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Abstract—Runtime monitors check the execution of a system
under scrutiny against a set of formal specifications describing
a prescribed behaviour. The two core properties for monitoring
systems are scalability and adaptability. In this paper we show
how RuleRunner, our previous neural-symbolic monitoring sys-
tem, can exploit learning strategies in order to integrate desired
deviations with the initial set of specification. The resulting system
allows for fast conformance checking and can suggest possible
enhanced models when the initial set of specifications has to be
adapted in order to include new patterns.

I. INTRODUCTION

The expanding capabilities of information systems and other
frameworks that depend on computing resulted in a spectacular
growth of the ”digital universe” (i.e., all data stored and/or
exchanged electronically). It is essential to continuously monitor
the execution of data-producing systems, as well-timed fault
detection can prevent a number of undesired malfunctions and
breakdowns.

A first requirement for runtime verification systems is scal-
ability, as this guarantees efficiency when dealing with big data
or systems with limited computational resources. In [13] we
introduced RuleRunner, a novel rule-based runtime verification
system designed to check the satisfiability of temporal properties
over finite traces of events, and showed how to encode it into
a standard connectionist model. The resulting neural monitors
benefit from sparse form representation and parallel (GPU)
computation to improve the monitoring performance.

In this paper we tackle another crucial requirement for run-
time monitoring systems: adaptability. Adaptability overcomes
the standard classification approach to monitoring (where the
verification task simply labels a trace as complying or not) and
allows a monitor to adapt to new models or include unexpected
exceptions.

In the Business Process area, a more flexible approach to
monitoring is offered by model enhancement, where an initial
model can be refined to better suit iterative development cycles
and to capture a system’s concept drift. It may be the case that
a user or domain expert would like to modify the verdict of a
monitoring task.
In other scenarios, such as the implementation of directives
in big companies like banks, the task execution may differ
from the rigid protocol enforcement, due to obstacles (from
broken printers to strikes) or by adaptations to specific needs
(dynamic resources reallocation). If the actual process execution
represents an improvement in terms of efficiency, it is relevant
to adapt the original process model in order to capture and
formalise the system’s behaviour.
We remark that this task differs from pattern discovery, as it
does not infer an ex-novo model from the observed traces: the

desired feature is to be able to adapt the existing model. We
therefore propose a framework (visualised in Figure 1) based
on our RuleRunner system and integrating temporal logic and
neural networks, for online monitoring and property adaptation.
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Fig. 1: General framework

An initial temporal specification (i.e., one or more prop-
erties) is provided as the expected behaviour of the system
in analysis. A runtime verification system, monitoring that
property, is then built. In Figure 1 we have stressed how in our
case the encoding is decomposed in two steps. This is a pre-
processing phase: the verification system is built once and can
then be used, at run time, to monitor traces. The monitoring
process determines whether the pattern of these operations
violates the specified property, providing binary verdicts. The
sub-workflow framed in a dashed line represents the monitoring
task as performed by RuleRunner. If the domain expert deems
some traces to be misclassified, the monitor enters an off-line
learning phase, where it modifies the encoded property in order
to modified the verdict for the traces marked as misclassified.
The result of the learning process should be available both as
a ready-to-use monitor and as a logical formula describing the
new adapted property, thus creating an iterative development
cycle.

The paper is structured as follows: in Section II we present
background and related work, while in Section III we summarise
our system, RuleRunner. In Section IV we analyse the learning
problem and propose our solution. In Section V we conclude
the paper with final remarks and directions for future work.



