

City, University of London Institutional Repository

Citation: Littlewood, B. & Rushby, J. (2011). Reasoning about the Reliability of Diverse

Two-Channel Systems in which One Channel is "Possibly Perfect". IEEE Transactions on
Software Engineering, 38(5), pp. 1178-1194. doi: 10.1109/TSE.2011.80

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1069/

Link to published version: https://doi.org/10.1109/TSE.2011.80

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Reasoning about the Reliability
Of Diverse Two-Channel Systems

In which One Channel is “Possibly Perfect”

Bev Littlewood
Centre for Software Reliability

City University, London EC1V 0HB, UK

John Rushby
Computer Science Laboratory

SRI International, Menlo Park CA 94025, USA

April 26, 2011

Abstract

This paper refines and extends an earlier one by the first author [17]. It con-
siders the problem of reasoning about the reliability of fault-tolerant systems with
two “channels” (i.e., components) of which one, A, because it is conventionally en-
gineered and presumed to contain faults, supports only a claim of reliability, while
the other, B, by virtue of extreme simplicity and extensive analysis, supports a
plausible claim of “perfection.”

We begin with the case where either channel can bring the system to a safe
state. The reasoning about system probability of failure on demand (pfd) is di-
vided into two steps. The first concerns aleatory uncertainty about (i) whether
channel A will fail on a randomly selected demand and (ii) whether channel B is
imperfect. It is shown that, conditional upon knowing pA (the probability that
A fails on a randomly selected demand) and pB (the probability that channel B
is imperfect), a conservative bound on the probability that the system fails on a
randomly selected demand is simply pA × pB . That is, there is conditional inde-
pendence between the events “A fails” and “B is imperfect.” The second step of
the reasoning involves epistemic uncertainty represented by assessors’ beliefs about
the distribution of (pA, pB) and it is here that dependence may arise. However, we
show that under quite plausible assumptions, a conservative bound on system pfd
can be constructed from point estimates for just three parameters. We discuss the
feasibility of establishing credible estimates for these parameters.

We extend our analysis from faults of omission to those of commission, and then
combine these to yield an analysis for monitored architectures of a kind proposed
for aircraft.

1 Background

This paper is about the assessment of dependability for fault tolerant software-based
systems that employ two design-diverse channels. This type of system architecture is
mainly used to provide protection against design faults in safety-critical applications.
The paper clarifies and greatly extends a note by one of the authors from a few years
ago on a specific instance of the topic [17].

The use of intellectual diversity to improve the dependability of processes is ubiqui-
tous in human activity: witness the old saws “Two heads are better than one” and “Belt
and braces” (or suspenders for North American readers). We all believe that having

a colleague review our work—“two heads”—is better than conducting the review our-
selves, and we generally consider it prudent to have a backup for complicated machines
or plans.

The use of diversity to build reliable systems is widespread in non-software-based
engineering. For example, in the nuclear industry it is common to have multi-channel
protection systems that are based on physically different process variables (e.g., temper-
ature, pressure, flow-rates). The simple idea underlying these applications of diversity
is that, whilst it is inevitable that humans make mistakes in designing and building sys-
tems, and that these mistakes can cause failures during operation, forcing the systems
to be built differently might make the failure processes of different versions be diverse
also. In other words, you might expect that even if channel A fails on a particular
demand, there is a good chance that channel B will not fail on that demand.

These ideas have been applied to software systems for nearly thirty years, but there
has been some controversy about the benefits that the approach brings. On the one
hand, there are reports of successful industrial applications of software design diver-
sity: for example, the safety-critical flight control systems of the Airbus fleets [34] have
now experienced massive operational exposure [6] with apparently no critical failure
where diversity has been employed.1 On the other hand, successive carefully conducted
experiments—see e.g., [9, 15]—have shown that multiple diverse channels cannot be
assumed to fail independently. Thus, if the two channels of a system each have a prob-
ability of failure on demand (pfd) of 10−3, it would be prime facie wrong to claim a pfd
of 10−6 for the system. In fact, there will generally be positive dependence of failures
between the two channels, and so the pfd will be greater than 10−6.

Some insight into these experimental results came from probabilistic models of diver-
sity [10,16]. This work gave careful attention to the different notions of “independence”
that had hitherto been treated somewhat informally, and showed why versions that
had been developed “independently” could not necessarily be expected to fail “indepen-
dently.” The key idea in this work is a notion of “difficulty” variation over the demand
space—informally, some demands are intrinsically more difficult to handle correctly
than others. Thus, if channel A fails on a randomly selected demand, this increases
the likelihood that the demand is a “difficult” one and hence increases the likelihood
that B also will fail. That is, the conditional probability of failure of B, given that A
has failed, is greater than its marginal probability of failure, pB, and the probability of
system failure will be greater than the product of the marginal probabilities pA × pB.

The picture that emerged from this evidence—industrial experience, experiments,
and theoretical modeling—has sometimes been taken to undermine claims for the ef-
ficacy of software diversity. Whilst the industrial evidence is positive, it inevitably
emerges only after years of operating experience, and even then does not easily allow
quantitative claims for achieved reliability. The experimental and modeling evidence,
on the other hand, has been taken to be negative.

In fact, this negative view seems somewhat unfair. Although the experiments and
models show that assumptions of independence of failures cannot be trusted, this does
not mean that there cannot be useful benefits to be gained from design diversity. Ruling

1An accident involving an A330 on 7 October 2008 near Learmonth, Australia, was due to a poor
algorithm, implemented in software, for spike rejection in angle-of-attack data [2]; the software has since
been revised. This software does not have a diverse backup, so its failure does not vitiate our point.
However, it does highlight that sensor processing can be a single point of failure in otherwise diverse
implementations; we will return to this point later.

1

out independence means that we cannot simply multiply the pfds of the separate chan-
nels to obtain the system pfd, but there might still be considerable reliability benefits.
The modeling results of Littlewood and Miller [16] actually show that there will be ben-
efits under quite plausible assumptions, but they do not help quantify these benefits for
particular instances; the experiments of Knight and Leveson [14] show that the benefits
can be considerable on average, but again their results do not help to assess a particular
system’s reliability.

The position for several years, then, has been this: there is ample evidence that
design diversity can “work,” in some average sense, in delivering improved reliability, but
there is very little evidence as to how much improvement it delivers even on average,2

and the important problem of how to estimate the reliability of a particular design-
diverse system remains very difficult.

This paper concerns this last problem, and it begins with a rather special class of
architectures that appear to bring a simplification to the assessment problem. This
work was prompted by one author’s involvement in the early 1990s with the difficulties
of assessing the reliability of the protection system of the UK’s Sizewell B nuclear plant.
This system comprises the Primary Protection System (PPS), which is software-based,
and the Secondary Protection System (SPS), which is hard-wired, in a “one-out-of-two”
(sometimes written 1oo2) configuration—that is, if either of the systems requests it, the
reactor “trips” and enters a safe state.

The PPS provides quite extensive and desirable functionality, over and above that
required for a simple reactor trip; for example, it has extensive built-in hardware self-
testing and redundancy management features to maximize its availability. The result is
that, for a safety-critical system, it is quite complex with about 100,000 lines of code.
For this reason it was not thought plausible to make claims for absolute correctness of
the software in the PPS; instead, it was required to have a pfd no worse than 10−3.

The SPS, on the other hand, has much more restricted functionality, and as a conse-
quence is much simpler (and does not depend upon software for its correct operation).
Because of this simplicity of design, it might have been possible to claim that the SPS
is free of design faults, and thus could be deemed free of failures in operation from such
causes.3 Of course, regulators might have justifiable skepticism when faced with such a
claim of “perfection”: they might be prepared to accept a high confidence in perfection,
given extensive suitable supporting evidence, but not accept certainty. It might there-
fore be plausible to contemplate attaching a probability to the claim of perfection for
the SPS and then to combine this in some way with the reliability claimed for the PPS
to yield a quantifiable claim for the overall system. This is the key idea in the work
reported here; we think it is new.

2This notion of “on average” efficacy is similar to that used to support claims for other software engi-
neering processes. We know that certain software engineering processes—e.g., sound static analysis—can
completely eliminate certain fault classes, and that they and other methods such as various kinds of
testing are effective in improving the resulting reliability of the systems to which they are applied [18].
But we usually know very little about how much they deliver even on average, and generally nothing at
all about what contribution they make to a particular system’s quality (because the particular can be
very different from the average). This means that knowledge about the software engineering processes
used to build a system is of limited use in estimating its operational reliability.

3Of course, the SPS could fail as a result of hardware component failures—as could the PPS. But
there are good reasons to believe that such contributions to unreliability are better understood and are
small compared to those arising from design faults. For simplicity here and later in this paper we shall
ignore hardware failures, but it is easy to extend the modeling to include them.

2

Asymmetric fault tolerant architectures (i.e., those in which one channel is claimed
to be reliable and the other is possibly perfect) are intuitively plausible for other safety-
critical systems in addition to nuclear shutdown. For example, airplanes sometimes
employ simple “monitors” that check the operation of complex subsystems and trigger
higher-level fault recovery when they detect problems, while some heart pacemakers
and defibrillators have a purely hardware “safety core” that provides backup to a more
complex firmware-driven primary system. Whilst these approaches are recognized as
attractive ways for achieving reliability and safety, it is less widely appreciated that the
asymmetry of the architecture can also aid in assuring that the system is sufficiently
reliable (or safe), if we can exploit the possibility of perfection for the second channel.

In Section 2 of the paper this idea will be examined in some detail. For clarity,
the account will be conducted in terms of a 1oo2 demand-based system, such as the
Sizewell protection system, but (as seems likely now, even for these nuclear systems)
both channels will be assumed to be software-based.

A 1oo2 architecture reduces the likelihood of failures of omission, but may raise those
of commission (i.e., uncommanded activations). Section 3 considers these failures of
commission, and Section 4 combines the previous results and applies them to “monitored
architectures” in which the behavior of a complex operational channel is monitored by
a simpler channel that can trigger higher-level fault recovery when safety properties
are violated. Architectures of this kind are among those recommended for commercial
airplanes [40]. Section 5 presents our conclusions.

2 Reasoning About a One-Out-Of-Two System with a
Possibly Perfect Channel

The first part of the reasoning here is similar to that used in the earlier paper [17]. The
main novelty is that the present paper establishes conditional independence of failure
of one channel and imperfection of the other4 and, in the second part of this section,
introduces a proper modeling of the epistemic uncertainty about the parameters of
the original work. In giving presentations of this work, we have found that some are
surprised by, and others are skeptical of our results; we attempt to allay concern by
presenting our arguments in some detail.

We begin by outlining our notion of failure; this is described in more detail in Section
2.3 where we examine the estimation of model parameters, but it is useful to narrow
the interpretation of the term before we proceed.

Our context is a critical system where the events that constitute a critical failure
are defined by regulation (e.g., “inability to continue safe flight and landing” [11]) or
as the top-level claims of an assurance or safety case [5, 13]. Through design iterations
interleaved with hazard analysis, fault-tree analysis, and other systems engineering pro-
cesses, we arrive at a level of design that identifies a subsystem to be implemented
as a 1oo2 architecture. The process of system decomposition and safety analysis will
have identified the critical properties of this subsystem, and will have allocated a reli-
ability requirement to it. Our focus is on this subsystem and in our analysis we take

4Two events X and Y are conditionally independent given some third event Z when
P (X and Y |Z) = P (X |Z) × P (Y |Z); we say the independence of X and Y is conditional on Z.
Z may be the event that some model parameter takes a known value. Unconditional independence is
P (X and Y) = P (X)× P (Y) and is not, in general, implied by conditional independence.

