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Abstract

Despite the success of connectionist systems in prediction and classification prob-
lems, critics argue that the lack of symbol processing and explanation capability
makes them less competitive than symbolic systems.

Rule extraction from neural networks makes the interpretation of the behaviour
of connectionist networks possible by relating sub-symbolic and symbolic process-
ing. However, most rule extraction methods focus only on specific neural network
architectures and present limited generalization performance.

Support Vector Machine is an unsupervised learning method that has been recently
applied successfully in many areas, and offers excellent generalization ability in
comparison with other neural network, statistical, or symbolic machine learning
models.

In this thesis, an algorithm called Geometric and Oracle-Based Support Vector Ma-
chines Rule Extraction (GOSE) has been proposed to overcome the limitations of
other rule-extraction methods by extracting comprehensible models from Support
Vector Machines (SVM). This algorithm views the extraction as a geometric task.
Given a trained SVM network, GOSE queries the synthetic instances and draws
conjunction rules by approximating the optimization problem. The extracted rule
set also represents the approximation of the SVM classification boundary. Unlike
previous works in SVM rule-extraction, GOSE is broadly applicable to different
networks and problems because it need not rely on training examples and network
architectures. Theoretical proof guarantees that GOSE is capable of approximating
the behavior of SVM networks.

Empirical experiments are conducted on different SVM networks from binary clas-
sification networks to multi-class networks in various classification domains. The
result of experiments demonstrates that GOSE can extract comprehensible rules
with high levels of accuracy and fidelity for their corresponding networks. GOSE
also exhibits superior consistency. After analyzing and applying several optimizing
measures, the complexity of GOSE was improved. In brief, GOSE provides a novel
way to explain how an SVM network functions.
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Chapter 1

Introduction

1.1 Motivation

In recent years, non-symbolic artificial intelligence (AI) techniques have been suc-

cessfully utilized in many areas and applications. Although these techniques are

able to achieve high accuracy, tolerate noise and deal with various types of data such

as images, audio and speech, developers prefer not to make use of those empirical

AI techniques, because there is insufficient explanation for why and how forecast-

ing results are obtained from AI networks. For example, when neural networks are

used for stock predictions, they only provide mechanisms for forecasting, and the

knowledge inside the networks, which appears in the form of units and weights, is

incomprehensible to users. Therefore, users must blindly trust the predicted results

and are unable to validate the prediction results.

Hence, the integration of symbolic and connectionist aims to provide an explanation

facility for this problem in non-symbolic AI [55]. Rule extraction offers a solution.

The purpose of rule extraction is defined as [52]:

‘Given a trained neural network and the data on which it was trained, produce a

1
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description of the network’s hypothesis that is comprehensible yet closely approxi-

mates the network’s predictive behavior.’

Rule extraction has attracted widespread attention because it enhances the util-

ity of non-symbolic AI approaches. [66] presents the following desiderata of rule

extraction:

1. ‘user explanation’ capability: to use an explicit structure to interpret

the internal behavior of a non-symbolic network so that users are able to

understand the problem at hand.

2. transparency of Artificial Neural Network (ANN) structure: to pro-

vide a transparent ANN structure for users to verify whether or not the

system requirements have been followed.

3. generalization improvement: to provide a mechanism to reduce the gen-

eralized error. Users are able to use the extracted rules to identify the cir-

cumstances that are not covered and adjust the data set accordingly.

4. enhancement of knowledge acquisition: to assist in the improvement of

knowledge-based expert systems. The rules gained from the ANN may be

added to the existing knowledge base.

Development of Rule Extraction

In past years, many research has been done on rule extraction. Some of notible

work are described as follows. Gallant [35] and Saito et al. [43] are pioneers in

the development of rule extraction. [35] presents an approach to building up a

medical diagnostic expert system from a multi-layer network by using a parallel

distributed processing model. [43] presents a technique to extract Boolean rules

from individual neurons in both hidden layers and output layers of the ANN.
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The KT algorithm, an important technique developed by Fu [53], maps the outputs

of both hidden units and output units into Boolean rules.

One of the earliest work on rule extraction to treat the network as a black box is

called Validity Interval Analysis (VIA) [10]. Validity intervals (VI) are defined in

order to set range restrictions for the activation patterns in the networks. VIA then

iteratively filters those activation values inconsistent with the weights and biases

of the network [19].

Towell and Shavlik [91] present techniques that search the links entering a unit,

which ensures the combination of the link weights exceed the bias. The SUBSET

algorithm tries to find subsets of incoming weights that exceed the bias on a unit.

Moreover, another algorithm, MofN, which is inherent to the SUBSET algorithm,

addresses the knowledge inside the network in the form of “ if (M of the following

N antecedents are true) then ....”.

In [92], it treats rule extraction as a learning task is proposed. The method uses

training examples and queries to extract the conjunctive and MofN rules that could

describe the trained neural networks.

Garcez et al. [2] propose another novel approach. It defines a partial ordering

on the input vectors of a trained neural network and extracts the pruning and

simplification rules. This extraction algorithm is able to be applied on both regular

networks and non-regular networks.

While, Setiono [71] [72] focuses on employing the pruned network to extract rules.

The network is pruned by removing the redundant connections, and the rules are

then generated from the hidden units with a small number of activation values.

Except the traditional trained ANN, many algorithms are presented to extract

rules from recurrent networks [102] [63] [17], genetic algorithms (GAs) [83] and
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Self-Organizing Map (SOM) [56].

Recently, Support Vector Machine (SVM) started to be considered for rule extrac-

tion. The algorithm proposed by Barakat and Diederich [57] first generates patterns

for prediction, and then trains those patterns by using decision trees, whose outputs

are a set of rules. [59] introduces another approach for rule-extraction from SVMs.

It offers a procedure that uses support vectors from SVMs and prototypes, gained

from clustering, to define geometric ellipsoids in the input space. The ellipsoids

are then mapped to ‘if-then’ rules.

Current Challenges in Rule Extraction

Although, there exists a substantial amount of work on rule-extraction in a wide

range of problem domains.The current development of rule extraction techniques

still faces certain challenges [12]:

1. Although successful solutions are found in specific situations, the enhance-

ment of the generality of rule extraction techniques is still under development.

2. To date, an important issue is that the rule extraction techniques are often

designed for specific ANN architectures.

3. In most given situations, high accuracy, fidelity and comprehensibility are

unable to be achieved at the same time.

1.2 Our approach

In this thesis, we tackle those issues in the above section by proposing a new any-

time rule extraction algorithm called Geometric and Oracle-Based Support Vector
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Machines Rules Extraction (GOSE). GOSE extracts the rules by approximating

the area covered by a class, which is obtained from the trained SVM network. The

algorithm contains several steps: querying, clustering, searching, extracting and

post-processing.

GOSE extracts the hypercube rules by using the classification boundary and syn-

thetic training instances without considering the inner structure and the support

vectors. All we assume is that an SVM is given which we can query and find the

classification it gives for input vectors xi. This step makes GOSE work in a general

manner. After querying, clustering is applied to group those xi with the same yi

into a set of clusters. Clustering procedure aims to reduce the complexity of GOSE.

Then, by means of a binary search algorithm, we look for the points P that lie on

the SVM classification boundaries. It is an preliminary for the rule extraction.

Subsequently, an initial optimal rule set can be extracted for the points in P and

synthetic training instance set by solving an optimization problem whereby we at-

tempt to find the largest consistent hypercubes in the input space. Finally, several

post-processing measures are applied to this initial rule set in order to derive (a

relatively small number of) generalized rules.

GOSE employs SVM networks as the training networks because of their excellent

generalization capability and classification accuracy. It treats the SVM as an oracle

(black-box), uses synthetic data for querying and rule extraction, thus making

fewer assumptions about the training process and the SVM training data. Hence,

the algorithm does not depend on the availability of specific training sets for rule

extraction. Meanwhile, the knowledge in SVM networks is captured from the

information encoded in the geometry of the SVM classification boundary, so that

GOSE is not restricted to any specific SVM classifier such as the linear classifier

considered in [22]. We examined rule accuracy, fidelity and comprehensibility in

three benchmark applications: the Monk’s problems, the Iris flower dataset and
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the breast cancer-wisconsin dataset. The results indicate that the high correctness

of our approach through a high fidelity.

1.3 Thesis Statement

The content of this thesis demonstrates that the combination of connectionist and

symbolic techniques can benefit from each other in a novel way.

Here, a hypothesis is put forward: ‘The approach proposed in this thesis research is

able to provide generalized rules with high accuracy, fidelity, comprehensibility and

consistency. At the same time, it is applicable to a wide range of learning models.’

The following chapters will give details of the approach.

1.4 Thesis Contribution

There are three main contributions of this thesis:

1. It presents a novel algorithm, GOSE, to extract rules from SVMs. GOSE

views the rule extraction problem as a geometric task without considering

the structures of learning models and important support vectors. Hence,

it is widely appropriate to a broad class of hyperplane learning models. In

addition, the synthetic data generator proposed in GOSE makes the approach

independent of any specific training examples and applicable to a variety of

problem domains.

2. It implements an extensive evaluation of the rule extraction method. The

empirical and analytical evaluation shows a clear synergy between SVMs and

symbolic rules.
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3. It provides theoretical proofs on quasi-soundness and quasi-completeness for

the rule extraction method, which guarantees that each extracted rule ap-

proximates the classification of SVM and that a set of rules obtained from

GOSE is able to approximate the behavior of the SVM network.

1.5 Thesis Structure

The structure of the thesis is organized as follows:

• Chapter 2 provides some background knowledge. Section 2.1 describes the

mathematical models used in this thesis. Section 2.3 provides a review of

the SVM network and correlated common SVM algorithms. The rest three

sections give a brief introduction to decision boundaries, clustering and the

Monte-Carlo methodology.

• Chapter 3 provides a literature review on rule extraction. The rule-extraction

techniques are categorized by the translucency criterion as decompositional,

pedagogical, compositional and eclectic approaches. The last section in this

chapter presents the existing works on SVM rule extraction.

• Chapter 4 details the proposed algorithm, GOSE, which aims to extract in-

terval rules from hyperplane-based classifiers. Unlike previous SVM rule-

extraction approaches, it draws rules without dependence on the support

vectors and training examples. This novel perspective scales GOSE to di-

verse network architectures and problem domains.

• Chapter 5 makes an empirical evaluation of GOSE. It is applied to five clas-

sification data sets with different attribute types, training set sizes and SVM
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networks. Furthermore, Section 5.6 provides a comparison between the re-

sults of the experiments with those of other major methods.

• Chapter 6 presents the analytical evaluation of GOSE on scalability and

generality. The scalability is discussed at each step of GOSE in terms of

complexity. This chapter then presents the generality of GOSE. The final

section of this chapter provides a theoretical verification of GOSE.

• Finally, Chapter 7 summarizes the contributions and the limitations of GOSE

and puts forward corresponding future work.



Chapter 2

Background

In this chapter, we summarize SVMs and other concepts used in this thesis.

2.1 Some Mathematical Preliminaries

Variance

Variance is a statistic measure that calculates the deviation of the data in a group.

The formula is

σ2 =

∑n
i=1(Xi −X)2

n− 1
(2.1)

where X is the mean of the data in the group.

Probability

Probability is how likely an event A is to occur. The formula is

P (A) =
The number of ways an event A can occur

The total number of possible outcomes
(2.2)

9
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Joint Probability

Joint Probability is the probability when both events A and B occur together. The

formula is written as P (A
⋂

B).

Conditional Probability

Conditional Probability is the probability of the occurrence of an event A, given

the occurrence of the other event B. The formula is

P (A|B) =
P (A

⋂
B)

P (B)
(2.3)

Hypothesis Testing

Hypothesis Testing is the statistical assessment of the probability that a hypothesis

is true. It contains several preparations.

1. The null hypothesis H0 and the alternative hypothesis Ha must be stated

2. An analysis plan must be formulated to assess the null hypothesis.

3. A set of sample data must be collected and analyzed with respect to the

analysis plan.

4. The results must be evaluated to determine whether H0 or Ha is true.

Central Limit Theorem

The Central Limit Theorem [93] consists of three statements as follows.
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1. As sample size increases, the sampling distribution of sample means ap-

proaches a normal distribution.

2. The mean of the sampling distribution of sample means equals the mean of

the population from which the samples are drawn.

3. The variance of the sampling distribution of sample means is equal to the

variance of the population from which the samples are drawn divided by the

size of the samples.

Confidence Level

Confidence Level for a population parameter, such as mean, variance, is an interval

with an associated probability p. p is generated from a random sample of an

underlying population.

Mean Value Theorem

Given a section of a smooth curve, there should be a point on that section whose

the derivative of the curve is equal to the “average” derivative of the section.

2.2 Decision Boundary

A decision boundary is ‘a line determined by the weight and the bias vectors, for

which the output is zero’ [15]. In [42], it gives a more generalized definition. Here,

we extends and consolidates it as follows.

Definition 2.2.1. Decision Boundary.
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Figure 2.1: Boundary of two dichotomies

Let Z be a set of points in a m-dimensional space. Suppose that there are l classes

which are called as γ1,...,γl. A decision boundary between each pair of classes is

then represented as

{z|h(z) = θ}

where z ∈ Z is a set of points on the boundary and θ is the value of one decision

boundary h(z). Then, for the points on the two sides of the decision boundary, the

following should be true:

h(z′) > θ , z′ ∈ γi

h(z′′) < θ , z′′ ∈ γj

which means

(h(z′)− θ)(h(z′′)− θ) < 0

Note that, according to different dimensions, a decision boundary can be a point,

line, hyper plane, curved surface or curved hyper-surface (see Figure 2.1).
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2.3 Support Vector Machine

Support Vector Machine (SVM) is a method that determines the maximum-margin

hyperplane. In geometry, a maximum-margin hyperplane is a hyperplane which

separates two clouds of points, and the distances between the hyperplane and each

cloud are maximum and equal. SVM algorithms are a set of related supervised

learning methods in machine learning.

SVM has been proven as an efficient technique for classification and regression. The

SVM algorithm is a nonlinear generalization of the Generalized Portrait Algorithm

developed by Vapnik in the sixties [87]. It is a type of learning machines based

on the statistical learning theory. It implements the Structural Risk Minimization

Inductive Principle to obtain a good generalization from limited-size data sets as

details below [85].

2.3.1 Theory of SVM

A learning machine takes a set of input-output and produces a model. However,

some complex models drawn from this process might over-fit. Therefore, SVM uses

Structural Risk Minimization to solve this problem.

Suppose a set of examples {(x1, y1), ..., (xn, yn)} which are generated from an un-

known distribution P (x, y). The number of the examples is n, and the dimension

of the input space is m.

{(x1, y1), ..., (xn, yn)} xi ∈ Rm, yi ∈ {−1, 1}, 1 ≤ i ≤ n.

Given a set of decision functions,

{f(x, α)} x ∈ Rm, α ∈ Λ
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where Λ is a set of adjustable parameters and α is used to label the function f(x, α).

For a given input x and a parameter α∗, if the output is always the same, then

f(x, α∗) is deterministic. Hence, the function f(x, α) generated upon the particular

parameter α∗ is called as ‘trained machine’ [13].

The aim of a learning machine is to find out a function f(x, α) to correctly classify

the unseen examples with the smallest expected risk, as defined below.

Definition 2.3.1. Expected Risk (ER).

ER(α) =

∫
|f(x, α)− y|P (x, y)dxdy

In the above equation, |f(x, α) − y| is the loss function. Therefore, the expected

risk is used to evaluate the goodness of fit of a function f(x, α) on predicting the

correct label y for every point x drawn from P (x, y).

As a result of unknown P (x, y), the real value of expected risk cannot be computed.

Hence, the empirical risk is put forward to approximate the expected risk via the

samples of P (x, y).

Definition 2.3.2. Empirical Risk (EM)

EM(α) =
1

n

n∑
i=1

|f(xi, α)− yi|

The law of large numbers proves that the empirical risk will be close to the expected

risk. The empirical risk minimization principle shows that if EM converges to ER,

then the minimum of EM will converge to that of ER.

Definition 2.3.3. Expected Risk Minimization (R)

R(α) = arg min(ER(α))
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Definition 2.3.4. Empirical Risk Minimization (ERM)

ERM(α) = arg min(EM(α))

Vapnik and Chervoneniks [86] [89] guarantee that the empirical risk minimiza-

tion principle does hold if uniform convergence [96] in probability takes place and

empirical risk minimization method is strictly consistent [88].

In other word, the empirical risk is the training error which is drawn from the

examples {(x1, y1), ..., (xn, yn)}, while the expected risk is the testing error which

is drawn from the testing points {x′1, ...,x′n}. The testing points are given to pre-

dict {y′1, ..., y′n}. The convergence between the training error and the testing error

represents the generalization ability of the empirical risk minimization method.

Hence, in the context of the empirical risk minimization method, Vapnik [89] pro-

vides a definition of VC dimension which is able to indicate the bounds on the

testing error.

Definition 2.3.5. The VC dimension.

Suppose that there are n examples {(x1, y1), ..., (xn, yn)} in a two-class classifica-

tion problem. Let h be the largest number of points which are correctly separated

by functions {f(x, α)}. The VC dimension represents the maximum number of

examples that can be shattered, which is denoted as h.

Suppose that there is a function f(x, α), and a set of points {(x1, y1), (x2, y2), ...,

(xn, yn)}. f(x, α) can shatter the points if and only if there exists an α∗ such that

f makes no error when this set of points are evaluated.

From the definition, it can be seen that shattering plays an important role in VC

theory.
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Figure 2.2: The example of VC dimension

Example. Given a function f = wx + b which represents a straight line, and the

points shown in Figure 2.2 are inputs. From the figure, there is a line to separate

three non-collinear points. However, it cannot ensure to shatter four points (for

example, the last graph in Figure 2.2). Hence, the number of maximum points

shattered by f in this example is 3. Therefore, the VC dimension h is 3 as well.

Hence, based on VC dimension, Vapnik [89] deduces that under probability 1− η:

R(α) ≤ ERM(α) +

√
h(ln 2n

h
+ 1)− ln η

4

n
(2.4)

where h is the VC dimension, α ∈ Λ and n is the number of examples.

Equation 2.4 presents that if ERM(α) decreases, the R(α) also decreases. It is

especially efficient when the example size is large so that R(α) is mostly determined

by ERM(α). However, Equation 2.4 does not ensure a small expected risk if both

n/h and empirical risk are small. In 1980s, Vapnik proposed a technique named

Structural Risk Minimization [86] to choose an appropriate VC dimension.

Definition 2.3.6. Structural Risk Minimization (SRM).

It is a method to minimize the expected risk over both empirical risk and complexity

penalty.

Expected Risk ≤ Empirical Risk + Complexity Penalty
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The procedure is outlined below:

Suppose the set of functions {f(x, αk)} can be divided into a hierarchy of nested

subsets in the order of increasing complexity such as polynomials of increasing

degree. A structure Sk refers to the set of possible decision boundaries obtained

from f(x, αk). S1, S2, ..., Sk have the following properties:

1. S1 ⊂ S2 ⊂ ...Sk.

2. S∗ =∪
k

Sk, S∗ is the aggregation of all the functions.

3. Each element of the structure Sk has an independent VC dimension hk. With

increasing of k, hk is also increasing.

h1 ≤ h2 ≤ .... ≤ hk

The complexity penalty ε is defined in [88] as:

ε =

√
h(ln 2n

h
+ 1)− ln η

4

n

Hence the fourth property of SRM is

4. Each element of the structure Sk has an independent VC confidence τk, where

τk =

√
h(ln 2n

h
+1)−ln η

4

n
. With increasing k, τk is increasing as well.

τ1 ≤ τ2 ≤ .... ≤ τk

The definition above corresponds to Figure 2.3. It can be seen that the empirical

risk decreases with the increase of h. While the complexity penalty increases with

the increase of h. Therefore, the optimal model is able to be found at the point

where the sum of empirical risk and VC confidence are the minimum.
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Figure 2.3: The bound of risk

SRM is an inductive principle to select the proper model from a finite data set. A

model from an inductive learning process is often accompanied by the consequent

problem of over-fitting1. SRM provides a trade-off between the model’s complexity

and the quality of fitting the training data which is called empirical risk.

SVM uses SRM for a better generalization performance. The next section will

introduce the detail of SVM.

2.3.2 Support Vector Classification

In this section, we describe the Support Vector Machine (SVM) approach. We start

from the simplest case: the linear separable problem in which the training data is

linearly separable. Then the linear nonseparable problem is introduced. This

problem deals with the training data which are unable to be cleanly separated

by the linear hyperplane. It allows a few data to fall on the wrong side of the

separating hyperplane. Finally, the general case nonlinear SVM on nonseparable

1A model is too complex to fit the noise.



2.3. SUPPORT VECTOR MACHINE 19

data is analyzed.

Linear separable problem

Suppose that there is a set of training examples:

{(xi, yi)}, yi ∈ {+1,−1},xi ∈ Rm, i = 1, ..., n.

where n is the number of training examples, m is the dimension of the inputs and

yi is either +1 or −1.

Equation 2.5 is the function of the hyperplane separating the positive examples

from the negative examples.

w · x + b = 0 (2.5)

where w is a weight vector and b is a bias. The goal of a SVM network in a

classification problem is to find an optimal hyperplane, to which the distance from

the closest points in each class is maximum. This distance is called ρ. Suppose

that all the training examples satisfy the following constraints:

w · xi + b ≥ +1, for yi = +1

w · xi + b ≤ −1, for yi = −1

(2.6)

If there are two points x1 and x2 (see Figure 2.4) lying on the hyperplanes h1 :

w · xi + b ≥ +1 and h2 : w · xi + b ≤ −1, then the perpendicular distances

from the origin to these two points are |1− b| /wT w and |−1− b| /wT w. As the

perpendicular distance from the hyperplane w ·xi + b = 0 to the origin is |b| /wT w,

the ρ is simply 2/wT w. Note that in the separable case, no training point falls

between h1 and h2.

In order to maximize the margin of ρ, it is equivalent to minimize wT w. Therefore,
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Figure 2.4: Two-class linear separable problem

the optimization problem changes to:

Minimize
1

2
wT w

s .t . yi(w · xi + b) ≥ 1

(2.7)

Lagrangian J has been used to solve this optimal problem which is:

J =
1

2
wT w −

n∑
i=1

αi(yi(w
Txi + b)− 1) (2.8)

where the Lagrange multipliers αi ≥ 0.

From Equation 2.8, with respect to the primal variables w and b, the Lagrange J

can be minimized. The following two optimal conditions by partial derivative are

obtained:

∂J

∂w
= 0 (2.9)

∂J

∂b
= 0 (2.10)
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which lead to

w =
n∑

i=1

αiyixi

n∑
i=1

αiyi = 0

(2.11)

Equation 2.8 is the primal problem of Lagrangian J . By replacing Equation 2.11

into Equation 2.8, it changes to a so-called dual (quadratic) problem which is

usually solvable in practice. If the primal problem has an optimal solution, the

dual problem also has an optimal solution [27]. The dual problem becomes:

Maximize Q =
n∑

i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyjxixj

s.t.
n∑

i=1

αiyi = 0

(2.12)

With respect to αi, Q will be maximized. Hence, the optimal conditions would be

obtained under partial derivative.

∂Q

∂αi

= 0 (2.13)

The reason for transforming the primal problem to dual problem is that there are

many inequality constraints in the primal problem. Comparing Equation 2.12 with

Equation 2.8 and 2.7, fewer variables are found in the quadratic function Q(αi,x)

than J(w, b, αi,x), so the constraints in the dual form are greatly simplified.

Furthermore, Vapnik [89] shows that the optimal solutions such as w, b should

follow Karush-Kuhn-Tucker conditions.

Definition 2.3.7. Karush-Kuhn-Tucker Theorem (KKT). If there exists a solu-

tion to minimize (maximize) an objective function f(x) under some inequality con-

straints {gk(x) ≤ 0}m
k=0, the following several conditions should hold:
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1. ∇f(x)−∑m
k=1 λk∇gk(x) = 0, for k = 0, 1, ..., m

2. {gk(x) ≤ 0}m
k=0

3. λk ≥ 0, for k = 0, 1, ..., m

4.
∑m

k=1 λkgk(x) = 0, for k = 0, 1, ..., m

Hence, for the primal problem in Equation 2.8, the KKT conditions are

∂J

∂w
= w −

n∑
i=1

αiyixi = 0

∂J

∂b
=

n∑
i=1

αiyi = 0

yi(xi · w + b)− 1 ≥ 0

αi(yi(w · xi + b)− 1) = 0

αi ≥ 0

(2.14)

In next section, the discussion will focus on the linear nonseparable problem. In

most real-life cases, it is not possible to separate the training data without encoun-

tering classification errors. Hence, for the linear nonseparable problem, SVM aims

to find an optimal linear hyperplane by minimizing the probability of classification

errors.

Linear nonseparable problem

Suppose a set of linear nonseparable training examples are given. Hence, there

should be some examples in this training set violating the constraints of Equa-

tion 2.7. To deal with this case, slack variables {ξi}n
i=1 [89] have been introduced,

which take the violations of the constraints in Equation 2.7 into account. Figure 2.5
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depicts a linear nonseparable case, where points x3 and x4 are two examples mis-

classified by the hyperplane with nonzero values ξ3 and ξ4.

Therefore, Boser et al. [7] transform the optimization problem as follows:

Minimize
1

2
wT w + C

n∑
i=1

ξi

s.t. yi(w · xi + b) ≥ 1− ξi

ξi ≥ 0

(2.15)

where C is a user-defined parameter.

The Lagrangian J is defined as the usual manner:

J =
1

2
wT w + C

n∑
i=1

ξi +
n∑

i=1

αi[1− ξi − yi(x
T
i w + b)]−

n∑
i=1

µiξi

where µi are the Lagrange multipliers used to enforce the nonnegativity of the slack

variables ξi.

KKT conditions in Equation 2.16 are verified to satisfy this optimization problem.

∂J

∂w
= w −

n∑
i=1

αiyixi = 0

∂J

∂b
=

n∑
i=1

αiyi = 0

∂J

∂ξi

= C − µi − αi = 0

yi(xi · w + b)− 1 + ξi ≥ 0

αi[yi(w · xi + b)− 1 + ξi] = 0

µiξi = 0

αi ≥ 0, µi ≥ 0, ξi = 0

(2.16)
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Figure 2.5: Two-class linear nonseparable problem

The following is the dual form of this problem.

Maximize Q =
n∑

i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyjxixj

s.t.
n∑

i=1

αiyi = 0

0 ≤ αi ≤ C

(2.17)

The optimal solution for w is

w =
n∑

i=1

αiyixi (2.18)

The solution of non-separable problem is analogous to the separable problem. The

only difference is that the αi have an upper bound C. Furthermore, the introduction

of those slack variables ensures that SVM can control the hyperplane violation and

achieve the largest ρ simultaneously.
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Nonlinear problem

In real world, many examples are not linearly separable in the input space. Fig-

ure 2.6(a) indicates an example of the nonlinear problem where the line used to

classify the points which belong to two classes is not straight.

The strength of SVM is that it can also separate the nonlinear data by map-

ping them into a high dimensional feature space H. SVM is still looking for the

linear hyperplane but under the feature space, rather than the input space (see

Figure 2.6(b)). The mapping function is

Φ : Rd → H (2.19)

Let {Φj(x)}d
j=1 be a set of transformations on x from the input space to the feature

space, where d denotes the dimension of the feature space. Hence, the hyperplane

in the feature space could be defined as:

d∑
j=1

wjΦj(x) + b = 0

The above equation can be simplified to:

d∑
j=0

wjΦj(x) = 0

where Φ0(x) = 1 so that w0 = b.

Suppose a vector Φ(x) is defined as:

Φ(x) = [Φ0(x), Φ1(x), ..., Φd(x)]T
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Figure 2.6: Mapping from original to feature space

This leads to:

wT Φ(x) = 0 (2.20)

By adapting Equation 2.11 for a feature space, the following may be obtained:

w =
n∑

i=1

αiyiΦ(xi) (2.21)

where Φ(xi) denotes the feature vector of the ith example in the input space, and

there are n examples in the input space.

Therefore, Equation 2.20 can be transformed to:

n∑
i=1

αiyiΦ(xi)Φ(x) = 0 (2.22)

Figure 2.6 illustrates an example that a linear separable hyperplane can be found,

after the data are mapped into high dimensions (i.e. in the figure, it is transformed

from 2-D into 3-D). Although the linear optimal hyperplane can be constructed in

high dimensional space, how to treat this complicated feature space is a NP-hard

problem. The dot product Φ(xi) · Φ(x) in Equation 2.22 induces the concept of
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Kernel [89] so that one does not need to consider the feature space.

Definition 2.3.8. Kernel (K).

