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Abstract 

A number of studies have shown that visual working memory (WM) is poorer for 

complex versus simple items, traditionally accounted for by higher information load placing 

greater demands on encoding and storage capacity limits. Other research suggests that it may not 

be complexity that determines WM performance per se, but rather increased perceptual 

similarity between complex items as a result of a large amount of overlapping information. 

Increased similarity is thought to lead to greater comparison errors between items encoded into 

WM and the test item(s) presented at retrieval. However, previous studies have used different 

object categories to manipulate complexity and similarity, raising questions as to whether these 

effects are simply due to cross-category differences. For the first time, here we investigate the 

relationship between complexity and similarity in WM using the same stimulus category 

(abstract polygons). We used a delayed discrimination task to measure WM for 1-4 complex 

versus simple simultaneously presented items, and manipulated the similarity between the single 

test item at retrieval and the sample items at encoding. WM was poorer for complex than simple 

items only when the test item was similar to one of the encoding items, and not when it was 

dissimilar or identical. Our results provide clear support for re-interpretation of the complexity 

effect in WM as a similarity effect, and highlight the importance of the retrieval stage in 

governing WM performance. We discuss how these findings can be reconciled with current 

models of WM capacity limits.  
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Introduction 

Over the past decade, there has been strong evidence to suggest that visual working 

memory (WM) has an upper capacity limit of 4 items (see Cowan, 2001 for review). However, 

this upper limit of four items can only be observed when items are perceptually very simple, 

such as coloured squares (Luck & Vogel, 1997). As stimulus complexity increases, WM 

performance decreases markedly and results in capacity estimates lower than four items (Alvarez 

& Cavanagh, 2004; Eng, Chen, & Jiang, 2005). Luria, Sessa, Gotler, Jolicoeur, & Dell’Acqua 

(2010) showed that the Sustained Posterior Contralateral Negativity (SPCN) amplitude (a large 

sustained negative waveform at posterior electrode sites elicited from around 300ms after 

encoding onset) reached asymptote at around 4 simple items, but peaked at only 2 complex 

items. This suggests that double the amount of capacity resources was required to encode and 

store complex than simple items.   

Luria et al.’s (2010) findings indicate that complexity-related WM capacity limits are 

constrained early on during the encoding and maintenance phases, as the SPCN is measured 

before a retrieval response is made. This suggests that stimulus complexity places greater 

demands on cognitive resources required for developing a perceptual representation of the 

memory items and holding these representations in the WM workspace. However, another 

explanation of complexity effects emphasises the role of comparison errors during the retrieval 

phase.  Awh et al. (2007) used Chinese characters (‘simple’ stimuli) and 3-D shaded cubes 

(‘complex’ stimuli) and manipulated similarity between sample (encoding) and test (retrieval) 

items. In the ‘dissimilar’ condition they measured WM performance in a cross-category item 

change condition (e.g. cube changes to Chinese character), and compared performance to a 

‘similar’ condition in which a within-category item change occurred (e.g. cube changes to a 
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different cube). They found traditional complexity effects when sample-test similarity was high 

but not when sample-test items were dissimilar. These findings raise questions as to whether 

complexity per se impedes WM performance, or whether increased similarity between the 

encoding and test items results in more comparison errors at retrieval for complex compared to 

simple stimuli. Awh et al. (2007) interpret their findings to indicate that complex items look 

more similar to one another than do simple items, so the comparison between representations 

held in WM with visible test items at retrieval is harder due to reduced discriminability between 

encoding and retrieval items. In general support of the sample-test-similarity theory, using 

simple coloured squares Shapiro & Miller (2011) and Luria et al., (2010; Experiment 4) showed 

that WM was poorer for a similar than dissimilar non-match test item. 

However, one particular aspect of Awh et al.’s (2007) experimental design (Experiment 

2) makes it difficult to resolutely conclude that complexity effects in WM can be re-interpreted 

as similarity effects. The use of a between-category change (cube to character or vice versa) for 

the dissimilar condition means that participants may have used a memory retrieval strategy based 

on the category of item that changed rather than item-based retrieval required in the within-

category change condition. For example, when a cube changed to a character, in observing the 

test item participants simply needed to remember that there was originally a cube in that location 

and thus make a relatively easy decision that the item had changed. Conversely, a within-

category change potentially requires that participants retrieve two things from memory, first that 

there has been no category change and second that an item has changed. Therefore, we cannot 

clearly ascertain from this study whether the absence of a complexity effect in the between-

category (dissimilar) condition was unequivocally due to low sample-test similarity or simply a 

result of altered memory retrieval strategies when a change in object category occurred.  
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To the best of our knowledge, no study has examined the interaction between complexity 

and similarity in WM using the same category of stimuli to manipulate both factors concurrently. 

