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Abstract

Reynolds’ abstraction theorem (Reynolds, J. C. (1983) Types, abstraction and parametric

polymorphism, Inf. Process. 83(1), 513–523) shows how a typing judgement in System F can

be translated into a relational statement (in second-order predicate logic) about inhabitants

of the type. We obtain a similar result for pure type systems (PTSs): for any PTS used as a

programming language, there is a PTS that can be used as a logic for parametricity. Types in

the source PTS are translated to relations (expressed as types) in the target. Similarly, values

of a given type are translated to proofs that the values satisfy the relational interpretation.

We extend the result to inductive families. We also show that the assumption that every term

satisfies the parametricity condition generated by its type is consistent with the generated

logic.

1 Introduction

Types are used in many parts of computer science to keep track of different kinds

of values and to keep software from going wrong. Starting from the presentation

of the simply typed lambda calculus by Church (1940), we have seen a steady

flow of typed languages and calculi. With increasingly rich type systems came more

refined properties about well-typed terms. In his abstraction theorem, Reynolds (1983)

defined a relational interpretation of System F types, and showed that interpretations

of a well-typed term in related contexts yield related results. If a type has no free

variables, the relational interpretation can thus be viewed as a parametricity property

satisfied by all terms of that type. Almost 20 years ago Barendregt (1992) described

a common framework for a large family of calculi with expressive types: Pure

Type Systems (PTSs). By the Curry–Howard correspondence, the calculi in the

PTS family can be seen both as programming languages and as logics. The more

advanced calculi go beyond System F and include full-dependent types and support

expressing datatypes.

Recent works (Takeuti 2004, personal communication; Johann & Voigtländer

2006; Neis et al. 2009; Vytiniotis & Weirich 2010) have developed parametricity



2 J.-P. Bernardy et al.

results for several such calculi, but not in a common framework. In this paper,

we apply and extend Reynolds’ (1983) idea to a large class of PTSs and provide

a framework that unifies previous descriptions of parametricity and forms a basis

for future studies of parametricity in specific type systems. As a by-product, we

get parametricity for dependently typed languages. This paper is an extended and

revised version of Bernardy et al. (2010). Our specific contributions are as follows:

• A concise definition of the translation of types to relations (Definition 3.9),

which yields parametricity propositions for closed terms.

• A formulation (and a proof) of the abstraction theorem for PTSs (Theo-

rem 3.12). A remarkable feature of the theorem is that the translation from

types to relations and the translation from terms to proofs are unified.

• An extension of the PTS framework to capture explicit syntax (Section 4).

• An extension of the translation to inductive definitions (Section 5), and its

proof of correctness.

• A formulation of an axiom schema able to internalise the abstraction theorem

in a PTS. The axiom schema is proved consistent, thanks to a translation to

PTS without axioms (Section 6).

• A specialisation of the general framework to constructs such as propositions,

type classes, and constructor classes (Section 7).

• A demonstration by example of how to derive free theorems for (and as)

dependently typed functions (Sections 3.3, 5, and 7).

Our examples use a notation close to that of Agda (Norell 2007), for greater

familiarity for users of dependently typed functional programming languages. The

notation takes advantage of the “implicit syntax” feature, improving the readability

of examples.

2 Pure type systems

In this section we review the notion of PTS as described by Barendregt (1992,

Sec. 5.2). We introduce our notation along the way, as well as our running example

type systems.

Definition 2.1 (Syntax of terms)

A PTS is a type system over a λ-calculus with the following syntax:

T = C constant

| V variable

| T T application

| λV :T. T abstraction

| ∀V :T. T dependent function space

We often write A → B for ∀x : A. B when x does not occur free in B. We use

different fonts to indicate what category a meta-syntactic variable ranges over. Sans-

serif roman (like x) is used for V, fraktur (like c) for C, and italics (like A) for T.

As an exception, the letters s and t are used for the subset S of C introduced in the

next paragraph.
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c : s ∈ A� c : s
axiom

Γ � A : s

Γ, x :A � x : A

start

Γ � A : B Γ � C : s

Γ, x :C � A : B

weakening

Γ � A : s1 Γ, x :A � B : s2
(s1, s2, s3) ∈ R

Γ � (∀x :A. B) : s3
product

Γ � F : (∀x :A. B) Γ � a : A

Γ � F a : B[x �→ a]

application

Γ, x :A � b : B Γ � (∀x :A. B) : s

Γ � (λx :A. b) : (∀x :A. B)

abstraction

Γ � A : B Γ � B′ : s B =β B′

Γ � A : B′

conversion

Fig. 1. Typing rules of PTS with specification (S,A,R).

The typing judgement of a PTS is parametrised over a specification S = (S,A,R),

where S ⊆ C, A ⊆ C × S, and R ⊆ S × S × S. The set S specifies the sorts, A the

axioms (an axiom (c, s) ∈ A is often written c : s), and R specifies the typing rules

of the function space. A rule (s1, s2, s2), where the second and third sorts coincide, is

often written s1 � s2. The typing rules for a PTS are shown in Figure 1.

An attractive feature of PTSs is that the syntax for types and values is unified. It

is the type of a term that tells how to interpret it (as a value, type, kind, etc.).

The λ-cube Barendregt (1992) defined a family of calculi each with S = {�,�},
A = {� : �} and R a selection of rules of the form s1 � s2, for example:

• The (monomorphic) λ-calculus has Rλ = {� � �}, corresponding to ordinary

(value-level, non-dependent) functions.

• System F has RF = Rλ ∪ {� � �}, adding (impredicative) universal quantifi-

cation over types (thus including functions from types to values).

• System Fω has RFω = RF ∪ {� � �}, adding type-level functions.

• The Calculus of Constructions (CC) has RCC = RFω ∪ {� � �}, adding

dependent types (functions from values to types).

Here � and � are conventionally called the sorts of types and kinds, respectively.

Notice that F is a subsystem of Fω, which is itself a subsystem of CC. (We say

that S1 = (S1,A1,R1) is a subsystem of S2 = (S2,A2,R2) when S1 ⊆ S2, A1 ⊆ A2

and R1 ⊆ R2.) In fact, the λ-cube is so named because the lattice of the subsystem

relation between all the systems forms a cube, with CC at the top.

Sort hierarchies Difficulties with impredicativity1 have led to the development of

type systems with an infinite hierarchy of sorts. The “pure” part of such a system

can be captured in the following PTS, which we name Iω .

Definition 2.2 (Iω)

Iω is a PTS with this specification:

• S = {�i | i ∈ N}

1 It is inconsistent with strong sums (Coquand 1986).
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• A = {�i : �i+1 | i ∈ N}
• R = {(�i, �j , �max(i,j)) | i, j ∈ N}

Compared to the monomorphic λ-calculus, � has been expanded into the infinite

hierarchy �0, �1, . . . In Iω , the sort �0 (abbreviated �) is called the sort of types. Type

constructors, or type-level functions have type � → �. Terms like � (representing

the set of types) and � → � (representing the set of type constructors) have type �1

(the sort of kinds). Terms like �1 and � → �1 have type �2, and so on.

Although the infinite sort hierarchy was introduced to avoid impredicativity, they

can in fact coexist, as Coquand (1986) has shown. For example, in the Generalised

Calculus of Constructions (CCω) of Miquel (2001), impredicativity exists for the

sort � (conventionally called the sort of propositions), which lies at the bottom of

the hierarchy.

Definition 2.3 (CCω)

CCω is a PTS with this specification:

• S = {�} ∪ {�i | i ∈ N}
• A = {� : �0} ∪ {�i : �i+1 | i ∈ N}
• R = {� � �, � � �i,�i � � | i ∈ N} ∪

{(�i,�j ,�max(i,j)) | i, j ∈ N}
In the above definition, impredicativity is implemented by the rules of the form

�i � �.

Both CC and Iω are subsystems of CCω , with �i in Iω corresponding to �i in

CCω . Because � in CC corresponds to �0 in CCω , we often abbreviate �0 to �.

Many dependently typed programming languages and proof assistants are based

on variants of Iω or CCω , often with the addition of inductive definitions (Paulin-

Mohring 1993; Dybjer 1994). Such tools include Agda (Norell 2007), Coq (The Coq

development team 2010) and Epigram (McBride & McKinna 2004).

2.1 Pure type system as logical framework

Another use for PTSs is as logical frameworks: types correspond to propositions

and terms to proofs. This correspondence extends to all aspects of the systems and

is widely known as the Curry–Howard isomorphism. The judgement � p : P means

that p is a witness, or proof of the proposition P . If the judgement holds (for some

p), we say that P is inhabited.

In the logical system reading, an inhabited type corresponds to a tautology and

dependent function types correspond to universal quantification. A predicate P over

a type A has the type A → s, for some sort s: a value a satisfies the predicate

whenever the type P a is inhabited. Similarly, binary relations between values of

types A1 and A2 have type A1 → A2 → s.

For this approach to be safe, it is important that the system be consistent. In fact,

the particular systems used here even exhibit the strong normalisation property:

each witness p reduces to a normal form.

In fact, in Iω and similarly rich type systems, one may represent both programs

and logical formulae about them. In the following sections we make full use of
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this property: We encode programs and parametricity statements about them in the

same type system.

3 The relational interpretation

In this section we present the core contribution of this paper: The relational

interpretation of a term, as a syntactic translation from terms representing programs

or types (in a source PTS understood as a programming language) to terms

representing proofs or relations (in a target PTS understood as a logic expressing

properties of programming language terms). As we will see in Section 3.3, it is a

generalisation of the classical rules given by Reynolds (1983), extended to all the

constructs found in a PTS.

3.1 Preliminaries

Usual presentations of parametricity use binary relations, but for generality we

abstract over the arity of relations, n, which we assume is given. We use an overbar

notation to denote parts of terms being replicated n times with renaming, defined

formally as follows.

Definition 3.1 (renaming)

The term Ai is obtained by replacing each free variable x in the term A by a variable

xi.

Definition 3.2 (replication)

A stands for n terms Ai, each obtained by renaming as defined above. Correspond-

ingly, x :A stands for n bindings (xi :Ai). If replication is used in a binder (abstraction

or dependent function space), then the binder is also replicated.

For a particular source PTS S , we shall require a target PTS Sr that includes S

so that source terms can be expressed, but also sufficient sorts, axioms and rules to

express the relational counterparts of the source terms. For example, we require that

for each sort s in S , Sr should also include a sort s̃ that will be the sort of relational

propositions about terms of sort s. In many cases we use s̃ = s.

Below we simply list our requirements on Sr , noting where we shall need them

later. The need for each of these requirements should become clear when we reach

those points in our development. For a first approximation, we assume that the only

constants in S are sorts. We return to the general case in Section 5.

Definition 3.3 (reflecting system)

A PTS Sr = (Sr,Ar,Rr) reflects a PTS S = (S,A,R) if S is a subsystem of Sr and

1. (needed for Lemma 3.7) for each sort s ∈ S,

• S
r contains sorts s′, s̃, ˜s′ and ˜s′′

• A
r contains s : s′, s̃ : ˜s′ and ˜s′ : ˜s′′

• R
r contains s � ˜s′ and s′ � ˜s′′

2. (needed for Lemma 3.8) for each axiom s : t ∈ A, ˜s′ = ˜t
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3. (needed for the translation of products) for each rule (s1, s2, s3) ∈ R, R
r contains

rules (s̃1, s̃2, s̃3) and s1 � s̃3.