II. TECHNICAL BACKGROUND

A. Runtime Verification

The broad subject of verification comprises all techniques
suitable for showing that a system satisfies its specification(s).
Correctness properties in verification specify all admissible
individual executions of a system and are usually formulated in
some variant of linear temporal logic ([14]). LTL properties are
checked against real systems through a process called model
checking: more formally, given a model of a system and a
formal specification, the model checking problem requires to
exhaustively and automatically check whether the model meets
the specification: however, software model checking is often
computationally hard [7], and infeasible when the model of
the observed system is not known. A practical alternative is
to monitor the running program, and check on the fly whether
desired temporal properties hold: Runtime Verification [12],
based on the concept of execution analysis, aims to be a
lightweight verification technique complementing other verifi-
cation techniques such as model checking. Runtime monitoring
is a valid option when the program must run in an environment
that needs to keep track for violations of the specification, but
the source code is unavailable for inspection for proprietary
reasons or due to outsourcing. There exist several RV systems,
and they can be clustered in three main approaches, based
respectively on rewriting [16], [18] [10], automata [7], [6] [9]
and rules [1] [13]. The aforementioned restrictions rule out
several classical model-checking approaches, based on the
construction of a model of the analysed system: for runtime
verification, one has to rely on the analysis of the so-called
traces. Traces are streams of events, discretised according to
some temporal granularity: each discrete component of a trace
is called cell, and it includes a set of events, or observations,
occurred in a given time span.

B. Neural-symbolic Integration

(Artificial) Neural Networks [11] are computational models
inspired by biological nervous systems and generally presented
as systems of interconnected ‘neurons’ which can compute
values from inputs. The Neural-Symbolic Integration area
provides several hybrid systems that combine symbolical and
sub-symbolical paradigms in an integrated effort. A milestone
in neural-symbolic integration is the the Connectionist Inductive
Learning and Logic Programming (CILP) system [5]. CILP’s
Translation Algorithm maps a general logic program P into a
single-hidden-layer neural network N such that N computes
the least fixed-point of P . In particular, rules are mapped
onto hidden neurons, the preconditions of rules onto input
neurons and the conclusion of the rules onto output neurons.
The weights are then adjusted to express the dependence
among all these elements. The obtained network implements
a massively parallel model for Logic Programming, and it
can perform inductive learning from examples, by means of
standard learning strategies.
Borges et. al [3] proposed a new neural-symbolic system,
named Sequential Connectionist Temporal Logic (SCTL) for
integrating verification and adaptation of software descriptions.
This framework encodes a system description into a particular
kind of network, namely NARX (Nonlinear AutoRegressive
with eXogenous inputs, [17]) and then a learning phase allows
the integration of different knowledge sources. Properties to be

satisfied are checked by means of an external model checking
tool (such as NuSMV [4]): if a property is not satisfied, the
tool provides a counterexample that can be adapted with the
help of an expert and be used to train the NARX network to
adapt the model.

III. RULERUNNER

In a nutshell, RuleRunner [13] is a neural-symbolic system
where an LTL monitor is translated in a standard, feedfor-
ward neural network. The monitor is initially computed as
a purely symbolic system, composed by rules encoding the
LTL operators, and then encoded in a standard recurrent neural
network. As a result of the neural encoding, the monitoring
task corresponds to a feedforward recurrent activation of the
neural network encoding the monitor.

Given an LTL formula φ, RuleRunner is based on the
parsing tree of φ: this is a tree where each node corresponds
to an operator (or observation) in φ, and each subtree to a
subformula of φ. For instance, the initial parsing tree for a∨3b
is depicted in Figure 2(a).
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Fig. 2: Example of parsing tree and labelling process

The monitoring task, for this structure, corresponds to
labelling the nodes with their truth values wrt. the current
observations. The labelling proceeds bottom-up and it can be
based on a post-order visit of the parsing tree (Figure 2(b)).
For instance, if b is observed, a is false and b is true. The
information that b is true can be used to infer that 3b is true,
and the 3 node can therefore be labelled as true. The two
labels of a (false) and 3b (true) can be combined in the root
node, according to the semantics of ∨, to finally label the root
node as true and produce a final verdict: a ∨ 3b has been
verified by the observations.