For the first time, here we used a single, homogenous stimulus category (abstract polygons) to 

manipulate both complexity and similarity. In addition, the proposition that complex items are 

perceived as more similar to one another than are simple items (Awh et al., 2007) has not been 

empirically tested to date. While Awh et al. and Alvarez and Cavanagh (2004) measured 

perceived complexity using a 1-item change detection task or a multi-item visual search task 

respectively, they did not explicitly manipulate similarity between target and test/distracter 

items. Therefore, our initial aim was to explicitly measure whether complex items are in fact 

perceived as more similar to one another than are simple items, by directly manipulating both 

complexity and similarity in a visual search task (Experiment 1). We presented a single target or 

item that was either a similar or dissimilar on-match, or an exact match, to one of the search 

items. Alvarez & Cavanagh (2004) showed that visual search is slower for complex than simple 

items (from different categories). Duncan and Humphreys (1989) showed that visual search is 

slower when the distracter items are similar versus dissimilar to the target. We therefore 

hypothesized that if complex items are perceived as more similar to one another, then complexity 

effects on search speed should be significantly magnified when target-distracter similarity is high 

versus low. In support of this, and confirming that complex items are perceived as more similar 

to one another than are simple items, we found that search was significantly slower for complex 

than simple items in the similar and match conditions, but not in the dissimilar condition in 

which target-distracter discriminability is high.  

Our second, and main, aim was to determine whether complexity effects in WM can 

really be attributed to similarity effects at retrieval, as proposed by Awh et al., (2007). To test 
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this, in Experiment 2 we used the exact same set of stimuli as in Experiment 1 and presented 

them in a delayed discrimination task to measure WM performance (loads 1-4). The single test 

item at retrieval was either a similar or dissimilar non-match, or an exact match, to one of the 

encoding items. We found that WM was significantly poorer for complex than simple items only 

when sample and test items were similar. Complexity effects were abolished when the sample 

and test items were dissimilar or identical. Our data lend strong and definitive support for a 

similarity account of WM capacity limits for complex items, and highlight the importance of 

retrieval stage processes in determining WM performance. 

 

General Methods 

Participants 

Thirty three participants (mean age = 20; 22 females) completed the Visual Search task 

(Experiment 1) and a different set of 31 participants (mean age = 19; 19 females) completed the 

WM task (Experiment 2) at the School of Psychology, Bangor University. All had normal or 

corrected-to normal vision. Ethical approval was obtained and participants were remunerated 

with course credits, and gave written informed consent. A generous minimum requirement of 30 

participants per experiment was determined from previous WM studies on complexity and 

similarity effects (e.g., Alvarez & Cavanagh, 2004: N=6; Awh et al., 2007: N=16; Eng et al., 

2005: N=6 to 20), and final sample size was determined by the availability of volunteers. 

 

Stimuli 

 We used meaningless, abstract, non-verbalisable shapes called BORTS (Blurred 

Outline Random Tetris Shapes) which were black in colour with a dark grey square surround. 
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Stimuli ranged from 1cm to 2.5cm in either height or width, and with a viewing distance of 

approximately 50cm each stimulus subtended a visual angle of between 1.15
o
 to 2.86

o
 on either 

dimension. Stimuli were presented on a 22-inch Mitsubishi Diamond-Pro 2060u monitor (32-bit 

true colour; resolution 1280 x 1024 pixels) using E-Prime 2.0. Sets of 120 simple shapes and 120 

complex shapes were created using Matlab, with complexity defined by the number of outline 

corrugations, created by variation in the cartesian area. The degree of perceived similarity 

between the shapes was established by a similarity rating task. Ten independent participants 

(mean age = 19.65) viewed pairs of simple or complex shapes and rated their similarity on a 

scale of 1-5 where 1 = very dissimilar, 2 = dissimilar, 3 = somewhat similar, 4 = similar, 5 = very 

similar.
1
 Pairs of shapes in each simple and complex set were then further divided into Similar, 

Dissimilar, and Neutral sets, depending on the average subjective similarity rating (mean < 2 = 

Dissimilar, mean 2.5-3.5 = Neutral, mean > 4 = Similar). These pairings were then used in the 

Visual Search and WM tasks to control the degree of similarity between the target and the search 

array (search task) and between the sample items at encoding and the single test item at retrieval 

(WM task) (see Figure 1a for an example of similarity pairings).  

 

Experiment 1: Visual Search Task 

Procedure 

At the start of a trial, participants were presented with a target shape in the centre of the 

screen, denoted by a light grey box outline. This target shape remained on screen until the end of 

                                                             
1
 Averaging across all shapes pairs, mean similarity ratings in each condition were: Dissimilar 

Complex (M = 1.83, SD = 0.87); Dissimilar Simple (M = 1.73, SD = 0.91); Neutral Complex (M 

= 2.95, SD = 1.11); Neutral Simple (M = 2.96, SD = 1.15); Similar Complex (M = 3.87, SD = 

