

A2←3(t) and A1←3(t). Note that by assumption on E(t), Aj←i(−∞) = 1 and thus

H1,+ = H1,− = H2,− = H3,− = H0 + V. (2.26)

However, in general H2,+ 6= H2,−.

The case V ≡ 0 is of special interest, since it corresponds to the situation in

which the Schrödinger equation admits an exact solution, which is usually referred

to as the Gordon-Volkov solution [6]. Call the resulting operators H0,i(t)(i =

1, 2, 3), such that in particular H0,3(t) = −∆/2. The kernels of the resulting time

evolution operators U0,i(t, t
′) can be calculated explicitly. Indeed, we start from

the familiar relation for the free particle evolution operator (see e.g. [36])

U0,3(~x, t; ~x
′, t′) = 〈~x|U0,3(t, t

′)|~x′〉 = 〈~x| exp i(t− t′)
∆

2
|~x′〉 (2.27)

=
1

(2πi(t− t′))3/2
exp i

(~x− ~x′)2

2(t− t′)
. (2.28)

Obviously

〈~x| exp ib(t)z|~x′〉 = exp ib(t)z · δ3(~x− ~x′)

〈~x| exp ia(t)|~x′〉 = exp ia(t) · δ3(~x− ~x′)
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and

〈~x| exp ic(t)pz|~x′〉 = 〈~x− c(t)ez, ~x
′〉 = δ3(~x− ~x′ − c(t)ez)

such that

〈~x|T (t)|~x′〉 = 〈~x′|T (t)−1|~x〉

= exp−ia(t) · exp−ib(t)z · δ3(~x− ~x′ − c(t)ez). (2.29)

By (2.9) we immediately obtain the following (again well known) relations (see

e.g. [32, 33, 6, 13]).

U0,1(~x, t; ~x
′, t′) =

1

(2πi(t− t′))3/2
exp i(a(t′) − a(t))

× exp i(b(t′)z − b(t)z′) exp i
(~x− c(t)ez − ~x′ + c(t′)ez)

2

2(t− t′)

U0,2(~x, t; ~x
′, t′) =

1

(2πi(t− t′))3/2
exp i(a(t′) − a(t))

× exp i
(~x− c(t)ez − ~x′ + c(t′)ez)

2

2(t− t′)
.

The kernel of U0,1(t, t
′) is often called the Gordon-Volkov propagator (see e.g.

[6, 32, 13]).

We finally give a discussion of time dependent perturbation theory and its

gauge covariance. Returning to the general set-up, let H(t) be a “ perturbation”

of K(t). If W (t, t′) denotes the time evolution for K(t), we have the generalized

Du Hamel’s formula (see e.g. [34]) in the form

U(t, t′) = W (t, t′) −
∫ t

t′

d

ds
[U(t, s)W (s, t′)] ds

= W (t, t′) − i
∫ t

t′
U(t, s) [H(s) −K(s)]W (s, t′)ds. (2.30)

We recall that in terms of the sometimes more familiar Green’s function

GH(t, t′) = −iU(t, t′)θ(t− t′) ,

which satisfies

(i∂t −H(t))GH(t, t′) = δ(t− t′)1 ,
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relation (2.30) takes the form

GH(t, t′) = GK(t, t′) +

+∞
∫

−∞

GH(t, s) [H(s) −K(s)]GK(s, t′)ds. (2.31)

Similarly one derives the relation

U(t, t′) = W (t, t′) − i
∫ t

t′
W (t, s) [H(s) −K(s)]U(s, t′)ds (2.30′)

and hence

GH(t, t′) = GK(t, t′) +

+∞
∫

−∞

GK(t, s) [H(s) −K(s)]GH(s, t′)ds. (2.31′)

We recall that Du Hamel’s formula in the form (2.31) and (2.31′) is the time

dependent version of the Lippmann-Schwinger equation (see e.g.[35, 36]) in the

case where both H(s) and K(s) are actually time-independent. Indeed, the

Lippmann-Schwinger equation may be obtained from these relations by taking

Laplace transforms.

The equations (2.30), (2.30’), (2.31) and (2.31’) may be iterated by intro-

ducing the left hand side into the right hand side, resulting in a “power series

expansion” of U(t, t′) in powers of H(s) −K(s) and involving W of the form

U(t, t′) =
∞
∑

n=0

Un(t, t
′) (2.32)

with U0(t, t
′) = W (t, t′) and with an analogous expansion for GH . Let us consider

what happens under gauge transformations. Du Hamel’s formula is compatible

with gauge transformations in the sense that the relation

U ′(t, t′) = W ′(t, t′) − i
∫ t

t′
U ′(t, s) [H ′(s) −K ′(s)]W ′(s, t′)ds (2.33)