3

its critical properties (whose violations constitute its failures) and its reliability goal
as given, but we assume that these have been chosen appropriately for its rôle in the
overall system. This generally means that the critical properties are directly derived
from the system safety case, rather than stated in terms of the detailed requirements
for the subsystem—because the latter are often wrong (we will see an example of this in
Section 4). In our aleatory analysis, we assume that the critical properties are “correct”
so that their violations correspond exactly to (all and only) the failures of the system.
Of course, it may be that the critical properties actually documented in the safety case
are not “correct” and some event that is apprehended after the fact as a failure does
not violate the documented properties. There is therefore epistemic uncertainty about
the correctness of the critical properties, and we will account for this, but we reiterate
that in the aleatory analysis, the critical properties are correct, or “what they should
have been,” and failures are violations of these properties.

We can now focus on our object of study, which is a 1oo2 demand-based (sub)system
comprising two channels, A and B. Channel A is assumed to have sufficient function-
ality, and thus complexity, for it to be infeasible to claim it to be fault-free. We thus
have to assume that in operation it will eventually fail, and the criterion of its accept-
ability (when judged alone) will be that it fails infrequently—that is, its probability of
failure on a randomly selected demand, pfdA, is acceptably small. Failure here refers
to violation of the critical properties allocated to the 1oo2 subsystem in the system
decomposition described earlier. The kinds of evidence that could be used by assessors
to gain confidence that pfdA is small include: seeing lots of operational testing without
failure, high quality of developers and development process, no faults found in extensive
static analysis, etc.

Channel B, on the other hand, has been kept very simple (its functionality is limited
and its implementation straightforward) and thus is open to a claim of “perfection.”
This word has been chosen deliberately for its convenience, but in the knowledge that
it comes with extensive baggage. In this context it means just that this channel of
software will not fail however much operational exposure it receives; it is “fault-free” if
we assume that failures can and will occur if and only if faults are present. “Perfection”
is preferred to “correctness” because the latter is judged with respect to requirements
that are often quite detailed, whereas we reserve “perfection” for just the absence of
the critical failures. There is a possibility that this channel is not perfect, and so we
speak of it as “possibly perfect.” We use “possibly” perfect rather than other adjectives
such as “plausibly” perfect because we will wish to refine our assessment as evidence
becomes available: thus we begin from the neutral stance that the channel’s perfection is
“possible,” and may revise that to “plausible,” or even “likely,” as supporting evidence
becomes available. In our formal treatment, we use the neutral term “possibly” perfect
and employ probability to express the “degree” of perfection (or, rather, imperfection).

In particular, we will henceforth use pnpB to denote the probability that the channel
B is not perfect. Evidence allowing assessors to have confidence that the probability
pnpB is small could include: a formal specification and high confidence that this really
does accurately capture the critical properties, formal proof that the software imple-
mentation is correct with respect to this specification, and absence of failures in test,
etc.

We will often speak of A and B as “software” because it is expected that the bulk
of their implementation will be realized in this way, but it is important to note that

4

our assessments of reliability and perfection refer to the totality of their design and
implementation, and flaws therein, not just the parts that are explicitly software. It
is also important that the 1oo2 system is pared down to just the two channels, with
a minimum of coordinating mechanism, because we wish to derive the reliability of
the system from properties of the channels, and this will be invalid if the subsystem
contains a lot of additional mechanism. (We do account for the coordinating mechanism
in Section 4.)

There are two kinds of uncertainty involved in reasoning about the reliability of
the system. The first is aleatory uncertainty, or “uncertainty in the world,” the second
is epistemic uncertainty, or “uncertainty about the world” [28]. Aleatory uncertainty
can be thought of as “natural” uncertainty that is irreducible. For example, if we were
to toss a coin we would not be able to predict with certainty whether it would fall as
“heads” or as “tails.” This uncertainty cannot be eliminated, and any predictions about
future tosses of the coin can only be expressed as probabilities. This is true even when
we know the probability of heads, which we denote pH , on a single toss of the coin,
such as when the coin is “fair” and pH = 0.5. Real coins, of course, may not be fair,
so there will be uncertainty about the value of the parameter pH . This is epistemic
uncertainty, and it is reducible: in the case of the coin, we could toss it very many
times and observe the frequency of heads in the sequence of tosses. This frequency is
an estimate of pH and the estimate gets closer to the true value of pH as the number of
observed tosses increases (there are limit theorems in probability that detail the nature
of this convergence), so the uncertainty reduces.

In much scientific modeling, the aleatory uncertainty is captured conditionally in a
model with unknown parameters, and the epistemic uncertainty centers upon the values
of these parameters—as in the simple example of coin tossing.5 For our 1oo2 system
the two probabilities, pfdA and pnpB, are parameters that capture two types of aleatory
uncertainty. For a randomly selected demand, Channel A either does, or does not, fail;
pfdA is just the chance that it does fail. As in the case of a coin toss, this chance can be
given a classical frequentist interpretation, as the proportion of failures in a hypothetical
infinitely large sequence of independently selected demands.

Similarly, Channel B either is, or is not, perfect; pnpB is just the chance that it is
not perfect. It is a little harder to give a frequentist “in the world” interpretation to
this probability. One approach, which follows the spirit of [10, 16], is to think of the
program for B as a random selection from the set of all programs, with the probability
distribution of the selection being determined by the problem to be solved and the
character of the software development and assurance processes employed. Each program
can be assigned an indicator variable that takes the value 0 if the program is perfect for
B’s problem and 1 if it is not; pnpB is then the expected value of the indicator variable
over the selection distribution. Just as the nature of the problem and the character
of the software development and assurance processes determine the aleatory selection
distribution, so information about these will later influence the assessors’ judgment
about the epistemic uncertainty concerning pnpB.

A result that we shall prove in Section 2.1 is that these two parameters are suffi-
cient to describe the uncertainty about the system probability of failure. Specifically,
conditional on knowing the actual values pA and pB of pfdA and pnpB, respectively,

5The situation can be more complicated than this, of course. There may be uncertainty about which
of several models is “correct,” and this uncertainty may not be captured by a parametric model.

5

the system probability of failure is no worse than pA × pB. The epistemic uncertainty
here solely concerns the values of pA and pB: assessors will not know these values with
certainty. Their beliefs about these values—and here we adopt a Bayesian subjective
interpretation of probabilities—will be represented by a joint distribution

F (pA, pB) = P (pfdA < pA, pnpB < pB) (1)

and their (conservative) probability for system failure will then be∫
0≤pA≤1
0≤pB≤1

pA × pB dF (pA, pB). (2)

Generally, assessors’ beliefs about (pA, pB) will not be independent: that is, the
bivariate distribution (1) does not factorize into a product of the marginal distributions
of the random variables pfdA and pnpB and so it is not straightforward to derive a
numerical value for (2). This is an important issue which is examined in Section 2.2

Our reasoning about the reliability of the system now proceeds in two stages, the
first involving the aleatory uncertainty, the second the epistemic uncertainty.

2.1 Aleatory Uncertainty

We shall assume in what follows that our interest centers upon the system reliability
expressed as the probability of its failure upon a (operationally) randomly selected
demand. Note that other things might be of interest, for instance the probability of
surviving a specified number of demands (e.g., the number expected to be encountered
during a specific mission, or during the lifetime of the system), but we shall not consider
these here.

For aleatory uncertainty we have, by the formula for total probability, the following
conditional pfd.

P (system fails on randomly selected demand | pfdA = pA, pnpB = pB) (3)
= P (system fails |A fails, B imperfect, pfdA = pA, pnpB = pB)

× P (A fails, B imperfect | pfdA = pA, pnpB = pB)
+ P (system fails |A succeeds, B imperfect, pfdA = pA, pnpB = pB)
× P (A succeeds, B imperfect | pfdA = pA, pnpB = pB)

+ P (system fails |A fails, B perfect, pfdA = pA, pnpB = pB)
× P (A fails, B perfect | pfdA = pA, pnpB = pB)

+ P (system fails |A succeeds, B perfect, pfdA = pA, pnpB = pB)
× P (A succeeds, B perfect | pfdA = pA, pnpB = pB).

The last three terms of the right hand side of (3) are zero: the system does not fail
if either A succeeds or B is perfect. We shall assume conservatively that if B is not
perfect, then it will fail with certainty whenever A fails, as in the original version of this
work [17]: B brings no benefit if it is not perfect. This (very) conservative assumption
is important in the following reasoning where, in the first term on the right hand side
of (3), the first factor in the product is replaced by 1, to yield:

6

P (system fails on randomly selected demand | pfdA = pA, pnpB = pB)
≤ P (A fails, B imperfect | pfdA = pA, pnpB = pB)
= P (A fails |B imperfect, pfdA = pA, pnpB = pB) (4)

× P (B imperfect | pfdA = pA, pnpB = pB).

Now, the fact that B is imperfect tells us nothing about whether or not A will fail
on this demand. So we have

P (A fails |B imperfect, pfdA = pA, pnpB = pB) (5)
= P (A fails | pfdA = pA, pnpB = pB)
= P (A fails | pfdA = pA)

and so, substituting (5) in (4),

P (system fails on randomly selected demand | pfdA = pA, pnpB = pB)
≤ P (A fails |B imperfect, pfdA = pA, pnpB = pB)

× P (B imperfect | pfdA = pA, pnpB = pB)
= P (A fails | pfdA = pA)× P (B imperfect | pnpB = pB)
= pA × pB. (6)

This argument follows that in [17] quite closely; the difference is that here we have
shown that there is conditional independence between the events “A fails” and “B
imperfect” when pfdA and pnpB are known.

The importance of this independence result can be seen by contrasting the situation
here with the more usual 1oo2 system, where both channels are sufficiently complex that
neither is open to a believable claim of perfection. In the latter case, we cannot apply
the reasoning in step (5) and so it is not possible to claim independence of failures in the
two channels, even conditionally given pfdA and pfdB (in an obvious notation). Instead,
even at this stage of reasoning where we are concerned only with aleatory uncertainty,
we need to deal with dependence of failures. Thus, it is shown in [16], for example, that
the conditional probability of such a system failing on a randomly selected demand is

pfdA × pfdB + Cov(θA, θB)

where θA, θB are the difficulty function random variables for the two channels. So as-
sessors’ beliefs about pfdA and pfdB are not alone sufficient for them to reason about
the reliability of the system: they also need to know the covariance of the difficulty
functions. And this is before we consider the problem of epistemic uncertainty con-
cerning parameters such as pfdA, pfdB, and Cov(θA, θB), which would involve further
dependencies.

In contrast, (4–6) above show that knowledge of the values of pfdA and pnpB are
sufficient for a complete description of aleatory uncertainty via the (conservative) con-
ditional independence expression for the system pfd, (6).

