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Abstract

We study the spectrum of stable BPS and non-BPS D-branes in Z2 × Z2 orientifolds for all
choices of discrete torsion between the orbifold and orientifold generators. We compute the
torsion K-theory charges in these D = 4, N = 1 orientifold models directly from worldsheet
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1 Introduction

Since their discovery more than a decade ago [1], D-branes have been playing a key role in
elucidating non-perturbative aspects of string theory. Phenomenologically, they have also
become an indispensable tool because D-branes can localize gauge and matter fields and thus
stable could in fact be where the Standard Model lives. Therefore if the brane world idea
is indeed realized in Nature, it is important to understand given a string compactification
what are the allowed stable (BPS or non-BPS) D-branes. While the charges of BPS branes
are quite easy to work out, it is in general not a simple task to enumerate the complete

spectrum of stable D-branes especially the non-BPS ones except for simple backgrounds
such as toroidal orbifolds [2–4] or orientifolds [5–8] 1. As a result, models whose complete
D-brane spectrum has been derived so far are those with extended supersymmetry and
not much is known about non-BPS branes in the phenomenologically interesting case of
D = 4, N = 1 supersymmetric backgrounds. In this paper, we shall address this issue
by investigating the spectrum of stable D-branes for some prototypical N = 1 examples.
In particular, we will focus on the T6/Z2 × Z2 orientifolds because in addition to being
simple N = 1 compactifications, models with realistic particle physics features have also
been constructed in this framework [11]. Moreover, a systematic computer search for the
statistics of supersymmetric D-brane models has recently been carried out also for this
particular closed string background [12,13]. Thus, detailed studies of this specific orientifold
though undoubtedly limited may serve as a mini-platform for a more ambitious string vacuum
project [14].

The stability of a D-brane is typically due to the charges it carries. Although D-branes
were originally discovered as objects carrying Ramond-Ramond (RR) charges under p-form
supergravity fields, their charges are more properly classified by K-theory [15, 16] instead
of cohomology. An important difference between K-theory and cohomology charges arrises
when considering discrete torsion (e.g., Z2) valued charges. In fact, the existence of such K-
theory torsion charges (sometimes referred to as K-theory charges) is precisely the reason that
certain non-BPS D-branes are stable [9]. Due to the K-theoretical nature of D-brane charges,
we expect there are in general some additional discrete constraints on string constructions
which are invisible in supergravity. Analogously to the usual RR tadpole conditions, the
total torsion charges must cancel in a consistent string compactification. However, unlike
the usual integral valued RR charges, there are no supergravity fields to which the torsion
charged D-branes are coupled. Hence, the discrete constraints on the cancellation of torsion
charges are invisible from the usual tadpole conditions obtained by factorization of one-loop
open string amplitudes. Nonetheless, these discrete K-theory constraints can be detected in
an indirect way by introducing suitable D-brane probes [17]. From a probe brane point of
view, a manifestation of these discrete K-theory constraints is the requirement that there
should be an even number of Weyl fermions charged under the symplectic gauge group on
its worldvolume, for otherwise the worldvolume theory suffers from global anomalies [18].
Moreover, it was recently shown in [19] that for some specific simple examples, these discrete
constraints from a probe brane analysis are seen to arise from the standard Dirac quantization
conditions of 4-form fluxes when lifted to F-theory. Although the probe brane approach

1Reviews and further references of the constructions of these D-brane spectra can be found in [9, 10].
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provides a powerful way to determine the K-theory constraints, it is not entirely clear however
that all torsion charges can be obtained in this manner.

We are particularly interested in these K-theory constraints because they have proven
to provide important non-trivial consistency conditions in building realistic D-brane models
from string theory [20,21]. Although the K-theory constraints are automatically satisfied for
some simple models [22], it is certainly not the case in general. The K-theory constraints of
the T6/Z2 ×Z2 orientifold that we will analyze in detail in this paper were obtained in [20]
using a probe brane approach. Here, we would like to determine these K-theory constraints
from a direct conformal field theory (CFT) calculation. It is important to emphasize that
these two approaches are to some extent complementary. The stability of D-branes and
more importantly their regions of stability are more apparent from the CFT approach, while
the relation to anomaly cancellations is more direct from a probe brane perspective. By
analyzing the one-loop amplitudes for the open strings that stretch between these branes,
as well as imposing consistency conditions for invariance under the orientifold and orbifold
generators, we can determine the spectrum of stable BPS and non-BPS branes for a given
model. The criteria for a non-BPS brane to be stable is the absence of tachyonic modes in
these open string amplitudes.

Our results find agreement with the K-theory constraints derived previously from a probe
brane argument [20]. As we shall see, the K-theory constraints in [20] do not constitute
the most general set of K-theory charges but nevertheless they are complete for the setup
considered in [20]. It will also become clear later from our spectrum of stable non-BPS
branes that for a more general setup (e.g., when one considers ”oblique” magnetic fluxes
on the worldvolumes of D-branes as in [23, 24], or D-branes that are stuck at orbifold fixed
points, or D-branes that are not space-filling in our four dimensional spacetime, etc), then
there are further K-theoretical constraints to be satisfied. In addition to the above subtleties,
there are actually 24 different types of Z2×Z2 orientifolds corresponding to different choices
of discrete torsion between the orientifold and orbifold generators [25, 28]. The orientifold
background considered in [20] (which is T-dual to [26] and [27]) is simply one of them.
For completeness, we have also enumerated the spectra of torsion and integrally charged
D-branes for all other choices of discrete torsion. We expect these results will be useful for
future work in building realistic models from more general Z2 × Z2 orientifolds.

Finally, another motivation for this work is to explore the implications of stable D-branes
in cosmology. In [29], it was suggested that stable D-branes that are wrapped entirely in
the compact directions (and thus appear pointlike to our 4-dimensional universe) might be
interesting cold dark matter candidates. In particular, the lightest D-particles (LDPs) are
stable because they are the lightest state in the spectrum carrying a specific charge (either
an integral or torsion charge). With the specific models at hand, we can investigate in a
concrete setting how robust is the existence of such cold dark matter candidates.

This paper is organized as follows. For completeness, we review in Section 2 the bound-
ary state method that we use to compute the spectrum of stable D-brane. Readers who are
familiar with this technique can skip directly to the next section. Section 3 gives the specifics
of the Z2 ×Z2 orientifolds. To be concrete, we will be working in the T-dual frame of Type
IIB orientifolds with O3 and O7 planes. A table of orientifold invariant states for two differ-
ent types of orientifold projections, known as the hyper-multiplet and the tensor-multiplet
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models, is presented. The effects of discrete torsion are also discussed. To demonstrate ex-
plicitly that cancellation of K-theory charges are additional constraints on top of the usual
RR tadpole cancellations, we have listed the tadpole conditions in Section 4. For later com-
parison with results from the worldsheet approach, a probe brane analysis of the K-theory
constraints is also included for different choices of discrete torsion. A detailed analysis of the
torsion brane and integrally charged brane spectrum is presented in Section 5, along with
a discussion of discrete torsion in the model. Some details are relegated to the appendices.
Appendix A contains the Klein Bottle, Möbius Strip, and Annulus amplitudes for the mod-
els under consideration. Appendix B shows the calculations used to determine the stability
of the non-BPS branes. Appendix C discusses the stability regions for the torsion charged
branes. Appendix D contains the non-BPS brane spectrum for a Z2 orientifold as well as
that of a T-dual version of the Z2 × Z2 orientifold under consideration. Finally, Appendix
E contains a table of integrally charged D-matter candidates [29] for different choices of
discrete torsion.

2 Boundary State Formalism

In this section we give a brief and elementary review of the boundary state techniques2 used
in our calculations. This method will allow us to determine orbifold and orientifold invariant
D-branes states (BPS and non-BPS) in the Type IIB model of [20], consisting of O3 and O7
planes, that we want to consider. The results in the T-dual picture with O5 and O9 planes
can be obtained by a simple T-duality.

The initial setup for a boundary state calculation is to have a closed string propagate
between two D-brane boundary states, which are evaluated as matrix elements. When eval-
uated, this expression under open/closed string duality gives the familiar one loop partition
function for open strings that end on the D-branes. In addition, one has to require that the
boundary state be invariant under the closed string GSO projection (1

4
(1+(−1)F )(1±(−1)F̃ )

where ∓ corresponds to IIA/IIB, respectively), as well as the orbifold or orientifold projec-
tion. The ψ coordinates (as well as the ∂X coordinates) of the superstring are used to define
the boundary state using the condition3

ψµr + iη ˜ψµ−r|η〉 = 0 µ = 1, . . . , p+ 1

ψµr − iη ˜ψµ−r|η〉 = 0 µ = p+ 2, . . . , 8 (2.1)

where r is half-integer moded in the untwisted NSNS sector, and integer moded in the
untwisted RR sector. The boundary state |η〉 has two values, η = ±1, which correspond to
the different spin structures. In the sectors where r is integer (such as the untwisted and
twisted RR sectors and the Z2 twisted NSNS sector) the ground state is degenerate, giving
rise to additional structure in the boundary state. In this case it is convenient to define

ψµ± =
1√
2
(ψµ0 ± iψ̃µ0 ) , (2.2)

2See e.g. [3, 10, 30–33] for a more thorough discussion of the boundary state method for D-branes.
3We are using the light cone gauge, with x0 and x9 as the light cone coordinates.
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which satisfy the usual creation/annihinaltion operator anti-commutation relations,

{ψµ±, ψν±} = 0, {ψµ+, ψν−} = δµν . (2.3)

In terms of the ψ± operators the boundary conditions in the untwisted RR sector give

ψµη |η〉R−R = 0 µ = 1, . . . , p+ 1

ψν−η|η〉R−R = 0 ν = p+ 2, . . . , 8 (2.4)

Throughout this paper we will be considering Z2 orbifold actions, and the corresponding
Z2-twisted sectors. We will take these Z2 actions to invert n spatial coordinates; the branes
we consider will stretch along s of the inverted directions and r + 1 un-inverted directions,
with r + s = p. Since the Z2 twisted NSNS sector is integer moded, we also define the zero
mode creation and annihilation operators in this sector, in terms of which the boundary
conditions imply

ψµη |η〉NS−NS,T = 0 µ = 9− n, . . . , 8− n+ s

ψν−η|η〉NS−NS,T = 0 ν = 9− n + s, . . . , 8 (2.5)

where we have assumed the orbifold twist acts on n coordinates, among them s of them are
in Neumann directions and n− s are in Dirichlet directions. The coordinates in the twisted
RR sector behave in a similar manner, but only in the untwisted directions,

ψµη |η〉R−R,T = 0 µ = 1, . . . , r + 1

ψν−η|η〉R−R,T = 0 ν = r + 2, . . . , 8− n (2.6)

where we have r + 1 Neumann directions and 7 − n − r Dirichlet directions. Each of our
operators (GSO, orientifold, orbifold) can be written in terms of the ψ± operators, which
then act on the boundary states and impose a set of restrictions for the dimensions of the
invariant D-branes.