K(xi,x) = Φ(xi) · Φ(x) =
d∑

j=1

Φj(xi)Φj(x) (2.23)

From the equation above, it is interesting to see that the kernel provides a kind of

mechanism to construct a linear hyperplane without considering what the feature

space is. Hence, by substituting Equation 2.23 into Equation 2.22, the optimal

hyperplane then becomes
n∑

i=1

αiyiK(xi,x) = 0 (2.24)

Example. Given x = [x1, x2], xi = z = [z1, z2], Φ(x) = [x2
1, x

2
2,
√

2x1x2] and

Kernel function K(xi,x) = K(z,x) = (z · x)2 = z2
1x

2
1 + z2

2x
2
2 + 2z1z2x1x2 then,

Φ(z) · Φ(x) = (z2
1 , z

2
2 ,
√

2z1z2) · (x2
1, x

2
2,
√

2x1x2)

= z2
1x

2
1 + z2

2x
2
2 + 2z1z2x1x2

= (z · x)2 = K(z,x)

Hereby, the dual form of a nonlinear SVM could be stated as follows [32]:

Given the training sample {(xi, yi)
n
i=1}, find the Lagrange multipliers

{αi}n
i=1 that maximize the objective function

Q =
n∑

i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi,xj)

subject to the constraints:

1)
∑n

i=1 αiyi = 0

2) 0 ≤ αi ≤ C
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A kernel K(xi,x) which associates with a feature space should satisfy Mercer the-

orem [89]:

K(xi,x) =

∫ ∫
K(xi,x)Φ(xi)Φ(x)dxidx ≥ 0 (2.25)

The commonly used kernels are listed in Table 2.1:

linear K(x,xi) = x · xi

Polynomial K(x,xi) = (1 + xT · xi)
d

Gaussian K(x,xi) = exp(−‖x−xi‖2
2σ2 )

Sigmoid K(x,xi) = tanh(k(x,xi) + υ)

Table 2.1: Examples of Kernels

XOR problem

XOR problem [78] is to find the hyperplane which can separate the examples in

Table 2.2. The kernel is shown as follows.

K(xi,x) = (1 + xTxi)
2 (2.26)

Input x Output y
(−1,−1) −1
(−1, +1) +1
(+1,−1) +1
(+1, +1) −1

Table 2.2: XOR Problem
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We find that

K =




(k1j)

(k2j)

(k3j)

(k4j)




4

j=1

(2.27)

Let i = 1, x1 = (−1,−1). Then

(K1i) = (K(x1,x1), K(x1,x2), K(x1,x3), K(x1,x4))

= ((1 + 2)2, (1 + 0)2, (1 + 0)2, (1 + 0)2).

Finally,

K =




9 1 1 1

1 9 1 1

1 1 9 1

1 1 1 9




(2.28)

Then, the dual form is obtained as follows.

Q = α1+α2+α3+α4−1
2
(9α2

1−2α1α2−2α1α3+2α1α4+9α2
2+2α2α3−2α2α4+9α2

3−2α3α4+9α2
4)

(2.29)

According to Equation 2.13, the optimal functions with respect to the Lagrange

multipliers via partial derivative are therefore:

∂Q
∂α1

= 1− (+9α1 − α2 − α3 + α4) = 0

∂Q
∂α2

= 1− (−α1 + 9α2 + α3 − α4) = 0

∂Q
∂α3

= 1− (−α1 + α2 + 9α3 − α4) = 0

∂Q
∂α4

= 1− (+α1 − α2 − α3 + 9α4) = 0

Hence, by solving above equations, the optimal value for each αi equals 1
8
. By

replacing the value of αi in Equation 2.29, Q equals 1
4
.
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Figure 2.7: The hyperplane of XOR problem in feature space.

Correspondingly, by extending Equation 2.24 in terms of this example, the following

formula can be obtained:

4∑

i=1

αiyiK(1 + xTxi)2 = α1y1K(1 + xTx1)2 + α2y2K(1 + xTx2)2 + α3y3K(1 + xTx3)2

+ α4y4K(1 + xTx4)2

=
1
8
[(−1)(1− x1 − x2)2 + (+1)(1− x1 + x2)2 + (+1)(1 + x1 − x2)2

+ (−1)(1 + x1 + x2)2]

= −8x1x2

= 0

where x (denoted as [x1, x2]) is a two-dimensional vector in XOR problem.

Therefore, the optimal hyperplane becomes (see Figure 2.7)

−x1x2 = 0

From above function, it is clear that the examples x1 to x4 tell us more about this

problem than the classification network, the calculations of Q and the kernel given
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in this problem.

For this typical XOR problem, at first, only the inputs, the outputs and the cor-

responding kernel are known. However, it is still difficult to understand why the

inputs provided in Table 2.2 could lead to such outputs. Because of the optimal

hyperplane function, it implicitly explains the relationship between the inputs and

the outputs, which is much more useful for our understanding. The circumstance

in XOR problem appears a common difficulty for many cases. Thus, having a

rule extraction which is to find a type of the symbolic expressions to articulate

the relationship between the inputs and the outputs of learning models is highly

desirable.

2.3.3 Support Vector Machine Algorithms

There are various SVM algorithms. In this section, three of the most common used

algorithms are described.

Sequential Minimal Optimization (SMO)

SMO is a fast way to train SVMs. The large quadratic programming (QP) optimiza-

tion problem in SVM (Equation 2.17) is broken into a set of small QP problems.

Let the QP problem used to train an SVM be

Maximize Q =
n∑

i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi,xj)

s.t.
n∑

i=1

αiyi = 0

0 ≤ αi ≤ C

(2.30)

Unlike other methods, SMO has three components: a small QP problem for solving
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two multipliers α1 and α2, a heuristic to select which multipliers to optimize and a

method to compute b. For solving two Lagrange multipliers, SMO starts comput-

ing the constraints on α1 and α2, and then works out the constrained maximum.

Depending on the inequality and equality constraints in Equation 2.30, the relation

between α1 and α2 is shown in Figure 2.8.

Figure 2.8: Relations of two Lagrange multipliers α1 and α2 [40]

The inequality constraint 0 ≤ αi ≤ C makes α1 and α2 lie in a box while the

equality constraint
∑n

i=1 αiyi = 0,n = 2, causes the multipliers to lie on a diagonal

line in the box. Therefore, the small QP problem is to find an optimal solution

on this diagonal line. The algorithm first computes the value of α2. As shown by

Figure 2.8,

if y1 6= y2, the lower bound L and the upper bound H of α2 are:

L = max(0, α2 − α1), H = min(C, C + α2 − α1) (2.31)

and if y1 = y2, the lower bound L and the upper bound H of α2 are:

L = max(0, α2 + α1 − C), H = min(C, α2 − α1) (2.32)
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Thus, by replacing α1 with α2, the small objective function could change to a form

with only one multiplier α2. While the second derivative of the objective function

in Equation 2.30 can be:

η =
d2Q

dα2
2

= 2K(x1,x2)−K(x1,x1)−K(x2,x2)

Normally, there is a maximum value for α2 along the diagonal line. Hence, the

second derivative η should be less than zero according to the derivative calculus.

The optimal value α∗2 then becomes

α∗2 = α2 +
y2(E1 − E2)

η
(2.33)

where Ei = ui − yi, Ei is the error on the ith training example, ui is the output of

SVM and yi is the target output. In order to meet the inequality constraint, the

final optimal value of α2 is:

α∗∗2 =





H if α∗2 > H

α∗2 if L ≤ α∗2 ≤ H

L if α∗2 < L





(2.34)

Next, α1 is computed:

α∗1 = α1 + y1y2(α2 − α∗∗2 ) (2.35)

SMO uses heuristics to select two multipliers. It repeatedly loops the training

examples to find those falling to agree with the KKT. These violating examples

are chosen for optimization. The iteration stops when all the examples satisfy

the KKT. Due to these characteristics, SMO can perform in a linear complexity.

Research shows that SMO is 1.7 times faster than a standard projected conjugate
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gradient chunking algorithm on MNIST database2 [40].

Directed Acyclic Graphs Support Vector Machines (DAGs-SVM)

DAGs-SVM is used to combine many binary-class classifiers into a multi-class clas-

sifier. DAGs-SVM constructs k(k−1)
2

classifiers for a k-class classification problem,

one classifier for a pair of classes. From [39], it can be found that DAGs-SVM is

based on Rooted Binary Directed Acyclic Graph (Rooted Binary DAG). Given a

sequence of data X and a set of binary functions F = {f : X → {0, 1}}, the class

decision on k classes can be implemented by using a Rooted Binary DAG with k

leaves. The algorithm puts labels on each leave. Inside Rooted Binary DAG, there

are k(k−1)
2

internal nodes labelled with an element of F . The whole graph has one

root node at the top, two nodes in the second layer and k leaves at the final layer.

Figure 4.3 shows a typical example of DAG.

Suppose an input x ∈ X starts at the root node. Next, it goes to the left edge if

f(x) = 0; or the right edge, if f(x) = 1. Then the value of f at the next node

is evaluated till reaching the final leaf node in Figure 2.9. At the leaf node, the

class that x belongs to can be decided. [39] indicates that DAGs-SVM algorithm

is superior to other multi-class SVM algorithms in complexity.

Least Squares Support Vector Machines

Least Square Support Vector Machine (LSSVM) is a least square version for SVM

classifiers. It solves a set of linear equations, instead of quadratic programming

that classical SVM uses.

2The MNIST database of Handwritten upper-case letters is a subset derived from NIST Special
Database 19 Handprinted Forms and Characters Database.
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Figure 2.9: Using Rooted Binary DAG to decide the best class within four
classes [39].

LSSVM formulates SVM classification problem as:

Mininimize
1

2
wT w + C

1

2

n∑
i=1

ξ2
i

s.t. yi(w
T Φ(xi) + b) = 1− ξi, i = 1, ..., n.

(2.36)

The Lagrangian J is identified as:

J =
1

2
wT w + C

1

2

n∑
i=1

ξ2
i −

n∑
i=1

αiyi[w
T Φ(xi + b)]− 1 + ξi (2.37)

where αi are Lagrange multipliers.
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The conditions for optimality then become

∂J

∂w
= 0 → w =

n∑
i=1

αiyiΦ(xi)

∂J

∂b
= 0 →

n∑
i=1

αiyi = 0

∂J

∂ξi

= 0 → αi = Cξi, i = 1, ..., n

∂J

∂αi

= 0 → yi[w
T Φ(xi) + b]− 1 + ξi = 0, i = 1, ..., n

(2.38)

Equation 2.38 can be written as the solution to the following set of linear equa-

tions [45] 


I 0 0 −ZT

0 0 0 −Y T

0 0 CI −I

Z Y I 0







w

b

ξ

α




=




0

0

0

−→
1




where Z = [Φ(xT
1 )y1; ...; Φ(xT

n )yn], I is an identity vector, Y = [y1; ...; yn], ~1 =

[1; ...; 1], ξ = [ξ1; ...; ξn] and α = [α1; ...; αn]. The solution is also given as




0 −Y T

Y ZZT + C−1I







b

α


 =




0

~1




Mercer’s condition can also be applied to ZZT where

ZZT = yiyjΦ(xT
i )Φ(xj)

= yiyjK(xi,xj), 1 ≤ i, j ≤ n

Hence the solution for the quadratic programming is replaced by the linear set of

equations.
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2.4 Clustering

Clustering is to put the data with similarities into groups [62]. It is used in this

thesis as a prerequisite to automatically find the decision boundary. There are

various references/algorithms regarding clustering in data mining, statistics, and

machine learning. Generally, the algorithms are classified into two main categories:

hierarchical methods and partitioning methods. Hierarchical clustering algorithms

can be further subdivided into two types: agglomerative and divisive. The ag-

glomerative clustering starts with a single point and recursively merges into ap-

propriate clusters, while the divisive clustering iteratively splits the data group

into clusters. SLINK [74], COBWEB [24], and Chameleon [23] are several basic

algorithms for hierarchical clustering which were put forward between 1970s and

1990s. The other major clustering type, partitioning methods can also be further

categorized into probabilistic clustering, K-Medoids methods, and density-based

algorithms [61] [36] [28].

The next section gives an introduction on hierarchical clustering which is employed

in our approach.

2.4.1 Hierarchical Clustering

Hierarchical clustering has agglomerative methods and divisive methods, where

agglomerative techniques are more commonly used.

An agglomerative hierarchical clustering first considers each data as a cluster. It is

an iterative procedure. At each particular stage, the agglomerative method joins

two closest clusters together. There are different ways to compute the distance
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between two clusters. These methods are called linkage functions.

Single linkage : Dist(C1, C2) = min{dist(p, q)}

Complete linkage : Dist(C1, C2) = max{dist(p, q)}

Average linkage : Dist(C1, C2) =
1

#(C1) ·#(C2)

∑∑
(dist(p, q))

where p ∈ cluster C1, q ∈ cluster C2, and #(C1), #(C2) is the number of data in

each cluster.

In the single linkage function, the distances between each pair (p, q) are computed,

and the minimum value of (p, q) refers to the distance between C1 and C2. Analo-

gously, for the complete linkage, the distance between clusters C1 and C2 is given by

the maximum distance between p and q. While, for the average linkage, the average

distances between all pairs (p, q) stands for the distance between two clusters.

The following are the most commonly used distance functions dist(p, q).

Manhatton distance : dist(p, q) = |p− q|

Euclidean distance : dist(p, q) =
√

(p− q)2

The agglomerative hierarchical clustering can be viewed as a hierarchical cluster

tree (see Figure 2.10).

Example. Suppose that a set of inputs X = {[1, 2]; [1, 3]; [4, 3]; [3, 1]} is given,

and a single linkage with an Euclidean distance function is chosen. Initially, each

input is considered as a cluster. Table 2.3 shows the distance between each pair

of inputs. Obviously, X1 and X2 are two clusters with the closest distance. After

merging X1 and X2, a set of new clusters, C1 = {X1,X2} and C2 = {X3} and

C3 = {X4}, is constructed. Then the clustering algorithm continues to compute

the distances between these clusters. It is an iteration process until the distance
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Figure 2.10: Hierarchical Clustering

between each pair of clusters is larger than a predetermined threshold.

Dist X1 X2 X3 X4
X1 0 1 3.16 2.23
X2 1 0 3 2.83
X3 3.16 3 0 2.24
X4 2.23 2.83 2.24 0

Table 2.3: Distances between pairs of the inputs

2.5 Monte Carlo and Quasi Monte Carlo Method

2.5.1 Monte Carlo Method

Monte Carlo method used in GOSE is to approximate a nonlinear integral equation

which is a constraint of a minimum optimization problem. It is a widely used class

of computational algorithms. The basic process involves using the independent

random numbers to perform the simulation and provide approximate solutions to

a variety of mathematical problems.
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The most common application of the Monte Carlo method is Monte Carlo integra-

tion. The following section presents one of the fundamental algorithms.

2.5.2 Crude Monte Carlo Method

Given a m-dimensional definite integral G in the form of,

G =

∫

[a,b]

g(x)dx, [a, b] = [a1, b1]× [a2, b2]× ...× [as, bs]

where x = [x1, ..., xs] and ai ≤ xi ≤ bi, 1 ≤ i ≤ s.

Suppose the Monte Carlo algorithm select N samples (denoted by x1, ...,xN) uni-

formly from the integration region. Then the estimate of the integral becomes

∏s
i=1(bi − ai)

N

N∑
i=1

g(xi) ≈ G (2.39)

Let

µ =
1

N

N∑
i=1

g(xi)

Then the variance of those N samples can be estimated by using

s2 =
1

N − 1

N∑
i=1

(g(xi)− µ)2

According to Central Limit Theorem, the variance of the estimate of G is thus

σ2 =
s2

N
(2.40)

Equation 2.40 demonstrates that the variance σ decreases with the increase of N .

For large N , it ensures that µ of a set of independent samples converges towards

the integral.
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N µ s σ
102 1.7163 0.4760 0.0476
103 1.7196 0.4864 0.0154
104 1.7224 0.4953 0.0050
105 1.7194 0.4933 0.0016
106 1.7186 0.4918 0.00049
107 1.7182 0.4919 0.00015

Table 2.4: The mean, variance and estimated variance on ex under different number
of N

Example. Given a function g(x) = ex, where 0 ≤ x ≤ 1 and the dimension of x

is one, the integral of g(x) then equals
∫ 1

0
ex = 1.7183.

To calculate the integral, we also can generate N samples in [0, 1), and approximate
∫ 1

0
g(x) with

∑N
i=1 g(x)

N
. Table 2.4 shows the approximate values of the integral of

g(x) for different N .

The estimate variance of crude Monte Carlo is important because it tells that σ

decreases with the increase of the sample size rather than the dimensionality of

samples.

1 2 3 4 5 6 7 8 9 10

x 106

1.705

1.71

1.715

1.72

1.725

1.73

Figure 2.11: The mean of different N samples converges to the integral.

2.5.3 Quasi-Monte Carlo

Quasi-Monte Carlo is a method for the computation of an integral based on low-

discrepancy sequences [30]. It approximates the integral in a similar way to Monte
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Carlo which is

∫

[a,b]

g(x) ≈
∏s

i=1(bi − ai)

N

N∑
i=1

g(xi)

where x1, ...,xN is a low-discrepancy sequence.

The discrepancy of a low-discrepancy sequence x1, ...,xN can be defined as follows.

Let Q be a cube of Is, I is a unit cube which equals [0, 1), and m(Q) be the volume

of Q. The discrepancy is

DN = sup
Q∈Is

∣∣∣∣
]Q

N
−m(Q)

∣∣∣∣ (2.41)

where ]Q is the number of points in Q.

The discrepancy of the sequence is then bounded by a constant (log N)s

N
.

One of the most important error bounds for quasi-Monte Carlo is the approximation

error. The Koksma-Hlawka inequality [30] shows that the approximation error is

bounded by two things: the function g(x) and the discrepancy DN .

Let g(x) have a bounded variation Vg(I) on Is. Then for any x1, ...,xN ∈ Is.

∣∣∣∣∣
1

N

N∑
i=1

g(xi)−
∫ 1

0

g(x)dx

∣∣∣∣∣ ≤ Vg(I)DN (2.42)

where the bounded variation Vg(I) refers to a real-valued functions whose total

variation is bounded. The total variation is defined to be:

Vg(I) = sup

{
n∑

i=1

|g(xi+1)− g(xi)|
∣∣∣∣∣P = {x0, ...,xn} is a partition of I

}

Consider two examples as follows:
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Example 1. If g(x) = x which is monotonically increasing, then for any partition

P = {x0, ...,xn} on I

n∑
i=1

|g(xi)− g(xi−1)| =
n∑

i=1

[g(xi)− g(xi−1)] = g(1)− g(0) = 1

Hence, g(x) has bounded variation and Vg(I) = 1.

Example 2. If g(x) = 1− x3 which is continuous on I and differentiable on [0, 1]

with sup0≤x≤1 |g′(x)| ≤ M = 1, then, by the Mean Value Theorem

n∑
i=1

|g(xi)− g(xi−1)| =
n∑

i=1

|g′(x)[xi − xi−1]| ≤
n∑

i=1

M [xi − xi−1] = M(1− 0) = 1

Thus, g(x) has bounded variation and Vg(I) = 1.

From Equation 2.42, two factors affect the value of the approximation error. One is

the roughness of the integrand g(x) (also known as the variant of g(x)). The other

is the sample quality which is the similarity between the distribution of samples

F{xi} and the common distribution of g(x) called as F . The closer between F{xi}

and F , the smaller the error is.

DN is bounded by a constant (log N)s

N
(see Equation 2.41). Hence, quasi-Monte

Carlo demonstrates a N−1 convergence on the estimated error. Comparing with

the Monte-Carlo method which has N− 1
2 convergence (see Equation 2.40), quasi-

Monte Carlo is able to converge fast on the size of error.

The low-discrepancy sequence involved in quasi-Monte Carlo integration is a de-

terministic sequence which provides improvements in the integration. Several such

sequences have been proposed such as Halton sequences [25] and Niederreiter’s

(t,m, s)-nets and (t, s) sequences [30].
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Niederreiter’s Sequence

Niederreiter defines the sequences in a regular distribution behavior called (t,m, s)

nets and (t,m) sequences [30].

A (t,m, s)-net is a sequence of points from Is which have a certain equidistribution

property. It means that all subintervals of Is contain a certain number of points of

the sequence. Those subintervals are called as elementary intervals.

An elementary interval is a subinterval of Is

E =
s∏

i=1

[tib
−ki , (ti + 1)b−ki)

where base b is a positive integer, ki are nonnegative integers, and ti are integers

with 0 ≤ ti < bki .

Suppose t and m are nonnegative integers with t < m. For a finite sequence

x1,...,xn ∈ Is where n = bm, if every elementary interval in base b with volume

bt−m has bt points of the sequence, then it is known as a (t,m, s)-net.

Let the equidistribution property extend to infinite sequences. If for all m > t and

k ≥ 0, the finite sequence consisting of the xn with kbm ≤ n ≤ (k + 1)bm is a

(t,m, s)-net in base b. t ≥ 0, an infinite sequence x1,x2, ... ∈ Is is regarded as a

(t, s)-sequence in base b.



Chapter 3

Literature Review

With the development of connectionist expert systems, how to explain the inference

process in the system has become an important research area. At the end of 1980s,

Gallant began to present a routine for extracting propositional rules from a simple

network [35].

Rule extraction extracts symbolic rules from the ANNs or other knowledge expert

systems to explain the knowledge embeded in the networks. The integration of

symbolic and connectionist enhances users’ understanding on the problem at hand.

For example, given two classes in Figure 3.1, the users cannot tell why the data are

broken into these two kinds of groups. The symbolic rules in Figure 3.2 illustrate

the regularities in the groups.

To date, most rule extraction algorithms have been directed towards presenting

the outputs as a set of rules using propositional logics [80]. Many research efforts

have been concentrated on extracting knowledge from neural networks using fuzzy

logics [47]. Some algorithms also have been employed to extract automata from

recurrent neural networks [95]. Recently generating regression rules [73] has been

studied as well.

45
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Figure 3.1: Two classes classification

X ∈ [0, 5] ∧ Y ∈ [0, 7] → class2
X ∈ [5,∞] ∧ Y ∈ [0, 7] → class1

Figure 3.2: Rules extracted from data groups

In 1998, Tickle et al. [12] categorized rule extraction techniques with five general

notions:

1. Rule format refers to knowledge representation forms such as Boolean,

fuzzy, logic rule (i.e. ¬ a ∧ b → c ) etc

2. Rule quality indicates rule fidelity (i.e. how many unseen examples are

classified different with rules and learning models), accuracy (i.e. how many

unseen examples are correctly predicted) and consistency (i.e. the same clas-

sification results of unseen examples are generated under different training

sessions) and comprehensibility (i.e. the size of the resulting rule set)

3. Translucency reveals the associations between extracted rules and archi-

tectures of neural networks. It contains four categories: ‘decompositional’,

‘pedagogical’, ‘eclectic’ and ‘compositional’.

4. Algorithmic complexity addresses the efficiency of the algorithm.

5. Portability measures how well the approaches can be applied to other neural
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Machine Learning     
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Algorithm 

Input Data 
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Rule Refinement 

Output rule 

Figure 3.3: Rule extraction system

network architectures.

With the emergence of different techniques in the area of rule extraction, the epit-

ome of the system to extract rules is as follows (see Figure 3.3). Data together

with domain knowledge are input into machine learning networks such as trained

artificial neural networks, recurrent neural networks etc. Then the results of clas-

sification are used by various rule extraction algorithms. The outcomes are the

symbolic rules needed for decision making. The rule refinement process further

improves the rule quality such as correctness, fidelity etc.

Since rule extraction integrates the connectionist and symbolic approaches, users

of rule extraction systems could benefit from explanation capability and knowledge

acquisition.

Andrews et al. [66] identifie three types of techniques for extracting rules from

neural networks at the level of granularity, i.e. depending on whether the neural

networks play an implicit role or not in a rule extraction algorithm. For instance,

in some rule extraction techniques, only the inputs and outputs of a neural net-

work are considered regardless of the inner structure. However, the current rule



Chapter 3. Literature Review 48

extraction are not strictly divided into these three types. With the development of

the techniques, i.e. measures for rule extraction; insertion and refinement [14], [12]

adds another category called ‘compositional’. The following gives the descriptions

on these four categories of rule extraction techniques.

• ‘Decompositional’ extraction focuses on the extraction at the level of each unit

of a neural network. Rules are extracted from the neurons in both hidden

and output layers. This approach extracts rules based on the architecture of

the neural network as a whole [41].

• ‘Compositional’ extraction extracts rules by analyzing the ensembles of neu-

rons in a network rather than one single neuron. It takes into account the

rules which represent the transitions from old states of units to the new states.

• ‘Pedagogical’ extraction treats the neural network as a black box. It extracts

rules directly from the input and output values. Such techniques are used

in hybrid approaches with a symbolic learning algorithm. The main purpose

of this sort of approach is to find out the relations between the inputs and

outputs and to specify the functions of the neural networks as rules.

• ‘Eclectic’ extraction combines the elements of ‘decompositional’ and ‘peda-

gogical’ extractions. It utilizes the knowledge in neural network architectures

to complement a symbolic training algorithm.

Most rule extraction approaches [53] [91] [12] deal with multi-layer perceptrons -

the most common network type. Extraction from some other architectures like

SOM [8] [4] [56] and recurrent networks [102] [63] exist as well. Recently, rule
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extraction research has begun to focus on SVM [57] [59] [22] since its learning

algorithm has certain advantages like better generalization ability, insensitivity to

the training examples etc.

In the next few sections, we will illustrate the different rule extraction approaches

in details. The approaches are categorized into four groups: ‘decompositional’,

‘compositional’, ‘pedagogical’ and ‘eclectic’.

3.1 Decompositional Approach

The earliest works in this area [43] [46] extract boolean rules from each neuron in

both hidden and output layers of the ANN.

Towell and Shavlik [91] apply searching of the weights entering a unit which ensures

the combination of the input values exceeds the bias. If the criterion is satisfied,

rules are extracted from each non-input unit in a trained ANN. The algorithm

called SUBSET extracts individual rules (e.g. ‘If a then b = no else b = yes’). It

extracts rules at the levels of both hidden and output units. The rules drawn from

those single units are aggregated into conjunction rules.

The MofN algorithm [91], which is based on SUBSET, represents the knowledge

inside the network in the form of ‘ If (M of the following N antecedents are true)

then yes’. MofN assumes that the groups of antecedents could form equivalent

classes in which each antecedent should have an equivalent importance. Hence, it

first groups the links of units into equivalent classes using a standard clustering

method, and eliminates those groups that are unable to influence the calculation of

the consequent. After eliminating those unimportant groups, the MofN algorithm

makes the rest of groups stay intact and retrains the networks by using back-

propagation in order to obtain the optimized bias on each unit. Finally, rules are
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extracted by directly translating the bias and incoming weights of each unit. In [91],

Towell and Shavlik comment that it performs more efficiently than SUBSET.

The KT algorithm developed by Fu [53] [49] maps the results of both hidden and

output layers into boolean rules. The rule has a form like ‘if a > 2 then true’.

The above algorithms have the similar basic motif which searches each (hidden and

output) unit and treats the outputs as a step function or a propositional rule.

Example 1. Given an ANN network (see Figure 3.4) and an activation function

f(xj) = sign(
∑N

i=1 wij − θj)

where wij is the weight of the link from unit i to unit j (e.g. the weight is 2 from

unit B to unit A), θj is the bias of unit j, and N is the number of links to unit j.
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Figure 3.4: A unit of ANN

Considering Figure 3.4 and the activation function above, the rules can be found

in different forms such as boolean rules or MofN rules:

RuleNet / The Connectionist Scientist Game in [16] employs a technique similar

to scientific induction. The explicit hypotheses about a domain are formed in

order to extract symbolic condition-action rules. Those hypotheses are tested and

refined iteratively in the connectionist network by injecting the rules back into
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if B then A
if C then A
if B, D then A
if B, C then A
if C, D then A
if B, C, D then A

OR

if 1 of {B, C} then A
if 2 of {B, C, D} then A

Figure 3.5: Rules extracted from a unit in Figure 3.4

the network. The training process continues until the final rules reveal adequate

domain characteristics. However this approach limits the ANN architecture to a

specific problem domain and thereby lacks generality [91] [79].

RULEX developed by Andrew and Geva [67] [68] automatically extracts sym-

bolic rules from the local responsive units (LRU) of a Constrained Error Back-

propagation (CEBP) MLP. Each LRU is formed by each dimension of the input

which is called ridge. The output of each LRU is the sum of the activations of the

ridges. Therefore, propositional if-then rules are extracted within the threshold of

LRU outputs.

COMBO, proposed by Krishnan [70], suggests to order weights to limit the search

space of the neural network. COMBO builds a combination tree by sorting the

incoming weights of a particular node in descending scalar. The combination tree

is then systematically transformed to the propositional rules as follows:

IF
∑

wp + bias on neuron > threshold on neuron

THEN

concept corresponding to the neuron is true
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where wp are the weights at the node of the combination tree.

A similar idea appears in [21] which also relies on the ordering of weights. By

contrast, [21] extracts MofN rules from the minimal weight vectors which are found

with respect to the partial order defined on weight vectors.

