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Abstract 

 

Glaucoma is a progressive disease of the optic nerve that can result in irreversible 

loss of visual function and impairment in everyday visual tasks. The experimental 

studies described in this thesis primarily aim to investigate the performance of 

people with glaucoma on search and other visual tasks whilst simultaneously 

monitoring eye movements, making comparison with age-related visually healthy 

people. In an experiment focussing on visual search, a patient group (n=30) took 

significantly longer on average to find a target in images of everyday scenes than 

controls (n=30). Furthermore, comparison of eye movements made by the 

participants during this task revealed there was a statistically significant reduction 

(6%) in saccade rate in the patients compared to the controls, and that saccade-

rate correlated with performance. Similar differences in eye movements were 

observed when the same groups passively viewed a selection of images in a slide-

show. A bivariate contour ellipse (BCE) analysis revealed that, on average, patients 

viewed smaller regions of the images compared to the controls. Eye movement 

differences between patients and controls were also examined in a different cohort 

of people with glaucoma (n=14) and visually healthy controls (n=22) whilst they 

watched a selection of Hazard Perception Test driving films. Saccade rate of the 

patients was found to increase by 9%, though results from the BCE analysis 

suggested the average size of viewing area was similar in both groups. Finally, a 

novel interview-based study of 50 people with glaucoma provides evidence that 

patients do not perceive their visual field defect as a black ‘tunnel’ effect, or as 

‘black patches’, but more like blurred regions: this finding may, for example,  

impact on how glaucomatous visual field loss is depicted in patient information 

about the condition. In conclusion, the results from this thesis show how visual 

loss from glaucoma influences how patients perceive and react to their visual 

environment. The principal findings from the studies described in this thesis also 

show, for the first time, that eye movement analysis could provide a window into 

the functional deficits associated with glaucoma.    
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1 Introduction 

 

1.1 Introduction to Glaucoma 

Glaucoma is one of the most common causes of irreversible blindness in the world 

(Quigley and Broman, 2006, Resnikoff et al., 2004, Friedman et al., 2004). It is a 

collection of irreversible progressive diseases which are currently thought to cause 

atrophy of the optic nerve by affecting the Retinal Ganglion Cells (RGC) (Quigley, 

1996, Quigley et al., 1982). The RGCs play a vital role in vision in that they are 

responsible for receiving visual information from photoreceptors and transmitting 

this information via their axons to the optic nerve, and subsequently the brain. 

Glaucomatous damage and destruction of the RGCs and subsequent damage to the 

optic nerve occurs gradually over a long period, meaning many individuals may be 

relatively unaware of their resulting visual loss until a more advanced stage. If left 

untreated, this progressive damage may ultimately lead to the loss of vision in that 

eye. It was estimated that in the year 2000 there were 67 million individuals living 

with glaucoma worldwide (Quigley, 1996) and by 2020 this is expected to have 

risen substantially (Quigley and Broman, 2006). The increasing life expectancy of 

the world’s population means that this figure is likely to rise further still in the 

coming years. 

Whilst “glaucoma” is a commonly used term there are actually several subtypes 

which have their own specific characteristics. The most common form is primary 

open angle glaucoma (POAG). Raised intraocular pressure (IOP; 21mmHg) is an 

important modifiable risk factor and is commonly used for the detection of POAG 

and monitoring its likely progression (Pohjanpelto and Palva, 1974, Leske, 1983). 

Normally, the pressure of the eye is maintained due to a balance between the inset 

of nutrient-containing aqueous fluid to the anterior chamber and the subsequent 

removal of this fluid via a series of drainage channels. In general, any blockage to 

these drainage channels will therefore lead to a build-up of fluid and a subsequent 

rise in IOP which has knock-on damage to the RGCs and the optic nerve. Although 

any vision loss that has already occurred as a result of POAG will be irreversible it 

is possible to slow further progression using therapeutics which attempt to reduce 
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IOP by either lowering the amount of aqueous fluid or increasing the size of the 

drainage channels. Laser treatments or trabectulectomy surgery can also be used 

in an attempt to improve drainage and reduce IOP. Whilst the blockages to the 

drainage channels leading to POAG occur relatively gradually, acute angle closure 

glaucoma (AAG) occurs when there is a sudden blockage leading to a sharp and 

rapid rise in pressure that can often be extremely painful. AAG is much less 

common than POAG and often requires urgent treatment. An increase in pressure 

leading to optic nerve damage can also result as a secondary effect of another 

incident such as another eye disease, an injury or as a result of previous surgery or 

medication. In this case, the disease is generally termed Secondary Glaucoma. It is 

worth noting that a raised IOP may also lead to the diagnosis of Ocular 

Hypertension (OHT), which is not synonymous with glaucoma. This is because in 

OHT, the raised pressure is not likely to have caused sufficient damage to the optic 

nerve or any subsequent loss in visual function. Whilst raised IOP is a common 

feature of the aforementioned neuropathies it is also possible to be diagnosed with 

glaucoma when the IOP is relatively normal (less than 21mmHg). Such individuals 

are said to have Normal tension glaucoma (NTG) and have damage to the optic 

nerve despite no abnormal pressure being recorded.  

Whilst raised IOP is an important and common risk factor for glaucoma, there is 

currently no evidence that it is directly linked to glaucoma. Generally speaking, 

glaucoma is likely a complex process resulting from a number of interacting 

components. However, IOP is perhaps the only real measureable variable that may 

provide a strong indicator that glaucomatous damage has occurred, in addition to 

directly assessing the optic nerve, perhaps using techniques such as Optical 

Coherence Tomography (OCT), Heidelberg Retina Tomograph (HRT) and GDx. 

There are also other factors which are linked to an increased likelihood of having 

glaucoma, such as age and ethnicity (Tielsch et al., 1991, Klein et al., 1992, Coffey et 

al., 1993, Mitchell et al., 1996, Dielemans et al., 1994, Leske et al., 1994), family 

history (Libby et al., 2005), increased blood pressure (Tielsch et al., 1995) and 

diabetes (Leske, 1983). Hitchings (2000) has conducted a review of the risk factors 

of glaucoma but ultimately the exact causes of glaucoma are yet to be fully 

understood. 
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1.2 Contrast sensitivity 

Contrast sensitivity is a vital part of visual performance. If a person cannot detect 

low contrast objects it may impair their ability to perform tasks such as driving, 

reading and navigation (Thayaparan et al., 2007) and even their postural stability, 

potentially leading to a fall (Turano et al., 1994). Reduced contrast sensitivity often 

is a factor of glaucoma and it is believed that much of the visual disability is caused 

by this reduction despite normal or near normal visual acuity (Ross et al., 1984). 

The gold standard contrast sensitivity test, which is also used throughout this 

thesis, is the Pelli-Robson chart. It consists of a 16 triplets of letters, each at a lower 

contrast than the previous, with two triplets per line. The subject must detect 2 of 

the 3 letters correctly for that level of contrast to be classified as detectable and the 

final measurement is recorded in terms of log units (logCS). The letters are in the 

Sloan typeface (which contains 10 letters) and are all of the same size (Pelli et al., 

1988). An example of the typeface used is:  C D H K N O R S V Z . 

Other contrast sensitivity tests that have been proven to be similar or more 

accurate are the Mars hand held test (Arditi, 2005) and the Vistech CS system 

(Ginsburg, 1984). The Mars hand held test consists of the same Sloan letters used 

by the Pelli-Robson chart but each successive letters contrast level is reduced by 

0.04 log units. The obvious advantage of this chart is its portability, however this 

portability does mean the background luminance is likely to change depending on 

where the test is run which could affect the performance of a subject. This is 

unlikely to happen with a wall mounted chart such as the Pelli-Robson or Vistech 

CS system. The Vistech CS system uses gratings rather than letters, which removes 

the issue of letter detection and potential similarities of the letters (such as C and O 

or R, K and H). The test consists of 6 different rows of patches with different spatial 

frequencies (1, 2, 4, 8, 16 and 24 c/deg). There are 9 columns, the first is an 

example, and then the patches range in contrast from zero to above and below 

visual threshold by about 0.1 log units. The task is to detect the orientation of the 

grating in each of the patches, the orientations are: -15°, 0° or 15°. However for 

this research the Pelli-Robson chart was used as it is the gold standard tool for 

measuring CS. It is also the most clinically accepted and understandable method. 
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1.3 Visual fields  

Glaucomatous structural damage will usually coincide with a visual field defect. 

The definition of the visual field (VF) is the area on which light can reach the retina 

of the eye. This light stimulates the rod and cone cells on the retina which is 

processed by the ganglion cells within the inner retina. These processed signals are 

transported along the ganglion cells axon to the brain (Tate and Lynn, 1977, 

Werner, 1991, Henson, 2000). The normal extent of a healthy subject’s visual field 

from the line of sight is approximately 65° up, 75° down, 100° temporally and 60° 

nasally for a bright stimulus (Henson, 2000). To perform a VF test a person is 

asked to fixate on a predetermined point, and stimuli are presented at various 

locations around their field of view. The subject indicates when they notice the 

stimuli. VF’s are usually conducted monocularly, with one eye occluded whilst the 

other is tested. 

Assessment of visual function is integral to the diagnosis and management of 

glaucoma and involves measurement of the VF using a technique called perimetry. 

There are two methods of conducting perimetry: manual and automated, with 

automated being the most common. Manual perimetry requires highly skilled 

operators and is very time consuming, the two problems that automated perimetry 

solves. Computer algorithms perform the test, automatically modifying various 

properties of the stimuli, such as its luminance, to find the subjects minimum 

threshold. Katz, et al (1995) established that in glaucoma computerised automated 

perimetry enhanced assessment of VF’s.  

The most common type of computerised automated VF perimetry test in glaucoma 

management is a “white on white” test called standard automated perimetry (SAP). 

This involves the assessment of a subject’s light-difference sensitivity at various 

locations of their field of view. Two commonly used automated perimeters, 

certainly in secondary and tertiary care, are the Humphrey Field Analyzer (HFA) 

(Carl Zeiss Meditec Inc., USA) and the Octopus perimeter (Haag-Streit AG, Koeniz, 

Switzerland) (Figure 1.1). In the research throughout this thesis the HFA was used 

to record visual fields and as such the main focus of discussion will be based upon 

this. The HFA is conducted monocularly in a white bowl perimeter with a 

luminance of 31.5 apostilbs (A) with the person at a distance of 33cm from the 
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bowl. The subject is instructed to keep their eye fixated upon a single central point 

and white circular stimuli (most commonly 0.43° in diameter – Goldman III size) 

are projected onto the bowl with varying luminance at specific locations which 

relate to specific regions of the retina. The luminance of the stimuli varies from 

0.08 to 10,000A but the HFA represents the minimum luminance the subject can 

see at that location as a differential threshold in decibel (dB). The formula to 

calculate these values is: 

�� � 10 log�� 	10000
 � 

The dB values range from 0 to 40, with 40 being the least bright stimuli (0.08A) 

and 0 being the brightest stimuli (10,000A). The primary factors that affect the 

results from a HFA test are eccentricity and age. Typically the sensitivity in a 

healthy eye decreases as the eccentricity increases and is represented as the “hill 

of vision” (Traquair, 1931). Sensitivity also decreases slowly with age, with a 

reported decrease of 0.1dB/year (Heijl et al., 1991).  

 

Figure 1.1: The Humphrey Field Analyzer and Octopus Perimeter 

HFA SAP tests are carried out in predefined patterns. In this thesis the 30-2, 24-2 

and 10-2 patterns are used and therefore only these will be explained in detail. The 

size of the visual field being tested is represented by the first number (24 in a 24-
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2) and this relates to eccentricity in degrees from the centre of the test to the 

furthest region tested.  

Figure 1.2 shows the test patterns for these three VF tests and how they overlap 

one another. The spacing of the points is 6° starting 3° from the centre in 30-2 and 

24-2 VFs and 2° spacing starting 1° from the centre in 10-2 VFs. 

 

Figure 1.2: Test patterns for the HFA 30-2 (all points), 24-2 (black and red) and the region covered 

by the 10-2 VFs (represented in red, but it should be noted that these points are not the actual 10-2 

test points but the region covered by the 10-2) (a). The grey points are the blind spot location. The 

points are spaced by 6° in the 24-2 and 30-2 VFs, starting 3° from the centre. The actual test points 

of the 10-2 are shown in (b). In the 10-2 VF test the points are spaced by 2° starting 1° from the 

centre. 

 

A person’s VF is classified as damaged if their light sensitivity at a specific location 

is reduced when compared to the average sensitivity at that same location for 

healthy age-matched controls. In a normally sighted participant the field of view 

becomes less sensitive the further the distance away from the fovea; this decrease 

in resolution is due to a reduction in the number of ganglion cells as eccentricity 

from the fovea increases (Garway–Heath et al., 2000).  

Global measures, which try and express various properties of the subject’s VF, 

consist of values such as mean deviation (MD), which informs the reader how 

much, on average, the points deviate from an age-matched healthy hill of vision. 
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This value can be slightly misleading if a subject has excessive light scatter, such as 

in the case of cataract, and to compensate for this the pattern standard deviation 

(PSD) is used. The PSD describes if the shape of the subject’s hill of vision departs 

from an age-matched hill of vision based on healthy subjects. The glaucoma 

hemifield test (GHT) gives a measure of whether the VF has glaucomatous traits.  

To confirm VF reliability, the fixation losses, false positive errors and false negative 

errors are examined. Fixation losses are tested by projecting a bright stimulus into 

the physiological blind spot region of the bowl, if the subject responds it is 

recorded as a fixation loss. This is shown as the number of fixation losses over the 

number of times the blind spot check was conducted. Fixation losses of more than 

20% will be categorised as poor reliability. False positive errors are checked by 

adding a purposely long pause between stimuli being projected, if the subject 

responds to a stimulus during that period it is classified as a false positive. False 

negative errors are checked by projecting a stimulus at a previously determined 

location 9dB brighter than the current threshold level of that location. If the 

subject does not respond it is classified as a false negative. If false negative or false 

positive percentages go above 33% the VF is classified as being of a poor reliability. 

All VFs of poor reliability are excluded from this research and repeated (Johnson, 

2003).  

Examples of all the above measures are shown in Figure 1.3. The interested reader 

can find more information on perimetry in Henson (2000). 
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Figure 1.3: Example VF showing the point wise sensitivity levels in dB, GHT, MD, PSD 
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1.4 Binocular Visual Fields 

In the clinic, measurements of the VF play a vital role in monitoring the rate of 

disease progression in each eye, or determining whether a certain treatment is 

working or not. However, these measurements offer less information regarding 

how the individual would function in their everyday life, where both eyes work 

together to perform visual tasks. A measure of the binocular VF would therefore be 

more useful in the context of, for example, determining the types of visual 

disability faced by patients such as their suitability to drive. There is currently only 

one widely used binocular VF test: the Esterman (Esterman, 1982, Mills and 

Drance, 1986, Esterman, 1967) (Figure 1.4). Currently the Esterman is conducted 

on an automated perimeter using a suprathreshold test strategy, which means 

each point is tested at a fixed brightness (equivalent to 10dB on a HFA visual field 

test) over a 130° horizontal field of view, with 120 test points. If the stimulus point 

is missed on its second presentation it is assumed the patient has a sensitivity less 

than 10dB in that location. 

 

Figure 1.4: Example of an Esterman binocular visual field output: the black points show areas that 

were not seen by the patient and the circles were detected. Figure taken from (Crabb and 

Viswanathan, 2005). 

 

An alternative method of gaining an idea of the patient’s binocular vision is by 

combining the two monocular VFs together to give an estimate making the 
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assumption of perfect binocular alignment. Two main methods are in use to 

combine monocular VFs: binocular summation and the Integrated Visual Field 

(IVF). A common form of binocular summation can be calculated by taking the two 

corresponding points of the left and right VF and calculating the square root of the 

sum of the squares of those corresponding sensitivities. This method takes into 

account the binocular “boost” that occurs when both eyes work together, with a 

maximum “boost” of 40% and minimum of 0%. One down side to this method is it 

difficult to estimate the binocular VF quickly by eye.  

The IVF combines the two monocular visual fields measured using standard 

clinical procedures to create a binocular representation of that VF. This is 

conducted by taking each VF point in one eye and comparing it with the 

corresponding point in the other eye and taking the larger value. If there are no 

corresponding points at that location (such as in the case of a 24-2 nasal region in 

the left having no corresponding point in the right) the IVF discards that point. 

Whilst the IVF is not a direct perimetry test and only offers a simulation of 

binocular vision, it has been shown to correlate well with the Esterman VF test and 

with measures of visual disability and may give a better idea of a patient’s 

binocular field in real world contexts (Crabb and Viswanathan, 2005, Crabb et al., 

2004, Crabb et al., 1998). This system is very easy to apply when comparing two 

VFs and therefore is ideal when recruiting patients with specific binocular defects. 

It does not, however, take into account binocular summation. The IVF can be 

generated on the PROGRESSOR  software (Medisoft Limited, Leeds, UK) for VF 

analysis (Figure 1.5) (Viswanathan et al., 1997). 
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Figure 1.5: Example output for the IVF on PROGRESSOR VF analysis software (Medisoft Limited, 

Leeds, UK) 
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1.5 Quality of Life and impairment in Glaucoma 

Whilst clinical measures of visual function are useful for gaining an idea of the 

state of the patient’s vision, they do not tell us much about how the patient’s visual 

impairment affects day-to-day activities and their quality of life (QoL). Due to the 

irreversible nature of glaucoma, any vision loss that has occurred can be expected 

to have some sort of impact on the patient’s life. Studies of QoL are therefore 

important to determine the ways in which the patient is affected by this visual field 

loss, and at what stage of disease any changes are likely to occur. QoL is often 

investigated using self-report questionnaires, interviews or retrospective analysis 

using medical documents. Self-report questionnaires and interviews are primarily 

useful in that they are quick and easy to administer and analyse. Furthermore, they 

are the only feasible method of determining how the patient themselves see the 

impact of their visual loss and to gain an idea of their experiences, expectations 

and which activities are the most important to them. This information could be 

important for devising individual-appropriate management and rehabilitation 

strategies, especially since clinical time constraints mean it is difficult for the 

patient to get this information across to their clinician during their standard 

appointment (Lunnela et al., 2010). There are currently several questionnaires 

that can be used to measure the QoL of people with glaucoma, ranging from those 

asking questions relating to more general health to others that were specifically 

developed with glaucoma in mind (for a review see Spaeth, et al (2006)). However, 

the self-report methods of measuring QoL have subjective variation. Moreover 

individuals may change their responses to questions for other reasons, such as fear 

of losing their driving license and therefore hold back on relevant information 

about their condition (McGwin et al., 1998). Retrospective studies involving 

medical records may resolve some of these issues but this technique has its own 

limitations: for instance, it may be difficult to access old medical records and the 

information available will be related to socio-economic factors, particularly in 

countries like the United States where there is a clear link between wealth and 

access to medical care (Schoen et al., 2010). An alternative approach to gaining 

insight into the impact of glaucoma on everyday functioning is to objectively 

measure the individual’s actual performance in the types of tasks they would 

encounter in their normal lives. Although the task may not be as realistic as would 
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be hoped, it has been found that there is a relationship between how patients 

perform tasks carried out in the laboratory and their performance in similar tasks 

in their own home (West et al., 1997). Linking the clinical measurements to how 

patients are impaired in daily activities is important in the management of the 

condition; for example, observations of worsening performance in these types of 

studies may even be another useful way of monitoring disease progression 

(Haymes et al., 2007, White et al., 2006, Szlyk et al., 2005). 

Studies in glaucoma have been limited in number when compared with other 

chronic conditions (Glen et al., 2011). However, even with this limitation, research 

shows that patients with glaucoma often suffer with a deteriorated QoL and have 

problems carrying out everyday vision-based activities. For example, patients with 

glaucoma appear to have almost a 60% increase in the chance of falls, injuries and 

fractures and medical records have revealed that they are twice as likely to be 

placed in a nursing home when compared to normally sighted individuals 

(Bramley et al., 2008). Various other studies also confirm that people with 

glaucoma are more likely to fall and have accidents (Haymes et al., 2007, Dolinis et 

al., 1997, Guse and Porinsky, 2003, Ivers et al., 1998), even with relatively modest 

visual field defects (Haymes et al., 2007, White et al., 2006, Szlyk et al., 2005). 

Patients have also self-reported difficulties in tasks such as reading, driving, 

mobility and searching for objects (Spaeth et al., 2006, McKean-Cowdin et al., 2008, 

Nelson et al., 2003, Jampel et al., 2002b). Objective studies have also found that 

patients display deficits in visual activities. Ramulu et al (2009) investigated the 

effect of glaucoma on reading and found that in patients with advanced bilateral 

glaucoma there was a decrease in reading speed, although race, education and 

visual acuity were important predictors of this effect. It has also been shown that 

patients with glaucoma have difficulties when reaching and grasping for objects 

(Kotecha et al., 2009), with balance (Black et al., 2008) and navigation (Friedman 

et al., 2007, Turano et al., 1999). An additional task that is affected by visual 

impairment caused by glaucoma is driving. Patients are up to 3 times more likely 

to have a reported motor vehicle accident than people with normal vision (McGwin 

et al., 2004) and patients have self-reported more problems with driving, 

particular at night, than controls (Freeman et al., 2008). Patients with increasing 
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glaucomatous visual field loss also had more accidents when driving using a 

simulator (Szlyk et al., 2005) and have displayed measured on-road difficulties 

(Haymes et al., 2008). UK law states that significant loss of binocular vision, as 

measured by the Esterman binocular VF test, means that the individual is no 

longer legally fit to drive. The UK Driver and Vehicle Licensing Agency (DVLA) 

criteria state the following (August 2011): 

Acceptable binocular central loss: 

• Scattered single missed points 

• A single cluster of up to 3 adjoining points 

Unacceptable binocular central loss: 

• A cluster of 4 or more adjoining points that is either wholly or partly within 

the central 20 degree area 

• Loss consisting of both a single cluster of 3 adjoining missed points up to 

and including 20 degrees from fixation, and any additional separate missed 

point(s) within the central 20 degree area 

• Any central loss that is an extension of a hemianopia or quadrantanopia of 

size greater than 3 missed points. 

The fact that patients with such binocular VF loss may lose their driving licence 

presents important issues since it has been shown that some elderly people who 

stop driving are more likely to have higher rates of depression and a lower QoL 

(Fonda et al., 2001, Ragland et al., 2005). Problems with other important activities 

of daily living, such as searching for objects, may also lead to similar feelings of loss 

of independence and negative effects on QoL. 
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1.6 Eye movements 

Eye movements made whilst carrying out certain visual tasks may shed light on 

patients’ visual function. Although it appears that patients display problems with 

certain activities of daily living, little is known about the underlying mechanisms 

that influence how visual loss is perceived and managed by an individual. Studies 

have suggested that patients can underestimate the true extent of their visual 

defect (Jampel et al., 2002b, Shaw, 2005). This may be in part related to a series of 

compensatory brain processes that allow missing visual information to essentially 

be ‘filled in’ using the surrounding contextual information in the visual scene 

(Safran and Landis, 1996, Komatsu, 2006). This means that one eye essentially 

compensates for the other and this factor may influence how the patient perceives 

their disease. Investigating the eye movements made by patients as they perceive a 

visual scene may shed light on the strategies they use as a result of their visual loss 

and could help develop future studies that attempt to relate the severity, extent 

and location of a visual field defect to what a patient can and cannot do in terms of 

real life activities, such as driving and searching for objects. It may even provide a 

basis for incorporating attention to eye movements into visual rehabilitation and 

coping strategies for the patient with glaucoma.   

To be able to appreciate how eye movements may provide insight into the 

functional deficits displayed in glaucoma it is necessary to at first summarise the 

basic principles and the development of eye movement research. The interested 

reader can find more in Liversedge, et al (2011). 

When viewing a static scene, such as a picture or a passage of text, a subject will 

gaze at a specific area for a period of time, and this is called a fixation. Fixations are 

interspaced by saccades and blinks. Saccades are very rapid (ballistic) movements 

of the eye from one area of interest to another, with a peak velocity of about   

500°s-1 (Becker, 1991). The reason eye movements are necessary is due to the 

natural degradation of a subject’s vision as eccentricity from the fovea increases. 

Moving one’s eye allows the individual to move the direction of the fovea (the area 

of eye with the highest number of ganglion cells and the highest resolution of 

vision) to different areas of a scene so they are able to see at maximum resolution 

in that region. When viewing dynamic scenes other types of eye movements may 
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also be made: a smooth pursuit occurs when an individual tracks a moving object. 

Optokinetic reflex is similar to a smooth pursuit, whereby an individual tracks an 

object and once it goes beyond their field of view they move onto tracking the next 

object. For example, if a person was to sit on a train and look out the window at the 

trees going by, the eye would track a tree and once it had reached its maximum 

rotation it would move onto tracking the next tree. Vergence eye movements are 

the changing of the relative position of the two eyes. Studying different aspects of 

an individual’s eye movements as they view static and dynamic visual scenes will 

therefore give an insight into the manner in which the individual perceives the 

world around them and how they may go about performing subsequent vision-

based tasks. This may help us decipher what areas of a scene are of most interest 

to the viewer at a particular point in time. In this thesis the main focus will be on 

saccades and fixations in the static tasks along with smooth pursuits when looking 

at dynamic scenes.  
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1.7 A brief history of eye movement recording 

Some of the first studies investigating eye movements involved the use of mirrors 

which revealed that the eyes move in a series of ‘jerks’ (Javal, 1879). Clearly this 

was subjective and thus the recording was essentially only as good as the person 

making the observations. A more objective method of recording the eye 

movements was developed by (Delabarre, 1898, Huey, 1898). They separately 

devised an ingenious (if not slightly painful) method involving the creation of a 

Plaster of Paris cap with a hole in the middle that was moulded to the shape of the 

cornea. Since Plaster of Paris can attach firmly and immovably to any moist 

surface, this device could be attached on to a “cocainised eye”. The device was then 

connected to a recording drum (consisting of a drum, wet piece of paper and a soot 

pointer) using a wire which enabled horizontal eye movements to be recorded. 