The action of ΩIn on the fermionic zero modes of a boundary state4 is given by

ΩIn|η〉 = κ
8∏

1

1− 2ψi0ψ̃
i
0√

2

8∏

i=9−n
(
√

2ψi0)
8∏

i=9−n
(
√

2ψ̃i0)|η〉 (2.7)

The first term on the right hand side (
∏8

1
1−2ψi

0
ψ̃i

0√
2

) is the orientifold action acting on the

boundary state |η〉, and is written as a condition on the zero modes (i.e. when applied to
eqn. (2.4), it takes ψ0 ←→ ψ̃0). The other two terms come from the In action, and are also
conditions on the zero modes. κ = ±1, and is a phase that allows us to keep our choice of
states that are even or odd under the projection.

Starting with the untwisted sector, our orientifold action is trivial acting on the NSNS
untwisted state, and on the RR untwisted state we have,

ΩIn|η〉R−R,U = κR−R,U i
5−p+2c+n(n+2)|η〉 (2.8)

4See the appendix in [8] for a similar treatment of the Z2 orientifold [34, 35].
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p refers to the number of dimensions filled by a D-brane in the theory, and c is the number
of coordinates covered by the In action that are also filled by the D-brane. κ is a phase that
is either ±1, and is determined by the action of the orientifold on the untwisted RR sector5.

Next we will approach the twisted sector, which contains an inherent subtlety that must
be explained. When acting on a twisted sector, the In action does not necessarily transform
the same coordinates as the twisted boundary state (in our case the twisted sectors created
by our orbifold group of 3 Z2 generators). When this happens the final result depends both
on the n of the In and the n′ coordinates transformed by the twisted boundary state. We
will try to make this distinction clear in our calculations. For the NSNS twisted sector we
have,

ΩIn|η〉NS−NS,T = κNS−NS,T i
2cc+ct+n(n+2)+ n′

2 |η〉 (2.9)

cc refers to the common filled directions between the n and n′ transformed coordinates. ct
is the number of filled directions in the twisted boundary state.

In the twisted RR sector we have

ΩIn|η〉R−R,T = κR−R,T i
5+r+2cnc+n(n+2)−n′

2 |η〉 (2.10)

In this case cnc comes from filled compact directions on the T6 that are not common between
n and n′. r is the number of filled non-compact directions.

We shall now apply these general calculations to a IIB orientifold that containsD9 branes,
which we will use in Section 3 when we analyze D9 branes with magnetic flux. Using the
equations above, we take p = 9 and so have c = n and n′ = ct = 46. The results become

ΩIn|η〉R−R,U = κR−R,U i
n(n+4)−4|η〉 (2.11)

ΩIn|η〉NS−NS,T = κNS−NS,T i
6+2cc+n(n+2)|η〉 (2.12)

ΩIn|η〉R−R,T = κR−R,T i
6+2cnc+n(n+2)|η〉 (2.13)

The RR untwisted sector restricts n to be even, which is a result independent of p for
p odd. Thus we can have n = 0, 2, 4, 6. With n even, the twisted sector equations restrict
cc and cnc to be either even or odd. If cc is even (odd), then cnc must also be even (odd)
relative to the orbifold projections because of the symmetry of the model. Choosing these
to be even, for n = 2 or 6 we arrive at the orientifold projection in [20]. For n = 0 or 4,
the orientifold projection would be the same as in [26]. For our model of D9 branes with
magnetic flux we will use the orientifold projection in [20], with n = 6.

Our model will also contain a Z2×Z2 orbifold with three projections, which we define to
cover the coordinates defined by the actions g1, g2, and g3, where the gi orbifold is orthogonal
to the ith T2:

g1 : (z1, z2, z3) → (z1,−z2,−z3), (2.14)

g2 : (z1, z2, z3) → (−z1, z2,−z3), (2.15)

g3 : (z1, z2, z3) → (−z1,−z2, z3) (2.16)
5In other words, it chooses the orientifold projection on the untwisted RR sector to be symplectic or

orthogonal.
6n′ = 4 is due to our Z2 generators, which are listed at the end of this section.
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The complex coordinate zi defines the complex coordinates7 on the ith T2.

3 The Setup

Having shown how we use the boundary state method to determine invariance under the
orientifold projection, we will now apply these results to a specific model. After choosing the
orientifold projection in the next section, Section 3.2 lists the requirements for invariance in
each of the untwisted and twisted NSNS and RR sectors. The section concludes with a brief
review of discrete torsion.

3.1 Model Specifics

Now to the specifics of the model. Starting in Type IIA with the orientifold action in [27], we
T-dualize along the x3, x5, and x7 directions. The result in Type IIB is the orientifold action
ΩR, with R an orbifold projection that inverts all of the coordinates in the T6. Due to T-
duality the orientifold action picks up a factor of (−1)FL [36]. Pairing our orientifold action
with our orbifold generators we obtain 1 O3 and 3 O7 planes, which wrap the coordinates
in the internal directions:

ΩR(−1)FL : (z1, z2, z3)→ (−z1,−z2,−z3), (3.1)

ΩRg1(−1)FL : (z1, z2, z3)→ (−z1, z2, z3), (3.2)

ΩRg2(−1)FL : (z1, z2, z3)→ (z1,−z2, z3), (3.3)

ΩRg3(−1)FL : (z1, z2, z3)→ (z1, z2,−z3) (3.4)

Finally we come to the branes themselves. The branes fill r + 1 coordinates in the uncom-
pactified space. Since each brane will be wrapped on a T2 in the compactified space, we
shall use si as the coordinates on the ith T2. Thus each si will be 0, 1, or 2 and a Dp brane
will have p = r +

∑3
1 si. From now on we will refer to the dimensions that the branes fill

using the notation (r; s1, s2, s3).

3.2 Orientifold Invariance

Now that we have chosen the orientifold projection of the model, we can use an adaptation
of equations (2.8), (2.9), and (2.10) to determine invariance of the D-brane states under the
GSO and orientifold projections. For Type IIB, the GSO projection requires odd values of
p for Dp-branes. Using the boundary state method the invariant orientifold states obey the
restrictions

ΩR(−1)FL |η〉R−R,U = κΩ
R−R,U i

5−p|η〉R−R,U (3.5)

ΩR(−1)FL |η〉NS−NS,Tgi
= κΩ

NS−NS,T i
sj+sk+2|η〉NS−NS,Tgi

(3.6)

ΩR(−1)FL|η〉R−R,Tgi
= κΩ

R−R,T i
5+r+si−2|η〉R−R,Tgi

(3.7)

7The complex coordinates (z1, z2, z3) correspond to zn = x2n+1 + ix2n+2 where n = 1, 2, 3.
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Each of the κ is a choice of discrete torsion between the orientifold and the generators of the
orbifold group {1, g1, g2, g3}. We shall discuss discrete torsion more thoroughly in the next
subsection, but before we can continue, we need to introduce some terminology. Although our
results deal with 4D Z2 ×Z2 orientifolds, we are going to borrow the terms hyper-multiplet
and tensor-multiplet, which are used when describing 6D Z2 orientifolds. These terms refer
to different choices of discrete torsion between the orientifold and orbifold projections. In
6D Z2 orbifolds there are both twisted sector hyper- and tensor-multiplets. One choice of
discrete torsion between the orientifold projection and the twisted sector keeps the hyper-
multiplets [34, 35], while the other keeps tensor-multiplets [34, 37, 38]. This difference was
clarified in [39] using the D-brane language, and in terms of group cohomology in [28]. A
similar choice of discrete torsion arises between the orientifold projection and the orbifold
generators in the 4D case. Because of this we have retained this terminology and call our
respective 4D models with those particular choices of orientifold projection the hyper- and
tensor-multiplet models.

Starting with the hyper-multiplet model [34, 35] in the T6/Z2 × Z2, the orientifold and
orbifold invariant states are

|B(r, s)〉NS-NS for all r and si (3.8)

|B(r, s)〉R-R





for r = −1, 3 and s1 = s2 = s3 = 0 or
for r = −1, 3 and si = 0, sj = sk = 2 or
for r = 1 and s1 = s2 = s3 = 2 or
for r = 1 and si = 2, sj = sk = 0 or
for r = 2 and s1 = s2 = s3 = 1

|B(r, s)〉NS-NS,Tgi
for all r and si and for sj = 0, sk = 2

|B(r, s)〉R-R,Tgi





for r = −1 and si = 2 and all sj, sk or
for r = 0 and si = 1 and all sj , sk or
for r = 1 and si = 0 and all sj , sk or
for r = 3 and si = 2 and all sj , sk

These choices are consistent with the closed string spectrum of the model and can be deter-
mined by combining the results in [8] and [4].

The tensor multiplet model has the same orientifold invariant boundary states in the
untwisted sectors as the hyper-multiplet model, with the twisted sectors invariant boundary
states given by

|B(r, s)〉NS-NS,Tgi

{
for all r and si and for sj = sk = 0 or
for all r and si and for sj = sk = 2

(3.9)

|B(r, s)〉R-R,Tgi





for r = −1 and si = 0 and all sj, sk or
for r = 1 and si = 2 and all sj , sk or
for r = 2 and si = 1 and all sj , sk or
for r = 3 and si = 0 and all sj , sk

Given the above restrictions on r and si we can construct four different types of integrally
charged branes:
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• Fractional Branes: These are charged under untwisted and twisted RR forms. There
are two types of fractional branes, singly fractional branes coupling to the gi twisted
sector, which are of the form

|D(r, s)〉 = |B(r, s) >NS-NS + |B(r, s) >R-R (3.10)

+ |B(r, s) >NS −NS, Ti
+ |B(r, s) >R−R, Ti

or totally fractional branes, which are of the form

|D(r, s)〉 = |B(r, s) >NS-NS + |B(r, s) >R-R (3.11)

+

3∑

i=1

{|B(r, s) >NS −NS, Ti
+ |B(r, s) >R −R, Ti

}

The totally fractional branes only exist in the tensor multiplet model, and are the
(−1; 0, 0, 0), (3; 0, 0, 0), and (1; 2, 2, 2) branes. Singly fractional branes exist for (r, si) =
(−1, 2), (1, 0), (3, 2) and (sj, sk) = (2, 0), (0, 2) (hyper), or (r, si) = (−1, 0), (1, 2), (3, 0)
and (sj, sk) = (0, 0), (2, 2) (tensor). Note that this includes the tadpole cancelling D7
branes.

• Bulk Branes: These are charged only under the untwisted RR forms, and are of the
form

|D(r, s)〉 = |B(r, s) >NS-NS + |B(r, s) >R-R . (3.12)

These exist for (r = (−1, 3), s = 0), and (r, s) = (1, 6) (hyper) or (r = 1; si = 0, sj =
sk = 1) and (r = 3; si = 2, sj = sk = 1) (tensor).

• Truncated Branes: These are charged only under the twisted RR forms. These exist
for the invariant states listed in equations (3.8) or (3.9), provided that no fractional
branes exist with the same r and si. We discuss them in more detail in section (5.2).

• Stuck Branes: These branes are not charged under the twisted RR forms, but are
different from bulk branes in that they cannot move from the fixed points. Before
orientifolding such branes are a pair of fractional branes with opposite twisted charges;
the orientifold projection removes the moduli which allow the brane to move off the
fixed points. We will discuss them in Section 5.

