

City, University of London Institutional Repository

Citation: Popov, P. T., Salako, K. & Stankovic, V. (2015). Stochastic modeling for

performance evaluation of database replication protocols. Lecture Notes in Computer
Science, 9259(9259), pp. 21-37. doi: 10.1007/978-3-319-22264-6_2 ISSN 0302-9743 doi:
10.1007/978-3-319-22264-6_2

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/11965/

Link to published version: https://doi.org/10.1007/978-3-319-22264-6_2

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Stochastic modeling for performance evaluation of

database replication protocols

Peter Popov, Kizito Salako, Vladimir Stankovic

{P.T.Popov, K.O.Salako, V.Stankovic}@city.ac.uk

Centre for Software Reliability, City University London, UK

Abstract. Performance is often the most important non-functional property for

database systems and associated replication solutions. This is true at least in in-

dustrial contexts. Evaluating performance using real systems, however, is com-

putationally demanding and costly. In many cases, choosing between several

competing replication protocols poses a difficulty in ranking these protocols

meaningfully: the ranking is determined not so much by the quality of the com-

peting protocols but, instead, by the quality of the available implementations.

Addressing this difficulty requires a level of abstraction in which the impact on

the comparison of the implementations is reduced, or entirely eliminated. We

propose a stochastic model for performance evaluation of database replication

protocols, paying particular attention to: i) empirical validation of a number of

assumptions used in the stochastic model, and ii) empirical validation of model

accuracy for a chosen replication protocol. For the empirical validations we used

the TPC-C benchmark. Our implementation of the model is based on Stochastic

Activity Networks (SAN), extended by bespoke code. The model may reduce the

cost of performance evaluation in comparison with empirical measurements,

while keeping the accuracy of the assessment to an acceptable level.

Keywords: stochastic modeling; database replication protocols; performance

evaluation; diverse redundancy

1 Introduction

Performance evaluation of database systems is important and usually affects the decision
about which among many competing products to use. Performance evaluation via meas-
urements with real database systems is a complex and expensive process. If comparison
of replication protocols is sought, the above problems are compounded by the fact that
the ranking among the compared protocols might be affected by both the quality of the
available implementations of the compared protocols and the precision/accuracy of the
methods employed in the evaluation process itself.

Performance evaluation via stochastic modelling has some potential advantages in
comparison with performance measurements using real systems:

 Saving on both the ICT infrastructure costs and the time taken for evaluation. In our

own experience, performance measurement takes a lot of time, especially if perfor-
mance needs to be measured in a wide range of conditions (varying workload, size
of the data processed by the tested system, hardware constraints, etc.). The cost will
further escalate if getting high confidence in the performance evaluation is neces-
sary. Performance measures, e.g. average transaction response time or throughput,
may vary significantly between individual measurements. Stochastic models may
offer dramatic cost-savings in these circumstances;

 Replication protocols – which one to choose? Being able to compare replication pro-
tocols at a high level of abstraction (eliminating the limitations of a particular imple-
mentation) is useful before one commits to a particular solution. Typically, new pro-
tocols are compared with the performance of a single solution, but rarely can two
competing protocols be measured without the comparison being affected by the qual-
ity of the particular implementations. The ranking of the products may reflect the
quality of the implementations, rather than the quality, or lack thereof, of the com-
pared replication solutions. Even if the protocol implementations have been suitably
optimised, the ranking might still depend significantly on precisely how, and the
conditions under which, the evaluation was conducted (e.g. performance overheads
due to network delays or inaccurate measurement routines).

 Model-based performance evaluation of database replication protocols has been
studied by others in the past. For instance, in [1] the authors opt to explicitly model disk,
cache, CPU, network and concurrency control. Similarly, the research in [2] is based on
modeling CPU, disks, database log disks and network with the aim of evaluating their
proposed replication protocol – Database State Machine (DBSM). In [3] the authors
scrutinize various assumptions in modelling the performance of single DBMS concur-
rency control mechanisms and conclude that different assumptions may lead to “contra-
dictory results”. Also, a variety of analytical models for distributed and replicated data-
bases have been proposed, e.g. as in the survey [4]. Likewise, a thorough survey and
classification of queuing network models for database systems performance is given in
[5]. Many models referred to above do not validate the modelling assumptions seriously
while, contrastingly, the main contribution of [3] is in demonstrating how building a
credible model starts with validating the modelling assumptions; this is the view that we
take in this paper. The building of stochastic models that give trustworthy performance
evaluation results requires significant effort in model validation. Only then can any ben-
efits from model-based evaluation (e.g. cost savings) be taken seriously.