According to Delabarre the cup would detach after it became tear soaked and the 

eye recovered after a week, although he could not guarantee no damage had been 

done! Figure 1.6 shows a schematic of the system created by Huey. 

 

Figure 1.6: Preliminary Experiments in the Physiology and Psychology of Reading, Edmund Burke 

Huey, 1898 (Huey, 1898) 
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Huey used his apparatus to study subjects’ reading behaviours whilst reading 

magazines at various distances and found that the ‘jerks’ were related to the text 

and changed according to the distance the person viewed. However, these devices 

restrict eye movements, which in turn strain the eye. Clearly another method was 

required to be able to validate these results. Dodge and Cline (Dodge and Cline, 

1901) therefore devised an eye tracker using photography which for the first time 

recorded eye movements non-invasively and accurately. Figure 1.7 shows the 

device they invented with a subject at one end. It worked by shining a vertical slit 

of light off the cornea of the subject, and by using a photographic film moving at a 

set speed, recording the reflection of the light through a horizontal slit. This 

accurately gave the position of the eye horizontally.  

 

Figure 1.7: The Dodge photomicrograph (DIEFENDORF and DODGE, 1908). 

 

Further developments by Gilliland (1921) recorded both horizontal and vertical 

eye movements. This technique was enhanced further to allow the measurement of 

both directions using one eye rather than the two vectors on each separate eye. 

Some of the first research into two dimensional image viewing was conducted 

using this method (Buswell, 1935) and a scanpath of his 9th image (in which the 
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colour has been modified to blue for clarity) by one of the subjects can be seen in 

Figure 1.8.  

 

Figure 1.8: Image taken from (Buswell, 1935) (page 2-3) showing the scanpath of a subject viewing 

an image. The scan path and fixations have been recoloured to blue for clarity. 

 

Eye movement research developed further in the 1960’s using suction based 

contact lenses with mirrors which reflected light projected at the eye towards a 

camera which subsequently showed the movements and position of the eye 

(Yarbus, 1967, Riggs et al., 1953, Ditchburn and Ginsborg, 1952, Fender, 1964). 

Further research used Electro-Oculography, scleral search coils and finally the 

direct recording of the eye using infrared light. Electro-Oculography uses skin 

electrodes placed around the eye and by recording the potential differences 

between the pair the position of the eye can be calculated (Schott, 1922, Mowrer et 

al., 1935). Scleral search coils consist of a contact lens with two wire coils that 

disrupt a magnetic field around the head of the subject (Robinson, 1963). The 

bulges in these lenses can be quite uncomfortable and therefore this technique is 

now used only for very specific human research and animal research. 
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Feature detection based methods using video recordings of the eye use infrared 

light to unobtrusively enlighten the subject’s eye and record the corneal refection 

location (a small bright region appears within the image close to or upon the pupil) 

and the centre of the pupil. The pupil region is enhanced using one of two 

methods: bright pupil and dark pupil effect (as demonstrated in Figure 1.9). Both 

work by increasing the contrast between the iris and pupil. The bright pupil occurs 

when the light source is being projected directly towards the pupil, and so the eye 

becomes a ‘retroreflector’ as the infrared light is reflected from the retina and 

becomes a very bright area (Merchant et al., 1974). The dark pupil technique 

projects the light at a different angle and the pupil absorbs the infrared light and 

the region becomes very dark. Finding the centre of these areas becomes much 

simpler as even dark irises are clearly separate to the pupil and therefore simple 

thresholding techniques can be used to locate the pupil and subsequently either 

elliptical fitting or simple central point fitting can occur. The purpose of the corneal 

refection is that it stays at a constant location with head movements but its 

position changes when the eye moves, therefore allowing the subject’s point of 

regard to be calculated even when the subject moves their head.  

 

Figure 1.9: Examples of the dark and bright pupil effect commonly used by eye trackers to locate 

the centre of the pupil. The corneal reflection (CR) can be seen at the bottom right of the pupil. 

(http://www.archimuse.com/mw2003/papers/milekic/milekic.html; 10/11/2011) 

 

Dual Purkinje eye trackers are a more sensitive eye tracker which records two of 

the four Purkinje images from the eye. The four Purkinje images are the light 

projected in to the eye reflecting from the outer (P1) and inner (P2) surface of the 

cornea and the outer (P3) and inner (P4) surface of the lens. The dual Purkinje eye 
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tracker uses the reflections from P1 and P4. Infrared eye trackers use the centre of 

the pupil and often enhance the reliability of the data by combining the central 

location with the location of P1 (corneal reflection), a scan be seen in Figure 1.9. 

In this thesis dark pupil based infrared eye trackers are used; most notably the 

head mounted EyeLink II (SR Research Ltd., Ontario, Canada) which contains a 

front facing camera to compensate for the subject’s head movements by recording 

the position of 4 infrared beacons located around the monitor. This device contains 

two further cameras recording each eye independently at up to 500Hz. The 

EyeLink II was used for all the eye movement studies in this thesis except when 

investigating the eye movements in people with glaucoma when performing a 

hazard perception test (Chapter 6), where an SMI iView X (SensoMotoric 

Instruments, Teltow, Berlin, Germany) sampling at 240 Hz was used. This SMI 

iView X is a cold mirror based dark pupil eye tracker, whereby the subject places 

their head on a chin rest and views a monitor, and between the monitor and 

subject is a mirror which allows visible light to transfer but infrared light to be 

reflected. This allows the eye tracker to be located above the subject meaning that 

they therefore have a good field of view in addition to simplifying the setup 

procedure since the cameras do not have to be specifically located for the subject’s 

eyes. Images of both these systems can be found in Figure 1.10. 

 

Figure 1.10: The SR Research EyeLink II and SMI iView X eye trackers used in the studies 

documented in this thesis 
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1.8 Eye movement research 

The study of eye movements has emerged as an interesting and novel approach of 

improving our understanding as to how ‘normal’ individuals might perceive the 

world and how they might function in their day to day activities. How the eye 

moves as an individual reads is an area that has generated particular interest. Javal 

(1879) was the first person to discover that eye movements when reading occur in 

series of fast jumps rather than smoothly across the page. A large amount of 

research has been conducted in the area of acquisition of information from text, 

the representation of this text and its understanding which has eventually lead to 

the development of many different computational models of reading (Rayner, 

2009b): Minimal control (Suppes, 1990), Strategy-Tactics (O'Regan, 1990), Word-

Targeting (McConkie et al., 1988), SWIFT (Engbert et al., 2002), Glenmore (Reilly 

and Radach, 2003), Mr. Chips (Legge et al., 2002, Legge et al., 1997), E-Z Reader 

(Reichle et al., 1998), EMMA (Salvucci, 2000) and Reader (Just and Carpenter, 

1980) are just a few example models. Most of these models have had various 

incarnations but none have managed to represent eye movements during reading 

perfectly. Nevertheless, it cannot be argued that the study of eye movements has 

been an immensely valuable tool for increasing our understanding into this vital 

vision-based skill. 

Studying eye movements as a person views natural scenes is also extremely useful 

for understanding how an individual might perceive the visual information around 

them. Eye movements during scene perception as an area is generally more 

difficult to analyse than reading, as in reading there is a clearly defined task, whilst 

in scene perception the movements are far more variable. Generally speaking, the 

amount of information that could be viewed within a given moment will be 

immense, and it is simply not possible for an individual to take in all available 

information at once. The scan path made by a particular subject will therefore not 

cover the whole scene, rather individuals will be selective and tend to fixate on the 

most informative regions of the image and ignore the less informative regions, 

such as the sky (Rayner, 2009b). Initial work by Buswell (1935) and Yarbus (1967) 

noted that subjects are drawn to important regions of an image. Much research has 

followed on from this and tried to quantify where a person is likely to look within a 
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particular image using saliency models. These suggest that eye movements are 

partly driven due to several key low-level properties of the image, with the eyes 

more likely to move towards regions that have, for instance, high levels of contour, 

contrast, luminance or colour behaviour (Itti and Koch, 2000, Krieger et al., 2000, 

Acik et al., 2009, Harding and Bloj, 2010, Einhauser and Konig, 2003, Reinagel and 

Zador, 1999). It has been shown that the gist of an image can be found in a very 

short space of time (as short as 40ms in monochrome and 80ms in colour images) 

from a single fixation (De Graef, 2005). This potentially means that a subject may 

have decided where the following fixations will be in the image within that short 

period of time.  

Whilst a large amount of eye movement research involves the use of healthy 

participants, several studies have suggested that it might also be a useful tool for 

understanding functioning within different clinical populations, with evidence 

showing individuals with various diseases and disorders move their eyes 

differently to healthy people. Studies have suggested that the smooth pursuit and 

saccadic eye movements made by patients with schizophrenia differ from those 

made by healthy individuals (Holzman et al., 1976, Sereno and Holzman, 1995) and 

when carrying out activities such as face recognition (Manor et al., 1999, Conklin et 

al., 2002). It has been suggested that eye movement differences could be a 

functional biomarker for the disease (Lee and Williams, 2000). Patients with 

Alzheimer’s disease have also been shown to demonstrate eye movement 

impairments; for instance, they find it difficult to produce anti-saccades (the 

inhibition of eye movements on instruction) (Kaufman et al., 2010). Differences in 

eye movements have also been observed in patients with other clinical conditions 

such as Autism (Norbury et al., 2009) and Attention-Deficit Hyperactivity Disorder 

(ADHD) (Marsh et al., 2000). 

The study of eye movements during everyday tasks has also generated some 

interest with regards to low vision. It has been shown that patients with age-

related macular degeneration (AMD) take in less information per forward saccade 

and make more regressions (backward saccades) when reading which may explain 

why they have been shown to have slower reading speeds (Rubin and Feely, 2009, 

Bullimore and Bailey, 1995). There have also been abnormalities with fixation 



43 

 

stability observed and these findings may also help explain some of the 

impairments with reading displayed by patients with AMD (Crossland et al., 2004). 

Patients with retinitis pigmentosa (RP) were shown to fixate on different areas 

when walking a predetermined route compared with people with normal vision 

(Turano et al., 2001) and this may be one of the reasons behind previously 

observed difficulties with mobility observed in such patients (Alex et al., 1997). 

Patients with homonymous hemianopia (who experience loss of vision on one side 

due to brain damage) have also been shown to change their eye movements; for 

instance, they produced different scanpaths when viewing visual scenes 

(Pambakian et al., 2000), and appeared to change their eye movements when 

searching for objects in scenes relative to those with healthy vision (Machner et al., 

2009). Interestingly in the latter study, whilst the eye movement patterns did not 

correlate with specific details of the defect, there was a significant correlation with 

defect age. This suggested that patients may have used eye movements as a way of 

compensating for their visual loss over time, which may imply that similar eye 

movement adaptations could also occur in patients experiencing visual loss as a 

result of visual disease.  

Some studies have also studied the relationship between eye movement strategies 

and visual impairment by using artificial scotomas to investigate whether people 

with normal vision change their eye movements as a result of the loss of parts of 

their field of view. These studies are in part based on gaze-contingent paradigms 

which are commonly used in studies of reading and scene perception in healthy 

subjects. Generally, these paradigms involve masking parts of the field of view and 

studying how well the individual takes in the available information in terms of the 

effect on eye movements and performance. This therefore reveals how important a 

particular part of vision may be for a certain task (for a more detailed review see 

(Duchowski et al., 2004, Rayner, 1998)). For instance it has been reported that the 

time to find an object and the length of fixations made are longer when only a small 

central region is available for visual search (Parkhurst et al., 2000). Another set of 

experiments also reported that degrading peripheral vision in a controlled 

manner, so that only a small central window is left, causes individuals to both 

change the size of their eye movements and take longer to find objects (Loschky 
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and McConkie, 2000). People will also produce different eye movements when 

their visual field is restricted in other tasks such as face recognition (Caldara et al., 

2010). Based on this reasoning, obstructing the visual field with an artificial 

scotoma should therefore give similar insight into the implications of visual defects 

on eye movements and task performance. Cornelissen (2005) researched search 

times and eye movements when performing a controlled search task (find a letter 

‘O’ in a collection of ‘C’ distractors) when varying the size of scotomas and found 

that increasing the size of the peripheral scotoma lead to changes in the size and 

duration of eye movements made as the participants went about searching for the 

objects, which coincided with a decreased performance in visual search. Simulating 

central scotomas and cataract have been shown to lead to difficulties in reading 

performance, particularly with smaller letter sizes, and to lead to corresponding 

changes in eye movements relative to normal vision (Fine and Rubin, 1999a). It 

has also been reported that people with central field loss tend to choose a different 

region (the Preferred Retinal Locus; PRL) to compensate for the fovea and the 

application of artificial scotomas using visually healthy participants has helped 

reveal which region might be best for improving reading speed in patients with 

central loss (Fine and Rubin, 1999b). On the one hand, simulating scotomas is a 

useful technique as it allows more control to be asserted as to the location and type 

of visual field defect. However, this control could also be a major downfall as real 

life patients do not display identical and predictable defect properties, which in 

reality will vary in terms of many factors such as size, shape and image distortion 

(black, blur, etc). This is particularly true in glaucoma where patients can have a 

wide range of defect types and severities, and different patients may experience 

their defects in different ways (see Chapter 7). This type of research is also not 

directly applicable to glaucomatous VF defects as vision is suddenly obscured 

rather than a patient gradually adapting to their loss. Therefore it is possible that 

people with glaucoma may function differently in tasks compared with the more 

controlled situation involving artificial scotomas. Research involving actual people 

with glaucoma is subsequently needed to be able to clarify how the patients may 

change their eye movements as they function in real life tasks. 
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1.9 Aims of thesis 

There exist many gaps and unanswered questions with regards to the impact of 

glaucoma on the patient as they go about their day-to-day life. The aims of this 

thesis are to expand on the current literature regarding how glaucoma might 

impact task performance, and to introduce novel ideas regarding eye movements 

and patient perceptions of their vision in order to gain further insight into the 

effects of glaucoma on functioning in everyday life. This will involve investigating 

the performance of people with glaucoma in a variety of situations and comparing 

this with individuals of a similar age. The outline of the thesis is as follows: 

Chapter 2: This chapter describes the key methods of the studies in chapters 3-5 

within this thesis and outlines key characteristics relating to the 30 people with 

glaucoma and 30 age-related controls that took part.  

Chapter 3 examines the hypothesis that visual search is impaired in patients with 

glaucoma, with patients taking longer to locate targets in a ‘controlled’ search 

experiment and in photographs of everyday scenes when compared to age-related 

visually healthy individuals. 

Chapter 4 aims to provide further insight into the apparent deficits in visual search 

performance in glaucoma by investigating whether patients make different eye 

movements compared with individuals with healthy vision during these tasks. 

Furthermore, the study will investigate whether any changes in eye movements 

are related to visual search performance. 

Chapter 5 builds on the idea that eye movements are impaired in glaucoma by 

investigating whether the people with glaucoma display different eye movements 

to controls when they passively view a selection of naturalistic images.  

Chapter 6 examines the eye movements of 14 people with glaucoma and 22 

controls when viewing a selection of driving hazard perception test videos. A 

finding that patients display different eye movement strategies to healthy people 

could have important implications for determining their fitness to drive. 

Chapter 7 aims to gain an increased understanding as to how glaucoma might 

appear to the affected individual, by asking 50 diagnosed glaucomatous subjects 
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with a range of HFA visual field defect severities about their perceptions of 

glaucoma. Patients are shown a selection of images that represent glaucoma in 

different ways and the patient is asked to choose the image that best illustrates 

their own visual experiences. The results will give insight as to whether common 

representations depicting glaucoma in terms of black patches or a black tunnel are 

the best ways of representing glaucomatous visual field loss.   

Chapter 8 concludes this thesis and outlines future work that could be conducted 

to complement our current understanding of how glaucomatous defects affect eye 

movements and patient perceptions of their visual field loss. 
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2 Study design for chapters 3, 4, 5 

 

2.1 Introduction 

This chapter’s purpose is to introduce the setup and experimental design for the 

studies in chapters 3, 4 and 5. It then describes the inclusion criteria, visual and 

demographic properties of the participants that kindly took part in these studies. 

The final section explains the analysis and bespoke software developed to perform 

this. These studies were collected at the same time in the same order, but the trials 

within each study were randomised. It should be noted that the studies in chapters 

6 and 7 use completely different setups.  

 

2.2 Participants 

Patients were recruited from Moorfields Eye Hospital NHS Foundation Trust, 

London and the Fight for Sight Optometry Clinic at City University, London. All 

patients had a clinical diagnosis of glaucomatous optic neuropathy (primary open 

angle or normal tension glaucoma) with reproducible visual field defects in both 

eyes. Patients had no ocular disease other than glaucoma. Prior to participation in 

the studies, patients undertook an eye examination of corrected binocular visual 

acuity (VA), using an Early Treatment Diabetic Retinopathy Study (ETDRS) chart, 

and contrast sensitivity (CS) using a Pelli-Robson chart. To be included in the 

study, patients were required to have a corrected VA of at least 6/12 in each eye. 

Visual fields (central SITA 24-2 and 10-2 on both eyes) were also recorded on a 

Humphrey Visual Field Analyzer (HFA, Carl Zeiss Meditec, CA, USA). Patients were 

identified as having ‘overlapping’ binocular defects as measured by an estimate of 

their integrated visual field (IVF) (Crabb et al., 2004, Crabb and Viswanathan, 

2005): a simulated binocular visual field in which patients’ best point-by-point 

monocular sensitivity is used (PROGRESSOR software: Moorfields Eye Hospital, 

London, UK / Medisoft Ltd., Leeds, UK). Specifically, patients had binocular defects 

with one or more IVF locations with sensitivities of less than 20dB, meaning that 

they would have significant visual field defects at these ‘overlapping’ locations in 
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their monocular VFs. It should be noted that these are only estimates of binocular 

defects, and not truly measured with both eyes open using something like the 

Binocular Esterman Test. Visually healthy control people were recruited from 

university staff, centres for the elderly and the university optometry clinic: prior to 

participation in the studies they too completed an eye examination of VA, CS and 

HFA visual fields (central SITA FAST 24-2) to ensure they had no visual field 

defects which would compromise their role as a control subject in the study. A 

corrected VA of at least 6/12 was required for each eye in control subjects. 

Astigmatic error was less than ±2.5 Dioptres in all those recruited. Recruitment of 

patients and controls was made simultaneously with a specific effort to age-match 

participants.  

Recruitment was restricted to those in good general health ascertained by 

interview and participants were not enrolled if they were on any significant 

medication other than that for their glaucoma. (‘Significant medication’ included 

anti-depressants, treatment for diabetes or significant use of non-topical β-blocker 

medication, all of which were deliberately mentioned).  

The studies were granted full approval by the National Health Service’s (NHS) 

Research and Ethics department and City University London’s School of Health 

Science Ethics committee. The study conformed to the Declaration of Helsinki and 

all subjects gave their informed written consent. All data were anonymised before 

being transferred to a secure computer database at the university. 

Sixty participants were recruited for the studies in chapters 3, 4 and 5: thirty 

people with glaucoma with a mean age of 68.5 (SD: 9.7) years and 30 visually 

healthy age-related controls with a mean age of 68.4 years (SD: 9.5 years; means 

not significantly different; P=0.97. Variances not significantly different; P=0.92.). 

The HFA mean deviation (MD) is a standard clinical measure of the overall severity 

of a VF defect with more negative values indicating greater VF loss. The MD is 

calculated as the overall reduction in VF sensitivity relative to a group of healthy 

age-matched observers and MD is conventionally used as a marker for VF defect 

severity both in the clinic and in clinical trials. The patients had a range of VF 

defect severity: average MD was –10.1 (SD: 7.5) dB, –8.2 (SD: 5.2) dB and –6.6 (SD: 
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4.9) dB in the right eye, left eye and best eye, respectively. Average Pelli-Robson 

contrast sensitivity values were significantly worse in the patients (mean: 1.80 

[SD: 0.16] log units) compared to the control subjects (mean: 1.95 log units 

[SD:0.04]) using a two-sample t-test (P<0.001; 95% confidence interval [CI] for the 

mean difference of 0.08, 0.20). Mean ETDRS chart corrected binocular LogMAR VA 

was 0.06 (SD=0.12) and -0.04 (SD=0.10) in the patients and controls respectively. 

The difference between these mean values was statistically significant (P<0.001; 

two-sample t-test) but the actual size of the average difference, 0.10, was small 

(95% CI for the mean difference of 0.05 to 0.16). 

 

2.3 Equipment setup 

All the studies in chapters 3, 4 and 5 used the same 56cm CRT computer monitor 

displaying at a resolution of 1600 x 1200 at a refresh rate of 100Hz (Iiyama Vision 

Master PRO 514, Iiyama Corporation, Tokyo, Japan) to display the images on. The 

subjects were positioned at a viewing distance of 60 cm and all the images 

displayed were 40.8 cm (width) x 30.6 cm (height) subtending a half-angle of 20.3° 

by 14.9°. The screen was calibrated using a Minolta CS-100 luminance meter 

recording every greyscale combination the system could produce (256). Using 

these values a table was produced stating the RGB (red, green and blue pixel value) 

to the luminance value (cd/m2). Whenever testing or using the monitor for a study, 

it was always left on for a minimum of half an hour to make sure the screen had 

“settled down”.  

The Eyelink II system consists of two computers connected by an Ethernet 

crossover cable. One computer is used as the display machine and is tasked with 

displaying all the images/stimuli on the screen at precisely the correct time and 

sending messages to the eye tracking machine via the Ethernet connection when 

events (such as key presses, the time images are displayed, the time images are 

removed, errors, etc.) occur. The second machine is the eye tracking machine, 

which runs Microsoft Disc Operating System (MS-DOS) (allowing eye position 

detection to occur in pseudo-real-time with a measurement occurring at every 2ms 

interval). The eye tracking machine has overall control of the studies, allowing for 
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aborting trials, recalibrations, etc. but the display machine contains the procedure 

of the study, including study orders, randomisation of trials, naming of images, 

drift correction initialisation, and messaging. All applications are coded in C using 

Microsoft Visual Studio 2005 using the Eyelink Software Development Kit (SDK) to 

display the stimuli and interface with the eye tracking machine. These applications 

developed in C were responsible for the randomisation of the trials and the 

messages required for reordering the data. All the code was written by the author. 

Eye movements were recorded using the head-mounted Eyelink II eye tracker. In 

our setup we used this instrument to sample pupil position monocularly at 500Hz. 

The instrument claims to measure an average eye position accuracy of better than 

0.5° and uses velocity and acceleration thresholds of 30°/s and 8000°/s2 

respectively, to identify saccades and fixations. The reason these values were 

chosen was to minimise noise. The lower the velocity the more microsaccades will 

be detected, however this may have added confusion to our analysis due to the 

subsequent need to merge short fixations into single fixations (or discard 

altogether). As the focus of this work is to investigate fixations and saccades, 

microsaccades are likely to confuse the result. This is not to say that microsaccades 

are not important; they may be very interesting to analyse when comparing 

between patients and controls, however this type of analysis should involve a more 

controlled study design as opposed to the more “real-world” perspective taken 

here. Furthermore, acceleration thresholds reduce the likelihood that noisy data 

will be classified as saccades. These thresholds have been used in previous studies 

that used the Eyelink to investigate eye movements when viewing images (Frey et 

al., 2008, Tatler et al., 2007, Foulsham et al., 2011). On the other hand it is more 

likely that small saccades will be missed. Noise is difficult to remove in an offline 

manner and therefore it is far more appealing to try and remove it at an earlier 

stage. The combination of these values gives us the best situation for reliable data 

to analyse. Another method used in this research to remove misclassified saccades 

was to remove all saccades of amplitude less than 0.5°.  

A chin rest was used to minimize head movements and patients were asked to 

keep their head as still as possible. However if any head movements did occur 

these were compensated for by the EyeLink II’s head movement detection system 
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which adjusts the point of regard accordingly. The EyeLink II proprietary 

algorithm was used to calibrate and verify the subject’s point of regard in relation 

to the correct location on the display. Verification of calibration accuracy must be 

stated to be of a “good” level, which in this research required none of the 9 points 

being verified have an error larger than 1°. Between each trial (image being 

displayed) a drift correction was performed, and in the case where a large drift 

was detected, a recalibration and verification performed. In the case of the search 

tasks (chapter 3 and 4) the participant’s point of regard was used to confirm that 

the participant had found the target stimulus. The trial was stopped at the moment 

the participant successfully located the target item and the time taken was 

recorded automatically by the eye tracking system. In all cases the room was in 

complete darkness but this luminance level was not measured, however the 

minimum luminance value of the monitor (RGB values set to 0) was 0.98cd/m2 so 

it can be assumed the room was equal to this value or less. 