Saito and Nakano [44] put forward a new approach, RF5, for drawing scientific

laws in the form of:

yt = c0 +
h∑

i=1

cix
wi1
i1 ...xwil

il

where yt is the consequence of the law, the parameters ci and wij are unknown real

numbers and h is an unknown integer. The hidden layer architecture of ANN is

composed of ‘product unit’, and the training algorithm is based on a quasi-newton

method called BPQ. After training, the best law candidates are selected in terms

of a minimum description length criterion.

The works of Setiono [71] [72] introduce the concept of pruned network. The

network is first pruned and only distinct connections are left. Then the rules are

generated from the hidden units with a small number of activation values. If the

connections to the hidden units are not sufficiently small, then the hidden units

are split and a new hidden layer is inserted.

Works related to the pruned network for rule extraction were developed by Ishikawa

in 1990s. Two methods [54] [55] are used to find out the patterns with large

contribution to the networks. The basic idea of [54] is to eliminate the unnecessary

connections by a Structural Learning with Forgetting (SLF) [34]. The criterion

function of SLF is,

Jf = J + ε′
∑

i,j|wij| =
∑

k(ok - tk)
2 + ε′|wij|

where J is the quadratic criterion in back-propagation learning, Jf is a total cri-
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terion, wij is the weight from unit j to unit i, ok is the output of unit k, tk is the

target value, the second term of the formula is a penalty criterion, and ε′ is its

relative weight. The hidden unit is deleted if it has small contribution to J .

The approach in [55] is based on SLF [54]. The criterion function changes to:

M = J + λEw

where Ew is known as a regularizer and is a function of connection weights, and λ

is a regularization parameter. The dominant rules are created with a large λ value

while the detail rules are those with a small λ value.

3.2 Compositional Approach

Since early 1990s, [102] [63] [17] have borrowed the knowledge of symbolic rep-

resentation for use in recurrent networks. In recurrent networks, each unit in a

network may send outputs to other units and receive inputs from the same unit.

Tickle et al. [12] introduce the fourth intermediate category - ‘compositional’, which

is to accommodate for Recurrent Neural Networks (RNNs). Most RNN rule extrac-

tion approaches are based on ensembles of neurons rather than individual units.

The basic algorithm of RNN rule extraction consists of four steps [26]:

1. continuous state space quantization,

2. state generation,

3. rule construction,

4. rule pruning,
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Some works [102] [63] [17] focus on searching the state space, and use clustering to

quantize the state. The result of the extraction algorithm is to extract deterministic

finite-state automata from a recurrent network.

In 1992, Watrous and Kuhn [76] proposed a RNN rule extraction technique by

using interval clustering and sampling. It is one of the influential works to use

sampling to split individual state unit activations into intervals [26]. The intervals

obtained from quantization are utilized to extract minimal and deterministic finite-

state automata rules.

A RNN rule extraction algorithm based on Self-Organizing-Map (SOM) is devel-

oped in [64]. A Kohonen SOM with the star topology of neurons is employed to

quantize the state space into distinct regions representing corresponding states of

a Deterministic Mealy Machine [26] being learned.

In [65], Tino et. al investigate the knowledge induction process associated with

training recurrent neural networks (RNNs) on single long chaotic symbolic se-

quences. It replaces SOM with dynamic cell structures (DCS) for quantization.

A stochastic Mealy Finite State Automata is then extracted.

3.3 Pedagogical Approach

The earliest works on ‘pedagogical’ rule extraction was introduced by Saito and

Nakano [43]. The ANN is treated as a transparent architecture and the rules about

a medical diagnostic problem are extracted only from the input and output values.

Thrun [10] describes an approach to extract rules by using Validity Interval Analysis

(VIA). Validity Interval (VI) is defined to constrain the activation patterns in the

networks. The VI of a unit represents the maximum range of its activation values.



3.3. PEDAGOGICAL APPROACH 55

The initial VIs usually are arbitrary. Then VIA iteratively refines the VIs by

throwing out those active values which are inconsistent with the weights and biases

of the network in both forward and backward phases.

Given a simple ANN in Figure 3.6, the activation function is

netj =
∑N

i=1 wij ∗ xi − θj

xj = σj(netj), where σ(netj) = 1

1+e−netj

where wij is the weight of the link between unit i and j, θj is the bias of unit j, and

N is the number of the links to unit j. After obtaining an initial set of VIs, there

are two types of results. One is the intervals covering all the activation patterns;

the other is a contradiction (i.e. an empty interval which means no activation

patterns consistent with the initial intervals). VIA algorithm excludes the second

type of results and interprets the first type of results into rules (see Figure 3.7).
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Figure 3.6: Simple example of VIA algorithm in forward phase

if 0 ≤ x1 ≤ 2 and 0 ≤ x2 ≤ 1 then 0.06 ≤ x3 ≤ 0.25

Figure 3.7: Rules extracted from a unit(Fig 3.6)

In Figure 3.6, suppose that VIs [0, 2] and [0, 1] are initially set to unit x1 and unit

x2. The minimum net3 of unit x3 then equals w13∗xmin
1 +w23∗xmin

2 = 2∗0+2∗0 = 0
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while the maximum net3 of unit x3 equals w13 ∗ xmax
1 + w23 ∗ xmax

2 = 2 ∗ 2 + 2 ∗ 1 =

6. Applying the values of net3 into the activation function, the range of x3 is

[0.06, 0.25]. Since the output is consistent with the initial intervals, the intervals

are mapped to an interval rules (see Figure 3.7).

Craven and Shavlik [50] describe the ‘Rule-extraction-as-learning’ approach which

is an important work in the field of pedagogical rule extraction. The algorithm

reads the training examples one by one, classifies them and generates rules from

the example if the existing rule set does not cover it. The new rule r is then

generalized by dropping one of the rule conditions. If all the examples covered by

r are in the same class c, then r is accepted. The process stops until one of the

following two ‘stopping criteria’ are met.

1. The extracted rule set is sufficiently accurate.

2. No new rule is created after a certain number of iterations.

RULENEG developed by Pop et al. [18] is to extract conjunctive rules, where every

symbolic rule can be stated as a disjunction of conjunctions. After initializing a

new rule r for a certain training example a, if it is not covered by the existing

rules, RULENEG negates every attribute value of a to construct a new pattern a′.

If the class of a′ is not equivalent to that of a, the attribute of a and its value are

then added to r. The RULENEG algorithm is a simplification of the algorithm

developed by Craven and Shavlik [50].

The BRAINNE system [79] focuses on the closeness between inputs and outputs. It

first changes the architecture of a network from M inputs and N outputs to M +N

inputs and N outputs so that the network structure is retrained. The second step

is to compare the weights for the links between each of the initial M inputs and

the corresponding hidden units with the weights from each of the additional N
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inputs and related hidden units. Thus, the smallest difference shows the greatest

contribution of the original inputs to the outputs.

The Interval Analysis (IA) algorithm [69] is a method to extract propositional rules

in the pedagogical category. It introduces the concept of Hypercube.

Definition 3.3.1. Hypercube. Consider an ANN with m inputs x1, x2, ..., xm, and

each input xi, (i = 1, ..., m) can take a continuous range [a, b]. The hypercube is

the conjunction of these ranges.

The IA method includes the following steps. Given a class A and a minimum

hypercube of size Q,

1. Start with a certain hypercube in the input space which belongs to A, grow

the input space until the outputs begin to include another class.

2. Repeat 1 till all the potential hypercubes are found. Those hypercube should

be subject to the constraint that the hypercube cannot include any input

space that belongs to the other class rather than the target class A.

3. Start from each face of the previously found hypercube, enlarge and move

the hypercubes to cover the remaining input space for class A as much as

possible without overlapping with other hypercubes.

4. Check if the size of the new hypercube is smaller than Q.

5. Repeat 3 and 4 for every hypercube in the previously found hypercube set.

6. Search the input space to guarantee none of noncontiguous area for class A

has been missed.

The TREPAN algorithm [50] extracts rules in the form of decision tree. The

fundamental part of TREPAN is that it introduces the notion of Oracle, which
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determines the decision tree by using queries. The expansion of trees is based on

the best-first method, which means the nodes having the greatest effects on the

fidelity of the extracted tree have the first priority to expand. Each node of the

tree represents a binary or MofN rule.

REFNE designed by Jiang and Chen [101] utilizes the trained neural network en-

sembles to generate instances and then applies to the rule creation process defined

by Fu [53] to extract symbolic rules from those instances. Note that a neural net-

work ensemble is a model in which a collection of neural networks is used to solve

a specific problem. It is believed to significantly improve the generalization ability

of a neural network based system [48].

Recurrent neural networks (RNNs) are composed of inputs, outputs and the state

space. Most RNN rule extractions fall in the group of ‘compositional’. [5] [6] are

the only works focusing on the inputs/outputs of a trained recurrent network to

extract deterministic finite-state automata (DFAs) instead of looking inside the

internal state. The methods increase the fidelity of DFAs in the cases of large sets

of strings.

The Self-Organizing Map (SOM) is frequently applied to symbolic interpretation

because it is very effective for hierarchical data. Siponen et al. [56] use some

significance measures [56] such as frequency to interpret the information in the

clusters generated by SOM learning.

Another SOM rule extraction technique [8] classifies data with generalized relevance

learning vector quantization (GRLVQ), one type of SOM clustering algorithms.

After training, GRLVQ employs a decision tree approach to generate rules. Each

node N of the tree has CN children. An interior node N is labelled by an indexed

IN and real values. Each leaf L of the tree is labelled with a class number.

In Section 3.5, a deep description for those rule extraction methods with SVM



3.4. ECLECTIC APPROACH 59

networks will be given. They are pedagogical so they are introduced here.

To date, few algorithms on rule extraction from SVM networks have been proposed

[59] [57] [22]. Nũn̈ez and Angulo [59] introduce an approach for extracting rules

from SVMs. It indicates a procedure that uses support vectors from SVM and

prototypes gained from K-Means clustering to define geometric ellipsoids in the

input space. The ellipsoids are then mapped to IF-THEN rules. However, this

approach does not perform well for a large number of patterns [57].

The method for SVM rule extraction developed by Barakat and Diederich [57]

refers to two data sets. The first data set is the original one for SVM learning,

while the second one is generated with the same attributes but modified values.

The basic view of the second data set is to generate the generalized patterns for

prediction. The resulting patterns are then trained by a decision tree system and

the corresponding rule sets are drawn.

Another rule discovery algorithm based on SVM is developed by Fung [22]. The

algorithm formulates a linear SVM hyperplane classifier and approximates the clas-

sifier with a set of rules. However, this work is only tested on training data and

linear classifiers.

3.4 Eclectic Approach

Eclectic approach combines the characteristics of decompositional and pedagogical

approaches. Ultsch [4], for instance, uses neural nets with SOM to extract the

regularities out of the training examples. Then a rule generator called sig*, which

considers the significance of the range of an attribute value, transforms them into

PROLOG rules.
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The DEDEC [11] is another vital technique. Finding minimal information dis-

tinguishing a given pattern from others is the major advantage of this algorithm.

Another key characteristic of DEDEC is to rank input cases in the order of impor-

tance. The importance of the input cases is assessed by the contribution of input

units to the ANN outputs. It is achieved by using the scales of weight vectors for

each input units. Then, rules are extracted from those typical patterns.

The method for symbolic rule extraction developed by Garcez et al. [2] is based

on the idea of ‘regularity’, an ordering on the set of input vectors. The network

is decomposed into smaller subnetworks called Basic Neural Structure (BNS), and

regularities can be found. As a result, a number of simple rules can be derived

from BNS. The final rule set is the result of combining those rules and simplifying

them.

Genetic algorithm (GA) has been used to optimize the structure of neural networks

and rule quality. [83] uses GA to find a good neural network topology. The neural

network topology is then passed to a rule extraction algorithm for rule extraction.

Next, the quality of the extracted rules is evaluated under the criteria of accuracy

and comprehensibility. After that, the evaluation results are fed back to GA as

fitness values. Finally, the extracted rules are those from the best topology of last

generation.

3.5 SVM-based Rule Extraction Approach

Since the early 1990s, various algorithms to extract rules from trained neural net-

works have been proposed, notably [10, 2, 69, 44, 53, 18]. Some of these search for

rules by decomposing the networks and extracting rules for each unit, and some

extract rules directly from the input-output values of the networks, thus treat-
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ing them as black-boxes. Recently, SVMs have been taken into account for rule

extraction because of their excellent generalization capability.

The SVM+Prototype method [59] is one of the vital approaches in the area of SVM

rule extraction. It uses support vectors and prototypes to draw the region covered

by a rule. There are two types of target rules in this method:

• equation rules: IF a · x2
1 + b · x2

2 + c · x1 · x2 + f ≤ g THEN class,

where a, b, c, f, g ∈ R

• interval rules: IF x1 ∈ [a, b] and x2 ∈ [c, d] THEN class,

where a, b, c, d ∈ R

The prototype in [59] is defined as:

Definition 3.5.1. Prototype. Suppose that the examples are clustered into some

groups C1, C2,...Cn, where n is the number of clusters. The prototype is the center

of a cluster Ci, 1 ≤ i ≤ n.

For example, a group with three points {[1, 2], [6, 5], [5, 6]}. The prototype is

[1+6+5
3

,2+5+6
3

] which is [4, 4.33].

Geometrically, the graph of an equation rule is an ellipsoid while the graph of an

interval rule is a hyper-rectangle. [59] chooses a prototype point and the farthest

support vector to this prototype to construct a axis of this ellipsoid. Next, it

determines vertices to build the rest of the axes. The vertices may be the following

points: a) the support vector itself; b) a point which is the farthest to the prototype;

c) a point derived from a support vector. The difference between an equation rule

and an interval rule is that the axes of the interval rule are parallel. Figure 3.8

shows these two types of rules in geometry.
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The procedure of the rule extraction is described as follows [59]. Firstly, the

algorithm begins with a single prototype and creates a general ellipsoid/hyper-

rectangle. Then, it applies a partition test to examine if the region of this ellipsoid

/ hyper-rectangle belongs to the same class. And the ellipsoid/hyper-rectangle is

divided. If the result of the test is negative, a new rule is then generated. The

procedure may stop when all partition tests are negative.

Figure 3.8: a) Equation-rule b) Interval rule [59]

However, a large number of patterns and overlaps within different attributes de-

creases the comprehensibility of the extracted rules and increases the algorithm

complexity.

Barakat et al. [57] propose an approach to extract rules from SVMs from three

data sets:

A) A modified ‘Pima Indian Diabetic’ data set used for SVM training. Examples

are randomly selected from this data set and noisy data are removed. Hence,

a SVM model is obtained after training.

B) A data set with the same attributes as the first one but different values used

for generalization testing. The SVM model is employed to predict the class

for each record in the second data set.
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C) A data set used to merge A and B. This data set is trained by decision tree or

classification tree algorithms to extract symbolic interpretations.

This approach combines the strength of generalization of SVM and explanation

of tree learning algorithm. Nevertheless, in the context of the criteria for rule

extraction [12], the limitations of computational complexity make this approach

inappropriate.

In [22], it describes an algorithm to approximate the linear SVM classifier. The

linear classifier is defined in Equation 2.7. The antecedents of the rule is in the

form of:

∧m
i=1li ≤ xi ≤ ui

where i indicates an element of the input x, m is the dimension of x. li and ui are

arbitrary real values.

As each rule covers a corresponding positive/negative region for the classifier,

Fung [22] defines:

A− = {x|w · x < γ, li ≤ xi ≤ ui, 1 < i < n}
A+ = {x|w · x > γ, li ≤ xi ≤ ui, 1 < i < n}

where γ is an arbitrary real value. A− and A+ represent the regions belonging to

negative and positive classes. Figure 3.9 shows the areas A− and A+ that rules

cover are rectangles. The more rectangles, the closer we get to the linear classifier.

The approach in Fung [22] establishes a diagonal matrix T and a vector b =

{ui, if wi < 0; li, if wi > 0} to convert original linear rule extraction problem
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w·x = �  

Figure 3.9: The regions of A− and A+ approximate the area in which the points
are classified by a linear classifier [22]

into the following form in terms of linear transformations.

Tii =
sign(wi)

ui − li
, i ∈ {1, ..., n} (3.1a)

wi > 0 ⇒ 0 ≤ yi =
Tii

ui − li
=

xi − li
ui − li

≤ 1, wi < 0 ⇒ 0 ≤ yi =
Tii

ui − li
=

ui − xi

ui − li
≤ 1

(3.1b)
⇓

x = T−1y + b (3.1c)

⇓

w · x = γ ⇒ w · T−1y = γ + w · b (3.1d)

⇓

(
w · T−1

γ − w · b)y = 1 (3.1e)
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Then, the optimal rules are extracted which cover as much as possible region. [22]

uses log function because it is strictly increasing. The optimization problem is as

follows:

Max
(x∈Rs)

log(
s∏

i=1

xi)

s.t.
n∑

i=1

wixi = γ, 0 ≤ xi ≤ 1

(3.2)

In the context of Karush-Kuhn-Tucker theorem and Langarian, the solution turns

to:

x̃i =
1

λwi

=
γ

nwi

⇒ x∗i =





1
λ∗wi

, if x̃i ≤ 1, i ∈ {1, ...n}
1 otherwise





(3.3a)

and,

λ∗ =
nI

γ −∑
i∈A wi

(3.3b)

where A = {i/x̃i > 1} and nI = n− |A|.

The third step is to compute x by using Equation 3.1. Finally a new rule is

generated upon x.

However, there are some limitations of this method such as portability, it can only

be applied to linear classifiers, and generalization can only be examined by training

examples.

In 2005, Barakat and Diederich put forward another approach [58] to extract rules

from the support vectors provided by SVM networks. This eclectic approach in-

volves three stages:

1. The learning stage is to train an SVM and get an SVM model.

2. The rule generation stage includes three phases: a) select the unlabeled sup-
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port vectors. b) ask the queries from the trained SVM network and construct

a synthetic data set. c) train the synthetic data set on a machine learning

technique such as decision tree to obtain the symbolic rules.

3. The evaluation stage is to assess the fidelity and accuracy of the rules.

This work demonstrates that using information, such as support vectors, which

provide vital information on the separating hyperplane, can draw the rules with

high accuracy and fidelity.

Fu [99] describes a new SVM rule extraction RulExSVM. The extracted rules are

hyper-rectangular and in IF-THEN form. Each rule has a support vector and is

generated directly from SVM and the decision function. It contains three parts.

The initial part is for generating rules. Figure 3.10 illustrates how to obtain the

initial rules from SVM and decision boundary. Suppose black points refer to the

support vectors of class A1 and white points are the support vectors of class A2.

Along each axis, a line can be extended from a support vector. If there are cross

points between the line and the decision boundary, then according to the values

of the support vector and its corresponding cross points, a rule can be generated

by determining the upper and lower limit of the hyper-rectangular. Afterwards, it

eliminates those redundant rules to produce a more concise rule set.

However, there are also some outliers falling into the regions of the initial rule, such

as, the point I in Figure 3.10. The purpose of the second part, tuning phase, is to

remove this kind of outliers. The details are as follows.

1. Search all examples of class A2 falling into the rule region of class A1. Let K

be the set of these outliers.

2. Calculate the distances from a k ∈ K to boundaries along each dimension.
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Figure 3.10: A two-dimension example to get the cross points for the initial phase
of RulExSVM [58]

3. Remove k by shrinking the rule along the dimension which contributes most

to the volume of the hyper-rectangle.

RulExSV M presents a novel SVM rule extraction algorithm by using the infor-

mation of support vectors and classification boundaries. However, according to the

algorithm in [99], this may lead to low rule fidelity because the tuning phase may

not detect and remove outliers completely if only based on training examples.

Additionally, there is some research concentrating on creating fuzzy rules from

SVMs rather than rectangular rules.

Jame et.al [100] investigate the connection between fuzzy classifiers and SVM. It

proves that a fuzzy classifier can be a translation invariant kernel1 under some

assumptions. After evaluating the kernel function, the IF-part of a fuzzy rule is

given by the support vectors. Then a fuzzy rule-based classification system called

the positive definite fuzzy classifier is built based on the training examples and a

support vector machine. The experiment results show good generalization.

1A kernel K(~x, ~z) is translation invariant if K(~x, ~z) = K(~x− ~z) [100]
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Chaves et al. [20] propose another fuzzy rule extraction from SVM. It pre-defines

n overlapping fuzzy sets {Cij} for each dimension. Note that {Cij} is the jth

fuzzy set for the ith dimension. Then, the algorithm projects the support vectors

on each dimension and evaluates the membership degree2 of each support vector

projection. Subsequently, each support vector projection is assigned to a Cij with

the maximum membership degree. The last step is to generate IF-THEN fuzzy

rules. Given a support vector p = [p1, ...ps] for class Ap and fuzzy sets {Cimi} with

the highest membership degree for p on each dimension, 1 ≤ i ≤ s and mi ∈ 1, ...n,

the rule for p will be

IF x1 is C1s1 ,..., xm is Cmsm THEN x is for class Ap

2Suppose µA(x) is the membership function for any x in a fuzzy set X̄. If a ∈ X̄, then µA(a)
is membership degree for a.



Chapter 4

The GOSE Algorithm

As discussed in the previous chapter, most rule extraction algorithms suffer from

a lack of generality, a balance between correctness and fidelity, or both. In this

chapter, we present a novel rule extraction algorithm called Geometric and Oracle-

Based Support Vector Machines Rule Extraction (GOSE), which is designed to

alleviate these limitations.

As a pedagogical algorithm, GOSE utilizes the points on the SVM classification

boundary and synthetic training instances to construct a set of optimized hypercube

rules. The area covered by those rules is maximized and approximates the area of

interest. The definitions of the hypercube rule and the area of interest are given as

follows.

Definition 4.0.2. Hypercube Rule: It is said that an m-dimensional hypercube

H characterizes a rule if every point in the scope of H falls into the same class

classified by the SVM network. More precisely:

H =
{
xi = [xi1, ..., xim]

∣∣ [l1, ..., lm] ≤ [xi1, ..., xim] ≤ [u1, ..., um] → Ak, i ≥ 1
}

,

69
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where [l1, ..., lm] and [u1, ..., um] are the upper and lower bounds on H. Ak indicates

a class label, and m is the dimension of the input space.

Note that the form of a hypercube rule can also be represented in a conjunctive

form:
∧

lj ≤ xij ≤ uj → Ak 1 ≤ j ≤ m

Definition 4.0.3. Area of Interest. This is the whole region covered by a class Ak

in the input space.

I(Ak) =
{
xi

∣∣ the class of xi = Ak, lj ≤ xij ≤ uj, 1 ≤ j ≤ m, i ≥ 1
}

,

where xi is an m-dimensional input vector. uj and lj are the upper and lower

bounds of xij. xij refers to the jth dimension of xi. There is no vector xi ∈ I(Ak)

such that the classification of xi equals the other class rather than Ak.

The aim of GOSE is to use the classification boundary and synthetic training

instances to extract the hypercube rules without considering the inner structure

and the support vectors of the SVM network. The role of the network is merely to

answer queries from the inputs [50] so that the network is regarded as an oracle.

The advantage of an oracle is that it is independent of the training examples and

training architectures. GOSE is therefore capable of running on all kinds of SVM

networks. It is even believed to be adequate for many other hyperplane-based

learning models. Although some SVM rule extraction algorithms also consider the

SVM network as a ‘black box’, they have to use the same set of training examples

to train the SVM network and to extract rules from the network. At the same time,

for these algorithms, the support vectors of the trained SVM model also need to

be applied to their rule extraction processes. In contrast, GOSE provides a much

more general foundation for implementing the rule extraction method with fewer
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assumptions on the architecture and training process than the existing methods.

4.1 Overview of the Approach

GOSE is a novel approach for rule extraction, as it treats the problem of extracting

symbolic rules from an SVM as an approximation task so that the extracted rules

simulate the behavior of the SVM network.

Figure 4.1 presents an overview of the GOSE algorithm. Given a set of examples

from a problem domain, GOSE uses these examples to generate a sequence of new

inputs xi (i ≥ 1) based on a density estimator M(x). Each xi is then input into the

trained SVM to determine its class label yi and construct an instance (xi, yi). After

the selection procedure, a set of synthetic training instances S = {(xi, yi) : 1 ≤ i ≤
n} is obtained. We call this procedure querying (see Figure 4.1). After querying, a

clustering process is imposed on those inputs xi with the same yi, in order to group

them into a set of clusters. GOSE then searches for a set of points P = {pk : k ≥ 1}
that lie on the SVM classification boundary by using a binary search algorithm.

Afterwards, starting from each point in P and S, GOSE extracts rules by solving

optimization problems, and an initial rule set R is acquired. The purpose of this

optimization problem is to extract rules that maximize the area and the number

of training instances (xi, yi) covered. After R is obtained, several post-processing

measures, such as rule extending, rule pruning, non-overlapping rule construction

and rule selection, are applied to R for rule simplification. Therefore, a relatively

small number of generalized hypercube rules are derived. These post-processing

techniques not only promote the comprehensibility of R but also offer a high level

of control of the estimation errors of the rules. In what follows, we will explain

each of the above steps in detail. Note that this thesis focuses on the classification

problems.
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Figure 4.1: An overview of GOSE

Although GOSE uses geometry to extract rules that may have some similarities to

other SVM rule extraction algorithms, it is substantially novel in many ways:

1. GOSE can extract rules from synthetic training instances in which the inputs

are produced from a specific data generator.

2. GOSE treats the SVM network as an oracle which makes it independent of

the original training examples, support vectors and the inner structure of the

network.

3. GOSE is capable of being applied to any SVM network, either linear or

nonlinear.

4. GOSE adopts a series of post-processing measures to improve the quality of

the rules.

The key steps of GOSE are described in detail in the rest of this thesis.
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4.2 Querying

The querying step in GOSE involves generating synthetic training instances. The

generality of GOSE is derived from the utilization of those instances for rule ex-

traction.

4.2.1 Synthetic Instances Generation

Most SVM rule extraction algorithms employ given training examples to generate

rules and mimic the behavior of the networks. A major limitation of conventional

extraction algorithms is that those training examples might not contain enough

information about the networks. In contrast, GOSE is not limited to use the

training examples given in a problem domain; it also employs synthetic training

instances for rule extraction. Therefore, GOSE could create extracted rules in a

much more general manner. GOSE initially produces a large amount of instances

in the input space. It then selects those instances with high frequencies for rule

extraction.

We use and extend the querying method in [50]. Suppose n synthetic instances are

needed to extract rules from the SVM network. Figure 4.2 presents the process of

querying.

As can be seen in Figure 4.2, the function DRAWCLASS is called to determine how

many classes are involved in a classification problem. The details of DRAWCLASS

are shown in Figure 4.3. Initially, a large number of random data Z = {z1, ..., zh}1,

which are uniformly distributed in the input space (L and U being the upper and

lower bounds of the input space), are produced from a data generator g(x). These

1h is an arbitrary large integer.
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QUERYING

Input: the lower and upper bounds of the input space L and U , a constraint c1,
a set of training examples (X, Y ) = {(X1,Y1), ..., (XN , YN )} from the input space,
the size of synthetic instances n, a density estimator M(x), and a random data
generator g(x)
Output: a set of synthetic instance S = {(xi, yi), 1 ≤ i ≤ n}
(1) Initialize the number of iteration T and S
(2) A = DRAWCLASS(L,U, g(x))
(3) x := {xi : 1 ≤ i < T} = DRAWINPUTS(c1, L, U,M(x),X, g(x), T )
(4) for each i ≤ T
(5) class label yi = QUERY SV M(xi)
(6) S := S

⋃
(xi, yi)

(7) S = SELECTINSTANCE(S, A, n)

Figure 4.2: The QUERYING function which is composed of four functions: DRAW-
CLASS, DRAWINPUTS, QUERYSVM and SELECTINSTANCE

data Z are then input into the SVM network to acquire class labels for them. For

large h, we believe that the data in Z are able to spread throughout the input

space. Therefore, a set of classes (A = {Ak|1 ≤ k ≤ CN, CN is the total number

of classes }) can be obtained after filtering the duplicates.

DRAWCLASS

Input: the lower and upper bounds of the input space L and U , and a random data
generator g(x)
Output: the class set A
(1) Initialize A
(2) Generate a set of uniformly distributed random data Z = {z1, ..., zh} from g(x),

which are located between L and U , h ≥ 1
(3) for each i < h
(4) class label yi = QUERY SV M(xi)
(5) If yi /∈ A
(6) A := A

⋃
yi

Figure 4.3: The DRAWCLASS function: use a sequence of random data zi, 1 ≤
i ≤ h in the input space as inputs to query SVM network and obtain the class
labels for the problem domain.

The second part of the querying step is the DRAWINPUTS procedure (Figure 4.4).

This is a key step for GOSE. In order to classify the inputs that are not in the
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training set, GOSE should initially create them. Usually, these inputs are generated

subject to some constraints, such as the requirement that the inputs must have a

relatively high probability of appearing in the problem domain (symbolized by a

user-defined parameter c1) and the condition that the value of each attribute be

limited in the input space of the problem domain.

