
              

City, University of London Institutional Repository

Citation: Dimitrova, D. S., Kaishev, V. K. & Zhao, S. (2015). Modeling Finite-Time Failure 

Probabilities in Risk Analysis Applications. Risk Analysis, 35(10), pp. 1919-1939. doi: 
10.1111/risa.12384 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/11951/

Link to published version: https://doi.org/10.1111/risa.12384

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Modelling finite-time failure probabilities in risk analysis applications

Dimitrina S. Dimitrova, Vladimir K. Kaishev∗and Shouqi Zhao

Cass Business School, City University London, UK

Abstract

In this paper, we introduce a framework for analyzing the risk of systems failure based on
estimating the failure probability. The latter is defined as the probability that a certain risk
process, characterizing the operations of a system, reaches a possibly time-dependent critical risk
level within a finite-time interval. Under general assumptions, we define two dually connected
models for the risk process and derive explicit expressions for the failure probability and also the
joint probability of the time of the occurrence of failure and the excess of the risk process over the
risk level. We illustrate how these probabilistic models and results can be successfully applied in
several important areas of risk analysis among which are systems reliability, inventory management,
flood control via dam management, infectious disease spread and financial insolvency. Numerical
illustrations are also presented.
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1 INTRODUCTION

Research on the probability of systems failure has attracted considerable attention in the risk analysis

literature in a variety of contexts, e.g., systems reliability analysis (Todinov 2006; Paté-Cornell and

Bea 1992), environmental risk management (Kolen et al. 2013; Serrano-Lombillo et al. 2011, etc.),

control of flood risk via dam management (Cox 2009; Kolen et al. 2013), managing inventory and

supply chain risk (see e.g. Resurreccion and Santos 2012), managing the risk of insolvency in the

financial services industry. A recent contribution in the latter strand of literature is the paper by

Gerrard and Tsanakas (2011). Under the assumption of model parameter uncertainty, the authors

consider the static problem of setting insurance risk capital at a sufficiently high (threshold) level

so that the probability of the total insurance loss exceeding it equals a preassigned small value. In

an attempt to describe a more generic situation, the authors interpret this as finding a threshold

level which will not be exceeded by a certain risk factor with a predetermined large probability and

give two examples from environmental risk analysis, and supply chain risk management where similar

situations arise.

While we take inspiration from Gerrard and Tsanakas (2011), in this paper we depart from their

focus on parameter uncertainty and make one step further considering a dynamic loss process and

time-varying threshold. We address a more general problem of estimating the probability that a risk

factor will exceed a certain time-dependent threshold level and its inverse problem of finding a time-

dependent threshold level which will not be exceeded by the risk factor with a predetermined large

probability. More precisely, we assume that a system is characterized by two stochastic processes. One

process models the arrival and severity of some hazardous (critical) events that have negative impact

on the system, such as losses caused by system failures or catastrophic collapses. The second one

represents the risk mitigation process which involves actions aimed to keep the system operational,

such as flood preventive measures, supply of additional inventory to meet demand, capital injections

to ensure solvency, etc. It will be convenient for the time being to refer to the two processes as the

loss and the gain processes. The latter will be given specific interpretations in section 3, where we

demonstrate how the described general model fits particular real life risk analysis problems, e.g. in

dam management to mitigate flood risk, in systems reliability risk, in risk of emerging disease spread,

and in solvency risk in financial systems. Under this risk framework, we will be concerned with the

event that the loss process hits the gain process from below leading to the failure of the whole system,
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and we will be particularly interested in the probability that such a failure event occurs within a

finite-time interval.

There are several areas of risk analysis where system failure problems arise and can be seen to

be covered by the generic risk model introduced above. However, more specifically, depending on the

level of stochasticity embedded in the two processes, we will distinguish two versions of the model,

which we name the direct and inverse (or dual) risk models, coded as models A and B, respectively.

In model A, we assume that systems failures cause losses e.g. running records of flood level, financial

liabilities or inventory management costs, which occur at some random instants in time within a fixed

time horizon and consider the probability that the aggregate loss resulting from all failures will not

exceed the value of a time dependent critical threshold level, modelled by an arbitrary non-decreasing

function of time, allowing jumps in the threshold.

Alternatively, we will demonstrate that there are important risk analytic applications where it

is relevant to reverse the interpretation of the loss and gain processes in the direct risk model A,

formulated in detail in section 2.1. More precisely in the alternative, inverse model B, which is known

in the literature as the dual risk model, (see e.g.Asmussen and Albrecher 2010, Dimitrova et al.

2013b), it is assumed that gains (as opposed to losses in model A) which could be e.g., capital gains

or inventory replenishment quantities, are of random sizes and arrive at random moments in time,

while the cumulative loss (e.g. expense) outgo is modelled by a deterministic threshold function.

We consider the probability that the aggregate gain process will go bellow a time dependent critical

threshold level, thus causing failure.

The objective of this paper is two-fold. First, we mathematically formulate models A and B in

general terms and summarize existing theoretical results obtained under specific assumptions on the

probability of system failure within a finite time horizon, which is our primary focus in this paper. A

theoretical contribution is then made by deriving a new closed-form expression, given by Proposition

B.1, for the joint distribution of the failure time and the deficit level in model A, under the more

general assumption of independent, non-identically Erlang distributed loss inter-arrival times (see

Appendix B). This expression is new and generalizes previous ruin probability results, obtained by

Ignatov and Kaishev (2004, 2012b) for the case of Poisson loss arrivals (see Appendix A). In the second

part of the paper, we demonstrate how our proposed models A and B, and the related probabilistic

results can be applied as risk analytic tools in various practical risk assessment situations. For the

purpose, we illustrate how to interpret the model parameters of our generic models A and B in order

3



to reflect the specifics of the concrete practical risk assessment problems.

As a main illustrative risk analysis application, in section 3.1, we consider the control of flood risk

via managing the risk of dam overtopping. We propose a novel methodology which can aid decision

making on multiple water releases, based on the notion of alarm time at which flood warning alarms

signal the necessity of water releases. Further examples of risk analysis application of our risk models

and results include systems reliability, inventory management, infectious diseases spread and financial

insolvency risk.

This paper is organized as follows. In section 2, we introduce the assumptions and notations

underlying models A and B in more detail, and provide explicit expressions for the probability that

the whole system fails within a finite-time period. We also give an expression for the joint probability

of the time of the occurrence of failure and the deficit in model A, a generalization of which is derived

in Appendix B. Section 3 is devoted to demonstrating how models A and B and the failure probability

results of section 2 can be applied to assess failure risk in systems reliability risk analysis, inventory

and supply chain risk management, control of flood risk via dam management, emerging disease spread

risk analysis and financial and solvency risk management. Numerical illustrations are also presented

in this section. Section 4 provides further discussions on the possible extensions of the applications

of model A and B and some concluding remarks.

2 THE RISK MODELLING FRAMEWORK

2.1 Model A

Our generic risk model A is defined as follows. We assume that, as a result of faulty operation of a

system, losses, W1,W2, . . ., occur at random moments, T1, T2, . . ., following an appropriate stochastic

counting process, N(t), which counts the number of losses arriving until time t. Different models

for the arrival process, N(t) :=max{i : Ti ≤ t}, t > 0, could be adopted which could capture

non-stationarity and clustering in the arrival of losses. As a start, we will assume that N(t) is a

homogeneous Poisson process with intensity λ > 0, i.e. with loss inter-arrival times τ1 = T1, τ2 =

T2 − T1, τ3 = T3 − T2, . . ., identically, exponentially distributed random variables with parameter λ.

Let us note however that a more general setting of non-identical Erlang distributed inter-arrival times

is considered in Appendix B.

We will also assume that severities of individual losses are modelled by a sequence of positive
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continuous random variables, W1,W2, . . ., which are independent of the counting process, N(t). Let

Yi denote their partial sums, i.e. Yi = W1 + . . . + Wi, i = 1, 2, . . ., with a joint density function

f(y1, . . . , yi). We denote by S(t) the total loss amount up to time t, i.e.

S(t) = YN(t) =

N(t)∑
i=1

Wi, (1)

where we assume that S(t) = 0 if N(t) = 0. The total loss, S(t), can be viewed as a risk factor

whose value is non-decreasing in time. This is a reasonably general model for the total loss and

the occurrence and sizes of individual losses from failures. We note that a simpler version of the

model, assuming W1,W2, . . . are i.i.d, has been studied in the classical (insurance) risk theory (see

e.g. Asmussen and Albrecher 2010). The more general aggregate loss model (1) is better suited for

modelling dependence among the consecutive individual losses, which often is the case in real life risk

analytic applications as will be illustrated in the next sections.

In what follows, we will be interested in modelling the probability that, within a finite-time

interval [0, x], the total loss from the system’s failures, S(t), would not exceed the gain process,

which is a certain time dependent critical threshold level, modelled by a non-decreasing non-negative

deterministic function, h(t) (note that h(0) ≥ 0 and if h(0) > 0, the latter can be interpreted as initial

surplus). Such an exceedance event, may be interpreted as the overall failure of the system which may

lead to its temporary or permanent inoperability. In fact, it may visually also be interpreted simply

as the loss trajectory hitting the critical upper bound, as illustrated in Figure 1. We denote by T ,

the time when S(t) exceeds h(t) for the first time. Formally one can define the random variable T

through the risk process

R(t) = h(t)− S(t), (2)

as

T := inf{t : t > 0, R(t) < 0},

and the event of non-failure (overall survival) within the finite-time horizon [0, x] as {T > x} (i.e. the

random variable T takes value greater than x, including T = ∞ when failure never occurs or formally

when R(t) ≥ 0 for all t > 0). Alternatively, we will also refer to the event {T < x} as the failure

event.