The foregoing suggests that we need a trustworthy, implementation-agnostic, model-
based performance evaluation of database replication protocols. We, therefore, put for-
ward and rigorously validate a stochastic model for performance evaluation. This model
operates at a relatively high level of abstraction, e.g. hardware resources (HW) are not
explicitly modelled; we demonstrate how this level of fidelity, which implicitly takes
HW resources into account, is appropriate for our aims.

The stochastic model was implemented in the Mobius [6] modelling environment,
enhanced with our own code: we created suitably expressive representations of a data-
base replication protocol, clients and diverse database servers using the Stochastic Ac-
tivity Network (SAN) [7] formalism. The model and its assumptions were validated
(Sect. 5) for a diverse database replication protocol [8] using our implementation of the
TPC-C, an industry benchmark for performance evaluation of database servers.

To investigate the efficacy of our proposed approach we proceeded as follows. The

aforementioned server models were calibrated and validated using statistical distribu-
tions obtained from experiments with real systems, each experiment consisting of a sin-
gle client and a single server. In particular, for each server model, the validation con-
sisted of a detailed statistical analysis to check/refute the model assumptions, as well as
comparing the distribution of transaction durations observed in experiments with those
obtained via simulation. Upon gaining sufficient agreement between experiment and
simulation, we used the validated server models in simulating the behavior of the proto-
col under 1 client and 5 client loads. We examined how well the simulation results agree
with reality, by comparing the transaction duration distributions obtained with those ob-
served in real system experiments.

The remaining sections of the paper are as follows. In Sect. 2 we present related
work. Sect. 3 describes a stochastic model of a database server operation applicable to a
range of database replication protocols, while Sect. 4 explains the model we imple-
mented for a particular replication protocol. Using data from real system experiments,
in Sect. 5 we present the validation of both the modelling assumptions and the model’s
behavior when suitably calibrated. The main simulation results are detailed in Sect.6.
Sect.7 is a discussion of the stochastic model approach and the results, and Sect. 8 con-
cludes the paper, highlighting future work.

2 Related Work

In addition to the references of “related work” given in the Introduction, we would like
to summarise some relevant research on database replication protocols. Database repli-
cation has proved a viable method for enhancing both dependability and performance of
DBMSs. Performance is typically improved by balancing the load between deployed
replicas, while fail-over mechanisms are normally used to re-distribute the load of a
failed replica among the operational ones to improve availability.

The common assumption in building database replication protocols is that crashes
are the main type of DBMS failures. Under this assumption, using several identical rep-
licas (e.g. MS SQL servers) provides appropriate protection. Under this assumption,
which is used as the basis for all commercial solutions and most academic ones (e.g.
[9]), various performance and scalability improvements are viable. This common belief
is, nonetheless, hard to justify – recent research resulted in overwhelming evidence
against crash failures being of primary concern [10], [11]. Using the log of known bugs
reported for major DBMSs, it was observed that a majority lead to non-crash failures;
these failures can be tolerated only by diverse replication. This is why we chose a diverse
replication protocol – one of the few we know of – to illustrate our approach to model-
based performance evaluation. Our research focuses entirely on performance evaluation
and defers dependability modelling, and its impact on performance, for future work. In
so doing, the paper studies the best performance achievable by a replication protocol.

3 Stochastic Model of Database Server Operation

3.1 Model of a Database Server

Modern relational database servers implement a client-server architecture: a client sends

requests to a server in the form of SQL statements for the server to execute, and the
server returns the result of each execution to the client. In this way, a server may serve
multiple clients, concurrently. Each client establishes a connection (or several may share
the same one), via which a series of transactions is executed. Each transaction is a set of
serially executed operations (SQL statements). A transaction is completed according to
the ACID properties, e.g., it is either committed (all the changes are made permanent)
or aborted (all the changes are discarded). In general, transactions are not guaranteed to
be committed; there is uncertainty here, from both the client-server system and its envi-
ronment, which ultimately determines the transaction’s fate.

According to the TPC-C benchmark, each transaction made by a client belongs to
one of 5 types – Delivery, New Order, Order Status, Payment or Stock level. The pro-
portions in which each of these types occur are specified and define a probability distri-
bution (transaction profile); during simulation, each client determines its next transaction
by choosing it according to this distribution. In this way, a random sequence of transac-
tions is generated by the clients. These TPC-C transaction types are defined by 34 SQL
statement types, each of which can be a SELECT, DELETE, INSERT or UPDATE.

