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Abstract. The formal specification component of verification can be exported to
simulation through the idea of property checkers. The essence of this approach is
the automatic construction of an observer from the specification in the formof a
program that can be interfaced with a simulator and alert the user if the property
is violated by a simulation trace. Although not complete, this lighter approach to
formal verification has been effectively used in software and digital hardware to
detect errors. Recently, the idea of property checkers has been extended to analog
and mixed signal systems.
In this paper, we apply the property-based checking methodology to an industrial
and realistic example of a DDR2 memory interface. The properties describing
the DDR2 analog behavior are expressed in the formal specification language
STL/PSL in form of assertions. The simulation traces generated from an actual
DDR2 interface design are checked with respect to theSTL/PSL assertions using
theAMT tool. The focus of this paper is on the translation of the official (informal
and descriptive) specification of two non-trivial DDR2 properties intoSTL/PSL

assertions. We study both the benefits and the current limits of such approach.

1 Introduction

The formal verification of digital (and other finite state) systems has been based on
the decision procedures which often involve model-checking temporal logic formulae.
Temporal logic [MP95] is a rigorous specification formalismthat is used to describe de-
sired behaviors of the system. The fact that logics such asLTL or CTL can be efficiently
translated into corresponding automata [VW86,SB00,GPVW95,GO01] has facilitated
their integration into main verification tools. An adaptation of formalisms based on
temporal logics and regular expressions to the needs of the hardware industry has been
done through standard specification languagesPSL [HFE04] andSVA [Acc04].

Similar verification methods have been introduced in the analog and mixed sig-
nal domain with the advent ofhybrid automata[MMP92], which serve as a model to
describe systems with continuous dynamics with switches, and the algorithms for the
exhaustive exploration of their search space. While certainprogress has been made re-
cently in that field [ADF+06], scalability remains an important issue for the exhaustive
verification of hybrid systems, due to the explosion of the underlying state space. Con-
sequently, this verification method can be used nowadays to reason about small critical
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analog and mixed signal blocks containing up to a dozen continuous variables. More-
over, property-based verification of hybrid systems is onlyat its beginning [FGP06].

The preferred analog validation method remains simulation-based testing, com-
bined with a number of common analysis techniques (frequency-domain analysis, sta-
tistical measures, parameter extraction, eye detection etc.) The validation tools are spe-
cific to the class of properties checked, and include waveform analyzers and calculators,
measuring commands as well as manually written scripts. These solutions are often ad-
hoc and may require considerable user effort, and in the caseof scripts, reusability
becomes an issue.

The gap between formal verification and standard simulationanalysis of analog sys-
tems can be reduced by introducing formal specifications into the domain of simulation.
This approach relies on an automatic construction of an observer, also called a property
checker, from the formula. This checker takes the form of a program that can be inter-
faced with the simulator and alert the user if the property isviolated by a simulation
trace. This method is not complete, but can be effectively used to catch “bugs” in the
system. It can be more reliable and efficient than the visual inspection of simulation
traces, or manual construction of property observers. Thisprocedure, often related to as
lightweight verification, has been successfully integrated into the validation flow of soft-
ware and hardware frameworks, and temporal logic has been used as the specification
language in a number of property checking tools, including TemporalRover [Dru00],
FoCs [ABG+00], Java PathExplorer [HR01] and MaCS [KLS+02].

The extension of property-based checkers to analog and mixed signal systems has
been proposed in [MN04,NM07,N08], with the introduction ofthe formal specification
languageSTL/PSL, based on the dense-time temporal logicMITL [AFH96], and it al-
lows to relate temporal behavior of continuous waveforms via theirstatic abstractions.
The properties expressed inSTL/PSL can be checked against analog simulation traces
with the toolAMT [NM07,N08]. A similar approach for checkingPSLproperties of dis-
crete time analog and mixed signal systems was proposed in [AZDT07]. The authors
of [JHP+07] describe a framework based onPSLextended with analog operators, which
is targeted at checking mixed signal interface properties.In [DC05], the authors intro-
duce theANACTL logic, an analog extension ofCTL, used to check properties of a finite
state machine, which represents a set of discretized and bounded transient simulation
traces.