With the exception of the truncated branes, the above branes are BPS. The conditions
in (3.8) and (3.9) guarantee that the D-branes are both orbifold and orientifold invariant.

3.3 Discrete Torsion

Discrete torsion in orbifolds [40, 41] has been studied extensively, especially in the Z2 × Z2

case. We will be interested in determining the orbifold invariant boundary states, hence we
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need to know the effects of discrete torsion on the D-brane sector. Here we will summarize
the results8. Starting with the projection operator for the orbifold group

P =
1

|Γ|
∑

gi ǫ Γ

gi (3.13)

where Γ is the orbifold group that contains elements gi, and inserting it into the partition
function,

Z(q, q) =
1

|Γ|
∑

gi,gj ǫ Γ

ǫ(gi, gj)Z(q, q; gi, gj) (3.14)

The partition function can pick up a phase ǫ(gi, gj) between the elements in the orbifold
group. For the Z2 projections we consider, we have two choices for the phase: the trivial
result ǫ(gi, gj) = 1 or the non-trivial result ǫ(gi, gj) = 1 if gi = gj, and −1 otherwise. In
our case the orbifold group contains 4 elements: {1, g1, g2, g3}. Choosing discrete torsion
between the orbifold generators means that components of our partition function will be
modular invariant up to a phase definition.

Furthermore, there is a relationship between a IIA theory with (without) discrete torsion
and a IIB theory without (with) discrete torsion. This effect can be seen by noting that we
have two choices for defining the fermionic zero mode operators which make up the orbifold
elements gi,

gi =
∏

(
√

2ψi0)
∏

(
√

2ψ̃i0) (3.15)

ĝi =
∏

(2ψi0ψ̃
i
0) (3.16)

where we sum over the directions acted on by the Z2 twists. These two definitions are related
by discrete torsion

ĝi|gj〉 = ǫ(gi, gj)gi|gj〉 (3.17)

where ǫ(gi, gj) has the non-trivial definition. This is equivalent to saying that these two
definitions are related by T-duality. The theory that we define to have discrete torsion (gi
or ĝi) is ambiguous, but each theory is unique in that they have different Hodge numbers.

Initially we will look at a model with discrete torsion g1|g2〉 = +|g2〉, which corresponds
to a model with the Hodge numbers (h11, h21) = (51,3). The model with g1|g2〉 = −|g2〉
corresponds to a model with Hodge numbers (h11, h21) = (3,51).

4 RR Tadpole Conditions

In this section, we analyze in detail all the tadpole conditions arising in the Type IIB
orientifolds under consideration. The purpose of doing this is to illustrate that the K-theory
torsion charges, if uncancelled in a string model, do not show up as the usual tadpole

8For more details, e.g. [3, 4, 42–45].
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divergences and hence their cancellation impose additional constraints. The reason is that
unlike the usual homological RR-charges, there are no supergravity fields to which the K-
theory torsion charges are coupled. Therefore, the presence of these K-theory torsion charges
does not affect the asymptotics of the Klein bottle, Möbius strip, and Annulus amplitudes
in the closed string channel, which correspond to the exchanges of light closed string fields.
However, just like the usual RR charges, these K-theory torsion charges need to be cancelled
globally in a consistent model. We will derive such K-theory constraints for the Z2 × Z2

orientifold using a probe brane approach in this section. The corresponding derivation using
a CFT approach will be presented in Section 5.

4.1 Homological RR Tadpoles

The tree level interaction for BPS branes on the Annulus, Möbius Strip, and Klein bottle,
not considering the momentum and winding sums or Chan-Paton factors, is the same as in
the T-dual case [26]. Since these do not change, we have included the full calculations (open
and closed string channel) in Appendix A, with eqn.(4.1) below defining the momentum and
winding on the Klein Bottle (primed) and Möbius Strip/Annulus (no prime), respectively.
The tilded definitions are the momentum and winding after a Poisson resummation.

M ′
j =

∑∞
n=−∞ e

−πtn2

R2

j , W ′
j =

∞∑

m=−∞
e−πtm

2R2

j (4.1)

M̃ ′
j =

∑∞
s=−∞ e

−πR2
j s2

t , W̃ ′
j =

∞∑

r=−∞
e

−πr2

R2
j

t

Mj =
∑∞

n=−∞ e
−2πtn2

R2

j , Wj =

∞∑

m=−∞
e−2πtm2R2

j

M̃j =
∑∞

s=−∞ e
−πR2

j s2

2t , W̃j =
∞∑

r=−∞
e

−πr2

2R2

j
t

Calculating the RR tadpole for the BPS branes is similar to the T-dual case. For the
purpose of comparison to the K-theory constraints that we will introduce in the next sub-
section, here we list out the untwisted RR tadpole contribution. The full tadpole, including
the twisted contribution and cross terms between different branes is well known in the litera-
ture [26], and has also been calculated taking into account factors of discrete torsion [46,47].
For completeness, we summarize these results in Appendix A. The untwisted tadpole is
presented below, where the first line is the Klein Bottle contribution, the second line comes
from the Möbius Strip, and the final line is from the induced D3 and D7 brane charge on
the Annulus.

v4

∫
dl

{
32

(
1

v1v2v3

+
v1v2

v3

+
v2v3

v1

+
v1v3

v2

)

−2

(
1

v1v2v3

Tr γTΩ3,3γ
−1
Ω3,3 +

3∑

i=1

vjvk
vi

Tr γTΩ7i,7i
γ−1

Ω7i,7i

)
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+
1

32

(
1

v1v2v3
Tr γ1,3γ

−1
1,3 +

3∑

i=1

vjvk
vi

Tr γ1,7i
γ−1

1,7i

)
= 0 (4.2)

where i 6= j 6= k, and the indices run from 1 to 3. For tadpole cancellation we require

γΩ3,3 = +γTΩ3,3 (4.3)

γΩ71,73
= +γTΩ71,73

(4.4)

γΩ72,71
= +γTΩ72,71

(4.5)

γΩ73,72
= +γTΩ73,72

(4.6)

The final result is then

1

32

∫
dl

{
1

v1v2v3

(32− n3)
2 +

3∑

i=1

vjvk
vi

(32− n7i
)2

}
= 0 (4.7)

This result can also be written in terms of magnetic and wrapping numbers9. The D-branes
we are working with have magnetic flux, which is quantized according to

mi
a

2π

∫

T
2

i

F i
a = nia (4.8)

mi
a is the number of times a D-brane wraps the ith T2, and nia is the integer units of flux

going through the ith T2. We can use these numbers to describe our D-branes. For example,
a D3 brane (r = 3, s = 0) has magnetic and wrapping numbers [(n1

a, m
1
a) × (n2

a, m
2
a) ×

(n3
a, m

3
a)] = [(1, 0)× (1, 0)× (1, 0)]. A D5 brane that wraps the first T2 would have numbers

[(n1
a, m

1
a)×(1, 0)×(1, 0)]. Our D-branes must be invariant under the orientifold group, which

means we also introduce image branes with magnetic and wrapping numbers (nia,−mi
a). In

addition, we shall consider a general setup with K stacks of Na D-branes. The RR tadpole
conditions are now related to cancellation of the O-plane charge by the D-brane and its
image, which we will not count separately,

∑

a

Na[Πa] + [ΠO3+O7] = 0 (4.9)

where have 64 O3 planes with −1/2 D3 brane charge and 4 O7i branes with −8 D7i charge
that need to be cancelled. The RR tadpole conditions for a general choice of discrete torsion
are

∑

α

Nαn
1
αn

2
αn

3
α = 16κΩR (4.10)

∑

α

Nαn
1
αm

2
αm

3
α = −16κΩRg1 (4.11)

∑

α

Nαm
1
αn

2
αm

3
α = −16κΩRg2 (4.12)

∑

α

Nαm
1
αm

2
αn

3
α = −16κΩRg3 (4.13)

9See [49] for a more detailed explanation.
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(4.10) refers to the D3 brane, and (4.11), (4.12), (4.13) are the D7i branes. The κ factors
refer to a choice of discrete torsion between the orientifold and the untwisted RR boundary
state (κΩR), and the orientifold and the orbifold generators (κΩRgi

). The effects of discrete
torsion on the D-brane spectrum will be discussed in more detail in Section 5.3.

4.2 K-theoretical RR Tadpoles from Probe Branes

Besides the homological RR tadpole conditions there are the K-theory torsion constraints
which can be found using D-brane probes. For example, one can introduce probe D3 (r =
3, s = 0) and D7 (r = 3, si = sj = 2, sk = 0) branes and demand that the number of Weyl
fermions on each of the probe brane worldvolume gauge theory to be even for otherwise there
are SU(2) D = 4 global gauge anomalies [18]. This is the approach adopted in [17, 20, 22]

Though we shall prove our results from a CFT approach in the next section, for the probe
brane approach the K-theory constraints in the hyper-multiplet are

∑

α

Nαm
1
αm

2
αm

3
α ∈ 4Z (4.14)

∑

α

Nαn
1
αn

2
αm

3
α ∈ 4Z (4.15)

∑

α

Nαn
1
αm

2
αn

3
α ∈ 4Z (4.16)

∑

α

Nαm
1
αn

2
αn

3
α ∈ 4Z (4.17)

which requires an even number of non-BPS torsion charged D9 and D5 (r = 3, si = 2, sj =
sk = 0) branes. These torsion charged branes are non-BPS D-branes that couple to the
NSNS sector (untwisted and/or twisted) but not to RR fields. Nevertheless, they can be
stable because of the discrete torsion Z2 charge they carried [2–10]. See Section 5.1 for a
more precise and detailed definition.

For different choices of discrete torsion, the probe brane approach gives the following
K-theory constraints for κ = 1,

∑

α

Nαm
1
αm

2
αm

3
α ∈ 4Z

{
for κ + κΩRg1 + κΩRg2 + κΩRg3 =

2 or 4
(4.18)

∑

α

Nαm
i
αn

j
αn

k
α ∈ 4Z





for κ + κΩR + κΩRgj
+ κΩRgk

=
2 or 4,

i 6= j 6= k
(4.19)

and for κ = −1,
∑

α

Nαm
1
αm

2
αm

3
α ∈ 8Z for κ + κΩRg1 + κΩRg2 + κΩRg3 = 2 (4.20)

∑

α

Nαm
i
αn

j
αn

k
α ∈ 8Z

{
for κ + κΩR + κΩRgj

+ κΩRgk
= 2

i 6= j 6= k
(4.21)
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where there are different K-theory constraints for different choices of discrete torsion between
the orbifold generators (κ), between the orientifold and the untwisted RR boundary state
(κΩR), and the orientifold and the orbifold generators (κΩRgj

). The gauge groups for the
open string spectrum on the probe branes have been provided for different values of discrete
torsion in Table 4. By comparing this result with eqns (4.18), (4.19), we see that the K-
theory constraints exist when the probe brane gives USp gauge groups. In terms of the
magnetic and wrapping numbers of the branes, we will have a symplectic gauge group on
the brane when the charge class [Qa] of a D-brane is invariant under the ΩR action. For open
strings that begin and end a brane with a symplectic gauge group, the K-theory constraints
restrict the number of chiral fermions to be even.