Example 3.4

The system CCω reflects each of the systems in the λ-cube, with s̃ = s.

Definition 3.5 (reflective)

We say that S is reflective if S reflects itself with s̃ = s.

Example 3.6

The systems Iω and CCω are both reflective. Therefore, we can write programs in

these systems and derive valid statements about them, within the same PTS.

3.2 From types to relations, from terms to proofs

In this section we present the relational translation of terms. We discuss the intuition

behind each case of the definition before summarising them (in Definition 3.9).

The translation of a sort s forms types of n-ary relations between types of sort

s. In particular, we choose to model relations between types A1, . . . , An of sort s as

terms of type A1 → · · · → An → s̃, where s̃ is the sort of propositions corresponding

to types of sort s. (In many cases we use s̃ = s.) Thus, we define the translation of s as

�s� = λx :s. x → s̃

The n lambda-abstractions over the variables x name the parameter types of sort s,

from which the type of relations is formed.

Lemma 3.7 (�s� is well-typed )

If the PTS Sr reflects the PTS S , then for each sort s ∈ S we have � �s� : s → s̃′ in Sr .

Proof

From the requirements for a sort s ∈ S in the first part of Definition 3.3, we can

infer (in Sr)

� s : s′
st

x :s � xi : s

� s̃ : s̃′ � s : s′
wk

x :s � s̃ : s̃′
s � s̃′

x :s � x → s̃ : s̃′
� s : s′ � s̃′ : s̃′′

s′ � s̃′′
� s → s̃′ : s̃′′

abs� (λx :s. x → s̃) : s → s̃′ �

Moreover, if two sorts are related by an axiom, their translations are related.

Lemma 3.8

If the PTS Sr reflects the PTS S and A contains an axiom s : t, then � �s� :˜t s in Sr .

Proof

... Lemma 3.7
� �s� : s → s̃′

... Lemma 3.7

� (λx : t. x → ˜t) : t → ˜t′ � s : t
app

� (λx : t. x → ˜t) s : ˜t′
conv, s̃′ = ˜t

� �s� : (λx : t. x → ˜t) s
�

Note that this proof uses the equality from the second part of Definition 3.3.
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Generalising Lemma 3.8, for each type A : s, we wish to define a relation

�A� : �s�A. Type systems usually include constants that are not sorts, but as their

meaning is unconstrained, we cannot expect a generic translation for them. We shall

deal with such constants in Section 5.

We shall approach dependent product types through special cases. Firstly, the

relation �A → B� relates functions if they map inputs related by �A� to outputs

related by �B�:

�A → B� = λf : (A → B). ∀x :A. �A� x → �B� (f x)

Secondly, the relation �∀x : s. B� relates polymorphic terms if their instances at

related types are related:

�∀x :s. B� = λf : (∀x :s. B). ∀x :s. ∀xR :x → s̃. �B� (f x)

= λf : (∀x :s. B). ∀x :s. ∀xR :�s� x. �B� (f x)

Both of these forms are special cases of the general translation of products as

follows:

�∀x :A. B� = λf : (∀x :A. B). ∀x :A. ∀xR :�A� x. �B� (f x)

Products are also types, and hence are also translated to relations via lambda-

abstractions over n functions f . The right-hand side of the product ends the

description of how the functions f must be related by requiring that the result

of applying f to x be related by the translation of B.

In the above translation, if the source product ∀x :A. B is formed with the rule

(s1, s2, s3), then �A� x has sort s̃1, while �B� (f x) has sort s̃2. Thus, Sr requires the

rule (s̃1, s̃2, s̃3) in order to form the inner product on the right-hand side. Similarly,

the outer product requires the rule s1 � s̃3. These rules are those of the third part

of Definition 3.3.

The translation of applications and abstraction mirrors the translation of product

types at the value level: one argument is mapped to n arguments and a relation

argument,

�F a� = �F� a �a�

�λx :A. b� = λx :A. λxR :�A� x. �b�

The translation maintains the invariant that for each free variable in the input x, the

output has n + 1 free variables, x1, . . . , xn and xR, where xR witnesses that x1, . . . , xn
are related. Hence, a variable x can be translated to xR.

The translation of terms is summed up in the following definition, which gives

the mapping � � from terms of a PTS S to terms of a possibly extended PTS Sr as

follows.
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Definition 3.9 (parametricity translation from types to relations)

�s� = λx :s. x → s̃

�x� = xR

�∀x :A. B� = λf : (∀x :A. B). ∀x :A. ∀xR :�A� x. �B� (f x)

�F a� = �F� a �a�

�λx :A. b� = λx :A. λxR :�A� x. �b�

The replication of variables carries on to contexts.

Definition 3.10 (parametricity translation for contexts)

�–� = –

�Γ, x :A� = �Γ�, x :A, xR :�A� x

Note that each tuple x : A in the translated context must satisfy the relation �A�, as

witnessed by xR. Thus, one may interpret �Γ� as n related environments; and A as

n interpretations of A, each one in a different environment.

Lemma 3.11 (translation preserves β-reduction)

A −→∗
β A′ =⇒ �A� −→∗

β �A′�

Proof sketch

The proof proceeds by induction on the derivation of A −→∗
β A′. The interesting

case is where the term A is a β-redex (λx :B. C) b. That case relies on the way � �

interacts with substitution:

�b[x �→ C]� = �b�[x �→ C][xR �→ �C�]

The remaining cases are congruences. �

We can then state our main result.

Theorem 3.12 (abstraction)

If the PTS Sr reflects the PTS S ,

Γ �S A : B =⇒ �Γ� �Sr �A� : �B� A

Proof

By induction on the derivation of Γ �S A : B. Each typing rule in the derivation

of the source judgement can be translated to a portion of the derivation tree

of the target. The start case is a consequence of the invariant that a relational

witness is always introduced in the context when a variable is bound in the source

term. The cases of abstraction and application stem from the fact that their

respective translations follow the pattern of the translation of the product. The
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product case uses the fact that types are translated to relations (in �s�), and imposes

constraints on the structure of the target PTS (see Definition 3.3). In the axiom case,

we rely on the “types-to-relations” principle at two different levels, and further

conditions are imposed on the target PTS. More details of the proof are given in

Appendix A.1. �

The above theorem can be read in two ways. A direct reading is as a typing

judgement about translated terms: if A has type B, then �A� has type �B� A. The

more fruitful reading is as an abstraction theorem for PTSs: if A has type B in

environment Γ, then n interpretations A in related environments �Γ� are related by

�B�. Further, �A� is a witness of this proposition within the type system. In particular,

closed terms are related to themselves: � A : B =⇒ � �A� : �B� A . . . A .

3.3 Examples: the λ-cube

In this section we show that � � specialises to the rules given by Reynolds (1983) to

read a System F type as a relation. Having shown that our framework can explain

parametricity theorems for System F types, we move on to progressively higher

order constructs. In these examples, the binary version of parametricity is used

(arity n = 2). Using Definition 3.3 one can verify that the following system reflects

System F.

• S = {�,�,�1,˜�, ˜�, ˜�1, ˜�2}
• A = {� : �,� : �1,˜� : ˜�, ˜� : ˜�1, ˜�1 : ˜�2}
• R = {� � �,� � �, � � ˜�,� � ˜�1,�1 � ˜�2,˜� � ˜�, ˜� � ˜�}

Indeed, examination of the structure of the PTS reveals that it corresponds to a

second-order logic with typed individuals, studied multiple times in the literature

with slight variations, for example by Plotkin & Abadi (1993) or Wadler (2007). In

the PTS form, the sort ˜� is the sort of propositions. The sort ˜� is inhabited by

the type of propositions (˜�), the type of predicates (τ → ˜�), and in general types of

relations (τ1 → · · · → τn → ˜�). The sorts �1 and �2 come from the need to type

unimportant higher level redexes created by our translation, and correspond to the

sorts with the same name in CCω . The product formation rules can be understood

as follows:

• ˜� � ˜� allows to build implication between propositions;
• � � ˜� allows to quantify over programs in propositions;
• � � ˜� allows to quantify over types in propositions;
• � � ˜� is used to build types of predicates depending on programs;
• ˜� � ˜� allows to quantify over predicates in propositions.
• The other rules, involving �1 and �2 come from the need to type higher level

relation-membership redexes.

Types to relations Note that by definition,

��� T1 T2 = T1 → T2 → ˜�

Here we use ˜� on the right side as the sort of propositions. This means that types

are translated to relations (as desired).
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Function types Applying our translation to a closed non-dependent function type,

we get:

�A → B� : ��� (A → B) (A → B)

�A → B� f1 f2 = ∀a1 : A. ∀a2 : A. �A� a1 a2 → �B� (f1 a1) (f2 a2)

That is, functions are related iff they take related arguments into related outputs.

Type schemes System F includes universal quantification of the form ∀A : �. B.

Applying � � to this type expression yields:

�∀A : �. B� : ��� (∀A : �. B) (∀A : �. B)

�∀A : �. B� g1 g2 = ∀A1 : �. ∀A2 : �. ∀AR : ��� A1 A2. �B� (g1 A1) (g2 A2)

In words, polymorphic values are related iff instances at related types are related.

Note that because A may occur free in B, the variables A1, A2, and AR may occur

free in �B�.

Type constructors With the addition of the rule � � �, one can construct terms

of type � → �, which are sometimes known as type constructors, type formers, or

type-level functions. As Voigtländer (2009) remarks, extending the Reynolds-style

parametricity to support-type constructors appears to be a folklore. Such folklore

can be precisely justified by our framework by applying � � to obtain the relational

counterpart of type constructors:

�� → �� : ��� (� → �) (� → �)

�� → �� F1 F2 = ∀A1 : �. ∀A2 : �. ��� A1 A2 → ��� (F1 A1) (F2 A2)

That is, a term of type �� → �� F1 F2 is a (polymorphic) function converting a

relation between any types A1 and A2 to a relation between F1 A1 and F2 A2, a

relational action. For the target system to accept the above, the rules � � ˜� and
˜� � ˜� must also be added there.

Dependent functions In a system with the rule � � �, value variables may occur in

dependent function types like ∀x :A. B, which we translate as follows:

�∀x : A. B� : ��� (∀x : A. B) (∀x : A. B)

�∀x : A. B� f1 f2 = ∀x1 : A. ∀x2 : A. ∀xR : �A� x1 x2. �B� (f1 x1) (f2 x2)

Here, the target system is extended with the rule ˜� � ˜�. The rule � � ˜� is also

required, but is already in the system, as it is required by the source axiom � : � as

well.
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Proof terms We have used � � to turn types into relations, but we can also use it to

turn terms into proofs of abstraction properties. As a simple example, the relation

corresponding to the type T = (A : �) → A → A, namely

�T� f1 f2 = ∀A1 : �. ∀A2 : �. ∀AR : ��� A1 A2.

∀x1 : A1. ∀x2 : A2. AR x1 x2 → AR (f1 A1 x1) (f2 A2 x2)

states that functions of type T map related inputs to related outputs, for any relation.