Then, we can express the probability that the system does not fail, i.e. survives beyond time x,
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Figure 1: Model A. Left panel: h(t) (red/straight line) represents the deterministic upper critical level
and S(t) (blue/staircase line) is the stochastic loss process. Right panel: the risk process R(t).

as P (T > x). In a series of papers, (see Ignatov et al. 2001; Ignatov and Kaishev 2004; Dimitrova

et al. 2013a,b) the above mentioned risk model has been studied and the following explicit survival

probability formulae have been derived.

P (T > x) = e−λx
(
1 +

∞∑
k=1

λk

∫ h(x)

0

∫ h(x)

y1

· · ·
∫ h(x)

yk−1

Ak(x; ν1, . . . , νk)× f(y1, . . . , yk)dyk . . . dy1

)
, (3)

where νk = h−1(yk), h
−1(.) is the inverse function of h(t), and Ak(x; ν1, . . . , νk) ≡ Ak(x), k = 1, 2, . . .,

are the classical Appell polynomials of degree k with a coefficient in front of xk equal to 1/k!, defined

by

A0(x) = 1,

A′
k(x; ν1, . . . , νk) = Ak−1(x; ν1, . . . , νk−1),

Ak(νk; ν1, . . . , νk) = 0, k = 1, 2, . . . . (4)

Efficient algorithms for computing formula (3) with a prescribed accuracy have been proposed by

Dimitrova et al. (2013a), based on new recurrent expressions for the classical Appell polynomials. It

is worth mentioning that a version of formula (3) for the case of integer-valued losses, W1,W2, . . ., is
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also given in Dimitrova et al. (2013a), where further details on these explicit expressions for P (T > x)

and their numerical properties can be found.

It has to be emphasized that, mathematically, the setup in model A is very general. We assume

any non-negative non-decreasing gain function h(t) and arbitrarily distributed, possibly dependent,

loss severities Wi. We should note however, that the the assumptions on the stochastic nature of the

process S(t) and the deterministic function h(t) are specified at the initial time, t = 0. Both S(t) and

h(t) in practice would be estimated at time t = 0, based on historic data on the arrival times Ti, the

amounts Wi, i = 1, 2, . . . and the components of the deterministic cumulative gain h(t). Thus, risk

related decisions made at time zero would be static since they would not take into account the future

realizations of S(t) and h(t). At the same time, decision making can be made dynamic by splitting

the time horizon, x, into shorter sub-periods and taking into account all arriving information on the

underlying processes. This approach is illustrated in our main example on flood risk management via

water releases according to flood warnings at multiple alarm times (see section 3.1).

Furthermore, the assumption of Poisson loss arrivals, which seems more restrictive than the other

assumptions, can also be further generalized to a non-homogeneous Erlang arrival process (see Ignatov

and Kaishev 2012b; note Erlang distribution is a special case of Gamma distribution and so, generalizes

the exponential inter-arrival times arising from a Poisson process) and to the case where the inter-

arrival times follow a linear combination of non-identical exponential distributions (see Dimitrova

et al. 2013b).

As mentioned in section 1, in some real life risk situations, the occurrence of the exceedance

(failure) event {T < x} may not mean an immediate system’s failure. Therefore, given failure at

time T , we will also be interested in the amount Y , by which the total loss S(T ) exceeds the critical

risk level h(T ), which we call deficit, i.e. in the random variable Y = S(T ) − h(T ) ≡ YN(T ) − h(T ).

More precisely, we will assume that the system is still operational if an exceedance event occurs

and simultaneously, the deficit Y is below a certain pre-determined (controllable) threshold level

y ≥ 0; and assume that the system fails immediately at time T < x if Y > y. Thus, in this

setting, we are concerned with the more realistic failure event {T < x, Y > y}, determined by

the joint distribution of the random variables T and Y , and more precisely, with the probability

of its occurrence, P (T < x, Y > y). Under the assumptions of Poisson loss arrivals and the setup

introduced above, the following explicit expression for P (T < x, Y > y) is obtained by Ignatov and
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Kaishev (2012a),

P (T < x, Y > y) =

∫ +∞

y
f(y1)dy1 −

∫ h(x)+y

y
e−λh−1(y1−y)f(y1)dy1 − e−λx

∫ +∞

h(x)+y
f(y1)dy1

+
∞∑
k=2

∫
. . .

∫
Ck

{
Bk−2

(
h−1 (yk−1) ; ν1, . . . , νk−2

)
−Bk−1

(
h−1 (yk − y) ; ν1, . . . , νk−1

)}
f(y1, . . . , yk)dyk . . . dy1

+

∞∑
k=2

∫
. . .

∫
Dk

{
Bk−2

(
h−1 (yk−1) ; ν1, . . . , νk−2

)
−Bk−1 (x; y1, . . . , yk−1)

}
f(y1, . . . , yk)dyk . . . dy1, (5)

where Ck = {(y1, . . . , yk) : 0 < y1 < . . . < yk−1 ≤ yk−1 + y < yk < h(x) + y},

Dk = {(y1, . . . , yk) : 0 < y1 < . . . < yk−1 < h(x) ≤ h(x) + y ≤ yk < +∞},

Bk(z; ν1, . . . , νk) = e−λz
[
A0 + λA1 (z; ν1) + · · ·+ λkAk (z; ν1, . . . , νk)

]
, and Ak(z) are as in (4) the

classical Appell polynomials.

Let us note that, when y = 0, formula (5) coincides with formula (3) (see Appendix A for a detailed

proof). The assumption of Poisson loss arrivals can again be generalized to non-homogeneous Erlang

arrivals, which can be adapted to fit an arbitrary distribution via randomization, and an explicit

expression for P (T < x, Y > y) in this case is derived in Appendix B.

2.2 Model B

In this section, we provide a detailed description of model B. To distinguish it from model A, we

refer to model B as the dual risk model and use the subscript “dual” in the notations. We assume a

system starts to operate at an initial surplus level u, u > 0. Its further operation generates gains and

losses. The losses are non-stochastic and arrive continuously following a deterministic function of time,

g(t), with the initial condition, g(0) = 0. The operability of the system is maintained dynamically

by a gain process S(t), consisting of a series of consecutive gains, denoted by the random variables

W1,W2, . . ., occurring at random moments, T1, T2, . . .. The number of gains arriving before time t

follows a counting process N(t) :=max{i : Ti ≤ t}, t > 0, which is independent of the gain sizes.

Again, as a start, we assume that N(t) is a Poisson process with a constant intensity λ > 0, i.e. the

inter-arrival times τ1 = T1, τ2 = T2 − T1, τ3 = T3 − T2, . . ., are i.i.d. exponentially distributed with

parameter λ. Thus, we have

S(t) =

N(t)∑
i=1

Wi,
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and the risk process is therefore

R(t) = u− g(t) + S(t).

Note that we can write R(t) = −hdual(t) + S(t), where hdual(t) = −u + g(t) and that in contrast

to model A, where the initial surplus could be zero, here u > 0. Again, we are interested in the

probability of the risk process reaching the horizontal axis within a finite period [0, x], representing

the loss process hitting the gain process from below (as illustrated in Figure 2) causing the overall

failure of the system at time Tdual. More precisely, we would be interested in the probability of non-

failure, P (Tdual > x), where the instant of the failure (exceedance) event, Tdual, is defined through the

risk process as

Tdual := inf{t : t > 0, R(t) < 0}.

Clearly, the definition of Tdual can be re-written as

Tdual = inf{t : t > 0, u− g(t) +

N(t)∑
i=0

Wi < 0}

= inf{t : t > 0,

N(t)∑
i=0

Wi < −u+ g(t)}

= inf{t : t > 0,

N(t)∑
i=0

Wi < hdual(t)},

where hdual(t) = −u+g(t). Thus, the failure event, {Tdual < x}, is essentially equivalent to a trajectory

S(t) hitting a lower risk bound hdual(t), as illustrated in Figure 2.

As shown by Dimitrova et al. (2013b), an enlightening connection between models A and B can be

made by reflecting the left panel of Figure 2 with respect to bisector y = t, as demonstrated in Figure

3. Thus, the problem of finding the probability of a trajectory hitting a lower bound is translated to

that of finding the probability of a trajectory hitting an upper bound with reverse interpretations of

the model parameters in A and B and some minor adjustments (see Lemma 2.1 in Dimitrova et al.

2013b for more details). With such a duality link, the results on the probability of the overall system

failure within a finite horizon in model B can be easily translated to and restated in terms of model

A.

It is worth noting that under model B, as shown in the right panel of Figure 2, the deficit at the

instant Tdual, of the risk process crossing the horizontal axis, is zero, i.e. Y = S(Tdual)−hdual(Tdual) = 0.
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Figure 2: Model B. Left panel: hdual(t) (red/straight line) represents the lower risk level bound and
S(t) (blue/staircase line) is the stochastic gain process. Right panel: the risk process R(t).

T1 T2 T3 T4

-u

Y1

Y2

Y3

Y4

t
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T1

T2

T3

T4

t

Figure 3: A connection between model A and model B through a reflection along the 45◦ line.
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Therefore, in model B, as opposed to model A, we will not be interested in the deficit, Y , at the failure

time Tdual.

3 RISK ANALYSIS APPLICATIONS

In this section, we demonstrate that models A and B can be effectively applied as risk analytic tools in

analyzing system reliability risk, inventory and supply chain risk management, control of flood risk via

dam management, risk of emerging disease spread losses and financial and solvency risk management.