In this paper, we study the framework of property checkers inthe analog domain
and its applicability to real-world industrial examples. We present a case study where
we translate two non-trivial properties of a DDR2 memory interface [Jed06] inSTL/PSL

and use the monitoring toolAMT to check the specification against the simulation wave-
forms. DDR2 memory is a natural candidate for this case studyas it contains a number
of timing relations between different analog signals. We are particularly interested in the
expressiveness ofSTL/PSL with respect to the class of properties informally described
in the official DDR2 specification document.

The rest of this document is organized as follows: in Section2 we present the
STL/PSL specification language. Section 3 describes some non-trivial properties of the
DDR2 memory component and their formalization and translation into STL/PSL. The



experimental results are reported in Section 4.2 followed by a discussion about the re-
sults and the conclusions (Section 5).

2 STL/PSL Specification Language

The specification of properties of continuous waveforms requires an adaptation of the
semantic domain and the underlying logic. Let the time domain T be the setR≥0

of non-negative real numbers. We consider finite length signals ξ over an abstract
domainD, which are partial functionsξ : T → D whose domain of definition is
I = [0, r), r ∈ Q>0. The length of the signalξ is r, and is denoted with|ξ| = r.
We restrict our attention to two particular types of signals, Boolean signals withD = B

and continuous signals withD = R. We denote byπp(ξ) the projection of the signalξ
on the dimension with domainB that corresponds to the propositionp (likewise,πs(ξ)
denotes projection of the signalξ on the dimension with domainR corresponding to the
continuous variables).

TheSTL/PSL logic is an extension ofMITL [AFH96] andSTL [MN04] logics, using
layers in the fashion ofPSL [HFE04]. Theanalog layerallows to reason about contin-
uous signals and thetemporal layerrelates the temporal behavior of input traces. The
“communication” between the two layers is done viastatic abstractionsthat partition
the continuous state space according to some (in)equality constraints on the continuous
variables. TheSTL/PSL properties are targeted at thelightweight verificationoverfinite
traces, so the language adopts the finitary interpretation in the spirit ofPSL, with strong
andweakforms of the temporal operators1. Theanalog layerof STL/PSL is defined by
the following grammar:

φ :== s | shift(φ,k) | φ1 ⋆ φ2 | φ ⋆ c | abs(φ)

wheres belongs to a setS = {s1, s2, . . . , sn} of continuous variables,⋆ ∈ {+,-,*},
c ∈ Q andk ∈ Q+.

The semantics of the analog layer ofSTL/PSL is defined as an application of the
analog operators to the input signalξ:

s[t] = πs(ξ)[t]
shift(φ,k)[t] = φ[t + k]
(φ1 ⋆ φ2)[t] = φ1[t] ⋆ φ2[t]
(φ ⋆ c)[t] = φ[t] ⋆ c

abs(ϕ)[t] =

{

φ[t] if φ[t] ≥ 0
−φ[t] otherwise

The temporal layerof STL/PSL contains bothfuture andpastoperators and is de-
fined as follows:

ϕ :== p | φ ◦ c | not ϕ | ϕ1 or ϕ2 |
ϕ1 until! I ϕ2 | ϕ1 until I ϕ2 | ϕ1 since I ϕ2

rise(ϕ) | fall(ϕ)

1 The strong form of an operator requires the terminating condition to occurbefore the end of
the signal, while the weak form makes no such requirements. InPSL for example,until!
anduntil represent the strong and the weak form of the until operator, respectively.



wherep belongs to a setP = {p1, p2, . . . , pn} of propositional variables,a,b,c ∈ Q,
◦ ∈ {>,>=,<,<=,==} andI is an interval of type(a, b), (a, b], [a, b), [a, b], (a,∞)
or [a,∞), wherea, b are rationals with0 ≤ a < b.