From a term id = λA : ∗. λx : A. x of this type, by the abstraction theorem we

obtain a term �id� : �T� id id, that is a proof of the abstraction property:

�id� A1 A2 AR x1 x2 xR = xR

We return to proof terms in Section 5.3 after introducing datatypes.

4 Coloured pure type systems

In this section we introduce the notion of coloured pure type system (CPTS), which

is an extension of PTS as described in Section 2. Colours capture the fact that

various flavours of quantification use different syntax. We use colours to improve

the clarity of the relational translation as well as that of examples.

4.1 Explicit Syntax: Coloured Pure Type Systems

The complete uniformity of syntax characteristic of classical presentations of the

PTS framework often obscures the structure of ideas expressed within particular

PTS, and our relational interpretation of terms in no exception. While mere PTSs

are sufficient for most of the technical results of this paper, the structure of the

relational interpretation appears more clearly when various flavours of quantification

are properly identified.

Explicit syntax in PTSs is not novel: Many systems usually presented as PTSs still

use different syntax for various forms of quantifications. For example, traditional

presentations of System F use a different syntax for the quantification over individ-

uals (rule � � �) than for the quantification over types (rule � � �). A common

practice is to use the symbols ∀ and Λ for quantification and abstraction over types,

and → and λ for individuals. In addition, brackets are sometimes used to mark

type application. While the flavour of quantification can always be recovered from

a type derivation, the advantage of explicit syntax is that it is possible to identify

which flavour is used merely by looking at the term. Moreover, a type-derivation

tree might not be available.

In this paper we want to give a relational interpretation of terms parameterised

over any PTS, and retain the possibility to keep syntax annotations. This is exactly

the purpose of CPTSs: to capture explicit syntax in a parametrised way. A colour

annotation is added to the syntax of application, abstraction, and product, and a

colour component is added to R. A rule (k, s1, s2, s2) is often written s1
k
� s2. Note

that a single colour may be used in multiple rules. (In the electronics version of this

document, colours are sometimes rendered visually.) The corresponding typing rules
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TK = C constant

| V variable

| T •
KT application

| λK
V :T. T abstraction

| ∀K
V :T. T dependent function space

Γ � A : s1 Γ, x :A � B : s2
(k, s1, s2, s3) ∈ R

Γ � (∀kx :A. B) : s3
product

Γ � F : (∀kx :A. B) Γ � a : A

Γ � F •ka : B[x �→ a]

application

Γ, x :A � b : B Γ � (∀kx :A. B) : s

Γ � (λkx :A. b) : (∀kx :A. B)

abstraction

Fig. 2. CPTS syntax for the set of colours K, and typing rules of the CPTS with specification

(K,S,A,R). The only change with respect to the standard PTS definition is the addition of

colour annotations in product, application, and abstraction.

ensure that the colours are matched (Figure 2). Erasure of colour yields a plain

(monochrome) PTS; and erasure of colour in a valid coloured derivation tree yields

a valid derivation tree in the monochrome PTS. Therefore, useful properties of PTSs

(such as subject reduction, substitution, etc.) are retained in CPTSs.

4.2 Relational translation, with colour

We can modify our translation to use colours to distinguish the two kinds of

arguments it introduces so that a single product of colour k is translated to two

kinds of products, n of colour ki, which introduces n terms x of type Ai, and one of

colour kr , which forces them (x) to be related by the translation of A. (Memory aid:

i stands for individual and r for relation.)

�∀kx :A. B� = λf : (∀kx :A. B). ∀kix :A. ∀krxR :�A� x. �B� (f •kx)

�F •ka� = �F� •kia •kr�a�

�λkx :A. b� = λkix :A. λkrxR :�A� x. �b�

We use a special, new colour (named 0 below) for the formation of relations that

interpret types. Since this colour is used very many times, leave out the annotation

for it. Using this convention, the translation of a sort s looks exactly the same when

colours are used as in the monochrome case:

�s� = λx :s. x → s̃

The colour 0 was already used in the first set of equations given in this section,

for example, in the abstraction over f , or in the applications of �A�. Thanks to

colours, it becomes syntactically obvious that the abstraction over f creates a

relation (interpreting a type), whereas the abstraction over x does not.

The definition of reflecting system is correspondingly extended to CPTSs as

follows.
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Definition 4.1 (reflecting system, with colour)

A CPTS Sr = (Kr,Sr,Ar,Rr) reflects a CPTS S = (K,S,A,R) if S is a subsystem of

Sr and

1. there is a colour 0 ∈ K
r , used for relation construction. Annotations for this

colour are consistently omitted in the remainder of the section,

2. there are two functions i and r from K to K
r ,

3. for each sort s ∈ S,

• S
r contains sorts s′, s̃, ˜s′ and ˜s′′

• A
r contains s : s′, s̃ : ˜s′ and ˜s′ : ˜s′′

• R
r contains s � ˜s′ and s′ � ˜s′′

4. for each axiom s : t ∈ A, ˜s′ = ˜t,

5. for each rule (k, s1, s2, s3) ∈ R, R
r contains rules (kr, s̃1, s̃2, s̃3) and s1

ki
� s̃3.

Remark 4.2

The above definition is intuitively justified as follows:

1. The colour 0 is used for formation of parametricity relations.

2. For each colour k ∈ K,

• the colour ki is used for universal quantification over individuals in logical

formulas;

• the colour kr is used for quantifications over propositions in the target

system.

3. For each sort s, the sort s̃ is the sort of parametricity propositions about types

in s, and must exist in S
r . One can see ˜ as a function from S to S

r .

For each input sort, the relational interpretation creates redexes, which check

relation membership. This requires

• each input sort s to be typeable (i.e. inhabit another sort s′ – in the above

definition we consistently use s′ for a sort that s inhabits);

• two extra sorts in the target system (˜s′, ˜s′′) on top of s̃;

• rules to allow for the formation of relations.

4. The following two relations between sorts must commute:

• axiomatic inhabitation (A);

• correspondence between a sort of types and a sort of relational propositions

(̃ ).

This point is not a strict requirement for the abstraction theorem to hold.

However, we found that without this requirement, the structure of the target

system is too unconstrained to make intuitive sense of it.

5. For each type-formation rule of the input system, there is

• a formation rule for quantification over individuals;

• a formation rule for relational-propositions, exactly mirroring that of the

input system.
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4.3 Coloured examples

A colour for naive set-theory Earlier in this paper, we have outlined how PTSs

can be used to represent concepts like propositions and proofs. One may want to

use special syntax for PTS constructs when the propositions-as-types interpretation

is intended: even though propositions and types are syntactically unified in PTSs,

it can be useful to make the intent explicit. Therefore, a special colour might be

reserved for the purpose of expressing logical formulae in some CPTSs. A possible

choice of concrete syntax is the following, reminiscent of naive set theory.

Tlogic = . . .

| T ∈ T (reverse application)

| {V :T | T} (abstraction)

| ∀V :T. T (quantification)

Classic presentations of parametricity use similar syntax, and by simply choosing

this syntax for some of the colours in our PTSs, we are able to underline the

similarity of our framework with previous work (Section 3.3).

A colour for implicit syntax Many proof assistants and dependently typed pro-

gramming languages (including Agda, Coq, and LEGO) provide the so-called

“implicit” syntax. The rationale for the feature is that, in the presence of precise

type information, some parts of terms (applications or abstractions) can be fully

inferred by the type-checker. In such cases, the user might want to actually leave out

such parts of the terms. It is convenient to do so by marking certain quantifications

as “implicit”. Then the presence of the corresponding applications and abstractions

can be inferred by the type-checker.

Such marking can be modelled by a two-colour PTS: one colour for regular

syntax, and another for “implicit syntax”. (Typically, every rule is available in both

the colours.) The syntax of CPTSs does not allow for omission of terms though,

so it can be used only for terms whose omitted parts have been filled in by the

type-checker. Miquel (2001, section 1.3.2) gives a detailed overview of two-colour

PTSs used for implicit syntax.

4.4 Implicit syntax

In the following sections, our examples are written using the Agda syntax, and take

advantage of the implicit syntax feature. The following colour-set is used: K = {e, i}
(e = explicit colour; i = implicit colour). Rather than using colour annotations, the

following (Agda-style) concrete syntax is used.

Definition 4.3 (Agda-style syntax for two-colour PTS )

T = C constant

| V variable

| T T application

| λV :T. T abstraction

| (V :T) → T dependent function space
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| T {T} implicit application

| λ{V :T}. T implicit abstraction

| {V :T} → T implicit dependent function space

In addition, implicit abstraction and application may be left out when the context

allows it (we do not formalise this notion). We use the following colour-mappings:

0 �→ e

ir �→ e ii �→ i

er �→ e ei �→ i

The instantiation of � � (Definition 3.9) to the above mapping yields the following

translation if written with the Agda-style syntax.

Example 4.4 (translation from types to relations, specialised to implicit arguments)

�s� = λx :s. x → s̃

�x� = xR

�(x :A) → B� = λf : ((x :A) → B). {x :A} → (xR :�A� x) → �B� (f x)

�F a� = �F� {a} �a�

�λx :A. b� = λ{x :A}. λxR :�A� x. �b�

�{x :A} → B� = λf : ({x :A} → B). {x :A} → (xR :�A� x) → �B� (f {x})
�F {a}� = �F� {a} �a�

�λ{x :A}. b� = λ{x :A}. λxR :�A� x. �b�

The usage of implicit syntax in the translation is not innocent: It is carefully

designed to take advantage of the type-inference mechanism to allow shorter

expressions of translations. For example, �id�, generated from id : T can now

hide four out of six abstractions:

�id� AR xR = xR

This example is typical. Indeed, we observed that for all terms A of type B, given the

typing constraint �A� : �B� A, arguments can be inferred at every implicit application

in the expansion of �A�. Likewise, every implicit abstraction is inferable and can be

omitted. We have found these shortcuts to be essential to readability, as they hide

much of the noise generated by the relational transformation. Therefore, we have

taken advantage of inference wherever possible in the examples presented in this

paper, starting from Section 5.

5 Constants and datatypes

While the above development assumes as input PTSs with C = S, it is possible to

add constants to the system and retain parametricity as long as each constant is

parametric. That is, for each new (“impure”) axiom �S c : A (where c is an arbitrary
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constant and A an arbitrary term, not a mere sort) we require a term �c� such that the

judgement �Sr �c� : �A� c holds. If the constants come with additional β-conversion

rules, the translation must also preserve conversion so that Lemma 3.11 holds in the

extended system: for any term A involving c, A −→β A′ =⇒ �A� −→∗
β �A′�.

One source of constants in many languages is datatype definitions. In the rest of

this section we investigate the implications of parametricity conditions on datatypes,

and give two translation schemes for inductive families (as an extension of Iω). In

Section 5.3 we show how the term �c� can be constructed from pairs and units, while

in Section 5.4 we define it using another datatype definition (in which we have a

constructor named �c�).