As we shall see in the next section, these are not the entire set of possible K-theory
constraints, but the one relevant to our setup. The probe brane approach (at least for the
types of probe branes that have been introduced in the literature) gives us the constraints
for branes that fill the non-compact space (r = 3) and for backgrounds with non-oblique
flux. Our results in the next section show that there are additional torsion charged branes
that might show up in more general flux backgrounds.

5 Non-BPS Branes

5.1 Torsion Branes in the T6/(Z2 × Z2)

The first set of non-BPS branes we are going to analyze in the model are torsion branes. In
this section we consider only the hyper-multiplet model, and will consider other models (the
T-dual of the T6/Z2 × Z2 orientifold as well as a T4/Z2 orientifold) in Appendix D. The
effects of discrete torsion will be addressed in Section 5.3. These non-BPS torsion branes
do not couple to the untwisted or twisted RR sector, i.e. there are no (−1)F factors in the
corresponding open string projection operators. Torsion branes have boundary states of the
form

|D(r, s)〉 = |B(r, s) >NS-NS (5.1)

or |D(r, s)〉 = |B(r, s) >NS-NS + ǫi |B(r, s) >NS −NS, Ti
i = 1, 2, or 3 (5.2)

or |D(r, s)〉 = |B(r, s) >NS-NS +

3∑

i=1

ǫi |B(r, s) >NS −NS, Ti
(5.3)

where each of the twisted boundary states is defined up to a phase ǫi = ±1 and ǫ3 = ǫ1ǫ2. The
open strings living on these branes are, respectively, invariant under the following projection
operators

(
1 + ΩR

2

)
(5.4)

(
1 + ΩR

2

)(
1 + gi

2

)
(5.5)

(
1 + ΩR

2

)(
1 + g1

2

)(
1 + g2

2

)
(5.6)
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Imposing the orientifold projection places restrictions on the allowed r and si values for
branes in equations (5.2) and (5.3). Specifically we see immediately, from equation (3.8)
that no branes of the type given in eqn (5.3) are orientifold invariant. We are now ready to
compute the spectrum of stable (i.e. tachyon-free) branes.

The tachyon is extracted from the open string partition function, and an equation is
set up to cancel the tachyon between the Möbius strip and Annulus diagrams. Using this
technique, there are eight possible contributions to the tachyon: the untwisted Annulus
diagram, the twisted Annulus diagram (three contributions), the Möbius strip diagram for
a boundary state/O3 crosscap interaction, and the Möbius strip diagram for a boundary
state/O7i crosscap interaction (three contributions). See Appendix B, eqns (B.1) - (B.3) for
the relevant calculations.

The condition for the tachyon to cancel is

24 n2 × (1 + ǫT1
+ ǫT2

+ ǫT3
)

−2n sin
(π

4
(r − s+ 1)

)
− 2n sin

(π
4
(r + s− 2s3 − 3)

)

−2n sin
(π

4
(r + s− 2s1 − 3)

)
− 2n sin

(π
4
(r + s− 2s2 − 3)

)
= 0 (5.7)

where n is the normalization of the boundary state, and must be solved for when plugging in
values of r and s. For stable torsion branes n must be a non-zero positive number. Because
we cannot construct torsion branes that couple to all three twisted sectors and are orientifold
invariant, we have introduced the parameter ǫTi

to determine to which of the twisted sectors
the brane is coupled. ǫTi

= 1 if the brane couples to the Ti twisted NSNS sector, and 0
otherwise.

It is at this point we would like to emphasize that eqns. (5.7) and (5.16) are conditions
for the existence of torsion charged D-branes of certain dimensions (i.e., values of r and si)
in a background with a specific choice of discrete torsion. The existence of such torsion
branes imply the discrete constraints discussed in Subsection 4.2. Hence, for a vaccum
configuration (which involves stacks of D-branes) to be consistent, we need to check that the
discrete conditions (4.18),(4.19) (for κ = 1) or (4.20), (4.21) (for κ = −1) are satisfied.

There are two types of torsion branes to consider: branes that couple to twisted NSNS
sectors and branes that couple only to the untwisted NSNS sectors. The former is of the
form in eqns. (5.2), which corresponds to the open string projection operator (5.5). The
latter are of the form in eqns. (5.1), and correspond to the projection operator (5.4).

The branes that couple to twisted NSNS sectors and for which the open string cancels
are listed in Table 1. For a torsion brane to be invariant under all orbifold and orientifold
projection operators, the branes can only couple to one twisted sector Ti, where i refers to
the twisted sector generated by the gi orbifold action. It is easy to see that the branes listed
in Table 1 are orbifold invariant versions of the torsion branes found in [8]. For example the
(3; 0, 2, 0)-brane coupling to the NSNSTgi sector is a g2 invariant combination of (5, 2)-branes
of [8].

Of the three types of branes listed in Table 1, not all are consistent. Indeed, following the
discussion in [16] and [6], it was argued in [8] that the (4, 2)-branes are inconsistent despite
being tachyon-free. T-dualising the results in Table 1, it is easy to see that the branes with
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Invariant Twisted States Ti (r; s1, s2, s3) n2

i = 1 (2; 0, 2, 0)
† 1

128

(2; 0, 0, 2)
† 1

128

(3; 0, 2, 0) 1
64

(3; 0, 0, 2) 1
64

(3; 1, 2, 0)
† 1

128

(3; 1, 0, 2)
† 1

128

i = 2 (2; 0, 0, 2)
† 1

128

(2; 2, 0, 0)
† 1

128

(3; 0, 0, 2) 1
64

(3; 2, 0, 0) 1
64

(3; 0, 1, 2)
† 1

128

(3; 2, 1, 0)
† 1

128

i = 3 (2; 0, 2, 0)
† 1

128

(2; 2, 0, 0)
† 1

128

(3; 0, 2, 0) 1
64

(3; 2, 0, 0) 1
64

(3; 0, 2, 1)
† 1

128

(3; 2, 0, 1)
† 1

128

Table 1: Stable Torsion branes that couple to twisted NSNS sectors. These are torsion
branes of the form in eqn. (5.2). Branes that are shown to be inconsistent are marked with
a dagger.

r = 2 or with si = 1 for some i, are T-dual to g1 × g2 orbifold invariant (4, 2) branes of [8]
and hence are inconsistent. Thus the D5 branes are the only allowed torsion branes with
twisted NSNS coupling. For i = 1, for example, these would be the (3; 0, 2, 0) and (3; 0, 0, 2)
branes. These can be thought of as g2 invariant images of the Z2 ⊕ Z2 torsion branes found
in [8].

The torsion branes with one twisted coupling in Table 1 can also be thought of as the
orientifold invariant bound state of a fractional BPS D-brane and fractional anti-BPS D-
brane from the Z2×Z2 orbifold. This can be seen from the normalizations of the D-branes.
Indeed, the normalization squared of a fractional BPS D5 brane is 1

256
. The D5 torsion brane

has a normalization squared of 22× 1
256

= 1
64

confirming that the torsion charged brane can be
seen as a superposition of a BPS anti-BPS pair of branes with oppositely charged untwisted
and twisted RR sectors.

The second type of torsion brane, branes that only couple to the untwisted NSNS sector,
have boundary states of the form in equation (5.1). Our results are presented in Table 2. Of
these branes, in IIB the D4 and the (r = 3; si = 0, sj = 1, sk = 2) branes are T-dual to D6
branes, and the (2; 2, 2, 2) brane is T-dual to a (2; 0, 0, 0) brane. Therefore these branes are
T-dual to branes that can be shown to be inconsistent in Type I.

Note that the (3; 0, 2, 0) branes of the type given in equation (5.1) and listed in Table 2
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(r; s1, s2, s3) n2

r = 2, si = 2, sj = sk = 0
† 1

32

r = 2, s1 = s2 = s3 = 2
† 1

32

r = 3, si = 1, sj = sk = 0 1
32

r = 3, si = sj = 1, sk = 0 1
16

r = 3, si = 2, sj = sk = 0 1
16

r = 3, s1 = s2 = s3 = 1
† 1

8

r = 3, si = 0, sj = 1, sk = 2
† 1

32

r = 3, si = 2, sj = sk = 1 1
16

r = 3, si = sj = 2, sk = 1 1
32

r = 3, s1 = s2 = s3 = 2 1
16

Table 2: Stable Torsion branes that only couple to the untwisted NSNS sectors. These are
torsion branes of the form in eqn. (5.1). Branes that are shown to be inconsistent are marked
with a dagger.

can be thought of as a pair of torsion branes of the type given in equation (5.2) with opposite
twisted torsion charges. This is in fact a g2-invariant version of the process discussed in [8].

Of the branes in Table 2, the D9 and the (r = 3; si = 2) torsion branes correspond to the
branes found by a probe brane argument in [20], using D9 branes with non-oblique magnetic
flux on their world-volumes. The two other odd D-branes, an off-diagonal D5 and D7 brane,
correspond to torsion charged branes in a configuration that includes a more general D-brane
background.

The additional branes found in Table 2 do not introduce extra K-theory constraints
other than the ones obtained from a probe brane argument reviewed in Section 4.2. This
can be seen as follows. One can see that the discrete charges carried by the branes in
Table 2 are not independent by showing that they can decay to one another via changing
the compactification moduli. The tachyon cancellation equation (5.7) is a condition for
the absence of ground state tachyons. However, tachyonic momentum/winding modes can
develop as we vary the compactification radii. The stability region of the branes in Table
2 can be found by generalizing eqn. (5.7) to include the contributions from momentum and
winding modes. Details are given in Appendix C. For example, one of the stability conditions
for a r = 3, s = 1 brane that fills x3 in the compact space is that R4 ≥ 1√

2
. If we consider

this D4 to be a pair of orientifold invariant truncated branes in the g2 or g3 orbifold, for
R4 ≤ 1√

2
each of these branes can decay into a pair of orientifold invariant r = 3, s1 = 2 D5

branes. Therefore the D4 and the D5 have the same torsion charge.
As a consistency check one can compute the tree level amplitude between two torsion

charged D-branes. If there a tachyon in the spectrum, then it signals that there is a common
Z2 charge between them which causes an instability in the system. We can use this method
to find an appropriate basis for the branes in terms of their charges. It can be shown that
the branes found in the probe brane argument are a consistent basis for four Z2 charges, and
that all the branes in Table 2 are charged under at least one of these charges.

To enumerate the spectrum of non-BPS torsion charged D-branes, one should analyze
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the stability regions (as discussed in Appendix C) of the candidate torsion branes in Table
2 and make sure that there are no decay channels by which they can decay to a pathological
brane (e.g., those that are T-dual to the D2 and D6 branes in Type I [6, 16]). Details of
such analysis can be found in Appendix C. However, for the purpose of deriving discrete
K-theoretical constraints in string model building, this kind of analysis would have to be
applied with caution. For example, in [20], the carriers of the discrete K-theory charges are
certain BPS bound state of D-branes (which of course must carry also the usual homological
RR charges in order for them to be BPS). The D-brane system is BPS only for certain
choices of compactification moduli. The analysis of decay channels in Appendix C typically
involves decompactifying the theory and would take the D-brane system away from their
BPS configuration. It is possible that non-BPS branes carrying a particular discrete K-
theory charges cannot be constructed even though BPS branes carrying such charges exist.
The stability region of the branes is expanded on in Appendix C, where a similar decay
channel analysis for the torsion brane spectrum in the hyper- and tensor-multiplet model is
also presented.