DRAWINPUTS

Input: a constraint c1, the lower and upper bounds of the input space L and U ,
a random data generator g(x), a density estimator M(x) and the number of iteration
times T
Output: the input set x = {xi : i ≥ 1}
(1) Initialize the input set x
(2) Generate T random data {xi : 1 ≤ i ≤ T} based on g(x)
(3) for each iteration i < T do
(4) If L ≤ xi ≤ U then
(5) Calculate M(xi)
(6) if M(xi) > c1 then
(7) x := x

⋃
xi

Figure 4.4: The DRAWINPUTS function: call a random data generator g(x) to
create uniformly distributed data; use a density estimator M(x) to reserve those
data whose probabilities are larger than an arbitrary number c1. Meanwhile, the
outputs should lie between L and U

.

Figure 4.4 shows the DRAWINPUTS routine. The function takes a density estima-

tor M(x), a data generator g(x), the number of iterations T , a constraint c1 and

the boundaries of the input space L and U as inputs. This is a T time-iteration

procedure, undertaken after T random input vectors {xi, 1 ≤ i ≤ T} are generated

using g(x). For each xi, the function checks if it satisfies the constraint L ≤ xi ≤ U .

Only those in the input space are retained. Then DRAWINPUTS function then

calculates the probability distribution of xi based on the density estimator M(x).

If the value of M(xi) is larger than the constraint c1, then this xi is kept. Next,

the algorithm sorts all the {xi : i ≥ 1} that satisfy the above two conditions in a

descending order of the values of M(xi). The reason for this is that GOSE uses
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only n instances. The sorting ensures that the synthetic training instances for rule

extraction are those that have a higher likelihood of taking place.

As shown in Figure 4.4, six parameters, T , c1, L, U , g(x) and M(x), are needed

to be set. T is a large integer so that sufficient inputs can be created from the

iteration. c1 ∈ [0, 1) is used as a constraint to filter the inputs that have a low

probability distribution. L and U comprise information on the problem domain

given in advance.

For g(x), although the generator of a low-discrepancy sequence shows a highly cor-

related manner2 for the data being generated, the quasi-random property indicates

clearly that the low-discrepancy sequence is not random. Hence, in our approach,

we employ the uniform random data generator g(x) to produce a large amount of

inputs.

M(x) is a vital parameter for the DRAWINPUTS function. As described by

Craven [50], one method is to take into account the actual distribution3 in the

problem domain. Based on this approach, GOSE might not able to pick up the

data from a uniform distribution over the whole input space, where it may find rules

that simulate the behavior of the SVM network at a high fidelity level. However,

it can focus on extracting rules that have an especially high level of fidelity in the

part of the input space where instances are most likely to be found, as presented

in Figure 4.4.

One way to find a distribution model is to construct a model of the underlying dis-

tribution of obtainable data and use this model to draw new synthetic data. Unlike

TREPEN [92], which uses the kernel density estimates of individual features for con-

2The nth data “knows” where the (n − 1)th data is in the input space, which reduces the
possibility that n data are gathered together.

3In our experiments, as the actual distribution of the problem domain is unknown, we will
assume the distribution of X = {X1, ...,XN} as the actual distribution, where X is the input set
of the training examples.
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tinuous attributes and empirical distributions for discrete attributes, GOSE uses a

multivariate kernel density estimate both for discrete and for continuous features.

Those discrete values are represented by integers, which are considered a special

type of continuous value in GOSE. Simultaneously, the multivariate kernel density

estimate allows for relations within attributes. The definition of the multivariate

kernel density estimate is as follows:

M(xi) =
1

N

N∑

k=1

1∏m
j=1 hj

[
1

(
√

2π)m
e−

1
2
(‖xi−Xk

h
‖)] (4.1)

where {Xk, 1 ≤ k ≤ N} indicates a set of the given training examples, N is the

number of those examples used in the estimate and h is the bandwidth of the

Gaussian kernel, which is denoted by a vector [h1, h2, ...hm].

The optimal bandwidth can be approximated using the method presented in [97]:

hj = { 4

(m + 2)N
} 1

m+4 σj (4.2)

for j = 1, 2, ..., m, where σj is the standard deviation of the jth attribute and can

be replaced by its training example estimator in practical implementation.

After obtaining the synthetic inputs {xi, i ≥ 1}, GOSE feeds them into a trained

SVM network to obtain the classification {yi, i ≥ 1} for these inputs. This step is

illustrated in the QUERYSVM procedure (see Figure 4.7). The synthetic instances

{(xi, yi), i ≥ 1} are then constructed. The trained SVM network here is treated as

an oracle that answers the queries from xi.

The fourth step is SELECTINSTANCE. GOSE defines a factor n so that it is much

more flexible in its ability to choose differing sizes of instances. In order to select

the instances with much higher M(x), those xi (i ≥ 1) with the same class label
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are sorted first. Suppose that there are CN classes involved in the classification

problem and that the number of xi for each class is n(G). In this case, we choose

the first n/CN instances, or the whole group of instances if n(G) < n/CN , to

build up the synthetic training instance set S.

SELECTINSTANCE

Input: a set of instances {(xi, yi), i ≥ 1}, a parameter n indicating the number
of instances used in rule extraction, and a class set A obtained from DRAWCLASS
Output: the instance set S
(1) Initialize S, n′ = n

CN where CN is the number of class in A
(2) For each class Ak in A, 1 ≤ k ≤ CN
(3) Find G = the group of instances {(xi, yi), where yi = Ak}
(4) Sort G by the values of M(x) in descending order
(5) S := S

⋃
min(G(1 : n′), n(G)), where n(G) is the number instances in G.

Figure 4.5: The SELECTINSTANCE function: select the first n
CN

instances in G
which have the same class label or the entire group of instances G if the size of G
is no larger than n

CN
and build up an synthetic instance set S so as to apply for

rule extraction

Example 4.1. Suppose that there are five training examples {(Xk, Yk), 1 ≤ k ≤ 5},
as shown in Figure 4.6(a). The SVM network has been trained based on these five

training examples, which were given before GOSE is applied. Let A = {−1, +1},
m = 2, L = [1, 1], U = [10, 10] and c1 = 0.01. We aim to draw four instances

so that n = 4. By applying Equation 4.2, h equals [0.2714, 0.1129]. The above

example clearly illustrates the QUERYING procedure.

Firstly, GOSE initializes T = 10. As can be seen from Figure 4.6, 10 synthetic

data xi, 1 ≤ i ≤ 10 are made. After this, GOSE verifies whether each xi is located

between L and U . If not, this xi is removed (such as x9 in Figure 4.6(b)). GOSE

subsequently computes M(xi) for the rest of xi. The results are also given in the

table (shown in Figure 4.6(b)). If the value of M(xi) is larger than c1, GOSE

will retain this xi. In this example, data x1, x2, x6, x7 and x8 are kept, in order

to query the SVM. After calling the QUERYSVM function, the class labels are
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determined. Then, for each class, SELECTINSTANCE sorts (xi, yi) in accordance

with the M(xi) values (see Figure 4.6(c)). Since n has laid the number of instances

used in rule extraction, in this example, SELECTINSTANCE must select n
2

= 2 for

each class (Figure 4.6(d)). As a result, the instances in Figure 4.6(d) are obtained

for rule extraction.

X1 X2 Y
X1 1 2 +1
X2 3 4 +1
X3 2 6 −1
X4 3 5 −1
X5 10 4 −1

(a)

x1 x2 M(xi)
x1 3 4 0.0227
x2 4 6 0.0166
x3 8 5 0.0098
x4 3 7 0.0092
x5 9 2 0.0024
x6 2 6 0.0201
x7 1 4 0.0184
x8 1 2 0.0131
x9 0 3
x10 5 8 0.0014

(b)
x1 x2 M(xi) class

x1 3 4 0.0227 +1
x2 4 6 0.0166 +1
x6 2 6 0.0201 −1
x7 1 4 0.0184 −1
x8 1 2 0.0131 −1

(c)

x1 x2 M(xi) class
x1 3 4 0.0227 +1
x2 4 6 0.0166 +1
x6 2 6 0.0201 −1
x7 1 4 0.0184 −1

(d)

Figure 4.6: QUERYING Example. Table (a) is the training examples Xi to
build up the multivariate estimator. Table (b) shows 10 synthetic data {xi, 1 ≤ i ≤
10} and their outcomes of M(xi) if xi locates in the input space. Table (c) shows
that 5 data are kept for QUERYSVM procedure, and the synthetic instances are
then generated. Table (d) shows the final result by applying SELECTINSTANCE.

4.2.2 SVM Networks

The SVM network used in GOSE is considered a black box. All we need to know

are key input-output patterns, rather than the inner structure. This complies with
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Thrun’s desideratum for a general rule extraction method of no training require-

ment. Our rule extraction method does not rely on any special training procedure,

and neither does it make any assumption about the network’s structure. It can be

applied to any SVM classifiers, (such as Sequential Minimal Optimization (SMO)

[40] and DAGs-SVM [39] (see Chapter 2)), regardless of the algorithms used to

construct the classifier.

The SVM networks used here carry out classification tasks, but GOSE is not limited

to classification. The QUERYSVM function is denoted as follows.

QUERYSVM

Input: an input x and a SVM network f(x)
Output: the class label y, the distance d from x to the separating hyperplane
(1) [y, d] = f(x)

Figure 4.7: The QUERYSVM function: f(x) denotes the function embedded in a
trained SVM.

4.3 Clustering

Since there must be a decision boundary between individual classes, the points

lying on the decision boundary could be found between pairs of instances that

have different class labels. However, for a large number of training instances, if

we search each pair of the instances for different classes, this may lead to high

complexity and low efficiency. Hence, the step of clustering has been used to create

a balance between complexity and prediction accuracy.

In GOSE, we adopt hierarchical clustering (see Chapter 2) on the synthetic training

instances S. This starts by considering each individual point as a cluster and merges

the clusters by measuring the distance between two clusters with the same class
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labels. Since the mergence of the clusters is relevant only to those training instances

with the same class, just the inputs xi are involved in the distance calculation. Our

approach uses one of the following linkage functions:

1. Single linkage uses the smallest distance between data xr
i and xs

j in the two

clusters r and s. If the sizes of r and s are nr and ns, then d(r, s) =

min(dist(xr
i ,x

s
j)), i ∈ (1, ..., nr), j ∈ (1, ..., ns);

2. Complete linkage uses the largest distance between data xr
i and xs

j in the two

clusters r and s, such that d(r, s) = max(dist(xr
i ,x

s
j)).

In order to reduce the randomness of the number of clusters, a stopping criterion is

defined for the clustering process. Given q clusters {rh, h = 1, 2, ..., q}, the classes

of the clusters are identical, and the number of data in each cluster rh is nrh . It is

obvious that the mean and variance of each cluster relate to the data xi, 1 ≤ i ≤ nrh

inside this cluster. Hence, the mean mrh of each cluster rh is:

mrh =
1

nrh

nrh∑
i=1

xi

and the variance srh is

srh =
1

nr

nrh∑
i=1

(xi −mrh)2

Hence, the intra-cluster deviation is defined as follows:

sintra =

√√√√
q∑

h=1

(srh ∗ p(rh)) (4.3)

where p(rh) = nrh∑q
h=1 nrh

.

And the inter-cluster mean and deviation are specified in Equation 4.4.
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minter =

q∑

h=1

(mrh ∗ p(rh)) (4.4a)

sinter =

√√√√
q∑

h=1

[(mrh −minter)2 ∗ p(rh)] (4.4b)

Definition 4.3.1. The stopping criterion D is the ratio between sintra and sinter.

If sintra

sinter > ε, then GOSE will stop merging the data further. Note that ε is a

user-defined parameter.

[0, 2] [5, 8] [7, 6] [7, 4]
x1 = [0, 2] 0 7.81 8.06 7.28
x2 = [5, 8] 7.81 0 2.82 4.47
x3 = [7, 6] 8.06 2.82 0 2
x4 = [7, 4] 7.28 4.47 2 0

Table 4.1: Distances between two instances

Example 4.2. Consider a set of instances S = {([0, 2], +1), ([5, 8], +1), ([7, 6], +1),

([7, 4], +1)} and ε = 0.5. Suppose that the single linkage function is applied

to group these instances into several clusters and that the distance function is

Euclidean. The procedure of clustering on S is as follows.

1. Step 1: from Table 4.1, it can be found that x3 = [7, 6] and x4 = [7, 4]

have the smallest distance. If x3 and x4 are joined together, then there

are three new clusters C1 = {([0, 2], +1)}, C2 = {([5, 8], +1)} and C3 =

{([7, 6], +1), ([7, 4], +1)}. The centroids of these clusters subsequently become

mC1 = [0, 2], mC2 = [5, 8] and mC3 = [7+7,6+4]
2

= [7, 5].

2. Step 2: the intra-cluster deviation sintra is calculated.

sintra =

√
[0, 0] ∗ 1

4
+ [0, 0] ∗ 1

4
+ [0, 2] ∗ 2

4
= [0, 1]
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3. Step 3: we compute the inter-cluster mean and deviation,

minter = [0, 2] ∗ 1

4
+ [5, 8] ∗ 1

4
+ [7, 5] ∗ 2

4
= [4.75, 5]

and

sinter =

√
[0− 4.75, 2− 5]2 ∗ 1

4
+ [5− 4.75, 8− 5]2 ∗ 1

4
+ [7− 4.75, 5− 5]2 ∗ 2

4

= [2.8614, 2.1213]

4. Step 4: since sintra

sinter = 0.17 < ε, we can carry out the clustering on ([7, 6], +1)

and ([7, 4], +1)

5. Step 5: for the new clusters C1 = {([7, 6], +1), ([7, 4], +1)}, C2 = {([5, 8], +1)}
and C3 = {([0, 2], +1)}, C1 and C2 are found to have the smallest dis-

tance. If the clusters C1 and C2 are merged, then there will be two clus-

ters: C1 = {([7, 6], +1), ([7, 4], +1), ([5, 8], +1)} and C2 = {([0, 2], +1)}.
The centroids of these clusters then become mC1 = [6.33, 6], mC2 = [0, 2],

while the intra-deviation sintra = [1.6330, 2.8284], the inter-mean minter =

[4.7475, 5.0000] and inter-deviation sinter = [2.7410, 1.7321]. Therefore, the

ratio sintra

sinter = 0.89 > ε and GOSE stops the mergence on C1 and C2.

Figure 4.8 shows the clustering process. The process of clustering aims to provide

an appropriate number of clusters for the next step, SEARCHING, so that the

points found on the classification boundary are not redundant, but correct rules

are still able to be extracted.
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CLUSTERING

Input: a set of synthetic instances {(xi, yi) : where yi = Ap, 1 ≤ i ≤ n},
a stopping criterion ε and the linkage function d(r, s) where r and s denote two clusters.
Output: a set of clusters C = {cj , 1 ≤ j ≤ q},
(1) Consider each xi as a cluster ci, then q = n.
(2) Compute d(ck, ch), 1 ≤ k, h ≤ q for each pair of clusters
(3) Merge the clusters into a new set of clusters Cnew

(4) Calculate sintra and sinter

(5) If sintra

sinter > ε then
(6) Stop clustering
(7) C = Cnew and q = the number of clusters in Cnew goto (2)

Figure 4.8: Pseudo Code for the procedure of clustering

4.4 Searching

The searching step searches for and locates the points on the decision boundaries.

Consider clusters P1, ..., Pa, which fall into class A1, and clusters N1, ..., Nb, which

fall into class A2. In the context of the theory of SVM, we believe that there

is a hyperplane lying between two different classes. GOSE uses Zhang and Liu’s

measure [42] to automatically look for the points on an SVM’s decision boundary4.

The idea is to consider all pairs (p, n) s.t. p ∈ Pj(1 ≤ j ≤ a) and n ∈ Nk(1 ≤ k ≤ b).

For each p, a corresponding point n, whose distance to p is minimum, can be found

in Nk. Similarly, for each n, the corresponding point p, whose distance to n is

minimum, can be found in Pj as well. Suppose that a trained SVM model is given.

For each pair of points (p, n), there are two outputs for both p and n respectively

after calling the QUERYSVM function. The outputs are the class labels for p and

n and the distance from p or n to the hyperplane. Let d1 represent the distance

from p to the hyperplane and d2 represent the same for n. In order to find the point

lying on the hyperplane, a binary search procedure (see Figure4.9) is performed

4Notice that for simplicity we have been considering two classes, but that our extraction
algorithm is applicable to any number of classes.
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on (p, n). In other words, if |d1 − d2| > ε, the mid-point q between p and n is

chosen. The SVM network classifies q and computes the distance between q and

the hyperplane. If the class of q equals that of p, then p is replaced by q; otherwise,

n is replaced by q. The process carries on until |d1 − d2| < ε is achieved, where ε

denotes an arbitrary small number.

The procedure of searching is described in Figures 4.9 and 4.10. Figure 4.10 shows

how SEARCHING works on the multi-classification problem. For each pair of

points, BINARYSEARCH is called to locate the points on the separating boundary.

BINARYSEARCH

Input: a pair of points (p, n) where p and n belong to different classes,
an arbitrary small number ε.
Output: a point q lying on the hyperplane
(1) Initialize a1 = p, a2 = n
(2) [A1, d1] = QUERY SV M(a1) and [A2, d2] = QUERY SV M(a2)
(3) While |d1 − d2| > ε
(4) Let q = a1+a2

2
(5) [y, d3] = QUERY SV M(q)
(6) If y == A1 then a1 = q and d1 = d3

(7) else a2 = q and d2 = d3

(8) Return q

Figure 4.9: Pseudo Code for the procedure of binary search

Example 4.3. Given a set of clusters C1 = {([1, 2], +1), ([1, 3], +1)}, C2 =

{([2, 1],−1), ([3, 1],−1)}, let a trained SVM model be f(x) = x1 − x2 = 0, where

x = [x1, x2] and ε = 0.01. Consider the point [2, 1] in C2; by using the Euclidean

distance function, the nearest point to the point [2, 1] is [1, 2] in C1. After calling

BINARYSEARCH, the point q = [1.5, 1.5] lying on the hyperplane is obtained.

Figure 4.11 provides an example that shows the results after the clustering and

searching steps. For presentation purposes, the figure only shows partial results.

If no clustering is applied on the points in Figure 4.11, the searching has to be

carried out 84 times. Conversely, only 28 searches are processed for the scenario in
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SEARCHING

Input: a set of classes A, a set of clusters C = {Chj , 1 ≤ h ≤ nj , 1 ≤ j ≤ CN},
where CN denotes the number of class involved, nj indicates the number of
cluster for the jth class and Chj = {xi, 1 ≤ i ≤ n}, and an arbitrary small number ε.
Output: a set of points q lying on the hyperplane
(1) For each Aj in A
(2) For each Ak in A where k 6= j
(3) Let C1 = {Chj , 1 ≤ h ≤ nj} and C2 = {Chk, 1 ≤ h ≤ nk}
(4) For each Chj in C1

(5) Let C1 = Chj

(6) For each xi in C1, qi = xi

(7) For each Chk in C2

(8) Let C2 = Chk

(9) Find the nearest point x′i in C2, ni = x′i
(10) Construct a pair (pi, ni)
(11) q = BINARY SEARCH((pi, ni), ε)
(12) q := q ∪ q′

Figure 4.10: Pseudo Code for the procedure of searching

the figure. That is to say, clustering could decrease the complexity of searching.

4.5 Extracting

A rule can be intuitively interpreted as a hypercube in the geometrical m-dimensional

input space, and a set of constraints have been applied for each such hypercube.

The main idea of our rule extraction approach is to find a set of optimal rules

that 1) covers the maximum area of the area of interest and 2) covers the largest

cardinality of synthetic instances at the same time.

Suppose that there is a set of points X lying on the SVM decision boundary,

where X is the result of searching (see Section 4.4), and a set of synthetic training

instances S generated from querying for classes A = {Ap, 1 ≤ p ≤ CN }, and the

SVM function f(x).

To realize the first goal of the rule extraction algorithm, we try to solve the following
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x2 

x1 

Figure 4.11: Partial results from clustering and searching.

optimization problem:

maximize
m∏

i=1

(xi − x0i
) (4.5a)

subject to l ≤ x ≤ u (4.5b)

∫ u

l

|f(x)− Ap| dx = 0 (4.5c)

where x0i
denotes the ith element of the vector x0 ∈ X (x0 indicates a starting

point of this optimization problem), xi is the ith element of x, and l and u are

the m-dimensional vectors providing lower and upper bounds to this optimization

problem.

The objective function (Equation 4.5a) aims to maximize the volume of the hyper-

cube that a rule covers, and it has two constraints. One is a bound constraint to

limit the optimal x∗ in a given area, while the other is a nonlinear constraint that

is used to exclude the points that have different class labels.

The values of l and u in Equation 4.5b can be calculated based on the lower and

upper bounds of the input space. For example (see Figure 4.12(a)), suppose the

scope of the input space is [L1, L2] ≤ x ≤ [U1, U2], and x0 = [x01 ,x02 ] is a point
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lying on the SVM boundary. Note that when we change 4x01 on x01 or −4 x02

on x02 (4x01 , 4x02 ≥ 0) the SVM classification on x0 is class Ap. Hence, it is

reasonable to assume that an optimal point can be found and that a rule for class

Ap in a rectangle between points x0 and [U1, L2] can be constructed. Here, [U1, L2]

is defined as an orientation for x0. l and u are then narrowed down to l = [x01 , L2]

and u = [U1,x02 ].

If more than one orientation is found for class Ap, then the principal orientations

have to be selected. Let v = [v1, v2] stand for an orientation for x0. In the above

example, v = [U1, L2]. Selecting the orientations for x0 involves deciding how

to compute the significance of each orientation. Equation 4.6 shows conditional

probability estimation that GOSE uses to determine the significance of each ori-

entation. The estimation represents the probability distribution of x lying in the

area between v and x0, given class Ap. In Equation 4.6, P (min(v,x0) ≤ x ≤
max(v,x0)

⋂
class = Ap) indicates the probability of x falling into the area be-

tween v as well as belonging to class Ap, and P (class = Ap) is the possibility

that the classification of x equals Ap. Assume that the distribution of synthetic

training examples is similar to that of the problem domain. Hence, the prob-

abilities P (min(v,x0) ≤ x ≤ max(v,x0)
⋂

class = Ap) and P (class = Ap)

could be worked out from the synthetic data set. The value of P (min(v,x0) ≤
x ≤ max(v,x0)|class = Ap) is then calculated by dividing P (min(v,x0) ≤ x ≤
max(v,x0)

⋂
class = Ap) by P (class = Ap). The end result is that those orienta-

tions that have the maximum probabilities are selected as the principal orientations

on x.

P (min(v,x0) ≤ x ≤ max(v,x0)|class = Ap) =
P (min(v,x0) ≤ x ≤ max(v,x0)

⋂
class = Ap)

P (class = Ap)
(4.6)

As presented in Equation 4.5c, the nonlinear constraint is a multi-dimension inte-
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gral on a linear/nonlinear function. GOSE uses a quasi-Monte Carlo method [94] to

approximate the integration because it is a superior method with many advantages

such as improved convergence and more uniformity. Therefore, the hypercube H

is considered to be composed of the points that are uniformly distributed as:

1

n

n∑
i=1

|f(ai)− Ap| ≈
∫ u

l

|f(x)− Ap| dx

where ai is a low-discrepancy sequence inside the hypercube [l, u], where 1 ≤ i ≤ n,

and n here means the number of points selected for approximation in the H. The

estimation error then becomes,

ε =

∣∣∣∣∣
∫ u

l

|f(x)− Ap| dx− 1

n

n∑
i=1

|f(ai)− Ap|
∣∣∣∣∣

From the above, it can be shown that the larger n is, the closer the approximation

approaches the integral. It is clear that the complexity5 increases with the rise of n.

Therefore, in order to strike a balance between error estimation, fidelity, accuracy

prediction and complexity, a proper n has to be chosen. In the cross-validation

experiments, we found n = 1000 as a suitable number for our benchmark datasets.

With this, the standard pattern search algorithm is applied to obtain a solution

x∗ to the optimization problem. Charles and Dennis analyze the generalization of

the pattern search by evaluating the objective function [1]. After obtaining the

optimal point x∗, together with the starting point x0, the antecedents of a rule

can be constructed by picking the minimum and maximum values of x∗ and x0, as

shown in Figure 4.13. Figure 4.12(a) gives an example of a hypercube rule with

the starting point x0.

Finally, to find the set of rules covering all the synthetic training instances, Equa-

5The complexity issue is discussed in Chapter 6.
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tion 4.5 is used again, and in it, x0 is replaced with s ∈ S (see Figure 4.12(b)). The

process is the same, which ensures the extracted rules cover most of the synthetic

training instances as well as the maximum area of the area of interest.

Unlike the existing work of Fung [22], GOSE can be applied to nonlinear SVM

kernels. This is because the extracting step of GOSE is based on the points lying

on the classification boundary without consideration of the inner structure of the

SVM network, and the points on the boundary are obtained through the BINA-

RYSEARCH function without dependence on any element relevant to the SVM

network. Therefore, GOSE can be applied regardless of the kernel of the SVM

network.

Figure 4.13 summarizes the extracting algorithm and its associated rule generation

algorithm, as discussed above.

The rule set obtained from extracting may contain overlapping rules, for which a set

of post-processing measures in the next section are employed to solve this problem.

 

s 

x0’(x0’1, x0’2) 

 

[x0’1, x2] < x < [x1, x0’2] �
 Ap 

x* (x1,x2) 

X2 

X1 

(a)

 

 [x1, l2] <  x < [u1, x2] 
�

 Ap 

x* (x1, x2) 
x’ 

s (u1, l2) 

X2 

X1 

(b)

Figure 4.12: left: extracting the rule from the starting point [x01 ,x02 ] which is
obtained from Searching; right: extracting the rule to cover the synthetic data and
approximate the area that Ap covers, the starting point is [s1, s2].
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Extracting

Input: A set of points X on the SVM boundary obtained from
the searching step; a set of training data S obtained from
querying step and the class label Ap.
Output: A set of rules R = {r},

where r =
∧

li ≤ xi ≤ ui → Ap, 1 ≤ i ≤ m
(1) for each t ∈ X
(2) Construct the lower and upper bound l and u

by finding the orientations of x
(3) Apply pattern search algorithm [1]with x0 = t to

obtain x∗

(4) Call rule generation algorithm with parameters x∗

and x0 to construct a rule r and make R := ∪r
(5) for each s ∈ S and its corresponding t ∈ X
(6) Construct the lower and upper bound l and u

by finding the orientations of s
(7) Apply pattern search algorithm [1] with x0 = s to

obtain x∗′ .
(8) Call rule generation algorithm with parameters x∗′ and s

to construct a rule r′ and make R := R ∪ r′

Rule Generation Algorithm

Input: m-dimensional points x∗ and x0

Output: a rule r
(1) Let lower bound l = [min(x∗1,x01), ..., min(x∗m,x0m)]
(2) Let upper bound u = [max(x∗1,x01), ..., max(x∗m,x0m)]
(3) Generate r =

∧
li ≤ xi ≤ ui → Ap, 1 ≤ i ≤ m

Figure 4.13: Rule extraction algorithm
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4.6 Post-Processing

After the initial rules are extracted through the extracting algorithm, GOSE em-

ploys a set of post-processing measures to obtain the final rule set. The purposes of

these post-processing measures are to detect generalized rules, to prune rules with

high error estimation and to construct non-overlapping rules with high coverage

rate.

The notions of non-overlapping and coverage rate are defined as follows.

Definition 4.6.1. Non-overlapping Rule: Given two rules, r1 =
∧

ai ≤ xi ≤ bi →
Ap and r2 =

∧
ci ≤ xi ≤ di → Ap, r1 and r2 are said to be non-overlapping iff

bi ≤ ci or ai ≥ di, for any i, 1 ≤ i ≤ m.

Definition 4.6.2. Coverage rate is the rate between the number of testing data

that are predicted correctly by a rule and the entire testing data.

In the following sections, we will explain each post-processing step in detail.

4.6.1 Rule Extending

Given that the input space of a problem domain is from [L1, ..., Lm] to [U1, ..., Um]

and that of a rule is r which is [l1, ..., lm] ≤ x ≤ [u1, ...um] → Ap, the rule-extending

step attempts to extend r into a larger scope. At the same time, the new rule r′

still satisfies the constraint that the area covered by r′ belongs to the same class.

To exhaustively find all the potential rules in an extended scope, a topology is used

to achieve this.

Let the original value of the antecedents of r be 0 and the new value of a rule be

1. For example, if the 1st dimension of the antecedents is extended to L1, then r
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000 

001 010 100 

101 011 110 

111 

Figure 4.14: Ordering on extending to the edge of the problem domain.

becomes l′ = [L1, l2, ..., lm] ≤ x ≤ u′ = [u1, ..., um] → Ap. Hence, the new value

[L1, u1] on dimension one is regarded as 1. The definition of topology is defined as

follows.