It is intuitive that each node in the parsing tree should
encode the semantics of the corresponding operator; however,
the runtime verification poses additional constraints, as the
observations trace can be accessed one cell at a time, and it
is not possible to peek in the future nor to go back in the
past. To address the first limitation, RuleRunner assigns the
undecided (?) truth values to formulae that require to access
the suffix of the trace. This is a common approach in runtime
verification [2], used when it is impossible to give a binary
evaluation to a formula in the current cell: for instance if the
formula is Xa, it is impossible to evaluate its value in the first
cell of a trace. However, RuleRunner is designed in such a
way that, when the end of the trace is reached, all truth values
are binary. Concerning the second limitation, the truth values
of subformulae are enriched with additional information about
the monitoring state.



The enriched semantics of each LTL operator is stored
in what we called extended truth tables. As an example, the
extended truth table for disjunction is visualised in Table I.∨

B T ? F
T T T T
? T ?B ?L
F T ?R F

∨
L

T T
? ?L
F F

∨
R

T T
? ?R
F F

TABLE I: Extended truth table for ∨

The right-hand side of Table I reports the three-valued
and decorated truth value table for ∨. ?L,?R and ?B read,
respectively, undecided left, right, both. For example, ?L
means that the future evaluation of the formula will depend on
the left disjunct only, since the right one failed. An ?L truth
value will force the rule system to shift from the ∨B to the
∨L operator, in the following cells: ∨L is, in fact, a unary
operator. This allows the system to ‘ignore’ future evaluations
of the right disjunct and it avoids the need to ‘remember’ the
fact that the right disjunct failed: since that information is
time-relevant (the evaluation failed at a given time, but it may
succeed in another trace cell), keeping it in the system state
and propagating it through time could cause inconsistencies.

The complete set of tables for logical operators is depicted
in Figure 3.
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Fig. 3: Extended truth tables

RuleRunner then translates every truth table as a small
neural network, creating one input neuron for each possible
truth value of the subformula(e), one hidden neuron for each cell
in the truth table, and one output neuron for each possible truth
value (true, false, undecided). The input-hidden connections
implement the compositions of cells in the truth table, and the
hidden-output connections map each cell of the truth table onto
an output truth value. Figure 4 provides a visual example of
the correspondence between extended truth tables and neural
networks: the example is simplified to a two-valued disjunction,
for the sake of visualisation.
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Fig. 4: (Two-valued) disjunction as network and truth table

The weights are computed using the CILP algorithm [8],
which is proven to guarantee the following conditions:

C1 the input potential of a hidden neuron h can only
exceed its threshold, activating h, when all the positive
antecedents of h are assigned the truth value true while
all the negative antecedents of h are assigned false.

C2 the input potential of an output neuron o can only
exceed its threshold, activating o, when at least one
hidden neuron h that is connected to o is activated.

Given an LTL formula φ, the final output of this encoding
phase is a runtime monitor structured as the parsing tree
for φ (see Figure 2) where each node corresponds to an
LTL operator and contains a neural network (e.g. Figure 4)
computing the corresponding extended truth table from
(Figure 3). When such a monitor is used to monitor a trace,
the current cell’s observations are fed to the neural monitor
as input, and the convergence of the feedforward-recurrent
propagation in the neural monitor corresponds to the bottom-up
labelling process on the formula parsing tree. In [13] we
also showed how sparse form representation and parallel
computation through GPU can speed up the monitoring process.

IV. LEARNING AS PROPERTY ADAPTATION

A. The Learning Problem

In the introduction we have outlined our general framework
for integrating monitoring (reasoning) and adaptation (learning)
within a single neural-symbolic system. We claim that this
kind of hybrid approach is required in many domains, spanning



from Business Process Management (where it captures the idea
of concept drift) to Multi-agent systems (where autonomous
agents can suggest improved solutions to a given task).

As an example, consider a security system built to detect
consecutive login operations from the same user with no logout
in between: φ = login⇒ X(!login ∪ logout). Now suppose
the system detects a number of violations, in a given LAN, that
the security manager judges as false positives. For instance,
that LAN could be a lab where users log in from different
devices, or it could be a trustable section of the network. It
is reasonable that the security manager wants to maintain the
security system, but also to relax the formal property in order
to include logins from the given LAN, and therefore avoid
false positives and improve efficiency. Reclassifying a trace
means demoting the relation between the observations and the
actual output while promoting the relation between observations
and expected output: it is, in fact, a supervised learning task.
Therefore, wrt. the general framework depicted in Figure 1,
the initial property is login ⇒ X(!login ∪ logout) and the
traces are provided by the log of network operations, including
logins and logouts. the learning phase modifies the encoded
property in order to classify the consecutive logins from the
LAN area as non-violations: ideally, the resulting property is
login⇒ X((!login ∨ LAN) ∪ logout).