1.11); Similar Simple (M = 3.95, SD = 1.01). Assessment of kurtosis showed that ratings were 

within a normal distribution across the sample. 
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each trial to remove any WM component from the task. Six hundred milliseconds after target 

shape onset, 1, 2, 3, or 4 shapes were presented in a 2 x 2 invisible grid in the periphery of the 

target (‘search array’). Participants had to respond as quickly and accurately as possible whether 

the target shape was present or absent in the periphery using a simple button press. The trial 

terminated as soon as a response was made. To modify sample-test-similarity, one of the items in 

the search array was an exact match to the target on one third of trials, a similar non-match on 

one third of trials, or a dissimilar non-match on the final third of trials. All other items in the 

search array were neutral with respect to similarity with the target item and with respect to each 

other. On half of the total trials shapes were complex, and on the other half they were simple. Set 

size (4 levels), similarity (3 levels), and complexity (2 levels) were pseudo-randomised. There 

were 15 trials per individual condition, yielding 360 trials in total; an example trial is illustrated 

in Figure 1b. Examples of complex and simple shapes are provided in Figure 1c. 

 

Figure 1 about here 

 

Visual Search Results 

Accuracy 

Accuracy (proportion correct) on all trials was averaged for each participant and entered 

into a repeated-measures ANOVA with set size (1, 2, 3, 4), complexity (complex, simple), and 

similarity (match, similar non-match, dissimilar non-match) as within factors. There was a 

significant three-way interaction between complexity, similarity, and set size (F(6, 192) = 3.44, 

p= .003, ŋp
2
 = .10). To examine this interaction we separated the non-match and match data.  
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For the match data, a repeated-measures ANOVA with set size and complexity as within 

factors revealed a significant main effect of set size (F(3, 96) = 13.58, p < .001, ŋp
2
 = .30) with 

accuracy decreasing as set size increased, but the main effect of complexity and the complexity 

by set size interaction were non-significant (both Fs < 1.0).  

For the non-match data, a repeated-measures ANOVA with set size, complexity, and 

similarity (similar, dissimilar) as within factors showed significant main effects of set size (F(3, 

96) = 4.58, p = .005, ŋp
2
 = .13), complexity (F(1, 32) = 7.68, p = .009, ŋp

2
 = .19), and similarity 

(F(1, 32) = 66.87, p < .001, ŋp
2
 = .68). Accuracy declined as set size increased, and performance 

was poorer for complex than simple items and in similar than dissimilar conditions. There was 

also a significant three-way interaction (F(3, 96) = 5.76, p = .001, ŋp
2
 = .15). To examine this 

interaction, we looked at complexity effects in similar and dissimilar conditions separately. In 

the similar condition, search was significantly more accurate for simple than complex items 

overall (F(1, 32) = 9.31, p = .005, ŋp
2
 = .23). A significant complexity by set size interaction 

(F(3, 96) = 8.99, p < .001, ŋp
2
 = .22) revealed however that a complexity effect was only present 

at set size 2 (t(32) = 6.10, p < .001). Complexity effects were non-significant at set sizes 1 (p = 

.54), 3 (p = .75) and 4 (p = .28). In the dissimilar condition, the main effect of complexity was 

non-significant (F(1, 32) = 0.78, p = .38) as was the complexity by load interaction (F(3, 96) = 

0.47, p = .71). Accuracy scores are reported in Table 1. 

Table 1 about here 

Search Slopes 

A repeated-measures ANOVA on search slopes with complexity (complex, simple), and 

similarity (match, similar non-match, dissimilar non-match) as within factors showed a 

significant interaction (F(2, 64) = 5.84, p = .005, ŋp
2
 = .15). To examine this interaction we 
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separated the non-match and match data. For match data, search slopes were significantly 

steeper for complex than simple items (t(32) = 2.94, p = .006) to the magnitude of 45.16ms per 

item difference. For non-match data, a repeated-measures ANOVA with complexity and 

similarity as within factors showed a significant main effect of complexity (F(1, 32) = 68.43, p < 

.001, ŋp
2
 = .68): search slopes were steeper for complex compared to simple items, indicating 

that search became proportionately less efficient for complex than simple items as set size 

increased. The main effect of similarity was non-significant (F(1, 32) = 0.16, p = .69, ŋp
2
 = .005). 

There was a marginally significant interaction between complexity and similarity (F(1, 32) = 

3.38, p = .08, ŋp
2
 = .10). Search slopes were significantly steeper for complex than simple items 

in both similar (t(32) = 6.58, p < .001; Figure 2b) and dissimilar (t(32) = 7.34, p < .001; Figure 

2c) conditions, but this complexity effect was larger overall in the similar (Mcomplex-simple =  

115.19 ms per item) than dissimilar (Mcomplex-simple = 83.65 ms per item) condition, a marginally 

significant difference (t(32) = 1.84, p = .075).  

Figure 2 about here 

To summarize, a complexity effect was found in all similarity conditions, but was most 

evident when the target was similar to one of the search items and weakest when it was an 

identical match. Importantly, differences in the magnitude of complexity effects across similarity 

conditions supports the proposition that complex items are perceived as more similar to one 

another than are simple items (Awh et al., 2007), likely due to a greater amount of overlapping 

features. To the best of our knowledge, this is the first time that the interaction between 

complexity and similarity in visual search has been investigated using a homogenous stimulus 

category. 