Definition 4.6.3. Topology: An arrangement in which each element means that

the value of every dimension is mapped to 0 or 1 according to the above regulations.

Figure 4.14 shows an example of a topology where the dimension of the input space

is 3.

We assume that the rule r initially constructs a rule set R. The function has m−1

iterations, and for each iteration, rj in R is picked, and every dimension of rj is

extended, where 1 ≤ j ≤ N and N is the number of rules in R. At the first

iteration, there is only one rule in R that is rj = r, j = 1. Subsequently, each

dimension i is extended to Li, and the new value [Li, ui] is verified if it satisfies

the constraint 1
n

∑n
i=1(|f(xi) − Ap|) = 0. Next, for the same dimension, r is then

extended to Ui, and a similar verification is performed on this new value. If there

is any extension on the value of the ith dimension of r, the new rule r′ is kept for

the next iteration. After going through each dimension of rj, all the new rules, r′,

are put together for a new rule set R.
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Finally, if the value of the ith dimension equals the scale of the input space, which

is believed to be applicable throughout the total range of the ith dimension, GOSE

then filters this dimension from the antecedents of the rule.

The complexity becomes exponential if the algorithm goes through every element in

the topology. It increases with the rise of the dimensionality of the input space and

even grows to be intractable in the worst case. Hence, in practice, an optimizing

measure known as the cracking of topology has been adopted.

Firstly, the definition of a clash of the topology is given. A clash is an occurrence

when the new region of a rule consists of the points for another class. The rule can

be represented as an element in the topology.

When a clash is identified on a certain element, the rule-extending process would

not continue on with the remaining elements that have connections with the element

that has the clash. This is called cracking of topology.

Example 4.4. Consider a three-dimensional problem. The antecedents of an

initial rule are interpreted as 000. It is then easy to make a structure in the

order of Figure 4.14. Given such an ordering, some conclusions can be drawn.

If an element in Figure 4.14 deviates from 1
n

∑n
i=1 |f(ai) − Ap| = 0, then a clash

would be detected, which indicates that no other element along the ordering of this

element would satisfy 1
n

∑n
i=1 |f(ai)− Ap| = 0 (Figure 4.15).

For instance, let a rule be r = {[1, 2, 2] ≤ x ≤ [3, 4, 2]} → Ap, and the input

space of the problem domain be [0, 10]. Hence, the rule can be mapped to the

topology in Figure 4.14. Initially, the lower bound of the first dimension of r

is expanded to 0, and the estimated value 1
n

∑n
i=1(|f(xi) − Ap|) of the new rule

r′ = {[0, 2, 2] ≤ x ≤ [3, 4, 2]} is examined if it equals 0. The related element

in Figure 4.14 is 100. If the region covered by r′ is not for one class, the new

value cannot be kept. Then the 1st dimension of r is extended to 10 and the
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Figure 4.15: An example of the cracking of topology: If 001 is not a satisfiable
element, then for 011, 101 and 111, the new regions of the related rules take the
same sth dimension into account as 001. Hence, 011, 101 and 111 are not satisfiable
elements either. GOSE will not continue to process these elements. To some extent,
the rule-extending carries on only for the relevant part in the ellipse.

estimated value 1
n

∑n
i=1(|f(x) − Ap|) is checked again. If it still does not equal

0, the element 100 is considered as a cracking of topology, and the connected

elements such as 110, 101 and 111 will not be processed. Finally, if one of the

rules becomes r = {[1, 0, 2] ≤ x ≤ [3, 10, 10]} → Ap, then it can be simplified into

r′ = {1 ≤ x1 ≤ 3
∧

2 ≤ x3 ≤ 10} → Ap, where r′ is equivalent to r with a better

comprehensibility.

4.6.2 Rule Pruning

The rule pruning stage aims to prune those rules that have a relatively large esti-

mated error. GOSE uses a t-test to analyze the null hypothesis that the mean of

the estimated value and the expected value of the integral of a rule r are equal,

that is the mean of the estimated value equals 0.

As GOSE uses quasi-Monte Carlo method to approximate the integration function

in Equation 4.5c, there is a potential error between the approximation value and

the integral. Most existing studies use the Koksma-Hlawka inequality [3] to state
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RULE EXTENDING

Input: r = {[l1, ..lm] ≤ x ≤ [u1, ..um]} → Ap, and the scope of the input space [L,U ]
Output: a set of new rules r′

(1) Initialize clashElement = [ ], oldIndex = [ ], newIndex = zeros(m)
and tempR = r

(2) For each i = 1 : (m− 1)
(3) r′ = tempR
(4) tempR = [ ]
(5) oldIndex = newIndex
(6) For each rj in r′

(7) h equals to the last location of 1 in oldIndex(j)
(8) For each k = h + 1 ≤ m
(9) tempIndex = [oldIndex(j)1...(k−1), 1, oldIndex(j)k...m]
(10) If one of elements in clashElement called cE = tempIndex
(11) go to (8)
(12) Extend rjk to Lk

(13) Check if satisfies
∫ u′
l′ (|f(x)−Ap|)dx = 0 by using approximation

(14) If satisfied,
construct a new rule r′j with the new value on dimension k

(15) Extend rjk to Uk

(16) Check if satisfies
∫ u′
l′ (|f(x)−Ap|)dx = 0 by using approximation

(17) If satisfied,
construct a new rule r′j with the new value on dimension k

(18) If not satisfied for both Lk and Uk

(19) clashElement := clashElement
⋃

oldIndex(j)
(20) else tempR := tempR

⋃
r′j

(21) oldIndex(j)k = 1
(22) newIndex := newIndex

⋃
oldIndex(j)

(23) If tempR is empty
(24) go to (26)
(25) else r′ = tempR
(26) Return r′

Figure 4.16: RULE EXTENDING function: oldIndex and newIndex hold the
mapping values of each rule in the topology.
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the limit of the integration error.

∣∣∣∣∣
1

n

n∑
i=1

|f(xi)− Ap| −
∫ U

L

|f(x)− Ap|
∣∣∣∣∣ ≤ V (f)D∗

N

However, it is usually difficult to calculate the total variation V (f), which makes

it problematic to estimate error through Koksma-Hlawka inequality.

Morohosi and Fushimi [29] introduce a statistical method for quasi-Monte Carlo

error estimation. The rule pruning of GOSE is based on their method. The general

scheme of the method is as follows.

Suppose a rule r with an area ranging from l to u, M data sets {x(j)
i }n

i=1, where

j = 1, ..., M , l ≤ x
(j)
i ≤ u and {x(j)

i }n
i=1 is a set of pseudorandom data. For each

data set, the value of Equation 4.7 is computed.

S(j) =
1

n

n∑
i=1

|f(xi)− AP | , j = 1, ..., M (4.7)

The estimate of the mean Î is calculated by

Î =
1

M

M∑
j=1

S(j) (4.8)

so that the error of the integral is estimated using the variance of the evaluated

values.

σ̂2 =
1

M(M − 1)

M∑
j=1

(S(j) − Î)2 (4.9)
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Hence, the t-test turns out to be:

t =
Î
σ̂√
M

(4.10)

GOSE sets a significance level to specify how close the approximation value is to

the expected value 0. If t is larger than the standard value at the significance level,

the rule is rejected. Otherwise it is accepted.

Those rules rejecting the null hypothesis are removed. Therefore, GOSE’s pruning

is able to ensure that GOSE approximates the behavior of the SVM network.

RULE PRUNING

Input: a set of rules R = {ri, 1 ≤ i ≤ nR} where nR is the number of rules in R,
and the standard value at significance level t1
Output: a set of pruning rule R′

(1) Initialize R′

(2) For each ri in R
(3) Compute t-test value of ri

(4) If t < t1 then R′ := R′⋃ ri

Figure 4.17: RULE PRUNING function

4.6.3 Non-overlapping Rule Construction

As mentioned in the extracting section, there could exist overlapping rules. To

remove the intersections between rules and improve the comprehensibility of rules,

the characteristics of non-overlapping rules is identified, that is at least one dimen-

sion of each of two rules do not intersect with each other. For example, let r1 be

[a1, .., am] ≤ x ≤ [b1, ..., bm] → Ap and r2 be [c1, ...cm] ≤ x ≤ [d1, .., dm] → Ap.

If ai ≤ ci ≤ bi ≤ di, 1 ≤ i ≤ m, then the overlap of r1 and r2 is {[c1, .., cm] ≤
x ≤ [b1, ..bm]}. Suppose r2 does not change and r1 has to be divided. For each

dimension i, a non-overlapping rule can be constructed in three steps:
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Part 1. Keep the original value aj ≤ xj ≤ bj of r1 for those dimensions j < i.

Part 2. Use the non-overlapping value ai ≤ xi ≤ ci for the dimension j = i.

Part 3. Use the overlapping values cj ≤ xj ≤ bj instead of the original values of r1

for those dimensions j > i.

As a result, the non-overlapping rule is the concatenation of these three parts.

Example 4.5. Given two rules r1 = {[1, 4, 3] ≤ x ≤ [4, 7, 6]} → Ap and r2 =

{[2, 5, 4] ≤ x ≤ [5, 9, 8]} → Ap, the intersection part of these rules is [2, 5, 4] ≤ x ≤
[5, 7, 6]. If i = 2 and r2 remains, then r1 should be split into three parts:

part 1. 1 ≤ x1 ≤ 4;

part 2. 4 ≤ x2 ≤ 5;

part 3. 4 ≤ x3 ≤ 6.

Then the non-overlapping rule is [1, 4, 4] ≤ x ≤ [4, 5, 6] → Ap.

4.6.4 Rule Selection

The last step of post-processing is rule selection. This discards those rules with

zero coverage rate.

The aim of this step is to extract those rules with extensive information. In GOSE,

this means that the rules predicting no data in our experiments are removed. Note

that the selection does not change the predictive behavior of GOSE, it simply

deletes extraneous rules (see Figure 4.19).
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NON-OVERLAP

Input: a set of rules R Output: a non-overlap rule set RS
(1) Initialize RS = [ ]
(2) for each r in R
(3) If RS = [ ] then RS := RS

⋃
r

(4) else for each r′ in RS
(5) r = Call SPLIT (r, r′)
(6) R := R

⋃
r

SPLIT

Input: two rules r1 = {[a1, ...am] ≤ x ≤ [b1, ..bm]} and r2 = {[c1, ..cm] ≤ x ≤ [d1, ..dm]}
Output: a set of non-overlap rules R
(1) [L,U ] = INTERSECTION (r1, r2)
(2) If L and U are empty then return
(3) For each 1 ≤ i ≤ m
(4) If i = 1
(5) p1 is empty
(6) else
(7) p1 = {[a1, ...a(i−1)] ≤ [b1, ..b(i−1)]}
(8) If ai < Li then
(9) p2 = {ai ≤ xi ≤ Li}
(10) else if bi > Ui

(11) p2 = {Ui ≤ xi ≤ bi}
(12) If i = m
(13) p3 is empty
(14) else
(15) p3 = {[L(i+1), ..Lm] ≤ x(i+1) ≤ [U(i+1), ..Um]}
(16) r′ = p1

∧
p2

∧
p3

(17) R := R
⋃

r′

INTERSECTION

Input: two rules r1 = {[a1, ...am] ≤ x ≤ [b1, ..bm]} and r2 = {[c1, ..cm] ≤ x ≤ [d1, ..dm]}
Output: overlapping part of two rules L ≤ x ≤ U
(1) Initialize L and U
(2) Organize ai, bi, ci and di in ascending order
(3) If ci < bi or ai < di

(4) Li = ci or Li = ai

(5) Ui = bi or Ui = di

Figure 4.18: NON-OVERLAP function
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RULE SELECTION

Input: a set of rules R = {ri, 1 ≤ i ≤ nR} where nR is the number of rules in R
Output: a final set of rule R′

(1) Initialize R′

(2) For each ri in R
(3) Compute the coverage rate cv of ri

(4) If cv > 0 then R′ := R′⋃ ri

Figure 4.19: RULE SELECTION function

4.6.5 Discussion

As described in the above sections, the four post-processing measures are imple-

mented in the order of rule extending, rule pruning, non-overlapping rule construc-

tion and rule selection. Different orders could lead to different results. For example,

if non-overlapping rule construction is carried out before rule extending, then new

overlapping would be generated after rule extending. Moreover, the rule pruning

stage reduces the workload of non-overlap rule construction. Rule selection has to

be run after non-overlapping rule construction, because this step leads to the final

rule set. Furthermore, it can also be run one more time before non-overlapping rule

construction so that the workload of non-overlapping rule construction is reduced

by filtering those rules with zero coverage. The running of rule extending should

be ahead of rule pruning because rule extending could enlarge the area that a rule

covers and might bring about large estimated errors.

4.7 Chapter Summary

This chapter has presented the GOSE algorithm which extracts conjunctive rules

from SVMs. GOSE is novel in that, unlike previous SVM approaches, it treats the

SVMs as oracles. The primary advantages of this approach are
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1. It is general in its applicability.

2. It is blind to the structure of the network.

3. It is scalable to large problem domains.

Since few real-world problems are able to exhaustively enumerate all of the data,

the training set obtained from most real-world problem domains is usually small.

GOSE can generate synthetic training instances from a density estimator, which

allows GOSE to be employed effectively in a very general manner.

A second advantage is that it uses the SVM networks as ‘black boxes’, which only

answer the queries for the inputs. Therefore, this makes the approach independent

of the structure of the networks. In Chapter 5, different SVM algorithms are

applied to GOSE, showing that good results can still be achieved.

Another key aspect of GOSE is that it extracts rules by approximating the SVM

classification. As illustrated in [50], it is not possible to extract accurate rules with

perfect fidelity. GOSE therefore tries to extract conjunction rules that simulate the

behavior of SVMs with small errors. It mines optimal rules, attempting to reduce

the approximation error and maximize the fidelity.



Chapter 5

Empirical Evaluation of GOSE

This chapter provides an empirical evaluation of GSVMORC. The experiments

presented here show that GOSE can solve a variety of classification tasks. The

experimental studies presented in this chapter aim to demonstrate the influence

of the parameters of GOSE and investigate the quality of acquired rule sets. We

conduct two types of experiments.

Experiment Type I: to evaluate GOSE with various sizes of synthetic training

instances under the same number of clusters.

Experiment Type II: to evaluate GOSE with various numbers of clusters under

the same size of synthetic training instances.

Six criteria are used to evaluate the performance of GOSE, namely: accuracy, fi-

delity, consistency, comprehensibility, scalability and generality. Section 5.1 briefly

explains these evaluation criteria.
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5.1 Evaluation Criteria

GOSE is evaluated from the following six aspects.

1. Accuracy: GOSE should have an accurate prediction on unseen examples.

2. Fidelity: GOSE should produce symbolic representations that can precisely

simulate the behavior of the learning systems.

3. Consistency: GOSE should produce the same classification on unseen exam-

ples under various training sessions.

4. Comprehensibility: GOSE should generate symbolic representations that are

easily understandable to users.

5. Scalability: GOSE should be scalable to deal with large hypothesis spaces.

6. Generality: GOSE should require no specific training data or network archi-

tecture.

The evaluation presented in this chapter mainly concerns the first four aspects,

which comprise rule equality. Each of the rule quality measures is described in

detail in Section 5.2.

5.2 Rule Quality

The quality of the extracted rules is regarded as the most important element for rule

extraction algorithms [38]. Accuracy, fidelity, consistency and comprehensibility

are the individual aspects of rule quality.
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Given a set of unseen examples {(x1, y1), ...(xN , yN)}, yBB
i and yWB

i indicate the

predictions made by SVM networks (Black Box) and extracted rules (White Box) [38]

where 1 ≤ i ≤ N . The following equations then denote whether yWB
i equals its

original label yi or its corresponding SVM label yBB
i .

now =





0, if yi 6= yWB
i ;

1, if yi = yWB
i .

nbw =





0, if yBB
i 6= yWB

i ;

1, if yBB
i = yWB

i .

(5.1)

Hence, for classification problems, the accuracy of rule extraction is expressed as

the percentage of unseen examples that are correctly classified. Fidelity is usually

defined as the percentage of unseen examples whose yBB
i and yWB

i are the same.

accuracy =

∑N
i=1 now

N
(5.2a)

fidelity =

∑N
i=1 nbw

N
(5.2b)

Comprehensibility is another important factor to determine the rule quality. The

specific measures that we use to assess the comprehensibility of GOSE are

(i) the number of rules to predict unseen examples and

(ii) the average number of antecedents for a single rule.

For a given symbolic interpretation, fewer and simpler rules are more comprehen-

sible than complex rules.
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Another desirable quality of the GOSE algorithm is its consistency. There are

several definitions of this concept. In [84], it is defined as consistent if similar rules

can be produced on the same data set under differing training sessions, while [66]

considers an algorithm to be consistent if two extracted rule sets produce the same

classification of unseen examples.

The two definitions above concentrate either on the similarity of predictions of

the extracted rules or on the rules themselves. As the main motivation of rule

extraction is to obtain a comprehensible interpretation with high accuracy and

fidelity, this aspect of rule quality is often overlooked. We believe that this is

mainly owing to a lack of a straightforward definition of similarity. We therefore

now extend the method in [38] to make the definition of consistency oversee both

aspects of similarity.

Given two rule sets A and B, we deem that a measure of consistency between two

rule sets denoted by σ has the following properties:

• σ consists of two components: 1) the similarity between the predictions of A and

B; 2) the similarity between A and B themselves. σ(A,B) adds these two

components together.

σ(A,B) =
1

2
(σpred(A,B) + σrule(A,B))

• If A is consistent with B, then B should also be consistent with A.

• If two rule sets A and B are exactly the same, the predictions of A and B are

also the same. Hence, σ becomes maximum, i.e.

σ(A,A) = 1.
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• If two rule sets provide completely different classifications for each unseen exam-

ple, in that case, σ should be minimal

σ(A, A) = 0.

σpred(A,B) equals the rate between the number of examples correctly predicted by

both A and B and the number of examples correctly predicted by either A or B.

σpred(A,B) =
NA∩B

NA∪B

(5.3)

Next, σrule(A,B) is calculated by using the algorithm proposed in [38]. At first, for

each rule r in A or B, the number of examples that are classified by r is summed

up and denoted as Nr. If a rule r ∈ A or B covers nr examples, a rule r′ in another

rule set can be found to predict most of these nr examples that have the same class

as r. The number of the examples classified by r′ is then denoted as N other
r . So,

σrule(A,B) =

∑
r∈A N other

r′ +
∑

r∈B N other
r′∑

r∈A Nr +
∑

r∈B Nr

(5.4)

As a result,

σ(A,B) =
1

2
(
NA∩B

NA∪B

+

∑
r∈A N other

r′ +
∑

r∈B N other
r′∑

r∈A Nr +
∑

r∈B Nr

). (5.5)

Example 5.1. Table 5.1 is an example used to clarify the meaning of consistency.

In Table 5.1, the number of examples correctly classified by both A and B is nine

while ten examples are correctly predicted by one of these two rule sets. σpred(A,B)

thus equals 0.9. The second step is to calculate the similarity between the rule sets

themselves. The following gives the details of the calculation on σrule(A,B). For

instance, in Table 5.1, the rule A2 ∈ A predicts five examples correctly, so that
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Observation Prediction (A) Rule (A) Prediction (B) Rule (B) Real Value
1 Yes A1 Yes B1 Yes
2 No A3 Yes B3 No
3 Yes A1 Yes B1 Yes
4 Yes A2 Yes B1 Yes
5 Yes A2 Yes B1 Yes
6 Yes A2 Yes B2 Yes
7 Yes A2 Yes B1 Yes
8 No A3 No B3 No
9 No A3 No B3 No
10 Yes A2 Yes B2 Yes

Table 5.1: An example of consistency

NA1 = 2 ⇒ N other
A1 = 2 NB1 = 5 ⇒ N other

B1 = 2
NA2 = 5 ⇒ N other

A2 = 3 NB2 = 2 ⇒ N other
B2 = 2

NA3 = 3 ⇒ N other
A3 = 2 NB3 = 2 ⇒ N other

B3 = 2

Table 5.2: Similarity between A and B

NA2 = 5. For each rule in B that predicts those five examples with the same class

as A2, the rule B1 finds the highest number. Hence, N other
A2 = 3. The result of

comparing A and B is shown in Table 5.2.

Then

σrule(A,B) =
7 + 6

10 + 9
= 0.68

Finally,

σ(A,B) =
1

2
(0.9 + 0.68) = 0.79 = 79%

It is not easy to give an intuitive meaning to this number. However, to some extent,

it illustrates the degree of similarity between A and B. We believe that the high

consistency leads to a better overall performance of the rule extraction algorithms.
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5.3 Monk’s Problems

This section evaluates GOSE in relation to the Monk’s problems [77]. These prob-

lems are used as benchmarks for performance comparison between a variety of

symbolic and non-symbolic learning techniques [81] such as ID5R [37] and the

AQ [90] program. These algorithms provide a baseline for evaluating the quality

of the extracted rules from GOSE.

All of the three Monk’s problems have seven attributes, which include an Id feature

for each instance. The other attributes are categorical, labelled as a1, a2, a3, a4, a5, a6.

All instances in the Monk’s problems are divided into two classes: class1 = 0 and

class2 = 1.

Monk-1 trains an SVM network with 124 examples selected from 432 instances,

Monk-2 trains a network with 169 examples selected from 432 instances and Monk-

3 trains a network with 122 examples out of 432 instances. Note that 5% class noise

is added to the training set of Monk-3.

5.3.1 Algorithm

For Monk-1 and Monk-3, the SVM is trained using Sequential Minimal Optimiza-

tion (SMO) algorithm [40]. The kernel of the SVM is a radial basis function with

differing length scales for each input. The kernel is given as follows.

K(x, z) = exp(−
∑m

i=1((xi − zi)
2 ∗ τi)

s
) (5.6)

where τ is an m-dimension vector holding the length scales for the inputs. The

length scale for each dimension used for the SVM network is chosen as (9, 7, 3, 0, 5, 2)

and (9, 9, 3, 0, 5, 2) for Monk-1 and Monk-3 respectively. This is because that
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the SVM network is capable of obtaining the highest prediction accuracy at those

values.

For Monk-2, a multi-class one-against-one algorithm with a Gaussian kernel is

applied. The one-against-one algorithm is also known as pairwise coupling [82].

Equation 5.7 is chosen as the kernel for SVM training.

K(x, z) = exp(−‖x− z‖2

2σ2
) (5.7)

where the bandwidth σ is set to 3.3. This is because a high forecasting accuracy is

achieved by the SVM network at this value.

In experiments, synthetic instance sets have firstly to be generated for all Monk’s

problems. The synthetic instances are those whose outcomes of the density es-

timator M(x) (see Chapter 4) are larger than a threshold c1. c1 is one of the

parameters of the experiments. For a high-dimension input space, the likelihood of

data appearing in a specific part of the space is small. Hence, c1 is set at a relative

small value, i.e. 0.000001. Subsequently, after the querying step, GOSE picks N

instances {(xi, yi), 1 ≤ i ≤ N} with the highest probability. N is a user-defined

parameter. This allows GOSE to optionally adjust the size of the training set for

rule extraction. Here, for Experiment Type I, N is set as 0, 20, 40, 80 and 100 for

Monk-1 and Monk-3, and N = 0, 50, 100, 150, 200 for Monk-2.

Another parameter of GOSE is the stopping criterion D for clustering, which is

employed to decide the number of clusters. In Experiment Type I, in order to

assess the rule quality under the fixed number of clusters, the instances for each

class are deemed to fall within one cluster. Hence, the stopping criterion is not

used in this part. For Experiment Type II, diverse values are set for D to partition

the instances into a certain number of clusters. For all Monk’s data sets, if D is

equal to the relevant values in Table 5.4, then this enables the synthetic instance
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set to be divided into 1, 2, 3, 4 and 5 clusters correspondingly.

Other parameters which need to be considered are the significance level of the t-

test in rule pruning, the number of the random data used in querying to choose the

training instances for the rule extraction algorithm and the points used for quasi-

Monte Carlo integration. The significance level of the t-test is set to 0.05, which is

a standard value used in statistics. For all the domains in this chapter, the value

of the first parameter is set to 100,000. We consider 100, 000 to be a number from

which enough synthetic training instances can be generated for rule extraction.

The third parameter is set to 1000, We choose 1000 as the value of the third param-

eter because the lower bound of the convergence of quasi-Monte Carlo integration

for 1000 is O(1/N) = O(0.0001), which is an acceptable rate. Although, when the

dimensionality increases, the upper bound of the convergence (maximum error)

O(ln((ln N)s/N)) becomes worsens, the experiments show that it is more common

to obtain results closer to the best rate of convergence than to the theoretical worst

case. In the experiments, N = 1000 makes a good balance between complexity and

rule quality.

At the post-processing stage, the rule selection is run twice: first before the non-

overlapping rule construction and then after it. It is believed that the first rule

selection process could greatly decrease the complexity of the non-overlapping rule

construction and that the second time could result in a comprehensible rule set.

5.3.2 Results

Figures 5.1, 5.2 and 5.3 show the results of accuracy on Monk’s problems. Each of

these values represents the average values of a three-fold cross-validation run. As

the training and test sets for Monk’s problems already exist, the cross-validation
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run for Monk’s problems is defined as follows:

A. Train the SVM network with the original training set.

B. Generate three synthetic training sets that have the same size and different

instances.

C. Extract rules by using these three synthetic training sets and average the re-

sults.

Experiment Type I

It can be seen that, with the increase of N , the accuracy of GOSE also increases

and converges to the accuracy of SVM. Figure 5.1 shows that, when N reaches 100,

GOSE achieves 100% accuracy for Monk-1. Conversely for Monk-2, GOSE attains

84.8% for a 200-size training set compared with the 85.7% accuracy classified by

the SVM network (see Figure 5.2). It is shown in Figure 5.3 that GOSE achieves

an average 95% correctness for a 100-size training set of Monk-3, while the SVM

network attains around 94% accuracy.

Table 5.3 shows the fidelity of Monk’s problems to their respective SVM networks.

The results of the fidelity are also the average of the cross-validation runs, similar

to accuracy. From the table, it can be seen that the fidelity of Monk-1 is 100%,

while Monk-2 and Monk-3 obtain 99% and 98.5% fidelity.

The results of accuracy and fidelity demonstrate that GOSE could predict unseen

examples with a high correctness as well as present a good approximation to the

behavior of SVMs.

The results in Table 5.3 show that GOSE has a high consistency on all Monk’s

problems when GOSE uses the same synthetic training set to extract symbolic
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Figure 5.1: The accuracy of Monk-1 under different data size comparing with that
of SVM
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Figure 5.2: The accuracy of Monk-2 under different data size comparing with that
of SVM
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Figure 5.3: The accuracy of Monk-3 under different data size comparing with that
of SVM

rules several times. However, if GOSE uses different synthetic training sets to

classify the same unseen examples, the average similarities between two extracted

rule sets are 100% for Monk-1 and Monk-3, and 88.1% for Monk-2. These results

indicate that the high accuracy and fidelity of GOSE are not random events but

happen in a consistent way.

The following are some of the extracted rules for Monk’s problems.

For Monk-1, GOSE obtained four rules for all classes. On average, each rule has

2.37 conditions. This is from the 100 synthetic training instances, which cover

100% of the test cases.

a1 = 1
∧

a2 = 1 → 1

a5 = 1 → 1

The rules above have a high coverage, as the rule a1 = 1
∧

a2 = 1 → 1 covers 96
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Fidelity Consistency Consistency
(same synthetic train set) (different synthetic train set)

Monk-1 100 100 100
Monk-2 99.12 100 88.1
Monk-3 98.5 100 100

Iris 100 100 90
Breast Cancer 100 100 84

Table 5.3: Test-set fidelity(%) and consistency for Monk’s, Iris and Breast Cancer
problems

out of 308 instances in the test set. The complete rule set is given in Appendix A.