The learning process has to be tackled by taking into
account both the temporal dimension of the monitoring and
the logical structure of the monitor. The intrinsic temporal
nature of the monitoring process implies that learning the
correct monitoring of a trace corresponds to learning a set
of classification instances, one for each cell of the trace.
Furthermore, modifying the monitor when analysing a specific
cell might alter the behaviour of the monitor on a previously
analysed cell, and learning attempts might result in conflicting
input-output pairs: we will solve this problem by considering
temporary solutions as working hypotheses, and collecting set
of said hypotheses before performing batch learning, so that
inconsistent options are ignored.

Concerning the kind of formulae that can be learned,
our neural monitors present a peculiar structure: on the one
hand, we can tweak specific input-output relations within
a single operator’s truth table: we are therefore able to
learn non-standard logical operators, such as the three-valued
correspondent of NAND. This is an interesting feature, whereas
several approaches are limited to specific patterns or syntax.

On the other hand, recall that our neural monitors are based

on parsing trees, and the monitoring task correspond to leaves-
to-root message passing: in functional terms, learning implies
altering the (semantics of the) property encoded in the monitor;
in structural terms, it corresponds to modifying the weights
of some connections in the neural network. In our system,
learning comes with a trade-off between preservation of the
initial monitor and learning capability: the balance depends on
the degree of freedom we allow during learning. On the one
hand, the initial monitor includes a set of properties concerning
consistence, truth-table interpretation, sparsity, and so on. On
the other hand, if the network is fully connected before the
application of the learning algorithm, and every connection in
both IH and HO is unconstrained, the learning algorithm can
rely on the full network in order to minimise the error function.

In this paper we present an approach based on locally
constrained learning, which allows to capture common property
modification patterns, such as constraint relaxations and
exceptions (exploiting what we called contextual networks).
If the exceptions in a set of traces are based on complex
temporal patterns that have no common structure with the
main property, it seems more reasonable to isolate those traces
by standard monitoring and then use a miner to discover
independent patterns, rather than trying to merge property and
exceptions, when they model syntactically and semantically
different patterns.

B. Monitor Structure and Local Learning

In order to describe how to apply learning strategies to our
system we need to analyse the structure of its neural monitors.
We have mentioned in Section III how the supporting structure
for the monitors is the parsing tree of the encoded formula,
where each node encodes the operational semantics of a precise
operator. These subnetworks are then composed horizontally,
as exemplified in Figure 5, in order to form a single-hidden-
layer recurrent network (so that suites like Matlab can work
with standard topologies), where the global input (resp. hidden,
output) layer is the set of all input (resp. hidden, output) neurons
of all single subnetworks.

In Figure 5, on the left, is depicted a parsing tree including
four (numbered) nodes; the encoding process transforms each
node in a single subnetwork. Leaf nodes are encoded as
subnetworks that accept observations as inputs (1,3), while
the root node (4) computes the final verdict. The arcs of the
tree, used to propagate truth values between adjacent nodes,
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Fig. 5: Flattened tree



correspond to the recurrent connections: for instance, since
nodes 2 and 3 are subnodes of 4, the neural network in Figure 5
includes recurrent connections from neurons in the output layers
of subnetworks 2 and 3 to the input layer of subnetwork 4.

However, for the learning process, we will consider the
subnetworks as organised in the original parsing tree. Note that
this double perspective does not require to rearrange the data
structure: the tree-based view can be achieved indexing the
subnetworks or following the recurrent connections.