For this purpose, without loss of generality, for numerical illustrations we have specified the failure

event arrivals to follow a Poisson process and the severities W1,W2, . . . to be independent, identically

distributed random variables. For alternative non-Poisson failure event arrivals, e.g. non-identical

Erlang inter-arrival times one can implement formula (12) for P (T < x, Y > y) without substantial

additional computational cost, as has been demonstrated for instance in Dimitrova et al. (2013b)

for the special case of computing P (T > x). Dependence between the consecutive losses, e.g. using

copula functions, can also be numerically implemented, as shown in Dimitrova et al. (2013a).

3.1 Control of flood risk via dam management

In this application, we consider the control of flood risk via dam management. Risk analysis in

dam management has been intensively explored in the existing literature, see e.g. Lave and Balvanyos

(1998), Valdes and Marco (1995), and Cox (2009), to mention only a few of the works. As discussed by

Lave and Balvanyos (1998), there are various reasons that may cause dam failures. Here, we focus on

the dam failure due to water level overtopping its crest. As has been reported by the US Association

of State Dam Safety Officials, failure of dams due to overtopping accounts for approximately 34%

of all dam failures in US. Quantitative and probabilistic risk models have been utilized in previous

literature as risk analytic tools with a two-fold purpose: for modelling overtopping events, and for

decision-making on managing water releases for dams and reservoirs, see e.g. Goodarzi et al. (2011),

Serrano-Lombillo et al. (2011), Tingsanchali and Chinnarasri (2001) and Kwon and Moon (2006).

Our approach to the first problem is to model the occurrence of an overtopping event using model

A, introduced in section 2.1. The latter assumes a stochastic process modelling the occurrence of

record high water levels, and a critical threshold level close below the crest of the dam. We introduce

the critical level, which if reached by the water signals a warning alarm. This is a core part of our
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methodology, proposed as a solution to the second problem of managing water releases. It allows

for dynamically determining appropriate instants for water releases to efficiently mitigate the risk of

overtopping. In order to implement this novel methodology, as we show, it is essential to be able to

evaluate the probability that, within a fixed time period, the running record water level will exceed

the critical threshold, and also the probability of overtopping the crest within such a period. The

latter is shown to be expressed as the probability of the running record water level exceeding the

critical threshold by an amount greater than the difference between the critical threshold level and

the crest. We demonstrate that it is possible to evaluate these probabilities using the probabilistic

results presented in Section 2. Following is a more formal introduction of our flood risk mitigation

methodology.

T1 T2 Tc=T3 T=T4 x
t

Y1

Y2

h

Y3

H

Yt

running record

threshold level

dam height

T1 T2 T3 Tc=T=T4 x
t

Y1

Y2

h

Y3

H

Yt

running record

threshold level

dam height

Figure 4: A stochastic model for the risk of overtopping.

It often happens that, as a result of heavy rains, flood water levels in dams increase rapidly, almost

jump-wise. This suggests that such a process can be modelled by a pure jump stochastic process,

S(t), defined as in (1), where flood jumps in the water level are of unknown random sizes, W1,W2, . . .,

occurring at some random moments T1, T2, . . . (see Figure 4). Let us note that it is relevant to

assume only positive (upward) jumps, i.e. Wi > 0, since negative (downward) jumps due to water

releases for various other purposes (e.g. irrigation) are usually deterministic and can be considered

negligible compared to huge inflows of flood water in the dams, causing upward jumps in the water

level. The record levels of such a process can be denoted as Y1 = W1, Y2 = W1 +W2, . . . (see Figure

4). It is then natural to assume that there is an underlying process N(t) :=max{i : Ti ≤ t}, t > 0,

counting the occurrences, T1, T2 . . . of the running records, Y1, Y2, . . ., before time t. In accordance

with Cheng et al. (1993), we assume that N(t) follows a homogeneous Poisson process with intensity

12



λ, although our modelling framework A (see section 2.1) allows other processes to be considered when

calibrating the model in practice. The event of overtopping within a time period [0, x] would then

occur at time T < x, when the running record water level, YN(T ), exceeds the crest of the dam,

denoted by H (see Figure 4). This corresponds to the definition of T through the risk process, R(t),

introduced in (2) (see section 2). As an overtopping risk preventive measure, it is natural to consider

a critical (warning) threshold water level h(t), lower than the crest, H, to signal the necessity of

water release in the event of the exceedance YN(t) > h(t). If we denote by Tc the instant at which

the exceedance event, YN(Tc) > h(Tc), occurs, we can then evaluate its probability, (1 − P (Tc > x)),

using formula (3) of section 2 with T replaced by Tc. In general, our model allows the warning level,

h(t) to vary over time, reflecting particular environmental circumstances, e.g. current weather and

precipitation levels and their forecasts, but without loss of generality here we will assume a constant

level, h(t) = h < H. As illustrated in the left and right panels of Figure 4, overtopping may result

following two alternative scenarios. However, trajectories such as that in the left panel are not of

interest, as water can be directly released when the running record, YN(Tc), exceeds the threshold

level h at time Tc, to avoid overtopping. Thus, we only consider trajectories that cause overtopping,

as illustrated in the right panel of Figure 4, which corresponds to the exceedance, YN(Tc) − h, being

greater than H − h. Therefore, it is also important to embed the exceedance, Y = YN(Tc) − h, in our

modelling framework. We note that the exceedance, Y = YN(Tc) − h, directly corresponds to what

we introduced earlier in section 2.1 as the deficit Y . It is now natural to consider the probability

that an overtopping at time T ≡ Tc will occur within a finite time period [0, x], which is equivalent

to considering the probability, P (Tc < x, Y > y), that the exceedance event, YN(Tc) > h, occurs,

and the exceedance, Y = YN(Tc) − h, is greater than y = H − h. The latter overtopping probability,

P (Tc < x, Y > y), can be computed using formula (5) of section 2.

In what follows, we first numerically illustrate the evaluation of the probability, P (Tc < x), of

exceeding the critical level h, and the overtopping probability P (Tc < x, Y > H − h) (see Example

3.1). This allows us to comment on the sensitivity of the latter with respect to the choice of the

critical level h. Then, we concentrate on demonstrating how the two probabilities naturally arise in

the definition of a flood warning alarm time, which is at the core of our proposed methodology for

flood water release.

Example 3.1 (Control of flood risk via dam management.)
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For the purpose of this example, we consider two alternative scenarios, one with small/medium-sized

flood jumps in the water level, W1,W2, . . ., occurring more frequently, and a second scenario with

possibly large jumps, W1,W2, . . ., occurring with a lower frequency. In the first scenario, the jump

sizes are assumed independent, exponentially distributed with parameter α, i.e. W ∼Exp(α), and

occur according to a Poisson process with a high intensity λ. In the second case, λ is assumed low

and in order to model high-severity jumps, we assume the Wi’s are i.i.d. following a generic Pareto

distribution with shape parameter θ and scale parameter β, with probability density function

fW (z) =
θβθ

(z + β)θ+1
, z > 0,

which belongs to the family of heavy tailed distributions. With a selected set of parameter values, we

compute the probabilities P (Tc < x) and P (Tc < x, Y > H − h) for varying x, see Figure 5. In order

to make a fair comparison, we have equated λµ in the two situations, where µ is the mean of Wi, so

that the expected total water inflow severity per unit of time is identical in the two scenarios. As we

assume small µ in the first scenario, it is not very likely to have a single water inflow that causes an

exceedance event with severity Y = YN(Tc) − h(Tc) > H − h, and so P (Tc < x, Y > H − h) is close

to zero. Thus, we compute and plot the overtopping probability, P (Tc < x, Y > H − h), only for the

case of Pareto distributed W ’s.
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Figure 5: The probabilities P (Tc < x) (solid lines) and P (Tc < x, Y > H − h) (dashed lines) against
varying x. Left panel: exponential water inflow severities with parameter values λ = 10 and α = 0.2.
Right panel: Pareto water inflow severities with parameter values λ = 1, β = 50 and θ = 2. Other
parameter values: H = 100, h1 = 0.8H (blue lines) and h2 = 0.9H (red lines).

As noted, the expected total water inflow severity per unit of time is the same but because the

Pareto distribution is heavy-tailed, the exceedance probability, P (Tc < x) for any fixed value of x, is

clearly higher in this case (see Figure 5). Furthermore, the exceedance probability P (Tc < x) is higher
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for any value x in the case of h1 = 0.8H, which is natural to expect since h1 = 0.8H < h2 = 0.9H.

As opposed to the exceedance probability, the overtopping probability P (Tc < x, Y > H −h) is lower

for h1 = 0.8H, which is also to be expected, because a lower h leads to a higher H − h and therefore

the event Y > H − h of overtopping is less likely, see the right panel of Figure 5. This illustrates the

importance of the choice of the critical level h and its impact on the overtopping probability. We have

selected two different values of h to illustrate that a low critical level h1 leads to a higher probability

of sounding an alarm but such a warning is less “alarming” as H − h1 is larger which leaves more

space before the crest of the dam is reached. As demonstrated, a high threshold level h2 can be more

indicative of the risk of overtopping but would leave insufficient time for the projected water release to

take place before an overtopping event occurs, which can be very risky and therefore is not desirable.

Clearly, a balanced choice of the threshold level h should be sought.

T1 T2 Τ1=T3 Τ2=T4 x
t

Y1

Y2

Y3

Y4

Yt

running record

threshold level

dam height

Figure 6: A direct strategy of dam management where water is released instantaneously at the time
instants when the pre-specified critical threshold h is exceeded.