7

Lest it seem that a particular choice was needed at equation (4), it is worth observing
that this could equally have been written as

P (system fails on randomly selected demand | pfdA = pA, pnpB = pB)
≤ P (A fails, B imperfect | pfdA = pA, pnpB = pB)
= P (B imperfect |A fails, pfdA = pA, pnpB = pB) (7)

× P (A fails | pfdA = pA, pnpB = pB),

where the conditioning is reversed in (7).
Here, the failure of A on this demand tells us nothing about the imperfection of B,

since this is a global property with known probability pB, and so we have

P (system fails on randomly selected demand | pfdA = pA, pnpB = pB)
≤ P (B imperfect |A fails, pfdA = pA, pnpB = pB)

× P (A fails | pfdA = pA, pnpB = pB)
= P (B imperfect | pnpB = pB)× P (A fails | pfdA = pA)
= pB × pA

as before.
The attributes of “perfection” that enable the reasoning employed at (4) and (7) are:

first, that its satisfaction guarantees its channel does not fail on a given demand (this
is needed to eliminate the last two terms in (3)); second, that it is a global property
(i.e., independent of this demand, which is needed in (4) and (7)); and third, that it is
aleatory (i.e., its uncertainty is irreducible).

Other global properties, such as “has a valid proof of correctness” (whose negation
would be “has a flawed proof of correctness”), appear plausible but are not aleatory.
Proof of correctness is relative to a specification, and it is possible this specification is
flawed. Thus, absence of failure on a given demand (needed for the first point above)
is contingent on correctness of the specification, which is an additional parameter and
a reducible source of uncertainty.

Hence “perfection” as we have defined it is precisely the property required for this
derivation. Properties such as “has a valid proof of correctness” are important in as-
signing an epistemic value to the probability of perfection and are discussed in Section
2.3. First, though, we examine the basic problem of epistemic uncertainty about the
model parameters.

2.2 Epistemic Uncertainty and the Structure of F (pA, pB)

The previous section has derived a conservative bound for the probability of failure
on demand for a 1oo2 system, conditional on knowledge of the values of the random
variables pfdA and pnpB. In practice, of course, pfdA and pnpB will not be known
with certainty, and this is where the epistemic uncertainty comes in, via the assessors’
posterior beliefs represented by the distribution, (1). “Posterior” here means that this
distribution takes account of all evidence the assessors have acquired about the unknown
parameters.

Practical interest centers upon the unconditional probability of system failure on a
randomly selected demand. By the formula for total probability, and using the Riemann-

8

Stieltjes integral, this is

P (system fails on randomly selected demand)

=
∫

0≤pA≤1
0≤pB≤1

P (system fails on randomly selected demand | pfdA = pA, pnpB = pB) dF (pA, pB)

so, substituting (6),

≤
∫

0≤pA≤1
0≤pB≤1

pA × pB dF (pA, pB), (8)

which provides the formal derivation for (2).
If the assessors’ beliefs about pfdA and pnpB are independent, so that F (pA, pB)

factorizes as F (pA)× F (pB), then (8) becomes∫
0≤pA≤1

pA dF (pA)×
∫

0≤pB≤1

pB dF (pB) (9)

= P (A fails)× P (B imperfect)
= PA × PB.

That is, the bound on the probability of system failure is just the product of the as-
sessors’ posterior probabilities of the events “A fails” and “B imperfect” (i.e., the means
of the distributions for pfdA and pnpB, respectively, taking account of any experimental
and analytical evidence that may be available). In this case the reliability assessment
is particularly simple—it involves only the assessment of two parameters.

However, if there is positive association between assessors’ beliefs about pfdA and
pnpB, then (8) will be larger than (9) and reliability assessment cannot be reduced to
the simple product of two parameters. Readers may think that this is the situation that
will apply in most real-life cases.

The two-stage reasoning—aleatory uncertainty followed by epistemic uncertainty—
makes clear the source of any dependence here: it can arise only from the epistemic
uncertainty, via the posterior distribution F (pA, pB). Even though the events “A fails”
and “B is imperfect” are conditionally independent at the aleatory level, assessors’
beliefs about the probabilities of these events may not be independent. For example, if
assessors see A fail in testing, they may wonder if the developers have understood the
requirements correctly, and this may affect their estimate of the probable perfection of
B; this does not happen at the aleatory level, where the probabilities of failure and of
imperfection are parameters to the model.

Assessors whose beliefs about pfdA and pnpB are not independent are faced with
the problem of expressing their beliefs as a complete bivariate distribution. Elicitation
of experts’ subjective probabilities is an active research area in Bayesian statistics, and
there have been considerable advances in recent years in techniques and tools: see [29]
for a good introduction to this work. We shall not consider this general elicitation
problem further here, since for a particular system the elicitation process will depend
upon the exact details of the application. Instead, we propose a simplification that will
ease this elicitation task in general. Our approach derives from a conservative treatment
of common-cause faults in safety cases and is described in the following section.

9

2.3 Estimation of Model Parameters

One reason—indeed, we will argue, the only sound reason—that assessors’ beliefs about
the parameters pA and pB might not be independent is concern about higher-level faults
that could be common to both channels. Common-cause faults are a major issue in the
safety assessment of any multi-channel system, so we begin by describing the general
context of safety assessment, and the treatment of common-cause faults. We then show
how epistemic assessment of the parameters for a 1oo2 system can be performed within
this context.

The decision to deploy a safety-critical or other kind of critical system is based
on careful assessment of risks, estimating both the likelihood of undesired events, and
their potential costs and consequences in terms of environmental harm, loss of life,
erosion of national security, loss of commercial confidence or reputation, and so on. The
assessment is highly specific to the system concerned and its context, and nowadays
is often grounded in an argument-based safety or assurance “case” (see, for example
[3, 30, 37, 43, 45]) and similar argumentation implicitly underlies the guidelines (e.g.,
[31, 32, 40]) developed for standards-based certfication processes. Such a case begins
with claims that enumerate the undesired loss events and the tolerable failure rate
or likelihood associated with them: for example, “as low as reasonably practicable”
(ALARP) [44], or “so unlikely that they are not anticipated to occur during the entire
operational life of all airplanes of one type” [11, paragraph 9.e(3)]. Evidence is collected
about the system, its design, and its processes of development, and then an argument
is constructed to justify satisfaction of the claims, based on the evidence. This process
may recurse through subsystems, with substantiated claims about a subsystem being
used as evidence in a parent case.

The upper levels of a safety case will often decompose into subcases based on enu-
meration of hazards, or failure modes, or architectural components. In the case of
multi-channel systems, there will be upper-level analysis of the mechanism (if any) that
coordinates them (e.g., a voter or arbiter), and of causes or modes of failure that may be
common to all channels. Common causes may include physical faults in shared compo-
nents such as sensors or in mechanisms that coordinate separate channels, or conceptual
faults in the understanding of assumptions or requirements. Much engineering expertise
and many associated analytical techniques and tools are available for identifying shared
or common mechanisms: for example, common-cause analysis, common-mode analysis,
and zonal safety analysis.

By these and other means, arguments and supporting evidence for the correctness
of top-level safety requirements and for the absence of common-cause faults in assump-
tions, mechanisms, and failure modes can be developed in great detail and subjected to
substantial analysis and empirical investigation. This is necessary because flaws in these
elements could dominate overall system safety and also its probabilistic assessment, no
matter how this is performed. We may then propose that assessors’ subjective probabil-
ity for system failure on a randomly selected demand will take the form C+(1−C)×D,
where C is due to residual doubts about the top-level issues of system safety require-
ments and hazards common to all channels, and D is due to the specific architecture of
the system and its constituent channels.

The probability C must be small if the system is to be fit for a critical purpose,
but it may not be realistic or useful to strive to make it arbitrarily small. In the UK,
for example, it is common for assessors to impose a claim limit of around 10−4 or

10

10−5 for the probabilistic assessment of any system [42]; in UK civil nuclear systems,
there is a specific recommended limit of 10−5 for probabilistic assessment of common-
cause faults [43, paragraph 172]. These limits can be interpreted as a judgement that
assessors will always retain residual doubts about top-level issues and that claims for
these, expressed here as C, should be taken only so far, and no further; they ensure that
this quantity is sufficiently conservative that it really can absorb the hazards common
to all channels and thus allow assessors’ beliefs about the probabilities for the separate
channels to be treated as independent. In other words, claim limits prevent the value
of C being pared away to the point where it threatens this independence.

With this idea in mind, we return to the problem of estimating (8) when assessors’
beliefs about pfdA and pnpB are not independent. Consider the ways in which depen-
dency might arise. There seem to be only two possibilities: one is concern about the
intrinsic difficulty of some demands, the other is common-cause faults. We consider
these in turn.

Assessors might observe in testing that the A channel fails more often on some classes
of demands than others. But should this affect their beliefs about the probability of
perfection of the B channel—that is their beliefs about the existence of demands for
which B fails? We argue not; failures of the A channel are “per demand” events, whereas
perfection of the B channel is a very different kind of “global” event. For this reason,
assurance techniques that can contribute to claims of perfection, such as mechanically
checked proofs of correctness, are global also, and are “uniformly credible” across all
cases: a (mechanically checked) proof is a proof. Failures of A may indeed influence
assessment of the failure behavior of B given imperfection of B, but that is not the event
under consideration (furthermore, our aleatory analysis already makes the conservative
assumption that if the B channel is imperfect, then it will fail whenever the A channel
does).

Dually, assessors might observe that some parts of the safety case for the possibly
perfect channel B are harder (i.e., require more work) than others. But should this
affect their confidence in corresponding parts of the reliable channel A and their beliefs
about its probability of failure? Again, we argue not: it is accepted that the reliable
channel fails with some probability, and we have evidence about that probability (e.g.,
by statistically valid random testing).

Thus, unlike the case of two reliable channels, we do not think that intrinsic difficulty
of some demands should be a cause for dependency in beliefs about pfdA and pnpB:
failure of the A channel and imperfection of the B channel are such different events, and
the assurance methods that provide evidence for estimation of their probabilities are
of such different kinds, that dependency should not arise from concern about difficult
demands.

Rather, dependency in beliefs must have its root cause in some higher level that is
common to both channels, such as shared mechanism, or the interpretation of require-
ments (so that one way in which observed failures of A can affect belief in the perfection
of B is by raising doubts about the top level requirements). One way forward, therefore,
building on the treatment described earlier for common-cause faults, is for the asses-
sors to place some probability mass, say C, at the point (1, 1) in the (pA, pB)-plane
to represent their subjective probability that there are such common faults. The effect
of this is that the assessors believe that if there are such faults, then A will fail with
certainty (pA = 1), B will be imperfect with certainty (pB = 1), and hence pA×pB = 1.

11

Hence, there is a probability C that the system is certain to fail on a randomly selected
demand (since we assume that if B is imperfect, it always fails when A does). This is
clearly conservative, and may be very much so.

The assessors then have the following conservative unconditional probability of fail-
ure of the system on a randomly selected demand (again by a version of the formula for
total probability).

P (system fails on randomly selected demand)

≤
∫

0≤pA≤1
0≤pB≤1

pA × pB dF (pA, pB)

= C ×
∫
pA × pB dF (pA, pB | pA = pB = 1)

+ (1− C)×
∫

0≤pA<1
0≤pB<1

pA × pB dF (pA, pB | pA 6= 1, pB 6= 1)

= C + (1− C)×
∫

0≤pA<1
0≤pB<1

pA × pB dF (pA, pB). (10)

If the assessors believe that all dependence between their beliefs about the model
parameters has been captured conservatively in C, the conditional distribution in the
second term of (10) now factorizes, and we have:

P (system fails on randomly selected demand)

≤ C + (1− C)×
∫

0≤pA<1

pA dF (pA)×
∫

0≤pB<1

pB dF (pB)

= C + (1− C)× P ∗A × P ∗B (11)

where P ∗A and P ∗B are the means of the posterior distributions representing the assessors’
beliefs about the two parameters, each conditional on the parameter not being equal to
1 (i.e., A not certain to fail, B not certain to be imperfect).