It is also worth remarking how these subnetworks are
independent: computing A ∨ B depends on the truth values
of A and B only: for instance, A and B may be complex
formulae, and the process of computing their truth values does
not affect the ∨ subnetwork; the final verdicts of A and B are
computed independently and propagated from the output layers
of A and B to the input layer of A ∨B.

This structure is ideal for learning small adjustments to
the encoded property. For instance, if the encoded property is
XXa ∧ 32(b Uc) and the goal is to learn traces generated
from XXa ∨32(b Uc), the only node in which learning is
performed is the one encoding the conjunction. In particular,
switching from conjunction to disjunction consists in modifying
a few weights in the hidden-output layer in that neural network,
as this corresponds to altering the truth values of some cells.

During learning, the weights (and thresholds) are modified
according to the adopted learning strategies, like the perceptron
adaptation algorithm or the backpropagation algorithm [15].
However, different learning strategies just define the magnitude
of each weight update: the sign (increase/decrease) depends
solely on the nature of the problem. As an example, consider the
neural network (encoding a disjunction) depicted in Figure 4,
and suppose that it is used to learn the behaviour of a set of
traces. If the traces to be integrated are generated from an agent
that performs exclusively φ or ψ, then the combination of φ
and ψ will yield false: as a result, the learning algorithm will
lower the weight of the 1 −→ true connection and increase the
weight of the 1 −→ false connection. After the learning, the
hidden neuron 1, when firing, will propagate a signal towards
the false output neuron. The resulting network and truth tables
are visualised in Figure 6.
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Fig. 6: Network and truth table after the learning

Neurons and truth table can be easily re-labelled consulting

a library of stored patterns: in the previous example, the learned
operator is an exclusive or (⊕). Restricting the learning to the
hidden-output weight matrix corresponds to training one-layer
networks (e.g. a layer of perceptrons), but we do not incur
in the theoretical limits of linear separability, as every output
neuron implements a disjunction among the connected hidden
neurons (representing the cells in the truth table). For instance,
A⊕B is not linearly separable, but h2 ∨ h3 is: and since the
hidden neurons h2 and h3 correspond, respectively, to A∧!B
and !A ∧ B, we obtain (A ⊕ B) ≡ ((A∧!B) ∨ (!A ∧ B)),
which is a valid reformulation of the exclusive disjunction.

C. The Learning Approach

In this subsection we propose a particular learning frame-
work - it is worth stressing that the kind of learning we want to
implement is aimed at preserving the initially encoded property
while including/excluding new patterns: our final goal is to
generate adapted monitors that, given a formula φ and a set of
labelled traces T , provide the minimal modification of φ that
maximises the number of correctly classified traces in T .

For this reason, we restrict the learning to single nodes of
the parsing tree, corresponding to precise sets of rules (one
operator). The advantages of this approach are several: first
of all, we prevent learning from disrupting the hierarchical
structure of rules encoded by RuleRunner. Second, this approach
preserves the sparsity of the weight matrices in the neural
monitor encoding the adapted formula. Third, local learning
eases the extraction process, allowing to compute a symbolic
description of the learned formula(e). The disadvantage of this
approach is that we are constraining the learning capabilities
of the system, limiting the search space to a syntactical
neighbourhood of the initial formula.

The learning approach we propose is composed by two
phases: first, local training sets are collected, and subsequently
a learning strategy is applied on each training set.

The starting point for learning is a monitor encoding an
initial formula φ and a set of labelled traces. The labels of the
traces represent the desired monitoring verdict, which might
not correspond to the actual output of the monitor encoding
φ. There are two possible scenarios for the collection of these
traces:

• A third-party system is observed and all of its trajec-
tories are used as positive cases; the traces are then
verified against the initial monitor for φ.

• The initial monitor for φ labels all traces, and a domain
expert modifies the verdict for the cases that he wants
the monitor to include/exclude.