5.1 Parametricity and elimination

Reynolds (1983) and Wadler (1989) assume that each type constant K : � is

translated to the identity relation. This definition is certainly compatible with the

condition required by Theorem 3.12 for such constants: �K� : ��� K K, but so are

many other relations. Are we missing some restriction for constants? This question

might be answered by resorting to a translation to pure terms via Church encodings

(Böhm & Berarducci 1985) as Wadler (2007) does. However, in the hope to shed a

different light on the issue, we give another explanation, using our machinery.

Consider a base type, such as Bool : �, equipped with constructors true : Bool

and false : Bool. In order to derive parametricity theorems in a system containing

such a constant Bool, we must define �Bool�, satisfying � �Bool� : ��� Bool.

What are the restrictions put on the term �Bool�? First, we must be able to define

�true� : �Bool� true. Therefore, �Bool� true must be inhabited. The same reasoning

holds for the false case.

Second, to write any useful program using Booleans, a way to test their value is

needed. This may be done by adding a constant

if : Bool → (A : �) → A → A → A

such that if true A x y −→β x and if false A x y −→β y.

Now, if a program uses if , we must also define �if� of type

�Bool → (A : �) → A → A → A� if

for parametricity to work. Let us expand the type of �if� and attempt to give a

definition case by case:

�if� : {b1 b2 : Bool} → (bR : �Bool� b1 b2) →
{A1 A2 : �} → (AR : ��� A1 A2) →
{x1 : A1 } → {x2 : A2 } → (xR : AR x1 x2) →
{y1 : A1 } → {y2 : A2 } → (yR : AR y1 y2) →
AR (if b1 A1 x1 y1) (if b2 A2 x2 y2)

�if� {true} {true} bR xR yR = xR

�if� {true} { false} bR xR yR = ?tf
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�if� { false} {true} bR xR yR = ?ft

�if� { false} { false} bR xR yR = yR

(From this example onwards, we use a layout convention to ease the reading of

translated types: each triple of arguments, corresponding to one argument in the

original function, is written on its own line if space permits.)

In order to complete the above definition, we must provide a type-correct term

for each question mark. For ?tf , this means that we must construct a term of type

AR x1 y2. Neither xR : AR x1 x2 nor yR : AR y1 y2 can help us here. The only liberty

left is in bR : �Bool� true false. If we let �Bool� true false be falsity (⊥, the empty

type), then this case can never be reached and we need not give an equation for it.

This reasoning holds symmetrically for ?ft . Therefore, we have the restrictions:

�Bool� x x = some inhabited type

�Bool� x y = ⊥ if x �= y

We have some freedom regarding picking “some inhabited type”, so we choose

�Bool� x x to be truth (�), making �Bool� an encoding of the identity relation.

An intuition behind parametricity is that, when programs “know” more about a

type, the parametricity condition becomes stronger. The above example illustrates

how this intuition can be captured within our framework: having the eliminator if

constrains the interpretation of Bool. We will make further use of this in Section 7.2.

5.2 Inductive families

Many languages permit datatype declarations for Bool, Nat, List, etc. Dependently

typed languages typically allow the return types of constructors to have different

arguments, yielding inductive families (Paulin-Mohring 1993; Dybjer 1994) such as

the family Vec, in which the type is indexed by the number of elements. In Figure 3

we introduce Agda data syntax and some example datatypes and inductive families,

which will be used later, including the sigma type, Σ which contains (dependent)

pairs and the identity relation ≡ which contains proofs of reflexivity. We sometimes

write (x : A) × B for Σ A (λx :A. B), and elements of this type as (a, b), omitting

the arguments A and λx :A. B, handled by implicit syntax. For any values x and y

of type A, the term x ≡ y is a type, but only the types on the diagonal x ≡ x are

inhabited (by the canonical term refl).

In an “impure” PTS setting, datatype declarations can be interpreted as a

simultaneous declaration of formation and introduction constants and also an

eliminator and rules to analyse values of that datatype.

Example 5.1

The definition of List in Figure 3 gives rise to the following constants and rules:

List : (A : �) → �

nil : {A : �} → List A

cons : {A : �} → A → List A → List A
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data ⊥ : � where

-- no constructors

data � : � where

tt : �
data Bool : � where

false : Bool

true : Bool

data Nat : � where

zero : Nat

succ : Nat → Nat

data List (A : �) : � where

nil : List A

cons : A → List A → List A

data Vec (A : �) : Nat → � where

nilV : Vec A zero

consV : A → (n : Nat) → Vec A n → Vec A (succ n)

data Σ (A : �) (B : A → �) : � where

, : (a : A) → B a → Σ A B

data ≡ {A : �} (a : A) : A → � where

refl : a ≡ a

Fig. 3. Examples of simple datatypes and inductive families (introducing Agda datatype

syntax through well-known examples).

List-elim : {A : �} → (P : List A → �) →
(base : P nil) →
(step : (x : A) → (xs : List A) → P xs → P (cons x xs)) →
(ys : List A) → P ys

List-elim P base step nil = base

List-elim P base step (cons x xs) = step x xs (List-elim P base step xs)

Note that the datatype parameter A is an implicit parameter of the constructor and

eliminator constants.

More generally, family declarations of sort s (� in the examples) have the typical

form:2

data T (a :A) : (n :N) → s where

c : (b :B) → (u : ((x :X) → T a i)) → T a v

Arguments of the type constructor T may be either parameters a, which scope over

the constructors and are repeated at each recursive use of T, or indices n, which may

vary between uses. Data constructors c have non-recursive arguments b, whose types

are otherwise unrestricted, and recursive arguments u with types of a constrained

form (T can not appear in X).

In PTS style we have the following formation and introduction constants:

T : (a :A) → (n :N) → s -- type

c : {a :A} → (b :B) → ((x :X) → T a i) → T a v -- constructor

and also a corresponding eliminator:

T-elim : {a :A} →
(P : ((n :N) → T a n → s)) →
Casec → (n :N) → (t :T a n) → P n t

where the type Casec of the case for each constructor c is

(b :B) → (u : ((x :X) → T a i)) → ((x :X) → P i (u x)) → P v (c {a} b u)

2 We show only one of the each element (parameter a, index n, constructor c, etc.) here. The generalisation
to arbitrary numbers is straightforward but notationally cumbersome.
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with one evaluation rule (β-reduction) for each constructor c:

T-elim {a} P e v (c {a} b u) = e b u (λx :X. T-elim {a} P e i (u x)) (1)

As in the List example, the datatype parameter A is an implicit parameter of the

constructor and eliminator constants.

We often use corresponding pattern matching definitions instead of these elimi-

nators (Coquand 1992).

In the following sections, we consider two ways to “generically” define a proof

term �c� : �T � c . . . c for each constant c : T introduced by the data definition.

5.3 Deductive-style translation

In Section 5.1 we gave a definition of �Bool� and �if� for a simplified eliminator if .

In this subsection we present similar deductive-style translations for several concrete

examples, and then deal with the general case. We define each proof as a term (using

pattern matching to simplify the presentation) built up from simpler building blocks

(pairs and units). (In Section 5.4 the inductive-style translation, we instead translate

datatypes to families; data to data.)

Lists From the definition of List in Figure 3, we have the constant List : � → �,

so List is an example of a type constructor, and thus �List� should be a relation

transformer. As with �Bool�, lists are related only if their constructors match. Two

nil lists are trivially related; as in the Bool case we use � for the nullary constructor.

Two cons lists are related only if their components are related; the proof of that

relationship is a pair of proofs for the components, represented as a product (×):

�List� : �� → �� List List

�List� AR nil nil = �
�List� AR (cons x1 xs1) (cons x2 xs2) = AR x1 x2 × �List� AR xs1 xs2

�List� AR = ⊥

This is exactly the definition of Wadler (1989): Lists are related iff their lengths are

equal and their elements are related point-wise. The translations of the constructors

build the corresponding proofs:

�nil� : �(A : �) → List A� nil nil

�nil� AR = tt

�cons� : �(A : �) → A → List A → List A� cons cons

�cons� AR xR xsR = (xR, xsR)

List rearrangements The first example of a parametric type examined by Wadler

(1989) is the type of list rearrangements: R = (A : �) → List A → List A.

Intuitively, functions of type R know nothing about the actual argument type A, and

therefore they can only produce the output list by taking elements from the input

list. Here we recover that result as an instance of Theorem 3.12.
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Applying the translation to R yields:

�R� : R → R → �

�R� r1 r2 = {A1 A2 : �} → (AR : ��� A1 A2) →
{xs1 : List A1 } → {xs2 : List A2 } → (xsR : �List� AR xs1 xs2) →
�List� AR (r1 A1 xs1) (r2 A2 xs2)

In words: Two list rearrangements r1 and r2 are related iff for all types A1 and A2

with relation AR, and for all lists xs1 and xs2 point-wise related by AR, the resulting

lists r1 A1 xs1 and r2 A2 xs2 are also point-wise related by AR. By Theorem 3.12,

�R� r r holds for any term r of type R. This means that applying r preserves (point-

wise) any relation existing between input lists of equal length. By specialising AR to

a function (AR a1 a2 = f a1 ≡ a2), we obtain the following well-known result:

(A1 A2 : �) → (f : A1 → A2) → (xs : List A1) →
map f (r A1 xs) ≡ r A2 (map f xs)

(This form relies on the facts that �List� preserves identities and composes with

map.)

Proof terms We have seen that applying � � to a type yields a parametricity property

for terms of that type, and by Theorem 3.12 we can also apply � � to a term of that

type to obtain a proof of the property. As an example, consider a rearrangement

function odds that returns every second element from a list:

odds : (A : �) → List A → List A

odds A nil = nil

odds A (cons x nil) = cons x nil

odds A (cons x (cons xs)) = cons x (odds A xs)

Any list rearrangement function must satisfy the parametricity condition �R� seen

above, and �odds� is a proof that odds satisfies parametricity. Expanding it yields:

�odds� : �(A : �) → List A → List A� odds odds

�odds� AR {nil} {nil} = tt

�odds� AR {cons x1 nil} {cons x2 nil} (xR, ) = (xR, tt)

�odds� AR {cons x1 (cons xs1)} {cons x2 (cons xs2)} (xR, ( , xsR)) =

(xR, �odds� AR {xs1 } {xs2 } xsR)

We see (by textual matching of the definitions) that �odds� performs essentially the

same computation as odds, on two lists in parallel. However, instead of building

a new list, it keeps track of the relations (in the R-subscripted variables). This

behaviour stems from the last two cases in the definition of �odds�. Performing such

a computation is enough to prove the parametricity condition.