If C is small (as it must be if this approach is to be useful), we can replace the factor
(1−C) in (11) by 1, and we can substitute PA, the unconditional probability of failure
of the A channel, for P ∗A, and PB, the unconditional probability of imperfection of the
B channel, for P ∗B, to yield the conservative approximation

C + PA × PB. (12)

Assessors may find it easier to formulate their beliefs about these unconditional proba-
bilities. The same simplification can be applied to similar formulas developed in later
sections and the resulting approximations will all be conservative.

We now consider and illustrate numeric values that might be assigned to the pa-
rameters that appear in Formula (11) or its simplification (12). We use the word “esti-
mation” for the process by which assessors expresses their “expert beliefs” in terms of
these values, but we do not mean to imply that the numbers have aleatoric, in-the-world
meaning, of course. Rather, they are representations of the assessors’ beliefs about the
world.

12

Bearing in mind that a 1oo2 system has little or no mechanism shared between its
two channels and that their common top-level requirements are not engineering details
but the critical safety requirements (around which the entire safety case is constructed),
we believe that very small values (e.g., 10−7) could plausibly be assessed for C, the
probability of common-cause failure. However, this value is also used to absorb any lack
of independence in beliefs about the parameters of the two channels (which, we have
argued, must derive from common-cause concerns) so, borrowing from the idea of claim
limits, we suggest that 10−5 could be a plausible and conservative value to use for C. It
then remains to consider the processes for obtaining, or eliciting, P ∗A and P ∗B, or their
unconditional variants PA and PB.

The first of these is the assessors’ probability of failure on demand for the reliable
channel. For values down to about 10−4, it is feasible to provide strong and credible
evidence by statistically valid random testing [7, 22]. By statistically valid here we
mean that the test case selection probabilities are exactly the same as those that are
encountered in real operation, and that the oracle (used to determine whether a demand
has been executed correctly or not) is sound. See [25] for an example of such testing
used to assess the reliability of a reactor protection system. In the event that there
is doubt about the representativeness of the test case selection, or of the correctness
of the oracle, then this epistemic uncertainty must be incorporated into the assessors’
probability P ∗A. Expert assessors might take account of other kinds of evidence as well
as that obtained from testing in arriving at their P ∗A. We shall not discuss this issue in
detail here, but note that Bayesian Belief Nets (BBNs) are one example of a formalism
for handling such disparate sources of evidence and uncertainty (see, for example, [23]).

For the possibly perfect channel, the assessors must express their subjective probabil-
ity of its imperfection: that is, their degree of belief that there is at least one demand on
which it fails. A rational process for developing this probability uses Bayesian methods
to modify a prior belief through the acquisition of evidence to yield a refined posterior
belief (see [22, sidebar] for a brief description of this process). The strongest evidence
will come from testing and scrutiny and analysis of the design and implementation of the
channel concerned. As the claim is “perfection,” the analysis will likely include exten-
sive “Verification and Validation” (V&V) of the kinds recommended in guidelines such
as those of MISRA [26] for cars, or DO-178B [31] for airplanes. More forward-looking
guidelines such as the forthcoming DO-178C update to DO-178B may also countenance
formal verification. Notice that if testing reveals a failure, or if formal verification or
other analysis reveals a fault, then the claim of perfection is destroyed and the channel
must be replaced in its entirety.6 In the following, therefore, we consider only the case
in which testing and verification reveal no failures.

Formal verification and other analyses can be performed to various degrees of thor-
oughness: they may examine just the abstract design of the software and its algorithms,
or detailed models developed in a model-based design framework, or the executable
code, or all of these. In addition, the formalizations and analyses may extend to the non-
software elements that are part of the channel—for example, its sensors and actuators,
the physical processes that they monitor and control, and its environment—possibly
including human operators. The properties verified may range from simple absence of

6We are speaking here of the testing and verification performed for assurance and evaluation; discov-
ery and repair of failures and faults in earlier stages of development may be acceptable in some lifecycle
processes.

13

runtime anomalies, as may be guaranteed by static analysis, to full functional correct-
ness with respect to a detailed requirements specification. The subjective probability of
imperfection will obviously be influenced by consideration of how comprehensive is the
analysis, and the extent of what has not been formally verified or otherwise examined
in comparable detail; it will also be tempered by consideration of the complexity of the
design and its implementation, and possibly by residual concerns about the soundness
of the formalization, the analyses, and the tools employed. The significance and rela-
tive weights of these concerns in assessing a probability of imperfection are considered
in [36], where is it suggested that values for P ∗B in the range 10−2–10−4 are credible.

In summary, we believe that it is plausible and conservative that well-designed and
highly assured 1oo2 systems can support claims such as 10−5 for C, the probability
of failure due to causes common to both channels, 10−3 for P ∗A, the probability of
failure by the reliable channel, and 10−2 for P ∗B, the probability of imperfection of
the possibly perfect channel. Substituting these values in (11) we obtain 10−5 + (1 −
10−5)×10−3×10−2 and thereby substantiate a conservative assessment of about 2×10−5

for the probability of failure on demand of the overall system. This assessment and its
constituent quantities are comparable to those that have been employed for real systems,
but we believe this is the first account that provides an argument in which the basis
for each step is exposed to scrutiny and their method of combination can be rigorously
defended.

Because the idea is new, there is no experience in assessing probabilities of im-
perfection, so we really have little idea what values might be assessed in practice and
therefore deliberately used a very conservative value in this example. However, as we
outline in [36], and intend to argue more fully in future [21], the traditional processes
of software assurance performed in support of DO-178B [31] (the guidelines for certi-
fication of aircraft software) and similar certification regimes are best understood as
developing evidence of possible perfection. The probability of failure for such highly
assured software is then bounded by the product of its probability of imperfection and
its conditional probability of failure, if imperfect. Software developed and evaluated to
the higher “Design Assurance Levels” of DO-178B can be used in contexts requiring
very low probabilities or rates of failure (e.g., 10−9 per hour), and historical experience
validates this judgment. Littlewood and Povyakalo [20] show that when faced with in-
creasing evidence for failure-free operation, our beliefs should tend toward attributing
this to the software being perfect rather than having a very small conditional probability
of failure. Thus, we believe that precedent and experience are able to support credible
assessments of very low probabilities of imperfection for suitable software, and we are
hopeful that consensus will develop in support of this position.

The relative sizes of the quantities appearing in the example above are worth some
comment. It is plausible that assessors could assign a value as small as 10−4 to P ∗A
and, as argued above, a similar value seems feasible for P ∗B; their product is then
10−8, which approaches the range required for ultra-high dependability in mass transit
systems such as trains. The fly in the ointment is common-cause failure, where it may
be difficult to assess a probability smaller than 10−5 to C, and this therefore sets the
overall limit on claimed reliability. There are two ways to interpret this observation;
one is to conclude that our analysis is cautionary and that requirements and claims
for ultra-high dependability should be viewed skeptically, especially if they depend on

14

assigning very low probabilities to common-cause events. We note that the Airbus A340
fuel emergency to be discussed in Section 4 was essentially a common-cause failure.

The other interpretation is that our approach to simplifying the problem of epistemic
estimation is inadequate for applications requiring ultra-high dependability: it conflates
genuine common-cause failure (for whose likelihood we may truly be able to assess
a very low probability) with lack of independence in beliefs about pfdA and pnpB.
This is an area where further research and investigation of different approaches seem
warranted. One alternative approach has been developed by Littlewood and Povyakalo
[19], following circulation of drafts of the present paper. This approach asks assessors to
state beliefs about the marginal distributions of the two parameters pA and pB, and then
calculates conservative approximations to the joint distribution (8) that do not assume
independence. One of their most attractive results is that if we have a confidence bound
1− αA on an assessment PA for pfdA (i.e., P (pfdA < PA) > 1− αA), and 1− αB on an
assessment PB for pnpB, then pfdS , the probability of failure on demand for the system,
satisfies

P (pfdS < PA × PB) > 1− (αA + αB).

In words, we “multiply the claims and add the doubts” [19]. For example, if we are 95%
confident that pfdA < 10−4 and 90% confident that pnpB < 10−4, then we can be 85%
confident that the system probability of failure on demand is less than 10−8. Whilst
this approach delivers only confidence bounds and does not support calculation of the
actual posterior probability of failure on demand of the system, (8), it may nevertheless
be possible to use these confidence bounds within a wider safety case.

We return to this topic in Section 4, where we develop an analysis for the kind of
monitored architectures proposed for aircraft, but first we need to examine failures of
commission.

3 Type 2 Failures, or Failures of Commission

In this section, we turn from failures of omission to those of commission: those that
perform an action (such as shutting down a reactor) when it is not required. In some
system contexts, this kind of failure can have serious safety consequences, while in others
it may be a costly nuisance, and in yet others merely an annoying “false alarm.” We
study failures of this kind because they are of some importance in themselves, and
because they lay the groundwork for our analysis of monitored architectures in Section
4.

In a 1oo2 system, either channel can put the system into a safe state. Hence, the
failure of one channel to bring the system to a safe state when this should be done
(i.e., on a “demand”) can be compensated by the other channel working perfectly. But,
dually, the 1oo2 arrangement means that a single channel can force the system to a safe
state when it is not necessary to do so (i.e., when there is no demand or, as we shall
sometimes say, on a “nondemand”). We can call the failure to bring the system to a safe
state when it is necessary to do so a “Type 1” failure (a failure of omission), and the
dual failure that does this unnecessarily a “Type 2” failure (a failure of commission).

Although we refer to Type 1 and Type 2 failures as duals, their treatment requires
careful consideration because the demands and nondemands that underlie them are
somewhat different in character. Intuitively, a demand is an event at some point in

15

time, whereas a nondemand is the absence of a demand over a period of time. We unify
the two by adjusting our treatment to consider the rate at which demands occur.

The channels of the systems we are interested in typically operate as cyclic processes
executing at some fixed rate, such as so many times a second; on each execution, they
sample sensors, perform some computation, possibly update their internal state, and
decide whether to act (e.g., to shut down the reactor) or not. As time passes, there will
be very many executions, only a few of which might be demands—i.e., represent states
in which the channels are required to act. We suppose that whether any particular
execution is a demand or not is independent of any other execution, so the numbers
of demands in disjoint time intervals are independent of each other (i.e., “independent
increments” in the terminology of statistics) and the probability distribution of the
number of demands in a time interval depends only on the length of the interval (i.e.,
“stationary increments”). Under these conditions, the occurrence of demands will be
approximately a Poisson process [33] with rate d, say. For the applications we have in
mind, there will be very great disparity between the durations of the cycles and the
expected times between successive demands, so this approximation will be very close.
In what follows, therefore, we shall use the continuous time formalism of the Poisson
process. So

d = lim
δt→0

P (1 demand in (t, t+ δt))
δt

. (13)

We define failure rates in a similar way. Then, for Type 1 failures we have

1oo2 system Type 1 failure rate

= lim
δt→0

P (1 demand and system fails in (t, t+ δt))
δt

= lim
δt→0

P (system fails | 1 demand in (t, t+ δt))× P (1 demand in (t, t+ δt))
δt

= lim
δt→0

P (system fails | 1 demand in (t, t+ δt))× P (1 demand in (t, t+ δt))
δt

≤
(
C + (1− C)× P ∗A × P ∗B

)
× d

where the first term comes from the epistemic formula (11) and the second from (13).
Using (12) and rearranging terms we also have the conservative simplification

1oo2 system Type 1 failure rate ≤ d× (C + PA × PB). (14)

For Type 2 failures due to the A channel, we have

1oo2 system Type 2 failure rate due to A

= lim
δt→0

P (no demand and A activates in (t, t+ δt))
δt

= lim
δt→0

P (A activates |no demand in (t, t+ δt))× P (no demand in (t, t+ δt))
δt

= lim
δt→0

P (A activates |no demand in (t, t+ δt))
δt

× P (no demand in (t, t+ δt)).