Both the first phase (collection of the training sets) and
the second phase (actual learning) are split in a number of
independent sub-phases, targeting specific nodes in the tree
(that is, subnetworks of the neural monitor that encode specific
sets of rules from the symbolic monitor). In each of these cases,
the monitor is used to verify all labelled traces. In each cell
of the trace, the first step is to compute the actual output: this
is depicted in Figure 7(a). The selected node is highlighted in
red, and the information flow is visualised by blue arrows.
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Fig. 7: Forward/backward propagation

Once the actual output (verdict) is computed, it can be
compared with the desired one, provided by the trace label.
Since we are interested in modifying the highlighted node
only, we need to infer the desired output for that specific node,
and we compute it by a backwards propagation from the root
node to the highlighted one (Figure 7(b)). So the monitor is
used to propagate (forward) the actual global output and, if it
differs from the expected label, to propagate (backward) the
local expected output for the highlighted node. Note that the
backward propagation of the expected output corresponds to
abduction.

At this point, we do have the couple of actual input
and desired output for the selected node: the former was
computed in the monitoring step, while the latter was obtained
by backwards propagation, starting from the desired label. We
store this couple of values, force the expected output in the
selected node, and move to the next cell. We do so for the
following reasons:

• We know that by forcing the output of the selected node
to match the desired one, the remaining forward propa-
gation will produce the expected label, thus allowing -
if necessary - to proceed with the monitoring. Thus we
use the input-output behaviour as a working hypothesis
in order to proceed with the monitoring/learning.

• We store the actual input/desired output as part of
the training set for the selected node. By doing so,
we postpone all actual learning to a subsequent phase,
where it can be applied to a whole training set (batch
approach).
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Fig. 8: Collecting local training sets

At the end of this phase, for each node in the initial monitor
a training set has been built (Figure 8). Note that we simply
defined each element as an input-output pair, but in fact input
and output are activation patterns on the input/output layer of
the selected node. In the second phase, learning strategies can
be exploited to make each subnetwork match the input-output
behaviour represented by the corresponding local training set;
all these training tasks are independent and can be run in
parallel.

At the end of this phase the best performing subtest can be
selected and the corresponding operator modified accordingly;
this compose a single learning step, as the resulting network
can undergo another learning phase in order to modify another
operator and further improve the general accuracy.

D. Contextual Subnetworks

So far we focused on learning tasks where the desired
behaviour was an alteration of the encoded property, commonly
by means of a relaxation of some connective. However, it may
be the case that the desired behaviour depends on additional
observations that do not belong to the initial formula. This
happens, for instance, with exceptions, where a specific case
can be isolated and exempted from a general rule.

A neural monitor NNφ, as it is, is not suitable for learning
behaviours including new observations, as everything which
is not included in the original property is filtered. This is
reasonable for the ‘pure monitoring’ phase, as the size of
observations provided by the observed system may be arbitrarily
big wrt. the few observations to be monitored. However, when
adapting the monitor in order to learn to re-classify traces,
taking new observations into account may be necessary. A
simple example for this particular issue was provided with the
example concerning the security domain: the initial property
did not include details about the LAN, so that information was
initially ignored by the monitor.

In structural terms, the neural monitor may lack the actual
input neurons necessary to be aware of some observations. In
order to overcome this limitation, the topology of the neural
network has to be modified in order to detect the desired
observations and be able, through learning, to connect them
with the rest of the network, so that the occurrence of the new
observation influence the overall semantics of the monitor. We
call contextual subnetwork for a (CSa) the subnetwork added
to the initial neural monitor in order to take into account the
occurrence of an observation a.

As a minimum requirement, CSa must include an input neu-
ron labelled a, so that the activation of the neuron corresponds
to the occurrence of a in the current cell. However, this is not
sufficient in our convergence-based approach, as the monitoring
of a subformula requires several feed-forward propagations in
the neural monitor, and a has to be ‘remembered’ throughout
this phase; we therefore also introduce an hidden and output
neuron.