either follows directly for the pair H ′(t), K ′(t) or by applying the gauge transfor-

mation to (2.30) and using (2.8) and (2.9). This implies in particular that

U ′n(t, t
′) = A(t)Un(t, t

′)A(t′)−1 (2.34)
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for all n. This applies in particular to the choices H(t) = Hi(t) andK(t) = H0,i(t)

given by (2.19) and the gauge transformations which relate them. However,

some of the approximation methods used for high intensities, on which we shall

comment more below, use the fact that one can decompose the Stark Hamiltonian

in two different ways, that is either treating the potential or the term related to

the electric field as a perturbation. Hence one obtains two versions for (2.30),

which one may combine iteratively. The series generated in this manner in general

does not respect gauge invariance order by order. A discussion of this problem

and a remedy for restoring gauge invariance by including some terms of next

order, thus leading to cancelations, may be found in [32, 37].

In the case of the interaction picture (see above) and with the choice K(t) =

H0 such thatK ′(t) = 0, the iteration of (2.33) in powers ofH ′I(t) = H ′(t)−K ′(t) is

just the famous Dyson series of the S-Matrix S(H,H0) in the limit t→ +∞, t′ →
−∞. In the time independent context of the Lippmann-Schwinger equation (see

above) this corresponds to iterating the Lippmann-Schwinger equation to obtain

the Born series for the S-Matrix (see e.g. [36]). In the context we are presently

interested in, such series expansions for the time evolution operator of finitely

pulsed Hamiltonians lead to a series expansion for the ionization probability when

inserted in (2.6). In the next section we will discuss the various approaches used

so far for the Hamiltonian H1(t) and its gauge transforms H2(t) and H3(t) given

in (2.19).

3 Ionization of atoms in strong, short electric

fields

Using the notions of the previous section we start with a review and comparison

of methods and results obtained by previous authors. Then we relate this in a

first step to a new, rigorous upper bound on the ionization probability, valid for
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all small τ and small classical momentum transfer b(τ) and small displacement

c(τ) (see the upper bound below). This result is also compared with another

rigorous upper bound previously obtained by two of the authors (V.K., R.S.) [26]

as well as with a result obtained using a time-energy uncertainty relation given

by Pfeifer [38]. Secondly we prove a lower bound below, valid for all small τ and

all large b(τ), which in particular proves the absence of stabilization.

Taking H(t) = H0 +V +z ·E(t) = H1(t) and K(t) = H0 +V in (2.30), the re-

sulting perturbation series in the time dependent interaction H(t)−K(t) = zE(t)

for U1(t, t
′), the time evolution operator forH1(t), has been used by Lambropolous

[39]. Certainly for high intensities E(t) this is very problematic, since one requires

several terms in the expansion to achieve a reasonable result.

A more promising approach has been advocated by Perelomov, Popov and

Terentev [4], who tookH(t) = H0+V +z ·E(t) = H1(t) andK(t) = H0+z ·E(t) =

H0,1(t). Then H(t) − K(t) = V , thus leading to a power series expansion in

V . Whenever |E| > |V | this seems to be very suggestive approximation and is

based on the fact that the time evolution operator U0,1(t, t
′) for H0,1(t) is the

Gordon-Volkov solution, which is known exactly (see equation after (2.29)). By

the discussion of section 2, in the Kramers-Henneberger gauge this corresponds

to a power series expansion in suitable translates of V .

A combination of these two methods has been proposed earlier in a seminal

paper on the subject by Keldysh [3], who took the series for U1(t, t
′) with z ·E(t)

as a perturbation, but in the second iteration step inserted the time evolution

operator U0,1 instead of the time evolution operator for H0 + V . In fact, it was

demonstrated by Davidovich et al. [32] that to first order the Keldysh approxi-

mation and the one of Perelomov et al. precisely coincide. When carrying out the

same steps in the velocity gauge, i.e. for H(t) = H2(t), one obtains the so-called

Faisal-Reiss approximation [5].

We want to point out that all such series expansions are somewhat problematic

since a proper convergence of the series has not yet been established (the only
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known case is the Born series in scattering theory at high energies, see e.g. [36]

and the references given there. For the one dimensional situation convergence

may be shown for integrable potentials [32]), nor is it straightforward to give

precise quantum mechanical estimates of the first terms. Most statements seem

to be based on crude semi-classical estimates [40] or in the belief that features

which have been observed for relatively simple one dimensional models, which

are anyway put in question [11], carry over in general [13, 10].

For realistic pulses for instance with smooth adiabatic turn on and off, the

first terms will only give reasonable results when the full power is reached but

will be poor, if not completely invalid near the turn on and turn off point.