5.2 Integrally Charged Branes

In this sub-section we make some comments outside the main focus of this paper by investi-
gating integrally charged D-branes in the Z2×Z2 orientifolds. In addition to torsion branes
that couple only NSNS sectors, in orbifold and orientifold models one often finds so-called
truncated branes that couple to the twisted RR sectors. In the present type of models, such
integrally charged branes can have boundary states of one of two types. Firstly, they could
be of the form

|D(r, s)〉 = |B(r, s) >NS-NS +|B(r, s) >R −R, Ti
(5.8)

which corresponds to the open string projection operator

(
1 + ΩR

2

)(
1 + gi(−1)F

2

)
. (5.9)

Such branes are just the gj invariant version of the branes found in [8]. Alternately, the
truncated brane boundary states can be of the form

|D(r, s)〉 = |B(r, s) >NS-NS +|B(r, s) >R− R, Ti
(5.10)

+ |B(r, s) >NS −NS, Tj
+|B(r, s) >R−R, Tk

which corresponds to the open string projection operator

(
1 + ΩR

2

)(
1 + gi(−1)F

2

)(
1 + gk(−1)F

2

)
(5.11)

Using eqns. (3.8) and (3.9) we see that this second type of truncated brane are not possible
in the hyper-multiplet model, but are possible in the tensor-multiplet model. 10

10Branes of the form (5.10) are consistent with the orientifold projection in the tensor multiplet model.
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Calculating the spectrum of integrally charged branes is similar to finding torsion branes.
To determine the integrally charged branes, the tachyon cancellation condition

24 n2 × (1 + ǫT1
+ ǫT2

+ ǫT3
)

−2n sin
(π

4
(r − s+ 1)

)
− 2n sin

(π
4
(r + s− 2s3 − 3)

)

−2n sin
(π

4
(r + s− 2s1 − 3)

)
− 2n sin

(π
4
(r + s− 2s2 − 3)

)
= 0

is still useful, but now the twisted sector parameter ǫTi
= −1 if the brane couples to the

respective twisted RR sector, and 0 otherwise.
A further condition which restricts the allowed values of r and si for these types of non-

BPS D-branes is that there cannot be any fractional branes with the same values for r and
si. Indeed if fractional branes exist for a given value of r and si we may always consider
a pair of them with opposite bulk RR charge and suitable Wilson lines, in analogy to [52].
Such a combination also carries the required twisted RR charges. For completness we list
such pairs of fractional branes in Table 3.

Returning to the tachyon cancelling condition (5.12) it is easy to see that in the case of
the hyper-multiplet model the tachyon only cancels for those values of r and si for which
fractional branes exist. Since such pairs of fractional branes are unstable in certain regimes of
moduli space, there will have to be other D-branes into which these fractional branes decay.
Such new D-branes will have boundary states different from the ones in equations (5.8)
and (5.10) and we hope to investigate them in the future.

In general non-BPS configurations of branes with integral charges have a possible cosmo-
logical application as candidates for cold dark matter [29]. Integrally charged branes with
r = 0 are interesting because they would appear point-like to a 4D observer, but could fill
some of the compactified dimensions. We have listed some of the branes for different values
of discrete torsion in Appendix E.

Besides the non-BPS branes we have been considering, there are also the BPS stuck
branes, which were mentioned briefly at the end of Section 3.2. The stuck branes can be
divided into those that are stuck at all the fixed points of the orbifold generators, or only
at one set of fixed points. For the first group we have the branes (3; 0, 0, 0), (1; 2, 2, 2), and
(−1; 0, 0, 0). These branes do not couple to the twisted sectors, and are located at the fixed
points of the g1 and g2 generators. An example of the second type of stuck brane is the
(1; 0, 0, 2) brane. This brane is stuck under the g3 orbifold generator but not the g1 or g2.
Thus the model contains three types of (1; 0, 0, 2) branes: 1) Singly fractional branes with g1

twisted couplings (sitting at the g1 fixed points), 2) Singly fractional branes with g2 twisted
couplings (sitting at the g2 fixed points), and 3) Stuck branes sitting at the g3 fixed points.

Finally, we would also like to point out that the (2; 1, 1, 1) brane, which might seem to
be a bulk brane, is actually formed from a pair of branes of the form

|D1(r, s)〉 = |B(r, s) >NS-NS + |B(r, s) >R-R (5.12)

+ |B(r, s) >NS-NS,T + |B(r, s) >R-R,T

and

|D2(r, s)〉 = |B(r, s) >NS-NS + |B(r, s) >R-R

− |B(r, s) >NS-NS,T − |B(r, s) >R-R,T
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Invariant Twisted States Ti (r; s1, s2, s3)
i = 1 (−1; 2, 0, 2)

(−1; 2, 2, 0)
(1; 0, 0, 2)
(1; 0, 2, 0)
(3; 2, 0, 2)
(3; 2, 2, 0)

i = 2 (−1; 0, 2, 2)
(−1; 2, 2, 0)
(1; 0, 0, 2)
(1; 2, 0, 0)
(3; 0, 2, 2)
(3; 2, 2, 0)

i = 3 (−1; 0, 2, 2)
(−1; 2, 0, 2)
(1; 0, 2, 0)
(1; 2, 0, 0)
(3; 0, 2, 2)
(3; 2, 0, 2)

Table 3: Stable brane–anti-brane pairs carrying twisted RR charges

For a singly fractional (2; 1, 1, 1) brane that couples to the g1 twisted sector, we could place
|D1(r, s)〉 at position x4 and |D2(r, s)〉 at position −x4, where neither fractional brane is
orientifold or orbifold invariant by itself, but is invariant as a pair. This brane was discussed
in [42–44].

5.3 Discrete Torsion Revisited

In this section we consider discrete torsion in the model and the extra quantum numbers it
introduces:

• We have to choose the discrete torsion between the orbifold generators g1|g2〉. Calling
this choice of phase κ, the choice κ = −1 has Hodge numbers (h11, h21) = (3, 51), and
is the model with discrete torsion, and ǫ = 1 has (h11, h21) = (51, 3), and is the model
without discrete torsion.

• We have factors of discrete torsion coming from the orientifold and the orbifold group,
κΩRgi

. There are four choices to be made: ΩR(−1)FL acting on the untwisted R-R
boundary state11, and acting on each of the |gi〉 boundary states. See equations (3.8)
and (3.9) in Section 3.2 for the invariant states.

11i.e., defining the O3 projection to be orthogonal or symplectic.
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Though these choices of discrete torsion might seem independent, they are actually re-
lated to each other [46, 47], through the equation [50],

κΩRκΩRg1κΩRg2κΩRg3 = κ (5.13)

In other words there are 24 choices of discrete torsion that are allowed in these orientifolds.
These choices correspond to the orbifold discrete torsion, the signs of the RR charge of the
O3-plane, and two of the three O7-planes. These sixteen choices have also been derived
in [28] using group cohomology techniques. In [28], the idea of orbifold discrete torsion [40],
was generalised to orientifolds. In particular the allowed orientifolds for a given orientifold
were shown to be classified by a generalised group cohomology with local coefficients. For the
models we have been considering in this paper the orientifold group is G = ΩR(−1)Fl×g1×g2,
and the relevant group cohomology was found to be [28]

H2(G, Ũ(1)) = Z2

⊕4 , (5.14)

which gives exactly the 16 choices discussed above. The elements of this group cohomology,
[H ] ∈ H2(G, Ũ(1)) can also be used to define twisted K-theories [28]

K
[H]
G (X) . (5.15)

which classify the allowed D-brane charges for a brane transverse to X.
We may easily extend our calculations from this section to the remaining 15 orientifolds

in this family. In particular, rewriting equation (5.7) for the torsion branes charged under
the twisted NS-NS sector and including factors of discrete torsion we have

24 n2 × (1 + ǫT1
+ ǫT2

+ ǫT3
) (5.16)

−2κΩR n sin(
π

4
(r − s+ 1))− 2κΩR,g1 n sin(

π

4
(r + s− 2s1 − 3))

−2κΩR,g2 n sin(
π

4
(r + s− 2s2 − 3))− 2κΩR,g3 n sin(

π

4
(r + s− 2s3 − 3)) = 0

Our results in the previous sections dealt with (κ, κΩR, κΩRg1 , κΩRg2 , κΩRg3) = (+,+,+,+,+)
for the hyper model while for the tensor model the choice is (−,+,−,−,−). We present an
analysis of the tensor-multiplet torsion brane spectrum in Appendix C.3.

When calculating the torsion brane spectrum, some of the allowed branes do not fill
the non-compact space (i.e. r 6= 3). This means that the simple probe branes introduced
in [20], which fill the non-compact space, will not detect these extra torsion charges branes,
which might lead to extra K-theory constraints. For the original case we considered (i.e.
the hyper-multiplet model), our torsion brane spectrum only included r = 3 branes, so our
results matched with the probe brane argument.

To see the relation between the observed torsion charges from the probe brane approach
and the gauge groups on the D3 and D7i branes, we have included a chart of the gauge
groups in Table 4. Comparing these gauge groups to the K-theory constraints in eqns (4.18)
- (4.21), we see that the discrete constraint on D9-branes is due to a symplectic group on the
probe D3-brane, whereas the discrete constraints on D5i-branes are the results of symplectic
groups on the probe D7i branes.
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6 Discussion

In this paper, we have investigated D-branes in Z2 × Z2 orientifolds. We are particularly
interested in torsion charged D-branes because they cannot be detected from the usual (ho-
mological) tadpole conditions. Nevertheless, their charges need to be cancelled in consistent
string vacua and hence their existence imposes non-trivial constraints on model building.
Because of the generality of the results, we expect the constraints derived here will be useful
for future work in building realistic D-brane models from more general orientifolds. The
search for realistic intersecting/magnetized D-brane models within the framework of Z2×Z2

orientifolds has so far been focused mainly on a particular choice12 of discrete torsion (i.e., the
hyper-multiplet model whose non-BPS brane spectrum was discussed in detail in Section 5)
and moreover with limited types of branes. For example, the set of branes considered in [20]
included only bulk branes whose D-brane charges are induced by turning on ”non-oblique”
(in the sense of [23, 24]) magnetic fluxes on the worldvolume of D9-branes. As the search
continues into different choices of discrete torsion or when more general branes are included,
we would have to go beyond the K-theory constraints in eqns (4.14) - (4.17) (and analogously
eqns. (4.18) - (4.21) for other choices of discrete torsion). The CFT approach adopted here
not only reproduces the probe brane results in [20], but finds additional torsion branes that
arise from probe branes that are different from the simple probes usually considered [20].
For these more general cases, one would have to check that the discrete K-theory constraints
are indeed satisfied or else the models are inconsistent.