Experiment 2: Visual Working Memory Task 
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Procedure 

Participants were presented with 1, 2, 3, or 4 polygons for encoding. All encoding items 

were presented concurrently in a 2 x 2 invisible grid for either 600ms (load 1), 1200ms (load 2) 

1800ms (load 3) or 2400ms (load 4), to provide equivalent encoding time per item. We chose 

these durations in order to ensure that sufficient opportunity was provided for all participants to 

encode all items in the encoding array, whether complex or simple. RTs from the visual search 

task showed that participants required on average 450ms and 350ms per item to accurately 

search for complex and simple items respectively. This confirms that WM encoding durations 

were ample and means that any modulation of WM performance found here was not due to 

insufficient perceptual processing under time-constraint (see Jackson & Raymond, 2008). We 

also included an extra load 1 condition with a long encoding time of 2400ms, to check that 

600ms per shape was sufficient for perceptual processing. After a 2000ms blank maintenance 

interval, a single test shape was presented for retrieval for 3000ms. The use of a 3000ms window 

ensures that responses are provided within WM maintenance and decay timeframes such as those 

suggested by Zhang & Luck (2009). Participants were asked to respond within the 3000ms 

period as to whether the test shape matched or mismatched one of the encoding items, using a 

simple button press. To modify sample-test-similarity, the probe was an exact match on one third 

of trials, a similar non-match on one third of trials, or a dissimilar non-match on the final third of 

trials. All other items at encoding were neutral with respect to similarity with the test item and 

with respect to each other. On half of trials the polygons were complex, and on the other half 

they were simple. Sample-test-similarity and complexity were pseudo-randomised. WM load 

was blocked with the order of blocks randomised across participants. There were 15 trials per 

individual condition, yielding 360 trials in total. An example WM trial is illustrated in Figure 3.  
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Figure 3 about here 

 

Results 

To provide a complete picture of WM performance, we present the results in three forms 

of data: percent correct, d’, and Cowan’s k. 

Percent Correct 

WM performance was first analysed using percent correct scores, to allow for direct 

comparison of performance across match and non-match trials. First we determined that 600ms 

was sufficient encoding time per item in the WM task by comparing the short versus long 

encoding time conditions at load 1. A repeated-measures ANOVA on load 1 percent correct 

score with encoding time (short, long), complexity (complex, simple), and similarity (similar, 

dissimilar, match) as within factors showed no significant effect of encoding time (F(1, 30) < 

1.0) nor any significant interactions with time (complexity x time (F(1, 30) = 2.54, p = .12), 

similarity x time (F < 1.0), three-way interaction (F < 1.0)). 

For the main analysis, a repeated-measures ANOVA with load (1, 2, 3, 4), complexity 

(complex, simple), and similarity (match, similar non-match, dissimilar non-match) as within 

factors revealed a significant three-way interaction (F(6, 192) = 3.49, p = .003). To examine this 

interaction we separated out the match from the non-match data.  

In the match condition, the main effect of complexity was non-significant (F(1, 30) = 

0.03, p = .86) as was the interaction between complexity and load (F(3, 90) = 0.43, p = .73; 

Figure 4a). The main effect of load was significant as expected (F(3, 90) = 47.75, p < .001). 
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For the non-match data, a repeated-measures ANOVA with complexity, similarity, and 

load as within factors showed significant main effects of complexity (F(1, 30) = 60.24, p < .001), 

similarity (F(1, 30) = 119.49, p < .001) and load (F(3, 90) = 53.95, p < .001); accuracy was better 

for simple than complex items and better in dissimilar than similar conditions; accuracy 

decreased as load increased. Importantly, there was a significant interaction between complexity 

and similarity (F(1, 30) = 67.03, p < .001): WM accuracy was significantly better for simple than 

complex items in the similar condition (F(1, 30) = 135.45, p < .001; Figure 4b), but the effect of 

complexity was non-significant in the dissimilar condition (F(1, 30) = 0.20, p = .66; Figure 4c). 

The 3-way interaction between complexity, similarity, and load was also significant (F(3, 90) = 

11.37, p < .001). To explore this we separated data by load condition. At loads 1, 2, and 4, a 

significant complexity effect was present in the similar but not in the dissimilar condition. 

Specifically, at load 1, there was a marginally significant interaction between complexity and 

similarity (F(1, 30) = 3.92, p = .057): a significant complexity effect in the similar condition 

(t(30) = 3.61, p = .001) but not in the dissimilar condition (t(30) = 1.12, p = .27). At load 2, there 

was a significant interaction between complexity and similarity (F(1, 30) = 20.49, p < .001: 

complexity effect in the similar condition (t(30) = 6.94, p < .001), but not in the dissimilar 

condition (t(30) = 0.40, p = .69). At load 4, there was a significant interaction between 

complexity and similarity (F(1, 30) = 7.28, p = .01): complexity effect in the similar condition 

(t(30) = 5.39, p < .001), but not  in the dissimilar condition (t(30) = 1.37, p = .18). At load 3, 

there was a significant interaction between complexity and similarity (F = 53.79, p < .001) but 

the patters of results was different: WM performance was significantly better for simple than 

complex items in the similar condition (t(30) = 6.34, p < .001), but was counter-intuitively better 
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for complex than simple items in the dissimilar condition (t(30) = 4.69, p < .001). It is difficult to 

account for this anomaly.  