We now give a new rigorous upper bound on the ionization probability. The

proof of this bound bypasses the problem of summing the whole perturbation se-

ries by staying strictly with the Du Hamel formula. In what follows the potential

V will be supposed to satisfy the conditions given in [26] which are tailored to

ensure the existence of the time evolution operators for Hi(t)(i = 1, 2, 3) given in

(2.19). In particular such potentials V are Kato small (see e.g. [30, 34]), i.e. there

are a < 1 and b <∞ such that for all ψ in the domain D(H0) of H0 = −∆/2

‖V ψ‖ ≤ a‖ − ∆ψ‖ + b‖ψ‖. (3.1)

Also the domain D(H) of H coincides with D(H0). We note that the potentials of

atoms or molecules arising from Coulomb pair potentials belong to this wide class.

Also all potentials (except the δ-potential) like smoothed or shielded Coulomb

potentials used in numerical computations in this context are Kato small. Also

Hamiltonians with Kato bounded potentials (3.1) are bounded below and if the

(pair) potentials decay suitably at infinity, then there are no positive eigenvalues.

Indeed, it has been shown [34, 41] for a large class of potentials including atomic

and molecular ones that the eigenvalues are contained in [inf σ(H), 0] where

σ(H) denotes the spectrum of H . With these specifications on V in mind we are

now in the position to state, prove and comment on the first main result of this
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section.

Upper bound 1: Let ψ be a normalized bound state of H = H0 + V with

energy E < 0. Then for any pulse E(t) with 1/2b(τ)2 < −E, the ionization

probability satisfies the upper bound

I(ψ)
1

2 ≤
∫ τ

0
‖(V (~x− c(t)ez) − V (~x))ψ‖dt+ |c(τ)|‖pzψ‖ +

|b(τ)|
−E − 1

2
b(τ)2

‖pzψ‖.
(3.2)

Note that the condition on E(t) just says that the classical energy transfer of

the pulse is less than the classical ionization energy.

The proof is based on a combination of arguments used in [25] and [26] and

goes as follows. Since

exp−itHψ = exp−itEψ , (3.3)

by using the Kramers-Henneberger transformation we have

I(ψ)
1

2 = ‖(1 − P )U1(τ, 0)ψ‖ = ‖(1 − P )T (τ)U3(τ, 0)ψ‖

= ‖(1 − P ) exp−ib(τ)z · exp ic(τ)pz · U3(τ, 0)ψ‖

≤ ‖(1 − P ) exp−ib(τ)z · exp ic(τ)pz(U3(τ, 0) − exp−iτH)ψ‖

+‖(1 − P ) exp−ib(τ)z · exp ic(τ)pz · ψ‖. (3.4)

We start with an estimate of the first term on the r.h.s of (3.4). Obviously it is

bounded by

‖(U3(τ, 0) − exp−iτH)ψ‖. (3.5)

We now invoke Du Hamel’s formula to rewrite (3.5) as
∥

∥

∥

∥

∫ τ

0
U3(τ, t)[V (~x− c(t)ez) − V (~x)] exp−i(τ − t)H · ψ dt

∥

∥

∥

∥

. (3.6)

Now we use the unitarity of U3(τ, t) (besides the fact that we never iterate

Du Hamel’s formula, this is the crucial step in avoiding perturbation theory) and

(3.3) to estimate (3.6) by
∫ τ

0
‖(V (~x− c(t)ez) − V (~x))ψ‖dt (3.7)
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which is the first term on the r.h.s. of (3.2). To estimate the second term in

(3.4), we use the triangle inequality to obtain

‖(1 − P ) exp−ib(τ)z · exp ic(τ)pz · ψ‖ ≤ ‖(exp(ic(τ)pz) − 1 · ψ‖ (3.8)

+‖(1 − P ) exp−ib(τ)z · ψ‖

Now we use the estimate

‖(exp iA− 1)ψ‖ ≤ ‖Aψ‖

valid for any selfadjoint operator to estimate the first term on the r.h.s. of (3.8)

by

|c(τ)| ‖pzψ‖ (3.9)

which is the second term on the r.h.s. of (3.2). It remains to estimate the second

term in (3.8). By assumption (1−P )H ≥ 0. Hence for any δ > 0,(1−P )(H+δ)−1

exists and is norm bounded by 1/δ. Therefore

‖(1 − P ) exp−ib(τ)z · ψ‖

= ‖(1 − P )(H + δ)−1(H + δ) exp−ib(τ)z · ψ‖

= ‖(1 − P )(H + δ)−1 exp−ib(τ)z · exp ib(τ)z · (H + δ) · exp−ib(τ)z · ψ‖

≤ 1

δ
‖ exp ib(τ)z · (H + δ) · exp−ib(τ)z · ψ‖. (3.10)

We now use the fact that

exp ib(τ)z ·H · exp−ib(τ)z =
1

2
(−i∇− b(τ)ez)

2 + V

= H − b(τ)pz +
1

2
b(τ)2. (3.11)

Inserting this into (3.10) gives

‖(1− P ) exp−ib(τ)z · ψ‖ ≤ 1

δ
‖(E − b(τ)pz +

1

2
b(τ)2 + δ)ψ‖ (3.12)

Making the choice

δ = −E − 1

2
b(τ)2 (3.13)
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which by assumption on b(τ) is > 0 and inserting into (3.12) gives the third term

in (3.2) concluding the proof of the upper bound.