The second term here is conservatively approximated by 1. Then, taking limits, the first
term is the failure rate of Channel A with respect to Type 2 failures, whose epistemic

16

value (i.e., mean of the assessors’ posterior distribution) we will denote by FA2. Thus,
we have

1oo2 system Type 2 failure rate due to A ≤ FA2. (15)

We could perform an exactly similar calculation for Type 2 failures due to the B
channel, but this would not exploit the possible perfection of that channel. Accordingly,
we suppose that the possible perfection of B extends to Type 2 failures and that pB2 is
its aleatory probability of imperfection with respect to those failures. We then have

P (B activates |no demand in (t, t+ δt))
= P (B activates |B imperfect, no demand in (t, t+ δt))× P (B imperfect)

+ P (B activates |B perfect, no demand in (t, t+ δt))× P (B perfect).

The second term in this sum is zero (B does not activate on a nondemand if it is perfect
with respect to Type 2 failures), so the right hand side reduces to

P (B activates |B imperfect, no demand in (t, t+ δt))× pB2.

The calculation given earlier for the A channel can now be reproduced for the B
channel, but working at the aleatory level and substituting the expression above in the
final line. This gives

1oo2 system Type 2 aleatory failure rate due to B

≤ lim
δt→0

P (B activates |B imperfect, no demand in (t, t+ δt))
δt

× P (no demand in (t, t+ δt))× pB2.

Here, the second term is conservatively approximated by 1. Then, taking limits, the
first term is the aleatory failure rate of B with respect to Type 2 failures, conditional
on B being imperfect with respect to these failures, which we will denote by fB2|np.

1oo2 system Type 2 aleatory failure rate due to B ≤ fB2|np × pB2. (16)

The right hand side is the product of two parameters describing aleatory uncertainty.
We now have to consider assessors’ epistemic uncertainty about these parameters to
derive a posterior expression for the failure rate. A fully accurate treatment requires
integrating with respect to a joint probability function G(fB2|np, pB2) just as we did
with the function F (pA, pB) in Section 2.2. However, it may be that assessors’ beliefs
about these parameters will be independent (why should the rate of failure, if imperfect,
be dependent on the probability of imperfection?) so that the distribution G can be
factorized and the failure rate due to Type 2 errors in B is then given by

1oo2 system Type 2 failure rate due to B ≤ FB2|np × PB2 (17)

where FB2|np is the assessors’ posterior failure rate of B with respect to Type 2 failures,
assuming B is imperfect with respect to these failures, and PB2 is the posterior proba-
bility of B being imperfect with respect to Type 2 failures. Each of these is the mean
of the posterior distribution of its random variable considered alone.

We can now assess the overall merit of a 1oo2 system in terms of its risk per unit
time, taking account of both Type 1 and Type 2 failures, as follows. Risk is the product
of the rate or probability of a failure and the severity of its worst-case consequences.

17

Denote the worst-case severity of a Type 1 failure by c1, and those of Type 2 failures
by the A and B channels by cA2 and cB2, respectively. (Since the A and B channels
may bring the system to a safe state in different ways—e.g., by dropping the control
rods or by poisoning the moderator, respectively—it is reasonable to assess different
severities to their Type 2 failures.) In some applications, a Type 2 failure may have no
safety consequences, so cA2 and cB2 will be assessed as zero. But even in these cases
there are likely to be economic or other losses (e.g., reputation) associated with a Type
2 failure and these can be included in a broader calculation of risk, resulting in nonzero
assessments for cA2 and cB2. We will refer to c1, cA2 and cB2 as costs, presuming that
worst-case safety consequences and economic and other losses are normalized into some
financial scale.

The rates for the three kinds of system failure are given by (14), (15), and (17),
respectively. Adding the products of these and their costs yields the total risk:

1oo2 risk per unit time ≤ c1×d×(C+PA1×PB1)+cA2×FA2+cB2×FB2|np×PB2. (18)

We may assume that the cost c1 of a Type 1 failure is large, and hence that extensive
design and engineering effort is focused on ensuring that both the demand rate d and
the failure rate (C + PA1 × PB1) are small, so that the contribution to overall risk by
the first term in this sum is acceptable.

The second and third terms in the sum (18) are not reduced by a demand rate so,
when cA2 and cB2 are nonzero, their contribution to overall risk will be small only if
all their other components are small. The risk from a Type 2 failure of the main A
channel is inherent in any safety system, so we may assume that the failure rate FA2 is
acceptable, relative to the cost of this type of failure. The risk due to a Type 2 failure
of the B channel, however, is an additional factor introduced by the decision to employ
a 1oo2 architecture. Hence, we will need to be sure that the contribution from the
product cB2 × FB2|np × PB2 is an acceptable price to pay for the reduction in risk that
the architecture brings to Type 1 failures.

In the above analysis we have assumed that d, c1, cA2 and cB2 are known. If they
are not, then they need to be treated as a part of a more general epistemic analysis.
This is simple if it can be assumed, as may be reasonable in some cases, that assessors’
beliefs about these parameters are independent of their beliefs about the parameters
representing different probabilities and rates of failure and imperfection. We shall not
pursue this further here.

4 Monitored Architectures

In this section we examine a different class of architectures from the 1oo2 case considered
so far. These architectures employ an operational channel that is completely responsible
for the functions of the system concerned, and a monitor channel that can signal an
“alarm” if it deems the operational channel to have failed or to be causing unsafe
behavior. Other systems will ignore the outputs of a system whose monitor is signaling
an alarm, so the monitor transforms potential “malfunction” or “unintended function”
into “loss of function” (another interpretation is that the purpose of the monitor is
to avoid transitions into hazardous states). Loss of function may still be a dangerous
condition, so there must generally be some larger system that responds to the alarm

18

signal and compensates in some way for the lost function. This is really, therefore, an
architecture for subsystems; we refer to it as a monitored architecture.

Monitored architectures are attractive for subsystems of highly redundant systems
where occasional loss of function is anticipated and it is likely that some other subsystem
can take over the functions of the one whose monitor has signaled the alarm, and the
latter subsystem can be shut down or otherwise isolated.

Aircraft systems have this characteristic, as there is a requirement that no single
failure may cause a “catastrophic failure condition” [11, paragraph 5]; the redundancy
(e.g., multiple engines, multiple sources of air data, and internal redundancy in systems
such as autopilot, flight management, autoland, autothrottle, FADEC, etc.) is primarily
present to cope with physical failures (of a mechanical element or of a computer), but
there is increasing interest in using it to handle software faults. The software in flight-
critical functions is supposed to be almost certainly fault-free and guidelines such as
ARP4754 [40], DO-178B [31], and DO-297 [32] are intended to ensure that it is so.
However, the reliability requirements for flight critical functions (those that could cause
catastrophic failure conditions) are so high (e.g., 1 − 10−9 per hour, sustained for the
duration of the flight [11, paragraph 10.b])7 that there is some concern that no amount
of development assurance can deliver sufficient confidence that its embedded software
is free of faults.

A position paper by a team of experts representing certification authorities of North
and South America, and Europe [8] expresses this concern, and suggests that “fault-
tolerance techniques should be applied (such as, diverse and redundant implementations
or simple design). . . ”8 Monitored architectures are an approach for achieving this and
our proposal is that the monitor channel should be supported by a credible claim of
possible perfection. One way to do this would be to develop the monitor channel as a
very simple piece of software and to formally verify it against its requirements, in much
the same way as we suggested for the possibly perfect channel in the 1oo2 architecture.

Alternatively, rather than formally analyzing the monitor channel, we could for-
mally synthesize it from its requirements. There is a topic in formal methods known
as Runtime Verification, whose technology provides methods for automated synthesis
of monitors for formally specified properties [12]. Given requirements specified in a
language such as Eagle or RuleR [4], the methods of runtime verification can auto-
matically generate an efficient (and provably correct) monitor that will raise an alarm
as soon as a requirement is violated.

We refer to monitors developed using either formal analysis or synthesis as formal
monitors, and now turn to consideration of the requirements that they monitor.

One obvious source of requirements is the documentation for the operational channel
being monitored. The problem with this choice is that even the “high-level software
requirements” of guidelines such as DO-178B are focused on software functions rather
than (sub)system safety properties, and operational software is often robustly correct
with respect to these requirements (due to the effectiveness of practices such as those

7An explanation for this figure can be derived [24, page 37] by considering a fleet of 100 aircraft, each
flying 3,000 hours per year over a lifetime of 33 years (thereby accumulating about 107 flight-hours). If
hazard analysis reveals ten potentially catastrophic failure conditions in each of ten systems, then the
“budget” for each is about 10−9 if such a condition is not expected to occur in the lifetime of the fleet.

8Observe that the concern underlying this suggeston can be interpreted as a “claim limit” (recall
Section 2.3), though of a different kind from that used in nuclear systems: the expert team is saying
they have residual doubts about the reliability of any complex single-channel system.

19

recommended by DO-178B). That is to say, the overall (sub)system may have failed or
be operating in an unsafe manner, but each individual software component is operating
correctly according to its requirements.

A recent in-flight incident illustrates this topic. It concerns an Airbus A340-642,
registration G-VATL, which suffered a fuel emergency on 8 February 2005 [41]. The
plane was over Europe on a flight from Hong Kong to London when two engines flamed
out. The crew found that the fuel tanks supplying those engines were empty and those
for the other two engines were very low. They declared an emergency and landed at
Amsterdam. The subsequent investigation reported that two Fuel Control Monitoring
Computers (FCMCs) are responsible for pumping fuel between the tanks on this type
of airplane. The two FCMCs cross-compare and the “healthiest” one drives the outputs
to the data bus. In this case, both FCMCs had known faults (but complied with the
minimum capabilities required for flight); unfortunately, one of the faults in the one
judged healthiest was inability to drive the data bus. Thus, although it gave correct
commands to the fuel pumps (there was plenty of fuel distributed in other tanks), these
were never received.

Another component of the A340 fuel system, the Fuel Data Concentrator (FDC),
independently monitors fuel levels and generates a warning when these fall below a
threshold. However, this alarm is disregarded by the Flight Warning Computer (FWC)
unless both FCMCs have failed. The reason for this is not explained, but a plausible
explanation is that it is to avoid Type 2 failures: a correctly functioning FCMC has
access to more sensor data and can more accurately judge fuel levels than can the
FDC. One of the recommendations of the Incident Report [41, Safety Recommendation
2005-37] is to change the FWC logic so that the FDC can always trigger a low fuel
level warning. Observe that the fault that caused the FCMCs to malfunction and that
disabled the FDC warning was a conceptual flaw in how the “healthiness” of FCMCs
should be assessed, and this gave rise to common-cause faults in the requirements for
the FCMCs and FWC.