Vectors The translations of the constants of Vec are simple extensions of those for

List, with an additional requirement that sizes be related by the identity relation

�Nat�:
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�Vec� : �(A : �) → Nat → �� Vec

�Vec� AR nR nilV nilV = �
�Vec� AR {succ n1 } {succ n2 } nR (consV n1 x1 xs1) (consV n2 x2 xs2) =

AR x1 x2 × (nR : �Nat� n1 n2) × �Vec� AR nR

�Vec� AR nR xs1 xs2 = ⊥
�nilV� : �{A : �} → Vec A zero� nilV

�nilV� AR = tt

�consV� : �{A : �} → A → (n : Nat) → Vec A n → Vec A (succ n)� consV

�consV� AR xR nR xsR = (xR, (nR, xsR))

In the List example above we omitted the translation of the elimination constant

List-elim. Here we shall handle the more complex Vec-elim, which has the type

Vec-elim : {A : �} →
(P : (n : Nat) → Vec n A → �) →
(en : P zero (nilV A)) →
(ec : (x : A) → (n : Nat) → (xs : Vec n A) →

P n xs → P (succ n) (consV x n xs)) →
(n : Nat) → (v : Vec n A) → P n v

The translation of this constant has a large type, but a simple definition:

�Vec-elim� : � {A : �} →
(P : (n : Nat) → Vec n A → �) →
(en : P zero (nilV A)) →
(ec : (x : A) → (n : Nat) → (xs : Vec n A) →

P n xs → P (succ n) (consV x n xs)) →
(n : Nat) → (v : Vec n A) → P n v� Vec-elim

�Vec-elim� AR PR enR ecR {nilV} {nilV} = enR

�Vec-elim� AR PR enR ecR nR {consV x1 n1 xs1 } {consV x2 n2 xs2 } (xR, (nR, xsR))

= ecR xR nR xsR (�Vec-elim� AR PR enR ecR nR xsR)

Dependent pairs Two pairs (a1, b1) and (a2, b2) are related by �A × B� if their

respective components are related (by �A� and �B�). A constructive reading is that

a proof that two pairs are related can be represented as a pair of proofs. This

generalises nicely to the dependent case: a dependent pair (of the Σ type from

Figure 3) translates to another dependent pair. That is, a pair (a, b) : Σ A B (where

a : A and b : B a) translates to

(�a�, �b�) : �Σ� �A� �B� (a1, b1) (a2, b2)

where

�Σ� : {A1 A2 : �} (AR : ��� A1 A2)

{B1 : A1 → �} {B2 : A2 → �}
(BR : {a1 : A1 } {a2 : A2 } → AR a1 a2 → ��� (B1 a1) (B2 a2)) →

��� (Σ A1 B1) (Σ A2 B2)

�Σ� AR BR (a1, b1) (a2, b2) = Σ (AR a1 a2) (λ aR → BR aR b1 b2)
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Inductive families – general case For the “typical form” of an inductive family we

begin with the translation of Equation (1) for each constructor c:

�T-elim {a} P e v� (c {a} b u) (�c� {a} aR {b} bR {u} uR) = �RHS� (2)

for RHS = e b u (λx :X. T-elim {a} P e i (u x)). To turn this into a pattern

matching definition of �T-elim�, we need a suitable definition of �c�, and similarly

for the constructors in v. The only arguments of �c� not already in scope are bR and

uR, so we package them as a dependent pair because the type of uR may depend on

that of bR. We define

�T� : �(a :A) → (n :N) → s� T

�T� {a} aR {v} �v� (c {a} b u) = (bR :�B� b) × �(x :X) → T a i� u

�T� {a} aR {u} uR t = ⊥
�c� : �({a :A}) → (b :B) → ((x :X) → T a i) → T a v� c

�c� aR bR uR = (bR, uR)

Substituting the above definition of �c� into Equation (2), we obtain a clause for the

definition of �T-elim�:

�T-elim {a} P e v� (c {a} b u) (bR, uR) = �RHS�

These clauses cover only cases where the constructors match, but because �T� yields

⊥ otherwise, that is complete coverage.

The question whether the translation of the eliminator and its reduction rule are

inductively well-founded is delayed until we have completed the presentation of the

Inductive-style translation.

5.4 Inductive-style translation

Another way of defining the translations �c� of the constants associated with a

datatype is to use an inductive definition (using data) in contrast with the deductive

definitions (construction using pairs and units) of the previous section.

Deductive- and inductive-style translations define the same relation, but the

objects witnessing the instances of the inductively defined relation record additional

information, namely which rules are used to prove membership of the relation.

However, since the same constructor never appears in more than one case of the

inductive definition, that additional content can be recovered from a witness of the

deductive-style definition; therefore, the two styles are isomorphic. This will become

clear in the upcoming examples.

Booleans For the data-declaration of Bool (from Figure 3), we can define translations

of the datatype and its constructors directly with another inductive definition:

data �Bool� : ��� Bool where

�true� : �Bool� true

�false� : �Bool� false
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The main difference from the deductive-style definition is that it is possible, by

analysis of a value of type �Bool�, to recover the arguments of the relation (either

all true, or all false).

The elimination constant for Bool is

Bool-elim : (P : Bool → �) → P true → P false → (b : Bool) → P b

Similarly, our new datatype �Bool� (with arity n = 2) has an elimination constant

with the following type:

�Bool�-elim : (C : (a1 a2 : Bool) → �Bool� a1 a2 → �) →
C true true �true� → C false false �false� →
{b1 b2 : Bool} → (bR : �Bool� b1 b2) → C b1 b2 bR

We can define �Bool-elim� using the elimination constants Bool-elim and

�Bool�-elim as follows:

�Bool-elim� :

{P1 P2 : Bool → �} → (PR : �Bool → �� P1 P2) →
{x1 : P1 true} → {x2 : P2 true} → (PR �true� x1 x2) →
{y1 : P1 false} → {y2 : P2 false} → (PR �false� y1 y2) →
{b1 b2 : Bool} → (bR : �Bool� b1 b2) →
PR bR (Bool-elim P1 x1 y1 b1)

(Bool-elim P2 x2 y2 b2)

�Bool-elim� {P1 } {P2 } PR {x1 } {x2 } xR {y1 } {y2 } yR

= �Bool�-elim

(λ b1 b2 bR → PR bR (Bool-elim P1 x1 y1 b1)

(Bool-elim P2 x2 y2 b2))

xR yR

Lists For List, as introduced in Figure 3, we can again define translations of the

datatype and its constructors with a corresponding new inductive definition:

data �List� (�A : ��) : ��� (List A) where

�nil� : �List A� nil

�cons� : �A → List A → List A� cons

or after expansion (for n = 2):

data �List� {A1 A2 : �} (AR : ��� A1 A2) : List A1 → List A2 → � where

�nil� : �List� AR nil nil

�cons� : {x1 : A1 } → {x2 : A2 } → (xR : AR x1 x2) →
{xs1 : List A1 } → {xs2 : List A2 } → (xsR : �List� AR xs1 xs2) →
�List� AR (cons x1 xs1)

(cons x2 xs2)

The above definition encodes the same relational action as that given in Section 5.3.

Again, the difference is that the derivation of a relation between lists xs1 and xs2 is

available as an object of type �List� AR xs1 xs2.
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Proof terms The proof term for the list-rearrangement example can be constructed

in a similar way to the deductive one. The main difference is that the target lists are

also built and recorded in the �List� structure. In short, this version has more of a

computational flavour than the deductive version,

�odds� : �(A : �) → List A → List A� odds odds

�odds� AR �nil� = �nil� AR

�odds� AR (�cons� xR �nil�) = �cons� AR xR (�nil� AR)

�odds� AR (�cons� xR (�cons� xsR)) = �cons� AR xR (�odds� AR xsR)

Vectors We can apply the same translation method to inductive families. For

example, the translation of the family Vec of lists indexed by their length is

data �Vec� (�A : ��) : �Nat → �� (Vec A) where

�nilV� : �Vec A zero� nilV

�consV� : �{x : A} → (n : Nat) → Vec A n → Vec A (succ n)� consV

or, if we expand the translation of the types:

data �Vec� {A1 A2 : �} (AR : A1 → A2 → �) :

{n1 n2 : Nat} → (nR : �Nat� n1 n2) →
Vec A1 n1 → Vec A2 n2 → � where

�nilV� : �Vec� AR �zero� nilV nilV

�consV� : {x1 : A1 } → {x2 : A2 } → (xR : AR x1 x2) →
{n1 n2 : Nat} → (nR : �Nat� n1 n2) →
{xs1 : Vec A1 n1 } → {xs2 : Vec A2 n2 } →

(xsR : �Vec� AR nR xs1 xs2) →
�Vec� AR (�succ� nR) (consV x1 n1 xs1) (consV x2 n2 xs2)

The relation obtained by applying � � encodes that vectors are related if their lengths

are the same and their elements are related point-wise. The difference with the List

version is that the equality of lengths is encoded in �consV� as an �Nat� (identity)

relation.

As in the Bool case, we can define the translation of Vec-elim in terms of

�Vec�-elim:

� Vec-elim � : � {A : �} →
(P : (n : Nat) → Vec n A → �) →
(en : P zero (nilV A)) →
(ec : (x : A) → (n : Nat) → (xs : Vec n A) →

P n xs → P (succ n) (consV A x n xs)) →
(n : Nat) → (v : Vec n A) → P n v� Vec-elim

� Vec-elim A P en ec� = �Vec�-elim AR

(λ �n : Nat, v : Vec n A� . �P n v� (Vec-elim A P en ec v))

enR

(λ �x : A, n : Nat, xs : Vec n A� . �ec x n xs� (Vec-elim A P en ec xs))
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Inductive families – general case Starting from an inductive family of the same

typical form as in the previous section,

data T (a :A) : K where

c : C

where K = (n :N) → s and C = (b :B) → ((x :X) → T a i) → T a v, by applying our

translation to the components of the data-declaration, we obtain an inductive family

that defines the relational counterparts of the original type T and its constructors c

at the same time:

data �T� �a :A� : �K� (T a) where

�c� : �C� (c {a})

It remains to supply a proof term for the parametricity of the elimination constant

T-elim. We start by inlining C and K; the inductive family is parametrised on A,

indexed by N, and has the form

data T (a :A) : (n :N) → s where

c : (b :B) → ((x :X) → T a i) → T a v

The translated family is parametrised by a relation on A and lifts relations on N to

relations on T a n. The definition follows from mechanical application of � � to K

and C:

data �T� (a :A) (aR :�A� a) : {n :N} → (nR :�N� n) → T a n → s̃ where

�c� : {b :B} → (bR :�B� b) → �((x :X) → T a i) → T a v� (c {a} b)

Each inductive family comes with an elimination constant, and for elimination of

�T� to sort s̃e it has type

�T�-elim : {a :A} → {aR :�A� a} →
(Q :{n :N} → (nR :�N� n) → (t :T a n) → �T a n� t → s̃e) →
Case�c� →
{n :N} → (nR :�N� n) → (t :T a n) → (tR :�T a n� t) → Q {n} nR t tR

where Case�c� is

{b :B} → (bR :�B� b) →
{u : (x :X) → T a i} → (uR :�(x :X) → T a i� u) →
({x :X} → (xR :�X� x) → Q {i} �i� (u x) �u x�) →
Q {v} �v� (c {a} b u) �c {a} b u�

Using the eliminator (�T�-elim) of the translated family and the eliminator

(T-elim) of the original family, the proof term �T-elim� can be defined as follows:

�T-elim� : �{a :A} → (P : ((n :N) → T a n → s)) → (e :Casec) →
(n :N) → (t :T a n) → P n t� T-elim

�T-elim {a} P e� = �T�-elim {a} {aR} Q f
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where

Q {n} nR t tR = �P n t� (T-elim {a} P e n t) (3)

f {b} bR {u} uR = �e b u� {(λx :X. T-elim {a} P e i (u x))} (4)

We proceed to check that f has the right return type. Because

e b u : ((x :X) → P i (u x)) → P v (c {a} b u)

we have (by the abstraction theorem)

�e b u� : {p : (x :X) → P i (u x)} →
({x :X} → (xR :�X� x) → �P i (u x)� (p x)) →
�P v (c {a} b u)� (e b u p)

and hence the type of f {b} bR {u} uR is:

({x :X} → (xR :�X� x) → �P i (u x)� (T-elim {a} P e i (u x))) →
�P v (c {a} b u)� (e b u (λx :X. T-elim {a} P e i (u x)))

= { datatype equation (1) from page 19 }
({x :X} → (xR :�X� x) → �P i (u x)� (T-elim {a} P e i (u x))) →
�P v (c {a} b u)� (T-elim {a} P e v (c {a} b u))

= { definition of Q (3) }
({x :X} → (xR :�X� x) → Q {i} �i� (u x) �u x�) →
Q {v} �v� (c {a} b u) �c {a} b u�

Because our translation is syntactic, we must discuss whether the constructed

inductive family is well-founded. There is more than one syntactic criterion that

ensures that a family is well-founded. It is beyond the scope of this paper to discuss

the merits of each criterion. We pick the following one, which is, for example, used in

the Agda system. If recursive occurrences of the type occur only in strictly positive

positions in the type of the arguments of its constructors, then the family is well-

founded. Because our translation preserves polarities, it preserves well-foundedness,

according to the above criterion.