The satisfaction relation(ξ, t) |= ϕ, indicating that signalξ satisfiesϕ at timet is
defined inductively as follows:

(ξ, t) |= p iff πp(ξ)[t] = TRUE

(ξ, t) |= φ ◦ c iff φ[t] ◦ c
(ξ, t) |= not ϕ iff (ξ, t) 6|= ϕ
(ξ, t) |= ϕ1 or ϕ2 iff (ξ, t) |= ϕ1 or (ξ, t) |= ϕ2

(ξ, t) |= ϕ1 until! I ϕ2 iff ∃t′ ∈ t + I st (t′ < |ξ| and(ξ, t′) |= ϕ2) and
∀t′′ ∈ (t, t′) (ξ, t′′) |= ϕ1

(ξ, t) |= ϕ1 until I ϕ2 iff ∃t′ ∈ t + I st (t′ ≥ |ξ| or (ξ, t′) |= ϕ2) and
∀t′′ ∈ (t, t′) (ξ, t′′) |= ϕ1

(ξ, t) |= ϕ1 since I ϕ2 iff ∃t′ ∈ t − I st t′ ≥ 0 and(ξ, t′) |= ϕ2 and
∀t′′ ∈ (t, t′) (ξ, t′′) |= ϕ1

(ξ, t) |= rise(ϕ) iff ((ξ, t) |= ϕ and∃ t′ ∈ [0, t) st
∀t′′ ∈ (t′, t) (ξ, t′′) 6|= ϕ) or
((ξ, t) 6|= ϕ and∃ t′ > t st
∀t′′ ∈ (t, t′) (ξ, t′′) |= ϕ)

(ξ, t) |= fall(ϕ) iff ((ξ, t) 6|= ϕ and∃ t′ ∈ [0, t) st
∀t′′ ∈ (t′, t) (ξ, t′′) |= ϕ) or
((ξ, t) |= ϕ and∃ t′ > t st
∀t′′ ∈ (t, t′) (ξ, t′′) 6|= ϕ)

An STL/PSL specificationϕprop is anSTL/PSL temporal formula. The signalξ satis-
fies the specificationϕprop, denoted byξ |= ϕprop, iff (ξ, 0) |= ϕprop.

Other standard operators such as strong and weak versions ofalwaysandeventually,
as well as their past counterpartshistorically andoncecan be derived from the basic
ones. Note that the syntax and semantics ofSTL/PSL differ from [NM07] in several
aspects. Theuntil operator has the strict semantics as originally proposed in[AFH96]
and the past operators as well as events (detection of risingand falling edges of a signal)
have been added to the language2.

TheSTL/PSL language contains some additional constructs that simplify the process
of property specification. Each top-levelSTL/PSL property is declared as anassertion,
and a number of assertions can be grouped into a single logical unit in order to monitor
them together at once. We also add a definition directive which allows the user to declare
a formula and give it a name, and then refer to it as a variable within the assertions.
The Boolean and analog variables are typed (prefixesb: anda:, respectively). The
extendedSTL/PSL is defined with the following production rules

stl_psl_prop :==
vprop NAME {

{ define_directive } { assert_directive }

2 The underlying changes that were done to support these extensions are out of scope in this
paper, see [N08] for more details



}

define_directive :==
define b:NAME := stl_psl_property
| define a:NAME := analog_expression

assert_directive :==
NAME assert : stl_psl_property

wherestl psl property andanalog expression correspond toϕ andφ de-
fined above, respectively.

3 Translation of DDR2 Properties to STL /PSL Assertions

The subject of this case study is aDDR2 memory interface developed at Rambus.DDR2
presents a number of features that make it a good candidate for property-based mon-
itoring approach. The memory interface acts as a bus betweenthe memory and other
components in the circuit and exhibits the communication ofdigital data implemented
at the analog level. Hence, the correct functioning of aDDR2 memory interface largely
depends on the appropriate timing of different signals within the circuit. In this sec-
tion, we describe two typical DDR2 properties, one specifying the correct alignment
between analog signals, and the other reasoning about time accumulation error in the
clock signal. We focus on different steps needed for translating these informally de-
scribed properties into anSTL/PSL specification.