This example illustrates our claim that there is unlikely to be much benefit in mon-
itoring requirements at or below the component level: not only is critical software
generally correct with respect to this level of specification, but faults are often located
in these requirements. Furthermore, larger problems may not be manifested at this
level (i.e., they are emergent above the component level). Instead, we need to monitor
properties that more directly relate to the safe functioning of the overall system, and
that are more likely to be violated when problems are present.

The claims and assumptions of an argument-based safety case can provide exactly
these properties. A safety case for the A340 fuel system would surely include statements
about the acceptable distribution of fuel among the different tanks, in addition to mini-
mum levels in the tanks feeding the engines. Properties concerning fuel distribution are
different in kind (i.e., “diverse”) from those that appear in software requirements, which
typically focus on tasks to be performed rather than properties to be maintained (i.e.
invariants), and are good candidates for monitoring: unlike low fuel level (the property
monitored by the A340 FDC) incorrect fuel distribution could trigger an alarm quite
early in the flight and seems unlikely to trigger false alarms.

A monitored architecture therefore has a highly reliable operational channel, whose
behavior is derived from its software requirements specification, and a simple formal
monitor that has a high probability of perfection with respect to properties taken directly

20

from the system safety case.9 Analysis of the reliability of such architectures can build
on our previous analysis of 1oo2 architectures, with the operational channel taking the
part of A and the monitor the part of B, but with some changes that reflect differences
in the architectures.

One significant change is that there is no notion of “demand” for the operational
channel in the monitored architecture; instead, it continuously performs its assigned
operational role, but may occasionally suffer failures that violate a safety requirement.
Thus, a monitored architecture has a Type 1 failure if its operational channel violates
a safety requirement and its monitor fails to detect that fact. The operational channel
will have some failure rate, denoted frA, the monitor will have some probability of
imperfection with respect to Type 1 failures (i.e., failures of omission), denoted pnpB1,
and we seek a rate for Type 1 system failure based on these parameters. The other
significant change is that there is no notion of Type 2 failure (i.e., of commission) for
the operational channel: only the monitor channel can raise an alarm, and thereby cause
a Type 2 system failure by doing so unnecessarily. We suppose that the monitor will
have some probability of imperfection with respect to Type 2 failures, denoted pnpB2

and we seek a rate for Type 2 system failure based on this parameter.
We begin with the aleatory analysis for Type 1 system failure; we assume that frA

has known value fA and that pnpB1 has known value pB1. Then

P (monitored architecture has Type 1 failure in (t, t+ δt) | frA = fA, pnpB1 = pB1)
= P (A fails in (t, t+ δt), B does not detect failure | frA = fA, pnpB1 = pB1)
≤ P (A fails in (t, t+ δt), B imperfect | frA = fA, pnpB1 = pB1) (19)
= P (A fails in (t, t+ δt) |B imperfect, frA = fA, pnpB1 = pB1)
× P (B imperfect | frA = fA, pnpB1 = pB1)

= P (A fails in (t, t+ δt) | frA = fA, pnpB1 = pB1) (20)
× P (B imperfect | frA = fA, pnpB1 = pB1)

= P (A fails in (t, t+ δt) | frA = fA, pnpB1 = pB1)× pB1. (21)

Line (20) follows from the one above it because the fact that B is imperfect tells us
nothing about the failure of A in this interval. Line (19) follows from the one above it
by the following reasoning:

P (A fails in (t, t+ δt), B imperfect | frA = fA, pnpB1 = pB1)
= P (A fails in (t, t+ δt), B imperfect and does not detect failure | frA = fA, pnpB1 = pB1)

+ P (A fails in (t, t+ δt), B imperfect and detects failure | frA = fA, pnpB1 = pB1)
≥ P (A fails in (t, t+ δt), B imperfect and does not detect failure | frA = fA, pnpB1 = pB1)
= P (A fails in (t, t+ δt), B does not detect failure | frA = fA, pnpB1 = pB1).

The last line above follows from its predecessor because B must be imperfect if it does
not detect failure (of A).

From (21), dividing by δt and taking limits, we obtain

Monitored architecture Type 1 aleatory failure rate ≤ fA × pB1. (22)
9Of course, the safety case should provide evidence and argument that the operational channel does

satisfy those properties. Thus, the monitor is redundant if the safety case is sound; its purpose—as
with all applications of diversity—is for protection against the possibility that the safety case is flawed.

21

The Type 2 failure rate for the monitored architecture is just that for the monitor
channel. We can directly apply the analysis from the 1oo2 case so that (16) becomes

Monitored architecture Type 2 aleatory failure rate ≤ fB2|np × pB2 (23)

where fB2|np is the Type 2 failure rate for the monitor channel, conditional on its
imperfection with respect to that class of failures.

As with the cases examined earlier, we now need to consider epistemic uncertainty
in the two formulas above. For the Type 1 failure rate (22), we will need to consider a
joint distribution function H(fA, pB1) representing assessors’ beliefs about these vari-
ables. The first of these is the failure rate of the operational channel, while the second
is the probability of imperfection of the monitor. We argue that these are different
measures about very different channels: one a fairly complex system designed to meet
its requirements (which will be highly operational and removed from the claims of the
safety case—though intended to ensure them), the other a very simple and direct check
of properties from the safety case. Thus, it is very plausible that assessors’ beliefs
about these channels will be independent, and so the function H(fA, pB1) can be fac-
torized into distributions for the individual variables. However, although the channels
are diverse in purpose and design, it is quite likely they will share some implementation
mechanisms: for example, a monitor for a fuel system, such as that in the A340 example,
might rely on the same sensors as those used by the operational channel. These shared
mechanisms induce potential common-cause failures that must be taken into account.

One approach would be to factor the system explicitly into three components—
shared mechanism (e.g., sensors), operational channel, and monitor—and to calculate
probabilities over this more complex model. However, we propose a simpler treatment
that is similar to that employed to yield (12) in Section 2.2. There, we introduced an
element C to absorb failures due to faults in requirements and interpretation that are
common to both channels; here, we introduce an element M1 to absorb failures due to
mechanisms that are common to both channels. Thus,

Monitored architecture Type 1 failure rate ≤M1 + FA × PB1, (24)

where M1 is the assessed Type 1 failure rate due to mechanisms shared between the
operational and monitor channels, FA is the posterior failure rate of the operational
channel (excluding items in M1), and PB1 is the posterior probability of imperfection
(with respect to Type 1 failures) of the monitor channel (again, excluding items in M1).

The Type 2 failure rate (23) was derived directly from the B channel case in a 1oo2
architecture (16). We argue that the epistemic valuation can similarly be derived from
(17) in the 1oo2 case to yield

Monitored architecture Type 2 failure rate ≤M2 + FB2|np × PB2, (25)

where M2 is the assessed Type 2 failure rate due to mechanisms shared between the
operational and monitor channels, FB2|np is the posterior Type 2 failure rate for the
monitor channel, assuming it is imperfect with respect to that class of failures, and PB2

is the posterior probability of imperfection of the monitor channel with respect to Type
2 failures. (Although Type 2 failures are due to the monitor channel alone, we must
still include the contributions of the mechanisms that it shares with the operational
channel.)

22

Putting these together, we obtain the risk of a monitored architecture:

Monitored architecture risk per unit time ≤ c1×(M1+FA×PB1)+c2×(M2+FB2|np×PB2),
(26)

where c1 is the cost of a Type 1 failure and c2 the cost of a Type 2 failure.
Assuming, as seems likely, that M1 is much smaller than FA (since the failures con-

sidered in M1 are included among those in FA), a relatively modest claim for perfection
of the monitor with respect to Type 1 failures (e.g., PB1 = 10−3) provides significant
reduction in the overall risk due to Type 1 failures.

Employing a monitor brings with it the new risk of a Type 2 failure, and responsibil-
ity for this is borne by the monitor alone. For this new risk to be acceptable, assuming
M2 is small, we need either a strong claim for perfection of the monitor with respect
to Type 2 failures (e.g., PB2 = 10−6), or the consequence of a Type 2 failure must be
modest. Relief from this demanding requirement on PB2 is possible if assessors are able
to assign a small value to FB2|np, the failure rate of the monitor channel, assuming it
is imperfect. Statistically valid testing of the monitor channel provides a basis for as-
sessing FB2|np and could yield values on the order of 10−3, thereby potentially reducing
the requirement on PB2 to a similar value. Obviously, the tests must reveal no failures,
since then the channel would definitely be imperfect.

Whatever the contribution of FB2|np, there should be an inverse relationship between
the product FB2|np × PB2 and the cost c2. For the case of the A340 fuel management
system described earlier, it is likely that the response to an alarm raised by a monitor
would be a warning to the pilots, who would then follow the standard troubleshooting
and emergency procedures established for possible faults in the fuel system. Thus, the
consequences of a false alarm are modest and commensurate with a correspondingly
modest claim for perfection of the monitor with respect to Type 2 failures.

On the other hand, monitoring mechanisms on American Airlines Flight 903 of 12
May 1997 (an Airbus A300) inappropriately raised an alarm indicating failure of one
of the avionics buses. This caused an automated bus reset, which in turn caused the
Electronic Flight Instrumentation System (EFIS), which is responsible for displaying
instruments on the cockpit monitors, to go blank for a while. At that time, the pilots
were attempting to recover from a major upset (the plane was in a succession of stalls)
and the loss of all primary instruments at this critical time (“when the situation was at
its gravest”) jeopardized the recovery [27]. Here, the cost of a Type 2 error was very
high and it would seem that an extremely low probability of imperfection should have
been required of the monitor.

In fact, the monitor on Flight 903 did not fail (which is why we called its action
“inappropriate” rather than “incorrect”): the problem was in the properties that it was
required to monitor. Until now, we have implicitly considered demands to be events
in the logical or physical world—but such events do not always announce themselves
unambiguously: their detection may require delicate interpretation of sensors or indirect
inference from other available data. In this case, the event to be monitored is malfunc-
tion of an avionics bus, and one way to detect this event is reception of faulty data
delivered by the bus. And one way to judge whether data is faulty is by considering
its physical plausibility. Here, roll angle rates of change greater than 40 degrees/second
were considered implausible, and reception of sensor values in excess of this limit were

23

what triggered the monitor. But, as noted, the airplane was stalled, the roll rates were
real, and the inference of a bus fault was incorrect.

Designers choose the requirements for properties to be monitored; these properties,
not the events they are intended to detect, are the demands that a monitor responds
to and for which its probability of perfection is assessed. Through consideration of the
possible costs of appropriate and inappropriate actions and inactions, designers may
choose to fine-tune detection thresholds and adjust other elements in the specifications
of properties to be monitored. They can also adjust the actions taken in response
to violation of these properties. The consequences of these choices can far outweigh
the perfection or otherwise of the monitor—hence, there is little point in requiring high
probability of perfection in a monitor when the properties that it monitors are imperfect
indicators of the event that it should respond to. Notice that this concern is not unique
to monitors: it applies just the same to 1oo2 architectures.

It might at first seem reasonable to extend the probability of perfection for a monitor
to include “perfection” of the monitored properties (relative the physical or logical events
they are intended to identify). The problem is that perfection is an inappropriate notion
to apply to these properties: they are internal models of an external reality and the
models may work better in some cases than others, and are also subject to vicissitudes
such as the fallibilities of sensors. Hence, the fidelity of a property to its intended
event is not a global attribute, but varies from one demand to another, and is therefore
measured as reliability, not perfection.