Next, we focus our attention on the second problem of managing water releases. Here, we consider

a series of water releases of deterministic amounts at certain moments, τ1, τ2, . . ., within a finite-

time horizon [0, x], in order to avoid overtopping events and prevent loss of lives and damage to

property as a result of overtopping. In order to incorporate water releases in our model, we assume

that the real time needed for a water release is negligibly small, i.e. an appropriate (deterministic)

amount of water is released instantaneously, and thus preventing overtopping. Mathematically, such

15



deterministic downward (negative) jumps in the water level process are equivalent to upward jumps

of the same sizes in the upper bounds representing the threshold level h(t) and the height of the dam

H, as illustrated in Figure 6. Of course this is only an equivalent mathematical transformation of the

model. In reality, the height of the dam H is fixed and cannot be increased. However, for the purpose

of computing the related overtopping probability, such a formal mathematical transformation is very

helpful.
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Figure 7: A probabilistic strategy of dam management incorporating an early warning signalling for
water releases based on the exceedance probability P (Tc < t).

A natural question then arises. “When is the appropriate time to release water?” A direct answer

is not to release water until the water reaches the threshold level h at time Tc, as illustrated in Figure

6. As mentioned earlier, the event of the water level exceeding the pre-specified critical threshold h

could serve as an early warning that the water level is alarmingly high and water should be released
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to prevent overtopping. However, this may not be a wise idea since the time Tc of water release is a

random variable and therefore is not predictable at time t = 0. In addition, it may be argued that it

is too late and risky to release water at the exceedance time Tc, which will not reduce the likelihood of

the occurrence of an overtopping event at time Tc. More precisely, this warning strategy only works if

the water level exceeds the critical threshold level h but does not reach the crest of the dam H, i.e. as

illustrated by the scenario in the left panel of Figure 4. Should the overtopping event occur at time Tc

(see the right panel of Figure 4), this strategy does not suggest any warning or preventive measures

prior to the overtopping event. It is therefore not a very efficient way of mitigating overtopping risk.

An alternative strategy that could be pursued is to determine the moment for a water release based

on the value of P (Tc < t), as illustrated in Figure 7. Clearly, P (Tc < t) is a monotonically increasing

function of t with P (Tc < 0) = 0. Thus, it is possible to find the instant τ , such that the probability,

P (Tc < τ), of the water level hitting the threshold level h within a finite period [0, τ ], reaches a

prescribed (critical) value ϵ, 0 < ϵ ≪ 1, when the likelihood of an exceedance event, YN(t) > h(t),

becomes significant. This is the forecasted time at which water should be released. Depending on the

parameter settings and the value of ϵ, τ can sometimes be larger than x. In such a case, water should

be released at time x. Mathematically, such an alarm time is defined as

τ = sup {0 < t ≤ x : P (Tc < t) ≤ ϵ} . (6)

In contrast to the direct strategy of releasing water at the (random) time Tc, here τ is not random

and is predetermined at time t = 0. As can be seen from (6), in order to compute τ , it sufficies to be

able to compute the exceedance probability P (Tc < t), which as demonstrated in Example 3.1 can be

done using formula (3) of section 2.

With definition (6), we revisit Example 3.1, and compute the alarm times τ with varying threshold

level h, as plotted in Figure 8, assuming the flood jumps Wi are independent, Pareto distributed. As

can be seen, the alarm time depends on the prescribed (critical) probability ϵ and on the choice of h,

which reemphasizes the remark we have made earlier that the pre-specified threshold level h should

be selected carefully in order to be used effectively in providing early warning signals. It is worth

noting that, because we require two correct digits after the decimal point when computing the alarm

time τ , the curves appear like a staircase. They should be smooth should an infinite accuracy of τ be

pursued.
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Figure 8: Alarm times against varying threshold levels. Blue, red and orange lines represent ϵ =
0.01, 0.05, 0.1 respectively. Parameter values: λ = 1, β = 50, θ = 2 and H = 100.

Following the definition of a single alarm (6), it is also possible to define a system with multiple

alarms. Suppose the first alarm is sounded at time τ1 to warn the water level is alarmingly high.

Reasonably, the projected water release should take place to decrease the likelihood of an overtopping

event. Suppose at each alarm time τi < x, i ≥ 1, the water height is lowered by some deterministic

amount vi, which as we explained earlier can be viewed equivalently as an instantaneous upward jump

of the same size vi in the upper bound. Thus, the upper bound h(t) becomes a process with pure

jumps of known sizes vi at deterministic moments τi, starting at h(0) = h. Given survival until time

τi, the next alarm time τi+1 can be defined as

τi+1 = sup {τi < t ≤ x : P (Tc < t|Tc > τi) ≤ ϵi+1} , i ≥ 1, (7)

where {ϵi}i≥1 is a sequence of prescribed critical probability levels, ϵi > 0, i = 1, 2, . . .. For simplicity,

one may use the same value of ϵ for consecutive alarm times, i.e. ϵi = ϵ.

It has to be noted that the second strategy proposed here to release water at time τi, based on

definition (7), also does not provide a perfect prevention from an overtopping event. Clearly, this

strategy is probabilistic, and it does not completely prevent an overtopping event occurring before

x, although the overtopping probability is very small (smaller than ϵ). Certainly, smaller ϵ might be

used to further diminish the overtopping probability. However, this would lead to a higher frequency

of water release, which is again not desirable.

A more practical way of dam management could be to employ a hybrid strategy of the two
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alternatives discussed above. More precisely, a series of alarm times τi for water releases can be

computed at the start time t = 0 based on (7), and the actual water level would also need to be

inspected over time. Thus, water should be released at each alarm time τi to prevent overtopping,

and in the very unlikely event of the prescribed threshold level h being exceeded, water would be

release immediately.

Finally, another remark should be made that the idea of employing an early warning system in

risk analysis has been extensively explored in previous literature, see e.g. Paté-Cornell (1986), Das

and Kratz (2012), etc. It is worth noting that the way of defining the early warning (alarm) times is

not unique. Here, we have considered the finite-time exceedance probability, P (Tc < t), as the central

quantity determining the alarm time. Other quantities, such as the size of a single water inflow severity

(Probable Maximum Flood, see e.g. Bullard (1986)), or the joint probability P (Tc < t, Y > H − h),

can also be considered when devising alarm time systems.

3.2 Other risk analysis applications

3.2.1 Systems reliability risk

In this application, losses, W1,W2, . . ., occur at random moments in time, T1, T2, . . . and may vary

in size, from relatively small but multiply occurring losses, e.g. slowdowns and server failures in

computer networks disrupting electronic business transactions, to possibly huge losses due to not

so frequent but severe failures. In general, as noted by Todinov (2006), losses can be measured in

different units, e.g. in lost production time or volumes of defective products, lost lives, financial losses

due to credit defaults, insurance claims or tax avoidance, amount of hazardous chemicals released in

the environment, warranty payments and lost customers, etc. As has been established by Todinov

(2006) “maximizing the reliability of a system, does not necessarily minimize the losses from failures”.

The author considers an interesting alternative approach to reliability allocation based on maximizing

the profit expected to emerge from the operation of the system. It can be argued that this problem,

and the related problem of assuring that profit stays positive within a fixed time interval with a very

high probability, can be addressed applying the risk theoretic approach, formalized as model A in

section 2.1. Thus, the problem of interest, which can be viewed as an extension of the model and

profit optimization problem considered by Todinov (2006), can be stated as follows.

Problem 1. Find an appropriate “aggregate gain” function h(t) ∈ H, such that the probability
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of the system’s non-failure (survival)

P (T > x) = 1− P

(
inf

0≤t≤x
(h(t)− S(t)) < 0

)
≥ 1− ϵ, (8)

where ϵ > 0 is a sufficiently small preassigned value, H is a rather general class of non-decreasing

possibly discontinuous functions, h(t), which may have jumps (e.g. a practically important case is

step-wise constant h(t)), and the loss severities Wi, i = 1, 2, . . ., can be integer-valued or continu-

ous, with any joint loss distribution, including multivariate dependent distributions, e.g. any copula

construction.

We note that, depending on the choices of H and ϵ, the solution for Problem 1 may not exist, or

if it exists, it may not be unique. Therefore, one may sometimes pursue an optimal solution in some

sense, e.g. maximizing the finite-time survival probability in (8). It is also worth mentioning that,

because H is a fairly general class of functions, it may not be possible to solve Problem 1 analytically

and numerical approaches may need to be considered. In order to solve Problem 1 numerically,

formulas (3) and (5) can successfully be applied. We illustrate how this is done in the next example,

by imposing restrictive assumptions on the class H.

Example 3.2 (Systems reliability risk.)

In this example, we assume the loss severities Wi, i = 1, 2, . . ., follow an i.i.d. logarithmic distribution

with parameter α, i.e. W ∼Log(α), with generic probability mass function P (W = i) = −αi/(i ln (1−

α)). N(t) is assumed a homogeneous Poisson process with constant intensity λ. We denote by u,

u > 0, the initial surplus level of the system, i.e. h(0) = u, and consider H as a class of piecewise

functions with an upward jump of fixed size J at time tJ , tJ ∈ [0, x], from which we select h(t), which

is the solution to Problem 1. Including a jump of size J in the gain function h(t), which may occur

at a variable time tJ , can be interpreted as a lump-sum capital injection to avoid the system failure

within the time period [0, x]. We assume that the critical risk level h(t) has different slopes before

and after the jump time tJ , denoted respectively by c1 and c2, where c1 is fixed and c2 is determined

by the instant of the jump tJ . This is to ensure that all gain functions h(t) belonging to H reach the
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same gain level at the end of the time period, x. Mathematically, ∀h(t) ∈ H, we have

h(t) =

{
u+ c1t, 0 ≤ t < tJ ,

u+ c1tJ + J + c2(t− tJ), tJ ≤ t ≤ x.