For Monk-2, around 38 rules are extracted, with around 4.1 conditions per rule

for class 1. For class 0, 24 rules with 5.8 conditions per rule are extracted. The

following are examples of the rules. The complete rule set is also shown in Appendix

A.

a1 = 1
∧

a2 = 1
∧

a6 = 1 → 1

a1 = 1
∧

a3 = 1
∧

a4 = 1 → 1

For Monk-3, 11 rules are extracted, with around 3.4 conditions per rule for class 1,

while 6 rules with 2.7 conditions per rule are extracted for class 0. The following

are examples of the rules. Again, the complete rule set is shown in Appendix A.

a2 = 1
∧

a5 = [1, 2] → 1

a5 = 4 → 0

Experiment Type II

The value of D rises with the merging of the clusters. When the number of clusters

decreases, the intra-cluster variance of each cluster increases, since the new in-
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stances included in the cluster have relatively farther distances than those already

inside the cluster. Table 5.4 shows this fact.

data set size class 1 cl 2 cl 3 cl 4 cl 5 cl
Monk-1 20 0 Inf 3.6 3.5 3.4 3.0
Monk-1 20 1 Inf 0.54 0.37 0.24 0.17
Monk-2 50 0 Inf 1.69 1.58 1.41 1.32
Monk-2 50 1 Inf 1.77 1.62 1.43 1.12
Monk-3 20 0 Inf 0.73 0.73 0.37 0.25
Monk-3 20 1 Inf 1.5 0.43 0.18 0.13

Iris 30 1 Inf 0.79 0.64 0.35 0.19
Iris 30 2 Inf 2.53 1.66 1.05 0.81
Iris 30 3 Inf 2.47 0.72 0.5 0.42

Breast Cancer 30 1 Inf 97.55 86.35 77.50 70.42
Breast Cancer 30 -1 Inf 121.18 106.63 97.97 90.84

Table 5.4: The values of D for different number of clusters, where cl is the abbre-
viation of cluster

We believe that changing D, that is changing the number of clusters, will affect

the accuracy of classification. Figures 5.4, 5.5 and 5.6 show that the prediction

accuracy increases with decreasing D.

In addition, more than 90% of all the extracted rules after rule extending satisfy

the hypothesis in the rule pruning phase, i.e. the approximation value is close to

the expected value of the integral. This fact therefore indirectly demonstrates that

the estimated error of quasi-Monte Carlo integration in the experiments conducted

in this thesis is closer to the best convergence rate rather than to the theoretical

worst case.

5.4 IRIS problem

This section investigates the use of GOSE to describe an SVM network on the Iris

plant problem [77]. Iris is one of the best-known data sets in the classification

literature.
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Figure 5.4: The prediction accuracy of Monk-1 by changing the stopping criterion
D so that the number of cluster increases from 1 to 5. The N = 20 for this figure.
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Figure 5.5: The prediction Accuracy of Monk-2 by changing the stopping criterion
D so that the number of cluster increases from 1 to 5. The N = 50 for this figure.
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Figure 5.6: The prediction Accuracy of Monk-3 by changing the stopping criterion
D so that the number of cluster increases from 1 to 5. The N = 20 for this figure.

Lower Bound Upper Bound
sepal length 4.3 7.9
sepal width 2 4.4
petal length 1 6.9
petal width 0.1 2.5

Table 5.5: The input space scope of Iris problem domain

The data for Iris consists of four continuous attributes: sepal length, sepal width,

petal length and petal width. There are three plant classes: Iris Setosa, Iris Versi-

colour and Iris Virginica.

There are 150 instances in the data set. The input space of Iris is summarized in

Table 5.5.

5.4.1 Algorithm

The trained network in Iris experiments uses a multi-class one-against-all algo-

rithms with Gaussian kernels, called DAGSVM (Directed Acyclic Graph SVM) [39].
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It constructs three classifiers, one for each pair of classes. The prediction results

are obtained along with the DAGSVM method which is explained in Chapter 2.

Experiments on the Iris problem are conducted in a similar way to those on Monk’s

problems. They study the rule quality, such as accuracy and fidelity, on various

sizes of the data sets and on the number of clusters.

A number of the synthetic instances are drawn at the constraint c1 within the

input space of the Iris problem domain. Here, c1 is also set as 0.00001 which is the

same as that in Monk’s problems. GOSE then chooses N data from these synthetic

instances, for rule extraction. N is set to 0, 30, 100, 200 and 300 in Experiment

Type I for Iris.

Table 5.4 summarizes the intra-cluster errors for various numbers of clusters. For

Experiment Type I, to test the accuracy and fidelity on the same number of clusters,

the number of clusters D is fixed to 1, while in Experiment Type II, it is set to the

corresponding values in Table 5.4.

All other parameters and processes are the same as in the Monk’s problems.

5.4.2 Results

It is shown in Figure 5.7 that the prediction accuracy of the Iris problem reaches

89.33% when the accuracy of SVM is 91.33%. This value represents the average

from a five-fold cross-validation run. The following outlines the process of the

cross-validation run for the Iris problem domain.

a. Divide the data set into five parts, and select four of them as the training set

and the rest as the testing set.

b. Train the SVM network with the training set.
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Figure 5.7: The accuracy under different size of data set

c. Generate a synthetic data set that has N instances, to extract rules.

d. Extract the rules using GOSE.

e. Predict the test set.

f. Loop five times and average the results.

Experiment Type I

It can be seen from Figure 5.7 that the prediction accuracy increases with increasing

N . When N equals 30, the accuracy is only 77.33%. However, 84.67% is achieved

when N equals 100. It finally reaches 89.33% at N = 300, which is a value near to

the accuracy of SVM.

Table 5.3 shows the fidelity of the GOSE on the Iris problem. The result of fidelity

is also obtained from the average of the cross-validation run reaching 100% in our

experiments.
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It can also be seen in Table 5.3 that GOSE has a high consistency on the Iris

problem. For different sessions on the same test set, 100% consistency is gained on

the same synthetic data set, and 85% consistency is gained on different synthetic

data sets with the same unseen examples. The results of accuracy, fidelity and

consistency demonstrate that GOSE has a good performance on the IRIS problem.

The following is an example of the extracted rules. GOSE obtains on average ten

rules for each class, with four conditions per rule.

sepal length= [4.3, 6.6]
∧

sepal width= [2.0, 4.0]
∧

petal length= [2.7, 5.0]
∧

petal

width= [0.4, 1.7] → Iris Versicolour

The rule above correctly predicts 45 out of 150 instances in the data set. Overall,

93% training and test examples in the Iris data set are predicted correctly. The

details of the extracted rules are presented in Appendix A. From the above example,

it can be seen that, although post-processing is applied for rule simplification, in

some cases, the antecedents of each rule are not reduced significantly, owing to the

irregularity of the nonlinear classification boundary.

Experiment Type II

Table 5.4 shows that the intra-cluster error decreases when the number of clusters

increases. Figure 5.8 shows that GOSE is able to predict much more instances

when the number of clusters increases. For example, GOSE classifies only 56%

instances correctly when the cluster number is one. But it predicts 84% instances

correctly when the number of clusters goes to six. It is interesting to note that the

value of 84% is close to the accuracy of 89.33% when the train set contains 300

instances and has one cluster for each class.
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Figure 5.8: The association between the cluster number and prediction accuracy

5.5 BREAST CANCER problem

The Breast Cancer problem, which diagnoses the presence of breast cancer disease

in patients, is another important benchmark in the classification domain. The data

set contains 699 instances that have nine discrete attributes and a class attribute.

The discrete attributes are: Clump Thickness, Uniformity of Cell Size, Uniformity

of Cell Shape, Marginal Adhesion, Single Epithelial Cell Size, Bare Nuclei, Bland

Chromatin, Normal Nucleoli and Mitoses. The class attribute has two values: 1

indicates benign and −1 malignant. The input space of the problem domain ranges

from 1 to 10 for each attribute. There are 16 instances with missing attribute values.

5.5.1 Algorithm

We train the SVM using the SMO algorithm, which is similar to the one used for

Monk-1 and Monk-3. The kernel of the SVM is a radial basis function with a
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common length scale for each input. The common length scale is set to 4 in this

experiment in order to achieve the highest prediction result.

For the Breast Cancer problem, experiments are divided into Experiment Type I

and Type II to assess the quality of rules extracted from GOSE. These two types

of tests are both conducted using a five-fold cross-validation methodology. The

process is analogous to that for the Iris domain.

We select N = 0, 50, 100, 150, 200 synthetic instances for Experiment Type I, while

the number of clusters is set to one so that D is fixed. On the other hand, in

Experiment II, N is fixed to 30, while D is set to the relevant values in Table 5.4.

The other parameters and processes are the same as the ones used in the evaluation

for Monk’s problems.

5.5.2 Results

In Figure 5.9, it shows that the prediction accuracy obtained for the Breast Cancer

problem is 90.14% compared with the 94.42% SVM accuracy when N = 200. This is

the average of the five-fold cross-validation run. The process of the cross-validation

run is the same as that in the Iris problem domain.

Experiment Type I

It is clear that the prediction accuracy increases from N = 50 to N = 200 (see

Figure 5.9). When N equals 50, the accuracy is only around 60%. Although

the rate of the increase reduces, it still causes the accuracy result to finally reach

90.14% at N = 200.

Table 5.3 also shows the fidelity of GOSE on the Breast Cancer problem. These
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Figure 5.9: The accuracy under different size of data set

are the results from the average of the cross-validation run. The fidelity is 100%

in our experiments.

Consistency is another measure with which to evaluate the rule quality. A high

consistency is shown, also in Table 5.3. For various sessions on the same syn-

thetic data set, 100% consistency is obtained. At the same time, GOSE achieves a

consistency of 84% on a variety of synthetic data sets.

The following is an example of the extracted rules. GOSE obtained on average 26

rules for class 1 and 81 rules for class −1, with an average 7.2 conditions per rule.

The final rule set classifies 90.14% of the test cases and 93% of the whole data set

correctly.

a3 = [4, 9]
∧

a5 = [3, 9]
∧

a6 = [10, 10]
∧

a7 = [5, 9] → −1

The details of the rules are presented in Appendix A. In the experiments, we also

found that, if the distribution of the problem domain is diverse, then the number of
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Figure 5.10: The accuracy under different size of data set

rules increases. In order to improve the comprehensibility of GOSE, future research

is needed in this area.

Experiment Type II

It also can been seen in Table 5.4 that the intra-cluster error decreases when the

number of clusters increases. Meanwhile, many more instances are predicted if

more clusters are constructed. For instance, an accuracy of only 62.23% accuracy

is gained when each class has one cluster, but 87.55% of instances are predicted

when the number of clusters goes to six.

5.6 Comparison

We have shown how rules can be extracted from SVMs without needing to make

many assumptions about the architecture, initial knowledge and training data set.
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We have also demonstrated that GOSE is able to approximate and simulate the

behavior of SVM networks correctly.

The accuracy and the fidelity of our algorithm are better than those obtained

by the SVM rule extraction approach proposed in [59], which is an important

work on rule extraction from SVMs. GOSE obtains 100% accuracy for Monk-1,

while the SVM+prototype [31] predicts only 59.49% of instances correctly in the

test set. Compared with the 63.19% test-set performance by the rule base and

the 82.2% SVM classification rate, GOSE achieves 84.8% accuracy on the test

set while the classification of SVM is 85.7%. GOSE also obtains 100% fidelity,

but the SVM+prototype has just 92.59% and 75.95% agreement with SVM net-

works in the respective data sets. (Note that the performance measures for the

SVM+prototype and other techniques originate from published papers and not

our own experiments [31].)

In the Iris problem, the SVM+prototype [59] reports an accuracy rate of 71% for

interval rules and a fidelity rate of 97.33% compared with the 96% accuracy of RBF

SVM networks [60]. Our algorithm achieves a maximum fidelity rate (100%) with

a far higher accuracy (89.33%), while SVM accuracy is 91.33%.

In the Breast Cancer problem, the ExtractRules-PCM approach of [22] achieves an

average accuracy of 98% compared with an SVM accuracy of 95%. In contrast,

our extraction algorithm shows high agreement between the rules and the SVM.

A good fidelity indicates that the rule extraction method mimics the behavior of

SVM networks, and a better understanding of the learning process is therefore

obtainable.

In the Breast Cancer problem, the eclectic approach of [58] achieved 82% accuracy

compared with an SVM accuracy of 95%. Our approach performs better than that

approach. It achieves 89% accuracy which is more closer to the SVM accuracy



5.7. DISCUSSION 127

(94%).

In RuleExSVM [98], another vital algorithm for SVM rule extraction, rules are

extracted based on the SVM classification boundary and support vectors. Rule-

ExSVM has high rule accuracy and fidelity in the Iris and Breast Cancer problems.

For example, for the Iris problem, RuleExSVM achieves 98% relative to the 97.5%

of the SVM classification results, and in the Breast Cancer domain, 97.8% accu-

racy is obtained. The fidelity levels of these two domains range from 99.18% to

99.27%. However, RuleExSVM constructs the rules largely depending chiefly on

the training samples and support vectors. It is difficult to apply to networks other

than SVM networks. On the other hand, GOSE has a high level of generality in a

wide array of networks.

Finally, on the issue of comprehensibility, NeuroRule [71], an approach to pruning

neural networks and using decompositional extraction, produces five rules with 4.2

conditions per rule in the Breast Cancer domain compared to 107 rules with 7.2

conditions per rule in our approach. However, NeuroRule relies on special training

procedures that facilitate the extraction of the rules. GOSE, on the other hand,

is architecture-independent and has no special training requirements. It offers the

highest fidelity rate and an interesting convergence property, as illustrated in the

figures above.

5.7 Discussion

Like most rule extraction approaches, GOSE produces rules in the form of interval

rules. However, there are a couple of advantages to using interval rules as symbolic

interpretation. First, the interval rule is easily understood by users. Given a

rule: a5 = 1 → class = 1, it is straightforward to determine the ranges of the



5.7. DISCUSSION 128

antecedent of the rule, which help users to quickly classify unseen examples. From

this example, it can also be seen that a5 is a critical element in the classification.

A second advantage is that the geometric representation of the interval rule. This

helps GOSE to approximate the behavior of the SVM.

The experiments in this chapter illustrate that GOSE is capable of obtaining rules

which simultaneously have a high fidelity and accuracy, which is desirable because

it avoids the scenario known as fidelity-accuracy dilemma1 [103]. For example, the

research by Zhou [103] shows that rule extraction algorithms can generalize better

than their trained networks. One issue that these algorithms encounter is that, if

they try to improve the fidelity of the extracted rules, the accuracy might become

moderate. In contrast, GOSE realizes two goals: to generate an accurate learning

system and to replicates the behavior of the trained SVM networks simultaneously.

Another interesting aspect of GOSE observed in the experiments is that, when the

number of clusters increases or the data-set size increases, the gap between the

prediction accuracy of GOSE and that of SVM networks becomes smaller. This is

because GOSE extracts rules from the points lying on the boundary. The greater

the number of clusters or instances used for rule extraction, the greater the number

of points that can be found on the boundary. Hence, more dissimilar rules could be

learned to cover many more parts of the area of interest (described in Chapter 4)

and unseen examples. It is no coincidence, therefore, that all the graphs shown in

this chapter are monotonically increasing.

This chapter has presented a series of experiments that empirically evaluated GOSE

in various classification learning tasks. The aim of these experiments was to assess

GOSE through prediction accuracy, fidelity, comprehensibility and consistency. We

go over these criteria in turn.

1Obtaining the high fidelity and high accuracy at the same time is unreachable.
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a) Accuracy: In the three classification domains considered in this chapter, the

rules extracted by GOSE have a high accuracy level approaching that of SVM

networks. In order to assess the comprehensibility of GOSE, we compare the

results from the Monk’s, Iris and Breast Cancer problems with those of other

algorithms in these three domains. Overall, the rules extracted from SVM

networks by GOSE are of comparable correctness to the rules learned from

other SVM rule extraction methods, and in some cases, the GOSE rules are

much accurate.

b) Fidelity: In the three classification domains considered in this chapter, all the

fidelity levels of the extracted rules from GOSE are high, and some of them

even reach 100%. As demonstrated in Section 5.6, GOSE obtains a better

fidelity than some other SVM rule extraction algorithms.

c) Comprehensibility: GOSE extracts rules in the form of intervals. These types

of rules express the knowledge in the SVM networks with simple syntactic

complexity. In some domains, when the nonlinear kernel becomes compli-

cated, the number of the premises in each rule is not appreciably small. This

somewhat disappointing result points to several directions for future research,

outlined in Chapter 7.

d) Consistency: This chapter evaluates consistency, which is an important crite-

rion that may be overlooked. In [84], it states: ‘It would be very hard to give

any significance to a specific rule set if the extracted rules vary significantly

between runs.’ When applying the same synthetic data set to extract rules

in different runs, GOSE achieves 100% consistency. It can even obtain more

than 80% similarity within the rule sets generated by different synthetic data

sets. The results show that GOSE is able to produce consistent rule sets.

e) Generality: The generality of GOSE is evaluated by applying it in various
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classification domains that involve both discrete and real valued features.

The networks used vary in their kernel and training methods. As mentioned

above, GOSE carefully selects query instances to extract symbolic rules, as

opposed to specific training samples.



Chapter 6

Analytical Evaluation of GOSE

[51] and [66] argue that rule extraction algorithms should be evaluated for the cri-

teria of accuracy, fidelity, comprehensibility, consistency, scalability and generality.

The experiments presented in the previous chapter evaluated the accuracy, fidelity,

consistency and comprehensibility of the extracted rules. In addition, as GOSE

has been applied to various learned models and problem domains, the experiments

indirectly demonstrate the generality of GOSE. In this chapter, a much detailed dis-

cussion of the scalability and generality of GOSE is provided. Section 6.1 addresses

the issue of scalability by analyzing the computational complexity of GOSE. The

second section assesses the generality of GOSE. A proof of quasi-soundness/quasi-

completeness is presented in the final section.

6.1 Computational Complexity of GOSE

This section discusses the computational complexity of GOSE. Assume that there

are n training examples whose dimension is m. The complexity of GOSE is then

analyzed step by step. Recall that querying (Section 4.2) randomly selects a set

131
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of synthetic instances derived from a common density estimator; clustering (Sec-

tion 4.3) separates those synthetic instances into several groups; searching (Sec-

tion 4.4) looks for the points lying on the SVM classification boundary; extracting

(Section 4.5) constructs propositional interval rules by solving an optimization

problem and post-processing (Section 4.6) extends, prunes and selects comprehen-

sible rules.

6.1.1 Computational Complexity of Querying

The querying routine includes DRAWINPUTS, DRAWCLASS, QUERYSVM and

SELECTINSTANCE (see Chapter 4). DRAWINPUTS involves generating T ran-

dom instances, calculating their probability distributions from a certain density

estimator and returning those instances whose values are larger than a threshold.

The complexity of the DRAWINPUTS routine is dominated by the cost of cal-

culating the values of M(x) for T instances. Suppose that there are n training

examples used for building up a density estimator. The complexity of this task is

then O(nT ). The DRAWCLASS routine includes feeding T ′ uniformly distributed

inputs into the SVM network to obtain the class labels. Assume that the time to

classify an input is short. The complexity of DRAWCLASS is then O(T ′). Sup-

pose that T ′′ instances have passed through the constraints in DRAWINPUTS for

QUERYSVM. Although the time for querying one input is considered to be short,

to process the classification of T ′ instances O(T ′′) is still needed. Finally, GOSE

needs to select N instances from the results of QUERYSVM randomly. Obviously,

the complexity of this task is O(N). Therefore, the whole complexity of querying

is O(nT ) + O(T ′) + O(T ′′) + O(N).
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6.1.2 Computational Complexity of Clustering

Clustering involves calculating the distance of each pair of instances within two

different clusters and merging the clusters until the stopping criterion is satisfied.

Hence, the complexity of clustering is dominated by the loops of distance calculation

and cluster merging. The maximum cost of clustering is then O( (1+N)N
2

), assuming

it takes a short time to compute the distance between two instances.

6.1.3 Computational Complexity of Searching

As presented in Section 4.4, searching aims to look for the points lying on the SVM

boundary. Clearly, the complexity of searching is dominated by the complexity of

the pair construction and the search for the points on the classification boundary

(see Section 4.4). Suppose that there are n1 clusters for class A1 and n2 clusters for

class A2 and mj and mh represent the number of instances in each cluster for class

A1 and A2 respectively, where 1 ≤ j ≤ n1, 1 ≤ h ≤ n2. There are then
∑n1

j=1 n2m
j+

∑n2

h=1 n1m
h pairs in total, in which two instances belong to differing classes. Let v1

denote
∑n1

j=1 mj and v2 be
∑n2

h=1 mh. Hence,
∑n1

j=1 n2m
j +

∑n2

h=1 n1m
h is equal to

n2v1 + n1v2. The cost of pair construction is O(2v1v2) because, for any individual

instance in a class, it has to go through all the instances in another class to find

the proper instances in the closest proximity. Assume that one iteration for the

binary search calculation takes a short time. Since each pair obtained from the

pair construction employs a binary search algorithm and operates on it up to d

times, the complexity of the binary search on two classes is then equivalent to

O(dn2v1 + dn1v2).

Now we extend searching to multi-class classification. Consider that there are M

classes. For each class, (M − 1) timing pair constructions and binary searches are
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required. Hence, the cost of pair construction is O(2M(M − 1)v1v2) and that of

binary search is O(M(M − 1)(n2v1 + n1v2)). The complexity of searching is then

O(M(M − 1)(n2v1 + n1v2)) + O(2M(M − 1)v1v2).

6.1.4 Computational Complexity of Extracting

The main cost of extracting is in solving the optimization problem, and the discus-

sion here therefore focuses on the complexity of the optimization problem set out

in Section 4.5.

Since GOSE employs pattern search [1] to solve the optimization problem, the pro-

cess must carry out a number of iterations, which are relevant to the dimensionality

of the instance space. Let t1 stand for the time for approximating the nonlinear

constraint of the optimization problem. From the routine of extracting, it can be

seen that, for each point on the boundary, the optimization function has to be run

up to b times, while those synthetic training examples call the function only once.

Therefore, the complexity of extracting is O(t1(tb + N)), where t is the number of

points on the classification boundary and N is the number of training instances.

6.1.5 Computational Complexity of Post-Processing

Post-processing has four steps: rule extending, rule pruning, non-overlapping rule

construction and rule selection.

Let the number of initial rules from the extracting phase be t1. Suppose the di-

mension of the input space is m and the time used for the integral approximation

is t2. From the discussion in Section 4.6.1, it can be seen that the complexity of

rule extending relates to the number of elements that GOSE goes through in the

topology. The following formula is used to calculate the number of elements at
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Figure 6.1: An example of the calculation of the number of elements if node 001
cannot satisfy the constraint that 1

n

∑n
i=1(|f(xi)−Ap|) = 0. Level 1: n1 = 2, Level

2: n2 = 3 − 2 + 0 = 1 and Level 3: n3 = 0. The final number of elements is 3,
greatly reduced from 8 for the worst case.

each tier of the topology (denoted by nj, 1 ≤ j ≤ m). The topology is the basis on

the optimizing measure - the cracking of topology (shown in Section 4.6.1). Note

that the topology has a bottom-to-top structure.

Cj
m − C1

m−j+1dj−1 +

dj−1∑
i=1

(i− 1)− dj

Hence, the number of elements involved in rule extending equals
∑m

j=1 nj, and the

complexity of this step is O(t1t2
∑m

j=1 nj). Figure 6.1 provides an example showing

that GOSE normally experiences fewer elements than the worst case and that the

performance of GOSE can improve accordingly.

Consider that t3 rules are obtained after rule extending. Since rule pruning has to

do t4 approximations, the cost of rule pruning then becomes O(t3t4t2). Given that

t5 rules are left after rule pruning, the cost of non-overlapping rule construction

is O(t5m). Note that t5 indicates the number of rules for non-overlapping rules

construction, and m is the dimension of the input space. Suppose that there are t6

rules left after non-overlap rule construction. Then O(t6) is the time spent looking

for the rules with a coverage rate larger than zero.
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6.2 Generality of GOSE

Much of the rule extraction research described in Chapter 3 suffers from the lack

of generality. Some are based on specific training architectures, while some have

restrictions on training methods and data. In contrast, GOSE can be applied to a

variety of classifiers.

GOSE assumes that (i) a trained model and (ii) the scope of the problem domain

are given. The density estimator of the problem domain can either be given from

a priori knowledge or built up from the training examples. The latter approach

has been adopted in this thesis. In comparison to most SVM rule extraction meth-

ods, these assumptions are very weak. The only interface between GOSE and the

trained model is that at which the instances are queried and the classification out-

comes procured. Therefore, GOSE has no specific requirements on the training

architecture and can even be applied to other non-SVM models.

For the experiments presented in Chapter 5, GOSE extracts rules for part of the

instance space. GOSE is capable of drawing a complete rule set for the entire

instance space by selecting the instances uniformly distributed in the instance space

rather than choosing the instances that have the same distribution as the training

examples.

6.3 Quasi-Soundness and Quasi-Completeness

In this section, the quasi-soundness and quasi-completeness of GOSE are theoreti-

cally proven.

Theorem 1. Each rule R : r → Ap extracted by GOSE approximates the classifi-

cation obtained by SVM. Note that r refers to the area associated to class Ap.
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Proof. The proof structure is similar to that given by Garcez et al. in 2001 [2].

First, we have to show that a rule R extracted either at the extracting stage or

at the post-processing stage can be obtained by querying the SVM. This can be

proven by contradiction.

Consider a set of m-dimensional input vectors and a SVM f(x). If the extracted

rule R is not obtainable by querying the network, then there must exist a point xi

in r such that the class output of f(xi) is not equivalent to Ap. By the definition

of the rule, all the points inside the area r covered by R should refer to the same

class Ap. If a point xi exists that belongs to the other class, this contradicts to the

definition of the rule. Therefore, R must be obtainable by querying the network.

Subsequently, in order to guarantee all the points in r belonging to Ap, the con-

straint
∫ U

L
|f(x) − Ap| = 0 must be satisfied, where L and U are the lower and

upper bounds of the expected range of R.

At the implementation level, the quasi-Monte Carlo 1
n

∑n
i=1 |f(xi)−Ap| = 0 is used

to approximate the above integral process and obtain the rule R. There should

then be a potential approximation error E =
∣∣∣
∫ U ′

L′ |f(x)− Ap| −
∫ U

L
|f(x)− Ap|

∣∣∣,
where L′ and U ′ are the actual lower and upper bounds of R.

Although Equation 2.42 provides a measure for the error estimation, obtaining the

variation on |f(x) − Ap| is difficult. The rule pruning step utilizes a statistical

method to check if the extracted rule has a small error E. In our implementation,

the significant level at the rule pruning step is set to 95%. Only the rules whose

t-test outcomes satisfy the standard value at the significant level are kept, which

means the estimation of the integral of r is close to the expected value of 0. This

ensures that the approximation error is E =
∣∣∣
∫ U ′

L′ |f(x)− Ap| −
∫ U

L
|f(x)− Ap|

∣∣∣ ≤
ε. Therefore, it can be concluded that the SVM classification on most points is the

same as that of R with a rather small difference, and R is said to approximate the
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classification of the SVM.

Theorem 2. With an increasing number of rules, the rule set approximates the

behavior of the SVM. Let S denote the area covered by the non-overlapping rule

set R = {ri → Ap, i ≥ 1} and V represent the area of interest I(Ap). When the

number of rules increases, S approximates V , that is |V−S|
V

≤ ε, where ε is an

arbitrary small number. Note that ri refers to an area in class Ap.

Proof. Give an input domain X ⊆ <m, a set of classes Y = {Ap | 1 ≤ p ≤ CN},
where CN is the number of classes, and a classifier function f : X → Y .

Firstly, we need to show that there is an upper bound on the area of interest. The

definition of the area of interest (see Definition 4.0.3) clarifies that I(Ap) has an

upper bound equal to
∏m

i=1(ui− li), where ui and li are the upper and lower bounds

for the area of interest.

Next, we need to show that any part of the area of interest can be approximated

by a set of rules extracted by GOSE (lemma 3), and the more rules we have, the

larger the area covered by the rules (lemma 4).

Lemma 3. Consider V ′ as any part of the area of interest. V ′ should then be

approximated by a set of rules extracted by GOSE whose area equals St. This can

be represented as |V ′−St|
V ′ ≤ ε.

Proof. This can be proven by contradiction. Suppose that the intersection between

V ′ and St is Vt.

Assume that V ′ cannot be approximated by St extracted by GOSE; then the area

in V ′ that is not covered by the rule set is large. It also means that the difference

between V ′ and Vt is large.
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Since the difference between V ′ and Vt is also an area, a set of uniformly distributed

synthetic instances can be generated inside it, and GOSE is able to extract rules

based on these instances (see Chapter 4). Hence, the size of St increases, and

the difference between V ′ and Vt decreases. This process can be continued until

|V ′−Vt| ≤ ε′ so that |V ′−Vt|
V ′ ≤ ε, where ε and ε′ are arbitrary small numbers. Then,

|V ′ − St|
V ′ =

|V ′ − Vt − (St − Vt)|
V ′ ≤ |V ′ − Vt|+ |St − Vt|

V ′

By deduction, it can be worked out that |St−Vt|
V ′ ≤ ε.

1. Suppose that the area covered by a rule is S1 and that the intersection area

between S1 and V is V1. The difference between S1 and V1 refers to the

part in S1 that is classified as the other classes by an SVM. With respect

to Theorem 1, an extracted rule from GOSE is known to approximate the

classification obtained by an SVM. Hence, if the points belonging to the

other classes in S1 exist, they occupy only a very small part of S1 so that the

deviation at this small part cannot influence the approximation value of S1,

which is 1
n

∑n
i=1 |f(x)−Ap|. Therefore, by comparing this with V1, it can be

concluded that |S1−V1|
V1

≤ ε, where ε is a arbitrary small number.