Figure 4 about here 

d’ 

Next, we analysed performance using d’ values [Z(hits) – Z(False Alarms)], in order to 

assess performance as a combined function of both signal and noise. To compute d’, Hits were 

used from match trials and False Alarms (FAs) were used from non-match trials to compare 

similar versus dissimilar conditions. A repeated-measures ANOVA with load (1, 2, 3, 4), 

complexity (complex, simple), and similarity (similar, dissimilar) as within factors revealed very 

similar patterns of results to those obtained using percent correct values. There were significant 

main effects of complexity (F(1, 30) = 11.69, p = .002, ŋp
2
 = .28), similarity (F(1, 30) = 138.87, p 

< .001, ŋp
2
 = .82) and load (F(3, 90) = 144.40, p < .001, ŋp

2
 = .83); accuracy was better for 

simple than complex items and better in dissimilar than similar conditions; accuracy decreased as 

load increased. There was a significant interaction between complexity and similarity (F(1, 30) = 

53.08, p < .001, ŋp
2
 = .64): WM accuracy was significantly better for simple than complex items 

in the similar condition (F(1, 30) = 50.85, p < .001, ŋp
2
 = .63), but the effect of complexity was 

non-significant in the dissimilar condition (F(1, 30) = 0.03, p = .86).  

A significant three-way interaction was also found (F(3, 90) = 7.90, p < .001, ŋp
2
 = .21). 

To explore this we separated data by load condition. Unlike percent correct data, at load 1 using 

d’ there was a non-significant interaction between complexity and similarity (F(1, 30) = 1.35, p = 

.26). There was a non-significant main effect of complexity (F(1, 30) = 0.05, p = .82), but a 

significant main effect of similarity (F(1, 30) = 143.32, p < .001, ŋp
2
 = .83) (better WM at load 1 

for dissimilar than similar overall). At load 2, there was a significant interaction between 
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complexity and similarity (F(1, 30) = 14.41, p = .001, ŋp
2
 = .32): a significant complexity effect 

in the similar condition (t(30) = 5.61, p < .001) but only a marginal effect in the dissimilar 

condition (t(30) = 1.76, p = .09). At load 3, there was a significant interaction between 

complexity and similarity (F(1, 30) = 53.35, p < .001, ŋp
2
 = .64): while there was a significant 

complexity effect in the similar condition (t(30) = 4.29, p < .001) indicating better WM for 

simple than complex items, in the dissimilar condition a significant complexity effect (t(30) = 

0.40, p = .69) indicated better WM for complex than simple items, mirroring the pattern found 

with percent correct data. Once again, it is difficult to account for this. Finally, at load 4 there 

was a significant interaction between complexity and similarity (F(1, 30) = 10.00, p = .004, ŋp
2
 = 

.25): complexity effect in the similar (t(30) = 3.97, p < .001) but not dissimilar condition (t(30) = 

1.09, p = .28).  

 

Capacity estimates (k) 

We computed k-iterative (see Jackson & Raymond, 2009) to obtain a numerical estimate of 

WM capacity as a function of complexity and similarity (Table 2). A repeated-measures 

ANOVA with complexity and similarity as within factors showed significant main effects of 

complexity (F(1, 30) = 6.40, p = .02, ŋp
2
 = .18) and similarity (F(1, 30) = 19.92, p < .001, ŋp

2
 = 

.40); better for simple than complex items and better in the dissimilar than similar condition. 

There was also a significant interaction between complexity and similarity (F(1, 30) = 36.03, p < 

.001, ŋp
2
 = .55). This interaction reflects a significant complexity effect in the similar condition 

(t(30) = 4.60, p < .001), but not in the dissimilar condition (t(30) = 0.38, p = .71). In the similar 

condition capacity was estimated to be k = 1.58 (0.11) simple items and k = 0.95 (0.10) complex 

items. In the dissimilar condition, capacity was estimated to be k = 1.47 (0.09) simple and k = 
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1.52 (0.11) complex items. Thus, supporting the analyses using percent correct and d’ values, we 

find that more simple than complex items could be retrieved from WM when the test item was 

similar to one of the encoding items, but equivalent capacity estimates for simple and complex 

items when the test item was dissimilar. It is also worth noting here that we find capacity 

estimates to be markedly lower than any coloured squares capacity estimates obtained elsewhere, 

while Awh et al. (2007) found equivalent k estimates for colours (k = 3.6) and between-category 

changes (cubes k = 4.2; characters k = 3.5) even when a complex item changed. This suggests 

that in Awh et al’s study there may have been some categorical grouping of characters and cubes 

at encoding which could have boosted WM and potentially account for such high capacity 

estimates. In our study there was no possibility to group by category (or complexity). 