From this we deduce that the deductive translation is well-founded as well.

Indeed, the eliminator has the same type in both the cases (considering the type

of the inductive family itself as abstract), and its reduction rules are also

identical.

6 Internalisation

We know that free theorems hold for any term of the PTS S (and these theorems are

expressible and provable in Sr). Unfortunately, users of the logical system Sr which

reflects S cannot take advantage of that fact: they have to redo the proofs for every

new program (even though the proof is derivable, thanks to � �). We would like the

instances of the abstraction theorem to come truly for free: that is, extend Sr with a

suitable construct that makes parametricity arguments available for every program
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in S . To do so, we construct a new system Sr
p , which is the system Sr extended with

following axiom schema.

Axiom 6.1 (parametricity)

For every closed type B of sort s (�S B : s), assume

paramB : ∀kix :B. �B� x . . . x

The consistency of the new system remains to be shown. This can be done via

a sound translation from Sr
p to Sr . The first attempt would be to extend to do so

by translating paramB A into �A�. Unfortunately, the above fails if A is an open

term, because �A� contains occurrences of the variable xR, which is not bound in

the context of paramB A. Therefore, we need a more complex interpretation. Even

with a more complex interpretation accounting for free variables in A, we need to

stick to closed types. Indeed, if the type B were to contain free variables, the type

of paramB would not be well-scoped.

Parametricity witnesses Our attempt to show consistency by giving a local interpre-

tation of the parametricity principle failed. Therefore, we instead can do a “global”

transformation of a closed term in Sr
p to a term in Sr .

The idea is to transform the program such that, whenever a variable (x : A)

is bound, a witness (xR : �A� x . . . x) that x satisfies the parametricity condition

is bound at the same time. Thus, functions are modified to take an additional

argument witnessing that the original arguments are parametric. This additional

argument is used to interpret occurrences of x in the argument of paramB . At every

application, the parametricity witness can be reconstructed using the � � translation

of the original argument. For example, the context

Nat : �,

suc : Nat → Nat,

m : Nat,

X : ˜�,

p : Nat → X

would be translated to:

Nat : �, �Nat� : Nat → Nat → ˜�,

suc : Nat → Nat, �suc� : � Nat → Nat � suc suc,

m : Nat, �m� : � Nat � m m,

X : ˜�,

p : (n : Nat) → �Nat� n n → X

The term p (suc m) is typeable in the source context, and would be translated to

the term p (suc m) (�suc m�). In the same context, paramNat m would merely be

translated to �m�.

General case In the rest of the section, we define the translation 〈| |〉 from terms

of Sr
p to terms of Sr . The translation is similar to � �, with a number of differences:
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• The new translation deals with a richer language: There is a structure in the

space of sorts, which can be either of the form s or s̃. Further, it does not

duplicate the bindings whose types are not in the source language (the sort

is of the form s̃). Therefore, it behaves differently depending on this sort,

and using sorts, we must therefore distinguish two parts of the PTS: one (the

source language of � �), which deals with programs and types of sort s, and

another that deals with parametricity proofs and propositions of sort s̃ (the

target language).

• The translation does not transform types to relations.

• The new translation does not replicate the bindings: It adds at most one

additional binding, regardless of the arity of param. A consequence is that the

renaming operation (Definition 3.1) must be modified such that occurrences

of variables bound in bindings processed by 〈| |〉 are not renamed.

As hinted above, 〈| |〉 does not work on all possible system Sr . The precise set of

restrictions is as follows.

Definition 6.2 (Restrictions for internalisation)

1. Let ˜S = S
r − S. If s ∈ S, then s̃ ∈ ˜S. This ensures that the sorts of

types of the sources language can always be distinguished from the sorts of

propositions.3

2. If (k, s1, s2, s3) ∈ R
r and s3 ∈ S, then s1 ∈ S and s2 ∈ S. This ensures that terms

and types of the source language can contain no propositions of parametricity

nor their proofs.

3. Let Kv ⊆ K and Kw = K−Kv . (In the following, we will use the meta-syntactic

variable a for colours in the first group and b for colours in the second one.)

If (k, s1, s2, s3) ∈ R then s1 ∈ S ↔ k ∈ Kv .

This ensures that quantifications over terms in the input language can be

recognised syntactically from quantifications over parametricity propositions

and proofs. This requirement is for convenience only, as suitable colours can

be inferred from a typing derivation.

4. For each rule s1
v

�s̃2 there must be a colour tv ∈ Kw and a rule s̃1
tv
�s̃2.

For example, the system described in Section 3.3 satisfies these conditions.

In the following, we assume that paramB is always saturated. Doing so causes no

loss of generality: η-expansion can be applied to obtain the desired form. We define

the translation 〈| |〉 from terms typed in Sr
p to terms of Sr as follows.

3 This restriction rules out (non-trivial) reflective systems.
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Definition 6.3 (Compilation of param)

〈|s|〉 = s

〈|x|〉 = x

〈|paramB F A0 . . . Al |〉 = �F� A0 . . . Al

〈|(x :A)
v→ B|〉 = (x :A)

v→ (xR :�A� x . . . x)
tv→ 〈|B|〉

〈|λvx :A. b|〉 = λvx :A. λtvxR :�A� x . . . x. 〈|b|〉
〈|F •va|〉 = 〈|F |〉 •va •tv�a� (†)

〈|(x :A)
w→ B|〉 = (x :〈|A|〉) w→ 〈|B|〉

〈|λwx :A. b|〉 = λwx :〈|A|〉. 〈|b|〉
〈|F •wa|〉 = 〈|F |〉 •w〈|a|〉 (∗)

〈|Γ, x :A|〉 = 〈|Γ|〉, x :A, xR :�A� x . . . x if Γ � A : s

〈|Γ, x :A|〉 = 〈|Γ|〉, x :〈|A|〉 if Γ � A : s̃

Lemma 6.4
Assuming s ∈ S, then

1. if Γ �Sr B : s, then param cannot appear in B and
2. if Γ �Sr A : B, then param cannot appear in A.

Proof
The proof is done by simultaneous induction on typing derivations.

• In the base case, a constant cannot be param, because its type has a sort of

form s̃, which is distinct from s, by assumption 1 in Definition 6.2.
• In the induction cases, we take advantage of restriction 2 in Definition 6.2 to

ensure that subterms also satisfy the conditions of the lemma. �

Theorem 6.5
All occurrences of param are removed by 〈| |〉.
Proof
The proof is done by induction on terms.

• The base case (paramB) removes occurrences.
• No other occurrences are introduced. In particular, in the line marked with

an asterisk (∗); the argument of sort s̃ (which may contain param) is not

duplicated. In line marked (†), the term a cannot contain any occurrence of

param, as shown by Lemma 6.4. �

Theorem 6.6 (soundness)
〈| |〉 translates valid judgements in Sr

p to valid judgements in Sr ,

Γ �Sr
p
A : B ⇒ 〈|Γ|〉 �Sr 〈|A|〉 : 〈|B|〉

Proof sketch
The proof proceeds by induction on the typing derivation. �
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7 Applications

Sections 3 and 5 contain simple applications of our setting. In this section we see

how elaborate constructions can be handled. All examples of this section fit within

the system Iω augmented with inductive definitions.

7.1 A library for applications

Applying � � by hand to non-trivial examples can be tedious. The reader eager

to experiment is suggested to use computer aids. One possible tool is that of

Böhme (2007), which computes the relational interpretation of any Haskell type.

Unfortunately, the above tool has not been extended to support dependent types.

To generate the examples for this paper, we have used an Agda library (Bernardy

2010) instead. An advantage of the library approach is that one can use a single

framework to write programs and reason using free theorems about them.

7.2 Proof irrelevance and parametricity

In this section we show that any two proofs of a given proposition can be treated

as related. In a predicative system with inductive families, such as Agda, there are

at least two ways to represent propositions. A common choice is to use � for the

sort of propositions, as we have suggested in Section 2.1. One issue is then that

quantification over types in � is in �1, hence not a proposition. The issue can be

side-stepped by encoding propositions in a universe like the following Prop, where

quantification using π yields a proposition in the Prop universe,

data Prop : �1 where

top : Prop

bot : Prop

∧ : Prop → Prop → Prop

π : (A : �) → (f : A → Prop) → Prop

One can then construct proposition objects, for example a usual ordering between

naturals

� : Nat → Nat → Prop

zer � n = top

suc m � zer = bot

suc m � suc n = m � n

or the predicate that n is the biggest natural:

supremum : Nat → Prop

supremum n = π Nat (λ m → m � n)

The intention is for propositions to be interpreted as the set of their proofs. The

following function realises this interpretation in the standard way: truth is interpreted

as a singleton type, falsity as an empty type, intersection of propositions as a pair

of proofs, and quantification as a product.
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Proof : Prop → �

Proof top = �
Proof bot = ⊥
Proof (a ∧ b) = Proof a × Proof b

Proof (π A f) = (a : A) → Proof (f a)

However, to enable changing the parametricity translation of proofs, we will instead

just postulate an abstract Proof : Prop → � and a few constants, chosen so that

proofs (terms of type Proof p for some p : Prop) only can interact in limited ways

with programs (a : A : �). We allow standard proof constructions: introduction

(abs) and elimination (app) of π, introduction (pair) and elimination (proj1,proj2)

of, ∧ and introduction (obvious) of top. In addition, given any proof of falsity,

a program of an arbitrary type can be constructed (using botElim). By seeing the

arguments as premisses and the results as conclusions, one recognises the standard

inference rules in the types of these constants

app : (A : �) → (f : A → Prop) → Proof (π A f) → (a : A) → Proof (f a)

abs : (A : �) → (f : A → Prop) → ((a : A) → Proof (f a)) → Proof (π A f)

proj1 : (a b : Prop) → Proof (a ∧ b) → Proof a

proj2 : (a b : Prop) → Proof (a ∧ b) → Proof b

pair : (a b : Prop) → Proof a → Proof b → Proof (a ∧ b)

obvious : Proof top

botElim : Proof bot → (A : �) → A

A consequence of restricting oneself to an abstract representation of proofs is

that the structure of proofs is irrelevant in the meaning of programs. The reason is

that programs cannot assume that the structure of a proof corresponds that of the

proposition being examined in any way.