We now comment on this result.

Inspection of the proof of the main result in [26] shows that one has the

alternative

Upper bound 2:

I(ψ)
1

2 ≤
∫ τ

0
‖(V (~x− c(t)ez) − V (~x))ψ‖dt+ |c(τ)| ‖pzψ‖ + |b(τ)| ‖zψ‖ (3.14)

which differs from (3.2) only in the last term. Typically near threshold, i.e. for

small |E|, both ‖zψ‖ and 1/(−E − 1
2
b(τ)2) become large, whereas

‖pzψ‖ = 〈ψ, p2
zψ〉

1

2 ≤ (2〈ψ,H0ψ〉)
1

2

stays finite. Thus for V being the Coulomb potential

〈ψ,H0ψ〉 = −E (3.15)

by the virial theorem (see e.g. [42]). For s-states ψn00 one can improve slightly

since ‖pzψn00‖2 = 2
3
〈ψn00, H0ψn00〉 = 1

3n2 . Similarly one has ‖zψ‖2 ≤ 〈ψ, r2ψ〉(=
n2

2
[5n2 + 1 − 3ℓ(ℓ + 1)] if ψ = ψnℓm, see e.g. [43]). Again for s-states ‖zψ‖2 =

1
3
〈ψ, r2ψ〉, which is a slight improvement. Therefore (3.2) and (3.14) are essen-

tially equivalent.

We now discuss the first two terms in (3.2) and (3.14). In general, for Kato

bounded potentials V (~x)(−∆ + 1)−1 is a bounded operator. Also since −∆ is

translation invariant, we have

‖V (~x− ~y)(−∆ + 1)−1‖ = ‖V (~x)(−∆ + 1)−1‖. (3.16)

In particular for the choice of the Coulomb potential, we prove in Appendix A

that
∥

∥

∥

∥

1

r
(−∆ + 1)−1

∥

∥

∥

∥

≤ 6.35. (3.17)
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Thus for the general potentials V considered, the first term in (3.2) and (3.14) is

bounded by

τ‖V (~x)(−∆ + 1)−1‖ ‖(−∆ + 1)ψ‖ + τ‖V ψ‖ = τ‖V ψ‖ (3.18)

+ τ‖V (~x)(−∆ + 1)−1‖ ‖(2H0 + 1)ψ‖

which involves E(t) only through its duration but not its strength. For the

eigenfunctions ψnℓm of the hydrogen atom, one has (see e.g. [43])

‖(2H0 + 1)ψnℓm‖2 = ‖((2H + 1) − 2V )ψnℓm‖2

= (2En + 1)2 + 2(2En + 1)〈ψnℓm,
1

r
ψnℓm〉 + 4〈ψnℓm,

1

r2
ψnℓm〉

= 1 − 1

n4
+

4

n3(ℓ+ 1
2
)
. (3.19)

This quantity is ≤ 8 and behaves like 1 +O( 1
n3 ) for n large uniformly in 0 ≤ ℓ ≤

n− 1. Hence the right hand side of (3.18) for bound states of the hydrogen atom

is bounded by 19.4τ uniformly in n and by 6.35τ for all large n.

For the ground state ψ100 of the hydrogen atom the first term in (3.2) and

(3.14) has a much better estimate. As shown in Appendix B

‖(V (~x− ~y) − V (~x))ψ100‖ ≤ 2 (3.20)

holds for all ~y ∈ IR3 such that the first term in (3.2) and (3.14) is now bounded

by 2τ .

By a theorem of Pfeifer [38] for the survival probability |〈ψ, ψτ 〉| of a state

with ψτ = U(τ, 0)ψ for any time dependent Hamiltonian H(t) one has for all

small τ (see [38] for precise conditions)

|〈ψ, ψτ 〉| ≥ cos(
∫ τ

0
∆(t)dt) (3.21)

where in the present context with H(t) = H1(t) (see (2.19))

∆(t) = |E(t)| · aψ

aψ = (‖zψ‖2 − 〈ψ, zψ〉2) 1

2 ≤ ‖zψ‖. (3.22)
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This gives for the ionization probability

I(ψ) ≤ 1 − |〈ψ, ψτ 〉|2 ≤ a2
ψ

(∫ τ

0
|E(t)|dt

)2

≤
(∫ τ

0
|E(t)|dt

)2

‖zψ‖2. (3.23)