So far, the derivations of K-theory constraints have been done in a case by case basis. It
would be useful to have a more general or perhaps an alternative understanding of how these
discrete constraints arise. The probe brane approach introduced in [17] provides a powerful
way to derive some (and in some cases all) of these discrete constraints. Having checked
the torsion brane spectrum in the Z2 × Z2 orientifold for all cases of discrete torsion, we
have explicitly shown that the set of bulk13 probe branes with symplectic gauge groups that
one can introduce is in one-to-one correspondence with the set of bulk torsion branes which
are space-filling in the four non-compact dimensions. Recent work [19] has suggested yet
another interesting way to understand the K-theory constraints in orientifold constructions
by uplifting to F-theory. A non-vanishing magnetic flux on the world-volume of D-branes in
Type IIB can be encoded by the 4-form flux G4 in F-theory. The K-theory constraints can
then be seen to follow from the standard Dirac quantization conditions on G4. It would be
interesting to see if a similar analysis can be done for D = 4, N = 1 orientifold backgrounds
such as the ones considered here.

The effects of K-theory constraints have recently been explored in the statistical studies
of string vacua [12, 21]. The significance of these discrete constraints in reducing the string
landscape is somewhat model dependent. The authors of [12] investigated an ensemble of
(homological) tadpole cancelling intersecting D-brane models in the Z2×Z2 orientifold, and
found that considering K-theory constraints reduced the possible brane configurations by a
factor of five. This is in contrast to [21] which carried out a similar analysis for an ensemble

12See, however, [50], for model building from Z2×Z2 orientifold with a different choice of discrete torsion.
13By bulk branes, we mean branes that are not stuck at fixed points and so they cannot carry twisted

NSNS or RR charges.
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of Rational Conformal Field Theory (RCFT) orientifolds with qualitative features of the
Standard Model, and found that the additional K-theory constraints did not significantly
reduce the number of solutions. It would be interesting to revisit [12] for other choices of
discrete torsion using the K-theory constraints derived here.

Finally, our results suggest that the spectrum of stable non-BPS D-branes for D = 4,
N = 1 orientifolds can be quite rich (e.g. Table 5 for integrally charged non-BPS branes).
As discussed in [29], stable non-BPS branes that are point-like in our four non-compact
dimensions can be interesting candidates for cold dark matter. An interesting direction
for future investigation would be to compute their scattering cross sections and see if they
can give rise to sharp signatures that could distinguish them from other cold dark matter
candidates.
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Appendices

A Some details about the amplitudes

In this appendix, we summarize the results of the full Klein bottle, Möbius strip, and Annu-
lus amplitudes [26,46,47] for the Z2 ×Z2 orientifolds14. The expressions are more complete
than that in Section 4.1 in that we also list the twisted sector contribution to the partition
function. We have also included factors of discrete torsion, see Section 5.3 for more details.
Each of these amplitudes is calculated first in the open channel and then converted into the
closed channel after a Poisson resummation and a modular transformation. The winding and
momentum terms are written out explicitly in eqn (4.1). For the modular transformations,
the Klein Bottle has t = 1/4l; for the Möbius Strip, t = 1/8l; and for the Annulus, t = 1/2l,
where t is the modulus for the open string one loop amplitude and l is the modulus for the
closed string vacuum amplitude.

Klein Bottle

K =
1

16

V4

(2π)4

∫ ∞

0

dt

2t3
(
f3

8(e−2πt)

f1
8(e−2πt)

− f4
8(e−2πt)

f1
8(e−2πt)

− f2
8(e−2πt)

f1
8(e−2πt)

) (A.1)

×(

8∏

i=3

W ′
i +

6∏

i=3

M ′
i

∏

j=7,8

W ′
j +

8∏

i=5

M ′
i

∏

j=3,4

W ′
j +

∏

i=3,4,7,8

M ′
i

∏

j=5,6

W ′
j)

+16× 1

8

V4

(2π)4

∫ ∞

0

dt

2t3
(
f3

4(e−2πt)f2
4(e−2πt)

f1
4(e−2πt)f4

4(e−2πt)
− f2

4(e−2πt)f3
4(e−2πt)

f1
4(e−2πt)f4

4(e−2πt)
)

×
(
κΩRκΩRg1(κ

∏

i=3,4

W ′
i +

∏

i=3,4

M ′
i) + κΩRκΩRg2(κ

∏

i=5,6

W ′
i +

∏

i=5,6

M ′
i)

+κΩRκΩRg3(κ
∏

i=7,8

W ′
i +

∏

i=7,8

M ′
i)

)

= 2
V4

(2π)4

∫ ∞

0

dl (
f3

8(e−2πl)

f1
8(e−2πl)

− f2
8(e−2πl)

f1
8(e−2πl)

− f4
8(e−2πl)

f1
8(e−2πl)

)

×(
8∏

i=3

1

Ri
W̃ ′
i +

6∏

i=3

RiM̃
′
i

∏

j=7,8

1

Rj
W̃ ′
j +

8∏

i=5

RiM̃
′
i

∏

j=3,4

1

Rj
W̃ ′
j +

∏

i=3,4,7,8

RiM̃
′
i

∏

j=5,6

1

Rj
W̃ ′
j)

+16
V4

(2π)4

∫ ∞

0

dl (
f3

4(e−2πl)f4
4(e−2πl)

f1
4(e−2πl)f2

4(e−2πl)
− f4

4(e−2πl)f3
4(e−2πl)

f1
4(e−2πl)f2

4(e−2πl)
)

×
(
κΩRκΩRg1(κ

∏

j=3,4

1

Rj
W̃ ′
j +

∏

i=3,4

RiM̃
′
i) + κΩRκΩRg2(κ

∏

j=5,6

1

Rj
W̃ ′
j +

∏

i=5,6

RiM̃
′
i)

+κΩRκΩRg3(κ
∏

j=7,8

1

Rj
W̃ ′
j +

∏

i=7,8

RiM̃
′
i)

)

14See, also [48] for this and other ZM × ZN orientifolds.
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Möbius Strip

The following are the results on the Möbius Strip, written as interaction between a crosscap
state and a boundary state for a (r; s1, s2, s3) brane. Note that when switching from open
to closed channel, the f3(iq) and f4(iq) functions pick up a factor of eiπ. This is due to the
transformation of the functions with imaginary arguments (see, e.g., [6]). We mention this
because the partition function will gain a factor of sine, and this term will show up when
discussing torsion branes (see Appendix B for more details). The NS sector to the Möbius
Strip contribution is

M =
1

16

Vr+1

(2π)r+1
κΩR

∫ ∞

0

dt

2t
(2t)−(r+1)/2 (A.2)

×
(
f 5+r−s

4 (ie−πt)f 3+s−r
3 (ie−πt)− f 5+r−s

3 (ie−πt)f 3+s−r
4 (ie−πt)

f 5+r−s
1 (ie−πt)f 3+s−r

2 (ie−πt)2−(3+s−r)/2

)

×
(

Tr γTΩ3,Dp
γ−1

Ω3,Dp

∏

i=6−s
Wi

)

+
3∑

i=1

1

16

Vr+1

(2π)r+1
κΩRgi

∫ ∞

0

dt

2t
(2t)−(r+1)/2 1

2−(7−r−s+2si)/2

×
(
f 1+r+s−2si

4 (ie−πt)f 7−r−s+2si

3 (ie−πt)− f 1+r+s−2si

3 (ie−πt)f 7−r−s+2si

4 (ie−πt)

f 1+r+s−2si

1 (ie−πt)f 7−r−s+2si

2 (ie−πt)

)

×
(

Tr γTΩ7i,Dp
γ−1

Ω7i,Dp

∏

j=s−si

Mj

∏

k=2−si

Wk

)

=
1

8

Vr+1

(2π)r+1
κΩR

∫ ∞

0

dl

(
ei(π/4)(s−r−1)f 5+r−s

3 (ie−2πl)f 3+s−r
4 (ie−2πl)

f 5+r−s
1 (ie−2πl)f 3+s−r

2 (ie−2πl)2−(3+s−r)/2

−e
−i(π/4)(s−r−1)f 5+r−s

4 (ie−2πl)f 3+s−r
3 (ie−2πl)

f 5+r−s
1 (ie−2πl)f 3+s−r

2 (ie−2πl)2−(3+s−r)/2

)

×
(

Tr γTΩ3,Dp
γ−1

Ω3,Dp

∏

i=6−s

1

Ri
W̃i

)

+

3∑

i=1

1

8

Vr+1

(2π)r+1
κΩRgi

∫ ∞

0

dl
1

2−(7−r−s+2si)/2

(
ei(π/4)(3−r−s+2si)f 1+r+s−2si

3 (ie−2πl)f 7−r−s+2si

4 (ie−2πl)

f 1+r+s−2si

1 (ie−2πl)f 7−r−s+2si

2 (ie−2πl)

−e
−i(π/4)(3−r−s+2si)f 1+r+s−2si

4 (ie−2πl)f 7−r−s+2si

3 (ie−2πl)

f 1+r+s−2si

1 (ie−2πl)f 7−r−s+2si

2 (ie−2πl)

)

×
(

Tr γTΩ7i,Dp
γ−1

Ω7i,Dp

∏

j=s−si

RjM̃j

∏

k=2−si

1

Rk

W̃k

)
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Annulus

Below is the Annulus contribution to the partition function for strings stretched between
the D3 and D7 branes, including contributions from twisted sectors and cross terms.

C =
1

16

V4

(2π)4

∫ ∞

0

dt

2t
(2t)−2

(
f3

8(e−πt)

f1
8(e−πt)

− f4
8(e−πt)

f1
8(e−πt)
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)
(A.3)
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s
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∏
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+
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0
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B Finding the tachyon

As mentioned in Section 5.1, there are eight possible contribution to the tachyon: the un-
twisted Annulus diagram, the twisted Annulus diagram (three contributions), the Möbius
strip diagram for a string exchange between the Dp and the O3 plane, and the Möbius
strip diagram for a string exchange between the Dp and the O7 plane (three contributions).
Each of these contributions is listed below, and was originally calculated in the closed string
channel using the boundary state method. The open string expression was obtained after a
Poisson resummation and a modular transformation.

Since the orbifold action produces NSNS and RR twisted sectors that give equal and
opposite contributions to the amplitudes, the parameter ǫi has been introduced. ǫi = 1 if
the brane couples to the Ti twisted NSNS sector, and ǫi = −1 if the brane couples to the Ti
twisted RR sector. ǫi = 0 if the brane does not couple to the Ti twisted sector.

When these terms are expanded, combining the tachyonic modes (q−1) from the Annulus
and Möbius Strip diagrams produces the constraint equation (5.7). After each term we
provide the expansion of the tachyonic and massless modes.