Note that programs could depend on the structure of proofs if we were to use the

definition of Proof given above, and in that case our relational interpretation would

translate proofs to witnesses that these are related. For example, given the type of a

lookup function in a list bound by length

lk : {A : �} → (n : Nat) → (xs : List A) → Proof (n < len xs) → A

one gets the following relation, which carries an assumption pR requiring the proofs

p1 and p2 to be related. That assumption would have a complicated formulation if

we had taken the standard interpretation of the set of proofs,

�lk� : {A1 A2 : �} (AR : A1 → A2 → �)

{n1 n2 : Nat} (nR : �Nat� n1 n2)

{xs1 : List A1 } {xs2 : List A2 } (xsR : �List� AR xs1 xs2)

{p1 : Proof (n1 < len xs1)}
{p2 : Proof (n2 < len xs2)}
(pR : �Proof� �n < len xs� p1 p2) →
AR (lk n1 xs1 p1) (lk n1 xs1 p1)



32 J.-P. Bernardy et al.

However, by axiomatising Proof , we can pick any translation �Proof� that also

satisfies other axioms. In fact, we can assert that all proofs are related:

�Proof� : �proposition → ∗� Proof Proof

�Proof� x1 x2 = �

The assumptions requiring proofs to be related then reduce to �; effectively

disappearing (because values of singleton types like � can always be inferred).

For the above overriding to be sound, one needs to provide a translation of app,

abs, proj1, proj2, pair, obvious, and botElim respecting the parametricity condition.

All but the last are easy to translate: their results are Proofs, so the result type of

their translation is �. Hence, constant functions returning tt do the job. Translating

botElim can seem more tricky, because it has a proof as argument, the assertion that

all proofs are related makes �botElim� potentially more difficult to write, as it has

one less assumption to work with. However, because botElim already has a proof

of falsity as an argument, its translation has two of them. Hence, one can prove

anything �botElim� by using them, making the relational witness superfluous,

�botElim� : (b1 : Proof bot) → (b2 : Proof bot) → � →
�(A : �) → A� (botElim b1) (botElim b2)

�botElim� b1 b2 = botElim b1 (�(A : �) → A� (botElim b1) (botElim b2))

In summary, assuming proof-irrelevance, proof arguments do not strengthen

parametricity conditions in useful ways. One often (but not always) does not care

about the actual proof of a proposition, but merely that it exists. In that case,

knowing that two proofs are related adds no information.

7.3 Type classes

What if a function is not parametrised over all types, but only types equipped with

decidable equality? One way to model this difference in a PTS is to add an extra

parameter to capture the extra constraint. For example, a function nub : Nub

removing duplicates from a list may be given the following type:

Nub = (A : �) → Eq A → List A → List A

The equality requirement itself may be modelled as a mere comparison function:

Eq A = A → A → Bool. In that case, the parametricity statement is amended

with an extra requirement on the relation between types, which expresses that eq1

and eq2 must respect the AR relation. Formally:

�Eq A� eq1 eq2 = {a1 : A1 } → {a2 : A2 } → AR a1 a2 →
{b1 : A1 } → {b2 : A2 } → AR b1 b2 →
�Bool� (eq1 a1 b1) (eq2 a2 b2)

�Nub� n1 n2 =

{A1 A2 : �} → (AR : ��� A1 A2) →
{eq1 : Eq A1 } → {eq2 : Eq A2 } → �Eq A� eq1 eq2 →
{xs1 : List A1 } → {xs2 : List A2 } → �List A� xs1 xs2 →
�List� AR (n1 A1 eq1 xs1) (n2 A2 eq2 xs2)
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So far, this is just confirming the informal description in Wadler (1989). But with

access to full dependent types, one might wonder, what if we model equality more

precisely, for example, by requiring eq to be reflexive?

Eq′ A = (eq : A → A → Bool) × Refl eq

Refl eq = (x : A) → eq x x ≡ true

In the case of Eq′, the parametricity condition does not become more exciting. It

merely requires the proofs of reflexivity at A1, A2 to be related. This extra condition

adds nothing new, as seen in Section 7.2.

The observations drawn from this simple example can be generalised: type-classes

may be encoded as their dictionary of methods (Wadler & Blott 1989), ignoring

their laws. Indeed, even if a type class has associated laws, they have little impact

on the parametricity results.

7.4 Constructor classes

Having seen how to apply our framework both to type constructors and type classes,

we now apply it to types quantified over a type constructor, with constraints.

Voigtländer (2009) provides many such examples, using the Monad constructor

class. They fit well in our framework, but here we show the simpler example of

Functors, which already captures the essence of constructor classes,

Functor : �1

Functor = (F : � → �) × ((X Y : �) → (X → Y) → F X → F Y)

Our translation readily applies to the above definition, and yields the following

relation between functors:

�Functor� : Functor → Functor → �1

�Functor� (F1,map1) (F2,map2)

= (FR : {A1 A2 : �} → (AR : A1 → A2 → �) → (F1 A1 → F2 A2 → �)) ×
( {X1 X2 : �} → (XR : X1 → X2 → �) →

{Y1 Y2 : �} → (YR : Y1 → Y2 → �) →
{ f1 : X1 → Y1 } → { f2 : X2 → Y2 } →
({x1 : X1 } → {x2 : X2 } → XR x1 x2 → YR (f1 x1) (f2 x2)) →
{y1 : F1 X1 } → {y2 : F2 X2 } → (yR : FR XR y1 y2) →
FR YR (map1 f1 y1) (map2 f2 y2) )

In words, the translation of a functor is the product of a relation transformer (FR)

between functors F1 and F2, and a witness that map1 and map2 preserve relations.

Such Functors can be used to define a generic fold operation, which typically

takes the following form:

data μ ((F,map) : Functor) : � where

In : F (μ (F,map)) → μ (F,map)

fold : ((F,map) : Functor) → (A : �) → (F A → A) → μ (F,map) → A

fold (F,map) A φ (In d) = φ (map (μ (F,map)) A (fold (F,map) A φ) d)
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Note that the μ datatype is not strictly positive, so its use would be prohibited in

many dependently typed languages to avoid inconsistency. However, if one restricts

oneself to well-behaved functors (yielding strictly positive types), then consistency

is restored both in the source and target systems, and the parametricity condition

derived for fold is valid. One way to implement this restriction is to use containers,

as defined by Morris & Altenkirch (2009).

One can see from the type of fold that it behaves uniformly over (F,map) as well

as over A. By applying � � to fold and its type, this observation can be expressed (and

justified) formally and used to reason about fold. Further, every function defined

using fold, and in general any function parametrised over any functor, enjoys the

same kind of property.

Gibbons & Paterson (2009) previously made a similar observation in a categorical

setting, showing that fold is a natural transformation between higher order functors.

Their argument heavily relies on categorical semantics and the universal property

of fold, while our type-theoretical argument uses the type of fold as a starting

point and directly obtains a parametricity property. However, some additional work

is required to obtain the equivalent property using natural transformations and

horizontal compositions from the parametricity property.

7.5 Type equality

Equality between types A and B can be expressed by the following relation, named

after Leibniz, which asserts that any proof involving A can be converted to a proof

involving B.

Equal : � → � → �1

Equal A B = (P : � → �) → P A → P B

An intuitive reading of the type of Equal suggests that inhabitants of that type can

only be polymorphic identity functions. Indeed, conversions from P A to P B, for an

arbitrary P, cannot depend on actual values. We would like to apply the axiom of

parametricity to recover a formal proof of that result.

Before doing so, we will do a practice round on the similar, but simpler, problem

of showing that functions of type Id must be (extensionally) the identity function,

Id = (A : �) → A → A

Using parametricity with arity n = 1, and taking advantage of the axiom schema

introduced in Section 6, we have

paramId : (f : Id) →
{A : Set} (AR : A → Set)

{x : A} → (xR : AR x) →
AR (f A x)

Then we can instantiate AR with the predicate of “being equal to x, the input of f”;

and its proof xR with reflexivity of equality to obtain the desired result,
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theorem : (f : Id) → (A : �) → (x : A) → x ≡ f A x

theorem f A x = paramId f ( ≡ x) refl

The proof of our original proposition follows the same pattern, with a single

complication. Because Equal A B is an open term, our parametricity axiom cannot

be applied to it directly. There is a simple trick that allows us to proceed though: bind

the variables in a dependent pair and apply the axiom to that type. Parametricity

then gives us

SomeEqual = (A : �) × (B : �) × Equal A B

paramSomeEqual : (s : SomeEqual) → �SomeEqual� s

where

�Equal� {A} AR {B} BR = λ (e : Equal A B) →
{P : � → �} → (PR : {X : Set} → (X → Set) → P X → Set)

{p : P A} → PR AR x1 →
PR BR (e f p)

�SomeEqual� (A,B, e) =

(AR : A → �1) ×
(BR : B → �1) ×
(�Equal� AR BR e)

Using this instantiation of the parametricity axiom, we can proceed as in the Id

case, with three differences:

• The instantiation of the predicate constructor PR takes an extra argument p,

which we ignore.

• Because the input and output type are syntactically different, we use hetero-

geneous equality ( ∼= ), which is similar to ≡ , but relates values of different

types.

• We ignore the predicates AR and BR constructed by param in the record of

type �SomeEqual�.

theorem : ∀ (A B : �) → (e : Equal A B) → (P : � → �) (x : P A) → x ∼= e Px

theorem A B e P x = q

where ( , , q) = (paramSomeEqual (A,B, e) {P} (λ p → (( ∼= ) x)) refl)

Some points are worth emphasising:

• It is possible to get a result about an open term, even though our axiom only

handles closed terms. Still, we get a concrete result (the above theorem) that

does not involve any occurrence of the parametricity axiom. This happens

because the function constructing predicates (λ p → (( ∼= ) x)) precisely

discards those occurrences.

• The result is already exposed by Vytiniotis & Weirich (2010), but it is

remarkable that its proof is one line long given our framework.

• Because the equality ∼= is heterogeneous, deriving a substitution principle

from it requires Streicher’s Axiom K (Hofmann & Streicher 1996).
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In consequence, it seems that one cannot derive that all proofs of equality are

equal from the axiom of parametricity.

8 Discussion

8.1 Related work

Studies of parametricity for System F and its variants abound in the literature,

starting with the seminal paper by Reynolds (1983), where the polymorphic semantics

of System Ftypes is captured in a suitable model.

We use here a more syntactic approach, where the expressions of the programming

language are (syntactically) translated to formulas describing the program. This style

was pioneered by Mairson (1991) and used by a number of authors, including Abadi

et al. (1993), Plotkin & Abadi (1993), and Wadler (2007). In particular, Wadler (2007)

gives an insightful presentation of the abstraction theorem, as the inverse of Girard’s

(1972) Representation theorem: Reynolds (1983) gives an embedding from System

F to second-order logic, while Girard (1972) gives the corresponding projection.