(9)
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Figure 9: Left panel: two possible candidates h1(t), h2(t) ∈ H. Right panel: P (T > x) as a function
of the location tJ of the jump of size J . Parameter values: λ = 5, α = 0.1, u = 12.5, c1 = 3, x = 2,
J = 2.5 and ϵ = 0.01.

In the left panel of Figure 9, we plot two possible candidates from the class H for illustrative

purposes. As discussed, both choices of the gain functions h(t) reach the same level of h(x) at the

end, x, of the time interval considered, and the after-jump slope varies according to the location of the

jump. For a selected parameter set, we evaluate the finite-time survival probability with the discrete

version of formula (3), utilizing the fact that formula (3) is valid for any non-negative non-decreasing

function allowing jumps, and numerical results are summarized in the right panel of Figure 9. As

can be observed, there are many functions h(t) from the chosen class H which provide solutions to

Problem 1. Therefore, we choose the one which maximizes the probability of non-failure P (T > x).

The latter is achieved by finding an appropriate tJ , i.e. the moment of capital injection of size J .

It is observed that, moving the location tJ of the jump J = 2.5 from tJ = 0 to tJ = 2 with the

other parameter values fixed, the survival probability P (T > 2) first increases slowly and then drops

quickly, and a unique maximum is reached at tJ = 0.9.

It has to be mentioned that the numerical illustration in this example is rather simple, based on the

specific class of functions H selected, and a unique solution to Problem 1 of maximizing the finite-time

survival probability has been obtained. With more general choices of H in more complex situations
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in system reliability risk analysis, one may not be able to find an optimal solution to Problem 1 and

a more involved functional analysis approach may need to be utilized. The framework itself may

also need to be calibrated carefully in order to fit the real scenarios properly, but the methodology

described in section 2 would be general enough to cover most, if not all, real system characteristics.

3.2.2 Inventory management risk

This example illustrates the application of our risk modelling approach to management and main-

tenance of an inventory of products over a predetermined time period. There are two important

processes related to an inventory of a product, the demand process which is described by the amount

of units and time instants they are withdrawn from inventory and the replenishment process which

specifies the amounts of units and instants at which they are replenished to inventory. It is essential

to note that in real inventory problems considerable uncertainty may be related to both the times of

arrivals and levels of orders for needed production materials and finished goods (see e.g. Hillier and

Lieberman 2010, Ch. 18). This leads to the necessity to construct stochastic inventory maintenance

models in which both demand and/or replenishment of inventory follow appropriate stochastic pro-

cesses. We note that the risk analysis approaches described above under both models A and B, can

be successfully applied in modelling the amount of products maintained in inventory so that the prob-

ability of demand exceeding supply, i.e., the probability of a shortage in inventory over a fixed time

interval, is kept sufficiently low. Under model A it would be natural to assume that predetermined

fixed amounts of units are stocked in inventory at certain predetermined dates, which in aggregate

forms the system’s (deterministic) gain process h(t), as described in section 2.1. The demand process

S(t) is considered stochastic, assuming that certain orders for random quantities W1,W2, . . . of units

arrive at random times T1, T2, . . . following e.g. market needs. This is in line with S(t) given in (1)

(see also the assumptions of model A in section 2.1). The probability of demand exceeding supply

within a finite time interval of size x can then be evaluated by utilizing formula (3). In this case, it

is relevant to consider as failure the event {T < x, Y > y}, where T is the time the demand process

exceeds the replenishment process, and given this, the deficit in demand Y exceeds a pre-determined

acceptable level y, and formula (5) can then be applied to compute the likelihood of this event. Al-

ternatively, in many real inventory maintenance situations, it is relevant to assume that inversely, the

demand process follows a deterministic pattern h(t), e.g. orders for fixed predetermined volumes of

goods are ordered to be shipped at predetermined dates, as in the assumptions of model B, while the
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replenishment of goods follows a stochastic process, S(t), as specified in section 2.2. There are various

examples of such inventory management models in the literature, see e.g. Heyman and Sobel (2003);

Resurreccion and Santos (2012).

3.2.3 Risk of emerging disease (ED) spread losses

In this application, losses occur due to an emerging (infectious) disease (ED) affecting e.g. fish

populations in catfish farms in US. A risk analytic approach to modelling such losses at a single farm

level, was recently proposed by Zagmutt et al. (2013), for the purpose of assessing the possibility

of launching agricultural insurance cover to protect catfish producers. The authors apply stochastic

disease spread modelling (DSM), implemented via Monte Carlo (MC) simulation in order to estimate

the total loss cost, LCed (see Eq. (1) in Zagmutt et al. (2013)), due to fish mortality resulting from

the spread of an ED in fish ponds belonging to a farm.

This approach can be further extended to model the losses from disease spread at a multi-farm

level, where we focus on infection spreading between farms rather than between ponds within a single

farm. Following Zagmutt et al. (2013), it is again assumed that disease spread between farms can be

triggered by direct and indirect contacts, modelled by a Poisson process. The numerical results in

Zagmutt et al. (2013) reveal that the total loss caused by fish mortalities for a single farm, LCed, is

a random variable which follows a certain distribution, that is estimated using MC simulation. Thus,

in a multi-farm system, where an ED spreads from one farm to another, the loss from each individual

farm, LCed, can be modelled by a random variable Wi, i = 1, 2, . . .. Therefore, it is natural to assume

a certain dependence structure governing the farm loss severities, W1,W2, . . ., as specified in our model

A of section 2.1. Some organizations (or certain lines of business in an insurance company) may be

concerned with the total loss caused by disease spread between farms at a state or national level, and

may therefore be interested in providing some protection (e.g. insurance) for the total loss against

an appropriate cumulative premium h(t). Such a problem setup naturally meets the assumptions

of model A described in section 2.1, and the results on the probability that the total loss from fish

mortality at a multi-farm level exceeds the accumulated premium, h(t), can be therefore applied in

this case in order to determine whether this risk is insurable.
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3.2.4 Risk of financial ruin and insolvency

Our final application is concerned with the risk of financial ruin and insolvency. The event of a

technical ruin (insolvency), i.e. failure, occurs when the aggregate expense outgo exceeds the aggregate

income inflow within a predetermined finite time horizon. Modelling the risk of ruin and insolvency

and allocating sufficient risk capital, so as to minimize the probability of insolvency, is crucial for the

healthy financial operation of firms. Companies from the financial services sector, such as insurance

companies, hedge funds and other investment funds and banks are exposed to the occurrence of

liabilities, typically insurance claims, devaluation of assets, credit defaults etc., which occur at some

random moments in time τi and whose sizes are also considered random variables Wi as in the

assumptions of model A (see section 2.1). On the other hand there is an inflow of income from

operations of such companies. Typically, this would be premium income, capital gains from interests

on deposits, mortgages, investments or other financial transactions, as specified in the assumptions of

Model A. The probability of technical ruin within a finite-time horizon can be evaluated and used to

determine the size of the risk capital. For further details of how model A is applied in the context of

operational risk of financial firms we refer to Kaishev et al. (2008).

Alternatively, one can apply model B for other non-financial companies, where the W ’s are inter-

preted as capital gains occurring as a result of successful discoveries or mineral finds, or innovations,

while aggregate operational costs follow a non-decreasing deterministic function (see section 2.2). For

specific details of how model B is employed in modelling the operations of companies with continuous

expenses and stochastic capital gains we refer to Dimitrova et al. (2013b).

4 DISCUSSION AND CONCLUSIONS

We have introduced two dually connected stochastic models A and B for quantifying the risk of failure

and have interpreted the related model parameters and variables to fit specific applications in risk

analysis. Under very general assumptions, we have provided new expressions for the probability that

a risk factor exceeds a possibly time-dependent risk level, while at the same time, the exceedance

over this level is greater than a pre-determined (deficit) value. Thus, we have demonstrated that

expressions (3), (5) and (12) are quite general and hence, applicable in providing solutions to many

risk analytic problems appearing in dam management, systems reliability, inventory management,

infectious disease spread and financial insolvency (see section 3). We have further demonstrated
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that having such explicit expressions is numerically appealing in quantifying the risk of failure and

designing early warning systems incorporating alarm times. We note that the definition of an alarm

time is not unique. As suggested by Das and Kratz (2010), who devise various alarm systems in the

context of actuarial science and insurance, alternative ways of defining alarm times may be pursued,

see also Dimitrova et al. (2014). Finally, let us also note that in some real situations it may also be

necessary to compute the infinite-time horizon failure probability. For instance, failure and reliability

of a system may be of interest over a very long (infinite) time-horizon. Such probabilities can be

determined using e.g. the results due to Ignatov and Kaishev (2006).
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Paté-Cornell, M.E. 1986. Warning Systems in Risk Management. Risk Analysis, 6(2), 223–234.
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Appendix

A A proof on the equivalence of formula (3) with (5) when y = 0

In this section, we provide a detailed proof which shows that the expression of P (T > x) given in

formula (3) coincides with the expression of P (T < x, Y > y) given in (5) in the case where y = 0.