2. Let us assume that |St−Vt|
Vt

≤ ε, where t is an arbitrary integer.

Then, for St+1 = St + S1 and Vt+1 = Vt + V1,

|St+1 − Vt+1|
Vt+1

=
|St + S1 − Vt − V1|

Vt+1

≤ |St − Vt|
Vt+1

+
|S1 − V1|

Vt+1

=
ε(V1 + Vt)

Vt+1

= ε

Therefore,

|V ′ − St|
V ′ =

|V ′ − Vt − (St − Vt)|
V ′ ≤ |V ′ − Vt|+ |St − Vt|

V ′ ≤ 2 ∗ ε = ε
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where ε = 2 ∗ ε is an arbitrary small number.

From the above, it can be demonstrated that V ′ can be approximated by a set of

rules extracted by GOSE.

Lemma 4. The area St+1 covered by t + 1 rules is larger than the area St covered

by t rules (t is an integer).

Proof. As the rule is defined to be non-overlapping (Section 4.6), this means that

there is no intersection between the rules. The volume covered by t + 1 rules must

then be larger than that covered by t rules.

In other words, if St+1 ≤ St, then there must exist at least two rules that overlap.

This contradicts the definition of non-overlapping. Therefore, it can be concluded

that St+1 > St.

Lemma 3 demonstrates that any part of the area of interest can be approximated

by a set of rules. Lemma 4 shows that the greater the number of rules extracted,

the larger the non-overlapping area covered by the rules. Therefore, when the

number of rules increases, the area covered by the rules can finally approximate

the area of interest. Furthermore, the difference between the area covered by the

rules (denoted by S) and the area of interest (denoted by V ) satisfies |V−S|
V

≤ ε,

where ε is an arbitrary small number.

Hence, by increasing the number of rules, the rule set extracted by GOSE can

approximate the behavior of SVM networks.
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6.4 Chapter Summary

This chapter has discussed the scalability and generality of GOSE and proven the

quasi-soundness and quasi-completeness of the algorithm. The first section has

analyzed the computational complexity of GOSE for each phase.

Section 6.2 discussed the generality of GOSE. GOSE is applicable not only to SVM

models but also to a wide array of other learned models that do not have any special

training regime.

Section 6.3 proved the quasi-soundness and quasi-completeness of GOSE. It demon-

strated that any individual rule extracted by GOSE is obtainable by the SVM net-

work and that the rule set extracted by GOSE is able to approximate the behavior

of SVM as the number of rules increases.
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Chapter 7

Conclusions

Support Vector Machines are a type of popular unsupervised learning method based

on statistical learning theory. They have been applied to many classification and re-

gression problems and have demonstrated good predictive performance. They also

have good generalization in a wide variety of practical problem domains through

implementation of the structural risk-minimization principle. However, SVMs (like

other neural networks) lack the ability to explain results in a comprehensible form.

Rule extraction, which combines the non-symbolic and symbolic paradigms, makes

the interpretation of the behavior of connectionist networks possible. This the-

sis has described the development of a general rule extraction method for SVM

networks, called GOSE.

In this concluding chapter, the contributions and limitations of GOSE are dis-

cussed. Several future work directions are proposed to resolve the limitations.

143



7.1. CONTRIBUTION 144

7.1 Contribution

This thesis is a contribution to describe Support Vector Machines as a set of un-

derstandable rules. The contributions are discussed below in detail.

1. The GOSE algorithm

One significant contribution of this thesis is the novel approach of GOSE to extract

rules from SVMs. The approach views the rule extraction problem as a pure geo-

metric task without considering the structure of the learning models and important

support vectors. Compared with many existing SVM rule extraction algorithms

that require specific training methods or employ support vectors, a major advan-

tage of GOSE is that it is widely appropriate to a broad class of hyperplane learning

models. One reason for this is that querying is the only interaction between GOSE

and a given model. Another significant reason is that it is free to use synthetic

training examples for extracting rules, which further improves the generalization

of GOSE. Specifically, owing to the fact that GOSE extracts rules by using syn-

thetic examples rather than existing training examples, this makes the approach

independent from the specific training data and applicable in a variety of problem

domains.

2. Extensive evaluation of a rule extraction method

In Chapter 5, GOSE was applied to various SVMs in three benchmark problem

domains. These experiments are designed to evaluate GOSE on five criteria: accu-

racy, fidelity, consistency, comprehensibility and generality.

GOSE achieves a good balance between the accuracy and the fidelity of the rules

compared with other SVM extraction work. In all of the domains, GOSE offers a

high level of accuracy and fidelity to the relevant SVMs.
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The experiments evaluate the consistency of extracted rules by measuring the sim-

ilarities between rule sets and between individual rules. Consistency might be

overlooked for the sake of testing a rule extraction method. However, the correct-

ness of the algorithm is demonstrated if a constant performance is obtained.

The experiments also demonstrate the generality of GOSE by using different SVM

algorithms in a variety of problem domains such as medical tasks, which have

various network architectures, attribute types and training-set sizes.

The scalability of GOSE is measured by analyzing the time complexity of each

step in the algorithm. Although some steps might have high complexity in the

worst case scenario, it would be interesting to see that corresponding complexity

is reduced to an acceptable range when the optimizing measure is used such as

cracking of topology. Chapter 4 has described this measure.

3. Proof of rule extraction method on quasi-soundness and quasi-completeness

In Chapter 6the quasi-soundness and quasi-completeness of GOSE were proven.

This means that each rule extracted by GOSE approximates the classification of

SVMs and that the rule set is also able to approximate the behavior of SVMs.

The t-test in rule selection ensures that the approximation of each individual rule

is close to the expected value of the integral
∫ U

L
|f(x) − Ap| so that the rule is

obtainable from the SVM. Since the final rule set is composed of non-overlapping

rules, it guarantees that the area covered by the rule set increases as the number

of rules increases. Therefore, the rule set is able to approximate the behavior of

SVMs by increasing of the number of the rules.

In summary, as demonstrated in this thesis, there is a clear synergy between SVMs

and symbolic rules. The research on the combination of those the two paradigms

can lead to great benefits in both areas and to a better understanding of machine

learning in general.



7.2. LIMITATIONS AND FUTURE WORK 146

7.2 Limitations and Future Work

Despite the many contributions of GOSE, the performance of GOSE can be further

improved by overcoming the following limitations.

i) The rule set can be further simplified compared with other SVM rule extraction

methods.

ii) The complexity is higher than some SVM extraction algorithms.

iii) The algorithm can be further developed for regression problem domains.

The following future studies are designed to resolve these problems.

Simplification of Rule

The rule extraction work in this thesis focuses on the interval rules. Although the

experiments presented in Chapter 5 show that GOSE can obtain a set of compre-

hensible rules, the comprehensibility of the rule set can still be improved compared

with other rule extraction methods. For example, Neurorule [33] generates a rule

set with an average of 4.2 antecedents per rule for a breast cancer data set, while

GOSE has around 6 antecedents for each rule (see Chapter 5). For a rule extrac-

tion method, it is desirable to extract a compact rule set. One way to do this

would be to change the form of the rules to the MofN rule or the regression rule to

reduce the number and the size of rules. For instance, if the rules for Monk-2 in

Appendix A are altered to MofN rules, this would largely decrease the number of

rules. A specific new MofN rule deduced from the rules in Appendix A.0.1 might

be ‘3 of 6 inputs equal 1 then class = 0’. Relating this to the feature of an interval

rule, which includes numeric lower and upper bounds, the transformation from an

interval rule to the MofN format usually happens at a data set with discrete or

integer values.
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Reduction of Complexity

The general approach underlying GOSE is to draw rules from the concept of ge-

ometry. As it has been argued, this approach can be applied to a wide range of

problems. However, owing to the complicated nature of nonlinear SVM boundaries

and the increase of the dimensionality, the running time of GOSE might also in-

crease greatly. From the analytical evaluation presented in Chapter 6, it can be

seen that the complexity of GOSE is dominated by extracting and post-processing.

There are several potential methods that GOSE could use to reduce the complexity.

• Reinforcement learning [75] is a method that can acquire information to guide

the GOSE inductive process. For example, the reward function of the n-

armed bandit problem [75] or the action preference in pursuit methods [75]

might suggest the preferential attributes for generalization so that further

reductions can be achieved in the searching efforts undertaken on the topology

made by GOSE in rule extending.

• The domain knowledge [9], which refers to the information, could generate

representative synthetic training examples so that GOSE might extract fewer

initial rules before post-processing, which may reduce the running time in the

post-processing process.

• Parallel computing is used to implement the extracting and the rule-extending

stage in parallel. The computational complexity of extracting is associated

with N training examples and t points on the boundary (see Section 6.1.4).

The increase/decrease of N and t can lead to the increase/decrease of the com-

plexity. Therefore, one solution for reducing the time complexity in extracting

relates to parallel computing. For example, given 30 instances, half of them

belong to one class, which means one cluster for each class. After searching,
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30 points are found on the boundary. Assume that a seconds are spent on

solving every optimization problem. Regarding each point, an average of b

times optimization procedures are called. If 30 threads run simultaneously,

the consumed time is ab seconds as opposed to 30ab without parallel com-

puting. The rule-extending algorithm could also be implemented on multiple

rules at the same time. Hence, the complexity of the rule-extending algorithm

would decrease further.

Application to Regression Problems

Since GOSE is based on the hyperplane of learning models, it could also be applied

to the regression problems for which curves can be drawn by learning models. By

combining with the relevant form of the regression rule, GOSE might be capable

of finding the regression regularities within the features of the inputs. The format

of a regression rule can be

yi = h(xi, β0) + εi

where h : Rm × Rk → R, β0 denotes a set of k unknown parameters and m is the

dimension of inputs.

For example, after obtaining the points lying on the boundary, a nonlinear regres-

sion rule h(x) can be obtained by using least-square approximation. Then, a rule

might be extracted, such as ‘if x in Region 1, then y = h(x)’.
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Appendix A

Rule Sets

The following rule sets show the detailed rules extracted for Monk’s problems, Iris
plant problem and Breast Cancer problem. We consolidate the rules from each run
of cross-validation and apply them on the whole data set. The rule sets is expressed
in the form of

∧
ai = [ai, bi] → Ap (coverage r)

where 1 ≤ i ≤ m, m is the dimension of the inputs, coverage r indicates the number
of the inputs correctly predicted by the rule.

A.0.1 Monk’s Problem

Monk-1

There are 8 rules extracted by the GSVMORC, as given below:

1. a5 = 1 → 1 (r = 72)

2. a1 = 3
∧

a2 = 3 → 1 (r = 48)

3. a1 = 2
∧

a2 = 2 → 1 (r = 48)

4. a1 = 1
∧

a2 = 1 → 1 (r = 48)

5. a1 = 1
∧

a2 = [2, 3]
∧

a5 = [2, 4] → 0 (r = 196)

6. a1 = 3
∧

a2 = [1, 2]
∧

a5 = [2, 4] → 0 (r = 72)

7. a1 = [2, 3]
∧

a2 = 1
∧

a5 = [2, 4] → 0 (r = 36)

8. a1 = [1, 2]
∧

a2 = 3
∧

a5 = [2, 4] → 0 (r = 36)
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Monk-2

There are 62 rules extracted by the GSVMORC.

1. a1 = [1, 2]
∧

a2 = 1
∧

a3 = 1
∧

a6 = 2 → 1 (r = 24)

2. a1 = [2, 3]
∧

a2 = [2, 3]
∧

a3 = 1
∧

a4 = [2, 3]
∧

a5 = [2, 3]
∧

a6 = 1 → 1 (r = 16)

3. a1 = [2, 3]
∧

a2 = [2, 3]
∧

a3 = 1
∧

a4 = [2, 3]
∧

a5 = 4
∧

a6 = 1 → 1 (r = 8)

4. a1 = 1
∧

a2 = [2, 3]
∧

a3 = 1
∧

a4 = [2, 3]
∧

a5 = [2, 4]
∧

a6 = 2 → 1 (r = 12)

5. a1 = [2, 3]
∧

a2 = [2, 3]
∧

a3 = 1
∧

a4 = 1
∧

a5 = [2, 4]
∧

a6 = 2 → 1 (r = 12)

6. a1 = [2, 3]
∧

a2 = [2, 3]
∧

a3 = 2
∧

a4 = [2, 3]
∧

a5 = 1
∧

a6 = 1 → 1 (r = 8)

7. a1 = 1
∧

a2 = 1
∧

a3 = 2
∧

a4 = [2, 3]
∧

a5 = [2, 4]
∧

a6 = 2 → 1 (r = 6)

8. a1 = 1
∧

a2 = [2, 3]
∧

a3 = 2
∧

a4 = 1
∧

a5 = [2, 4]
∧

a6 = 2 → 1 (r = 6)

9. a1 = 1
∧

a2 = 3
∧

a3 = 2
∧

a4 = [2, 3]
∧

a6 = 1 → 1 (r = 6)

10. a1 = [2, 3]
∧

a2 = 1
∧

a3 = 2
∧

a4 = 2
∧

a5 = [2, 4]
∧

a6 = 2 → 1 (r = 6)

11. a1 = [2, 3]
∧

a2 = [2, 3]
∧

a3 = 1
∧

a4 = 2
∧

a5 = 1
∧

a6 = 2 → 1 (r = 4)

12. a1 = [2, 3]
∧

a2 = [2, 3]
∧

a3 = 2
∧

a4 = 1
∧

a5 = 4
∧

a6 = 1 → 1 (r = 4)

13. a1 = [1, 2]
∧

a2 = [2, 3]
∧

a3 = 2
∧

a4 = [2, 3]
∧

a5 = 1
∧

a6 = 2 → 1 (r = 4)

14. a1 = [2, 3]
∧

a2 = 1
∧

a3 = 1
∧

a4 = [1, 2]
∧

a5 = [2, 3]
∧

a6 = 2 → 1 (r = 4)

15. a1 = [2, 3]
∧

a2 = 1
∧

a3 = 2
∧

a4 = [2, 3]
∧

a5 = 1
∧

a6 = 2 → 1 (r = 4)

16. a1 = [2, 3]
∧

a2 = 1
∧

a3 = 2
∧

a4 = [2, 3]
∧

a5 = 2
∧

a6 = 2 → 1 (r = 4)

17. a1 = 1
∧

a2 = 2
∧

a3 = 2
∧

a4 = 2
∧

a5 = [2, 4] → 1 (r = 3)

18. a1 = 2
∧

a2 = 3
∧

a3 = 2
∧

a4 = 1
∧

a6 = 1 → 1 (r = 2)

19. a1 = [2, 3]
∧

a2 = 1
∧

a3 = 2
∧

a4 = [1, 2]
∧

a5 = 2
∧

a6 = 2 → 1 (r = 2)

20. a1 = [2, 3]
∧

a2 = 2
∧

a3 = 2
∧

a4 = 1
∧

a5 = [3, 4]
∧

a6 = 1 → 1 (r = 2)

21. a1 = [2, 3]
∧

a2 = 3
∧

a3 = 1
∧

a4 = 3
∧

a5 = 1 → 1 (r = 2)

22. a1 = 1
∧

a2 = [2, 3]
∧

a3 = 2
∧

a4 = [2, 3]
∧

a5 = [3, 4]
∧

a6 = 1 → 1 (r = 2)

23. a1 = 1
∧

a2 = [2, 3]
∧

a3 = 2
∧

a4 = 3
∧

a5 = [2, 4]
∧

a6 = 1 → 1 (r = 1)

24. a1 = [1, 2]
∧

a2 = 3
∧

a3 = 2
∧

a5 = 1
∧

a6 = 2 → 1 (r = 1)

25. a1 = 2
∧

a2 = 2
∧

a3 = 1
∧

a4 = [2, 3]
∧

a5 = [1, 2]
∧

a6 = 2 → 1 (r = 1)
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26. a1 = [2, 3]
∧

a2 = [2, 3]
∧

a3 = 2
∧

a4 = [2, 3]
∧

a5 = [2, 3]
∧

a6 = [1, 2] → 0 (r =
217)

27. a1 = 1
∧

a3 = 1
∧

a6 = 1 → 0 (r = 16)

28. a1 = 1
∧

a4 = 1
∧

a6 = 1 → 0 (r = 16)

29. a2 = 1
∧

a4 = 1
∧

a6 = 1 → 0 (r = 16)

30. a3 = 1
∧

a4 = 1
∧

a5 = 1 → 0 (r = 13)

31. a1 = [2, 3]
∧

a2 = [2, 3]
∧

a3 = [1, 2]
∧

a4 = 3
∧

a5 = [2, 4]
∧

a6 = 2 → 0 (r = 12)

32. a1 = [2, 3]
∧

a2 = [2, 3]
∧

a3 = 2
∧

a5 = 1
∧

a6 = 2 → 0 (r = 12)

33. a1 = 1
∧

a3 = 1
∧

a4 = 1 → 0 (r = 9)

34. a3 = 1
∧

a4 = 1
∧

a5 = [1, 3]
∧

a6 = 1 → 0 (r = 8)

35. a1 = 1
∧

a2 = 1
∧

a5 = 1 → 0 (r = 7)

36. a2 = 1
∧

a3 = 1
∧

a5 = 1 → 0 (r = 6)

37. a1 = [2, 3]
∧

a3 = 2
∧

a4 = 3
∧

a5 = [2, 4]
∧

a6 = 2 → 0 (r = 6)

38. a1 = [1, 2]
∧

a2 = 1
∧

a4 = 3
∧

a6 = 1 → 0 (r = 4)

39. a2 = [1, 2]
∧

a3 = 1
∧

a5 = 1 → 0 (r = 4)

40. a2 = [2, 3]
∧

a3 = 2
∧

a4 = 3
∧

a5 = [2, 4]
∧

a6 = 2 → 0 (r = 4)

41. a2 = 3
∧

a3 = 2
∧

a4 = [2, 3]
∧

a5 = [3, 4]
∧

a6 = 2 → 0 (r = 4)

42. a1 = [2, 3]
∧

a3 = 2
∧

a4 = [2, 3]
∧

a5 = [3, 4]
∧

a6 = 2 → 0 (r = 4)

43. a2 = [1, 2]
∧

a4 = 1
∧

a5 = 1 → 0 (r = 3)

44. a1 = 3
∧

a4 = 1
∧

a5 = 1 → 0 (r = 3)

45. a1 = 3
∧

a2 = 3
∧

a4 = [2, 3]
∧

a5 = [2, 4]
∧

a6 = 2 → 0 (r = 3)

46. a1 = [2, 3]
∧

a2 = 3
∧

a4 = [2, 3]
∧

a5 = [3, 4]
∧

a6 = 2 → 0 (r = 2)

47. a1 = 3
∧

a2 = 3
∧

a3 = 2
∧

a6 = 2 → 0 (r = 2)

48. a1 = [1, 2]
∧

a2 = 1
∧

a4 = 1
∧

a5 = 4
∧

a6 = [1, 2] → 0 (r = 2)

49. a1 = [1, 2]
∧

a3 = 1
∧

a4 = 1
∧

a6 = 1 → 0 (r = 2)

50. a2 = 1
∧

a4 = [1, 2]
∧

a5 = 4
∧

a6 = 1 → 0 (r = 2)

51. a1 = 1
∧

a2 = 1
∧

a3 = 1
∧

a5 = [1, 2]
∧

a6 = [1, 2] → 0 (r = 2)

52. a1 = 1
∧

a2 = 1
∧

a6 = 1 → 0 (r = 2)
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53. a1 = 1
∧

a2 = [1, 2]
∧

a5 = 1
∧

a6 = 1 → 0 (r = 2)

54. a1 = 1
∧

a2 = 2
∧

a3 = 1
∧

a5 = 1 → 0 (r = 2)

55. a1 = 1
∧

a3 = 1
∧

a4 = [1, 2]
∧

a5 = 1 → 0 (r = 1)

56. a1 = [1, 2]
∧

a2 = 1
∧

a3 = 1
∧

a4 = 1
∧

a5 = [1, 2] → 0 (r = 1)

57. a2 = 1
∧

a3 = 1
∧

a4 = [1, 2]
∧

a5 = [1, 2]
∧

a6 = 1 → 0 (r = 1)

58. a2 = [1, 2]
∧

a3 = 1
∧

a4 = 1
∧

a6 = 1 → 0 (r = 1)

59. a1 = 2
∧

a3 = 1
∧

a4 = [1, 2]
∧

a5 = 1 → 0 (r = 1)

60. a1 = 3
∧

a2 = 2
∧

a3 = 2
∧

a4 = 2
∧

a5 = [1, 3]
∧

a6 = 2 → 0 (r = 1)

61. a1 = 3
∧

a2 = [2, 3]
∧

a3 = [1, 2]
∧

a4 = [2, 3]
∧

a5 = 4
∧

a6 = 2 → 0 (r = 1)

62. a1 = 3
∧

a2 = [2, 3]
∧

a3 = 2
∧

a4 = 3
∧

a6 = 2 → 0 (r = 1)

Monk-3

There are 17 rules extracted for Monk-3 problem.

1. a2 = 1
∧

a5 = [1, 2] → 1 (r = 72)

2. a1 = 1
∧

a2 = 2
∧

a5 = [1, 3] → 1 (r = 54)

3. a2 = [1, 2]
∧

a5 = [1, 3]
∧

a6 = 2 → 1 (r = 36)

4. a1 = [2, 3]
∧

a2 = 1
∧

a5 = [1, 3] → 1 (r = 16)

5. a1 = 3
∧

a2 = [1, 2]
∧

a5 = [1, 3] → 1 (r = 12)

6. a2 = [1, 2]
∧

a5 = 1 → 1 (r = 12)

7. a2 = [1, 2]
∧

a3 = 2
∧

a5 = [1, 3] → 1 (r = 9)

8. a1 = 3
∧

a3 = 1
∧

a5 = 3 → 1 (r = 4)

9. a1 = 3
∧

a2 = 3
∧

a3 = 2
∧

a5 = [3, 4]
∧

a6 = 2 → 1 (r = 3)

10. a1 = [1, 2]
∧

a2 = 3
∧

a3 = 1
∧

a4 = [1, 2]
∧

a5 = [3, 4] → 1 (r = 2)

11. a1 = 2
∧

a2 = [2, 3]
∧

a3 = 1
∧

a5 = [3, 4]
∧

a6 = 1 → 1 (r = 1)

12. a1 = 2
∧

a2 = [2, 3]
∧

a3 = 1
∧

a5 = [2, 4]
∧

a6 = 1 → 0 (r = 129)

13. a5 = 4 → 0 (r = 102)

14. a1 = [1, 2]
∧

a2 = 3 → 0 (r = 59)
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15. a2 = 3
∧

a3 = 2 → 0 (r = 12)

16. a2 = 3
∧

a5 = [1, 2] → 0 (r = 12)

17. a1 = 1
∧

a2 = 1
∧

a3 = 1
∧

a5 = [3, 4] → 0 (r = 1)

A.0.2 Iris Plant Problem

There are 31 rules in total extracted by the GSVMORC. class 1 refers to Iris
sentosa, 2 refers to Iris Versicolour and 3 refers to Iris Virginica. The rules are
listed as follows:

1. a1 = [4.3, 6.6]
∧

a2 = [2.0, 4.0]
∧

a3 = [2.7, 5.0]
∧

a4 = [0.4, 1.7] → 2 (r = 45)

2. a1 = [6.5, 7.9]
∧

a2 = [2.4, 4.3]
∧

a3 = [2.3, 4.7]
∧

a4 = [0.7, 1.9] → 2 (r = 3)

3. a1 = [6.8, 7.9]
∧

a2 = [2.0, 3.9]
∧

a3 = [4.7, 5.1]
∧

a4 = [1.4, 1.7] → 2 (r = 2)

4. a1 = [6.6, 6.8]
∧

a2 = [2.8, 3.4]
∧

a3 = [3.2, 5.0]
∧

a4 = [1.6, 1.7] → 2 (r = 1)

5. a1 = [4.3, 5.9]
∧

a2 = [3.1, 4.0]
∧

a3 = [2.7, 5.4]
∧

a4 = [1.3, 1.8] → 2 (r = 1)

6. a1 = [4.3, 5.7]
∧

a2 = [3.0, 3.5]
∧

a3 = [1.0, 1.5]
∧

a4 = [0.1, 0.3] → 1 (r = 16)

7. a1 = [4.3, 5.9]
∧

a2 = [2.8, 4.4]
∧

a3 = [1.5, 1.8]
∧

a4 = [0.1, 0.3] → 1 (r = 16)

8. a1 = [4.3, 7.2]
∧

a2 = [3.5, 4.4]
∧

a3 = [1.0, 1.5]
∧

a4 = [0.1, 1.8] → 1 (r = 7)

9. a1 = [4.3, 5.9]
∧

a2 = [2.8, 4.4]
∧

a3 = [1.6, 1.8]
∧

a4 = [0.3, 1.2] → 1 (r = 4)

10. a1 = [4.3, 4.5]
∧

a2 = [2.1, 2.8]
∧

a3 = [1.0, 1.5]
∧

a4 = [0.1, 0.3] → 1 (r = 1)

11. a1 = [4.3, 5.9]
∧

a2 = [2.8, 3.0]
∧

a3 = [1.0, 1.5]
∧

a4 = [0.1, 0.3] → 1 (r = 1)

12. a1 = [4.3, 5.0]
∧

a2 = [3.2, 4.1]
∧

a3 = [1.8, 2.1]
∧

a4 = [0.1, 0.3] → 1 (r = 1)

13. a1 = [5.0, 6.8]
∧

a2 = [3.5, 4.1]
∧

a3 = [1.8, 2.1]
∧

a4 = [0.3, 0.6] → 1 (r = 1)

14. a1 = [4.3, 5.6]
∧

a2 = [2.9, 4.4]
∧

a3 = [1.5, 1.6]
∧

a4 = [0.3, 1.8] → 1 (r = 1)

15. a1 = [5.9, 6.9]
∧

a2 = [2.4, 3.4]
∧

a3 = [5.4, 5.6]
∧

a4 = [1.8, 2.3] → 3 (r = 8)

16. a1 = [6.5, 7.1]
∧

a2 = [1.8, 3.5]
∧

a3 = [5.7, 6.1]
∧

a4 = [1.1, 2.4] → 3 (r = 6)

17. a1 = [5.4, 6.7]
∧

a2 = [2.6, 3.3]
∧

a3 = [4.9, 5.7]
∧

a4 = [2.3, 2.4] → 3 (r = 4)

18. a1 = [6.0, 6.2]
∧

a2 = [2.6, 3.1]
∧

a3 = [4.0, 5.1]
∧

a4 = [1.8, 1.9] → 3 (r = 3)

19. a1 = [5.8, 7.5]
∧

a2 = [2.4, 3.9]
∧

a3 = [6.1, 6.9]
∧

a4 = [1.1, 2.5] → 3 (r = 3)

20. a1 = [6.0, 6.5]
∧

a2 = [2.8, 3.4]
∧

a3 = [5.1, 5.4]
∧

a4 = [1.9, 2.2] → 3 (r = 2)
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21. a1 = [7.5, 7.9]
∧

a2 = [3.7, 3.9]
∧

a3 = [6.3, 6.8]
∧

a4 = [1.7, 2.5] → 3 (r = 2)

22. a1 = [7.1, 7.2]
∧

a2 = [2.0, 3.3]
∧

a3 = [5.7, 6.1]
∧

a4 = [1.1, 2.4] → 3 (r = 2)

23. a1 = [7.5, 7.8]
∧

a2 = [2.7, 3.7]
∧

a3 = [6.3, 6.8]
∧

a4 = [1.1, 2.5] → 3 (r = 2)

24. a1 = [5.9, 6.4]
∧

a2 = 3.4
∧

a3 = [4.8, 6.1]
∧

a4 = [2.3, 2.5] → 3 (r = 1)

25. a1 = [6.2, 6.3]
∧

a2 = [2.5, 3.2]
∧

a3 = [4.8, 6.1]
∧

a4 = [1.8, 1.9] → 3 (r = 1)

26. a1 = [6.2, 6.3]
∧

a2 = [2.5, 3.2]
∧

a3 = [4.9, 5.1]
∧

a4 = [1.7, 1.8] → 3 (r = 1)

27. a1 = [6.7, 6.8]
∧

a2 = [2.0, 3.4]
∧

a3 = [5.5, 5.7]
∧

a4 = [2.4, 2.5] → 3 (r = 1)

28. a1 = [6.1, 6.7]
∧

a2 = [2.4, 3.0]
∧

a3 = [5.1, 5.4]
∧

a4 = [1.8, 1.9] → 3 (r = 1)

29. a1 = [5.4, 6.3]
∧

a2 = [2.6, 3.3]
∧

a3 = [5.7, 6.1]
∧

a4 = [2.4, 2.5] → 3 (r = 1)

30. a1 = [7.5, 7.9]
∧

a2 = [2.4, 3.9]
∧

a3 = [6.8, 6.9]
∧

a4 = [1.7, 2.5] → 3 (r = 1)