All participants wore refractive correction suitable for the viewing distance of 

60cm, and the same set of trial frames was worn by each participant (even if they 

did not need any correction) to ensure that any restriction to the field of view as a 

result of spectacle frames was equivalent for each person. 

 

2.4 Analysis application 

A bespoke analysis application, as shown in Figure 2.3, was developed in C# using 

Microsoft Visual Studio 2005 for the analysis of eye movements after the data had 

been exported from the SR Research DataViewer application. The application 

conducts various tasks, but in this section only the parts that were used in this 

thesis will be explained.  
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2.4.1 De-randomisation of trials 

All the images used in the research relating to this section were randomised in the 

display application developed by the author in C. This uses the rand() function 

located in “ctflib.h”, which is used to fill an array with random non-repeated 

numbers the same length as the number of the images in that study. This array is 

used for randomising the display order of the trial. A message is sent to the eye 

tracker to state the image displayed and its random order index number. 

Unfortunately the EyeLink II API does not allow for randomisation, which means 

bespoke software has to be used to derandomise the data. Another quirk of the 

EyeLink dataViewer packing is when exporting eye movement data, the messages 

are not included in this exported data and have to be exported separately. The C# 

application developed by the author takes the eye movement data and the message 

data, combines it and then derandomises the data and stores it in a specially 

designed internal object oriented database. 

 

2.4.2 Formatting data for various statistical tasks 

When outputting the data to run various statistical tests, the application reorders 

the data in a format that is suitable. For instance, for the BCE analysis (used in 

Chapter 5 and described below) the data can be output as an average or in an 

ordered per person raw form for easy ANOVA analysis. The program also has 

various cut off mechanisms to remove data based upon time criteria, such as a trial 

time limit, limits on saccade amplitude and fixations durations, etc.  
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2.4.3 Bivariate contour ellipse (BCE) fitting 

To calculate the area of the ellipse covering a collection of (x, y) points we use the 

following formula:  

���� = 2�������1 − 	� 

In this formula ���� represent the horizontal and vertical standard deviation over 

their respective meridians and 	 represents the Pearson correlation (product-

moment correlation coefficient) of the (x, y) coordinates. The value � is calculated 

based upon the probability area to be covered by the ellipse, and this probability is 

calculated by: 


 = 1 − ��� 

In the research in this thesis we always calculate the ellipse to capture 

approximately 68% of the data points using k = 1.14.  

When plotting the ellipse a point is plotted for each degree from 0° to 360°. To 

calculate this we firstly calculate the two semi-axes by: 

�� = 	��0.5 ���� + ��� +��� + ��� 

�� = 	��0.5 ���� + ��� −��� + ��� 

Where the major axis (�	) is given by the larger of the two values and the minor 

axis is the smaller (��). 

A, B and c are given by the following:  

� = ��� − ��� � = 2	����  � = ��(
)
� 			on 2 d.f. 

To calculate the 360 (x, y) coordinates [X, Y] for the ellipse we perform the 

following formulae and then plot those points. 

[�] = 	 � (�̅ + 	�	 cos � cos � −�� sin � sin �)
�

����
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With � given by: 

� �
tan	� � �
!

2  

The sections of C# code to perform these formulae are provided in Appendix A and 

an example of the application running is shown below: 

 

Figure 2.1: Example screenshot of the BCE analysis being executed. This is being run for patient G10 

(Red) and control C30 (Blue) using P=0.68 giving a BCEA value in pixels of 920979 for this control 

and 135207 for the glaucoma patient. 
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2.4.4 Creating, comparing and overlaying Integrated Visual Fields (IVF) to 

eye movements 

When investigating the eye movement analysis, a way of representing the 

glaucomatous patient’s VF defect is helpful to give an insight into why certain 

movements may be occurring. The application is capable of combining both 24-2 

and 10-2 visual fields to create a dual layer IVF giving a much more precise view of 

a patient’s light sensitivity in comparison to their eye movements. This allows for a 

semi-transparent region representing the dual layer IVF to be placed upon an 

image at that patient’s point of regard. This can then be created as a film or 

collection of images. It should be noted that when creating traditional style version 

of an IVF, PROGRESSOR (section 1.3 for more information) is used, however this 

cannot integrate 10-2 VF’s.  
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Figure 2.2: Example representing a glaucoma patient’s 24-2 and 10-2 visual fields and how the process is used to integrates the two fields (a). This new semi-

transparent dual IVF is then overlaid upon the patient’s point of regard (b). This output can be created as a film or collection of images.
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2.4.5 Quantifying viewing area of subjects 

The bivariate contour ellipse provides a general idea of the size of area viewed. 

However, there may be additional regions of the image that were viewed that were 

not covered by the ellipse; likewise the points used to fit the ellipse may not 

necessarily have been viewed by the participant. To quantify a more precise region 

viewed, rather than a generalised elliptical viewing area, the software can 

determine whether any of the people with glaucoma may also view different areas 

of the image to the controls. The application allows for creating regions of interest 

based on a binary viewing method (1 control views a region then rated as “seen”, 

other regions are “not seen”). The circular area marked as viewed can also be 

modified in diameter. Figure 2.3 shows a graphical representation of this analysis 

using 30 controls to create the viewing area in a binary form using a 1.2° marked 

region (represented as a transparent section). The coloured dots represent the 

fixations of 3 people with glaucoma, with the size of the points representing their 

fixation duration. The application, in binary mode, calculates the percentage of 

fixations within the control region and this is used in chapter 5. 

 

Figure 2.3: A screenshot of the Bespoke C# application analysing the regions of interest when 

patients passively view images. The coloured dots are three different patients; the size represents 

their fixation duration. The clouded area represents the control viewing area, where this region is 

transparent controls have viewed this region once or more. This analysis is used in chapter 5. 
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3 Visual search in glaucoma 

 

3.1 Introduction 

As introduced in chapter 1, tasks such as driving, reading and mobility have been 

found to be impaired in patients with glaucoma. These data were mainly collected 

with questionnaires (Jampel et al., 2002a, Nelson et al., 1999, Noe et al., 2003, 

Bechetoille et al., 2008, Ramulu, 2009, Spaeth et al., 2006). However, individuals’ 

responses on questionnaires about the impact of their condition are likely to be 

affected by confounding factors such as personality, perception of task difficulty or 

perceived consequences of admitting accidents (Ormel et al., 1997, Brooks et al., 

1990, McGwin et al., 1998, Warrian et al., 2009). More insight might therefore be 

gained by experiments that observe the patient’s performance in everyday tasks, 

or at least surrogates of those everyday tasks in laboratory conditions (Haymes et 

al., 2008, Kotecha et al., 2009, Ramulu et al., 2009, Friedman et al., 2007). Ideally, 

investigations should focus on daily activities that are both important to 

individuals and are likely to be affected by the disease. 

One visual task that plays an important role in daily activities that can be estimated 

objectively is the ability to search for objects in a scene. Visual search typically 

involves an active scan of the visual environment for a particular object or feature 

(the target) among other objects or features (the distractors). An everyday 

example of visual search could simply be finding a specific item on a supermarket 

shelf, whereas an example in a controlled experiment might require location of a 

letter or symbol against a background of distracters. Impaired visual search might 

put an individual at risk of accidents due to a failure to locate obstacles and 

hazards. Previously it has been demonstrated that older adults who had difficulty 

directing attention to target objects placed in different parts of their field of view in 

a controlled experiment on a computer screen were more likely to have been 

involved in a higher number of motor car crashes compared to those with 

unimpaired visual search (Ball et al., 1993). Another study demonstrated a link 

between performance in a timed search task and difficulty manoeuvring through 

an obstacle course (Kuyk et al., 1998). There is evidence that performance in 
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search tasks is compromised in individuals suffering visual loss as a result of age-

related macular degeneration (AMD) (Jacko, 2001) or occipital brain lesions 

(Machner et al., 2009). Another useful study showed that performance in visual 

search tasks worsens with increasing age and peripheral field constriction (Ball, 

1990). These findings suggest that visual search in patients with glaucoma could 

be particularly affected but there has been little research investigating this directly 

(Altangerel et al., 2006). 

This chapter describes a study that examines the hypothesis that visual search is 

impaired in patients with glaucoma, with patients taking longer to locate targets in 

a ‘controlled’ search experiment and in photographs of everyday scenes when 

compared to visually healthy individuals of a similar age. Support for this 

hypothesis may indicate that individuals with glaucoma are forced to employ 

alternative, more time-consuming strategies to compensate for their visual loss, 

placing increased demands on their independent lifestyle and subsequently their 

quality of life. 
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3.2 Methods 

 

3.2.1 Participants and system setup 

The participants and equipment used for this study are described in chapter 2. 

 

3.2.2 Experimental procedure 

The first experiment investigated a search task similar to that used by Porter et al 

(Porter et al., 2007) in which display elements were Landolt C symbols. Each image 

consisted of one target Landolt C symbol (an upright letter C, which was 

surrounded by a circle) and a selection of distracters (Landolt C symbols rotated at 

90°, 180° or 270°) also encircled. Targets and distracters were equally spaced with 

their location randomised. As in the aforementioned study, the size of the stimuli 

and the number of distracters was varied between trials, with the same search 

images presented to each participant but in a randomised order. In half of the 

images the diameter of all targets and distracters was 2.07° and in the other half it 

was 1.15°. For each internal symbol a Landolt C was used (with the break and line 

width being 1/5 of the diameter). The Landolt C was 50% of the diameter of the 

outer ring and both the outer ring and Landolt C had the same line width. The 

background luminance was fixed at 81.9cd/m2 with the Weber contrast of the 

display elements set such that each image had a mixture at 9.5%, 25%, 31%, 40% 

and 98%. In the trials containing display elements of smaller size (1.15°), 5 images 

contained 100 distracters and 5 images had 50 distracters. For the larger size 

display elements (2.07°), 5 images contained 30 distracters and 5 images had 50 

distracter stimuli. The mean luminance of these images was 68.9 cd/m2 (SD: 1.5 

cd/m2). Figure 3.1 shows three example search images used in the study. It should 

be noted that this experiment was not designed with sufficient blocks of trials to 

examine the effect of the different conditions (display element size and contrast, 

number of distracters).  

After three practice images, 20 images were presented to the participant in 

random order. Before each image was presented (trial), the participant was asked 

to fixate on a cross in the middle of a grey screen. Participants were instructed to 
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verbally tell the experimenter when they had found the target. Eye movements 

were simultaneously monitored using the EyeLink II system (SR Research Ltd., 

Kanata, Ontario, Canada) so the experimenter could confirm that the participant 

had found the target stimulus. The trial was stopped at the moment the participant 

successfully located the target item and the time taken was recorded automatically 

by the eye tracking system. If the subject found the incorrect item within the 

image, they were informed it was incorrect and asked to continue until they found 

the correct item. 

Symbol-like displays do not resemble typical real-world targets such as finding a 

car key one has dropped or locating a street sign. So the second experiment used 

images to mimic such ‘real-life’ situations and participants were presented with 18 

photographs of everyday scenes (3 practice trials and 15 images to be used in the 

analysis). All images were photographs of everyday scenes taken using the same 

camera (Sony DSC-T1, Sony Corporation, Tokyo, Japan), were displayed at a 

resolution of 1600 x 1200 pixels and their mean luminance was 9.6 cd/m2 (SD: 4.0 

cd/m2). Figure 3.2 shows examples of three images used in the study. Before each 

image was displayed on the computer screen a question would appear which 

would also be read slowly and clearly to the participant by the experimenter. 

When the participant acknowledged they had understood the question they were 

asked to fixate on a target at the centre of a grey screen and then the image would 

be revealed. Target detection and time to detection was recorded as with the first 

experiment. All participants viewed the same 15 images but presented in a random 

order. 

 

3.2.3 Analysis 

An average search time was calculated for each participant for each experiment. 

Individual search times that were longer than 60 seconds were censored at that 

value. The distribution of response times are typically skewed so the median time 

across the trials (n=20 for the first experiment and n=15 for the second) was used 

as the estimate for each participant’s average search time. The median of these 

search times in the patients was then compared to the median search times in the 
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visually healthy controls by using a non-parametric test, to examine the null 

hypothesis that average search times were the same across groups. In addition, 

associations between average search times and Best eye MD (the mean deviation 

of the better eye visual field), PR log CS (Pelli-Robson contrast sensitivity), ETDRS 

VA and age were also explored using multiple linear regression in the patient 

group. Minitab v.14 (Minitab Inc., Pennsylvania, USA) was used for the data 

analysis. 

  



63 

 

 

Figure 3.1: Three examples of the Landolt C search task images. Participants were required to locate the correctly oriented letter C (target) in an array of letter C’s 

of different orientations (distracters). All C’s, including the target were encircled and the contrast and size of the target varied from image to image. 
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Figure 3.2: Three examples of the photographs used in the ‘real-world’ search experiment. In each image the study participant was asked to find a target item, the 

exact text displayed to the patient is shown above. The location of the targets are: [a] located in the top right corner of the image; [b] located in the centre of the 

image; [c] located towards the middle left of the image.
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3.3 Results 

In the visual search experiment using the Landolt C symbols, the median search 

time for the patients and the controls was 13.5 seconds (interquartile range [IQR]: 

10.5 – 15.3 seconds) and 12.5 seconds (interquartile range [IQR]: 10.6 – 16.4 

seconds) respectively. The difference in these averages was not statistically 

significant (Mann-Whitney Test P=0.99). In the visual search experiment using 

photographs of everyday scenes, the median search time for the patients and the 

controls was 14.2 seconds (IQR: 9.1 – 17.3 seconds) and 8.8 seconds (IQR: 6.5 - 

10.3 seconds) respectively: the difference in these averages was statistically 

significant (Mann-Whitney Test P=0.001) with a 95% CI for this difference ranging 

from 2.1 to 7.9 seconds. Results from all individual patients are shown in Figure 

3.3. The results for the multiple linear regression using average search times for 

the photographs of everyday scenes as the outcome variable with Best eye MD, PR 

logCS, Age and ETDRS VA as the independent variables in the patient group is 

given in Table 3.1. ETDRS VA and age is shown to have no significant effect on 

average search times whilst there is a significant and equivalent effect of Best eye 

MD and PR logCS. The % R-squared value for the multiple linear regression 

equation using Best eye MD and PR logCS is 55%, suggesting that a substantial 

amount of the variability in average search times for patients is explained by these 

measurements of visual function alone. However, the magnitude of the average 

effect of the statistically significant variables on average search times is modest. 

For example, an average worsening in Best eye MD of 1dB produced an increase of 

1.5 seconds in the average search times (95% CI: 0.7 to 2.3 seconds). The sample 

size is small and some of the explanatory variables (Age and VA) were necessarily 

fixed in range by the design of the experiment for the primary outcome of 

difference in search times between patients and controls. Still, this exploratory 

analysis provides some evidence that visual field and contrast sensitivity 

measurements have significant and equivalent levels of association with search 

times in patients with glaucoma, and these associations are stronger than those 

exhibited by age and visual acuity measures in this group of patients. In addition, 

there was a no association between search times for the photographs of everyday 

scenes and search times for the task using Landolt C symbols in this group of 

patients (Pearson’s correlation coefficient= 0.36; R2 = 12.7%). 
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Parameter Estimate SE P-value 95% Confidence Interval 

Best eye MD -0.8   0.4 0.05 (-0.002, -1.6) 

PR logCS -37.0 12.5 0.01 (-11.3, -62.8)  

Age   -0.1   0.2 0.47 - 

ETDRS VA  16.4 16.6 0.33 - 

Table 3.1: Results of multiple linear regression of Best eye MD, Pelli-Robson [PR] log CS, ETDRS VA 

and age on search times using photographs of everyday scenes in the patient group (n=30). The 

estimates relate to the effect per dB for best eye MD and per log unit for PR logCS. 
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Figure 3.3: Individual average search times for the 30 patients from both experiments. The height of the bars represents median search times (blue denotes real-

world search and red denotes the Landolt C search) and the error bars indicate values at the upper quartile. The greyscale of the visual field from the right and left 

eye is shown for each patient along with their integrated visual field (IVF). Defects are represented by darker regions. All the patients had at least two overlapping 

binocular VF defects of less than 20dB as estimated by IVF but this may not be obviously apparent on the small greyscale representations. The blue and red 

horizontal lines denote the overall median search times for the 30 control subjects in the real-world search and Landolt C search tasks respectively. 
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3.4 Discussion 

Searching for something is a task people do many times every day and visual 

search is a widely studied area in cognitive psychology (Wolfe, 1998) Some 

attention has been given to the idea that visual search efficiency might be useful for 

glaucoma detection when incorporated into a psychophysical test (Loughman et 

al., 2007), but visual search has not been closely studied as a means of evaluating 

an aspect of visual disability in glaucoma. Results from this study suggest that 

patients with glaucomatous visual field defects in both eyes find it more difficult to 

locate target objects when searching photographs of everyday scenes compared to 

visually healthy individuals of a similar age. In contrast, there was no significant 

difference in performance between patients and controls when searching images 

that were more ‘controlled’ with the Landolt C symbols task. 

This difference in performance across the experiments is interesting: it might 

support the notion that people with glaucoma have difficulties with a task 

representative of something in their daily life but not when they have a similar 

challenge in a more controlled functional type test. Of course, finding an object in a 

computer displayed photograph, albeit of an everyday scene, is not the same as 

searching for something in real-life. Nevertheless, these results are compatible 

with the observation that patients with glaucoma commonly self-report difficulty 

with this type of task. For example, responses about difficulty searching for 

dropped items had the highest association with binocular visual field loss when 

compared to other activities in a study of a large sample of patients with glaucoma 

(Viswanathan et al., 1999). Likewise, in an insightful interview study on the impact 

of glaucoma on everyday activities, patients frequently and eloquently described 

the frustration they experienced when searching for things (Green et al., 2002). 

Moreover, Altangerel et al (Altangerel et al., 2006) directly tested the performance 

of glaucoma patients on different activities and identified searching for objects as 

one of the tasks most related to the extent of visual field loss. 

Visual search is a complex task involving both foveal and peripheral vision (Ball et 

al., 1988). The results from this study prompt speculation that the increased 

average search time experienced by the patients in the photographs of everyday 

scenes may be partially related to an inability to sufficiently utilise prior 
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(Theeuwes et al., 2006) and salient information (Cave and Wolfe, 1990) in their 

peripheral vision due to their restricted field of view. For instance, evidence 

suggests that people normally integrate prior knowledge with visual properties to 

aid object detection (Theeuwes et al., 2006): simply put, an individual searching 

for a street sign, for example, will already know that signs are usually located in a 

certain place (on posts or at the corner of a road) and will thus apply this prior 

knowledge to aid their search for the object in their peripheral vision. However, 

the peripheral visual field defects experienced by people with glaucoma may 

obscure such a landmark, making it more difficult to successfully utilise their 

previous knowledge to locate the sign connected to it. Reduced CS also appeared to 

play an important part role in a patient’s ability to search for real-world objects; 

possibly making them second guess the target. We did not measure colour vision, 

but one potential explanation for the difference between patients and controls 

could be colour recognition deficiencies in glaucoma (Austin, 1974, Kalmus et al., 

1974, Pacheco-Cutillas et al., 1999); objects should appear highly salient but may 

not to a patient with these functional deficits. The colourful, realistic images used 

in this study contrast greatly from typical standard functional measurement that 

are acquired in the glaucoma clinic and the conjecture about colour vision 

deficiencies in the patients might explain some of the results. 

It is interesting that average search time for patients with the ‘controlled’ Landolt 

C search task were, however, not significantly different to those average search 

times in the healthy controls of similar age. Perhaps the facility to integrate prior 

knowledge with visual properties of the ‘scene’ to aid object detection is more 

ambiguous with this type of image. The largest distance between objects in the 

Landolt C search task was 3° and therefore it is likely to be a somewhat simpler 

task for both controls and patients to locate the position of the next potential item 

to look at, meaning the search becomes more systematic and relies less on 

peripheral vision. Simply put, the everyday images might require a fuller field of 

view to perform the search task optimally. Likewise, the impact of prior 

information and saliency in the Landolt C search task, compared to the 

photographs of everyday scenes, is probably less. Results from other visual search 

experiments indicate that older adults find it more difficult to locate items when 
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the target is more similar to distracter stimuli (Scialfa et al., 1998). Since this study 

primarily involved elderly subjects in both the patients and controls, it might be 

expected that both groups would find the Landolt C search task equally difficult 

due to the lack of distinctive information that could be utilised to optimise their 

performance. Of course, the two tasks are not directly comparable in everything 

except that one comprises an unnatural scene (Landolt Cs) while the other consists 

of natural scenes. For example, the two tasks cannot be exactly matched for target 

size or contrast. Unsurprisingly there was some association between the average 

search times for the Landolt C search task and the search times using photographs 

of everyday scenes in the patient group. Still, the results simply highlight that 

patient performance is equivalent to age-related visually healthy subjects in a 

search task using optotypes, but it is worse when searching more ‘natural 

scenarios’ represented in this instance by the photographs of everyday scenes. 

The patients and controls had similar age so this cannot explain the differences in 

search performance with the photographs of everyday scenes. All participants 

were required to have a corrected VA of at least 6/12 in each eye but average 

binocular ETDRS VA was slightly better in the controls. The difference in 

performance in the search task might be best explained by the differences in visual 

field defect or by differences in contrast sensitivity. The latter supports the belief 

that a decrease in contrast sensitivity in glaucoma patients may account for much 

of the visual disability from the condition despite normal or near normal visual 

acuity (Ross et al., 1984). Performing the same experiment on other visually 

healthy subjects but lowering the contrast of the images might be informative here. 

Results from multiple linear regression indicated that visual field and contrast 

sensitivity measurements have significant and equivalent levels of association with 

search times of the photographs of everyday scenes in this small patient group. A 

selection criterion for good general health of the participants was used but not all 

may have reported use of mild anti-hypertensive or statins or other commonly 

used drugs in an elderly population. Also, the groups were not deliberately 

matched for a test of cognitive ability. More trials in the experiment may have 

yielded better estimates of average search times, but the number was minimised to 

avoid fatigue effects in elderly participants.  
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The cases in this study are representative of patients with glaucoma in both eyes 

and many exhibited visual field defects that would be described as at least 

moderately severe. The patients did not have early stage glaucoma. For example, if 

any of these patients were drivers then they would be obliged to notify the Driver 

and Vehicle Licensing Agency to have a full binocular visual field assessment in 

order to examine their legal fitness to drive in the UK. The integrated visual fields 

provide a good estimate of the patient’s central binocular field of view from the 

monocular results and these suggest that some of the patients would be visually 

disabled to the extent that they would not be legally fit to drive (Crabb et al., 2004). 

Inspection of the greyscales of the visual fields (monocular and IVF) when 

compared to individual search times (Figure 3.3) hints that the link between 

severity of defect and search times is an ambiguous one, although results from 

multiple linear regression provide some evidence of an association between the 

level of damage, as estimated by the MD in the best eye, with search performance. 

Firm conclusions about patient’s visual search performance being linked to specific 

types of defect and stage of disease severity cannot however be inferred from 

these data; this awaits further investigation. 

Impaired visual search performance will probably place an increased burden on 

the glaucomatous patient’s independent lifestyle, and may be partially linked to the 

higher number of falls and accidents reported by these patients (Haymes et al., 

2007). The main finding in this exploratory study, disclosing the difficulty patients 

with bilateral glaucoma have in searching for an item in a photograph of an 

everyday scene, should stimulate other investigations into the impact of the 

disease on visual search performance, including perhaps surveillance of eye 

movements (Crabb et al., 2010). Identification of the problems experienced by 

glaucoma patients when carrying out such tasks is an important step towards a 

better understanding of the impact of the condition in everyday life, and may prove 

helpful for developing future methods of disease monitoring and even 

rehabilitation.  
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3.5 Conclusion 

Some patients with glaucomatous visual field defects in both eyes found it 

especially difficult to locate objects in photographs of everyday scenes when 

compared to visually healthy individuals of a similar age. However in a more 

controlled Landolt C search task, where stimuli are located close together, patients 

performed similarly to the visually healthy controls. These findings therefore 

suggest that searching for objects is an additional challenge that could be faced by 

people with glaucoma in their day-to-day life.  
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4 Eye movements during visual search 

 

4.1 Introduction 

As shown in chapter 1, it appears that this visual loss can have a detrimental 

impact on the quality of life of the patient; for instance, patients have reported that 

they experience problems with tasks such as reading, walking and face recognition 

in addition to experiencing more falls and motor vehicle accidents (Nelson et al., 

2003, Jampel et al., 2002b, Haymes et al., 2007, McGwin et al., 2004). Studies have 

also more objectively examined the performance of patients in laboratory based 

simulations of a variety of ‘everyday’ vision-based tasks and found that patients 

with glaucoma displayed significant impairments in these tasks compared with 

people with normal vision (Ramulu et al., 2009, Kotecha et al., 2009, Szlyk et al., 

2005), although studies investigating how glaucoma actually impacts visual 

functioning in the everyday world are generally underrepresented in the literature 

(Glen et al., 2011). In chapter 3 it was found that some patients’ ability to locate 

objects in pictures of everyday scenes is compromised. In that study, it was found 

that patients with glaucoma were significantly slower to locate the target object in 

computer displayed naturalistic images, but not in a controlled task involving 

greyscale ‘Landolt C’ stimuli. These results suggested that when searching for 

items in real-life situations where the visual scene is more complex patients with 

glaucoma may not be able to rely on the same strategies as those with healthy 

vision. They may instead be forced to employ alternative, more time consuming 

techniques for perceiving the scene as a result of their visual loss. However, little is 

known about the underlying mechanisms and strategies that could be influencing 

this apparent impairment.  