Proof: When y = 0, rearranging the terms in formula (5), we have

P (T < x, Y > 0) ≡ P (T < x)

= 1 +

∞∑
k=2

∫ h(x)

0
· · ·
∫ h(x)

yk−2

∫ ∞

yk−1

Bk−2

(
h−1(yk−1); y1, . . . , yk−2

)
f(y1, . . . , yk)dyk . . . dy1

−
∞∑
k=1

∫ h(x)

0
· · ·
∫ h(x)

yk−2

∫ h(x)

yk−1

Bk−1

(
h−1(yk); y1, . . . , yk−1

)
f(y1, . . . , yk)dyk . . . dy1

−
∞∑
k=1

∫ h(x)

0
· · ·
∫ h(x)

yk−2

∫ ∞

h(x)
Bk−1

(
x; y1, . . . , yk−1

)
f(y1, . . . , yk)dyk . . . dy1,

which is equivalent to

P (T > x) = −
∞∑
k=2

∫ h(x)

0
· · ·
∫ h(x)

yk−2

∫ ∞

yk−1

Bk−2

(
h−1(yk−1); y1, . . . , yk−2

)
f(y1, . . . , yk)dyk . . . dy1

+

∞∑
k=1

∫ h(x)

0
· · ·
∫ h(x)

yk−2

∫ h(x)

yk−1

Bk−1

(
h−1(yk); y1, . . . , yk−1

)
f(y1, . . . , yk)dyk . . . dy1

+
∞∑
k=1

∫ h(x)

0
· · ·
∫ h(x)

yk−2

∫ ∞

h(x)
Bk−1

(
x; y1, . . . , yk−1

)
f(y1, . . . , yk)dyk . . . dy1

= − 1⃝+ 2⃝+ 3⃝.

We then have

1⃝ =
∞∑
k=2

∫ h(x)

0
· · ·
∫ h(x)

yk−2

∫ ∞

yk−1

Bk−2

(
h−1(yk−1); y1, . . . , yk−2

)
f(y1, . . . , yk)dyk . . . dy1

=

∞∑
k=2

∫ h(x)

0
· · ·
∫ h(x)

yk−2

Bk−2

(
h−1(yk−1); y1, . . . , yk−2

)(∫ ∞

yk−1

f(y1, . . . , yk)dyk

)
dyk−1 . . . dy1

=

∞∑
k=2

∫ h(x)

0
· · ·
∫ h(x)

yk−2

Bk−2

(
h−1(yk−1); y1, . . . , yk−2

)
f(y1, . . . , yk−1)dyk−1 . . . dy1

=

∞∑
k=1

∫ h(x)

0
· · ·
∫ h(x)

yk−1

Bk−1

(
h−1(yk); y1, . . . , yk−1

)
f(y1, . . . , yk)dyk . . . dy1

= 2⃝,
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indicating that

P (T > x) = − 1⃝+ 2⃝+ 3⃝ = 3⃝.

Thus,

P (T > x) =

∞∑
k=1

∫ h(x)

0
· · ·
∫ h(x)

yk−2

∫ ∞

h(x)
Bk−1

(
x; y1, . . . , yk−1

)
f(y1, . . . , yk)dyk . . . dy1

=
∞∑
k=1

∫ h(x)

0
· · ·
∫ h(x)

yk−2

∫ ∞

h(x)
e−λx

k−1∑
i=0

Ai(λx;λν1, . . . , λνi)f(y1, . . . , yk)dyk . . . dy1

= e−λx
∞∑
k=1

∫ h(x)

0
· · ·
∫ h(x)

yk−2

∫ ∞

h(x)

k−1∑
i=0

λiAi(x; ν1, . . . , νi)f(y1, . . . , yk)dyk . . . dy1

= e−λx
∞∑
k=0

k∑
i=0

∫ h(x)

0
· · ·
∫ h(x)

yk−1

∫ ∞

h(x)
λiAi(x; ν1, . . . , νi)f(y1, . . . , yk+1)dyk+1 . . . dy1.

Permuting the two sums, we obtain

P (T > x) = e−λx
∞∑
i=0

∞∑
k=i

∫ h(x)

0
· · ·
∫ h(x)

yk−1

∫ ∞

h(x)
λiAi(x; ν1, . . . , νi)f(y1, . . . , yk+1)dyk+1 . . . dy1

= e−λx
∞∑
i=0

∫ h(x)

0
· · ·
∫ h(x)

yi−1

λiAi(x; ν1, . . . , νi)×( ∞∑
k=i

∫ h(x)

yi

· · ·
∫ h(x)

yk−1

∫ ∞

h(x)
f(y1, . . . , yk+1)dyk+1 . . . dyi+1

)
dyi . . . dy1

= e−λx
∞∑
i=0

∫ h(x)

0
· · ·
∫ h(x)

yi−1

λiAi(x; ν1, . . . , νi)×

(∫ ∞

h(x)
f(y1, . . . , yi+1)dyi+1 +

∫ h(x)

yi

∫ ∞

h(x)
f(y1, . . . , yi+2)dyi+2dyi+1∫ h(x)

yi

∫ h(x)

yi+1

∫ ∞

h(x)
f(y1, . . . , yi+3)dyi+3dyi+2dyi+1 + · · ·

)
dyi . . . dy1.

Noting that the term in the brackets is identically equal to f(y1, . . . , yi), we have

P (T > x) = e−λx
∞∑
i=0

∫ h(x)

0
· · ·
∫ h(x)

yi−1

λiAi(x; ν1, . . . , νi)f(y1, . . . , yi)dyi . . . dy1

= e−λx

(
1 +

∞∑
i=1

∫ h(x)

0
· · ·
∫ h(x)

yi−1

λiAi(x; ν1, . . . , νi)f(y1, . . . , yi)dyi . . . dy1

)
,

which completes the proof.
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B A derivation of the joint probability of the time to ruin and the
deficit at ruin in model A assuming independent, non-identically
Erlang distributed inter-arrival times

Here, we provide a detailed derivation of the joint probability that the time to ruin T < x and the

deficit at ruin Y > y in model A with independent non-identically Erlang distributed inter-arrival

times. In what follows, we only consider the case of continuous losses. However, we note that, for the

case of discrete losses, an analogous derivation can be followed and similar results could be obtained.

Under the setup of model A, let τi, i = 1, 2, . . ., be a sequence of independent, non-identical

random variables, denoting the inter-arrival times. We assume these are independent, non-identically

Erlang distributed random variables with shape parameter gi > 0, and rate parameter λi > 0, i.e.

τi ∼Erlang(gi, λi). Let li = g1 + · · · + gi, i = 1, 2, . . .. Similar to Ignatov and Kaishev (2012b), we

introduce an integer-valued function j(k), k = 0, 1, 2, . . ., such that

g1 + . . .+ gj(k) = lj(k) ≤ k < lj(k)+1 = g1 + . . .+ gj(k) + gj(k)+1. (10)

Let {τ̃n}n≥1 be a sequence of independent, exponentially distributed random variables with parameters

θ1, θ2, . . . correspondingly, i.e. τ̃n ∼Exp(θn), such that θk+1 = λj(k)+1, k = 0, 1, 2, . . .. Thus, we have

(τ̃1 + · · ·+ τ̃l1 , τ̃l1+1 + · · ·+ τ̃l2 , . . .)
d
= (τ1, τ2, . . .).

Obviously, in this more refined representation of the Erlang arrivals in terms of sums of exponentials

we have that

θ1, . . . , θl1 , θl1+1, . . . , θl2 , . . . ≡ λ1, . . . , λ1︸ ︷︷ ︸
g1

, λ2, . . . , λ2︸ ︷︷ ︸
g2

, . . . , (11)

noting that the λi-s may possibly coincide. In the sequel, it will be convenient to use the notation

τ̃∗1 , τ̃
∗
2 , . . . for the r.v.s τ̃1, τ̃2, . . ., in the special case when θk+1 = λj(k)+1 ≡ 1, k = 0, 1, 2, . . ..

Denote by T1 = τ1, T2 = τ1 + τ2, . . ., the moments of loss arrivals and introduce the sequence of

random variables T̃1 = τ̃1, T̃2 = τ̃1 + τ̃2, . . .. Obviously, we can also write Ti = T̃li i = 1, 2, . . .. Let us

also consider the partial sums, Yi, i = 1, 2, . . . of the consecutive losses, Y1 = W1, Y2 = W1 +W2, . . .
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with probability density function fY1,...,Yi(y1, . . . , yi) ≥ 0 for 0 ≤ y1 ≤ . . . ≤ yi and 0 otherwise, i.e.

∫
. . .

∫
0≤y1≤...≤yi

fY1,...,Yi(y1, . . . , yi)dy1 . . . dyi = 1.

We will also denote by FY1,...,Yi(y1, . . . , yi), the cdf of Y1, . . . , Yi.

We now introduce the non-decreasing sequence of variables Ỹ1, Ỹ2, . . ., independent of τ̃1, τ̃2, . . .

and such that 0 = Ỹ1 = . . . = Ỹl1−1 ≤ Y1 = Ỹl1 = . . . = Ỹl2−1 ≤ Y2 = Ỹl2 = . . . = Ỹl3−1 ≤ . . ..

Then we have the following proposition.