This may be compared with the discussion above. (3.23) is weaker than (3.2) and

(3.14) in the sense that it does not show independence of the field strength when

b(τ) and c(τ) are small or even zero. Otherwise it is basically equivalent to (3.2)

and (3.14) or even stronger whenever the last two terms there dominate. We note

that the rigorous bound (3.23) may be compared with first order perturbation

theory in E(t) which gives

I
(1)
pert =

(∫ τ

0
E(t)dt

)2

‖Pzψ‖2 ≤
∣

∣

∣

∣

∫ τ

0
E(t)dt

∣

∣

∣

∣

2

‖zψ‖2 . (3.24)

We now turn to a comparison with other approximation methods based on

perturbative expansions used in this context. Since all these approximations

resolve around the same principle, i.e. an expansion involving the Gordon-Volkov

time evolution operator U0,1(t, t
′), we will mainly concentrate on a recent work

by Geltman [13], who presented an explicit, partly analytical, partly numerical

analysis of the full three-dimensional hydrogen atom. Also a nice discussion of

other works may be found there. Geltman employs the approximation method

of Perelomov et al. in order to compute the excitation and ionization rates for

the 1s/2s/3s/2p/3p/3d states of the hydrogen atom struck by a linearly polarized

monochromatic laser pulse of the form E(t) = E0 cosωt. The value for the electric

field strength in atomic units is chosen to be E0 = 5, 10, 20 and the frequency

ω = 1.5 . Geltman obtained the following general features

a) At integer cycles, that is for τ = 2πn/ω the rate of ionization becomes

independent of the electric field strength. In particular for the non-s-states

it goes to zero.
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This is reflected qualitatively in our results in the following way. At integer cycles

b(τ) = c(τ) = 0 such that the last two terms in (3.2) and (3.14) vanish. Also

the first term is independent of the field strength, however, not zero and by the

above discussion too large for the above choices of E0 and ω.

b) The maxima of b(τ) and c(τ) are located at half-integer cycles, i.e. τ =

2π(n+ 1
2
)/ω.

For the applied pulse the bounds (3.2) and (3.14) also reproduce this feature

qualitatively but again we emphasize that these bounds hold in more generality

for all Kato potentials and all states.

Stabilization for strong, short electric fields has been a highly controversial

issue with disagreeing results between numerous authors on one side, for a review

see [20], as well as on the other side, see [19] for a review on these.

The following result shows absence of stabilization for sufficiently strong, short

pulses, namely when b(τ) becomes large and τ small the ionization probability is

close to 1.

Lower bound: Let ψ be a normalized bound state of H = H0 + V with energy

E < 0. Then for any pulse E(t) with 1/2b(τ)2 > −E the ionization probability

satisfies a lower bound of the form

I(ψ) ≥ 1 −
{

∫ τ

0
‖(V (~x− c(t)ez) − V (~x))ψ‖dt (3.25)

+
1

E + 1
2
b(τ)2

‖(V (~x− c(τ)ez) − V (~x))ψ‖ +
|b(τ)|

E + 1
2
b(τ)2

‖pzψ‖
}2

.

Note that now the condition on E(t) is that the classical energy transfer of the

pulse is larger than the classical ionization energy. Recall that by our previous

discussion the norms appearing in the first two terms in the bracket may be

estimated independently of the field strength, such that (3.25) gives a bound

which involves E(t) only through τ and b(τ).
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We turn to a proof. In order to obtain a lower bound on

I(ψ) = ‖(1 − P )U1(τ, 0)ψ‖2 = 1 − ‖PU1(τ, 0)ψ‖2

it suffices to obtain an upper bound on ‖PU1(τ, 0)ψ‖. First we write

‖PU1(τ, 0)ψ‖ = ‖PT (τ)U3(τ, 0)ψ‖

= ‖P exp−ib(τ)z · exp ic(τ)pz · U3(τ, 0)ψ‖

≤ ‖P exp−ib(τ)z · exp ic(τ)pz · (U3(τ, 0) − exp−iτH)ψ‖

+‖P exp−ib(τ)z · exp ic(τ)pz · ψ‖. (3.26)

The first term on the r.h.s. is estimated by (3.5) yielding the first term in the

bracket in (3.25).