The minimal CSa for an observation a is therefore visu-
alised in red in Figure 9, and it corresponds to the simple logic
program:

a⇒ a
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Fig. 9: Minimal contextual subnetwork for a

However, as we have observed in the previous subsections,
it is often the case that the occurrence of an observation and its
impact on the desired final verdict belong to two different cells;
in order to satisfy this need of through-time persistence, we
propose a second type of contextual subnetwork which remem-
bers whether a given observation o was always/sometimes true
in the past. This extended contextual subnetwork, highlighted
in Figure 10, corresponds to the following logic program:

a ⇒ a | a ⇒ 3a | 3a ⇒ 3a | (2a ∧ a)⇒ 2a

The first clause corresponds to the minimal contextual network,
and it is used to link the occurrence of a with the output pattern
of the neural monitor. The second and third clauses model the
existential occurrence of a: if a is observed, then 3a holds
from that cell; if 3a holds, it is maintained in the future cells.
The fourth clause model the universal existence of a: as long
as a is observed, 2a holds.

R..R..x

FS..

R..R..x
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<>a
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Fig. 10: Extended contextual subnetwork for a

Specific contextual networks can be built in order to meet
specific needs; for instance, delay-units can be exploited to
build contextual networks that take into account exceptions that
occurred in the previous cell.

Contextual networks provide additional inputs for the neural
monitor, but are initially disconnected from the neural monitor
and have no impact on the monitoring process; it is necessary
to apply a learning strategy to connect the main neural monitor
and the built contextual networks, so that the occurrence of
exceptions impacts on the monitoring verdict. The general
approach presented in the previous subsection can also be used
to learn exceptions, e.g. unpredicted patterns that involve atoms
(observations) not included in the original formula. We use
precisely the same set of algorithms, with one single difference:
the focus node is not selected on the tree of the original
monitor, but added ex novo, connecting the neural monitor
with a contextual network.

The approach is sketched in Figure 11: in any edge from
a node A to a node B, a new dummy node, called Graft
in figure, can be inserted. Initially the node computes a left-
projection function, so that it simply propagates the output of
the B node as input to the A node. A contextual network is
added as right subnode of the Graft. The contextual network
can store arbitrary information about a given atom, or set of
atoms, not previously included in the initial formula (which the

main tree is monitoring). In the simplest case, the contextual
subnetwork for a given observation x simply detects whether x
holds in the current trace. Using the Graft node as focus node
in the learning process allows the monitor to take into account
the information computed and stored in the contextual node
and to let it influence the verdict of the adapted monitor, if this
improves the monitoring accuracy. The richness of symbolical
information about the evaluation status of all subformulae of
the currently monitored property allows us to decide where to
graft the contextual node with surgical precision, measuring its
impact on different nodes in independent tests.

A

B

...

... ...

...

A

B

...

... ...

...Graft

Context

Fig. 11: Grafting a contextual subnetwork to a monitoring tree

E. Example

In this section we present two examples of property
adaptation, measuring the accuracy of the adapted monitor
and providing a qualitative analysis of the learned rules. We
will use the notation Body −→ Head1 : Head2 to indicate
when the learning process modified the Body −→ Head1 rule
into Body −→ Head2. More practically, providing the pair
{Body,Head2} to the learning algorithm, the weight of the
connection from the hidden neuron representing the current
rule (let it be h) to the output neuron labelled Head1 was
reduced, while the weight of the connection from h and the
output neuron labelled Head2 was augmented.

The first example is the adaptation of a disjunction into
a conjunction. The initial accuracy is roughly 50%. For this
simple example, it is easy to see why: the cases with both a and
b or neither a nor b are classified (respectively, as SUCCESS
and FAILURE) by M(a∨b) in a consistent way with the
expected label specified by (a∧b). The traces where exclusively
a or b occur are classified as SUCCESS against an expected
FAILURE label.

Node Accuracy Learned Rules
Initial accuracy: 49.9%

a 76.5% R[a], a −→ [a]T : [a]F

b 73.4% R[b], b −→ [b]T : [b]F

(a ∨ b) 100.0%
R[(a ∨ b)]B , [a]T , [b]F −→ [(a ∨ b)]T : [(a ∨ b)]F
R[(a ∨ b)]B , [a]F , [b]T −→ [(a ∨ b)]T : [(a ∨ b)]F

TABLE II: From a ∨ b to a ∧ b

The nodes a and b provide baseline-level accuracies (76.5%
and 73.4%) and, respectively, modify the initial monitor Ma∨b
into the two monitors M⊥∨b = Mb and Ma∨⊥ = Ma. It is
not surprising that a baseline-level accuracy corresponds to
trivial solutions. The line corresponding to the (a ∨ b) node
stands out, as that monitor hit a perfect accuracy score (100%);



the two learned rules correspond, by the way, to the different
truth values between the binary truth tables of conjunction and
disjunction.