31. a1 = [6.0, 7.0]
∧

a2 = [2.5, 3.5]
∧

a3 = [5.6, 5.7]
∧

a4 = [1.1, 2.3] → 3 (r = 1)

A.0.3 Breast Cancer Problem

There are 107 rules in total extracted by GSVMORC. The rules are listed as follows:

1. a1 = [1, 5]
∧

a2 = [1, 5]
∧

a3 = [1, 9]
∧

a4 = [1, 2]
∧

a5 = [2, 4]
∧

a6 = [1, 5]
∧

a7 =
[1, 4]

∧
a8 = [1, 8]

∧
a9 = 1 → 1 (r = 330)

2. a1 = [1, 4]
∧

a2 = [1, 3]
∧

a3 = 1
∧

a4 = [1, 9]
∧

a5 = 1
∧

a7 = [1, 3]
∧

a8 = [1, 3]
∧

a9 =
[1, 2] → 1 (r = 33)

3. a1 = [2, 6]
∧

a2 = [1, 5]
∧

a3 = [2, 8]
∧

a4 = [1, 5]
∧

a5 = [1, 9]
∧

a6 = [1, 2]
∧

a7 =
[1, 6]

∧
a8 = [1, 7]

∧
a9 = 1 → 1 (r = 12)

4. a1 = [5, 5]
∧

a2 = [1, 5]
∧

a3 = [1, 3]
∧

a4 = [1, 7]
∧

a5 = [1, 9]
∧

a6 = [1, 2]
∧

a7 =
[1, 9]

∧
a8 = [1, 6]

∧
a9 = 1 → 1 (r = 11)

5. a1 = [1, 3]
∧

a2 = [1, 9]
∧

a3 = [1, 3]
∧

a4 = [1, 6]
∧

a5 = [2, 3]
∧

a6 = [1, 5]
∧

a7 =
[1, 4]

∧
a8 = [1, 5]

∧
a9 = 1 → 1 (r = 10)

6. a1 = [2, 6]
∧

a2 = [1, 3]
∧

a3 = [1, 2]
∧

a4 = [1, 8]
∧

a5 = [1, 2]
∧

a7 = [1, 1]
∧

a8 =
[1, 4]

∧
a9 = 1 → 1 (r = 5)

7. a1 = [2, 5]
∧

a2 = [1, 3]
∧

a3 = 1
∧

a4 = [1, 9]
∧

a5 = 2
∧

a7 = [2, 3]
∧

a8 = [1, 4]
∧

a9 =
[1, 3] → 1 (r = 4) 8. a1 = [1, 4]

∧
a2 = [1, 9]

∧
a3 = [1, 7]

∧
a4 = [1, 3]

∧
a5 = [3, 10]

∧
a6 =

[1, 5]
∧

a7 = [1, 3]
∧

a8 = [1, 6]
∧

a9 = 1 → 1 (r = 3)

9. a1 = [1, 3]
∧

a2 = [1, 9]
∧

a3 = [1, 2]
∧

a4 = [1, 5]
∧

a5 = [2, 2]
∧

a6 = [4, 6]
∧

a7 =
[3, 5]

∧
a8 = [1, 5]

∧
a9 = [1, 2] → 1 (r = 2)
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10. a1 = [1, 4]
∧

a2 = [1, 4]
∧

a3 = 1
∧

a4 = [1, 8]
∧

a5 = 2
∧

a7 = [2, 3]
∧

a8 =
[1, 3]

∧
a9 = [1, 2] → 1 (r = 2)

11. a1 = [1, 4]
∧

a2 = [1, 6]
∧

a3 = [1, 3]
∧

a4 = [1, 2]
∧

a5 = [2, 3]
∧

a6 = [1, 4]
∧

a7 =
[1, 7]

∧
a8 = [1, 8]

∧
a9 = 1 → 1 (r = 2)

12. a1 = [1, 7]
∧

a2 = [1, 7]
∧

a3 = [1, 5]
∧

a4 = [3, 6]
∧

a5 = [4, 8]
∧

a6 = [2, 6]
∧

a7 =
[1, 4]

∧
a9 = [1, 1] → 1 (r = 2)

13. a1 = [1, 3]
∧

a2 = [1, 9]
∧

a3 = [1, 2]
∧

a4 = [1, 3]
∧

a5 = 2
∧

a6 = [1, 4]
∧

a7 =
[3, 5]

∧
a8 = [1, 5]

∧
a9 = [1, 2] → 1 (r = 1)

14. a1 = [1, 3]
∧

a2 = [1, 9]
∧

a3 = [2, 3]
∧

a4 = [1, 6]
∧

a5 = [1, 3]
∧

a6 = [1, 5]
∧

a7 =
[2, 4]

∧
a8 = [1, 5]

∧
a9 = 1 → 1 (r = 1)

16. a1 = [1, 4]
∧

a2 = [2, 6]
∧

a3 = [2, 3]
∧

a4 = [1, 2]
∧

a6 = [1, 4]
∧

a7 = [1, 7]
∧

a8 =
[1, 8]

∧
a9 = 1 → 1 (r = 1)

17. a1 = [2, 4]
∧

a2 = [2, 4]
∧

a3 = 2
∧

a5 = 2
∧

a6 = [4, 9]
∧

a7 = [2, 2]
∧

a8 =
[1, 4]

∧
a9 = [2, 2] → 1 (r = 1)

18. a1 = [3, 3]
∧

a2 = [3, 9]
∧

a3 = [2, 3]
∧

a4 = [2, 4]
∧

a5 = [2, 6]
∧

a6 = [1, 9]
∧

a7 =
[1, 4]

∧
a8 = [2, 4]

∧
a9 = [2, 3] → 1 (r = 1)

19. a1 = [4, 4]
∧

a2 = [4, 5]
∧

a3 = [2, 8]
∧

a4 = [2, 4]
∧

a5 = [6, 8]
∧

a6 = [3, 5]
∧

a7 =
[1, 8]

∧
a8 = [2, 5]

∧
a9 = 1 → 1 (r = 1)

20. a1 = [5, 5]
∧

a2 = [5, 9]
∧

a3 = [6, 8]
∧

a4 = [1, 4]
∧

a5 = [5, 9]
∧

a6 = [4, 8]
∧

a7 =
[2, 4]

∧
a8 = 4

∧
a9 = [1, 4] → 1 (r = 1)

21. a1 = [7, 7]
∧

a2 = [1, 3]
∧

a3 = [2, 6]
∧

a4 = [2, 4]
∧

a5 = [2, 9]
∧

a6 = [1, 1]
∧

a7 =
[2, 8]

∧
a8 = [1, 6]

∧
a9 = 1 → 1 (r = 1)

22. a1 = [3, 7]
∧

a2 = [2, 5]
∧

a3 = [2, 3]
∧

a4 = [4, 5]
∧

a5 = [2, 3]
∧

a7 = [2, 4]
∧

a8 =
[3, 9]

∧
a9 = [2, 3] → 1 (r = 1)

23. a1 = [2, 6]
∧

a2 = [1, 2]
∧

a3 = [1, 4]
∧

a4 = [2, 7]
∧

a5 = [2, 3]
∧

a6 = [1, 9]
∧

a7 =
[1, 2]

∧
a8 = [1, 9]

∧
a9 = [1, 3] → 1 (r = 1)

24. a1 = [1, 5]
∧

a2 = [2, 6]
∧

a3 = [1, 7]
∧

a4 = [2, 3]
∧

a6 = [1, 5]
∧

a7 = [2, 3]
∧

a8 =
[1, 9]

∧
a9 = [1, 2] → 1 (r = 1)

25. a1 = [1, 5]
∧

a2 = [1, 5]
∧

a3 = [1, 6]
∧

a4 = [3, 5]
∧

a5 = [1, 9]
∧

a6 = [1, 4]
∧

a7 =
[2, 6]

∧
a9 = [1, 2] → 1 (r = 1)

26. a3 = [4, 9]
∧

a5 = [3, 9]
∧

a6 = [10, 10]
∧

a7 = [5, 9]
∧

a9 = [1, 10] → −1 (r = 41)

27. a1 = [6, 10]
∧

a7 = [6, 10]
∧

a8 = [2, 10]
∧

a9 = [3, 9] → −1 (r = 25)

28. a1 = [6, 10]
∧

a6 = [3, 9]
∧

a7 = [7, 10]
∧

a9 = [1, 3] → −1 (r = 19)
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29. a5 = [8, 10]
∧

a6 = [9, 10]
∧

a7 = [7, 10]
∧

a9 = [1, 3] → −1 (r = 7)

30. a2 = [3, 9]
∧

a3 = [3, 9]
∧

a4 = [6, 10]
∧

a6 = [10, 10]
∧

a7 = [5, 9]
∧

a9 = [1, 10] →
−1 (r = 5)

31. a1 = [7, 10]
∧

a2 = [1, 6]
∧

a3 = [1, 5]
∧

a4 = 1
∧

a6 = [7, 10]
∧

a7 = [2, 9]
∧

a8 =
[1, 9]

∧
a9 = [1, 9] → −1 (r = 4)

32. a1 = [8, 9]
∧

a2 = [6, 10]
∧

a4 = [1, 9]
∧

a5 = [4, 10]
∧

a6 = [1, 5]
∧

a7 = [1, 5]
∧

a8 =
[9, 10]

∧
a9 = [1, 2] → −1 (r = 4)

33. a1 = [9, 10]
∧

a3 = [6, 10]
∧

a6 = [8, 10]
∧

a7 = [1, 5]
∧

a8 = [2, 7]
∧

a9 = [1, 2] → −1
(r = 4)

34. a1 = [8, 10]
∧

a4 = [1, 3]
∧

a6 = [2, 6]
∧

a7 = [3, 7]
∧

a8 = [2, 6]
∧

a9 = [1, 3] → −1
(r = 4)

35. a1 = [5, 9]
∧

a5 = [1, 8]
∧

a6 = [7, 10]
∧

a7 = [6, 7]
∧

a8 = [3, 9]
∧

a9 = [1, 3] → −1
(r = 4)

36. a1 = [6, 10]
∧

a2 = [2, 4]
∧

a3 = [3, 10]
∧

a4 = [2, 7]
∧

a5 = [1, 9]
∧

a6 = [10, 10]
∧

a7 =
[4, 9]

∧
a9 = [1, 2] → −1 (r = 3)

37. a1 = [8, 10]
∧

a2 = [2, 7]
∧

a3 = [4, 6]
∧

a4 = [5, 9]
∧

a6 = [8, 10]
∧

a7 = [2, 5]
∧

a8 =
[2, 6]

∧
a9 = [1, 2] → −1 (r = 3)

38. a5 = [4, 10]
∧

a6 = [9, 10]
∧

a7 = [4, 5]
∧

a8 = [8, 10]
∧

a9 = [1, 2] → −1 (r = 3)

39. a1 = [1, 8]
∧

a2 = [6, 10]
∧

a5 = [4, 10]
∧

a6 = [9, 10]
∧

a7 = [1, 4]
∧

a8 = [9, 10]
∧

a9 =
[3, 9] → −1 (r = 3)

40. a1 = [9, 10]
∧

a3 = [2, 10]
∧

a4 = [1, 9]
∧

a6 = [1, 3]
∧

a7 = [7, 10]
∧

a8 = [6, 10]
∧

a9 =
[1, 3] → −1 (r = 3)

41. a2 = [6, 10]
∧

a4 = [9, 10]
∧

a6 = [1, 5]
∧

a7 = [1, 7]
∧

a9 = [1, 2] → −1 (r = 3)

42. a1 = [9, 10]
∧

a3 = [2, 10]
∧

a4 = [1, 9]
∧

a6 = [1, 8]
∧

a7 = [1, 6]
∧

a8 = [6, 10]
∧

a9 =
[1, 3] → −1 (r = 3)

43. a1 = [1, 6]
∧

a5 = [8, 10]
∧

a6 = [7, 10]
∧

a7 = [6, 10]
∧

a8 = [2, 10]
∧

a9 = [3, 9] →
−1 (r = 3)

44. a3 = [3, 9]
∧

a5 = [5, 9]
∧

a6 = [10, 10]
∧

a7 = [5, 9]
∧

a9 = [1, 10] → −1 (r = 2)

45. a3 = [5, 9]
∧

a6 = [9, 10]
∧

a7 = [1, 6]
∧

a8 = [7, 9]
∧

a9 = 2 → −1 (r = 2)

46. a3 = [7, 10]
∧

a4 = [6, 9]
∧

a5 = [2, 5]
∧

a6 = [9, 10]
∧

a7 = [1, 5]
∧

a8 = [1, 2]
∧

a9 =
[1, 2] → −1 (r = 2)

47. a1 = [1, 8]
∧

a2 = [6, 10]
∧

a5 = [4, 8]
∧

a6 = [9, 10]
∧

a7 = [9, 10]
∧

a8 = [9, 10]
∧

a9 =
[1, 3] → −1 (r = 2)
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48. a1 = [5, 9]
∧

a3 = [7, 10]
∧

a5 = [1, 8]
∧

a6 = [9, 10]
∧

a7 = [7, 9]
∧

a8 = [9, 10]
∧

a9 =
[1, 3] → −1 (r = 2)

49. a5 = [8, 10]
∧

a6 = [9, 10]
∧

a7 = [7, 10]
∧

a8 = [9, 10]
∧

a9 = [9, 10] → −1 (r = 2)

50. a1 = [1, 6]
∧

a2 = [8, 10]
∧

a3 = [6, 9]
∧

a4 = [4, 9]
∧

a6 = [3, 7]
∧

a7 = [8, 10]
∧

a8 =
[1, 7]

∧
a9 = [1, 2] → −1 (r = 2)

51. a1 = [1, 6]
∧

a5 = [1, 8]
∧

a6 = [7, 9]
∧

a7 = [7, 9]
∧

a8 = [9, 10]
∧

a9 = [1, 2] → −1
(r = 2)

52. a1 = [8, 10]
∧

a3 = [2, 9]
∧

a4 = [2, 4]
∧

a5 = [2, 9]
∧

a6 = [6, 8]
∧

a7 = [3, 5]
∧

a8 =
[3, 6]

∧
a9 = [3, 9] → −1 (r = 2)

53. a1 = [7, 10]
∧

a2 = [2, 10]
∧

a3 = [1, 8]
∧

a4 = [6, 10]
∧

a6 = [9, 10]
∧

a7 = [5, 6]
∧

a8 =
[2, 6]

∧
a9 = [3, 9] → −1 (r = 2)

54. a1 = [7, 10]
∧

a2 = [2, 10]
∧

a5 = [1, 8]
∧

a6 = [9, 10]
∧

a7 = [9, 10]
∧

a8 = [3, 9]
∧

a9 =
[1, 3] → −1 (r = 2)

55. a1 = [5, 9]
∧

a2 = [4, 8]
∧

a3 = [2, 7]
∧

a4 = 1
∧

a5 = [2, 9]
∧

a7 = [3, 9]
∧

a8 =
[3, 10]

∧
a9 = [3, 9] → −1 (r = 1)

56. a1 = [6, 9]
∧

a5 = [2, 4]
∧

a6 = [5, 9]
∧

a7 = [4, 9]
∧

a8 = [10, 10]
∧

a9 = [1, 9] → −1
(r = 1)

57. a1 = [8, 9]
∧

a2 = 2
∧

a4 = [1, 3]
∧

a6 = [1, 2]
∧

a7 = [3, 6]
∧

a8 = [2, 6]
∧

a9 =
[3, 9] → −1 (r = 1)

58. a1 = [8, 9]
∧

a2 = 6
∧

a3 = [6, 10]
∧

a4 = [3, 5]
∧

a5 = [2, 5]
∧

a6 = [9, 10]
∧

a7 =
[3, 5]

∧
a8 = [3, 5]

∧
a9 = [2, 3] → −1 (r = 1)

59. a1 = [8, 10]
∧

a2 = 6
∧

a3 = [2, 6]
∧

a4 = [3, 9]
∧

a5 = [5, 9]
∧

a6 = [6, 10]
∧

a7 =
[3, 5]

∧
a8 = [1, 2]

∧
a9 = [1, 2] → −1 (r = 1)

60. a1 = [6, 8]
∧

a2 = [4, 7]
∧

a3 = [5, 6]
∧

a4 = [8, 9]
∧

a5 = [4, 9]
∧

a6 = [9, 10]
∧

a7 =
[2, 4]

∧
a8 = [3, 4]

∧
a9 = [1, 2] → −1 (r = 1)

61. a1 = [5, 9]
∧

a2 = [1, 8]
∧

a3 = [6, 7]
∧

a4 = [4, 9]
∧

a5 = [3, 4]
∧

a6 = [1, 3]
∧

a7 =
[8, 9]

∧
a8 = [9, 10]

∧
a9 = [1, 2] → −1 (r = 1)

62. a1 = [5, 9]
∧

a2 = [2, 3]
∧

a3 = [1, 2]
∧

a5 = [4, 8]
∧

a6 = [9, 10]
∧

a7 = [7, 9]
∧

a8 =
[1, 2]

∧
a9 = [1, 2] → −1 (r = 1)

63. a1 = [4, 5]
∧

a2 = [2, 6]
∧

a3 = [3, 7]
∧

a4 = [2, 6]
∧

a5 = [2, 4]
∧

a6 = [8, 9]
∧

a7 =
[6, 7]

∧
a8 = [3, 6]

∧
a9 = [1, 2] → −1 (r = 1)

64. a1 = [2, 8]
∧

a2 = [3, 9]
∧

a3 = [4, 10]
∧

a4 = [7, 10]
∧

a5 = [1, 2]
∧

a6 = [9, 10]
∧

a7 =
[4, 5]

∧
a8 = [1, 2]

∧
a9 = [1, 2] → −1 (r = 1)
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65. a1 = [7, 10]
∧

a2 = [2, 8]
∧

a3 = [2, 6]
∧

a5 = [1, 2]
∧

a6 = [9, 10]
∧

a7 = [6, 7]
∧

a8 =
[1, 2]

∧
a9 = [1, 2] → −1 (r = 1)

66. a1 = [2, 3]
∧

a2 = [5, 9]
∧

a3 = [1, 7]
∧

a5 = [4, 8]
∧

a6 = [7, 9]
∧

a7 = [6, 7]
∧

a8 =
[5, 6]

∧
a9 = [1, 2] → −1 (r = 1)

67. a1 = [8, 9]
∧

a2 = [2, 6]
∧

a5 = [2, 3]
∧

a6 = [2, 9]
∧

a7 = [5, 6]
∧

a8 = [1, 2]
∧

a9 =
[1, 2] → −1 (r = 1)

68. a1 = [8, 9]
∧

a2 = [6, 10]
∧

a3 = [9, 10]
∧

a4 = [9, 10]
∧

a6 = [5, 8]
∧

a7 = [1, 5]
∧

a8 =
[7, 8]

∧
a9 = [3, 9] → −1 (r = 1)

69. a1 = [2, 9]
∧

a2 = [2, 6]
∧

a3 = [2, 7]
∧

a4 = [4, 6]
∧

a5 = [4, 9]
∧

a6 = [6, 7]
∧

a7 =
[6, 7]

∧
a8 = [7, 9]

∧
a9 = [2, 3] → −1 (r = 1)

70. a1 = [7, 10]
∧

a2 = [2, 8]
∧

a3 = [2, 6]
∧

a5 = [1, 8]
∧

a6 = [9, 10]
∧

a7 = [9, 10]
∧

a8 =
[1, 2]

∧
a9 = [1, 2] → −1 (r = 1)

71. a1 = [8, 9]
∧

a2 = [6, 10]
∧

a3 = [9, 10]
∧

a4 = [1, 9]
∧

a5 = [4, 10]
∧

a6 = [2, 8]
∧

a7 =
[1, 5]

∧
a8 = [9, 10]

∧
a9 = [9, 10] → −1 (r = 1)

72. a1 = [9, 10]
∧

a2 = [6, 10]
∧

a5 = [4, 10]
∧

a6 = [9, 10]
∧

a7 = [1, 4]
∧

a8 = [9, 10]
∧

a9 =
[9, 10] → −1 (r = 1)

73. a1 = [1, 9]
∧

a2 = [6, 10]
∧

a3 = [6, 10]
∧

a4 = [9, 10]
∧

a5 = [2, 4]
∧

a6 = [8, 10]
∧

a7 =
[1, 5]

∧
a8 = [3, 6]

∧
a9 = [2, 3] → −1 (r = 1)

74. a1 = [7, 10]
∧

a2 = [9, 10]
∧

a3 = [6, 10]
∧

a5 = [3, 8]
∧

a6 = [9, 10]
∧

a7 = [7, 9]
∧

a8 =
[1, 2]

∧
a9 = [3, 9] → −1 (r = 1)

75. a2 = [6, 9]
∧

a3 = [3, 6]
∧

a5 = [4, 9]
∧

a6 = [9, 10]
∧

a7 = [3, 5]
∧

a8 = [6, 7]
∧

a9 =
[1, 2] → −1 (r = 1)

76. a1 = [1, 6]
∧

a2 = [8, 10]
∧

a3 = [6, 8]
∧

a4 = [6, 9]
∧

a5 = [1, 8]
∧

a6 = [7, 10]
∧

a7 =
[9, 10]

∧
a8 = [2, 3]

∧
a9 = [3, 9] → −1 (r = 1)

77. a2 = [6, 10]
∧

a4 = [9, 10]
∧

a6 = [1, 2]
∧

a7 = [7, 10]
∧

a8 = [9, 10]
∧

a9 = [9, 10] →
−1 (r = 1)

78. a1 = [1, 8]
∧

a2 = [6, 10]
∧

a5 = [4, 8]
∧

a6 = [9, 10]
∧

a7 = [9, 10]
∧

a8 = [9, 10]
∧

a9 =
[9, 10] → −1 (r = 1)

79. a1 = [8, 10]
∧

a3 = [2, 9]
∧

a4 = [3, 4]
∧

a5 = [2, 9]
∧

a6 = [4, 6]
∧

a7 = [3, 5]
∧

a8 =
[3, 6]

∧
a9 = [2, 3] → −1 (r = 1)

80. a1 = [9, 10]
∧

a2 = [6, 10]
∧

a5 = [4, 10]
∧

a6 = [9, 10]
∧

a7 = [1, 4]
∧

a8 = [7, 9]
∧

a9 =
[9, 10] → −1 (r = 1)

81. a1 = [1, 7]
∧

a2 = [2, 6]
∧

a3 = [5, 9]
∧

a5 = [4, 8]
∧

a6 = [9, 10]
∧

a7 = [9, 10]
∧

a8 =
[7, 9]

∧
a9 = [1, 3] → −1 (r = 1)
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82. a2 = [1, 9]
∧

a3 = [6, 10]
∧

a5 = [3, 9]
∧

a6 = [9, 10]
∧

a7 = [5, 6]
∧

a8 = [1, 2]
∧

a9 =
[1, 2] → −1 (r = 1)

83. a1 = [8, 9]
∧

a3 = [6, 9]
∧

a4 = [1, 9]
∧

a5 = [2, 3]
∧

a6 = [2, 5]
∧

a7 = [1, 5]
∧

a8 =
[1, 2]

∧
a9 = [3, 9] → −1 (r = 1)

84. a1 = [8, 9]
∧

a2 = [6, 10]
∧

a3 = [1, 6]
∧

a4 = [1, 9]
∧

a5 = [4, 10]
∧

a6 = [2, 8]
∧

a7 =
[1, 5]

∧
a8 = [9, 10]

∧
a9 = [2, 3] → −1 (r = 1)

85. a1 = [5, 9]
∧

a3 = [7, 10]
∧

a4 = [1, 9]
∧

a6 = [1, 2]
∧

a7 = [5, 6]
∧

a8 = [7, 10]
∧

a9 =
[2, 3] → −1 (r = 1)

86. a1 = [9, 10]
∧

a2 = [6, 10]
∧

a5 = [4, 10]
∧

a6 = [9, 10]
∧

a7 = [1, 4]
∧

a8 = [9, 10]
∧

a9 =
[3, 9] → −1 (r = 1)

87. a1 = [1, 8]
∧

a2 = [6, 10]
∧

a5 = [4, 10]
∧

a6 = [9, 10]
∧

a7 = [1, 4]
∧

a8 = [9, 10]
∧

a9 =
[9, 10] → −1 (r = 1)

88. a1 = [8, 9]
∧

a2 = [6, 10]
∧

a4 = [1, 9]
∧

a5 = [4, 10]
∧

a6 = [1, 2]
∧

a7 = [1, 5]
∧

a8 =
[9, 10]

∧
a9 = [3, 9] → −1 (r = 1)

89. a1 = [8, 9]
∧

a2 = [6, 10]
∧

a6 = [5, 10]
∧

a7 = [1, 4]
∧

a8 = [8, 9]
∧

a9 = [1, 2] → −1
(r = 1)

90. a1 = [5, 9]
∧

a3 = [7, 10]
∧

a6 = [5, 7]
∧

a7 = [6, 7]
∧

a8 = [7, 10]
∧

a9 = [1, 2] → −1
(r = 1)

91. a1 = [1, 5]
∧

a3 = [7, 10]
∧

a5 = [4, 8]
∧

a6 = [9, 10]
∧

a7 = [6, 9]
∧

a8 = [9, 10]
∧

a9 =
[3, 9] → −1 (r = 1)

92. a2 = [6, 10]
∧

a4 = [9, 10]
∧

a6 = [1, 5]
∧

a7 = [1, 7]
∧

a8 = [1, 2]
∧

a9 = [9, 10] → −1
(r = 1)

93. a2 = [1, 6]
∧

a3 = [4, 9]
∧

a4 = [9, 10]
∧

a6 = [1, 2]
∧

a7 = [1, 7]
∧

a8 = [1, 7]
∧

a9 =
[1, 2] → −1 (r = 1)

94. a1 = [1, 5]
∧

a3 = [7, 10]
∧

a5 = [1, 8]
∧

a6 = [7, 9]
∧

a7 = [6, 7]
∧

a8 = [3, 6]
∧

a9 =
[1, 3] → −1 (r = 1) 29. a2 = [8, 10]

∧
a3 = [6, 9]

∧
a6 = [8, 9]

∧
a7 = [1, 6]

∧
a8 =

[6, 10]
∧

a9 = [2, 3] → −1 (r = 1)

95. a1 = [5, 9]
∧

a3 = [7, 10]
∧

a4 = [1, 9]
∧

a6 = [1, 3]
∧

a7 = [7, 9]
∧

a8 = [7, 10]
∧

a9 =
[1, 2] → −1 (r = 1)

96. a1 = [9, 10]
∧

a3 = [6, 10]
∧

a6 = [8, 10]
∧

a7 = [1, 5]
∧

a8 = [2, 6]
∧

a9 = [2, 3] → −1
(r = 1)

97. a2 = [8, 10]
∧

a3 = [6, 9]
∧

a4 = [4, 9]
∧

a6 = [1, 3]
∧

a7 = [8, 10]
∧

a8 = [1, 6]
∧

a9 =
[1, 3] → −1 (r = 1)

98. a1 = [1, 9]
∧

a2 = [8, 10]
∧

a3 = [6, 9]
∧

a4 = [1, 9]
∧

a6 = [2, 8]
∧

a7 = [1, 6]
∧

a8 =
[9, 10]

∧
a9 = [9, 10] → −1 (r = 1)
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99. a5 = [4, 10]
∧

a6 = [9, 10]
∧

a7 = [4, 5]
∧

a8 = [7, 10]
∧

a9 = [2, 3] → −1 (r = 1)

100. a3 = [7, 10]
∧

a5 = [1, 8]
∧

a6 = [7, 9]
∧

a7 = [6, 7]
∧

a8 = [1, 3]
∧

a9 = [1, 3] → −1
(r = 1)

101. a1 = [8, 10]
∧

a4 = [1, 3]
∧

a6 = [2, 6]
∧

a7 = [3, 6]
∧

a8 = [2, 6]
∧

a9 = [9, 10] → −1
(r = 1)

102. a2 = [6, 10]
∧

a4 = [9, 10]
∧

a6 = [1, 3]
∧

a7 = [7, 10]
∧

a9 = [1, 2] → −1 (r = 1)

103. a2 = [6, 10]
∧

a4 = [9, 10]
∧

a6 = [1, 5]
∧

a7 = [1, 7]
∧

a8 = [1, 6]
∧

a9 = [2, 3] → −1
(r = 1)

104. a1 = [1, 6]
∧

a5 = [8, 10]
∧

a6 = [7, 9]
∧

a7 = [7, 10]
∧

a9 = [1, 3] → −1 (r = 1)

105. a1 = [6, 10]
∧

a7 = [6, 7]
∧

a8 = [2, 9]
∧

a9 = [9, 10] → −1 (r = 1)

106. a3 = [8, 9]
∧

a4 = [6, 10]
∧

a7 = [1, 6]
∧

a8 = [2, 6]
∧

a9 = [3, 9] → −1 (r = 1)

107. a1 = [6, 10]
∧

a6 = [3, 9]
∧

a7 = [7, 10]
∧

a9 = [9, 10] → −1 (r = 1)