This chapter aims to provide further insight into the apparent deficits in visual 

search performance in glaucoma by investigating whether patients make different 

eye movements compared with individuals with healthy vision in the 

aforementioned search tasks. Furthermore, do any changes in eye movements 

influence their performance? Abnormal eye movement behaviour has been 

observed in patients with functional deficits as a result of other eye disorders; for 
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instance, evidence suggests a link between eye movements and impaired reading 

speed in age-related macular degeneration (AMD) (Rubin and Feely, 2009, 

Crossland and Rubin, 2006). Eye movement strategies have also been investigated 

in terms of the mobility difficulties observed in retinitis pigmentosa (RP), with 

patients with increasing visual field loss tending to fixate downwards or at nearby 

objects instead of towards their intended goal, as persons with normal vision did 

when walking an unfamiliar route (Turano et al., 2001). Moreover, eye movements 

have subsequently been applied to a rehabilitation setting, in that training the 

individual to alter their eye movement behaviour has been shown to lead to 

improvements in their task performance (Seiple et al., 2005, Pambakian et al., 

2005). In terms of glaucoma, there has been very limited research; though the 

work presented in chapter 5 indicates that patients change their eye movements 

relative to healthy control subjects when viewing static naturalistic images and 

chapter 6 discusses dynamic driving scenes. Simulated and actual peripheral field 

loss has also been shown to disrupt the build-up of accurate spatial 

representations of the surrounding visual world (Fortenbaugh et al., 2008) and 

lead to more restricted scanning behaviour whilst walking, likely due to a lack of 

visual stimulation in the wider locations of their visual field (Vargas-Martin and 

Peli, 2006) which may be a factor behind the difficulties experienced by such 

patients.  
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4.2 Methods 

 

4.2.1 Participants and system setup 

The sixty participants that took part in this research are described in detail in 

chapter 2 and their search duration results can be found in chapter 3. The system 

setup and eye tracker is described in full in chapters 2 and 3. All saccades of 

amplitude less than 0.5° were removed so as to exclude noise within the eye 

movement data.  

  

4.2.2 Experimental procedure 

The methods are identical to those described in chapter 3 with the exception that 

the eye movements were being analysed rather than just used to confirm the 

subject had found the correct target. To briefly summarise: Two studies were 

performed, the first consisted of a selection of 18 real-world natural and urban 

scenes, 3 of which were used as a practice and the further 15 were shown in 

random order and were used in the analysis. Before each image was displayed, the 

target was described in text form on the screen and this was also read aloud to the 

patient by the experimenter. Two examples showing the image displayed, text 

displayed to the subjects and scan paths are shown in Figure 4.1. 
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Figure 4.1: Two example scan paths by two different patients in the real-world search task. The text 

displayed to the participant is shown below the image. The first image (a) shows the unmodified 

version of the image and the patient’s scan path can be seen in section (b), the green fixation point 

denotes the start point and the blue shows the final fixation (which is on the sign stating the station 

name the train is going to). The red dots are the fixations, with the size relating to the fixation 

duration and the lines between each dot a saccade. A different image is shown in (c) and a different 

patient’s fixations and saccades are shown in image (d) in the same fashion as in (b). Larger 

versions of figure (b) and (d) can be found in appendix B. 

 

The second study was a Landolt C search task, which consisted of one correctly 

oriented Landolt C and a selection of incorrectly oriented C. The target and 

distractor were encircled by an outer ring. There were 23 trials, 3 were practices 

and then the further 20 were randomly displayed and these results were analysed. 

Of the 20 trials analysed, 10 contained stimuli that were larger (2.07° in diameter 

with 30 or 50 distractors and one target) and 10 contained stimuli that were 

smaller in size (1.15° in diameter with 50 or 100 distractors and a single target) 

and in each of these trials the contrast was varied (Webber contrasts of: 9.5%, 

25%, 31%, 40% and 98%). Both studies displayed the images on a 56cm CRT 

computer monitor using the same setup as described in chapter 2. In both studies, 
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prior to each image presentation (trial), the participant was asked to fixate on a 

cross in the middle of a grey screen. Eye movements were simultaneously 

monitored using the EyeLink II system (SR Research Ltd., Kanata, Ontario, Canada) 

and the subject’s point of regard was used to confirm that the participant had 

found the target stimulus. The trial was stopped at the moment the participant 

successfully located the target item. The eye movement setup is described in more 

detail in chapter 2. 

 

Figure 4.2: Landolt C search examples. Images (a) and (c) are the original images shown to the 

subjects; the targets have a red arrow beside to make them clearer to the reader. Images (b) and (d) 

show the fixations and saccades using the same method as in Figure 4.1. Images (a) and (b) are the 

1.15° diameter and (c) and (d) are the 2.07° diameter stimuli. Larger versions of figure (b) and (d) 

can be found in appendix B. 

 

Due to the exclusion of saccades less than 0.5°, as explained in section 4.2.1, 9.7% 

of glaucomatous and 9.5% of control data were removed in the real world search 

task. When investigating the Landolt C search task 6.4% of glaucomatous data and 

5.1% of control data were excluded.  
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4.2.3 Analysis 

The experimental design meant all participants viewed the same images, displayed 

in random order, in both studies (20 for the Landolt C and 15 for the real-world 

search tasks), so these were assumed to be repeat measures. A mixed two-way 

analysis of variance (ANOVA) (accommodating missing data by the method of 

median imputation) using a General Linear Model (GLM) to assess each of three 

different eye movement parameters (response variables). The software package 

SPSS 18 (IBM Corporation, Somers, NY, USA) was used to perform these statistics. 

In this two-way ANOVA arrangement, variation in the response variable (each eye 

movement parameter) was expected to be different across the images and across 

the participants, with the primary null hypothesis of there being no difference in 

the average value for the eye movement parameters between the patients and 

controls examined (F test on the main factor, participant group, from the ANOVA). 

Averages across the whole experiment (means for each eye movement parameter 

across all 20 and 15 images) were also calculated for each participant and were 

plotted to illustrate overall effects, including overall variability within groups. 

In addition, univariate associations between the eye movement parameters against 

severity of visual field defect as measured by the Best Eye MD and severity of 

contrast sensitivity (PR log CS) were explored using Spearman’s rho correlation 

coefficient in the patient group. To examine the relationship between eye 

movements (saccades per second and saccade amplitude) and search performance 

(search duration) Spearman’s correlation coefficient was again used. The 

proportion of variation in search performance explained by these factors was 

explored using multiple linear regression.   
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4.3 Results 

Each of the three eye movement parameters considered was assessed using a 

mixed two-way GLM ANOVA with the images (trials) representing repeated 

measures. The departure of the F statistic from 1 summarises the extent of a 

difference in the main factor (patients versus controls) and the P-value refers to 

the null hypothesis of no effect, or no difference, in that main factor. No obvious 

departure from normality was observed in any of the average response variables 

as assessed by the Kolmogorov-Smirnov test. The degrees of freedom were 

corrected using the Greenhouse-Geisser method where Mauchly’s test indicated 

that the assumption of sphericity did not hold. On average patients had a 

significantly lower saccade rate (saccades/second) when compared to controls 

(F1,58 = 4.1; P=0.047) and there was no significant interaction term (F9,496 = 1.0; 

P=0.47; groups by image) indicating that the effect was almost always consistent 

across all the 15 repeat measures (trials). There was also statistical evidence that 

patients had longer average fixation duration compared to controls (F1,58 = 5.8; 

P=0.02) with again no significant interaction term (F5,270 = 0.3; P=0.71) meaning 

that the effect was consistent irrespective of the image viewed. There was no 

statistical evidence for a difference in the mean saccade amplitude between the 

groups (F1,58 = 0.9; P=0.34). 

There are no statistically significant differences in any of the eye movement 

parameters in the Landolt C search task when comparing the two groups (saccades 

per second F1,58 = 1.8; P=0.19, saccade amplitude F1,58 = 1.6; P=0.21 and fixation 

duration F1,58 = 1.1; P=0.29). 

Figure 4.3 (a, b, c) illustrates the results from the real-world search task by plotting 

overall mean values for the three eye movement summary measures for each 

participant in the experiment. The overall mean number of saccades/second per 

trial was 2.6 (SD: 0.4) and 2.8 (SD: 0.3) for patients and controls respectively, 

equating to an average reduction in saccade numbers of 6.0% (95% CI: 0.1 to 

12.0%). The overall mean fixation duration (ms) was 314 (SD: 43) and 295 (SD: 

27) for patients and controls, giving, as expected, an equivalent percent difference 

between patients and controls. The overall mean saccade amplitude (in degrees) 

was 4.6 (SD: 0.6) and 4.8 (SD: 0.5) for patients and controls and there was no 
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difference in variance between the two groups (P=0.44; F-test on variances). 

Figure 4.3 (d, e, f) shows the results from the Landolt C search task. The overall 

mean number of saccades/second per trial was 3.3 (SD: 0.4) in the patient group 

and 3.5 (SD: 0.3) in the control group, which gives an average reduction in saccade 

numbers of 5.1% (95% CI: -0.4 to 10.5%). The overall mean fixation duration (ms) 

was 251 (SD: 39) and 238 (SD: 23) for patients and controls, giving, as expected, an 

equivalent percent difference between patients and controls. The overall mean 

saccade amplitude (in degrees) was 4.4 (SD: 0.8) in the patients and 4.7 (SD: 0.7) 

for the controls. 

Table 4.1 shows the relationship between the eye movement parameters 

investigated and severity of visual field loss (best eye MD in dB) and severity of 

contrast sensitivity damage (PR Log CS) in the patient group (n=30). It is 

interesting that in the real-world search task the only association that can be 

drawn up is between saccade rate and contrast sensitivity (Spearman’s rho: 0.43). 

However in the Landolt C search task (which has no significant differences 

between the control subjects and patients) had good associations between BEMD 

and saccade amplitude (rho: 0.51) and between contrast sensitivity and saccade 

rate (rho: 0.51), saccade amplitude (rho: 0.53) and fixation duration (rho: -0.40). 

This indicates that patients with worse BEMD and contrast sensitivity make 

smaller saccades and lower contrast sensitivity indicates lower saccade rates along 

with longer fixations. 
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Figure 4.3: Box plots showing the results from three eye movement parameters being analysed for 

the two tasks. Plots (a, b, c) show the real-world search task and (d, e, f) show the Landolt C search 

task. There is a statistically significant difference between the controls and the patients when 

investigating the average number of saccades per second (a) and the fixation duration (b) during 

the real-world search. There is no significant difference in the average saccade amplitude in either 

task or the number of saccades per second and fixation duration in the Landolt C search task. 
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 Number of 
Saccades 

Saccade 
Amplitude 

Fixation 
duration 

Real-world search 
BEMD 

0.25 (P>0.05) 
 

0.33 (P>0.05) 
 

-0.07 (P>0.05) 
 

Real-world search 
Contrast sensitivity 

0.43 (P=0.02) 
 

0.09 (P>0.05) 
 

-0.30 (P>0.05) 
 

Landolt C search 
BEMD 

-0.07 (P>0.05) 
 

0.51 (P=0.004) 
 

-0.12 (P>0.05) 
 

Landolt C search 
Contrast sensitivity 

0.51 (P=0.004) 
 

0.53 (P=0.003) 
 

-0.40 (P=0.03) 
 

Table 4.1: Spearman’s rank correlation coefficient (rho) for the three eye movement parameters 

against severity of visual field loss (best eye MD) and severity of contrast sensitivity damage (PR 

Log CS) in the n=30 patients. 

 

Table 4.2 and Figure 4.4 indicates that there exist good associations between 

performance and both the number of saccades and fixation duration. Stepwise 

multiple regression was performed to find which combination of variables produce 

the predictors in this model. The criteria used were that variables could be 

removed from the model if they caused a reduction in the r² value that had an 

associated p-value greater than 0.1. The model indicates the largest proportion of 

the variance in search times could be explained by a combination of both the rate 

at which patients perform saccades (P<0.01) and the size of those saccades 

(P=0.01) (multiple regression: P<0.01; R2=59%). The 5% and 95% confidence 

interval of the slope coefficient when performing the regression are -31.6 to -14.5 

and -12.1 to -1.6 for saccade rate and saccade amplitude respectively. Fixation 

duration was not included in the model most probably because of its orthogonal 

relationship with saccade rate (indicated by its highly significant spearman’s 

correlation [rho: -0.87]).  

There are no significant eye movement predictors of search duration in the control 

group. No eye movement parameters appeared to predict search speed in the 

glaucomatous group when performing the Landolt C search task (P>0.05), but in 

the control group there appeared to be a mild link between saccades rate and 

search time. Table 4.2 shows these results in further detail for both studies and 

Figure 4.4 and Figure 4.5 shows the scatter plots relating to the three eye 

movement parameters in the real-world and Landolt C search tasks respectively.  
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 Saccades Saccade Amplitude Fixation duration 

Controls Real-
world search time  

-0.19 (P>0.05) 
 

-0.05 (P>0.05) 
 

0.13 (P>0.05) 
 

Controls Landolt C 
search time  

-0.38 (P=0.04) 
 

0.10 (P>0.05) 
 

0.21 (P>0.05) 
 

Real-world search 
time  

-0.68 (P<0.01) 
 

-0.34 (P>0.05) 
 

0.52 (P<0.01) 
 

Landolt C search 
time  

-0.26 (P>0.05) 
 

-0.26 (P>0.05) 
 

0.21 (P>0.05) 
 

Table 4.2: Spearman’s rank correlation coefficient (rho) for the three eye movement parameters 

against search times in the two tasks for n=30 controls and n=30 patients. 
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Figure 4.4: Duration to find the target within the image compared to saccades per second (a, b), 

fixation duration (c, d) and saccade amplitude (e, f) in the real-world search task for the n=30 

controls and n=30 patients respectively. 
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Figure 4.5 : Duration to find the target within the image compared to saccades per second (a, b), 

fixation duration (c, d) and saccade amplitude (e, f) in the Landolt C task for the n=30 controls and 

n=30 patients respectively. 
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4.4 Discussion 

Searching for objects is a task that is conducted effortlessly many times a day by 

the average individual as they go about their day-to-day life. For instance, looking 

for one’s car keys, food shopping and finding the correct money to pay for said 

items in the supermarket will all require the swift detection of the ‘target’ object 

from amongst an array of irrelevant ‘distractor’ items. It appears that visual loss as 

a result of glaucoma impairs the individual’s ability to successfully conduct this 

‘everyday’ activity, as reported in chapter 3, patients with glaucoma were slower to 

locate target items in naturalistic images than controls of a similar age with 

healthy vision. The current research adds to this finding, in that it was discovered 

that patients also produced different eye movement behaviour when searching for 

objects in these same ‘real-world’ images. More specifically, it was found that the 

patients produced significantly fewer saccades per second, and therefore fixated 

for longer, than the control subjects. It is well documented that peripheral vision 

plays a key role in eye movement behaviour, in that it is necessary for detecting the 

objects of most functional importance so that a subsequent saccade can be made 

towards it, bringing the item onto the fovea for more detailed inspection (Hooge 

and Erkelens, 1999). Therefore the finding that patients produced fewer saccades 

than the controls may reflect the degradation of peripheral vision as a result of 

glaucomatous damage, meaning the patient struggles to detect the most salient 

items around them. Instead, the patient may be forced to employ more erratic and 

inefficient scanning strategies to locate the object of interest. By producing fewer 

saccades, the patients also by default fixated on visual information for a 

significantly longer period of time. It may be that increased fixation duration is the 

patient’s way of compensating for their visual loss, as it allows them to concentrate 

for longer on certain items of information. Research suggests that normally 

individuals will adapt the duration of their fixations in accordance with how 

difficult the visual task is (Rayner, 2009a), with an increased fixation duration 

generally improving performance in more difficult search tasks (Watson et al., 

2010). When the vision of normal subjects is obstructed with an artificial scotoma, 

however, it appears that whilst this strategy is still employed, it is no longer 

optimal (Cornelissen et al., 2005). The employment of a similar eye movement 

strategy by individuals with glaucoma may therefore explain why patients were 
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previously slower to detect the target objects than the controls with full visual 

fields, as the loss of vision occurring as a result of the disease affects the quality of 

scene perception and the visual system’s subsequent ability to select the most 

appropriate eye movement behaviour. At the moment these assumptions need to 

be researched more fully, as there are solid associations between CS and saccade 

rate. Further research needs to separate out eye movement differences caused by 

glaucomatous CS loss and glaucomatous VF degradation. 

Whilst patients displayed impairments with search behaviour when viewing 

naturalistic images, the eye movement behaviour of the patients during the 

Landolt-C search task was not any different on average to that employed by the 

controls. This finding echoes the results from the previous chapter that indicated 

that despite being slower to find objects in naturalistic scenes, the patients 

performed similarly to controls when the situation was more controlled. The 

reason for these conflicting results may reflect the characteristics of the images 

used and how glaucomatous visual field loss restricts the important regions of the 

image. In the Landolt-C search task the target and distractors are similar and 

placed relatively close together. The role of peripheral vision for selecting the most 

salient items will therefore be minimal and the individual will likely benefit by 

taking a systematic approach to viewing the images, directing their saccades to 

each item in a controlled and purposeful manner. Whether the patient has defects 

in their peripheral vision will thus be largely irrelevant, and only very central 

visual field defects are likely to affect the task. On the contrary, the real-world 

images are much more complex and the areas of interest are often further apart 

and less predictable. The individual will be much more reliant on their peripheral 

vision to select the most important items to bring onto the fovea via a saccade. A 

VF defect in any location is thus more likely to affect the efficiency of the search 

task, even in the case of peripheral defects, as the full picture cannot be seen and 

therefore the most useful item may be unavailable (Mackworth and Morandi, 

1967). 

Subsequent correlational analyses were used to provide further insight as to which 

visual characteristics may be most important in dictating the eye movement 

behaviour of the patients during the search tasks. It was found that contrast 
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sensitivity was the factor that was most associated with all three eye movement 

parameters in the more naturalistic search task. CS loss often coincides with 

glaucomatous damage (Hawkins et al., 2003, Stamper, 1989) and so its influence 

on the eye movement strategies used by the patients is not all that surprising. 

Stimulus contrast is an important visual property for dictating eye movement 

behaviour, with evidence suggesting that stimuli with higher contrast are more 

likely to be selected for fixation (Acik et al., 2009). A patient with diminished 

contrast sensitivity will subsequently be less likely to detect such key items and 

will thus likely require more time to build up a detailed representation of the 

visual scene. Worsening contrast sensitivity loss was also associated with the 

different eye movement behaviour produced by people with glaucoma when 

passively viewing similar naturalistic scenes, thus reinforcing its importance in 

dictating how the glaucomatous patient may view the world (see chapter 7). 

However, although contrast sensitivity was related to eye movements, there was 

no significant relationship between best eye MD and eye movements during the 

naturalistic search task, which is somewhat surprising given the previously 

discussed role a wide visual field should have when searching for objects. The lack 

of relationship here may perhaps reflect the simple reality that MD alone is not a 

sufficient measure for encapsulating the full extent of the glaucomatous damage 

and loss. Visual field data, for example, is inherently noisy between measurements 

in primary open-angle glaucoma (Heijl et al., 1989). The visual fields included in 

the current study were recorded on only one occasion, and it is possible that the 

values used in the current analysis would not necessarily reflect those given had 

the data been recorded on a different date or time. Furthermore, HFA 24-2 visual 

fields are recorded separately in each eye, and yet the current tasks were 

conducted using both eyes as would be the case when searching for objects in real 

life. A measure of the binocular visual field would likely be most appropriate for 

this type of research but unfortunately there is not an entirely suitable test in 

existence at present. The suprathreshold Esterman visual field gives an idea of 

whether a patient can see the target within that region of their binocular vision, 

but does not give us an idea of the level of light sensitivity within that region of 

their visual field as the HFA VFs do (Esterman, 1967, Esterman, 1982). We feel the 

mean deviation in the best eye is therefore the most practical simulation of real life 
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vision that is available, with the integrated visual field also serving as a simple 

simulation, but not a direct measurement, of the patients binocular sensitivity 

(Crabb et al., 2004, Crabb and Viswanathan, 2005). However this method does not 

take into account which parts of the visual field are most affected in real-life, which 

is likely to be an important factor for understanding eye movement behaviour. 

Several studies involve the use of simulated defects, which are advantageous in 

that it is possible to exert control over the size and location of defect. However, 

artificial scotomas are not truly reflective of the experiences of real life people with 

glaucoma who have visual loss that is far less predictable, therefore complicating 

the task of determining the influence of such VF loss on eye movement behaviour. 

The relationship between defect location and eye movements during visual search 

should be a subject of future research in the context of the everyday functioning of 

patients with glaucoma.  

Nevertheless, although there was no significant difference between the eye 

movements of the patients and controls on average during the Landolt-C search 

task, the correlational analyses revealed that saccade amplitude was actually 

modestly correlated with BEMD in this task, with the patients with a worst BEMD 

appearing to make smaller saccades than those with better BEMD. Patients with a 

low MD value in their best eye are likely to have a large amount of visual field 

damage which will most probably impinge upon central, as well as peripheral parts 

of the visual field. Given that central visual loss will likely be more debilitating 

during the controlled task, where the physically similar targets and distracters are 

separated by only a small margin of around 3° and a wide field of view serves little 

purpose in the initiation of saccades, it may be that those patients with more 

central loss are making small compensation saccades as is the case in AMD, a 

disease characterised by central scotomas (Bellmann et al., 2004, Crossland and 

Rubin, 2002). This effect is however not likely to have been strong enough to have 

influenced the results once the data for all patients was averaged. Furthermore, the 

decrease in saccade amplitude may also be a by-product of the nature of the 

stimuli in this task, whereby properties such as stimulus contrast and the number 

of distracters were manipulated. For instance, decreasing stimulus contrast has 

been shown to lead to the production of smaller saccades (Näsänen et al., 2001). 
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Contrast sensitivity was significantly correlated with the three types of eye 

movement in the search task involving controlled Landolt C stimuli, but it is likely 

that diminished contrast sensitivity as a result of glaucoma would be even more 

detrimental for those trials where the target was a stimulus of low contrast 

anyway. In hindsight it would have been beneficial to investigate in more detail the 

relationship between the stimulus properties and the eye movement strategies 

used by the patients versus the controls to determine whether this was indeed the 

case. However, unfortunately the design of the study did not allow for this as there 

were unequal numbers of trials representative of each of the stimulus property 

types, a feature we accept to be one of the main limitations of the current work.  

Correlational analyses between eye movements and search times revealed that the 

eye movements produced in the naturalistic search task, and to a lesser extent in 

the controlled Landolt C task, were linked to how long the patient took to locate 

the target item. For instance, the fewer saccades made by a patient per second, the 

longer it took them to find the target. On the other hand, there was not any real 

relationship between eye movement strategies and search performance in the 

control subjects. The convincing relationships between eye movements and search 

times reported here provide important evidence that the compensatory eye 

movement strategies used by patients with glaucoma may underlie some of the 

visual disabilities, in this case searching for objects, that are displayed by many 

patients as a result of the disease and the strategy the patient chooses can 

influence how well they are able to deal with their visual loss. Furthermore, these 

findings may subsequently hint at a potential rehabilitation method that could 

teach the patient to view the visual scene differently in an attempt to improve their 

functional performance. For instance, it was found that by training patients with 

AMD to make increasingly large eye movements in reading tasks that gradually 

increased in difficulty throughout an 8 week period eventually lead to 

improvements in reading speed (Seiple et al., 2005). Also, training individuals with 

hemianopia to make larger saccades in their blind regions has been shown to 

increase the field of view for visual search and subsequently improve performance 

(Kerkhoff et al., 1992, Zihl, 1988). It may be that encouraging certain people with 

glaucoma to perhaps look around an image more frequently in addition to making 
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wider eye movements could increase their chance of finding objects more quickly 

and therefore help compensate for their field loss, although this should be the 

subject of a more focused and purposely designed investigation.  