Proposition B.1 The probability P (T < x, Y > y), x > 0, y ≥ 0, is given by (assuming l1 ≥ 2)

P (T < x, Y > y) =

∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−2

∞∫
yk−1+y

Blk−2

(
h−1(yk−1); ν1, . . . , νlk−2

)
fY1,...,Yk

(y1, . . . , yk)dyk dyk−1 . . . dy1

−
∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−2

h(x)+y∫
yk−1+y

Blk−1

(
h−1(yk − y); ν1, . . . , νlk−1

)
fY1,...,Yk

(y1, . . . , yk)dyk dyk−1 . . . dy1

−
∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−2

∞∫
h(x)+y

Blk−1 (x; ν1, . . . , νlk−1) fY1,...,Yk
(y1, . . . , yk)dyk dyk−1 . . . dy1, (12)

where

Bk(z; ν1, . . . , νk) =

k∑
i=0

Bk(z; ν1, . . . , νk),

Bk(z; ν1, . . . , νk) ≡ Bk(z) are the (classical) exponential Appell polynomials, defined by Ignatov and

Kaishev (2012b) recurrently as

Bk(z) = λj(k−1)+1e
−λj(k)+1z

∫ z

νj(k)

eλj(k)+1wBk−1(w)dw, k = 1, 2, . . .

with B0(z) = B0(z) = e−λ1z and 0 ≤ ν1 ≤ ν2 ≤ . . . is a sequence of real numbers denoting

h−1(0) ≤ . . . ≤ h−1(0)︸ ︷︷ ︸
g1−1

≤ h−1(y1) ≤ . . . ≤ h−1(y1)︸ ︷︷ ︸
g2

≤ . . . ,

correspondingly.
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Proof: By construction, the event {T < x, Y > y} can be expressed as

{T < x, Y > y} =
∞
∪

k=1

[
k−1
∩
i=1

{Yi < h(Ti)} ∩ {Yk > h(Tk) + y} ∩ {Tk < x}
]

=
∞
∪

k=1

[
k−1
∩
i=1

{
Ỹli < h

(
T̃li

)}
∩
{
Ỹlk > h

(
T̃lk

)
+ y
}
∩
{
T̃lk < x

}]
.

Clearly,
{
Ỹli < h

(
T̃li

)}
⊆
{
Ỹli < h

(
T̃li+w

)}
for w = 0, 1, . . . , gi+1 − 1, which is equivalent to{

Ỹli < h
(
T̃li

)}
⊆
{
Ỹr < h

(
T̃r

)}
for li ≤ r < li+1. Therefore, for any i = 1, 2, . . .,

{
Ỹli < h

(
T̃li

)}
⊆

li+1−1
∩

r=li

{
Ỹr < h

(
T̃r

)}
.

In addition, for 1 ≤ r < l1, we also have
{
Ỹr < h

(
T̃r

)}
=
{
0 < h

(
T̃r

)}
= Ω, and hence

l1−1
∩
r=1

{
Ỹr < h

(
T̃r

)}
=

Ω, where Ω is the sure event. Thus, we obtain

{T < x, Y > y} =
∞
∪

k=1

[
lk−1
∩
r=1

{
Ỹr < h

(
T̃r

)}
∩
{
Ỹlk > h

(
T̃lk

)
+ y
}
∩
{
T̃lk < x

}]
.

We note that the events in the square brackets are mutually exclusive. Hence, we have

P (T < x, Y > y)

= P

(
∞
∪

k=1

[
lk−1
∩
r=1

{
Ỹr < h

(
T̃r

)}
∩
{
Ỹlk > h

(
T̃lk

)
+ y
}
∩
{
T̃lk < x

}])
=

∞∑
k=1

P

(
lk−1
∩
r=1

{
Ỹr < h

(
T̃r

)}
∩
{
Ỹlk > h

(
T̃lk

)
+ y
}
∩
{
T̃lk < x

})
(13)

=
∞∑
k=1

x∫
0

. . .

x∫
tlk−1

fT̃1,...,T̃lk
(t1, . . . , tlk)dtlk . . . dt1

h(t1)∫
0

. . .

h(tlk−1)∫
ỹlk−2

∞∫
h(tlk )+y

dFỸ1,...,Ỹlk
(ỹ1, . . . , ỹlk),

where FỸ1,...,Ỹlk
(ỹ1, . . . , ỹlk) is the joint distribution of Ỹ1, . . . , Ỹlk and fT̃1,...,T̃lk

(t1, . . . , tlk) is the joint

density of T̃1, . . . , T̃lk . It can easily be seen that the random vector T̃̃T̃T =
(
T̃1, . . . , T̃lk

)′
coincides in

distribution with the random vector BBBlk τ̃
∗, i.e., BBBlk τ̃

∗ d
= T̃̃T̃T , where τ̃ ∗ =

(
τ̃∗1 , . . . , τ̃

∗
lk

)′
, and BBBlk is a

32



lk × lk dimensional matrix given in a block-matrix form as

BBBlk ≡


bbb1,1 · · · bbb1,k
...

. . .
...

bbbk,1 · · · bbbk,k

 ,

where bbbm,n is a gm × gn matrix for m,n = 1, . . . , k, with all entries equal to 1
λn

if m > n, all entries

equal to zero if m < n, and where bbbn,n is a lower triangular matrix with all elements in the lower

triangle equal to 1
λn

if m = n. Then, it is not difficult to see that

fT̃1,...,T̃lk
(t1, . . . , tlk) =

{
e
−1·BBB−1

lk
·ttt
∣∣∣detBBB−1

lk

∣∣∣
0

if 0 ≤ t1 ≤ t2 ≤ ... ≤ tlk

otherwise
,

where, 1 =

1, . . . , 1︸ ︷︷ ︸
lk

, ttt = (t1, . . . , tlk)
′, ()′ stands for transposition, and detBBB−1

lk
denotes the deter-

minant of the inverse of BBBlk . It can also be directly verified that the inverse matrix, BBB−1
lk

=
(
b̃ij

)
,

is an incomplete, lower triangular matrix, with non-zero elements only at the main and next lower

diagonals, given as

b̃m,m =



λ1 if 1 ≤ m ≤ l1

λ2 if l1 + 1 ≤ m ≤ l2
...

...
...

λk if lk−1 + 1 ≤ m ≤ lk

, b̃m+1,m =



−λ1 if 1 ≤ m ≤ l1 − 1

−λ2 if l1 ≤ m ≤ l2 − 1

...
...

...

−λk if lk−1 ≤ l ≤ lk − 1

,

and with all other elements equal to zero. Then, P (T < x, Y > y) becomes

P (T < x, Y > y)

=
∞∑
k=1

x∫
0

. . .

x∫
tlk−1

λg1
1 . . . λgk

k exp[−{λ1tl1 + λ2(tl2 − tl1) + · · ·+ λk(tlk − tlk−1)}]dtlk . . . dt1

h(t1)∫
0

. . .

h(tlk−1)∫
ỹlk−2

∞∫
h(tlk )+y

dFỸ1,...,Ỹlk
(ỹ1, . . . , ỹlk).
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Splitting the innermost integral, we have

P (T < x, Y > y)

=

∞∑
k=1

x∫
0

. . .

x∫
tlk−1

λg1
1 . . . λgk

k exp[−{λ1tl1 + λ2(tl2 − tl1) + · · ·+ λk(tlk − tlk−1
)}]dtlk . . . dt1

h(t1)∫
0

. . .

h(tlk−1)∫
ỹlk−2

 ∞∫
ỹlk−1+y

−

h(tlk )+y∫
ỹlk−1+y

 dFỸ1,...,Ỹlk
(ỹ1, . . . , ỹlk)

=

∞∑
k=1

x∫
0

. . .

x∫
tlk−2

λg1
1 . . . λ

gk−1

k−1 λ
gk−1
k

(
exp[−{λ1tl1 + · · ·+ λk−1(tlk−1

− tlk−2
) + λk(tlk−1 − tlk−1

)}]

−exp[−{λ1t1 + · · ·+ λk−1(tlk−1
− tlk−2

) + λk(x− tlk−1
)}]
)
dtlk−1 . . . dt1

h(t1)∫
0

. . .

h(tlk−1)∫
ỹlk−2

∞∫
ỹlk−1+y

dFỸ1,...,Ỹlk
(ỹ1, . . . , ỹlk)

−
∞∑
k=1

x∫
0

. . .

x∫
tlk−1

λg1
1 . . . λgk

k exp[−{λ1tl1 + λ2(tl2 − tl1) + · · ·+ λk(tlk − tlk−1
)}]dtlk . . . dt1

h(t1)∫
0

. . .

h(tlk−1)∫
ỹlk−2

h(tlk )+y∫
ỹlk−1+y

dFỸ1,...,Ỹlk
(ỹ1, . . . , ỹlk).

Permuting the two multiple integrals in the two terms, we obtain

P (T < x, Y > y)

=
∞∑
k=1

∫
. . .

∫
0<ỹ1<...<ỹlk−1<h(x)

ỹlk−1+y<ỹlk<∞

dFỸ1,...,Ỹlk
(ỹ1, . . . , ỹlk)

t2∫
h−1(ỹ1)

. . .

tlk−1∫
h−1(ỹlk−2)

x∫
h−1(ỹlk−1)

λg1
1 . . . λ

gk−1

k−1 λ
gk−1
k

(
exp[−{λ1tl1 + · · ·+ λk−1(tlk−1

− tlk−2
) + λk(tlk−1 − tlk−1

)}]−

exp[−{λ1t1 + · · ·+ λk−1(tlk−1
− tlk−2

) + λk(x− tlk−1
)}]
)
dtlk−1 . . . dt1

−
∞∑
k=1

∞∑
k=1

∫
. . .

∫
0<ỹ1<...<ỹlk−1<h(x)

ỹlk−1+y<ỹlk<h(x)+y

dFỸ1,...,Ỹlk
(ỹ1, . . . , ỹlk)

t2∫
h−1(ỹ1)

. . .

tlk∫
h−1(ỹlk−1)

x∫
h−1(ỹlk−y)

λg1
1 . . . λgk

k

exp[−{λ1tl1 + λ2(tl2 − tl1) + · · ·+ λk(tlk − tlk−1
)}]dtlk . . . dt1,
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which can be rewritten as

P (T < x, Y > y)

=

∞∑
k=1

∫
. . .