As second example, we describe the adaptation of (aUb) to
3b (Table III): in this case we haven’t modified one operator,
but used a different syntax to express a similar property (recall
that (>Ub) ≡ 3b).

Node Accuracy Learned Rules
Initial accuracy: 49.4%

a 100.0% R[a], !a −→ [a]F : [a]T

b 100.0% R[b], !b −→ [b]F : [b]?

(aUb) 100.0%

R[(aUb)]A, [a]
F , [b]F −→ [(aUb)]F : [(aUb)]?AP

R[(aUb)]R, [b]
F ] −→ [(aUb)]F : [(aUb)]?BP

R[(aUb)]B , [a]
F , [b]T −→ [(aUb)]F : [(aUb)]T

R[(aUb)]L, [a]
F −→ [(aUb)]F : [(aUb)]T

R[(aUb)]B , [a]
F , [b]F −→ [(aUb)]F : [(aUb)]?LP

TABLE III: From (aUb) to 3b

In the (aUb) node, the learning algorithm adapted a set
of rules (recall how rich the evaluation tables for U are). The
first, second and fifth rules take into account situations where
b is false, forcing the result from false to undecided: since
in fact the traces are labelled according to the formula 3b, a
failure of b just requires the whole monitoring to proceed. The
second rule forces the monitor to yield a true result when b is
observed, ignoring the fact that a failed: this mirrors the fact
that in 3b a is irrelevant. The third rule, similarly, expresses
the fact that when only the monitoring of a is pending (and
this means that b already succeeded), the monitoring of the U
formula terminates with a positive verdict.

In the b node the learning process produced a single updated
rule: R[b], !b −→ [b]F : [b]?. This may look weird, as it is a
mere observation being assigned an undecided truth value. In
fact, as long as b is not observed, [b]? is inferred, and this
causes the super-formula (aUb) to iterate on the following cell.
If a is not observed, the until simply switches from the A to
the B sub-states (see [13]): the system has just found another
way to ignore a. If eventually b is observed, [b]T and [(aUb)]T

are inferred, causing the monitoring of the trace to produce a
SUCCESS verdict. If b is never observed, the (aUb) formula
reaches the end of the trace, where the END rules force the
undecided status of the until to false.

In the a node, the system learned the adaptation that requires
less explanations both in terms of syntax and semantics: a
becomes a constant function returning true, therefore we go
from (aUb) to (>Ub) ≡ 3b.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we extend our neural monitoring system
RuleRunner, equipping the framework with a learning module
in order to allow a monitor to adapt to new models or include
unexpected exceptions.

We suggested an original light-weight learning approach
that restricts the search space to the syntactical neighbourhood
of the monitored temporal formula: this allows to implement
adaptation as a set of targeted, independent learning tasks in
isolated subnetworks. Despite the neural encoding, we always
maintain the symbolic interpretation of our monitor, even after
learning, thus allowing for instantaneous symbolic extraction of

the adapted formula(e). The best performing adapted monitor
can be therefore extracted as a new temporal property and used
for another iteration.

The learning approach we proposed is limited to a syntac-
tical neighbourhood of the encoded specification. A reasonable
direction for future work would be a wider comparison of
learning strategies, in terms of accuracy, performance, and
quality of the extracted pattern. Once again, this depends from
the desired application: if a symbolic representation of the
learned patterns is required, training one layer proved to be
a valid choice; on the other hand, if the user wants to use
the adapted monitor as a benchmark, less structure-preserving
learning strategies would make a valid option, as in that case
there would be no symbolic extraction.
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