Whilst this study provides promising evidence that the eye movements of people 

with glaucoma change relative to healthy controls when searching for objects in 

real-world scenes, it should be remembered that these images were static and 

therefore not entirely reflective of the more fast-paced and changeable nature of 

the real world. The finding that patients produced different eye movements when 

searching for objects in less predictable naturalistic images, but not in a grey scale 

and generally more controlled laboratory task, nevertheless highlights the 

importance of taking a more real-world perspective when considering how 

glaucoma actually manifests itself as the individual goes about their daily life 

outside of the clinic. In future studies perhaps gaze could be monitored as the 

patient searches for real-life objects within a controlled normal environment to 

further determine how patients may carry out this task in their normal lives. In the 

meantime, this study provides an important next step into our understanding of 

how glaucoma actually manifests itself as the patient goes about their normal 

activities. 
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4.5 Conclusions 

This patient group exhibited an average of 2.6 saccades/second that was 

significantly lower than that exhibited by a control group of age-related visually 

healthy people (2.8 saccades/second) when searching for objects in naturalistic 

images. This in turn meant the patient group performed longer fixations in this 

task. It must be noted that the size of this reduction in saccade rate is small (6%) 

and there is a large amount of variability. There was no difference in the average 

eye movement behaviour of the patients compared with the controls in the more 

controlled search task involving Landolt-C stimuli. These changes in eye 

movements appear to be related to their search performance and therefore give an 

interesting insight into why patients with worsening glaucoma appear to be worse 

at the real-world search task. The lower a glaucomatous patient’s saccade rate the 

worse they are likely to perform in these tasks, which begs the question: Would 

encouraging people with glaucoma to change their saccade rate improve their 

performance at these search tasks? This research in the meantime further 

increases our understanding of the visual functioning of people with glaucoma in 

their everyday lives. 
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5 Eye movements of people with 

glaucoma when passively viewing 

images 

 

5.1 Introduction 

As introduced previously, it is important to consider how any measured visual loss 

impacts the individual in their daily life beyond the clinic. Studies that objectively 

measure the patient’s performance in surrogates of vision-based tasks help 

quantify complaints made by patients and have revealed that patients display 

difficulties in many everyday tasks. However, little is known about the underlying 

mechanisms influencing these impairments. Chapter 4 suggested that important 

insight for this may lie in patients’ eye movements, and how they may differ from 

visually healthy individuals. Efficient eye movements are a necessity for successful 

everyday visual functioning, by allowing the individual to scan available visual 

information before selecting the objects of most functional importance and 

bringing them onto the fovea for more detailed analysis. A finding that patients 

with eye disease move their eyes differently to visually healthy individuals could 

therefore help underpin the nature of the functional impairment. The link between 

eye movements and visual functioning has already received some clinical interest 

in amblyopia (Kanonidou et al., 2010), retinitis pigmentosa (Turano et al., 2001) 

and age-related macular degeneration (AMD) (Bullimore and Bailey, 1995). 

Individuals with contrast sensitivity loss were also found to produce abnormal eye 

movement behaviour as they manoeuvred complex routes through their natural 

environment (Vivekananda-Schmidt et al., 2004). Furthermore, the potential of 

such eye movement behaviour research with regards to the development of future 

low-vision rehabilitation strategies is beginning to be recognised (Seiple et al., 

2005). With regards to glaucoma, chapter 4 showed that patients appeared to 

make different eye movements when performing visual search within real-world 

images. Chapter 6 discusses the finding that some patients produced different eye 

movement behaviour when viewing films of road and traffic scenes filmed from the 
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perspective of a driver compared with visually healthy individuals of a similar age. 

This provides some evidence to support previous research findings that 

individuals with more severe peripheral visual field defects tend to make more 

fixations, more errors and take longer to find objects than control subjects 

(Coeckelbergh et al., 2002). Little is known regarding the impact of glaucomatous 

visual field loss on eye movement behaviour in other visual scenarios. Evidence 

suggests that eye movements can be driven by the nature and complexity of the 

task (Andrews and Coppola, 1999, Rayner, 2009a, Henderson, 2003, Bertera and 

Rayner, 2000) and as such, it is of worth to consider the eye movement behaviour 

produced in a variety of naturalistic situations in order to gain a wider insight into 

the functioning of those with visual field loss. 

The principal aim of this chapter is to use eye tracking to examine the hypothesis 

that patients with bilateral glaucomatous field defects exhibit significant 

differences in eye movement characteristics as compared to age-related healthy 

control subjects when naturally viewing a series of images of everyday scenes. The 

results should provide further insight into the nature of compensatory 

mechanisms used by people with glaucoma when perceiving the world around 

them, which could in turn pave the way for additional educational and 

management strategies. 
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5.2 Methods 

 

5.2.1 Participants and system setup 

The participants that took part and system setup for this study are described in 

chapter 2. All saccades of amplitude less than 0.5° were removed so as to exclude 

noise within the eye movement data; 2.8% of the patient data and 2.7% of the 

control eye movement data on average were consequently removed. 

 

5.2.2 Procedure 

A slide-show of 28 images was shown to each participant. The images were 

presented on the system described in chapter 2. The images were photographs of 

natural or urban scenes taken using the same camera (Sony DSC-T1, Sony 

Corporation, Tokyo, Japan) and were presented in random order at a resolution of 

1600 x 1200. Each image within the slide-show was displayed for exactly 3.2 

seconds. Every participant was given the following instruction before starting the 

study: “Please view these images as you would a slide show of photographs, like if 

you are viewing a photo album. You can move your eyes around as much as you 

like”. They were invited to comment on the pictures during the breaks between 

each image presentation, and were encouraged to offer an opinion about each 

photograph such as whether they found it pleasant or recognised the location at 

which the photograph was taken. This was to ensure that the participants were 

actually viewing the images, but still allowed for the existence of a ‘passive’ 

component in that they were able to view any part of the image that they wished 

and did not feel that they were being ‘tested’. Examples of three of the images with 

superimposed eye movement data (scanpaths) for three patients and three 

controls are shown in Figure 5.1. 
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Figure 5.1: Images A, C and E show three of the images (out of 28) with superimposed scanpaths of 

eye movements from three of the glaucoma patients. Images B, D, F are the same images showing 

different control subjects viewing the same images. The dots represent the location of fixations, 

with the size of the dot representative of the fixation duration. The saccades are represented by the 

connecting lines and the bivariate contour ellipse (BCE) is shown encompassing approximately 

68% of the individual’s viewing area calculated, in this instance, for the single image. 
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5.2.3 Primary analysis 

The eye tracker automatically extracts and records a number of eye movement 

parameters. For this study, number of saccades per second per trial, average 

fixation duration (ms) per trial and average saccade amplitude (degrees) per trial 

were considered. These summary eye movement parameters were calculated for 

each image as viewed by each participant. 

The experimental design meant all participants viewed the same 28 images, albeit 

in random order, so these were assumed to be repeat measures. A General Linear 

Model (GLM) was used to perform a mixed two-way analysis of variance (ANOVA) 

(accommodating missing data by the method of median imputation) to assess each 

of three different eye movement parameters (response variables) using the 

statistical software package SPSS 18 (IBM Corporation, Somers, NY, USA). In this 

two-way ANOVA arrangement, variation in the response variable (each eye 

movement parameter) was expected to be different across the images and across 

the participants, with the null hypothesis of real interest being no difference in the 

average value for the eye movement parameters between the patients and controls 

examined (F test on the main factor, participant group, from the ANOVA). Averages 

across the whole experiment (means for each eye movement parameter across all 

28 images) were also calculated for each participant and were plotted to illustrate 

overall effects, including overall variability within groups. 

In addition, univariate associations between the eye movement parameters against 

severity of visual field defect as measured by the Best Eye MD (the mean deviation 

of the better eye 24-2 visual field) and severity of contrast sensitivity (PR log CS) 

were explored using Spearman’s correlation coefficient in the patient group alone. 

As a consequence of the ‘real world’ nature of the study, monocular visual fields for 

the patients were also merged to form a binocular integrated visual field (IVF) for 

every patient. This method has been previously used and validated in the context 

of disability produced by visual field loss (Crabb and Viswanathan, 2005, Crabb et 

al., 2004) and arguably helps represent the link between loss of vision and 

behaviour in an everyday environment without the use of additional binocular VF 

testing. Greyscale representations of these binocular integrated visual field plots 

were directly compared to the BCEA for each patient. 
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5.2.4 Secondary analysis 

In order to assess the size of the average viewing area for an individual across the 

slide-show, all fixations (point of regards) were extracted from the software for 

each participant across all 28 images. Then, to quantify the spatial coincidence of 

the point of regard location for each participant, the best-fit bivariate contour 

ellipse (BCE) of the points was calculated. The BCE area has been previously used 

to quantify fixation eye movement stability in patients with macular degeneration 

(Crossland and Rubin, 2002, Bellmann et al., 2004, González et al., 2006) and to 

quantify viewing areas for subjects as they watch movies (Goldstein et al., 2007, 

Crabb et al., 2010). In short, the centre of the BCE represents the mean ‘point of 

regard’, with the spatial extent of the ellipse being one standard deviation from 

this centre along two principal axes, theoretically affording ‘coverage’ of 

approximately 68% of the ‘point of regard’ locations. The BCE area (BCEA in 

degrees squared) therefore provides a summary measure of the spatial extent of a 

participant’s gaze over the entire set of images. These values are then compared 

between groups to examine the hypothesis that patients may or may not have a 

more restricted viewing area compared to controls. Univariate associations 

between BCEA and best eye MD, PR log CS and IVF were also explored. 

BCEA provides a summary of the spatial extent of the observer’s fixations over the 

entire set of images but it does not represent the regions of interest that the 

observer focussed on. The next secondary analyses attempted to determine if some 

of the patients failed to look at parts of the image that were typically viewed by the 

visually healthy controls. This required a novel analysis and the development of a 

bespoke computer program in C#. For each of the 28 images, every fixation made 

by the visually healthy control subjects was plotted on a grid of the same size as 

the image (1600 by 1200 pixels). Each fixation was assumed to subtend a diameter 

of 1.2 degrees (the size of the foveola) and these were represented on the grid. 

This leads to a map where each and every pixel is represented by dichotomous 

values as ‘seen’ or ‘not seen’. ‘Not seen’ would mean that pixel would never be 

covered by any of the control subjects’ (n=30) fixations. The next step involved 

consideration of the fixations made by each of the individual patients in relation to 

this map. For each patient, the program records the percentage of fixations that fall 
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within the regions of interest generated by the sample of control subjects. A low 

value for this metric would indicate that the patient has fixated in areas of the 

image that none of the control subjects would have fixated on. The computer 

program produces a visualization of the normal observer or region of interest map. 

Examples of these are shown in Figure 5.2. The darker, semi-transparent region 

represents the area that no control subjects viewed, and the fully transparent 

regions are where at least one of the control subjects fixated on something that 

was of interest. Fixations made by two people with glaucoma for the two images in 

Figure 5.2 (A, C) are displayed as green and red dots in Figure 5.2 (B, D). Many of 

the fixations from these patients are not in the region of interest generated by the 

controls. A summary measure of failure to fixate on regions of interest from the 

control map was calculated across the entire image set for each patient. These 

secondary analyses would then allow a test of the hypothesis that this ‘unusual’ 

viewing pattern would be more apparent in patients with worse VF defect and 

worse CS. This was examined by looking at associations between the metric from 

the analysis and Best eye MD and CS. This novel analysis therefore gives an idea 

about whether patients are more likely to look ‘outside’ of the areas of the image 

chosen for fixation by normally sighted individuals. 
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Figure 5.2: Images A and C show original images and B and D show the control ‘region of interest’ 

(generated by the fixations of the 30 controls) superimposed as the transparent regions of the 

image. If no control views a region the area is darkened. The fixations of two different patients 

(represented by the red and green dots respectively) are displayed in image B and D: many of the 

fixations made by these patients fall in areas of the image that were never viewed by any of the 30 

age-matched controls. 
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5.3 Results 

 

5.3.1 Primary results  

Each of the eye movement parameters considered was assessed using a mixed 

two-way GLM ANOVA with the images (trials) representing repeated measures. 

The departure of the F statistic from 1 summarises the extent of a difference in the 

main factor (patients versus controls) and the P-value refers to the null hypothesis 

of no effect, or no difference, in that main factor. No obvious departure from 

normality was observed in any of the average response variables as assessed by 

the Kolmogorov-Smirnov test. In the case where Mauchly’s test indicated that the 

assumption of sphericity did not hold, degrees of freedom were corrected using 

the Greenhouse-Geisser method. There was statistical evidence that on average 

patients made fewer saccades per second when compared to controls (F1,58=6.2; 

P=0.016) and there was no significant interaction term (F16,931=1.6; P=0.07; groups 

by image) meaning that the effect was almost always consistent across all the 28 

repeat measures (trials). Following this, as would be expected, there was also 

statistical evidence that patients had longer average fixation duration compared to 

controls (F1,58=8.1; P=0.006) with again no significant interaction term (F5,270=1.4; 

P=0.23) meaning that the effect was consistent irrespective of the image viewed. 

There was, however, no statistical evidence for a difference in the mean saccade 

amplitude between the groups (F1,58=2.3; P=0.14). 

Figure 5.3 (a, b, c) illustrates the results by plotting overall mean values for the 

three eye movement summary measures for each participant in the experiment. 

The overall mean number of saccades/second per trial (each lasting 3.2 seconds) 

was 3.1 (SD: 0.4) and 3.3 (SD: 0.3) for patients and controls respectively; an 

average reduction in saccade numbers of 6.7% (95% CI: 2.6 to 10.8%). The overall 

mean fixation duration (ms) was 297 (SD: 52) and 265 (SD: 35) for patients and 

controls, giving, as expected, an equivalent percent difference between patients 

and controls. The overall mean saccade amplitude (in degrees) was 5.4 (SD: 1.5) 

and 5.8 (SD: 0.8) for patients and controls. Whilst the ANOVA indicated no 

significant difference in the average values for saccade amplitude it is clear from 

Figure 5.3 (c) that there was a greater spread and variation in the between-person 
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saccade amplitude parameter for the patients compared to the controls; this effect 

was statistically significant (P=0.001; F-test on variances).  

Results from the exploratory univariate analysis of association between the eye 

movement parameters and severity of visual field loss (best eye MD in dB) and 

severity of contrast sensitivity damage (PR Log CS) in the patient group (n=30) are 

shown in  

Table 5.1. There is no evidence of any statistically significant correlations, 

suggesting that level of visual field damage or level of contrast sensitivity 

impairment is not associated with the eye movement parameters. 

 

 

Figure 5.3: Boxplots showing average number of saccades (A), fixation duration (B) and saccade 

amplitude (C) for the controls and patients (whiskers on plots are set at the minimum and 

maximum values). The average number of saccades is decreased in the patient group. Although the 

average saccade amplitude is similar in both groups, the between-person variability (illustrated by 

the width of the boxes) is significantly larger in the patients compared to the controls. 

 

5.3.2 Secondary results 

The BCEA summarises the magnitude of the overall viewing region for a 

participant across all the images. The mean BCEA was 317 (SD: 89) and 244 (SD: 

100) degrees squared for the controls and the patients respectively. Therefore, the 

average BCEA for the patients was 23% smaller than the average BCEA for the 

controls (95% CI: 11 to 35%) and this difference was highly significant (P=0.004; 

two-sample t-test). Results for the people with glaucoma and control subjects can 

be viewed in Figure 5.4. Results from the exploratory univariate analysis of 

association between the BCEA and severity of visual field loss (best eye MD in dB) 

and severity of contrast sensitivity damage (PR Log CS) in the patient group (n=30) 

are shown in  
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Table 5.1. There was no evidence of any statistically significant correlations, 

suggesting that level of visual field damage or level of contrast sensitivity 

impairment is not associated with the size of BCEA in this group of patients.  

 

Figure 5.4: Boxplots showing overall bivariate contour ellipse area (BCEA in degrees squared) for 

the patients and the controls. The patients tend to view a more restricted region of the images 

when compared to the controls. 

 

However, when investigating the number of fixations viewed within the control 

region there appears to be some association with MD which is close to statistical 

significance (Spearman’s rho: 0.35; p=0.06) and contrast sensitivity (rho: 0.39; 

p<0.05). Scatterplots for these two results are shown in Figure 5.5. This finding 

suggests that those patients with a worsening MD in the best eye and a decline in 

contrast sensitivity are more likely to spend time looking at different regions of the 

image than the controls. 

 

Figure 5.5: Scatter plots showing the relationship between the percentage of fixations made by the 

patients within the control ‘region of interest’ against best eye MD and contrast sensitivity. 
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 Number of 
Saccades 

Saccade 
Amplitude 

Fixation 
Duration 

BCEA Fixations within 
control region 

BE MD  0.01  
 

0.05 
 

0.01 -0.10 
 

0.35  
 

PR Log 
CS  

0.17 
 

-0.15 
 

-0.20 -0.24     
 

0.39 
 

 

Table 5.1: Spearman’s rank correlation coefficient (rho) for the three eye movement parameters, 

BCEA and saccades within control region against severity of visual field loss (best eye MD) and 

severity of contrast sensitivity damage (PR Log CS) in the n=30 patients. 

 

Figure 5.6 shows greyscale representations of each patient’s central binocular 

integrated visual field (IVF). These binocular VFs cover field of view of about 20º 

(being composed of monocular 24-2 HFA VFs) and the scaled BCEA for each 

patient is superimposed on each VF to give an idea of how this varies by individual. 

Summary measures for the eye movement parameters are given for each patient 

too.  

 



105 

 

Figure 5.6: Greyscales of binocular integrated visual fields (IVF) for all the patients with their 

bivariate contour ellipse (BCE) scaled and superimposed. Overall BCE area (BCEA) is given in 

degrees squared and the patients are ranked in order of this value. The average percentage of the 

control area per image viewed by each patient is also stated (CA). Each patient’s best eye MD (BE 

MD) is specified in dB. The average number of saccades (S) and saccade amplitude (SA) in degrees 

per image is stated for each of greyscales.  
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5.4 Discussion 

Results from this study provide some evidence to suggest that individuals with 

bilateral glaucoma produce different eye movements compared to visually healthy 

individuals of a similar age when passively viewing images of natural scenes. For 

instance, the patient group made fewer saccades and consequently fixated for 

longer, than the control subjects when viewing the images. Since new information 

can only be acquired during fixations (when the eyes hold still) (Matin, 1974), and 

it is not possible to develop a sufficiently detailed percept from one glance alone 

(Irwin, 1991); the finding that the patients made fewer saccades suggests they 

were subsequently unable to process as much of the visual scene as their visually 

healthy counterparts during the specified time period. An increased number of 

saccades (and fixations) will also normally compensate for the fact that the quality 

of information naturally falls off from the central point of regard (Henderson, 

2003), and so the fact that fewer saccades were made in a condition characterised 

by peripheral loss further suggests that the perceptual quality of each scene was 

not as fruitful for some of the people with glaucoma as compared to visually 

healthy people. Nevertheless, as was also observed in the previous chapter, the 

production of fewer saccades by default enabled the participant to fixate for longer 

on selected information, and this finding may be the first indicator of the 

employment of an alternative strategy as a result of the reduction in visual field in 

an attempt to ensure the most important visual information is not missed. For 

instance, evidence suggests that the time spent looking at a particular area is 

related to how informative the individual believes that information to be (Antes, 

1974, Henderson, 2003). Therefore, it may be that by spending longer focusing on 

a particular aspect of the image, the glaucomatous patient either consciously or 

subconsciously hopes to focus on only the more useful information. Moreover, the 

observation could, perhaps, simply reflect a difference in the temporal processing 

of information between people with glaucoma and individuals with normal vision, 

but this should be the subject of further investigation. The finding of an increased 

fixation duration in the patient group also adds weight to the results in that it 

suggests that the result that less saccades were produced by the patients reflected 

a genuine change in eye movements and was not simply a fact of poor eye 

movement recording in one group or other personal factors such as whether 
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patients tended to blink more throughout the task. In addition, this study also 

introduced investigation into more spatial aspects of eye movement behaviour in 

terms of the size and general location of the fixations made. According to the 

results of the BCEA analysis, fixations made by the patients when they viewed the 

images naturally (and therefore could view any part of the image they liked) were 

restricted to narrower regions of the image on average compared with the 

controls, again implying that the patients were only able to gain a limited 

interpretation of the image in front of them. When perceiving visual scenes, it is 

believed that a much wider area of visual field is required to sufficiently gather 

information than in other visual tasks such as reading (Rayner, 2009a). Loss of VF 

will therefore limit the amount of information that is able to be processed in a 

certain length of time; a finding supported by research showing that masking 

increasing areas of the field of view will largely impair an individual’s ability to 

recognise features of a scene (Saida and Ikeda, 1979). Despite this result, there was 

surprisingly no significant difference when comparing the mean saccade 

amplitudes of the patients with the controls in this study. This is likely due to the 

large between-person variability in eye movements observed in the patients 

compared with the controls; for instance, some individual patients recorded 

average saccade amplitude around three times larger than other patients. This 

variability may still serve as an indicator that glaucoma may interfere with the 

strategies normally employed by healthy individuals, and force some patients to 

utilise alternatives that are very different to others. The strategy chosen could 

have important implications for real-life situations during which the rapid 

scanning of the visual field is required; for instance, for making judgements when 

crossing the road or during a driving manoeuvre when the immediate visual scene 

must be taken into consideration. 

Furthermore, the exploratory analysis revealed that patients with a worsening VF 

defect severity (as measured by the MD in the best eye) and worsening contrast 

sensitivity (as measured by PR CS) were less likely to fixate the same parts of the 

image as the controls. This result further suggests that there is something specific 

to glaucoma that is causing the patients to perceive the image differently to the 

controls. Peripheral information is thought to be used to help filter visual 
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information so that the eyes are directed to more useful items (Mackworth and 

Morandi, 1967), and it may be the case that the nature of the typically peripheral 

defects seen in glaucoma somewhat compromises this ability, thus decreasing the 

likelihood that the patient will fixate on the same areas as the controls. Moreover, 

low level visual properties including contrast levels have been shown to influence 

fixation, with a higher proportion of fixations being made on regions of increased 

luminance-contrast (Reinagel and Zador, 1999, Krieger et al., 2000, Einhauser and 

Konig, 2003). Diminished contrast sensitivity – which often coincides with 

glaucomatous visual field loss (Hawkins et al., 2003, Stamper, 1989) - is therefore 

likely to impede ability to detect these regions and thus drive the individual to 

fixate on other, perhaps less salient areas. 

Explaining the differences in eye movements observed between groups in terms of 

the basic parameters and BCEA is more complex, as unlike when considering the 

spatial locations observed, there was no evidence of a direct association between 

these variables and MD in the best eye or PR CS. The patients and controls were all 

elderly and carefully selected to have similar age so this cannot explain the 

differences in the eye movements. All participants were required to have a 

corrected VA of at least 6/12 in each eye but average binocular ETDRS VA was 

slightly better in the controls. VF defects are very difficult to quantify and although 

summary measures like MD are used clinically they are only a ‘blunt’ measure of 

the VF and tell us little about the topography or spatial nature of glaucomatous VF 

defects. Despite the patients performing differently to the controls on the whole, it 

should be reiterated that there was still a large amount of variation in eye 

movement behaviour across the patients. Closer examination of individual cases 

can help to decipher what additional factors relating to vision may be driving the 

results. Particular cases of note are patients A and B (Figure 5.6), who despite 

having similar MD values in their best eye VF recorded the largest and smallest 

BCEA respectively. Closer examination of the VFs of the aforementioned patients 

hints that defect location may also be an important factor in determining the 

development of compensatory patterns; for instance, it can be seen that patient A’s 

VF defect is more peripheral than that of patient B, who has severe central loss in 

the upper right hemisphere. Perhaps patient A is less aware of their defect than 



109 
 

patient B during everyday functioning, and has therefore not adopted 

compensatory eye movement strategies within a central 20°. Defect awareness is 

likely to encompass a wide range of characteristics including years since diagnosis, 

rate of progression and the stage of disease at which the individual was diagnosed, 

in addition to personal expectations and experiences. A limitation of this study was 

that this type of data was not collected. Investigation of the spatial relationship 

between gaze patterns and VF defects thus awaits further investigation.  

Of course there may still have been some additional demand characteristics in 

existence in this study; for example, since the photographs used in the current 

study depicted a variety of different scenes taken on different dates, weather types 

and lighting conditions, it was not possible to control for factors such as saliency, 

contrast and pattern features of objects which are thought to influence saccadic 

behaviour (Itti and Koch, 2000, Krieger et al., 2000, Acik et al., 2009, Harding and 

Bloj, 2010). Nevertheless, the sample of images could be said to be reflective of 

natural scenes, and since there was found to be no statistically significant 

interaction term in the eye movements between images, it appears that the nature 

of the task was still relatively consistent throughout the duration of the study. An 

additional anomaly relates to whether the participants were actually paying 

sufficient attention to the images. Care was taken by the experimenter to ask the 

participants informal questions about the images between presentations but there 

was not an explicit performance measurement. We wanted the participant to view 

any part of the image that they wished; perhaps as they would when encountering 

a visual scene for the first time so as to capture ‘natural’ eye movements removed 

from increased task demand. Nevertheless it may be have been that some observed 

eye movements were in response to visual scenes generated during mind-

wandering as opposed to those that were being driven by the real-life scene 

(Brandt and Stark, 1997). 

This study provides some new evidence about how patients with bilateral 

glaucoma view pictures of natural and everyday scenes. Further studies into the 

eye movement patterns of patients with glaucoma when carrying out other more 

cognitively demanding visual tasks, such as reading, are undoubtedly needed 

before an accurate understanding of the functional deficits experienced by patients 
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with glaucoma can be gained. The variability in patient response in the data 

presented in this study suggest that other experiments consider whether fixation 

patterns may be adaptive, in the sense that there could be increased probability 

that scan paths will include fixations in damaged parts of the visual field. Such 

studies require innovative quantitative approaches of the eye movement patterns 

beyond, for example, simply counting the number of saccades and the size of the 

saccades. Examining whether patients with unilateral glaucoma produce different 

eye movement behaviour in their diseased eye may also be helpful. The idea that 

some patients make different eye movements to visually healthy control people 

opens up the idea of thinking how this information might be used in rehabilitation 

of visual impairment. This has received attention in other retinal diseases such as 

age-related macular degeneration (AMD) where some eye movement research 

rehabilitative techniques for visual impairment, with evidence to suggest that 

reading ability can improve following training focusing on eye positioning and 

movements (Seiple et al., 2005). Providing auditory feedback about eye 

movements is also thought to help improve task performance (Hall, 2001). 