A = 24N2
(r,s),U

∏
6−sRj∏
sRi

∫ ∞

0

dt

2t
(2t)−(r+1)/2

(
[
f3(e

−πt)

f1(e−πt)
]8 − [

f2(e
−πt)

f1(e−πt)
]8
)

(B.1)

×
(
∏

s

Mi

∏

6−s
Wj

)

+
3∑

i=1

22+s−siN2
(r,s),Ti

∏
2−si

Rj∏
si
Rk

ǫi

∫ ∞

0

dt

2t
(2t)−(r+1)/2 f4

4(e−πt)f3
4(e−πt)

f1
4(e−πt)f2

4(e−πt)
)

×
(
∏

si

Mk

∏

2−si

Wj

)

27



= 24N2
(r,s),U

∏
6−sRj∏
sRi

∫ ∞

0

dt

2t
(2t)−(r+1)/2(q−1 − 8q0 + . . .)×

∏

s

Mi

∏

6−s
Wj

+

3∑

i=1

22+s−siN2
(r,s),Ti

∏
2−si

Rj∏
si
Rk

ǫi

∫ ∞

0

dt

2t
(2t)−(r+1)/2((4q)−1 + . . .)×

∏

si

Mk

∏

2−si

Wj

M3 = 32N(r,s),UNO3

∏

6−s
Rj

∫ ∞

0

dt

2t
(2t)−(r+1)/2 (B.2)

e−i(π/4)(s−r−1)f 5+r−s
4 (ie−πt)f 3+s−r

3 (ie−πt)− ei(π/4)(s−r−1)f 5+r−s
3 (ie−πt)f 3+s−r

4 (ie−πt)

f 5+r−s
1 (ie−πt)f 3+s−r

2 (ie−πt)

× 1

2−(3+s−r)/2 (
∏

i=6−s
Wi)

= 32N(r,s),UNO3

∏

6−s
Rj

∫ ∞

0

dt

2t
(2t)−(r+1)/2(2 sin

π

4
(r − s+ 1))(q−1 + . . .)× (

∏

i=6−s
Wi)

M7i
= 4N(r,s),UNO7i

∏
2−si

Rk∏
s−si

Rj

∫ ∞

0

dt

2t
(2t)−(r+1)/2 (B.3)

(
e−i(π/4)(3−r−s+2si)f 1+r+s−2si

4 (ie−πt)f 7−r−s+2si

3 (ie−πt)

f 1+r+s−2si

1 (ie−πt)f 7−r−s+2si

2 (ie−πt)

−e
i(π/4)(3−r−s+2si)f 1+r+s−2si

3 (ie−πt)f 7−r−s+2si

4 (ie−πt)

f 1+r+s−2si

1 (ie−πt)f 7−r−s+2si

2 (ie−πt)
)

× 1

2−(7−r−s+2si)/2
(
∏

i=s−si

Mk

∏

2−si

Wj)

= 4N(r,s),UNO7i

∏
2−si

Rk∏
s−si

Rj

∫ ∞

0

dt

2t
(2t)−(r+1)/2(2 sin

π

4
(r + s− 2si − 3))(q−1 + . . .)

×(
∏

i=s−si

Mk

∏

2−si

Wj)

where the normalizations for the Annulus contribution are matched to the open string one
loop diagram,

N2
(r,s),U =

Vr+1

(2π)r+1
n2

∏
sRi∏

6−sRj
(B.4)

N2
(r,s),Tk

= 24−s+si
Vr+1

(2π)r+1
n2

∏
sk
Ri∏

2−sk
Rj

(B.5)

and the normalization for the Möbius strip contribution comes from the normalizations of
the crosscap states and are defined

N2
O3 =

1

1024

V4

(2π)4

∏

s

1

Rj
(B.6)

N2
O7i

=
1

16

V4

(2π)4

∏
4−s+si

Ri∏
si
Rj

(B.7)
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n is a constant that is determined for different values of (r, s). For BPS D-branes that couple
to all three twisted sectors, n2 = 1

256
.

C Stability Region of the Torsion Branes

C.1 Higher Winding and Momentum Modes

In this section we will calculate the stability region of the torsion branes in Section 5.1. In
that section the branes were considered stable if the ground state tachyonic mode vanished.
To determine the stability region of these branes, we must analyze the higher winding and
momentum modes, and require that these not become tachyonic.

For a general (r, s) torsion brane with possible twisted couplings, the potentially tachyonic
modes, with higher winding and momentum included, are

24 n2 q−1 ×
∏

s

Mi

∏

6−s
Wj + 24 n2

3∑

k=1

ǫk q
−1 ×

∏

sk

Mi

∏

2−sk

Wj (C.1)

−2nκΩR q−1 sin
(π

4
(r − s+ 1)

)
×
∏

6−s
Wj

−2nκΩRg1 q
−1 sin

(π
4
(r + s− 2s1 − 3)

)
×

∏

s2+s3

Mi

∏

2−s1

Wj

−2nκΩRg2 q
−1 sin

(π
4
(r + s− 2s2 − 3)

)
×

∏

s1+s3

Mi

∏

2−s2

Wj

−2nκΩRg3 q
−1 sin

(π
4
(r + s− 2s3 − 3)

)
×

∏

s1+s2

Mi

∏

2−s3

Wj

where ǫk = 1 if the brane couples to the gk NSNS twisted sector, and 0 otherwise. By
expanding the winding and momentum terms, in addition to having the vacuum state cancel
(eqn. (5.7)), we must restrict the size of the compact directions in the expression above such
that the higher modes are not tachyonic. For example, the (3; 0, 2, 0) brane that couples to
the g1 twisted NSNS sector, along the g1 twisted directions (x5, x6, x7, x8) the brane is stable
for

2

R2
5,6

− 1 ≥ 0 (C.2)

2R2
7,8 − 1 ≥ 0 . (C.3)

A (3; 0, 2, 0) torsion brane without any twisted couplings, whose stability region in any
of the compact directions

2

R2
i

+ 2R2
j − 1 ≥ 0 , i = 5, 6 j = 3, 4, 7, 8 . (C.4)
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C.2 Torsion branes in the hyper-multiplet model

In Section 5 we have identified stable, torsion charged D-branes in the hyper-multiplet model,
and have presented in equation (5.16) a general condition for the absence of an open string
tachyon on a D-brane for the different allowed choices of discrete torsion in these models.
Enumerating such tachyon free torsion-charged D-branes is then straightforward. Not all
tachyon free branes however lead to allowed branes in string theory. In the case of branes
that couple to twisted NSNS sectors, one needs to ensure that the corresponding boundary
states are invariant with respect to the GSO and orientifold projections. Further, as in the
case of Type I SO and Sp theories we need to ensure that our D-branes do not suffer from the
pathologies associated to the D6 and D2 branes in those theories [6, 16]. It is also possible
for apparently consistent D-branes to decay into inconsistent D-branes. Such decays signal
the need to exclude the former branes [8]. In this sub-section we present the allowed torsion
charged D-branes in the hyper-multiplet model as an example.

For the hyper-multiplet model the choice of discrete torsion is

κ = 1 , κΩR = 1 , κΩRgi
= 1 , (C.5)

and equation (5.16) together with the conditions (3.8) imply that tachyon-free torsion D-
branes only exist in the form given in eqns (5.2) and (5.1). Torsion branes of the form given
in equation (5.2) with coupling to the NSNSTg1 twisted sector need to have (r; s1, s2, s3) of
the form

(2; 0, 2, 0) , (2; 0, 0, 2) , (3; 0, 2, 0) , (3; 0, 0, 2) , (3; 1, 2, 0) , (3; 1, 0, 2) . (C.6)

Tachyon-free torsion branes of the form given in equation (5.1) need to have (r; s1, s2, s3) of
the form

(2; 2, 0, 0) , (2; 2, 2, 2) , (3; 1, 0, 0) , (3; 1, 1, 0) , (3; 2, 0, 0) ,

(3; 1, 1, 1) , (3; 0, 1, 2) , (3; 2, 1, 1) , (3; 2, 2, 1) , (3; 2, 2, 2) . (C.7)

and all permutations of the si.
For the torsion branes with one twisted coupling given by equation (5.2), the (2; 0, 2, 0),

(2; 0, 0, 2), (3; 1, 2, 0), and (3; 1, 0, 2) branes are g3 images of the Z2 ⊕Z2 (4, 2)-branes which
were found to be inconsisntent in [8]. Therefore the only consistent brane with one twisted
coupling is the (3; 2, 0, 0) brane and all permutations of the si.

When considering possible decay channels, they suggest either one of two potential de-
cays: a) Dp brane→ D(p± 1) brane or b) Dp brane→ D(p± 2) brane. General transitions
of the form a) have been beautifully analysed by [52]. At a critical compactification radius
the two CFTs that correspond to the two D-branes are equivalent, allowing a Dp brane to
decay into a D(p± 1) brane. Decays of the form b) are in general more complicated, and it
is not clear what are the decay channels allowed by matching the whole CFTs. For example,
while a CFT matching exists for certain freely acting orbifolds [53], in more complicated
settings such as [4, 8] no such matching exists and it is in general not known what branes
decay into. Therefore we will only consider decays of the form a) to exclude inconsistent
torsion branes.
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Since the torsion branes that couple only to the NSNSU sector (of the form in equation
(5.1)) are pairs of torsion branes that couple to the NSNSTgi sector (of the form in equation
(5.2)) with opposite twisted torsion charge, then we must exclude branes that have the same
values of (r; s1, s2, s3). This means that for branes that couple only to the NSNSU sector,
the (2; 2, 0, 0) and (3; 0, 1, 2) are excluded. The (2; 2, 2, 2) and (3; 1, 1, 1) are T-dual to a
D2 and D6 brane in Type I, and are also excluded. In addition, for certain values of the
compactification radii there are the allowed decays

(3; 1, 1, 0)→ (3; 1, 2, 0) , (C.8)

and
(3; 1, 2, 1)→ (3; 1, 2, 0) . (C.9)

Therefore the consistent stable torsion branes that have no twisted couplings are

(3; 1, 0, 0) , (3; 2, 0, 0) , (3; 2, 2, 1) , (3; 2, 2, 2) . (C.10)

and all permutations of the si.
Considering the remaining torsion branes above, the (3; 1, 0, 0) and (3; 2, 0, 0) branes are

related by decay, and the (3; 2, 2, 1) and (3; 2, 2, 2) branes are also related by decay. Since the
(3; 2, 0, 0), (3; 0, 2, 0), (3; 0, 0, 2), and (3; 2, 2, 2) branes are not related by decay, then these
branes form an independent basis of K-theory torsion charge, and match with the probe
brane results in eqns. (4.14) - (4.17).

C.3 Torsion branes in the tensor-multiplet model

In this subsection we continue our analysis to the torsion branes in the tensor-multiplet
model. For the tensor-multiplet model the choice of discrete torsion is

κ = −1 , κΩR = 1 , κΩRgi
= −1 , (C.11)

and equation (5.16) together with the conditions (3.9) imply that tachyon-free torsion D-
branes of the type given in equation (5.3) need to have (r; s1, s2, s3) of the form

(−1; 2, 2, 2) , (0; 2, 2, 2) , (0; 0, 0, 0) , (1; 0, 0, 0) , (2; 0, 0, 0) . (C.12)

Tachyon-free torsion D-branes of the type given in equation (5.2), with couplings to the
NSNSTg1 sector, need to have (r; s1, s2, s3) of the form

(−1; 2, 2, 2) , (−1; 1, 2, 2) , (0; 2, 2, 2) , (0; 1, 2, 2) , (0; 0, 0, 0) ,

(0; 1, 0, 0) , (1; 0, 0, 0) , (1; 1, 0, 0) , (2; 0, 0, 0) , (2; 1, 0, 0) . (C.13)

Finally, tachyon-free torsion charged D-branes of the form given in equation (5.1) need to
have (r; s1, s2, s3) of the form

(−1; 2, 2, 2) , (−1; 1, 2, 2) , (−1; 1, 1, 2) , (−1; 1, 1, 1) , (0; 2, 2, 2) ,

(0; 1, 2, 2) , (0; 1, 1, 2) , (0; 1, 1, 1) , (0; 0, 1, 1) , (0; 0, 0, 1) ,

(0; 0, 0, 0) , (1; 0, 0, 0) , (1; 1, 0, 0) , (1; 1, 1, 0) , (1; 1, 1, 1) ,

(2; 0, 0, 0) , (2; 1, 0, 0) , (2; 1, 1, 0) . (C.14)
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and all permutations of the si.
It is easy to see that the (0; 0, 0, 0)-brane and the (1; 1, 0, 0)-brane of the type (5.2) are

g3 images of the Z2 ⊕ Z2 (2, 4)-branes found in [8]15. These branes were shown not to
be consistent [8], and so we exclude them here as well. For branes of the type (5.1), the
(−1; 1, 1, 1), (0; 1, 1, 2), and (2; 1, 1, 0) branes are also inconsistent and must be removed.
Since it is possible to form branes of the type (5.2) from branes of the type (5.3), and branes
of the type (5.1) from branes of the type (5.2), we need to exclude all torsion branes with
the above values of (r; s1, s2, s3).