The simulation traces provided by Rambus are from a DDR2-1066 interface with
single-ended data strobe, but there are no written specification documents for this par-
ticular design setting. Instead, we used the specification for DDR2-400 and DDR-800
from the official document.

3.1 Data and Data Strobe Alignment Property

In DDR2, the data access is controlled by a single-ended or differential data strobe
signal, which acts as an asynchronous clock. The official JEDEC DDR2 specification
describes, amongst others, a number of properties that involve timing relationship be-
tween events that happen in data and data strobe signals. In this section, we are par-
ticularly interested in a property that defines the correct alignment between the data
and data strobe signals. The case study considers the specification parameters for the
single-ended data strobe DDR2-400 memory interface, whichis part of the JEDEC
standard.

The DDR2 specification defines a number of thresholds, shown in Table 1. The
temporal relationship between data signalDQ and data strobe signalDQS is defined
with respect to different crossings of these thresholds.

The general definition of the alignment of dataDQ and data strobeDQS signals is
illustrated in Figure 1. The proper alignment between the two signals is determined by
two values, thesetuptime tDS andhold time tDH. The setup and hold times ofDQ
andDQS are checked on both theirfalling andrising edges. For the sake of simplicity,



Threshold Value (V)
VDDQ 1.8
VIH(AC)min

1.25
VIH(DC)min

1.025
VREF 0.9
VIL(DC)max

0.775
VIL(AC)max

0.65
Table 1.Threshold values forDQ andDQS

we only consider the specification of the property for the setup time at the signals’
falling edge and the other cases are similar and symmetric.
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Fig. 1.DataDQ and data strobeDQS alignment

Informally, the setup property at the falling edge requiresthat wheneverDQS
crosses theVIH(DC)min

threshold from above, the previous crossing ofVIL(AC)max

by the signalDQ from above should precede it by at least a period of time oftDS.
This property is formalized inSTL/PSL as follows

define b:dqs above vihdcmin := (a:DQS >= 1.025);
define b:dqs above vilacmax := (a:DQ >= 0.65);

always (fall(b:dqs above vihdcmin)
-> historically[0:tDS] not fall(b:dq above vilacmax));



The above property is, as one can see, naturally expressed inSTL/PSL, but unfortu-
nately, it does not present the full reality. In fact, setup timetDS is not a constant value,
but rather varies during the simulation according to the slew rates (slopes) ofDQ and
DQS signals. For example, whenDQ andDQS fall more sharply, the requiredtDS
increases. Setup timetDS is defined as the sum of a (constant)base termtDS(base)
and a (variable)correction term∆tDS

tDS = tDS(base) + ∆tDS

The setup base termtDS(base) is equal to150ps for the single-ended DDR2-400.
The correction term∆tDS is a value that varies according to the slew rates ofDQ and
DQS, with the setup slew rate of a falling signal being defined as

sr =
VREF − VIL(AC)max

∆TF
(1)

where∆TF is the time that the signal spends betweenVREF (DC) andVIL(AC)max
. As

we can see, the falling setup slew ratesr of a signal can be deduced from∆TF .

DQS

DQ

∆TF

tDS

VDDQ

VIH(AC)min

VIH(DC)min

VREF (DC)

VIL(DC)max

VSS

VDDQ

VIH(AC)min

VIH(DC)min

VREF (DC)

VIL(DC)max

VSS

VIL(AC)max

VIL(AC)max

Fig. 2.DQ/DQS falling setup timetDS and the relation between slew rate and∆TF

In order to extract the setup correction term∆tDS from the actual slew rates ofDQ
andDQS (srDQ andsrDQS), we can use a specification table from [Jed06], partially
reproduced in Table 2. According to the JEDEC specification,∆tDS corresponding to
the slew rates not listed in Table 2 should be linearly interpolated. Consequently, we can
apply the following sequence of computations in order to determine the correct value
of tDS at any time