Identifying optimal strategies for patients with glaucoma may help improve 

performance in other visual tasks (Vukicevic, 2009), and to serve as a way to 

educate the patient about their defect. We hope that the results from this study 

may stimulate future investigations which may also make such interventions a 

reality for people with glaucoma in an attempt to improve their understanding of 

their condition and their ability to independently go about their daily activities. 
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5.5 Conclusions 

This exploratory study provides some new evidence that patients with bilateral 

glaucoma exhibit different eye movement behaviour compared to visually healthy 

subjects of a similar age when viewing images of everyday scenes. These results 

should stimulate further eye movement studies in glaucoma and these might 

provide a new ‘window’ into understanding the functional deficits of the disease. 

We speculate that understanding such ‘real world’ visual function deficits in 

glaucoma is perhaps a first step towards designing appropriate strategies for 

patient education about the impact of a visual field defect and potential 

rehabilitation. Further studies in eye movements and glaucoma are already 

underway in our laboratory. 
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6 Eye movements of people with 

glaucoma when performing a driving 

hazard perception test 

 

6.1 Introduction 

As explained earlier in this thesis, more insight is needed into how VF defects 

manifesting at different stages in the disease process impact on patients’ everyday 

visual function. Chapter 3 showed that glaucoma patients have issues with visual 

search, with chapter 4 and 5 showing how eye movements are inhibited when 

performing real-world visual search and passively viewing images. In this chapter 

the effect glaucomatous defects have on patients’ eye movements when 

performing a video based driving hazard perception test will be explored. 

Glaucoma undoubtedly impacts on an individual when VF loss causes the removal 

of a driving licence (guidelines can be found in section 0), and several studies of 

varying experimental design have shown that certain glaucomatous visual field 

defects are not compatible with safe driving (Haymes et al., 2007, Haymes et al., 

2008, Johnson and Keltner, 1983, McGwin et al., 2004). The issue of driving with 

glaucoma is a serious one, with a significant proportion of patients suffering visual 

loss that results in driving ineligibility, certainly in the UK (Ang and Eke, 2006, 

Owen et al., 2008). Moreover, it has been demonstrated that patients perceive this 

particular potential outcome of their disease to be as serious to them as the long-

term risk of blindness (Bhargava et al., 2006). 

The Hazard Perception Test (HPT) was introduced as an element of the UK driving 

licence theory test in 2003 as a measure to encourage appropriate visual scanning 

of the road or highway and to develop the ability to recognise at the earliest 

opportunity that a potentially dangerous driving situation might arise. In this 

context a ‘learner driver’ is shown a film of a real driving scene, seen from the 

perspective of the driver, with the task being to detect potential ‘hazards’: these 

are defined as something that would make the camera car take evasive action, such 
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as braking for an oncoming cyclist or a pedestrian unexpectedly crossing the 

road/street. Primarily, it is a useful educational tool allowing learner drivers to 

encounter ‘on road’ driving scenes from the safety of a computer monitor. A 

subject’s performance on the HPT is clearly dependent on instruction, prior 

experience and perception of what represents a driving hazard, and HPT 

performance in terms of simply detecting a hazard in visually healthy subjects is 

certainly variable (Chisholm et al., 2008). Previously the HPT, as a simple reaction 

test to hazards, was investigated as a potential proxy measure for identifying 

visual defects that would impinge on fitness to drive, and was found to have 

limited value for this purpose (Rauscher et al., 2007). Whether the HPT is an 

indicator of subjects’ visual strategies when driving under the conditions in which 

they are most likely to have an accident is open to debate, and is not the subject of 

this study. Rather, for the purposes of this study, this realistic and relevant visual 

scenario can be ‘played out’ on a computer screen allowing for accurate gaze 

tracking in a controlled laboratory setting, thus making it most suitable for 

examining the eye movement behaviour of people with glaucoma compared to 

control subjects whilst viewing an everyday scene.  

The aim of the work described in this chapter is to perform eye tracking on 

subjects as they simultaneously view a series of HPT film clips to examine the 

hypothesis that patients with binocular glaucomatous field defects exhibit 

significant differences in eye movement characteristics to healthy control subjects. 

Moreover, in the context of visual field defects and fitness to drive, the data can 

also be used to examine qualitatively how these patients’ eye movements relate to 

the events and hazards in the video sequences. 
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6.2 Methods 

 

6.2.1 Participants 

This retrospective study took advantage of some of the data collected as part of a 

UK Department for Transport (DfT) funded study conducted at City University 

London, fully reported elsewhere (Chisholm et al., 2008, Rauscher et al., 2007). In 

short, this UK DfT study aimed to examine the agreement between the outcome of 

conventional visual field tests and proxy measures of driving safety in subjects 

with binocular paracentral scotoma, resulting from a range of visual disorders, but 

preserved visual acuity (VA). One experiment in this study, not performed on all 

study participants, examined the performance of subjects on the HPT whilst eye 

movements were simultaneously recorded. Glaucoma patients were recruited 

from the Central Middlesex Hospital (North West London Hospitals NHS Trust), 

Moorfields Eye Hospital Foundation Trust London and the Fight for Sight 

Optometry Clinic at City University London. Data from these patients, along with 

those from a group of visually healthy control subjects, are the subject of this 

study.  

All patients had a clinical diagnosis of glaucomatous optic neuropathy (primary 

open angle glaucoma) in both eyes and are, therefore, representative of those 

patients who should undergo further testing to satisfy the visual field 

requirements for legal fitness to drive in the UK (Chisholm et al., 2008, Crabb et al., 

2004). Prior to inclusion in the study, all patients had a full eye examination 

including central visual fields (24-2 or 30-2 SITA Standard) recorded on a 

Humphrey Visual Field Analyzer (HFA, Carl Zeiss Meditec, CA, USA). Patients were 

excluded if they produced unreliable fields at this first visit. VA of at least 6/9 was 

required in both eyes, with no other significant ocular disease reported other than 

glaucoma. Visually healthy control subjects were recruited from University staff, 

centres for the elderly and the University optometry clinic. A full eye examination, 

including HFA visual fields, was carried out to exclude any abnormality before a 

volunteer was accepted into the study. A VA of at least 6/9 was required for each 

eye.  
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The subjects in this study consisted of 14 people with glaucoma and 22 visually 

healthy controls (these are a different group of participants to the previous 

chapters). The mean age of the patients was 66.7 (SD=19.0) years compared to a 

mean age of 48.9 (SD=13.8) years for the control subjects (averages significantly 

different; P=0.003; two sample t-test). The patients had a range of visual field 

defect severity: average HFA mean defect (MD) was -9.2 (SD=9.7) dB, -8.0 (SD=9.0) 

dB and -10.5 (SD=9.6) in the right eye, left eye and worse eye, respectively. Five of 

the patients (36%) and five of the controls (23%) had never driven (proportions 

not significantly different; P=0.46; Fisher’s exact test). The self-reported average 

number of years actively driving was 21 (SD=13) and 16 (SD=11) for the patients 

and the controls respectively (averages not significantly different; P=0.50; two 

sample t-test). 

The study was approved by the ethics committee of each of the participating 

institutions where subjects were recruited (Moorfields and Whittington Research 

Ethics Committee, London; School of Community and Health Sciences Research 

and Ethics Committee, City University London). All participants were asked about 

their general health and were excluded if they were on any significant medication 

(other than that for their glaucoma). Written informed consent, according to the 

tenets of the Declaration of Helsinki, was obtained prior to examination from each 

subject. All the data, with patient identifiers removed, were transferred to a secure 

computer at the university. 

 

6.2.2 System Setup 

The HPT film clips used in this study have been used elsewhere (Grayson and 

Sexton, 2002) and consisted of 26 short films (range 40-73 seconds) showing a 

range of driving environments (e.g. dual-carriageway or divided highway, rural 

lane, busy urban streets). Each film contained between one and three ‘hazardous 

driving events’. The films were digitised (with a standard mpeg codec running at 

25 frames per second) and shown on a 42 inch plasma widescreen monitor (1280 

by 1024 pixel resolution) in a rectangle of width 824 mm and height 512 mm. 

Participants were seated at a chin rest 120cm from the screen and the image 
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subtended 39° horizontally and 25° vertically. Eye movements were monitored 

using a SMI iView X eye tracker (SensoMotoric Instruments, Teltow, Berlin, 

Germany) sampling at 240 Hz. The SMI eye tracker has reported spatial accuracy 

better than 0.5°. Calibration, drift correction, and validation were performed using 

the algorithms provided by the instrument.  

 

6.2.3 Procedure 

Participants were all given the same verbal instructions: that they should look out 

for events that would cause the camera-car to take evasive action such as braking 

or evasive steering. They held a response button in their preferred hand, and were 

instructed to press the button whenever they judged one of these hazards as 

imminent. This ‘press button’ performance in the actual hazard detection task was 

not considered in this study because previous analysis indicated large variability in 

‘press button’ scores and the influence of subject specific definition of what 

constitutes a hazard (Rauscher et al., 2007). Following calibration of the eye 

tracker, each subject was shown two introductory films prior to the 

commencement of data collection, to allow them to familiarise themselves with the 

task. The film clips were presented in random order with occasional rest periods 

between films.  

Participants were asked if they were current drivers or had ever been a driver, and 

if so were asked to estimate the number of years they had been actively driving. 

These data were not used to exclude or include participants in this study. None of 

the participants had previously performed the HPT and all were therefore naïve to 

the task. 
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6.2.4 Primary analysis  

The eye tracker yields an enormous amount of raw data: essentially a trace of 

‘gaze’ recorded as (x, y) coordinates related to the viewing area every 4.2ms for 

each film. The results from this experiment contained more than 13 million of 

these data points. A bespoke application written in Microsoft Visual C# was 

developed by the author for analysing these time series. The following briefly 

describes the techniques employed in the main analysis.  

Eye movements were divided into fixations, saccades and ‘smooth pursuits’ using a 

velocity based criterion. One difficulty is correctly separating these movements 

from the variability in the measurement process. Therefore, a noise removal 

technique was first applied to the data which filters out highly variable non-

physiological measurements (high frequency noise) by taking a window or block of 

50 (x, y) coordinate eye gaze positions (around 210ms) and calculates the speed of 

any eye movement between the positions recorded at time point t and t+1. If more 

than 75% of the recordings within that window move at 30°/s or more then the 

whole window is removed from the trace because these measurements are 

assumed less likely to be physiological movements and are more likely attributed 

to measurement variability. The window moves along the trace to perform the 

same procedure on the next 50 samples. On completion, an eight sample median 

filter is passed over the remaining data to remove or dampen ‘low frequency’ 

noise. Blinks (denoted by zero value data), gaze outside the viewing area and other 

eye tracking failures were identified then removed from the traces. Films in which 

less than 40% of the recordings remained were discarded to ensure that we were 

not removing too much data per film, following a previously used protocol 

(Crossland and Rubin, 2002).  

Once the data are filtered, saccades were defined as the proportion of the trace 

where the velocity of the eye movement is faster than 30°/s. This criterion of 30°/s 

or higher for identifying saccades is common in eye movement studies and eye 

tracking instrumentation, since this is considered the upper limit of pursuit eye 

movement speed (van der Geest, 2002, Hsiao and Cottrell, 2008, Stampe, 1993). 

Any saccade exceeding a duration of 120ms or is less than 10ms were excluded 

from the analysis. In addition saccades that originate or terminate outside the 
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confines of the dimensions of the display of the film (calibration errors) were 

excluded from the analysis. Fixations were defined as the proportion of the trace 

where gaze was ‘still’ and the velocity of the eye movement is less than 1.5°/s. We 

defined periods of the trace where the speed was greater than 1.5°/s but less than 

30°/s to be ‘pursuit’ movements, where gaze was most likely ‘tracking’ a moving 

object in the film. In truth, these pursuit movements are very difficult to quantify 

even with a sophisticated eye tracker operating at a high frame rate, but we shall 

refer to them as possible ‘smooth pursuits’ lacking the stability characteristic of a 

fixation, but without being fast enough to be classified as a physiological saccade. 

The algorithm then automatically records the number of fixations, the number of 

saccades and the number of smooth pursuits per minute of film. It also yields 

average fixation duration (ms), average ‘smooth pursuit’ duration (ms) and 

average saccade amplitude (size in degrees). These six summary eye movement 

parameters were recorded for each film as viewed by each subject. 

The experimental design aimed to minimize the between subject variability in the 

eye movement parameters with all participants viewing the same films, so these 

were assumed to be the blocks in the experiment. A General Linear Model (GLM) 

was used to perform univariate analysis of variance (ANOVA) with an unbalanced 

design (accommodating missing data by the method of median imputation) to 

assess each of six different eye movement parameters (response variables) using 

the statistical software package Minitab v.14 (Minitab Inc., Pennsylvania, USA). In 

this two way ANOVA arrangement, variation in the response variable (each eye 

movement parameter) was expected to be different across the films and across the 

subjects, with the null hypothesis of real interest being no difference in the average 

value for the eye movement parameters between the patients and controls 

examined (F test on the main factor, participant group, from the ANOVA). 
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6.2.5 Secondary analysis 

A ‘point of regard’ analysis was also implemented. The eye tracking sequence is co-

registered to the film sequence with each frame of the film equating to nine eye-

tracking samples; a mean of these (x, y) points is defined as the ‘point of regard’ for 

that frame. This is repeated for all the control subjects such that each film frame 

has a sample of ‘points of regard’ (x, y), one for each control subject, for that 

particular frame. To quantify the spatial coincidence of the point of regard location 

for all the control subjects, we calculated the best-fit bivariate contour ellipse 

(BCE). The BCE area has been previously used to quantify fixation eye movement 

stability in patients with macular degeneration (Crossland and Rubin, 2002, 

Bellmann et al., 2004, González et al., 2006) and to quantify viewing areas for 

subjects as they watch films (Goldstein et al., 2007). For our application we 

implemented the method as described by Goldstein et al (Goldstein et al., 2007) 

but in a novel development we also plotted the ellipse on each frame of the film, as 

explained in section 0, (Altman, 1978, Healy, 1972) thus giving a dynamic visual 

representation of the region of interest for the control subjects. The centre of the 

BCE represents the mean ‘point of regard’ of the controls, with the spatial extent of 

the ellipse being one standard deviation from this centre along two principal axes, 

theoretically affording ‘coverage’ of approximately 68% of the ‘point of regard’ 

locations in a given frame. The percentage of patients’ points of regard falling 

inside the BCE should be 68% under a null hypothesis that the people with 

glaucoma were, on average, viewing the same parts of the driving scene as the 

visually healthy subjects. 

Monocular visual fields for the patients were merged to form an integrated visual 

field (Crabb and Viswanathan, 2005, Crabb et al., 2004): a simulated binocular 

visual field in which patients’ best point-by-point monocular sensitivity is used 

(PROGRESSOR software: Moorfields Eye Hospital, London, UK / Medisoft Ltd., 

Leeds, UK). The software application developed in this work then aligns and scales 

a greyscale of this binocular field of view to the gaze point for each patient; this 

provides a dynamic illustration of a patient’s restricted field of view as the film 

sequence runs, giving an insight into the difficulty of the task from the patient’s 

perspective. 
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6.3 Results 

 

6.3.1 Primary results 

A small number of eye movement traces from the films were excluded for the 14 

patients and 22 control subjects due to corrupt data or particularly noisy 

sequences where more than 60% of the data were removed by the filtering: a 

threshold used in previous studies (Crossland and Rubin, 2002). This affected 

results from two controls and two people with glaucoma, but none of these had 

fewer than 23 films available for analysis. Prior to settling on the numbers for this 

study, other subjects (3 patients and 4 controls) had several films (more than 12) 

where a large proportion of data were corrupt, missing, poorly calibrated or had 

more that 60% removed by the filtering algorithm: these subjects (some of whom 

had reported difficulty with the task or eye tracking failures) were not included in 

the final 36 assessed. 

Each of the eye movement parameters was assessed in a GLM ANOVA: the 

departure of the F statistic (on 1 and 25 degrees of freedom) from 1 summarises 

the extent of a difference in the main factor (patients versus controls) and the P-

value refers to the null hypothesis of no effect, or no difference, in that main factor. 

(No obvious departure from normality was observed in any of the response 

variables as assessed by the Kolmogorov-Smirnov test). There was considerable 

statistical evidence that on average patients made more saccades per second 

(P<0.001; F1,25 = 22.7; mean increase 8.6%; 95% confidence interval [CI]: 4.8 to 

12.4%), more fixations per minute (P<0.001; F1,25 = 33.8; mean increase 11.8%; 

95% CI: 7.8 to 15.8%) and more smooth pursuits per second (P=0.001; F1,25 = 14.6; 

mean increase 8.2%; 95% CI: 3.5 to 12.9%) than the control subjects. There was no 

evidence for a difference in saccade amplitude (P=0.15; F1,25 = 2.3) and no evidence 

for a difference in average duration of the fixations (P=0.09; F1,25 = 3.1), but there 

was some evidence of average duration of smooth pursuits being significantly 

greater in the controls compared to the patients (P=0.002; F1,25 = 12.6; mean 

difference of 6.3%; 95% CI 2.7 to 9.9%). These results are further illustrated in 

Figure 6.1: each graph considers a different eye movement parameter, with each 

point in the graph being the result from each of the 26 films. If the average value 
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for an eye movement parameter for the patients was identical to the controls then 

the point would fall exactly on the line of unity. The relative position of the points 

either below or above this line of unity gives a graphical indication of the 

magnitude and direction of the experimental effect and illustrates the ANOVA 

results. 

 

 

Figure 6.1: Graphs showing the average response in each eye movement parameter for the patients 

and the controls with (a) average number of saccades per second; (b) average number fixations per 

second; (c) number of smooth pursuits per second of film; (d) average saccade amplitude (size in 

degrees); (e) average fixation duration (ms); and (f) average ‘smooth pursuit’ duration (ms). Each 

symbol represents the results from one of the 26 films. If there were no differences in the averages 

then symbols would fall exactly on the line of unity. For example, (a) indicates that the patients 

made, on average, more saccades across the films than the control subjects. 
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The potential confounding effect of age on eye movement parameters was assessed 

on the control group. The association between each eye movement parameter 

(averaged across films) and age in the 22 subjects was calculated. None of the 

resulting six correlation coefficients were statistically different from zero and were 

all very small in magnitude ranging from r=0.05 (P=0.82) to r=0.24 (P=0.28). 

Therefore, from this experiment there was no evidence that the eye movement 

parameters varied with age. 

 

6.3.2 Secondary Results 

The BCE analysis attempted to compare the overall viewing region of the two 

groups (Figure 6.2). The mean number of points of regard that fell in the BCE was 

calculated for each patient with the overall average for the glaucomatous group 

being 63.2% (SD 9.6%). This average was clearly not significantly different from 

the theoretically expected value (68%) generated from the control group (P=0.49; 

one sample t-test). In some films, this average value was as high as 84.3% and in 

others as low as 55.2% but there did not seem to be any observed pattern of 

viewing region in the patients departing from that of the controls being associated 

with the type of driving scene (e.g. rural, urban, divided highway/dual 

carriageway).  

In short, participants tended to view the same overall region of the driving scene 

whether they were glaucomatous or not, but this was on average, and considering 

the group as a whole. By using the software developed for this study it was 

possible to follow the viewing pattern of individual patients as they viewed the 

different films and compare this view with the pattern from all the control subjects 

simultaneously. Although difficult to quantify, there were several very revealing 

examples of individual patients clearly not following the control viewing pattern 

and unambiguous cases where the patient was unaware of emerging hazards. 

These examples became more informative when the integrated visual field defect 

of the patient was superimposed on the films giving a perspective of the patient’s 

‘struggle’ with their restrictive binocular central field defect. Two cases are shown 

as montages in Figure 6.3. 



123 

 

 

Figure 6.2: Examples of the BCE ‘point of regard’ analysis superimposed on frames from some of 

the HPT films. The centre of the red ellipse represents the mean ‘point of regard’ of the controls 

with the spatial extent of the ellipse being one standard deviation from this centre along two 

principal axes, theoretically affording ‘coverage’ of approximately 68% of the ‘point of regard’ 

locations in a given frame. Note how the location and spatial extent of this ellipse changes with each 

frame of the film as the control subjects’ view is drawn to different aspects of the changing road 

scene. For each frame the number of patients’ points of regard (blue symbols) ‘captured’ by the 

ellipse can be automatically counted and compared to the expected value under the null hypothesis 

that the average ‘viewing area’ is the same in the two groups. Note that not all 14 patients are 

recorded in each frame because of blinks, loss of data, and variable responses. Also, note that in the 

UK vehicles are driven on the left hand side of the road. 
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Figure 6.3: Two example patient’s visual fields, ‘point of regard’ and HPT films. Images a-d 

represents the first patient viewing a film and e-h represents the second patient viewing a different 

film. HFA greyscales for the first and second patient’s monocular (30-2 and 24-2 respectively) and 

IVF are shown above the set of images. In each image the IVF is scaled and superimposed on the 

point of regard to represent the restricted field of view. In (a) whilst most of visually healthy 

subjects (red symbols) fixate on the pedestrian with a pram/pushchair, seeing them as a potential 

hazard, the patient (blue symbol) fails to alter their gaze. Similarly in (b) and (c) most of control 

subjects quickly move their fixation towards the the car hazardously turning on to the main street 

from the right intersection. The patient’s view of this hazard is masked by their defect and they do 

not alter their gaze at any point, even when the camera car ‘brakes’ to take evasive action (d). This 

patient has a binocular visual field that would probably be on the borderline of satisfying the UK 

guideline for visual field fitness to drive. In the second example image (e) the patient is actively 

scanning the road ahead in an attempt to predict the next hazard. In doing so the patient, unlike the 

controls, fails to see the pulling out unexpectedly from the left due to their restricted field of view (f 

and g). Similarly the patient’s advanced binocular defect prevents them from seeing pedestrians 

about to cross the street from the curb (h). This patient would not satisfy the UK guideline for visual 

field fitness to drive. 
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6.4 Discussion 

These results provide some new evidence that some characteristics of eye 

movements in people with glaucoma with binocular visual field defects are 

different to those of healthy control subjects when performing the HPT. On 

average, the patients made more saccades and more fixations than controls. With 

this task we speculate that patients are, unconsciously or otherwise, making more 

saccades to search the image as a ‘compensation’ for their restricted field of view. 

Since a binocular visual field defect reduces the amount of visual information 

available, this might suggest fewer eye movements (Cornelissen et al., 2005), but 

this was not the case when patients were viewing these moving images. Our 

results also indicate that fixation duration was, on average, shorter with patients 

compared to controls. In contrast, it has been previously shown that fixation 

duration increases with the size of absolute central scotomas, but this was in a 

study using artificial scotomas on healthy subjects and a different task (searching a 

static image) (Cornelissen et al., 2005). Others have shown a reduction in fixation 

duration when an artificial scotoma is used to block foveal vision. (Henderson et 

al., 1997) 

The BCE analysis indicated that patients were, on average, looking at the same 

areas as control subjects in the HPT films. Despite the novelty and computational 

difficulty of this analysis it is probably too insensitive to the subtle departures in 

patient gaze as compared to the controls. Looking at individual cases viewing 

individual films was more revealing but provides little quantitative information 

about how the patients differ from a normal viewer. A better post-hoc analysis 

might mark out areas in the frames that are of interest, perhaps associated with 

the looming hazards, and then quantify the patient’s gaze falling in these areas. 

Such an analysis would probably need larger sample numbers than made available 

for this study to provide an adequate comparison.  

Eye movement studies in ‘real world’ or simulated ‘real world’ environments have 

tended to focus on experiments with artificial scotomas or, when carried out in 

patient groups, with retinitis pigmentosa (RP) (Vargas-Martin and Peli, 2006, 

Turano et al., 2001) and age-related macular degeneration (MD) (Crossland and 

Rubin, 2006). Few studies have previously examined eye movement behaviour in 
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glaucomatous subjects. An elegant study by Cheong et al (Cheong et al., 2008) 

examined ‘traffic gap’ judgement and eye movements in subjects with peripheral 

visual field loss, including three subjects with glaucoma, as compared to healthy 

subjects. They reported restricted gaze patterns using the BCE approach but little 

evidence of difference in saccade amplitudes, or fixation duration. Eye tracking 

experiments by Geruschat et al (Geruschat et al., 2006) demonstrated that on 

average people with glaucoma (n=12) had similar fixation patterns as compared to 

controls when crossing a street. Coeckelbergh et al (Coeckelbergh et al., 2002) 

measured eye movements on a simple static search task and attempted to relate 

these to an actual on-road driving test in 50 subjects with field loss, some of whom 

were glaucomatous (number not given in the study). The number of fixations in 

the search task increased as a function of the size of the peripheral visual field 

defect, a finding consistent with our results. They reported some association 

between fixation duration and severity of central field defect but then indicated 

that eye movement parameters recorded during a simple static search task did not 

predict viewing behaviour in the actual task of driving. This is not surprising since 

gaze patterns are intrinsically related to the specific task: their patterns obtained 

from a static search task are likely to differ from patterns for a ‘driving’ task. 

Indeed eye movement patterns for the latter have been shown to be extremely 

complex (Land and Lee, 1994).  