Table 2 about here 

 

To summarize, WM was significantly poorer for complex than simple items in the similar 

condition but a dissimilar (or identical) test item effectively abolished this complexity effect 

(Fig. 4). Thus, increased similarity (or confusability) between complex sample and test items 

appears to increase comparison errors at retrieval. This is in line with previous findings and 

provides support for the theory that complexity effects in WM are driven by the magnitude of 

perceived similarity between items (Awh et al., 2007). Note also that in contrast to Awh et al’s 

(2007) paradigm we used a single test item that is presented in the centre of the screen and thus 

not spatially related in any way to the encoding items. This is important because it removes the 

opportunity for spatial WM resources to enhance recall, and allows for a clearer interpretation of 

our results that is more tightly focused on visual WM resource demands.  
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To assess whether the larger proportion of non-match (66%) to match (33%) trials drove 

different response criteria strategies related to similarity and complexity, an additional and final 

analyses was conducted on response bias values (c = 0.5*(zHits+zFA)). If participants 

inadvertently expected more match trials than there were, perhaps this led them to adopt a more 

liberal ‘same’ response on non-match similar trials than on non-match dissimilar trials. An 

ANOVA on c values (where c > 0 indicates a bias to respond ‘same’ and c < 0 indicates a bias to 

respond ‘different’) revealed a significant interaction between complexity and similarity (F(1, 

30) = 51.20, p < .001, ŋp
2
 = .63). For complex items, participants were more inclined to respond 

‘same’ on similar trials (c = 0.20) and ‘different’ on dissimilar trials (c = -0.17) (F(1, 30) = 

186.81, p < .001, ŋp
2
 = .86). For simple items, participants were more inclined to respond 

‘different’ when the test item was both similar (-.07) and dissimilar (c = -.17) with a greater bias 

in the dissimilar condition (F(1, 30) = 11.82, p = .002, ŋp
2
 = .28). This data suggests that it is not 

simply the overall proportion of match to non-match trials that alters response criteria per se, but 

that complexity critically determines same/different threshold settings. This makes sense if we 

consider that complex sample-test items in the similar condition were more confusable than 

those in the simple similar condition, thus producing a larger criterion shift to respond same.
2
  

                                                             
2 A very similar pattern of results was found when the same response bias analysis was 

computed for visual search accuracy scores from Experiment 1. There was a marginally 

significant interaction between complexity and similarity (F(1, 32) = 4.16, p = .050, ŋp
2
 = .12). 

For complex items participants were more inclined to respond ‘target present’ on similar trials (c 

= .017) and ‘target not present’ on dissimilar trials (c = -0.23) (F(1, 32) = 67.12, p < .001, ŋp
2
 = 

.68). For simple items participants were more inclined to respond ‘target not present’ on both 
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DISCUSSION 

Our main finding was that, using a homogenous set of stimuli, complexity effects in WM 

were observed only when the test item was similar to one of the encoding items but not when it 

was dissimilar or an exact match. This provides clear evidence that complexity effects in WM 

can be attributed to greater similarity between different complex than simple items (Awh et al., 

2007). These results are important in two regards. First, they shed more light on the locus of 

capacity limits within the WM process, specifically on the question of whether performance is 

determined by encoding and/or retrieval processes. Traditional theories of WM capacity focus on 

resource demands during the front-end encoding phase, with quantitative limits defined in terms 

of both the number of items and the amount of information / complexity per item (Alvarez & 

Cavanagh; Eng et al., 2005). However, our data add to mounting evidence that comparison 

processes at retrieval are also pivotal in determining WM performance (Awh et al., 2007; Luria 

et al., 2010).   

Second, our results help ascertain the nature of WM capacity limits with regards to slots 

versus resource models. The slots model, which states that each item is encoded into one of a 

determined number of fixed capacity slots (e.g., Cowan, 2001; Fukuda, Awh, & Vogel, 2010; 

Vogel, Woodman, & Luck, 2001), cannot explain complexity effects in WM if one slot does not 

have sufficient capacity to store one complex item. However, slot-based models cannot account 

for the influence of similarity on WM performance. If we consider our load 4 data, the slots 

averaging model might predict that two complex items are encoded into four slots and the other 

two items would not gain access to WM at all (while four simple items would inhabit one slot 

                                                                                                                                                                                                    

similar (c = -.07) and dissimilar (c = -.25) trials, with a greater bias in the dissimilar condition 

(F(1, 32) = 58.20, p < .001, ŋp
2
 = .65). 
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each). If this were the case, the similarity of the test item to one of the encoding items should not 

matter and, due to the proportion of trials probing memory for complex items that were not 

stored in WM, performance should have been significantly worse for complex than simple items 

regardless of similarity.  