1. Measure∆TF , the time that the signal remains within the setup falling slew rate
region

2. Infer thesetup falling slew ratevalue from∆TF
3. Interpolate thecorrection termfrom the slew rate specification table



DQS Single-Ended Slew Rate tDS
2V/ns 1.5V/ns1V/ns 0.9V/ns

DQ
Single-Ended
Slew Rate
tDS

2V/ns 188 167 125
1.5V/ns 146 125 83 81

1V/ns 63 42 0 -2
0.9V/ns 31 -11 13

Table 2.Correction terms for setup time

4. Add the correction term to the base term in order to obtaintDS

To summarize,tDS is a value that varies during the simulation as a function of
slew rates ofDQ andDQS (tDS = f(srDQ, srDQS)). The problem is thatSTL/PSL

cannot capture parametrized time bounds and therefore we have to use approximation
in order to express a similar alignment property that still preserves some guarantees.
We can subdivide the domain of slew rates (sayS = [srmin, srmax]) into n regions
R1, . . . , Rn. For each pair(Ri, Rj) of DQ/DQS slew rate regions, we assign a sepa-
rate constant setup timetDSij . Instead of one property, we will haven × n properties
of the form:

– “wheneverDQS crosses theVIH(DC)min
threshold from above,DQ slew rate

srDQ is in Ri andDQS slew rate is inRj , the previous crossing ofVIL(AC)max
by

the signalDQ from above should precede it by at least a period of time oftDSij .”

The proper constant value fortDSij for a pair of slew rate regions(Ri, Rj) can
be chosen in two different manners. The first solution consists in computingtDSij

from the maximum correction term for theDQ andDQS slew rates that are in theRi

andRj regions, respectively. This corresponds to an over-approximation of the original
specification, and if this property is violated, we don’t know if it is a real failure or a
false alarm. On the other hand, the satisfaction of the over-approximated property im-
plies that the original property holds too. Conversely, thecomputation oftDSij from
the minimum correction term defined for the slew rates in the pair of regions(Ri, Rj)
yields to an under-approximation of the original property.If the new property is falsi-
fied, we know that it corresponds to a real violation, while ifit passes, we cannot say
whether we are indeed safe.

As an example, consider the highlighted range of Table 2, which we call the “top-
left” range, where the setup falling slew rates ofDQ and DQS are between1 and
2 V/ns. For the conservative approximation oftDS, with slew rates falling in that
range, we choose the worst-case∆tDS as the correction term, that is188ps. Hence,
the approximated falling setup timetDSTL for all DQ andDQS with falling slew
rates between1 and2V/ns would be equal totDSTL = 150 + 188 = 338ps.

In order to determine the falling slew rates ofDQ andDQS, we need to detect how
much time these signals remain in their falling slew region (betweenVREF (DC) and
VIL(AC)max

crossingVREF (DC) from above). We can detect when the signal is within
the falling slew region with the following properties



define b:dq in fsr :=
((a:DQ <= 0.9) and (a:DQ >= 0.65)) since (a:DQ >= 0.9)

define b:dqs in fsr :=
((a:DQS <= 0.9) and (a:DQS >= 0.65)) since (a:DQS >= 0.9)

which hold if the signal is in the falling slew region, as shown in Figure 3.

0.65

DQ

(DQ <= 0.9 and DQ >= 0.65)

(DQ <= 0.9 and DQ >= 0.65)
since (DQ > 0.9)

0.9 VREF (DC)

VIL(AC)max

∆TF

Fig. 3.Falling slew region and∆TF
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Fig. 4.Relation between the reference point and the corresponding∆TF of DQ andDQS

Note that according to equation (1),DQ andDQS have their slew rates in the range
between1 and2V/ns if their respective∆TF is between125 and250ps. Moreover, the



value oftDS is determined at the crossing ofVREF (DC) by DQS from above (point
ref in Figure 4) with respect to the previous falling setup slew rate ofDQ and the next
falling setup slew rate ofDQS, as shown in Figure 4. Hence, the falling slew rates of
DQ andDQS are in the range between1 and2V/ns if the following formulae hold

define b:dq slew rate in 1 2 := not b:dq in fsr since
(b:dq in fsr since[125:250] rise(b:dq in fsr));

define b:dqs slew rate in 1 2 := not b:dqs in fsr until
(b:dqs in fsr until[125:250] fall(b:dqs in fsr));

define b:top left region :=
b:dq slew rate in 1 2 and b:dqs slew rate in 1 2;