The HPT was previously studied as a possible surrogate for the UK visual field 

standard for fitness to drive (Rauscher et al., 2007). The main measurement 

considered was the press button response which yielded the percentage of hazards 

missed and the mean hazard response time. The main finding from this study was 

that the HPT, when using detection and speed of detection of the hazard, was of 

limited value when used alone in identifying subjects with visual field loss 

incompatible with current UK driving standards. Our current interest in the HPT is 

quite different: for the purpose of our current study, the HPT is used as a realistic, 

dynamic, visually challenging ‘scene’ whilst eye movements are simultaneously 

recorded. 

As in any case-control study, especially when data are examined retrospectively, it 

is prudent to highlight potential confounders. For example, the patients were, on 
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average, older than the control group. However, previous work with the HPT and 

eye movement analysis in healthy subjects has shown there is little evidence of an 

age-related decline in scene search performance when detecting hazards 

(Underwood et al., 2005).The lack of association between the eye movement 

parameters and age in our normal sample supports this. It has been previously 

shown that experienced drivers demonstrate more extensive scanning than the 

novices in performing the HPT (Underwood et al., 2002, Underwood et al., 2003). 

In our study the patient group had a slightly higher proportion of non-drivers 

compared to the control group but, on average, the patients had more years of self 

reported driving experience than the controls (none of the differences reached 

statistical significance). Therefore, the groups were fairly well matched for this 

potential confounder.  

Other caveats to be considered when interpreting the results from this study 

include the difficulty in truly identifying and separating the different types of eye 

movement, especially delineating saccades from smooth pursuits when the 

participant observes a moving image. This is a challenging task even with modern 

eye tracking instrumentation. We took the approach of excluding some subjects 

and removing significant sections of eye movement traces where it was not 

possible to identify clearly the different movements using an algorithm based on 

eye movement velocity developed for the purpose. The experiment was not an 

easy one for some subjects to perform, taking around 30 minutes to view all the 

film clips, and this probably contributed to the variability in the measurements. 

Furthermore, the patient group for our study was small, meaning population 

inference should be treated cautiously, but the sample size was certainly 

equivalent to or greater than those used in many experimental eye movement 

studies in the literature. 

Anecdotally, some patients criticize the current static binocular visual field test 

(Esterman Test) used to establish legal fitness to drive in the UK for not allowing 

‘scanning’ for a target. An eye movement and HPT task might be useful as a test for 

visual field restriction and fitness to drive. The set up would benefit from films 

shown on a larger screen, equivalent to that ‘view’ from a vehicle, and an eye 

tracker device that allows for natural movements. Such a test would not be reliant 
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on press-button defined hazard detection but could simply monitor the patient’s 

natural gaze. A post-hoc analysis of gaze patterns, compared to visually healthy 

control subjects, as illustrated in this study, could determine if patients ‘saw’ 

hazards, road/traffic signs and events that might provide evidence for them being 

visually ‘safe’ drivers. Taken alone it is very unlikely that such an idea would solve 

the difficulty of determining the vision standard for fitness to drive, the skills for 

which are so multifactorial that it defies one simple standard. Besides, the low task 

demand of watching a film may give an impression of competent driving 

performance that may not be maintained if someone is controlling a vehicle. 

Nevertheless, given the debate about current visual field standards for driving 

(Kotecha et al., 2008, Westlake, 2000) such an approach may warrant further 

investigation. 

The films showing, frame by frame, a patient’s gaze pattern diverging from those of 

a number of visually healthy subjects provide a revealing insight into the visual 

impairment caused by glaucoma. This is particularly striking when the individual 

binocular visual field defects, made dynamic by aligning them to the moving point 

of regard, are superimposed on the films. One significant output from this work 

has been the use of these films in educational/awareness programmes for 

glaucoma in the UK and the subsequent interest they have generated, including a 

feature on the BBC (British Broadcasting Corporation) News (BBC, 2008). 
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6.5 Conclusion 

This exploratory study provides some new evidence that patients with bilateral 

glaucoma exhibit different eye movement behaviour compared to visually healthy 

subjects when viewing a driving scene. It is interesting to note that some of the 

findings presented in the current study were orthogonal to the results described 

previously in chapters 4 and 5. In the current chapter, it is reported that there was 

no difference in the size of viewing area between patients and controls but that 

patients produced more, and thus shorter, fixations than the controls when 

searching for hazards in the Hazard Perception Test. However, the previous 

studies reported a reduced saccade rate in patients when they view or search for 

objects within naturalistic images. It has previously been reported that 

participants will alter their eye movements in situations where the quantity of 

visual information is heightened and the task becomes more cognitively 

demanding (Greene and Rayner, 2001, Bertera and Rayner, 2000, Vlaskamp and 

Hooge, 2006). In the passive viewing task (chapter 6), cognitive demands were 

minimal in that participants were presented with static, consistent information 

whereby any object could be chosen for fixation during the known time period. 

The participants were in effect tasked to simply ‘enjoy’ the images. Conversely the 

HPT was dynamic and as such the viewer was faced with a huge array of changing 

information every second, Consequently, the participants in the HPT were under 

pressure to not only find a target object, but to do so during a very limited time 

period. We therefore suggest that these inconsistencies may be related to the task 

complexity and quantity of visual information that was available to the 

participants. 

It is hoped that these results from this exploratory study will at least stimulate 

investigations into the idea that eye movement studies, perhaps coupled with work 

on patient’s adaption to visual field defects, might provide a new ‘window’ into 

understanding the functional deficits of glaucoma. It is speculated that 

understanding such ‘real world’ visual function deficits in glaucoma is perhaps a 

first step towards designing appropriate strategies for patient education about the 

impact of a visual field defect and potential rehabilitation. 
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7 How Does Glaucoma Look? 

Investigating Patient Perception of 

Visual Field Defects 

 

7.1 Introduction 

Currently, the majority of our understanding with regards to visual functioning in 

glaucoma comes from clinical measures such as visual fields, which assign 

numerical values to symbolise how well the individual is able to see in different 

areas of their vision. One of the main aims of this thesis has been to move away 

from this ‘clinic-based’ perspective and gain an increased understanding of how 

glaucoma actually affects visual functioning in real-life. In chapter 3 it was shown 

that glaucoma can impair performance in visual activities and chapters 4, 5 and 6 

showed that the eye movement strategies the patient uses as they go about certain 

everyday activities change due to their glaucomatous defects. However, an 

additional area to consider when investigating the impact of glaucoma on real 

world functioning is how the patient themselves perceive their vision and to what 

extent they are aware of these functional impairments. The reality currently 

appears to be some sort of a ‘mismatch’ between how patients perceive their 

vision compared with what appears to be their actual visual loss. For instance, 

patient perceptions of their vision have been found to be poorly correlated with 

clinical assessments of their visual function (Jampel et al., 2002b, Nelson et al., 

1999). Moreover, patients often appear to be unaware as to the extent of their 

visual loss, perhaps due to the asymptomatic nature of glaucoma in its earlier 

stages (Robin DiMatteo et al., 2002), which in turn appears to have a negative 

influence on treatment compliance (Shaw, 2005, Schwartz and Quigley, 2008). 

There are also discrepancies between the clinician and patient with regards to the 

effects of glaucoma, with one study finding ophthalmologists underestimate the 

impact of loss of vision on quality of life compared with the views of the patient 

(Brown et al., 2000). 
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In addition, it seems that many patients are simply unaware that there is anything 

wrong with their vision whatsoever. One qualitative study investigating patient 

perceptions of their diagnosis and subsequent life with glaucoma found that many 

patients were ‘surprised’ to find there was something wrong with their vision, or 

had attributed any noticed changes to ‘bad glasses’ or the normal ageing process. 

In addition, several patients noted that they knew little about glaucoma prior to 

their diagnosis (Green et al., 2002).  

Since a staggering 50% of those with glaucoma in developed countries are thought 

to be living without awareness of their condition (Quigley, 1996), there is clearly a 

need for new and improved strategies for informing both diagnosed patients and 

the general public as to what having glaucoma is actually like. Such increased 

awareness may subsequently educate patients as to what changes to their lives 

they should prepare for, and motivate those individuals who would not have 

otherwise realised that they had a problem to make that crucial appointment with 

their optician. Awareness of glaucoma from an early stage may also help limit the 

burdens of the types of functional impairments that coincide with glaucoma that 

have been discussed in the previous chapters of this thesis. 

One key method of raising awareness of glaucoma may be to focus on the 

development and communication of more accurate representations as to what it 

actually ‘looks like’. Currently, the common depiction of glaucoma, particularly in 

the media, is in terms of a ‘tunnel’ or ‘black patches’ in the regions where there is 

loss of vision (Figure 7.1).  
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Figure 7.1: Collection of images representing glaucoma found using Google images 

(http://www.google.co.uk/images). 

 

Aspects of our own previous research may even have contributed to this 

convention; for instance, when the findings of chapter 6 were reported by the BBC 

(BBC, 2008), the article was accompanied by a video showing a patient watching 

the hazard perception test, with the transparency of the image manipulated in an 

attempt to demonstrate which areas of the visual field were impaired for that 

patient and which were relatively ‘normal’. Thus, those impaired parts of the visual 

field appeared darker than those parts that had little damage. Whilst the intended 

purpose of this manipulation was simply to demonstrate that there were parts of 

the visual field that the patients could not see properly as they were driving, it 

would be understandable if this video was to be misinterpreted as a direct 

representation of what the visual scene would look like ‘through the eyes’ of a 

patient with glaucoma. It may be that representations such as these are not 

sufficient illustrations of how some or even all of those with the glaucoma 

recognise their impairment, meaning that many are subsequently left unaware of 

the presence or extent of developing visual loss. The current study therefore aims 

to gain an increased understanding as to how glaucoma might appear to the 

affected individual, by giving diagnosed glaucomatous subjects with a range of HFA 

visual field defect severities the chance to talk about their perceptions of glaucoma 
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and to choose the representation that they feel best illustrates their visual 

experiences.  
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7.2 Methods 

 

7.2.1 Participants and system setup 

Patients were recruited from Moorfields Eye Hospital Foundation Trust London 

and the Fight for Sight Optometry Clinic at City University London. All patients had 

received a clinical diagnosis of glaucomatous optic neuropathy (primary open 

angle or normal tension glaucoma) with resulting visual field defects in both eyes. 

All patients took part in an eye examination prior to participation in the study 

consisting of corrected binocular visual acuity (VA) using an ETDRS chart and 

contrast sensitivity (CS) using a Pelli-Robson chart. All patients were required to 

have a corrected VA of at least 6/9 in each eye, with no other ocular disease other 

than glaucoma. In addition, visual fields (central SITA 24-2 and 10-2 on both eyes) 

were recorded on a Humphrey Visual Field Analyzer (HFA, Carl Zeiss Meditec, CA, 

USA). To be included in the study, patients were required to have ‘overlapping’ 

binocular defects as measured by an estimate of their integrated visual field (IVF) 

(Crabb et al., 2004, Crabb et al., 1998): a simulated binocular visual field in which 

patients’ best point-by-point monocular sensitivity is used (PROGRESSOR 

software: Moorfields Eye Hospital, London, UK / Medisoft Ltd., Leeds, UK). 

Specifically patients were required to have two or more IVF locations with 

sensitivities of less than 20dB. 

The mean age of the 50 patients was 70 (SD: 7) years. The patients had a range of 

visual field defect severity: average 24-2 HFA mean defect (MD) was -8.7 (SD: 5.8) 

dB, –10.5 (SD: 7.1) dB and –7.3 (SD: 5.7) in the right eye, left eye and best eye, 

respectively. The mean binocular contrast sensitivity and visual acuity of the 

patients was 1.8 (SD: 0.18) PR log CS and 0.07 (SD: 0.10) logMar.  

All participants were claimed to be in good general health during an interview and 

participants were not enrolled if they were on any significant medication other 

than that for their glaucoma. (‘Significant medication’ included anti-depressants or 

treatment for diabetes or significant use of non-topical β-blocker medication, all of 

which were deliberately mentioned).  
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To take part in this study the subjects were sat in front of a laptop with a 13.3 inch 

LCD screen at a distance of 40cm, covering the full area of the screen, and audio 

recordings of the patients making their selection were made on the laptop. 

 

7.2.2 Procedure 

Initially six images, as shown in Figure 7.2, were shown to the patients and they 

were asked to choose the image that most closely represents their vision with 

glaucoma. The same image was used but was manipulated in various different 

ways to represent glaucoma. Image A is the traditional black tunnel vision 

manipulation, image B is the exact same region using a Gaussian blur, C shows 

black patches (located in common glaucomatous regions), D is the Gaussian blur 

version of C, E uses a filling in method (combination of context aware tool, 

recolouring and replication of regions of the image; Adobe Photoshop CS5, Adobe 

Systems Incorporated, CA, USA) and F is the unmodified image.  

Patients were then asked three questions about their experience with glaucoma 

and their responses were recorded: 

1) In your own words could you describe how your glaucoma affects your 

 vision? 

2) Are you aware of your visual field defect? 

3) When you are aware of your visual field defect, can you describe how it 

 looks or how it impacts on your field of vision? 
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Figure 7.2: A is the traditional black tunnel vision manipulation, image B is the exact same region 

using a Gaussian blur, C shows black patches (located in common glaucomatous regions), D is the 

Gaussian blur version of C, E uses a filling in techniques to replace missing areas of the image and F 

is the unmodified image. 

 

7.2.3 Primary analysis 

The responses from the six images shown to the patients were counted and 

percentages calculated.  

 

7.2.4 Secondary analysis 

The answers to the three questions about the patients’ experiences with glaucoma 

were audio recorded and transcribed. These transcripts were then processed and 

verbs relating to the subject’s positive description (any instance where a patient 

describes their vision without a negative in front – for example: “my vision is not 

blurry” would not be included whilst “my vision is blurry” would be included) 

were highlighted. For each patient a list was created containing these descriptions 

of their vision. The number of times a patient uses a word is not considered, either 

a word is said one more times and placed in the list, or it is not said (and therefore 

not placed in the list).  
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7.3 Results 

 

7.3.1 Primary results 

Four percent (CI: 0% - 9%) of the patients chose image B (blurred tunnel), 54% 

(CI: 40% - 68%) chose image D (blurred patched), 16% (CI: 6% - 26%) chose 

image E (filling in) and 26% (CI: 14% - 38%) chose image F (no difference) from 

Figure 7.2. No patients chose the images with black filling in.  

Table 7.1 shows the breakdown of the patients’ BEMD, CS, VA, age and IVF, image 

selection and the distribution of BEMD values for each image. The patients who 

chose the image with a tunnelled blur effect have a far more severe BEMD (-

12.8dB; SD: 2.1) than the patients who chose the no change image (3.7dB; SD: 4.1. 

p=0.03; independent 2-sample t-test), as demonstrated in Figure 7.3. There is also 

a significant difference when comparing the patients who chose the no change 

image against the blurred patches image (-7.9; SD: 5.8. p=0.002; independent 2-

sample t-test). 

 

Figure 7.3: Box plot showing the distribution of best eye MD values for the patients who chose each 

image. The level of significance (independent t-test) between the mean BEMD of the patients that 

chose “no change” compared with that of the other images is shown on the right. There is no 

significant difference between (F) and (E), however there are significant differences between (F) 

and both (B) and (D). Results from Image A and C are not shown as no patients chose those images. 

The whiskers represent the range of the data. 
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Table 7.1: Breakdown of the images chosen by each patient along with best eye MD, contrast sensitivity, visual acuity, age and integrated visual field. 



139 

 

7.3.2 Secondary results 

The most frequent words used by patients in this study to describe their defect 

were “miss” (16 patients), “dark” (9 patients), “light” (7 patients), “clear” (6 

patients) and “blur” (6 patients). “Miss” was used when a patient experienced 

missing something, “dark” was used by 8 of the 9 patients when talking about 

issues in the dark, whilst the other patient initially stated they see dark patches, 

however later in the conversation this was reworded as a “hazy” patch. “Light” was 

used in a variety of different ways: for instance, patients claimed to find dim light, 

or bright lights from cars, difficult to deal with, or claimed to require good light to 

read, and some even referred to missing lights during the visual field test. When 

patients used the word “clear”, it was always in the context of finding things 

difficult to see clearly. Table 7.2 shows the words used by patients when 

describing their defect in a negative light, the number of patients who used each 

word and the average severity of VF defect (in terms of MD in the best eye) of the 

patients who used said word. Figure 7.4 graphically represents the descriptive 

words used by the patients using a Wordle (http://www.wordle.net). This technique 

demonstrates the frequency of a word’s use by manipulating the size of the word 

in the diagram; the larger the word appears in the Wordle, the more often it was 

used by the patients. So, the word “miss”, as shown in Table 7.2, is the most 

commonly used word by the patients when describing their defect, appears largest 

in the Wordle diagram. It is also interesting to note the appearance of the word 

“black” in the Wordle diagram, given that the previous results suggested that none 

of the patients chose the images that represented their defect in terms of a black 

tunnel, or black patches. The context of this word’s use should therefore be 

clarified; one out of the two patients using the word said their vision was “blacked 

out” and the other stated their vision was “black” and then later in the 

conversation stated was “there’s nothing there”. This provides further support for 

the idea that ‘black’ can be used as a symbol of something that is ‘not there’ as 

opposed to a direct description of vision. 
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Word Frequency BEMD Word Frequency BEMD 

miss 16 -10.5 (5.3) fuzzy 3 -7.0 (0.9) 

side 12 -10.0 (6.6) distance 3 -10.9 (6.0) 

dark 9 -9.9 (5.1) blind 3 -11.5 (5.2) 

light 7 -6.4 (6.0) worse 2 -9.6 (7.6) 

compensate 6 -7.6 (5.1) tired 2 -12.1 (9.5) 

clear 6 -11.1 (6.7) spot 2 -10.0 (6.3) 

blur 6 -6.9 (5.6) slow 2 -15.0 (2.8) 

focus 5 -7.0 (6.4) scan 2 -9.8 (6.3) 

double-vision 4 -5.6 (5.2) foggy 2 -15.1 (5.2) 

move 4 -5.4 (2.4) fill 2 -7.5 (0.2) 

down 4 -10.4 (7.9) dim 2 -5.9 (0.3) 

disappear 4 -7.7 (5.2) colour 2 -9.7 (4.7) 

peripheral 3 -4.9 (2.0) black 2 -9.5 (2.6) 

nothing 3 -12.6 (4.6) 

 

Table 7.2: The number of patients that used specific words to describe their visual field defect in a 

negative way. Only frequencies larger than 1 are shown. 
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Figure 7.4: Wordle showing the words used by patients to describe their vision in a negative way 

(all words were used one or more times by at least one patient). The larger the word the more 

frequently it was used.  

 

Figure 7.5 gives further insight into the visual experiences of some of the patients 

by displaying interesting quotes alongside a greyscale of that patient’s IVF. There 

appears to be some relationship between the severity and location of binocular 

defects and description of their vision. 
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Figure 7.5: Example passages by patients describing their experience with glaucoma along with 

their corresponding IVF. 
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7.4 Discussion 

Evidence suggests that public knowledge about glaucoma is poor (Baker and 

Murdoch, 2008), and that as many as half of the individuals with the disease don’t 

actually realise that they have it (Quigley, 1996). There are also clear issues 

regarding treatment compliance in glaucoma, with many patients needing active 

involvement in the disease management processes to be convinced that there is 

something wrong with their vision (Hamelin et al., 2002, Shaw, 2005). Attempts 

have been made within the media to raise awareness of the conditions, with one of 

the most common educational strategies consisting of images representing 

glaucoma in terms of a black tunnel or black patches across the normal visual 

scene (Figure 7.1). Yet in contrast to the images often distributed in the media 

depicting glaucomatous loss as ‘black’, the most striking finding of the current 

study was that not a single patient chose the images featuring black (Figure 7.2, 

images A and C) as the best representation of their actual vision. Instead, the most 

commonly chosen images were those containing blurred patches (Figure 7.2, 

image D), or missing parts (Figure 7.2, image E). This finding strongly suggests that 

the current message regarding the ‘appearance’ of glaucoma may be flawed, and 

that how the patient actually perceives their visual field defect in real life is 

different to this representation. This apparent misinterpretation may therefore be 

an underlying factor of the lack of awareness of glaucoma experienced by many 

individuals with the disease and the general public. 

Further investigation revealed that there may be some sort of link between how 

glaucoma ‘looks’ and the stage of disease (Figure 7.3). Several individuals with less 

severe glaucomatous defects picked the image that depicted no change; therefore 

implying they believe their vision to be perfectly ‘normal’. This finding is in line 

with the traditional idea that glaucoma is asymptomatic until later stages. 

Nevertheless, there is some evidence that glaucoma can display effects even in 

earlier disease stages (McKean-Cowdin et al., 2008, Viswanathan et al., 1999), 

suggesting that it is important for these patients to better understand their disease 

even at mild severity. Perhaps these patients would notice some change to their 

vision should they be encouraged to focus on it more. The creation of more 

realistic images may therefore help them realise how their vision could worsen, 
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and encourage treatment compliance. On the other hand, patients with a worse MD 

in their best eye VF were more likely to choose an alternative modified picture to 

best represent their visual experience, but contrary to the common media 

depictions of a black tunnel or patches, the majority of patients chose either 

blurred patches, or the image with ‘missing parts’. The former image implies that 

the most affected areas of visual field may appear distorted to the patient or of 

poorer definition. These are supported by direct quotes from some of the patients 

(Figure 7.5). On the flip side, the image depicting missing parts suggests that whilst 

the quality of the image appears ‘normal’, the patient sometimes recognises that 

what they are ‘seeing’ may not add up to the actual visual information around 

them. For instance, they may become aware of an additional object at a later stage 

that they did not notice before (Figure 7.5). This experience may relate to the 

phenomenon whereby items simply disappear and are ‘filled in’ by their 

surroundings (Ramachandran and Gregory, 1991, Komatsu, 2006). This cortical 

plasticity is known to cause individuals to ignore or underestimate their visual 

field defects and this lack of awareness may lead to functional impairments in 

certain individuals (Safran and Landis, 1996). Perhaps how the patient recognises 

their glaucoma may be related to how much the individual is concentrating on 

their vision and is subsequently aware of their visual loss. Future studies should 

look at the link between awareness and functional performance. There is also the 

possibility that a person with glaucoma may find the images displayed further 

degraded than intended due to their functional degradation. However, it must be 

considered that glaucomatous VF defects move with a person’s eye rather than 

being static within the image and therefore it will be clear what is the simulated 

degradation and their own field loss. Nevertheless this matter could be addressed 

in more detail with a more controlled monocular study design using people with 

one eye with advanced glaucomatous scotomas and the other with relatively good 

vision viewing the selection of images.  

Whilst quantitative techniques in Ophthalmological research are normal, the 

potential for qualitative methods for improving healthcare is beginning to be 

recognised. Although there are certain types of bias that can be introduced when 

considering data yielded from notes and transcripts due to subjective influences 
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from the sides of both the participant and the experimenter, novel questions and 

trends may emerge from the data in a way that would not be possible in a more 

numerical-based dataset. Qualitative research can produce vast amounts of data, 

which requires labour intensive analysis and interpretation. It was therefore 

deduced that interviewing the patients, and analysing the transcripts in a 

systematic manner, would enable further information regarding their experiences 

with glaucoma to be revealed. One simple technique of summarising such data is to 

use simple counts to yield information regarding the most common themes and 

traits (Pope et al., 2000).  Analysis of transcripts from the conversations revealed 

that the most commonly used words to describe their vision were in line with the 

most popular images chosen by the participants. For instance, 16 patients used the 

word ‘miss’ as a description of their experiences, in the context that objects were 

just ‘not there’ but there was no noticeable change to the quality of the image. 

“Blur” and words synonymous with this unclear, low resolution effect (“hazy”, 

“double vision”, “clear”, “fuzzy”, “foggy”) were also commonly used by the patients 

to describe their vision. Furthermore, several insightful comments were made by 

the patients during the study session, which enabled them to reveal details 

regarding their perceptions of their condition that would not have been possible 

during a normal clinic appointment (Lunnela et al., 2010). An example of this is a 

patient described how on one occasion she did not notice the arrival of her bus at 

the bus stop, because she could not see the top deck (Figure 7.5, final example). 

Interestingly the location of the binocular field loss of this patient coincided with 

the area of the visual field where the top deck of the bus would have appeared. A 

more individualised perspective on each patient’s visual field loss and subsequent 

experiences in everyday life may help develop programs developed to that 

individual’s specific needs and even help improve their QoL. 