For this reason, monitors and their required probabilities of perfection, the fidelity
of the properties that they monitor, and the costs of the responses that they trigger
and of the failures that they avert, should be developed in the context of a safety case,
where the necessary assurances and tradeoffs can be made in an integrated manner.
In the case of G-VATL, the property that was monitored by the FDC (low fuel in the
engine tanks) had low fidelity with respect to the physical event of interest (malfunction
of the fuel system) and was therefore prone to both Type 1 and Type 2 failures. To
compensate for the latter, common mechanism was introduced between the operational
system and the monitor, and that led to system failure. As we described earlier, a
better design would have monitored the distribution of fuel: this would trigger much
earlier and, modulo reliability of the sensors, would seem to have high fidelity. As
noted, the cost of a false alarm is fairly modest in this system, and so we conclude that
a properly constructed formal monitor would work well for this application: a modest
and achievable probability of perfection would deliver a useful and credible claim to the
safety case.

In the case of Flight 903, the property that was monitored (plausibility of data) had
very low fidelity with respect to the event of interest (malfunction in an avionics bus) and
the cost of a Type 2 failure was high (an automated bus reset). It seems unlikely that
a monitor of higher fidelity could be constructed given the limitations of the subsystem
concerned. We conclude that a monitored architecture was probably inappropriate for
this application and that larger architectural revisions should have been considered,
such as a fault-tolerant avionics bus, additional redundancy (e.g., checksums) to allow
monitoring of end-to-end reliability, or more sophisticated fusion and diagnosis (e.g.,
analytical redundancy [47]) of available sensor data.

In summary, monitored architectures seem appropriate and effective for a usefully
broad class of safety-critical systems. The monitor channel should evaluate properties

24

taken directly from the system safety case and can be vastly simpler than the operational
channel, as well as strongly diverse from it. Its simplicity should allow assessment
of an attractively small probability of imperfection for the monitor channel, and the
strong diversity between the two channels should allow separation of beliefs so that the
complicating factor C employed in the 1oo2 case that led to the “cautionary” conclusion
at the end of Section 2.3 is avoided. There are factors M1 in (24) and M2 in (25)
that play arithmetically similar rôles to C, but these concern different events (failures
due to common sensors and mechanisms shared between the operational and monitor
channels) whose assessed probabilities can be reduced to small values by suitable design
and assurance. (The problems with the A340 fuel management system example do not
invalidate this conclusion: that was an unsuitable design.) A modest and plausible value
such as 10−3 for the probability of perfection of the monitor, PB1, then delivers a very
useful reduction in the Type 1 failure rate for the system and a similar value should
also be adequate for PB2 if the cost of a Type 2 failure can be controlled by suitable
engineering.

5 Conclusion

We have considered systems in which a highly reliable software component or “channel”
A operates in combination with a channel B that supports a credible claim of “per-
fection,” meaning that it will never fail. The claim of perfection may be wrong, so we
speak of a “possibly perfect” channel characterized by a probability of imperfection.
Our results for this model clarify, generalize, and extend an earlier result in [17].

The clarification lies in showing that there is conditional independence between the
events “channel A fails on a randomly selected demand” and “channel B is imperfect.”
This means that the description of the aleatoric uncertainty is particularly simple: under
conservative assumptions, the conditional system pfd is bounded by pA× pB, where pA
is the probability that A fails on a randomly selected demand, and pB is the probability
that B is imperfect.

This contrasts with the usual approach involving channels for which claims of per-
fection cannot be made and only reliability is claimed; here, independence of channel
failures cannot be asserted, and thus the two channel pfds are not sufficient to charac-
terize the model. Instead, consideration needs to be given to the “degree” of dependence
of the failures of the two channels, and this is extremely difficult to incorporate into the
model: in the Eckhardt and Lee [10] and Littlewood and Miller [16] models, for example,
it involves knowing the covariance of the “difficulty functions” over the demand space.
Typically, these are not known, and cannot easily be estimated.

The generalization lies in the treatment of epistemic uncertainty, which is shown
to be the sole source of dependence in this model. Assessors must describe their be-
liefs about the two parameters of the model via the “belief” distribution F (pA, pB) in
order to obtain their unconditional probability of failure of the system on a randomly
selected demand. Representing beliefs as a bivariate distribution may not be easy, but
supposing that the distribution can be factored will usually not accurately represent the
assessors’ beliefs. We therefore proposed a conservative approach that is similar to that
underpinning some “claim limit” approaches in safety cases, and that can be seen as
one way of formalizing such arguments. It requires assessors to represent their beliefs
in terms of just three quantities: the probability C of common faults that afflict both

25

channels, the probability P ∗A of failure for the reliable channel A in the absence of such
common faults, and the probability P ∗B of imperfection for the possibly perfect channel,
again assuming the absence of common faults. The probability that the system fails on
a randomly selected demand is then conservatively bounded by

C + (1− C)× P ∗A × P ∗B.

The model described here seems much simpler than the classical one (with two
reliable channels) in the treatment of both aleatory and epistemic uncertainty. We
described the context of argument-based safety cases in which the epistemic probabilities
C, P ∗A, and P ∗B should be formulated, and argued that credible and useful values can be
constructed with modest enhancements to current development and assurance practices.
Development of a channel that may claim perfection is most plausible when the channel
is very simple, or is subjected to mechanically checked formal verification or, preferably,
both. Fallibilities in formal verification are described in [36] and we argued that these
can be accommodated within useful and credible values for P ∗B.

The earlier result has been extended by considering failures of commission (e.g.,
tripping a reactor when this is not needed), and then further extended by combining
these results with a modification of the 1oo2 analysis to yield an analysis for monitored
architectures: those, such as are proposed for aircraft, in which a reliable operational
channel is monitored by a possibly perfect channel that can trigger higher-level fault
recovery. These cases require extension of the statistical model from one based on
probability of failure on demand to one based on rates of failure.

Like our first result, these extended results are relatively simple and require esti-
mation of only a few parameters. The simplicity is achieved through conservative as-
sumptions; hence our results are conservative also, possibly very much so. Nonetheless,
plausible values for the parameters yield attractive conclusions.

The thrust of this paper has been about assessment of reliability of fault tolerant
diverse software-based systems. The problem of assessing the reliability of such a sys-
tem is often more difficult than the problem of achieving that reliability, particularly
when the reliability requirements are very stringent. It is worth saying, then, that the
asymmetric 1oo2 architecture considered here is one that has long been regarded as
an attractive one for achieving reliability in certain applications (e.g., nuclear reactor
protection systems), not least because it forces the reduction of excessive functional-
ity, with its ensuing complexity, which are known enemies of dependability. That this
architecture brings greater simplicity to the assessment process is an added bonus.

1oo2 architectures are most appropriate for systems that have a safe state; monitored
architectures are one attempt to extend these benefits to systems that must continue
operation in the presence of faults. Monitored architectures are recommended in the
relevant aircraft guidelines [40, Table 5–2] as one way to achieve the high levels of
dependability required for flight critical software. For example, it is suggested that a
Level A system (one requiring the highest level of assurance) can be achieved by a Level
C operational channel and a Level A monitor. Current revisions to these guidelines are
augmenting its Table 5–2 with rules that allow calculation of acceptable alternatives.
Our results can be seen as a way to provide formal underpinnings to those rules. We
showed that risk due to failure of the operational channel can be significantly reduced by
a monitor, but that the probability of imperfection in the monitor with respect to faults
of commission must be carefully weighed against the danger and cost of unnecessary

26

fault recovery. Furthermore, a perfect monitor is only as good as the properties that it
monitors, so a large part of the challenge in developing effective monitors is to ensure
that the properties chosen for monitoring are good ones.

Asymmetric 1oo2 systems and monitored architectures can be seen as ways to im-
plement and exploit ideas that have long been known in the fields of fault tolerance and
security: for example, fail-stop processors [38], safety kernels [35,46], detectors and cor-
rectors [1], and security by execution monitoring [39]. All of these use 1oo2 comparison
or some form of monitoring to avoid transitions to hazardous states. The utility of these
architectures in the construction of critical systems is well known; our contribution is
to show how the particular form of these architectures (where the monitor can support
a claim of probable perfection) enables assessment of the reliability achieved.

As we have indicated at various points in the paper, assessment at the epistemic level
in models of these kinds is not easy (although, as we have also noted, it is considerably
easier than for models in which claims about reliability must be made for both chan-
nels). Our treatment makes assumptions that may be very conservative, and still the
parameter C, for example, presents great difficulty for an assessor. More work is needed
on ways of easing the task of assessors in using our approach: we briefly mentioned
some recent results that avoid the problem of assessing C by requiring the assessors
instead to provide assessments about their marginal distributions for pfdA and pnpB.
We intend to investigate alternative approaches to these problems.

Other work for the future could involve extending the scope of the models. For
example, it will be interesting to extend the analysis of monitored architectures to
include recovery mechanisms, and possibly to consider a basis for certification of systems
that employ adaptive control or other techniques that are currently considered beyond
the pale.

Acknowledgements

We were very fortunate that our original manuscript received very careful readings from
the Associate Editor and three reviewers. Their extensive and thoughtful comments and
constructive suggestions resulted in this final version being a great improvement on the
original, both in readability and in technical accuracy. We thank them for what must
have been a substantial effort on all their parts.

We would also like to thank the following colleagues for valuable discussions about
earlier versions of this work: Peter Bishop, Robin Bloomfield, Alan Burns, Bruno
Dutertre, Pat Lincoln, Paul Miner, Peter Popov, Andrey Povyakalo, Bob Riemenschnei-
der, N. Shankar, Lorenzo Strigini, David Wright, and Bob Yates.

The first author’s work was supported by the INDEED project, funded by the UK
Engineering and Physical Sciences Research Council; and by the DISPO project, funded
by British Energy, NDA (Sellafield, Magnox North, Magnox South), AWE and West-
inghouse under the CINIF Nuclear Research Programme (the views expressed in this
Report are those of the authors and do not necessarily represent the views of the mem-
bers of the Parties; the Parties do not accept liability for any damage or loss incurred
as a result of the information contained in this Report).

The second author was supported by NASA cooperative agreements NNX08AC64A
and NNX08AY53A, and by National Science Foundation grant CNS-0720908.

27

References

[1] Anish Arora and Sandeep S. Kulkarni. Designing masking fault tolerance via non-
masking fault tolerance. IEEE Transactions on Software Engineering, 24(6):435–
450, June 1998.

[2] In-Flight Upset Event, 154 km West of Learmonth, WA, 7 October 2008, VH-
QPA Airbus A330-303. Australian Transport Safety Bureau, March 2009.
Reference number AO-2008-070 Interim Factual and Interim Factual No. 2,
available at http://www.atsb.gov.au/publications/investigation_reports/
2008/aair/ao-2008-070.aspx.

[3] Licensing of Safety Critical Software for Nuclear Reactors: Common Position of
Seven European Nuclear Regulators and Authorised Technical Support Organiza-
tions. AVN Belgium, BfS Germany, CSN Spain, ISTec Germany, NII United King-
dom, SKI Sweden, STUK Finland, 2007. Available at http://www.bfs.de/de/
kerntechnik/sicherheit/Licensing_safety_critical_software.pdf.

[4] Howard Barringer, David Rydeheard, and Klaus Havelund. Rule systems for run-
time monitoring: From eagle to ruler. In Runtime Verification (RV 2007),
Volume 4839 of Springer-Verlag Lecture Notes in Computer Science, pages 111–
125, Springer-Verlag, Vancouver, British Columbia, Canada, March 2007.