Finally, the main property for the falling setup time, provided thatDQ andDQS
falling slew rates are in the range between1 and2V/ns, is expressed as

define b:dqs above vihdcmin := (a:DQS >= 1.025);
define b:dqs above vilacmax := (a:DQ >= 0.65);

always ((fall(b:dqs above vihdcmin) and b:top left region)
-> historically[0:338] not fall(b:dq above vilacmax));

with similar properties that have to be written for each range of DQ andDQS slew
rates.

3.2 Jitter Property

An important class of DDR2 properties involves the jitter ofthe clock signals. The
differential clock is composed of two signals,CK andCKB and the clock periodtCK
is defined as the time elapsed between two consecutive crossings of a risingCK and a
falling CKB, as show in Figure 5. The average clock periodtCK(avg) is computed
over 200 consecutive clock periods. Finally, the differential clock accumulation error
overn periods is the difference betweenn actual periods andn average clock periods.
The acceptable accumulation error overn clock periods is defined in Figure 6 taken
from the DDR2 official specification document.

The purpose of this example is to express accumulation errorproperties usingSTL/PSL.
In order to be able to specify time accumulation error between n consecutive events,
we need a “counting” operator in the spirit of regular expressions. Consequently, for
the purpose of the case study we define an ad-hoc operatornext rise[n]I(phi).
Intuitively, this operator holds at timet, if and only if thenth consecutive rising edge
of phi happens within the intervalt′ ∈ t ⊕ I (see Figure 7). Formally, the semantics
of the operator is defined as follows

(ξ, t) |= next rise[n]I(phi) iff ∃t1, . . . tn st t ≤ t1 < . . . < tn and
tn ∈ t ⊕ I and

∧n

i=1(ξ, ti) |= rise(phi) and
∧n−1

i=1 ∀t′ ∈ (ti, ti+1) (ξ, t′) 6|= rise(phi)



CK

CKB

tCK

Fig. 5.Differential clock period

Fig. 6.Jitter accumulation error specification

Now, we can specify the property that defines the acceptable accumulation error overn
clock periods (we setn = 3 for this example).

We first need to detect clock periods and we use the property below in order to
achieve this goal. Therise operator is needed in order to consider only differential
crossings ofCK andCKB whenCK is rising andCKB falling, as shown in Figure 8.
We use the STL /PSL define construct to declare a Boolean signal (as a variable with
a name) that corresponds to a temporal property. The defined signal can be reused in
other properties as a variable.

define clk_period_start := rise (CK - CKB >= 0);

$1$

t t + b

1 2 n

t + a

Fig. 7.Next rise operator



CK

CKB

(CK-CKB) ≥ 0

rise((CK-CKB) ≥ 0)

Fig. 8.Detection of the rising edge of the differential clock period

The property inSTL/PSL that specifies the allowed accumulation error over 3 cycles
is expressed as follows

always (clk_period_start ->
next_rise[3][3*tCK(avg)-175:3*tCK(avg)+175]

clk_period_start);

The average clock periodtCK(avg) varies in time and inSTL/PSL we can cur-
rently define only fixed time bounds. In order to resolve this problem, we had to use
the existing measures of the minimum and maximum average differential clock pe-
riods for the given simulation traces, obtaining the valuestCK(avg)min = 1876ps
andtCK(avg)max = 1877ps. We used these values in order to determine fixed time
bounds in a conservative way[3 ∗ tCK(avg)max − 175 : [3 ∗ tCK(avg)min + 175] =
[5456 : 5803]. Finally, we could write the following property for the differential clock
accumulation error over 3 cycles.

always (clk_period_start ->
next_rise[3][5456:5803] clk_period_start);

4 Experimental Results

In this case study, we considered a single-ended DDR2-1066 memory interface, which
is not yet a JEDEC standard. Hence the exact specification parameters could not be
obtained for that particular version of the DDR2 memory, andwe used instead the
official specification parameters for the single-ended DDR2-400 presented in Section 3,
assuming that these parameters would be conservative enough. The simulation traces
(see Figure 9) contained about 180,000 samples for each signal.