The second term in (3.26) is treated as follows. By assumption PH ≤ 0. Let

δ > 0 be arbitrary. Then P (H − δ)−1 is a well defined operator with operator

norm ≤ 1/δ. Hence

‖P exp−ib(τ)z · exp ic(τ)pz · ψ‖

= ‖P (H − δ)−1(H − δ) exp−ib(τ)z · exp ic(τ)pz · ψ‖

≤ 1

δ
‖(H − δ) exp−ib(τ)z · exp ic(τ)pz · ψ‖. (3.27)

In analogy to (3.11) we now use the relation

exp−ic(τ)pz · exp ib(τ)z ·H · exp−ib(τ)z · exp ic(τ)pz

=
1

2
(−i∇− b(τ)ez)

2 + V (~x− c(τ)ez)

= H − b(τ)pz +
1

2
b(τ)2 + V (~x− c(τ)ez) − V (~x). (3.28)

Inserting this into (3.27) we obtain

‖P exp−ib(τ)z · exp ic(τ)pzψ‖ ≤ 1

δ
‖(V (~x− c(τ)ez) − V (~x) · ψ‖

+
1

δ
‖(E − b(τ)pz +

1

2
b(τ)2 − δ)ψ‖ (3.29)
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We now make the choice

δ = E +
1

2
b(τ)2 (3.30)

which by assumption on b(τ) is > 0 and when inserted into (3.29) immediately

yields the remaining two terms in the bracket of (3.25), thus concluding the proof

of the lower bound.

We note that these two theorems are compatible with the result in [25] on

the Stark kick, i.e. E(t) = F0δ(t). There it was shown that for fixed ionization

probability of any bound state ψnℓm of the hydrogen atom F0 scales like 1/n, as

predicted by Rheinhold et al. [44].

We now return to a comparison between our results and those obtained by

employing approximation methods based on perturbative expansions and we will

include the lower bound in the discussion. We stress once more the point that the

lower bound definitely excludes the possibility of stabilization of the bound states

for increasing electric field strength, when the applied pulse is short in duration,

since (3.7), despite the dependence on c(t), may be estimated by a constant, say

C, independent of the electric field. Hence

lim
|E(t)|→∞

I(ψ) ≥ 1 − τ 2 C . (3.31)

This shows clearly that the electric field has no stabilizing effect and we are

therefore in disagreement with [12, 15, 14]. The lower bound also reproduces

the result obtained through an expansion around the Gordon-Volkov solution,

namely for monochromatic linearly polarized laser pulses at integer cycles, i.e.

b(τ) = c(τ) = 0, the ionization probability becomes independent of the electric

field strength. We may qualitatively relate the term proportional to τ 2 to a term

also observed in perturbative expansion methods and which is interpreted as the

spreading of the wave.

To illustrate our results further, we consider now the concrete example of the
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hydrogen atom. For the ψ100 state we obtain as our best estimate

I(ψ100) ≤
(

2τ + |b(τ)| + 1√
3
|c(τ)|

)2

(3.32)

I(ψ100) ≥ 1 −
(

2τ +
4

b(τ)2 − 1
+

2√
3

|b(τ)|
b(τ)2 − 1

)2

. (3.33)

Taking the pulse to be of the form Ez(t) = E0 cosωt for 0 ≤ t ≤ τ and zero

otherwise, we have

|b(τ)| =
E0

ω
| sinωτ | and |c(τ)| =

2E0

ω2
sin2

(

ωτ

2

)

. (3.34)
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Figure 1: Upper and lower bounds for the ionization probability for the ψ100-state

of the hydrogen atom in the first cycle of an applied field Ez = E0 cos(1.5t) for

E0 = 5, 10, 20, when neglecting the “spreading of the wave”.

Figure 1 shows a plot of one cycle, when neglecting the term which is inde-

pendent of the electric field strength, i.e. the term 2τ , in the upper (3.32) and

lower (3.33) bound. At the far ends one observes the curves for the upper bounds,
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which approach the vertical for increasing E0. That is starting from the outside

and going inwards the solid line ≡ E0 = 20, dotted line ≡ E0 = 10 and the

next solid line ≡ E0 = 5. Next we have the lower bounds for E0 = 20 ≡ dotted

line, E0 = 10 ≡ solid line and E0 = 5 ≡ dotted line. We have used the same

values as in [13] and compare with figure 3 therein. Figure 1 clearly reproduces

the features of Geltman’s results, indicating the dips at the half cycles and pro-

ducing an increasing ionization probability for increasing field strength. We do,

however, not observe any crossing for different field intensities. When including

the 2τ -term, this pattern will be moved above the trivial bound 1. This may be

avoided when achieving a better estimate for the factor in front of τ , for instance

when integrating explicitly (3.7) for a given pulse [45]. Figure 2 shows the up-

per bound for four cycles and reproduces the well known oscillatory behaviour

superimposed by a spreading of the wave-packet of the Gordon-Volkov solution,

the so-called over-the-barrier ionization.
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Figure 2: Upper bound for the ionization probability for the ψ100-state of the

hydrogen atom in the first four cycles of an applied field Ez = 10 cos(50t).
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4 Conclusions

In conclusion we can say that, according to our arguments atoms do not be-

come resistant to ionization when exposed to short ultra-intense laser pulses. We

therefore disagree with the opposite point of view, which is sustained through

numerous numerical studies partly based on explicit solutions of the Schrödinger

equation and partly based on perturbative methods. In particular we have com-

mented above on the problems of the latter methods. It is not the intention of

this paper to discuss the problems of numerical methods, but we like to remark

that those studies are in general very complex and subject to many possible errors

which are difficult to check for second parties. We think that the virtue of our

arguments is that they are analytic and transparent to the reader. An extension

of our results to multi-particle systems (thus including atoms and molecules with

several electrons and not necessarily electrically neutral) may be found in [27].