[5] Peter Bishop and Robin Bloomfield. A methodology for safety case development.
In Safety-Critical Systems Symposium, Birmingham, UK, February 1998. Available
at http://www.adelard.com/resources/papers/pdf/sss98web.pdf.

[6] Statistical Summary of Commercial Jet Aircraft Accidents, Worldwide Operations,
1959–2009. Boeing Commercial Airplane Group, Seattle, WA, July 2010. Published
annually by Boeing Airplane Safety Engineering, available at http://www.boeing.
com/news/techissues/pdf/statsum.pdf.

[7] Ricky W. Butler and George B. Finelli. The infeasibility of experimental quantifica-
tion of life-critical software reliability. IEEE Transactions on Software Engineering,
19(1):3–12, January 1993.

[8] CAST Position Paper 24: Reliance on Development Assurance Alone when Per-
forming a Complex and Full-Time Critical Function. Certification Authorities Soft-
ware Team (CAST), March 2006. Available from http://www.faa.gov/aircraft/
air_cert/design_approvals/air_software/cast/cast_papers/.

[9] Dave E. Eckhardt, Alper K. Caglayan, John C. Knight, Larry D. Lee, David F.
McAllister, Mladen A. Vouk, and John P. J. Kelly. An experimental evaluation of
software redundancy as a strategy for improving reliability. IEEE Transactions on
Software Engineering, 17(7):692–702, July 1991.

[10] Dave E. Eckhardt, Jr. and Larry D. Lee. A theoretical basis for the analysis of
multiversion software subject to coincident errors. IEEE Transactions on Software
Engineering, SE-11(12):1511–1517, December 1985.

[11] System Design and Analysis. Federal Aviation Administration, June 21, 1988.
Advisory Circular 25.1309-1A.

28

[12] Klaus Havelund and Grigore Rosu. Efficient monitoring of safety properties. Soft-
ware Tools for Technology Transfer, 6(2):158–173, August 2004.

[13] Tim Kelly. Arguing Safety—A Systematic Approach to Safety Case Management.
PhD thesis, Department of Computer Science, University of York, UK, 1998.

[14] J. C. Knight and N. G. Leveson. An empirical study of failure probabilities in
multi-version software. In Fault Tolerant Computing Symposium 16, pages 165–
170, IEEE Computer Society, Vienna, Austria, July 1986.

[15] J. C. Knight and N. G. Leveson. An experimental evaluation of the assumption
of independence in multiversion programming. IEEE Transactions on Software
Engineering, SE-12(1):96–109, January 1986.

[16] B. Littlewood and D. R. Miller. Conceptual modeling of coincident failures in
multiversion software. IEEE Transactions on Software Engineering, 15(12):1596–
1614, December 1989.

[17] Bev Littlewood. The use of proof in diversity arguments. IEEE Transactions on
Software Engineering, 26(10):1022–1023, October 2000.

[18] Bev Littlewood, Peter T. Popov, Lorenzo Strigini, and Nick Shryane. Modelling the
effects of combining diverse software fault detection techniques. IEEE Transactions
on Software Engineering, 26(12):1157–1167, December 2000.

[19] Bev Littlewood and Andrey Povyakalo. Conservative reasoning about epistemic
uncertainty for the probability of failure on demand of a 1oo2 software-based system
in which one channel is “possibly perfect”. Technical report, Centre for Software
Reliability, City University, London, UK, January 2010.

[20] Bev Littlewood and Andrey Povyakalo. On claims for the perfection of software.
Technical report, Centre for Software Reliability, City University, London, UK,
January 2010.

[21] Bev Littlewood and John Rushby. On the nature of software assurance. Technical
report, Computer Science Laboratory, SRI International, Menlo Park, CA, 2010.
In preparation.

[22] Bev Littlewood and Lorenzo Strigini. Validation of ultrahigh dependability for
software-based systems. Communications of the ACM, pages 69–80, November
1993.

[23] Bev Littlewood and David Wright. The use of multi-legged arguments to increase
confidence in safety claims for software-based systems: a study based on a BBN
analysis of an idealised example. IEEE Transactions on Software Engineering,
33(5):347–365, May 2007.

[24] E. Lloyd and W. Tye. Systematic Safety: Safety Assessment of Aircraft Systems.
Civil Aviation Authority, London, England, 1982. Reprinted 1992.

[25] J. May, G. Hughes, and A. D. Lunn. Reliability estimation from appropriate testing
of plant protection software. IEE/BCS Software Engineering Journal, 10(6):206–
218, November 1995.

29

[26] Development Guidelines for Vehicle Based Software. The Motor Industry Software
Reliability Association (MISRA), Nuneaton, UK, January 2001. PDF Version 1.1.

[27] Safety Recommendations A-98-3 through -5. National Transportation Safety
Board, Washington, DC, January 1998. Available at http://www.ntsb.gov/Recs/
letters/1998/A98_3_5.pdf.

[28] William L. Oberkampf and Jon C. Helton. Alternative representations of epistemic
uncertainty. Reliability Engineering and System Safety, 85(1–3):1–10, 2004.

[29] Anthony O’Hagan, Caitlin E. Buck, Alireza Daneshkhah, J. Richard Eiser, Paul H.
Garthwaite, David J. Jenkinson, Jeremy E. Oakley, and Tim Rakow. Uncertain
Judgements: Eliciting Experts’ Probabilities. Wiley, 2006.

[30] Engineering Safety Management (The Yellow Book), Volumes 1 and 2, Fundamen-
tals and Guidance, Issue 4. Rail Safety and Standards Board, London, UK, 2007.
Available from http://www.yellowbook-rail.org.uk/site/the_yellow_book/
the_yellow_book.html.

[31] DO-178B: Software Considerations in Airborne Systems and Equipment Certifica-
tion. Requirements and Technical Concepts for Aviation, Washington, DC, De-
cember 1992. This document is known as EUROCAE ED-12B in Europe.

[32] DO-297: Integrated Modular Avionics (IMA) Development Guidance and Certifi-
cation Considerations. Requirements and Technical Concepts for Aviation, Wash-
ington, DC, November 2005. Also issued as EUROCAE ED-124 (2007).

[33] Sheldon M. Ross. Stochastic Processes. Wiley, New York, NY, 1996.

[34] J. C. Rouquet and P. J. Traverse. Safe and reliable computing on board the Airbus
and ATR aircraft. In Safety of Computer Control Systems (SAFECOMP ’86),
Published by Pergamon for the International Federation of Automatic Control,
IFAC, Sarlat, France, July 1986.

[35] John Rushby. Kernels for safety? In T. Anderson, editor, Safe and Secure Com-
puting Systems, chapter 13, pages 210–220. Blackwell Scientific Publications, 1989.
(Proceedings of a Symposium held in Glasgow, October 1986).

[36] John Rushby. Software verification and system assurance. In Dang Van Hung and
Padmanabhan Krishnan, editors, Seventh International Conference on Software
Engineering and Formal Methods (SEFM), pages 3–10, IEEE Computer Society,
Hanoi, Vietnam, November 2009.

[37] Air Traffic Services Safety Requirements, CAP 670. Safety Regulation Group, UK
Civil Aviation Authority, June 2008. See Part B, Section 3, Systems Engineering
SW01: Regulatory Objectives for Software Safety Assurance in ATS Equipment;
Available at http://www.caa.co.uk/docs/33/cap670.pdf.

[38] R. D. Schlichting and F. B. Schneider. Fail-stop processors: An approach to design-
ing fault-tolerant computing systems. ACM Transactions on Computer Systems,
1(3):222–238, April 1983.

30

[39] Fred Schneider. Enforceable security policies. ACM Transactions on Information
and System Security, 3(1):30–50, February 2000.

[40] Aerospace Recommended Practice (ARP) 4754: Certification Considerations for
Highly-Integrated or Complex Aircraft Systems. Society of Automotive Engineers,
November 1996. Also issued as EUROCAE ED-79.

[41] Report on the incident to Airbus A340-642, registration G-VATL en-route from
Hong Kong to London Heathrow on 8 February 2005. UK Air Investigations Branch,
2007. Available at http://www.aaib.gov.uk/publications/formal_reports/4_
2007_g_vatl.cfm.

[42] The Use of Computers in Safety-Critical Applications: Final Report of the Study
Group on the Safety of Operational Computer Systems. UK Health and Safety
Commission, 1998. Available at http://www.hse.gov.uk/nuclear/computers.
pdf.

[43] Safety Assessment Principles for Nuclear Facilities. UK Health and Safety Exec-
utive, Bootle, UK, 2006 edition, version 1 edition. Available at http://www.hse.
gov.uk/nuclear/saps/saps2006.pdf.

[44] Health and Safety at Work etc. Act. UK Health and Safety Executive, 1974.
Available at http://www.hse.gov.uk/legislation/hswa.htm; guidance suite at
http://www.hse.gov.uk/risk/theory/alarp.htm.

[45] Defence Standard 00-56, Issue 4: Safety Management Requirements for Defence
Systems. Part 1: Requirements. UK Ministry of Defence, June 2007. Available at
http://www.dstan.mod.uk/data/00/056/01000400.pdf.

[46] Kevin G. Wika and John C. Knight. On the enforcement of software safety poli-
cies. In COMPASS ’95 (Proceedings of the Tenth Annual Conference on Computer
Assurance), pages 83–93, IEEE Washington Section, Gaithersburg, MD, June 1995.

[47] Alan S. Willsky. A survey of methods for failure detection in dynamic systems.
Automatica, 12(6):601–611, November 1976.

31

The Authors

Bev Littlewood has degrees in mathematics and statistics, and a PhD in statistics
and computer science; he is a Chartered Engineer, and a Chartered Statistician. He
has worked for more than 30 years on problems associated with the dependability of
software-based systems, and has published many papers in international journals and
conference proceedings and has edited several books. His technical contributions have
largely focused on the application of rigorous probabilistic and statistical techniques in
software systems engineering. In 1983 he founded the Centre for Software Reliability
(CSR) at City University, London, and was its Director until 2003. He is currently
Professor of Software Engineering in CSR. From 1990 to 2005 he was a member of the
UK Nuclear Safety Advisory Committee. He is a member of IFIP Working Group 10.4
on Reliable Computing and Fault Tolerance, of the UK Computing Research Committee,
and is a Fellow of the Royal Statistical Society. He is on the editorial boards of several
international journals. In 2007 he was the recipient of the IEEE Computer Society’s
Harlan D Mills Award.

John Rushby received B.Sc. and Ph.D. degrees in computing science from the Uni-
versity of Newcastle upon Tyne in 1971 and 1977, respectively. He joined the Computer
Science Laboratory of SRI International in 1983, and served as its director from 1986
to 1990; he currently manages its research program in formal methods and dependable
systems. His research interests center on the use of formal methods for problems in
the design and assurance of secure and dependable systems. Prior to joining SRI, he
held academic positions at the Universities of Manchester and Newcastle upon Tyne in
England.

Dr. Rushby is a former associate editor for Communications of the ACM, IEEE
Transactions on Software engineering, and Formal Aspects of Computing. He was re-
cently a member of a National Research Council study that produced the report “Soft-
ware for Dependable Systems: Sufficient Evidence?”. He is the 2011 recipient of the
IEEE Computer Society’s Harlan D Mills Award.

32