The resource model states that all items in a display gain access to WM but capacity 

limits are defined by a large, limited resource pool flexibly distributed among all items (Bays, 

Catalao, & Husain, 2009; Bays & Husain, 2008; see Ma, Husain, & Bays, 2014 for a review). 

The resource model can adequately account for complexity effects in WM as follows: if complex 

items require a larger share of the resource pool than simple items, then at larger loads complex 

items will be stored at proportionately lower precision than simple items because the resource 

pool is depleted more rapidly. However, the absence of a complexity effect on dissimilar and 

match trials in our data is problematic for a resource account. If four complex items are encoded 

with less precision than four simple items, comparisons at retrieval should be significantly harder 

due to poorer discriminability between the test item and the low quality stored items, and 

complexity effects should have been observed at load 4 in all similarity conditions. However, our 

dissimilar and match data could be reconciled with resource theory if we consider that perhaps 

the amount of information required to make a correct match and dissimilar non-match decision is 

substantially less than the amount of information required to make a correct non-match similar 

decision. In this sense, even four complex items appear to have been encoded with sufficient 

precision, compared to simple items, to make an accurate retrieval response when the test item is 

either highly discriminable from or an exact match with an item at encoding. Thus, it appears 

that representational precision does not need to be perfect in order to make a correct match or 

non-match decision when the test and sample items share all or very few characteristics. 
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However, greater precision aids comparison processes when there is more ambiguity between 

sample and test items, i.e., when they look similar but do not match.  

It is notable that the majority of debate on slots and resource models focuses on WM 

capacity limits that are inextricably determined during encoding. There is less consideration for 

how resource distribution at encoding (whether fixed or flexible) subsequently influences the 

ease with which sample and test items are compared at retrieval. Awh and colleagues propose a 

2-factor model which attempts to accommodate both encoding and retrieval processes while also 

integrating slots and resource accounts (Awh et al., 2007; Barton, Ester, and Awh, 2009; Fukuda 

et al., 2010). The 2-factor model states that there are a fixed number of representations that can 

be encoded into WM (i.e., 4) regardless of complexity, but memory accuracy is also sensitive to 

the ability to make qualitative discriminations between representations held in WM and the test 

item(s) at retrieval. In terms of explaining complexity effects, complex items inhabit one slot 

each but are stored within each slot at lower precision than simple items due to individual slot-

based resource limits. Awh et al. (2007) suggest that high precision at encoding is required in 

order to successfully discriminate between similar sample-test items. Complex items encoded 

with less precision will be harder to discriminate from similar test items than simple items 

encoded with greater precision. This 2-factor model appears to provide the best fit with our data.  

If we also consider how the magnitude of the complexity effect in the similar condition 

changes as load increases, resource models might predict that the precision of mnemonic 

representations would decline more rapidly with increasing load for complex than simple items, 

resulting in increasing complexity effect sizes with increasing load
3
. When we probe this 

directly, there is a significant interaction between complexity and load in the similar condition 

(F(3, 90) = 4.88, p = .003, ŋp
2
 = .14). However, our data do not support this when we examine 

                                                             
3 We thank an anonymous reviewer for suggesting this. 
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how t values and difference scores between simple and complex items change across loads in the 

similar condition. While the magnitude of the complexity effect increases from load 1 (0.05) 

through load 2 (0.18) to load 3 (0.21), it decreases at load 4 (0.16). This pattern of results does 

not suggest that precision declines more rapidly with increasing load for complex than simple 

items, and in our opinion better supports the 2-factor model in which both slots and precision are 

intertwined. Some form of limit appears to have been reached at around 3 items in our study, 

beyond which complexity effects diminish. 

In contrast to the 2-factor model which proposes that encoding can influence retrieval, 

there is also evidence to suggest dissociation between these two processes. Luria et al. (2010; 

Experiment 4) presented coloured squares at encoding that were either all similar in colour to 

one another or dissimilar. Therefore the number of items, information load per item, and 

resource allocation (precision) per item were the same across similar versus dissimilar encoding 

conditions, confirmed by the fact that the SPCN amplitude was not different between similarity 

conditions. However, WM accuracy was impaired in the similar versus dissimilar condition, 

indicating that comparison processes at retrieval were more difficult despite equivalent encoding 

demands. Other work further emphasises that WM maintenance and retrieval processes might be 

distinct with regards to capacity limits. For example, using contralateral delay activity (CDA) as 

a marker of WM maintenance processes (similar to the SPCN), Luria and Vogel (2011) found a 

relatively small reduction in CDA amplitude but a large increase in retrieval errors for complex 

(multi-feature) versus simple items. This suggests that comparison errors at retrieval may not 

necessarily reflect storage limits per se. 