Needless to say, since our results are of a qualitative nature, in the sense that

they merely provide bounds and that, since there are no explicit solutions for

the Schrödinger equation available, for precise predictions of ionization rates one

needs more numerical data.
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Appendix A

The aim of this appendix is to prove the following bound for the Coulomb po-

tential V (~x) = −1
r
(r = |~x|) on L2(IR3, d3x) = L2.
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Lemma A: The following operator norm bound holds

∥

∥

∥

∥

1

r
(−∆ + 1)−1

∥

∥

∥

∥

≤ 6.35 (A.1)

The proof optimizes well known a priori bounds which we take from [34]:

Let L∞ be the space of all Lebesgue measurable functions ϕ on IR3 such that

|ϕ(~x)| ≤ M < ∞ almost everywhere. The smallest such M is denoted by ‖ϕ‖∞.

Then one has the a priori estimate ([34] p.56)

‖ϕ‖∞ ≤ a(ρ)‖ − ∆ϕ‖2 + b(ρ)‖ϕ‖2 (A.2)

where ‖ ‖2 denotes the L2 -norm, i.e. ‖ϕ‖2 =
∫ |ϕ(~x)2|d3x . Here

a(ρ) = cρ−1

b(ρ) = cρ3 (A.3)

with

c =





+∞
∫

−∞

1

(1 + λ2)2
dλ





1

2

=

√

π

2
(A.4)

and ρ > 0 may be chosen arbitrary.

Let R > 0 be arbitrary and write

1

r
= V R

1 + V R
2

with

V R
1 (r) =

θ(r < R)

r

V R
2 (r) =

θ(r ≥ R)

r
.

Then one has the a priori bound (see [34] p.165)
∥

∥

∥

∥

1

r
ϕ

∥

∥

∥

∥

2
≤ a(ρ) ‖V R

1 ‖2 ‖ − ∆ϕ‖2 +
(

b(ρ) + ‖V R
2 ‖∞

)

‖ϕ‖2. (A.5)

Since the estimates ‖ϕ‖2 ≤ ‖(−∆+1)ϕ‖2, ‖−∆ϕ‖2 ≤ ‖(−∆+1)ϕ‖2 are trivially

valid, this gives
∥

∥

∥

∥

1

r
(−∆ + 1)−1

∥

∥

∥

∥

≤ a(ρ)‖V R
1 ‖2 + b(ρ) + ‖V R

2 ‖∞. (A.6)
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Obviously

‖V R
1 ‖2 = (4πR)

1

2 ,

‖V R
2 ‖∞ =

1

R
. (A.7)

Inserting (A.3), (A.4) and (A.7) into (A.6) gives
∥

∥

∥

∥

1

r
(−∆ + 1)−1

∥

∥

∥

∥

≤ π
√

2ρ−1R
1

2 +

√

π

2
ρ3 +

1

R
. (A.8)

for all ρ > 0, R > 0. The claim now follows by optimizing w.r.t. ρ and R. A

short calculation finally gives
∥

∥

∥

∥

1

r
(−∆ + 1)−1

∥

∥

∥

∥

≤ 11 · π
7

11

2
6

11 3
9

11

(A.9)

which is (A1).

Appendix B

In this section we will study the quantity 〈ψ|V (~x− ~y)k|ψ〉 for k = 1 and 2 where

V (~x) = − 1
|~x|

(~x ∈ IR3) is the Coulomb potential and where ψ is the normalized

ground state wave function ψ100 for the hydrogen atom, which is rotationally

invariant. Therefore this quantity depends on |~y| only.

Lemma B: Both −〈ψ|V (~x−~y)|ψ〉 and 〈ψ|V (~x−~y)2|ψ〉 are decreasing functions

of |~y| for ψ = ψ100.

Intuitively this result is clear: ψ(~x) has its maximum at ~x = 0 and −V (~x −
~y) ≥ 0 has its singularity at ~x = ~y so their overlap is maximal when ~y = 0.