Our version of the abstraction theorem differs in the following aspects from that of

Wadler (2007) (and to our knowledge all others):

1. Instead of targeting a logic, we target its propositions-as-types interpretation,

expressed in a PTS.

2. We abstract from the details of the systems, generalising to a class of PTSs.

3. We add that the translation function used to interpret types as relations can

also be used to interpret terms as witnesses of those relations. In short, the

�A� part of Γ � A : B =⇒ �Γ� � �A� : �B� A is new. This additional insight

depends heavily on using the interpretation of propositions as types.

The question of how Girard’s projection generalises to arbitrary PTSs naturally

arises, and is addressed by Bernardy & Lasson (2011).

One direction of research is concerned with parametricity in extensions of System

F. Our work is directly inspired by Vytiniotis & Weirich (2010), which extend

parametricity to (an extension of) Fω: indeed, Fω can be seen as a PTS with one

more product rule than System F.

Before that, Takeuti (2004, personal communication) attempted to extend CC with

parametricity. He asserted parametricity at all types in a similar way as we do here,

in fact extending similar axiom schemes for System F by Plotkin & Abadi (1993).

For each α :� and P :α, Takeuti (2004, personal communication) defined a relational

interpretation 〈P 〉 and a kind (|P :α|) such that 〈P 〉 : (|P :α|). Then for each type T :�,

he postulated an axiom paramT : (∀x :T . 〈T 〉 x x), conjecturing that such axioms

did not make the system inconsistent. For closed terms P , Takeuti’s translations

〈P 〉 and (|P : α|) resemble our �P � and �α� P , respectively, (with n = 2), but the

pattern is obscured by an error in the translation rule for the product � � �. His

omission of a witness xR for the relationship between values x1 and x2 in the rules

corresponding to the product � � � appears to correspond to a computationally

irrelevant interpretation of �, as we present in Section 7.2.
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In previous work (Bernardy et al. 2010) we have shown that the relational

interpretation can be generalised to PTSs. Here we extend the results in multiple

ways:

• We have annotated the relational interpretation with colours, clarifying the

role of each type of quantification, and showing how the translation can take

advantage of systems with implicit syntax (Section 4).
• We have proven that our previous inductive relational interpretation of

inductive families is correct (Section 5.4).
• We have shown that part of the meta-theory of parametricity can be inter-

nalised into a PTS and that the theory remains consistent (for an important

class of systems) (Section 6).

• We have argued in detail, why one can assume that two proofs of a given

proposition are always related (Section 7.2).
• We have shown in an example that the support of Σ types allows us to get

results for open types, even with an axiom schema restricted to closed types

(Section 7.5).

• We allow for the source and target system to be different.

Bernardy & Lasson (2011) have shown how to construct a logic for parametricity

for an arbitrary source PTS (Definition 3.3), which is as consistent as the source

PTS.

Besides supporting more sorts and function spaces, an orthogonal extension of

the parametricity theory is to support impure features in the system. For example,

Johann & Voigtländer (2006) studied how explicit strictness modifies parametricity

results. It is not obvious how to support such extensions in our framework.

It also appears that the function � � (for the unary case) has been discovered

independently by Monnier & Haguenauer (2010) for a very different purpose. They

use � � as a compilation function from CC to a language with singleton types as the

sole way to express dependencies from values to types. Their goal is to enforce phase-

distinction between compile-time and run-time. Type preservation of the translation

scheme is the main formal property presented by Monnier & Haguenauer (2010).

We remark that this property is a specialisation of our abstraction theorem for CC.

Another lesson learnt from this parallel is that the unary � � generates singleton types.

8.2 Future work

Our explanation of parametricity for dependent types has opened a whole range of

interesting topics for future work.

We should investigate whether our framework can be applied (and extended if need

be) to more exotic systems, for example those incorporating strictness annotations

(seq) or non-termination.

We gave an interpretation of the axiom of parametricity as a compilation pass to

a language not requiring the axiom. It would also be interesting to, instead, extend

the β-reduction rules to support the axiom.

The target PTS that we constructed has typed individuals, whereas many logics

for parametricity have untyped individuals. Girard’s (1972) representation theorem
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shows that in System F such type of information can be recovered and is there-

fore not essential. It would be worthwhile to generalise that result to arbitrary

PTSs.

We presented only simple examples. Applying the results to more substantial

applications should be done as well. In particular, we hope that our results open

the door to a more streamlined way of getting free theorems for domain-specific

programming languages. One would proceed along the following steps:

1. model the domain-specific languages within a dependently typed language.

2. Use � � to obtain parametricity properties of any function of interest.

3. Prove domain-specific theorems, using parametricity properties.

We think that the above process is an economical way to work with parametricity

for extended type systems. Indeed, developing languages with exotic-type systems

as an embedding in a dependently typed language is increasingly popular (Oury

& Swierstra 2008), and that is the first step in the above process. By providing

an automatic second step, we hope to spare language designers the effort to adapt

Reynolds’ (1983) abstraction theorem for new type systems in an ad-hoc way.

Indeed, Pouillard (2011) has derived correctness properties of a library for names

and binders by following our method.

A Proof of the abstraction theorem

A.1 Proof outline

In this appendix we provide the proof of our main theorem.

Theorem A.1 (abstraction)

If the PTS Sr reflects S ,

Γ �S A : B =⇒ �Γ� �Sr �A� : �B� A

Proof sketch

A derivation of �Γ� � �A� : �B� A in Sr is constructed by induction on the derivation

of Γ � A : B in S , using the syntactic properties of PTSs. We have one case for each

typing rule: each typing rule translates to a portion of a corresponding relational typ-

ing judgement, as shown in Figure A1. For each rule, the translation of the premises

(induction hypotheses) and the conclusion (inductive conclusion) are presented on

the right-hand column. The rest of the proof consists in building derivation trees

linking the inductive hypotheses to the expected conclusion. At this point, filling the

trees is mostly straightforward because the construction of the tree is guided by the

syntax of the conclusion that we want to prove. Taking, for example, the case of

product, the outline of the derivation tree is to use once the abstraction rule, then

product twice. For the abstraction case, the target derivation must use abstraction

twice.

Once the outline is in place, filling in the details takes a lot of space, mainly for

two reasons:
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Γ � A : B =⇒ �Γ� � �A� : �B� A

axiom � s : s′ � (λx :s. x → s̃) : s → ˜s′

start
Γ � A : s �Γ� � �A� : A → s̃

Γ, x :A � x : A �Γ�, x :A, xR : �A� x � xR : �A� x

Γ � A : B �Γ� � �A� : �B� A

weakening
Γ � C : s �Γ� � �C� : C → s̃

Γ, x :C � A : B �Γ�, x :C, xR : �C� x � �A� : �B� A

Γ � A : s1 �Γ� � �A� : A → s̃1

product
Γ, x :A � B : s2 �Γ�, x :A, xR : �A� x � �B� : B → s̃2

Γ � (∀kx :A. B) : s3 �Γ� � (λf : (∀kx :A. B). ∀kix :A. ∀krxR : �A� x. �B� (f x)) : (∀kx :A. B) → s̃3

Γ � F : (∀kx :A. B) �Γ� � �F� : (∀kix :A. ∀krxR : �A� x. �B� (F •kx))

application
Γ � a : A �Γ� � �a� : �A� a

Γ � F •kA : B[x �→ a] �Γ� � �F� •ki a •kr �a� : �B[x �→ a]� (F •ka)

Γ � A : s1 �Γ� � �A� : A → s̃1
Γ, x :A � B : s2 �Γ�, x :A, xR : �A� x � �B� : B → s̃2

abstraction
Γ, x :A � b : B �Γ�, x :A, xR : �A� x � �b� : �B� b

Γ � (λkx :A. b) : (∀kx :A. B) �Γ� � (λkix :A. λkrxR : �A� x. �b�) : (∀kix :A. ∀krxR : �A� x. �B� b)

Γ � A : B �Γ� � �A� : �B� A
Γ � B′ : s �Γ� � �B′� : B′ → s̃

conversion
B =β B′ �B� =β �B′�

Γ � A : B′ �Γ� � �A� : �B′� A

Fig. A.1. Outline of a proof of Theorem 3.12 by induction over the derivation of Γ � A : B. In the left-hand column, rules of the typing judgement

Γ � A : B are listed. For conciseness, a variant form of the abstraction rule is used in this outline; equivalence of the two systems follows from

Barendregt (1992, Lemma 5.2.13). The conversion case uses Lemma 3.11.
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1. Every time that translation generates a test that a value satisfies a relational

interpretation, it generates a redex. (That is, the translation is not in normal

form.) Typing such a redex is much more verbose than typing its normal

form.
2. There is certain redundancy in the typing rules of PTS presented by Barendregt

(1992). For example, to check an abstraction one must check that its type (a

function) is well-sorted. It is, however, likely that the domain and co-domain

of the product will have to be rechecked somewhere else in the tree. Some of

these duplications have been factored below, but not all. �

Further proof details are provided on the following pages.

A.2 Proof details

The following propositions are proved by simultaneous induction on the typing

judgement:

lem Γ �S A : s =⇒ �Γ� �Sr A : s.

Proved by the thinning lemma (Barendregt 1992, Lemma 5.2.12, p. 220). For each

Ai, erase from the context �Γ� the relational variables and j-indexed variables

such that j �= i. The legality of the context is ensured by ind.
ind Γ �S A : B =⇒ �Γ� �Sr �A� : �B� A.

The proof proceeds by induction on the derivation of Γ � A : B. We have one case

for each typing rule: each typing rule translates to a portion of a corresponding

relational typing judgement; and we detail them in the rest of the section. The

construction of the derivation makes use of the propositions lem, ind, and ind’

(on smaller judgements).
ind’ Γ �S B : s =⇒ �Γ� �Sr �B� : B → s̃

Corollary of ind.

We proceed with the case analysis for the proof of ind.

axiom c : s If c is a sort, this follows from Lemma 3.8. Otherwise, the proposition is

assumed as an hypothesis.

start

weakening
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product (k, s1, s2, s3)
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application

abstraction We apply the generation lemma (Barendregt 1992, Theorem 5.2.13, case

3) on Γ � (∀kx :A. B) : s. We get: ∃sA � sB such that

• Γ � A : sA

• Γ, x :A � B : sB

• s =β sB

Since sorts are irreducible, the last equation becomes s = sB , so we have: ∃sA � s

such that

• Γ � A : sA

• Γ, x :A � B : s
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Induction on the judgements constructed above is valid because the generation

lemma generates smaller judgements. It yields:

• �Γ� � �A� : �sA� A

• �Γ�, x :A, xR : �A� x � �B� : �s� B,

and these judgements will be used in the construction of the target derivation.

First we show that the type is properly sorted:
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This sub-proof is then used in the second application of the abstraction rule in

the top-level tree.

conversion

The β-equality constraint (�B� A =β �B′� A) holds because � � preserves β-

equivalence (Lemma 3.11).
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