It is worth noting that the word “black” was also mentioned by the patients a small 

number of times, which was surprising in the context of the finding that none of 

the patients felt the images using black to represent areas of visual loss were the 

most adequate representations of their actual vision. However, analysis of the 

transcripts allowed clarification of the context in which the word was used, and 

revealed that it was actually used by one patient in the context of ‘blacked out’ (i.e. 
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a commonly used expression to describe the phenomenon whereby visual 

information disappears) and likewise was used by the other individual as a way of 

describing that there was “nothing there”. The confusion in these statements 

highlights the limitations of this work in that the experiences of the patients are 

subjective and therefore difficult to verify, in addition to the fact that visual 

experience is ultimately something that is extremely difficult for one to eloquently 

put into words. As one patient put it “it’s very difficult, as nobody can tell you what 

your sight is like, it’s very difficult to describe” (Figure 7.5). Finally, the 

aforementioned patients reaffirm the idea that black is often used as a solution to 

the awkward task of representing something that is not actually there. However, 

this does not ultimately appear to be an optimal strategy in terms of representing 

what glaucoma “looks like” as the results of the current paper show that patients 

with glaucoma do not see black in their field of view. Using black as a method to 

represent areas of “nothingness” or less defined vision in the field of view could be 

unsurprisingly be misinterpreted as showing a direct view of how a person of 

glaucoma would see the world and as such, on viewing this image in a similar 

mindset, it is not unreasonable to suggest that many people with glaucoma may 

have deduced that their either did not have glaucoma, or that it is not that severe, 

as how they see the world does not coincide with the apparent depiction in the 

images. The current study suggests instead that moving towards images with 

blurriness and/or missing regions may be a more appropriate method of 

representing how a glaucomatous defect may be perceived. Of course it should be 

reinforced that these images are never going to be able to perfectly represent 

glaucoma. Each individual undeniably perceives the world differently, and as such, 

the development of the ‘perfect’ image depicting what having glaucoma is like is 

most probably an impossible task. However, working together with patients with 

glaucoma and actively involving them in the development process will allow for 

the creation of more realistic representations of visual loss and should ultimately 

help increase awareness of glaucoma amongst both diagnosed patients and the 

general public. 
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7.5 Conclusion  

Patients with glaucoma do not perceive their visual field defect as ‘black patches’ 

or as a ‘tunnel’ effect masking their field of view. The lack of patients choosing the 

‘tunnel’ effect choice maybe down to our sample not having advanced 

glaucomatous defects. These findings are important in the context of depicting the 

effects of the disease and raising awareness for detection and case finding. People 

with glaucoma in earlier disease stage are unlikely to notice their defect or any 

symptoms and therefore picked the picture with no change. However, more severe 

patients were more likely to notice something but would most commonly refer to 

blur and choose the blurred patches picture or refer to things simply ‘not being 

there’ and therefore choose the image with missing ‘filled in’ patches as the best 

depiction of this. No patient chose either image with black regions. 
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8 Conclusions and further work 

 

Current measurements of glaucomatous visual loss are useful for monitoring the 

severity and progression of disease in a clinical environment. Unfortunately little is 

currently known about how VF defects actually impact on the patient’s day-to-day 

performance on ’visual tasks’. The overall aim of this thesis was to increase our 

understanding as to how patients with glaucoma function in their everyday lives, 

and in particular whether they might change their eye movements relative to 

people with healthy vision. The work in this thesis subsequently contributes the 

following new findings to the research literature: 

The study in Chapter 3 explored the performance of people with glaucoma in an 

important under-investigated visual task: searching for objects. This involved 

comparing the average time taken for a group of patients diagnosed with glaucoma 

to find target objects in controlled and naturalistic images with that of age-related 

controls. It was reported that, although the groups did not perform any differently 

in the more controlled search task, the people with glaucoma displayed 

significantly more impairment on average when searching for objects in a more 

naturalistic environment. Contrast sensitivity and visual field defect severity were 

associated with search time in the patients. Hence patients with glaucoma could 

display disability when searching for objects in their day-to-day lives as a result of 

worsening aspects of their visual loss. 

The study described in Chapter 4 utilised the study of eye movements as a 

potential method for understanding how patients with glaucoma function as a 

result of their visual loss. The study investigated whether there may be some 

relationship between the observed deficits in visual search task performance and 

the eye movements the patients make as they carry out the task. The eye 

movements of patients were measured using an Eyelink II as they carried out the 

search tasks described in Chapter 3 and compared with those made by visually 

healthy subjects. It was found that patients with glaucoma produced significantly 

fewer saccades on average than the controls when searching for target objects, 

with saccade rate linked to both the severity of visual field defect and contrast 
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sensitivity. There was also a correlation between eye movements and task 

performance, with those patients who produced fewer saccades per second also 

performing worse in the task. This effect was not present in the participants with 

normal vision. This may suggest that the eye movements patients make could be 

an underlying factor relating to the functional deficits they can experience in 

everyday tasks such as visual search. 

The work presented in Chapter 5 sought to investigate whether the eye movement 

differences observed in the patients who took part in the previous search task also 

exist in other naturalistic settings with differing task demands. This study 

observed the eye movements of patients with glaucoma and visually healthy 

subjects as they passively viewed photographs of everyday scenes. There was 

therefore no real task demand- they simply had to ‘enjoy’ the pictures; in an 

attempt to isolate eye movements that might occur as a patient views a scene for 

the first time. It was found there was a small but significant reduction in the 

number of saccades made by the patients on average compared with the controls. 

There was also a small effect in terms of how they viewed the image in that the 

patients tended to view more restricted areas of the field of view than the 

participants with normal vision. This may suggest that the peripheral field loss 

typically experienced by patients with glaucoma restricts the eye movements they 

make and therefore means that they cannot build up as fruitful a representation of 

the visual world around them as people with healthy vision. Furthermore, it was 

shown that patients with worsening VF defect severity and worsening contrast 

sensitivity are less likely to fixate the same parts of the image as controls. This 

result further suggests that there is something specific to glaucoma that is causing 

the patients to perceive the image differently to the controls. 

The study described in Chapter 6 examined how the eye movements produced by 

people with glaucoma as they viewed a driving scene compared to those made by 

control subjects with normal vision. Driving is a topic of much relevance in 

glaucoma given, for example, the legal fitness to drive requirements in the UK. This 

study found that patients also move their eyes differently when searching for 

hazards; a finding that could have additional implications for determining fitness 

to drive. In contrast to the studies in the previous chapters when participants 
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passively viewed and searched for items within naturalistic images, this study 

found that patients produced significantly more, and thus shorter, fixations on 

average compared with the controls. It is speculated that this discrepancy is 

related to task demands; this study involved viewing a face-paced dynamic scene 

whereas the other tasks involved simpler, static images. These results therefore 

also indicate the importance of considering the nature of the tasks when 

considering the eye movements made by patients with glaucoma. 

The study in Chapter 7 aimed to investigate patient perceptions of their vision and 

how a visual field defect might appear to the patient in real life. The effect of 

glaucoma on vision is commonly represented as appearing like a black tunnel or as 

black patches but this study found that none of the patients described their defect 

as appearing in this way. Instead, many patients claimed their defect appeared 

more ‘blurred’ or that there may be some ‘missing parts’ of their vision where 

information has been filled in by contextual surroundings. This information is 

important for educating patients and clinicians as to the effects of glaucoma and 

the development of more improved representations could encourage better 

diagnosis and treatment compliance. 

In short, this thesis has contributed to our understanding as to the effects of 

glaucoma on the patient’s everyday life, firstly by showing that patients are on 

average slower to find objects in everyday scenes than people with healthy vision 

of a similar age. This suggests they could face disability with visual search tasks in 

their real life. Furthermore, a particular emphasis of the thesis was to highlight 

novel findings that patients with glaucoma appear to display different eye 

movements as they carry out various real-world tasks. A key finding was that 

patients reduce their saccade rate when searching for objects compared with 

controls, and that there was a link between saccade rate and the length of times 

patients took to find the objects in the search tasks. This suggests that eye 

movement strategies may underlie some of the functional deficits, such as with 

visual search, displayed by some patients with glaucoma. The reduced saccade rate 

displayed by patients on average compared with healthy age-related people was 

also observed when patients were free to view any part of an image that they 

wished. Further evidence also suggested that patients on average view more 
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restricted areas of visual scenes and look at different parts of the scene compared 

with controls. This suggested that the peripheral defects often seen in glaucoma 

may affect their ability to build up a fruitful representation of a visual scene, and 

affect which visual information they deem to be most important. Patients also 

changed their eye movements when viewing dynamic driving videos, but this time 

patients increased their fixation rate to deal with the task. Finally, it was also 

shown that current understanding regarding the ‘appearance’ of glaucoma to the 

patient in their everyday lives may differ from how the patient actually perceives 

it. By highlighting that patients do not perceive their defect as a ‘black tunnel’ or 

‘black patches’ in their vision, this study emphasises the need for new and 

improved representations to help better explain how glaucoma might affect the 

patient in everyday life. 

However, despite these contributions, there are still many unanswered questions 

and therefore scope for further research. Ideas for future research are therefore as 

follows: 

• Pictures of everyday scenes displayed on a computer screen are not the 

same as the real thing. Future research could therefore examine whether 

patients with glaucoma are slower and produce different eye movements 

when searching for real-life objects or carrying out other tasks in a 

naturalistic setting. 

• Patients were shown to have different levels of awareness of their defect 

and the impact it had on their day-to-day functioning. Perhaps how aware 

patients are of their defect influences the types of eye movements they 

make in an attempt to compensate for their visual loss? Future studies 

should also consider the link between other characteristics of the VF defect, 

such as the specific location of the defect, and how this might influence eye 

movements and task performance. 

• Although patients use both eyes to function in the real-world, our current 

understanding and techniques for measuring binocular visual function are 

somewhat limited. For instance, we don’t fully understand exactly how the 

known ‘filling in’ effects occur or how one eye compensates for another, and 

although useful, the only clinically available test of binocular visual field, the 
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Esterman, is limited in the degree of information it is able to give regarding 

the actual levels of sensitivity. It is therefore equally difficult to infer exactly 

why eye movements may be occurring in binocular tasks. Since visual fields 

are currently measured monocularly, perhaps measuring eye movements in 

each eye separately could help us better understand exactly what is 

happening to the eye movements as a result of the type and location of the 

visual loss.  

• The findings reported in this thesis could also be used to produce more 

accurate educational tools regarding what having glaucoma is actually like, 

by developing images and videos that incorporate the new information 

regarding how glaucoma appears to the patient and the eye movements 

patients may make as they study visual scenes (Figure 8.1). 
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Figure 8.1: Using the findings in Chapter 7 a more representative version of one of the images 

shown in Figure 6.3a (also shown in a and b) has been created and is shown in c. 
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Appendix A – Sample C# code 

C# code to calculate Bivariate Contour Ellipse Area (BCEA) 

public double ellipseArea(double probabilityArea) 

{ 

double[,] ellipse = largeProbabilityEllipse(probabilityArea); 

double SDPointLocOverMeridianX = SDPointLocOverMeridian(xIn); 

double SDPointLocOverMeridianY = SDPointLocOverMeridian(yIn); 

double pearsonResult = pearson(xIn, yIn); 
double a = Math.Pow(SDPointLocOverMeridianY, 2) - Math.Pow(SDPointLocOverMeridianX, 2); 

double b = 2 * pearsonResult * SDPointLocOverMeridianX * SDPointLocOverMeridianY; 

double theta = 0.5 * Math.Atan(-b / a); 

double[] m1m2 = m1andm2(probabilityArea, SDPointLocOverMeridianX, SDPointLocOverMeridianY, pearsonResult); 

double meanX = meanValues(xIn); 

double meanY = meanValues(yIn); 

double m1 = m1m2[0], m2 = m1m2[1]; 
 

if (SDPointLocOverMeridianX < SDPointLocOverMeridianY) 

{ 

m1 = m1m2[1]; 

m2 = m1m2[0]; 

} 
 

if (SDPointLocOverMeridianX < SDPointLocOverMeridianY) 

{ 

double adj = (double)m1m2[1] * (double)Math.Cos(theta); 

double opp = (double)m1m2[1] * (double)Math.Sin(theta); 

theta += Math.PI / 2; 

double adj2 = (double)m1m2[0] * (double)Math.Cos(theta); 
double opp2 = (double)m1m2[0] * (double)Math.Sin(theta); 

double newY = Math.Sqrt(Math.Pow((meanX - (adj + meanX)), 2) + Math.Pow((meanY - (opp + meanY)), 2)); 

double newX = Math.Sqrt(Math.Pow((meanX - (adj2 + meanX)), 2) + Math.Pow((meanY - (opp2 + meanY)), 2)); 
  return Math.PI * newX * newY; 
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} 

else 

{ 

double adj = (double)m1m2[0] * (double)Math.Cos(theta); 

double opp = (double)m1m2[0] * (double)Math.Sin(theta); 
theta += Math.PI / 2; 

double adj2 = (double)m1m2[1] * (double)Math.Cos(theta); 

double opp2 = (double)m1m2[1] * (double)Math.Sin(theta); 

double newY = Math.Sqrt(Math.Pow((meanX - (adj + meanX)), 2) + Math.Pow((meanY - (opp + meanY)), 2)); 
double newX = Math.Sqrt(Math.Pow((meanX - (adj2 + meanX)), 2) + Math.Pow((meanY - (opp2 + meanY)), 2)); 

  return Math.PI * newX * newY; 

} 
} 
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C# code to calculate (X, Y) coordinates to plot Bivariate Contour Ellipse 

public double[,] probabilityEllipse(double probabilityArea) 

{ 

double SDPointLocOverMeridianX = SDPointLocOverMeridian(xIn); 
double SDPointLocOverMeridianY = SDPointLocOverMeridian(yIn); 

double correlation = 0; 

double[] m1m2; 

double meanX = meanValues(xIn); 

double meanY = meanValues(yIn); 

 

if (SDPointLocOverMeridianX < SDPointLocOverMeridianY) 

{ 

SDPointLocOverMeridianX = SDPointLocOverMeridianY; 

SDPointLocOverMeridianY = SDPointLocOverMeridian(xIn); 

correlation = pearson(yIn, xIn); 

m1m2 = m1andm2(probabilityArea, SDPointLocOverMeridianX, SDPointLocOverMeridianY, correlation); 

double[,] results = new double[360, 3];  
double a = Math.Pow(SDPointLocOverMeridianY, 2) - Math.Pow(SDPointLocOverMeridianX, 2); 

double b = 2 * correlation * SDPointLocOverMeridianX * SDPointLocOverMeridianY; 

double theta = 0.5 * Math.Atan(-b / a); 
double r = Math.Sqrt(1 - Math.Pow(correlation, 2)); 

  double loopSize = probabilityArea * correlation * SDPointLocOverMeridianX; 

double m1 = m1m2[1], m2 = m1m2[0]; 

if (m1m2[0] > m1m2[1]) 

{ 

m1 = m1m2[0]; 

m2 = m1m2[1]; 
} 

 

for (int i = 0; i < 360; i++) 

{ 

results[i, 1] = meanY + m1 * Math.Cos(theta) * Math.Cos(i) - m2 * Math.Sin(theta) * Math.Sin(i); 

results[i, 0] = meanX + m1 * Math.Sin(theta) * Math.Cos(i) + m2 * Math.Cos(theta) * Math.Sin(i); 
} 

return results; 

} 
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else 

{ 

correlation = pearson(xIn, yIn); 

m1m2 = m1andm2(probabilityArea, SDPointLocOverMeridianX, SDPointLocOverMeridianY, correlation); 

double[,] results = new double[360, 3];  
double a = Math.Pow(SDPointLocOverMeridianY, 2) - Math.Pow(SDPointLocOverMeridianX, 2); 

double b = 2 * correlation * SDPointLocOverMeridianX * SDPointLocOverMeridianY; 

double theta = 0.5 * Math.Atan(-b / a); 

double r = Math.Sqrt(1 - Math.Pow(correlation, 2)); 
  double loopSize = probabilityArea * correlation * SDPointLocOverMeridianX; 

double m1 = m1m2[1], m2 = m1m2[0]; 

if (m1m2[0] > m1m2[1]) 
{ 

m1 = m1m2[0]; 

m2 = m1m2[1]; 

} 

 

for (int i = 0; i < 360; i++) 

{ 
results[i, 0] = meanX + m1 * Math.Cos(theta) * Math.Cos(i) - m2 * Math.Sin(theta) * Math.Sin(i); 

results[i, 1] = meanY + m1 * Math.Sin(theta) * Math.Cos(i) + m2 * Math.Cos(theta) * Math.Sin(i); 

} 

return results; 

} 

} 
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C# common functions 

Calculate major and minor axis 

private double[] m1andm2(double probabilityArea, double SDPointLocOverMeridianX, double SDPointLocOverMeridianY, double correlation) 

{ 

double[] results = new double[2]; 
double a = Math.Pow(SDPointLocOverMeridianY, 2) - Math.Pow(SDPointLocOverMeridianX, 2);  

double b = 2 * correlation * SDPointLocOverMeridianX * SDPointLocOverMeridianY;  

 

results[0] = probabilityArea * Math.Sqrt(0.5 * ((Math.Pow(SDPointLocOverMeridianX, 2) + Math.Pow(SDPointLocOverMeridianY, 2)) 
+ Math.Sqrt(Math.Pow(a, 2) + Math.Pow(b, 2))));  

results[1] = probabilityArea * Math.Sqrt(0.5 * ((Math.Pow(SDPointLocOverMeridianX, 2) + Math.Pow(SDPointLocOverMeridianY, 2)) 

- Math.Sqrt(Math.Pow(a, 2) + Math.Pow(b, 2))));  
return results; 

} 

  

Calculate Pearson correlation 

private double pearson(double[] x, double[] y) 

{ 
double meanx = meanValues(x); 

double meany = meanValues(y); 

double sxx = 0, syy = 0, sxy = 0; 

    

for (int i = 0; i < x.Length; i++)  

{ 

sxx += Math.Pow((x[i] - meanx), 2); 
syy += Math.Pow((y[i] - meany), 2); 

sxy += (x[i] - meanx) * (y[i] - meany); 

} 
return sxy / Math.Sqrt(sxx * syy); 

} 
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Calculate Standard Deviation over meridian 

private double SDPointLocOverMeridian(double[] data) //gives σx and σy 

{ 

double[] dataMinusMean = new double[data.Length]; 

double mean = meanValues(data); 

for (int i = 0; i < data.Length; i++) 

dataMinusMean[i] = data[i] - mean; 
 

double results = SDit(dataMinusMean, meanValues(dataMinusMean)); 

return results; 
} 

 

Calculate mean 

private double meanValues(double[] meanArray) 

{ 

double mean = 0; 

for (int i = 0; i < meanArray.Length; i++) 

mean += meanArray[i]; 

mean /= meanArray.Length; 
return mean; 

} 

Calculate Standard Deviation 

private double SDit(double[] dataToSD, double mean) 
{ 

double sd = 0; 

for (int i = 0; i < dataToSD.Length; i++) 

sd += Math.Pow((dataToSD[i] - mean), 2); 

double temp1 = (double)1 / ((double)dataToSD.Length - 1); 

sd *= temp1; 

sd = Math.Sqrt(sd); 
return sd; 

} 
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Appendix B – Larger versions of eye 

movement traces from Chapter 5 
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Appendix C – Participant details 

Control participant details  

 

Control 
number Age Sex 

Right 
MD 

Left  
MD BEMD VA PRlogCS 

1 78 F -0.67 -0.78 -0.67 -0.1 1.95 
2 56 M 0.53 0.59 0.59 -0.1 1.95 

3 82 M -0.27 1.2 1.2 0.1 1.75 
4 68 F -0.39 -1.75 -0.39 0 1.95 

5 62 F 0.45 -0.05 0.45 0 1.95 
6 73 M -1.41 -1.07 -1.07 -0.1 1.95 

7 77 F -0.1 -0.15 -0.1 -0.1 1.95 
8 76 M 1.52 0.87 1.52 0 1.95 

9 73 F -1.29 -1.32 -1.29 0 1.95 
10 64 F 0.63 0.81 0.81 0.1 1.95 

11 68 F 1.52 1.25 1.52 -0.2 1.95 
12 69 F -2.27 -1.37 -1.37 0.1 1.95 

13 71 M 1.26 1.7 1.7 0.2 1.95 
14 68 F 0.92 0.66 0.92 -0.1 1.95 

15 33 F -0.16 0.53 0.53 -0.3 1.95 
16 74 F 1.95 0.75 1.95 0 1.95 

17 68 M 1.86 1.38 1.86 -0.1 1.95 
18 56 F -0.1 -0.03 -0.03 -0.04 1.95 

19 62 F 1.66 1.22 1.66 -0.14 1.95 
20 63 M -0.05 -0.63 -0.05 -0.14 1.95 

21 64 M -0.84 -3.94 -0.84 -0.04 1.95 
22 74 F 0.5 0.36 0.5 -0.08 1.95 

23 76 M -0.45 -0.33 -0.33 -0.08 1.95 
24 74 F -1 -2.61 -1 0 1.95 

25 71 M 0.54 0.93 0.93 0.2 1.95 
26 75 M -1.06 -2.83 -1.06 -0.08 1.95 

27 79 F -0.95 -1.79 -0.95 0 1.95 
28 64 M -1.17 -0.06 -0.06 0 1.95 

29 70 F 0.59 -0.19 0.59 0.02 1.95 
30 75 M 1.54 0.36 1.54 -0.12 1.95 
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Glaucoma participant details 

 

Patient 
number Age Sex 

Right 
MD 

Left  
MD BEMD VA PRlogCS 

1 59 M -11.32 0.72 0.72 -0.18 1.95 

2 65 F -4.24 -5.68 -4.24 -0.12 1.95 
3 75 F -6.39 -13.48 -6.39 -0.04 1.95 

4 71 M -3.78 -5.74 -3.78 0.18 1.65 
5 64 M -1.99 -5.98 -1.99 0.02 1.95 

6 73 M -26.16 -14.41 -14.41 0.12 1.5 
7 77 F -18.41 -16.93 -16.93 0.18 1.65 

8 78 M -5.56 -12.89 -5.56 0.06 1.95 
9 77 F -3.61 -2.24 -2.24 0.16 1.95 

10 82 F -4.98 -3.89 -3.89 0.12 1.8 
11 68 M -4.32 -2.64 -2.64 -0.06 1.8 

12 76 M -19.76 -13.81 -13.81 0.24 1.7 
13 66 F -8.55 -9.02 -8.55 0.18 1.7 

14 71 M -13.79 -3.59 -3.59 0.24 1.8 
15 61 M -3.4 -5.71 -3.4 0.06 1.9 

16 35 F -11.06 -3.61 -3.61 -0.1 1.95 
17 60 F -19.36 -6.73 -6.73 -0.18 1.9 

18 74 M -7.77 -4.82 -4.82 0.16 1.65 
19 79 F -3.69 -10.64 -3.69 0.16 1.5 

20 58 F -4.53 -2.15 -2.15 0.02 1.95 
21 77 F -14.65 -17.75 -14.65 0.02 1.95 

22 79 F -5.61 -6 -5.61 0.04 1.65 
23 68 F -7.81 -5.03 -5.03 -0.04 1.75 

24 65 M -29.27 -16.66 -16.66 0.04 1.45 
25 58 F -3.68 -5.54 -3.68 -0.08 1.85 

26 66 F -5.16 -11.18 -5.16 0.08 1.95 
27 66 M -7.57 -12.12 -7.57 0.14 1.8 

28 58 M -17.23 -4.82 -4.82 0.14 1.95 
29 78 F -5.63 -5.54 -5.54 0.18 1.95 

30 72 F -22.51 -17.1 -17.1 0.18 1.65 
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Appendix D - Peer reviewed papers 

Crabb DP, Smith ND, Rauscher FG, Chisholm CM, Barbur JL, Edger DF & Garway-

Heath DF (2010). Exploring Eye Movements in Patients with Glaucoma When 

Viewing a Driving Scene. PLoS ONE 5(3): e9710.  

Smith ND, Crabb DP & Garway-Heath DF (2011). An exploratory study of visual 

search performance in glaucoma. Ophthalmic and Physiological Optics, 31, 225–

232.  

Smith ND, Crabb DP; Glen FC; Burton R & Garway-Heath DF (2012). Eye 

movements in patients with glaucoma when viewing images of everyday scenes. 

Seeing and Perceiving. Accepted for publication  

 

Meeting abstracts 

Smith ND, Rauscher FG, Chisholm CM, Edgar DF, Barbur JL, Garway-Heath DF & 

Crabb DP (2007). Eye Movements in Patients with Glaucoma When Viewing a 

Driving Hazards Perception Test. Invest Ophthalmol Vis Sci; 48: E-Abstract 4450. 

Smith ND, Rauscher FG, Chisholm CM, Edgar DF, Barbur JL, Garway-Heath DF, 

Rubin GS & Crabb DP (2007). Eye Movement analysis in Glaucoma When Viewing a 

Driving Hazards Perception Test. European Conference of Eye Movements (ECEM), 

Potsdam 

Smith ND, Rubin GS, Garway-Heath DF & Crabb DP. (2008). Exploring Eye 

Movements in Glaucomatous Patients When Viewing Natural Photographs. Invest 

Ophthalmol Vis Sci; 49: E-Abstract 1110 

ND Smith, GS Rubin, DF Garway-Heath, DP Crabb (2009). How does glaucoma 

affect eye movements when searching and passively viewing photographs? British 

Congress of Optometry and Vision Science (BCOVS), Brighton 

ND Smith, GS Rubin, DF Garway-Heath, DP Crabb (2009). What do patients with 

glaucoma do when they search and look at everyday scenes? UK and Eire 

Glaucoma Society Meeting (UKEGS), Dublin 



166 

 

ND Smith, GS Rubin, DF Garway-Heath, DP Crabb (2009). What do patients with 

glaucoma do when they search and look at everyday scenes? Royal College of 

Ophthalmologists (RCO) Annual meeting, Birmingham 

ND Smith, GS Rubin, DF Garway-Heath, DP Crabb (2010). What do patients with 

glaucoma do when they search and look at everyday scenes? European Association 

for Eye and Vision Research (EVER), Portoroz 

Smith ND, Crabb DP & Garway-Heath DF (2011). How Does Glaucoma Look? A 

Study of Patient Perception Of Visual Field Defects. Invest Ophthalmol Vis Sci; 52: 

E-Abstract 4414 

Smith ND (2011). Eye movements in Glaucoma. European Conference of Eye 

Movements (ECEM), Marseille 
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