Before we give a proof, we first establish an important consequence. Indeed

we claim that for ψ = ψ100

‖(V (~x− ~y) − V (~x))ψ‖ ≤ 2 (B.1)

for all ~y ∈ IR3. To see this we write

‖(V (~x− ~y) − V (~x))ψ‖2 = 〈ψ, V (~x− ~y)2ψ〉 − 2〈ψ, V (~x− ~y)V (~x)ψ〉 + 〈ψ, V (~x)2ψ〉

≤ 〈ψ, V (~x− ~y)2ψ〉 + 〈ψ, V (~x)2ψ〉 (B.2)
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since V (~x − ~y)V (~x) ≥ 0 as an operator. By Lemma B, the right hand side of

(B.2) takes its maximum at ~y = 0 proving the claim since 〈ψ| 1
|~x|2

|ψ〉 = 2 (see e.g.

[43]).

To prove the lemma, it suffices to consider ~y to be of the form ~y = cez with

c > 0. Now we use the well known formula

1

|~x− cez|
=

1

r>

∞
∑

ℓ=0

(

r<
r>

)ℓ

Pℓ(cosϑ) (B.3)

where r> = Max(r, c), r< = Min(r, c) and where (r = |~x|, ϑ, ϕ) are the polar

coordinates of ~x. By the orthogonality relations of the Legendre polynomials and

since ψ is the ground state we obtain

− 〈ψ|V (~x− cez)|ψ〉 = 〈ψ| 1

r>
|ψ〉

= 4
∫ ∞

0
r2e−2r 1

r>
dr (B.4)

=
4

c

∫ c

0
r2e−2rdr + 4

∫ ∞

c
re−2rdr.

This function is differentiable in c for c > 0 and its derivative is easily seen to

be ≤ 0, proving the first claim. Next we have (again by the orthogonality of the

Legendre polynomials)

〈ψ|V (~x− cez)
2|ψ〉 = 〈ψ| 1

(r>)2

∞
∑

ℓ=0

(

r<
r>

)2ℓ
1

2ℓ+ 1
|ψ〉

=
4

c2

∫ c

0
r2e−2r

∞
∑

ℓ=0

(

r

c

)2ℓ 1

2ℓ+ 1
dr (B.5)

+4
∫ ∞

c
e−2r

∞
∑

ℓ=0

(

c

r

)2ℓ 1

2ℓ+ 1
dr.

Now for 0 < x < 1 we have

∞
∑

ℓ=0

x2ℓ 1

2ℓ+ 1
=

1

x

∞
∑

ℓ=0

x2ℓ+1

2ℓ+ 1
=

1

2x
(ln(1 + x) − ln(1 − x)). (B.6)

Inserting (B6) into (B5) gives

〈ψ|V (~x− cez)
2|ψ〉 =

2

c

∫ c

0
re−2r

(

ln
(

1 +
r

c

)

− ln
(

1 − r

c

))

dr

+
2

c

∫ ∞

c
re−2r

(

ln
(

1 +
c

r

)

− ln
(

1 − c

r

))

dr. (B.7)
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Now the right hand side is not differentiable in c. To remedy this we regularize

and consider the quantity (0 < ε < 1)

0 ≤ F (c, ε) =
G(c, ε)

c
=

2

c

∫ c

0
re−2r

[

ln(1 +
r

c
) − ln(1 − r

c
(1 − ε))

]

dr

+
2

c

∫ ∞

c
re−2r[ln(1 +

c

r
) − ln(1 − c

r
(1 − ε))]dr. (B.8)

Since limε→0 F (c, ε) = 〈ψ|V (~x− cez)
2|ψ〉 it suffices to show that

d

dc
F (c, ε) =

1

c2
(c
dG

dc
(c, ε) −G(c, ε)) ≤ 0 (B.9)

for all 0 < ε < 1, since then (B7) is also monotonically decreasing in c > 0. Now

d

dc
G(c, ε) = −2

∫ c

0
re−2r

[

r

c2
1

1 + r
c

+
r(1 − ε)

c2
1

1 − r
c
(1 − ε)

]

dr

+2
∫ ∞

c
re−2r

[

1

r

1

1 + c
r

+
(1 − ε)

r

1

1 − c
r
(1 − ε)

]

dr. (B.10)

The first integral on the r.h.s. of (B10) is negative. By (B8), (B9) and (B10) it

therefore suffices to show that for any r > 0

c

r

1

1 + c
r

− ln(1 +
c

r
) ≤ 0. (B.11)

and
c(1 − ε)

r

1

1 − c
r
(1 − ε)

+ ln
(

1 − c

r
(1 − ε)

)

≤ 0. (B.12)

Now

ln(1 +
c

r
) =

1

r

∫ c

0

1

1 + c′

r

dc′ ≥ 1

r

1

1 + c
r

· c

which is (B11). (B12) is proved in the same fashion. This concludes the proof of

Lemma B.
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