We may next consider torsion branes of the type (5.1). It is possible to show that the
following decay processes between torsion-charged branes of this type can occur for suitable
values of radii

(0; 1, 1, 1)→ (0; 0, 1, 1)→ (0; 0, 0, 1)→ (0; 0, 0, 0) . (C.15)

as well as
(1; 1, 1, 1)→ (1; 1, 1, 0)→ (1; 1, 0, 0) . (C.16)

Since the end of each of these decays is an inconsistent D-brane, all of the D-branes in the
above decays are also inconsistent.

To summarize, the tensor-multiplet model includes torsion D-branes of the type given in
equation (5.3) with (r; s1, s2, s3) of the form

(−1; 2, 2, 2) , (0; 2, 2, 2) , (1; 0, 0, 0) , (2; 0, 0, 0) . (C.17)

The tensor model has torsion D-branes of the type given in equation (5.2), with couplings
to the NSNSTg1 sector, with (r; s1, s2, s3) of the form

(−1; 2, 2, 2) , (−1; 1, 2, 2) , (0; 2, 2, 2) , (0; 1, 2, 2) , (C.18)

(1; 0, 0, 0) , (2; 0, 0, 0) , (2; 1, 0, 0) .

Similar results hold for branes of the type given in equation (5.2) with couplings to the
other NSNSTgi sectors. Finally, the tensor model has torsion D-branes of the form given in
equation (5.1) for (r; s1, s2, s3) of the form

(−1; 2, 2, 2) , (−1; 1, 2, 2) , (−1; 1, 1, 2) , (0; 2, 2, 2) , (C.19)

(0; 1, 2, 2) , (1; 0, 0, 0) , (2; 0, 0, 0) , (2; 1, 0, 0) .

and all permutations of the si.

C.4 A comment on other choices of discrete torsion

Naively, there are many torsion charged branes that are a solution to eqn (5.16). Though in
our analysis for the hyper-multiplet model we have excluded some of the branes in Tables 1
and 2 due to their relation to inconsistent branes, this does not mean that for other choices

15The (2, 4)-brane was not explicitly mentioned as an inconsistent brane in [8]. See Section D for a
brief review of the 6D tensor multiplet, including the equations needed to calculate the spectrum of stable
D-branes.
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of discrete torsion that the discrete K-theory charges found using the probe brane approach
in equations (4.18) - (4.21) are also excluded if branes that could carry those charges are
excluded. These discrete K-theory charges can be carried by BPS branes even when non-
BPS branes that also carry the same charges do not exist. The probe brane approach in
the hyper-multiplet uses a configuration of BPS D3 and D7 branes to detect these discrete
charges, and the same charges can also be carried by non-BPS torsion charged D9 and D5
branes respectively. This method is independent of whether the non-BPS torsion charged
D9 and D5 branes exist. In addition, the discussion above is based upon changing the
compactification radii of the torsion branes along certain directions so that they can decay.
By doing this we are moving the model away from its BPS configuration, and thus must
treat this analysis with caution.

There are interesting features for the torsion brane spectrum for other choices of discrete
torsion. Some of the other 14 cases contain branes that do not fill the non-compact directions
(i.e. r 6= 3), and can possibly carry torsion charge not carried by the r = 3 branes. In
addition, these models can contain r = 3 branes with oblique flux on their worldvolume, and
might be useful for future model building. To determine the torsion brane spectrum, a case
by case analysis must be done to determine whether the branes are stable, orientifold and
orbifold invariant, and consistent. A full study of the remaining cases would be useful both
to string phenomenology and to the study of twisted K-theory.

D Some Known Examples

Here, we will examine a previously worked example of a T4/Z2 and a T-dual version of the
T6/Z2×Z2 considered in this paper. The former corresponds to the hyper-multiplet model
of a T4/Z2 orientifold [34,35] analyzed in [8] where the underlying K-theory group structure
was also discussed. The model contains 1 O5 and 1 O9 plane whose charge is cancelled by
introducing D5 and D9 branes. The RR tadpole conditions are

v6v4

16
{322 − 64Tr(γ−1

Ω,9γ
T
Ω,9) + (Tr(γ1,9))

2} (D.1)

+
v6

16v4
{322 − 64Tr(γ−1

ΩR,5γ
T
ΩR,5) + (Tr(γ1,5))

2}

+
v6

64

16∑

I=1

{Tr(γR,9)− 4Tr(γR,I)}2 = 0

The open string projection operator is

(
1 + Ω

2
)(

1 + I4
2

)(
1 + (−1)F

2
)

Adapting the results from [8], the tachyon cancellation condition16,17 is

24n2(1 + ǫ)− 2
√

2 n sin(
π

4
(r + s− 5))− 2

√
2 n sin(

π

4
(r − s− 1)) = 0 (D.2)

16In the T
4, r ≤ 5 and s ≤ 4.

17See Table I in [8] for more details on the value of n for different values of r and s.
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For ǫ = −1 this corresponds to integrally charged non-BPS D-branes that couple to the
twisted R-R sector, and reproduces the result s=0,4 for all r and r = −1, 3 for all s. The
other option of ǫ = 1 gives us torsion branes that couple to the twisted NSNS sector, and
are stable for r=5, s=2.

In [8] the tensor-multiplet model was also investigated. As mentioned previously, the
tensor-multiplet differs from the hyper-multiplet by a choice of discrete torsion. Changing
the discrete torsion between the orientifold and I4, is equivalent to changing the sign in the
Möbius strip diagram in the Dp - O5 amplitude. The new tachyon cancellation condition
for torsion branes in the tensor-multiplet is

24n2(1 + ǫ)− 2
√

2 n sin(
π

4
(r + s− 5)) + 2

√
2 n sin(

π

4
(r − s− 1)) = 0 (D.3)

The BPS fractional branes have r, s = (1,0), (1,4), (5,0), and (5,4). The new non-BPS branes
from eqn. (D.3) are r=1,5, s=1,2,3 for the integrally charged branes, and for the torsion
branes r=-1,0 and s=0 or r=3,4 and s=4.

Let us now consider the T6/Z2 × Z2 orientifold in the T-dual frame where there are
O9-planes and 3 types of O5 planes [26]. The RR tadpole conditions are

{v1v2v3(322 − 64Tr(γ−1
Ω,9γ

T
Ω,9) + (Tr(γ1,9))

2) (D.4)
∑

i

vi
∏

j 6=i

1

vj
(322 − 64Tr(γ−1

ΩRi,5i
γTΩRi,5i

) + (Tr(γ1,5i
))2}

The open string projection operator is

(
1 + Ω

2
)(

1 + g1

2
)(

1 + g2

2
) (D.5)

which lead to the following tachyon cancellation condition

24 n2 × (1 + ǫT1
+ ǫT2

+ ǫT3
) (D.6)

−2n sin(
π

4
(r + s− 5))

−2n sin(
π

4
(r − s+ 2s3 − 1))

−2n sin(
π

4
(r − s+ 2s1 − 1))

−2n sin(
π

4
(r − s+ 2s2 − 1)) = 0

All of the branes we find are T-dual to the branes in Section 5, and are related under the
transformation si −→ 2− si.

E Other Choices of Discrete Torsion

Table 4 contains the gauge group for the open strings in the 33 and 7i7i sectors. Only 8 of
the possible 16 choices of discrete torsion have been listed; the other 8 cases can be obtained
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from a permutation of our results. In addition, we have included tables of non-BPS integrally
charged branes with r = 0, since these are possible D-matter candidates [29] in addition to
the torsion branes. The integrally charged brane spectrum for different choices of discrete
torsion is listed in Table 5. As noted in Section 5.1, a consistent open string projection
requires each of these integrally charged branes to couple to only one twisted sector. Our
results are only stated for 8 of the possible 16 choices of discrete torsion. The spectrum for
the other cases can be obtained through a simple permutation of the branes in the tables.
Branes that are shown to be inconsistent are marked with a dagger.

κ κΩR κΩRg1 κΩRg2 κΩRg3 D3 D71 D72 D73

+ + + + + USp(Nα) USp(Nα) USp(Nα) USp(Nα)
+ + + − − SO(Nα) SO(Nα) USp(Nα) USp(Nα)
+ − + + − USp(Nα) SO(Nα) SO(Nα) USp(Nα)
+ − − − − SO(Nα) SO(Nα) SO(Nα) SO(Nα)
− − + + + USp(Nα/2) U(Nα/2) U(Nα/2) U(Nα/2)
− − + − − U(Nα/2) SO(Nα/2) U(Nα/2) U(Nα/2)
− + + + − U(Nα/2) U(Nα/2) U(Nα/2) USp(Nα/2)
− + − − − SO(Nα/2) U(Nα/2) U(Nα/2) U(Nα/2)

Table 4: The gauge group for the open strings in the 33 and 7i7i sectors. The gauge groups
for the other eight choices of discrete torsion can be obtained by a simple permutation of
the results above.
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κ κΩR κΩRg1 κΩRg2 κΩRg3 Integrally Charged Branes (r = 0, s)
+ + + + + None
+ + + − − s1 = 1, sj = 1, sk = 0

s1 = s2 = s3 = 1

s1 = 1, sj = 1, sk = 2
†

+ − + + − s1 = 1
s2 = 1

s1 = 1, sj = 1, sk = 0
s2 = 1, sj = 1, sk = 0
s1 = s2 = s3 = 1

s1 = 1, sj = 0, sk = 2
s2 = 1, sj = 0, sk = 2

s1 = 1, sj = 1, sk = 2
†

s1 = 2, s2 = s3 = 1
†

s2 = s3 = 2, s1 = 1
s1 = s3 = 2, s2 = 1

+ − − − − None
− − + + + si = 0, sj = 1, sk = 2
− − + − − s1 = 1, sj = 0, sk = 2
− + + + − s1 = 1

s2 = 1
s2 = s3 = 2, s1 = 1
s1 = s3 = 2, s2 = 1

− + − − − None

Table 5: D-matter candidates for different choices of discrete torsion. Branes that are shown
to be inconsistent are marked with a dagger.
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