For the case study evaluation, we used theAMT stand-alone tool.AMT takes as input
anSTL/PSL specification and analog/mixed signal traces. The tool translates the speci-
fication into an interpreted program (see [NM07,N08] for a presentation of translation
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algorithms) that checks whether the assertions are satisfied with respect to the simula-
tion waveforms. The architecture ofAMT is shown in Figure 10. The tool offers two
evaluation modes,offline, where the input traces are validated after the simulation,and
incremental, where the property evaluation can run in parallel with the simulation via
a communication through aTCP/IP connection and try to early determine the satisfac-
tion of the formula3. We used the offline mode for this case study because the DDR2
simulation traces were already available.

4.1 Methodological Evaluation

Property-based monitoring of analog and mixed-signal behaviors is a novel approach
and it is worth discussing some methodological aspects related to this case study. The
process started by investigating the validation methods that are currently used by ana-
log designers and understanding what are the actual difficulties that they encounter in
checking the correctness of their designs. The next step required to identify the type
of application whose validation is not fully covered by existing tools and that could
benefit from assertion-based monitoring techniques, whichled us to consider theDDR2
memory interface. With the help of analog designers we were able to study in detail dif-
ferent properties that are defined in the officialDDR2 specification, and consequently
understand how to translate them intoSTL/PSL assertions. This preparation process of
the case study is difficult to quantify although it clearly took orders of magnitude more
time than the actual writing and evaluation of the assertions that describeDDR2 prop-
erties. Despite the length of this pre-processing, it was a crucial step in understanding
relevance, strengths and weaknesses of the property-basedanalog monitoring frame-
work.

3 Relative time and memory requirements are compared and analyzed in [NM07]



Fig. 10.Architecture of STL /PSL Property Checkers

4.2 Experimental Evaluation

The translation of the alignment property into a set ofSTL/PSL assertions started by
splitting the main property into 4 different ranges, takingan over-approximatedtDS
value for each slew rate range. The evaluation of each property took about7 seconds.
Since some of the over-approximating properties were shownto be false, we decom-
posed them further through 3 iterations into a total of 7 properties before being able
to show that the simulation traces satisfy the specification. The properties were refined
manually and this proved to be a tedious task.

The jitter property was evaluated with the accumulation error specified over a vary-
ing number of clock periods. Table 4.2 shows the time required for the evaluation of the
property wit respect to the different numbers of clock periods considered.

n time (s)

1 1.8
2 1.8
5 1.9

10 2.1
20 2.6
50 4.8

Table 3.Evaluation time for the jitter property -n is the number of consecutive clock periods



5 Future Work and Conclusion

The DDR2 case study presents, to the best of our knowledge, a first attempt to apply
assertion-based verification framework to a realistic industrial example in a systematic
way. The importance of this case study lies in the fact that itexposes the relevance and
the level of maturity of assertion-based methodology in thecontext of analog validation.

The case study showed that an important class of non-trivialproperties describe
event-based timing relationships between analog signals,which can be in general nat-
urally expressed in a specification language such asSTL/PSL. Since assertion checking
remains a “lightweight” simulation-based validation technique, it fits well with the cur-
rent practice of analog designers. We believe that this methodology can provide an extra
set of useful checks on simulation traces, which are alreadygenerated by the design-
ers for their own purposes. Moreover, in the analog domain itoften takes orders of
magnitude longer to produce simulation traces than to checkassertions. Consequently,
the overhead induced by property monitors with respect to simulation time remains
low, while it can provide another level of confidence in the correct functioning of the
underlying design. In our opinion, the general idea of simulation-based checking of
properties to find potential bugs may be successfully adapted from digital to analog and
mixed-signal domain and integrated into the analog validation flow in a reasonably-near
future.