To conclude, we provide clear evidence that perceptual similarity of the test item to the 

memory content, rather than its mere complexity, crucially determines whether it is correctly 
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matched or rejected as a non-match. Our findings enable the construction of a more complete and 

rounded picture of factors that can limit WM performance and raise some important questions 

regarding current slots and resource models of WM capacity. The role of the retrieval stage in 

WM is further emphasized: measures and models of WM capacity should consider not only the 

quantity and quality of encoded/stored information but also how memory for that information is 

probed (see Makovski Watson, Koustaal, & Jiang, 2010). It may be beneficial for future research 

to examine the combined influence of complexity and similarity on WM accuracy using a more 

fine-grained retrieval response to measure precision, such as the “shape wheel” used by Zhang 

and Luck (2009).  
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Figure Captions 

Figure 1. (a) Similarity rating task. This illustration shows an example shape on the left to which 

participants compared a range of other shapes presented one by one. Participants rated each 

shape on a scale of 1 to 5 where 1 = very dissimilar, 2 = dissimilar, 3 = somewhat dissimilar, 4 = 

similar, 5 = very similar. Ratings were averaged into ‘similar’, ‘dissimilar’, or ‘neutral’ 

categories into which relating comparison items were placed for subsequent visual search and 

WM experiments. Shapes were simple or complex, simple is shown here. (b) Visual search task 

(Experiment 1). Participants viewed a single shape (target) and 600 ms later searched a visual 

display of between 1 and 4 items for a match to the target. The target stayed visible in the centre 

of the screen for the entire length of trial. A third of trials contained an exact target match, a third 

contained a non-match but similar shape to the target, and the final third of trials contained a 

non-match, dissimilar shape to the target. All other shapes in the search display were neutral with 

respect to similarity to the target. Participants responded ‘yes’ (match present) or ‘no’ (no match 

present) as quickly and accurately as possible within an unlimited time period. (c) Examples of a 

complex and simple shape. 

 

Figure 2. Reaction times (RTs) in milliseconds on correct trials only from the visual search task 

(Experiment 1). Complex and simple search arrays contained an item that was (a) an exact 

match, (b) a similar non-match, and (c) a dissimilar non-match to the target. Bars represent one 

standard error above and below the mean. 

 

Figure 3. Visual working memory task (Experiment 2). Participants were required to remember 

between 1 and 4 items. Encoding times were 600ms (load 1), 1200 ms (load 2), 1800 ms (load 
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3), and 2400 ms (load 4). All items in a single trial were either complex or simple. A single item 

was presented in the centre of the screen at retrieval. The test item was either an exact match, a 

non-match but similar shape, or a non-match, dissimilar shape to one of the encoding items. 

Participants responded ‘yes’ (match) or ‘no’ (non-match) as accurately as possible within a 3 

second response window. A dissimilar non-match simple trial example is illustrated here. 

 

Figure 4. Percent correct scores in the visual working memory task (Experiment 2). Complex 

and simple encoding displays contained an item that was (a) an exact match, (b) a similar non-

match, and (c) a dissimilar non-match to the test item at retrieval. Bars represent one standard 

error above and below the mean. 
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Table Captions 

Table 1. Visual search proportion correct accuracy scores (standard errors in brackets) as a 

function of complexity, set size (SS), and similarity. 

 

Table 2. k-iterative capacity estimates (standard errors in brackets) as a function of complexity 

and similarity. 

 



Table 1 

  Match Dissimilar 

Non-Match 

Similar 

Non-Match 

Complex SS 1 .97 (.01) .98 (.01) .88 (.02) 

 SS 2 .90 (.02) .96 (.01) .87 (.02) 

 SS 3 .87 (.02) .95 (.02) .93 (.01) 

 SS 4 .87 (.02) .93 (.02) .89 (.02) 

Simple SS 1 .96 (.01) .97 (.01) .87 (.02) 

 SS 2 .89 (.02) .97 (.01) .96 (.01) 

 SS 3 .90 (.02) .96 (.01) .93 (.01) 

 SS 4 .87 (.02) .95 (.01) .91 (.02) 

 

Table
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Table 2 

 Dissimilar 

Non-Match 

Similar 

Non-Match 

Complex 1.52 (.11) 0.95 (.10) 

Simple 1.47 (.09) 1.58 (.11) 

 

 

 

Table
Click here to download Table: Table2.docx 

http://www.editorialmanager.com/xlm/download.aspx?id=15161&guid=68e9600e-a414-4deb-9e15-83330ae6bcd4&scheme=1


Figure 1
Click here to download high resolution image

http://www.editorialmanager.com/xlm/download.aspx?id=15147&guid=a8558a9b-904c-493f-875d-373e0b0e1c4b&scheme=1


Figure 2
Click here to download high resolution image

http://www.editorialmanager.com/xlm/download.aspx?id=15148&guid=e11acef8-6422-4315-8cd7-540cf8593a00&scheme=1


Figure 4
Click here to download high resolution image

http://www.editorialmanager.com/xlm/download.aspx?id=15149&guid=a65530b2-fe43-4309-9493-317af027e859&scheme=1


Figure 3
Click here to download high resolution image

http://www.editorialmanager.com/xlm/download.aspx?id=15150&guid=859b7b0f-0814-4832-a91b-07df6e395824&scheme=1