∫
0<y1<...<yk−1<h(x)

yk−1+y<yk<∞

dFY1,...,Yk
(y1, . . . , yk)

t2∫
ν1

. . .

tlk−1∫
νlk−2

x∫
h−1(yk−1)

λg1
1 . . . λ

gk−1

k−1 λ
gk−1
k

(
exp[−{λ1tl1 + · · ·+ λk−1(tlk−1

− tlk−2
) + λk(tlk−1 − tlk−1

)}]−

exp[−{λ1t1 + · · ·+ λk−1(tlk−1
− tlk−2

) + λk(x− tlk−1
)}]
)
dtlk−1 . . . dt1

−
∞∑
k=1

∫
. . .

∫
0<y1<...<yk−1<h(x)
yk−1+y<yk<h(x)+y

dFY1,...,Yk
(y1, . . . , yk)

t2∫
ν1

. . .

tlk∫
νlk−1

x∫
h−1(yk−y)

λg1
1 . . . λgk

k

exp[−{λ1tl1 + λ2(tl2 − tl1) + · · ·+ λk(tlk − tlk−1
)}]dtlk . . . dt1

=
∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−2

∞∫
yk−1+y

fY1,...,Yk
(y1, . . . , yk)dyk dyk−1 . . . dy1

t2∫
ν1

. . .

tlk−1∫
νlk−2

x∫
h−1(yk−1)

λg1
1 . . . λ

gk−1

k−1 λ
gk−1
k

(
exp[−{λ1tl1 + · · ·+ λk−1(tlk−1

− tlk−2
) + λk(tlk−1 − tlk−1

)}]−

exp[−{λ1t1 + · · ·+ λk−1(tlk−1
− tlk−2

) + λk(x− tlk−1
)}]
)
dtlk−1 . . . dt1

−
∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−2

h(x)+y∫
yk−1+y

fY1,...,Yk
(y1, . . . , yk)dyk dyk−1 . . . dy1

t2∫
ν1

. . .

tlk∫
νlk−1

x∫
h−1(yk−y)

λg1
1 . . . λgk

k

exp[−{λ1tl1 + λ2(tl2 − tl1) + · · ·+ λk(tlk − tlk−1
)}]dtlk . . . dt1, (14)

where 0 ≤ ν1 ≤ ν2 ≤ . . . is a sequence of real numbers denoting

h−1(0) ≤ . . . ≤ h−1(0)︸ ︷︷ ︸
g1−1

≤ h−1(y1) ≤ . . . ≤ h−1(y1)︸ ︷︷ ︸
g2

≤ . . . ,

correspondingly.

Let B0(z) = e−θ1z and for k = 1, 2, . . .,

Bk(z; ν1, . . . , νk) ≡ Bk(z)

=

t2∫
ν1

. . .

tk+1∫
νk

∞∫
z

θ1 . . . θk+1exp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θk+1(tk+1 − tk)}]dtk+1 dtk . . . dt1,

where {θs}s≥1 follow the refined representation (11).

35



Permuting the two innermost integrals, we have

Bk(z) =

t2∫
ν1

. . .

tk∫
νk−1

(tk+1∫
νk

∞∫
z

θ1 . . . θk θk+1 exp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θk(tk − tk−1) + θk+1(tk+1 − tk)}]

dtk+1 dtk

)
dtk−1 . . . dt1

=

t2∫
ν1

. . .

tk∫
νk−1

(∞∫
νk

∞∫
max{tk,z}

θ1 . . . θk θk+1 exp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θk(tk − tk−1)− θk+1tk}]

×e−θk+1tk+1dtk+1 dtk

)
dtk−1 . . . dt1

=

t2∫
ν1

. . .

tk∫
νk−1

(∞∫
νk

θ1 . . . θk exp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θk(tk − tk−1)− θk+1tk}]

×e−θk+1max{tk,z}dtk

)
dtk−1 . . . dt1

=

t2∫
ν1

. . .

tk∫
νk−1

z∫
νk

θ1 . . . θk exp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θk(tk − tk−1)− θk+1tk}]e−θk+1zdtk . . . dt1

+

t2∫
ν1

. . .

tk∫
νk−1

∞∫
z

θ1 . . . θk exp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θk(tk − tk−1)− θk+1tk}]e−θk+1tkdtk . . . dt1

= Bk(z; ν1, . . . , νk) +Bk−1(z),

where

Bk(z; ν1, . . . , νk) ≡ Bk(z)

= e−θk+1z

t2∫
ν1

. . .

tk∫
νk−1

z∫
νk

θ1 . . . θk exp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θk(tk − tk−1)− θk+1tk}]dtk . . . dt1.

(15)

Following Lemma A.1, A.2 and Corollary A.3 in Ignatov and Kaishev (2012b) and noting the refined

representation (11), we have

Bk(z) = λj(k−1)+1e
−λj(k)+1z

∫ z

νj(k)

eλj(k)+1wBk−1(w)dw, k = 1, 2, . . .
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with B0(z) = e−λ1z and j(k) is as defined in (10). It can be easily seen that

Bk(z; ν1, . . . , νk) =

k∑
i=0

Bi(z; ν1, . . . , νi)

with B0(z) = B0(z) = e−θ1z.

Thus, we have

t2∫
ν1

. . .

tlk−1∫
νlk−2

x∫
h−1(yk−1)

λg1
1 . . . λ

gk−1

k−1 λ
gk−1
k

(
exp[−{λ1tl1 + · · ·+ λk−1(tlk−1

− tlk−2
) + λk(tlk−1 − tlk−1

)}]

−exp[−{λ1t1 + · · ·+ λk−1(tlk−1
− tlk−2

) + λk(x− tlk−1
)}]
)
dtlk−1 . . . dt1

=

t2∫
ν1

. . .

tlk−1∫
νlk−2

x∫
h−1(yk−1)

λg1
1 . . . λ

gk−1

k−1 λ
gk−1
k exp[−{λ1tl1 + · · ·+ λk−1(tlk−1

− tlk−2
) + λk(tlk−1 − tlk−1

)}]dtlk−1 . . . dt1

−
t2∫
ν1

. . .

tlk−1∫
νlk−2

x∫
νlk−1

λg1
1 . . . λ

gk−1

k−1 λ
gk−1
k exp[−{λ1t1 + · · ·+ λk−1(tlk−1

− tlk−2
) + λk(x− tlk−1

)}]dtlk−1 . . . dt1

=

t2∫
ν1

. . .

tlk−1∫
νlk−2

∞∫
h−1(yk−1)

λg1
1 . . . λ

gk−1

k−1 λ
gk−1
k exp[−{λ1tl1 + · · ·+ λk−1(tlk−1

− tlk−2
) + λk(tlk−1 − tlk−1

)}]dtlk−1 . . . dt1

−
t2∫
ν1

. . .

tlk−1∫
νlk−2

∞∫
x

λg1
1 . . . λ

gk−1

k−1 λ
gk−1
k exp[−{λ1tl1 + · · ·+ λk−1(tlk−1

− tlk−2
) + λk(tlk−1 − tlk−1

)}]dtlk−1 . . . dt1

−
t2∫
ν1

. . .

tlk−1∫
νlk−2

x∫
νlk−1

λg1
1 . . . λ

gk−1

k−1 λ
gk−1
k exp[−{λ1t1 + · · ·+ λk−1(tlk−1

− tlk−2
) + λk(x− tlk−1

)}]dtlk−1 . . . dt1

= Blk−2

(
h−1(yk−1); ν1, . . . , νlk−2

)
−Blk−2 (x; ν1, . . . , νlk−2)−Blk−1 (x; ν1, . . . , νlk−1)

= Blk−2

(
h−1(yk−1); ν1, . . . , νlk−2

)
−Blk−1 (x; ν1, . . . , νlk−1) , (16)
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noting h−1(yk−1) = νlk−1, and

t2∫
ν1

. . .

tlk∫
νlk−1

x∫
h−1(yk−y)

λg1
1 . . . λgk

k exp[−{λ1tl1 + λ2(tl2 − tl1) + · · ·+ λk(tlk − tlk−1
)}]dtlk . . . dt1

=

t2∫
ν1

. . .

tlk∫
νlk−1

∞∫
h−1(ylk−y)

λg1
1 . . . λgk

k exp[−{λ1tl1 + λ2(tl2 − tl1) + · · ·+ λk(tlk − tlk−1
)}]dtlk . . . dt1

−
t2∫
ν1

. . .

tlk∫
νlk−1

∞∫
x

λg1
1 . . . λgk

k exp[−{λ1tl1 + λ2(tl2 − tl1) + · · ·+ λk(tlk − tlk−1
)}]dtlk . . . dt1

= Blk−1

(
h−1(yk − y); ν1, . . . , νlk−1

)
−Blk−1 (x; ν1, . . . , νlk−1) . (17)

Substituting (16) and (17) into (14), formula (12) directly follows. Hence, the asserted result holds

true. �

Corollary B.2 When y = 0, the finite-time ruin probability given by Proposition B.1 coincides with

the results of Theorem 2.1 in Ignatov and Kaishev (2012b).

Proof: Following an analogous derivation as in Appendix A and noting lj(k) ≤ k < lj(k)+1, where

lj(k) = g1 + . . .+ gj(k), the result directly follows. �
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