The DDR2 case study also revealed some weaknesses in the current state of analog
property checking, providing useful guidelines for further development and optimiza-
tion of this methodology. For instance, the timing relationship between analog signals
can be more complex than whatSTL/PSL (and MITL ) can express. This problem has
been exposed by both theDDR2 data vs. data strobe alignment and the jitter proper-
ties. For the former, we had to use approximate techniques inorder to show that the
alignment between data and data strobe signals was correct.Consequently, the result-
ing specification turned out to be quite complex to write. Thejitter property required
introducing a novel temporal operator that allows to reasonabout the relative timing dis-
tance betweenn consecutive events. Another difficulty is related to the fact thatSTL/PSL

is based on a temporal logic, a formalism that remains esoteric to analog designers4.
Consequently, we should consider identifying some common properties encountered
by analog designers, and use parameterized templates to “hide out” the temporal logic
details.

We present here some directions for future work based on different observations
made during the evaluation of the case study:

Parameterized time bounds: the DDR2 case study exposed that STL /PSL temporal
operators with constant time bounds may not be sufficient to describe some realistic
relations between analog signals. The temporal relations between “events” in input
signals require more flexibility, such as time bounds that are functions of parameters
that vary during the simulation.

4 It might be the case that the verification task will be carried out by digital designers at the
system integration phase, which will make the “cultural” problems less severe. However, this
observation opens the question of what properties are most beneficialto integration within the
property-based monitoring approach.



Tighter integration with simulators: property-based analog checking approach would
be more appealing to designers if the specification and monitoring process were em-
bedded in the standard design languages and simulators. In the digital world, the
assertions are often integrated into Verilog or VHDL code and are inserted at the
points where the property should be checked. A tighter integration of analog and
mixed signal assertions into the current design flow would consist of the following
steps:
1. Standardization of the language, a step that could convince EDA companies

to consider integrating assertion-based AMS validation methodology into their
tools, and would encourage designers to use such assertionsin their designs.
STL/PSL follows this direction as it extends the existing standardPSL con-
structs. Due to the importance of theSVA specification language in the digital
domain, we would also need to consider analog and mixed-signal extensions
of SVA.

2. Integration of assertions intoVERILOG-AMS and VHDL -AMS code. Design-
ers prefer inserting assertions at the points in their design which they want
to check, than having a separate tool rather used solely for specification and
evaluation of the properties. This tight integration wouldbring other benefits,
such as the possibility to use existingVERILOG/VHDL -AMS constructs within
the assertions (better detection of threshold crossing using @cross, express
richer properties using derivatives and integrals, etc.).Finally, property moni-
tors would be embedded into the simulation process, and could stop it when an
assertion is violated and hence save simulation time.

Automatic parameter extraction: the interaction with analog designers revealed that
the verification with respect to the existing specification is not the only interesting
question that can be asked about an analog design. In fact, the specification pa-
rameters such as time relationship between different signals are often not known in
advance. Such parameters are rather extracted from the simulation traces, and the
specification is completed only after simulating a model of the design. We would
like to express properties without specifying the time bounds, for examplealways
(rise(b:p) -> eventually![?] b:q), asking the following question:
given a set of simulation traces, what are the minimum and maximum time bounds,
if any, such that the the property is satisfied. In formal methods community, this
problem is known as model measuring, and has been consideredin the context of
parametric temporal logics in [AELP99].

Integration with test generation: an interesting direction of research would be to com-
bine the property-based analog checkers approach with techniques for automatic
generation of simulation traces, such as those studied in [ND07a,ND07b]. The
combined simulation generation and checking flow could makethe analog vali-
dation more automatic.

More comprehensive examples:the case study carried out in this paper pointed out
the classes of analog properties that are natural to expressin a specification lan-
guage likeSTL/PSL, but more importantly helped us to identify possible exten-
sions of the language that would increase its expressiveness and make the spec-
ification process easier to the analog designer. Applying the property-based vali-
dation methodology to other industrial analog and mixed-signal design examples



would provide additional useful information about the robustness of this approach
and guide our future work on extending the specification language.
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