Executing a transaction takes time. Typically, how long a transaction will take is not
known beforehand; uncertainty lurks here, as well. The duration is dependent on the
nature of the transaction and its constituent statements, the relevant data for the transac-
tion, the conditions under which the transaction is executed and the server (including the
database state and load). For most applications, a transaction’s duration is well-approx-
imated by the sum of its constituent statements’ durations. For a given server executing
statements of a given type, the statement durations follow some statistical distribution –
one that is adequately approximated by collecting a suitably large sample of such dura-
tions from a server deployed on a real system test-bed. As a first pass, we made direct
use of these distributions as is, foregoing any attempts to fit them to some member of a
yet to be determined theoretical probability distribution family. These distributions are
vital for our model. When a server executes a statement during simulation, in order to
determine how long this simulated execution will take, a random sampling of an amount
of time is made according to the statement’s related statistical distribution (which, im-
plicitly, captures HW configuration effects).

So, the time taken for server 𝑖 to execute a given statement type is a random varia-
ble, 𝑋𝑖, with distribution function 𝐹𝑖(𝑥𝑖). With n replicas, each statement is modelled by
a random vector, 𝑋1, 𝑋2, … , 𝑋𝑛 . And, a continuous joint distribution function,

𝐹1,2,…,𝑛(𝑥1, 𝑥2, … , 𝑥𝑛), governs the stochastic process of executing the statement on the

replicas. What is the precise form of this function? One might suspect that the random
variables, 𝑋𝑖, are not independently distributed. Indeed, these random variables model
the time taken by each server to process a statement. So, if the statement leads to an
execution with a small amount of data being processed, then the time taken by the repli-
cas is likely to be short. Contrastingly, if the statement leads to a complex analysis of a
large amount of data, then a long time might be necessary for all replicas. Admittedly,
the picture is more complex than this simplistic intuitive speculation: the time taken by
the server to process a statement involves processing some data, data exchange between
disk and RAM, etc. However, despite our detailed investigation of the correlations be-
tween TPC-C statement durations across the two servers we chose, we uncovered no
statistically significant evidence to reject an assumption that the durations are independ-
ent (Sect. 5.3). Consequently, in our model, the joint distribution factors into the product
of the individual replicas related distributions for sampling the statement’s duration:

𝐹1,2,…,𝑛(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝐹1(𝑥1) … 𝐹𝑛(𝑥𝑛) .

On a related note, the duration, 𝑇, of a transaction on server 𝑖 is the sum of the dura-
tions, 𝑋𝑖 , 𝑌𝑖 , … , 𝑍𝑖, of its constituent statements and transaction edge operations (begin,
commit and abort). That is, the relationship between these random variables is

𝑇 = 𝑋𝑖 + 𝑌𝑖 + ⋯ + 𝑍𝑖 .

We sought evidence from experiment to suggest plausible relationships between the
random variables 𝑇, 𝑋𝑖 , 𝑌𝑖 , … , 𝑍𝑖, and found evidence for two relationships: one indicat-
ing how, with an appropriate definition of “fast” and “slow”, fast/slow transactions tend
to be comprised of a significant number of fast/slow statements, and another relationship
which suggests that those statements in the transaction with significantly larger average
durations almost completely determine the transaction speed. As a first pass, we chose
to model a gross approximation to both of these two effects in the following way. When
a transaction begins, we uniformly sample a number, 𝛼, between 0 and 1, and treat this
number as defining the (𝛼 × 100)th-quantile duration for each statement that will even-
tually form a part of the transaction. Then, at the point in simulated time when a state-
ment duration is sampled, the sampling will either default to using this pre-specified
quantile with probability 𝜌, or it won’t with probability 1 − 𝜌. This determines the sam-
pled durations for the statements and, thus, the distribution of 𝑇. Here, 𝜌 is a model cal-
ibration parameter – with a unique value per server – which gives us two-degrees of
freedom to achieve the best fit between measurements and simulation results when cal-
ibrating the model.

3.2 Concurrency Control

When serving multiple clients, database servers use various concurrency control
schemes to guarantee adequate data consistency, while also striving for the best perfor-
mance possible. They handle conflicts between simultaneously executing transactions,
which can result in aborting some. Thus, these schemes provide different levels of iso-
lation between concurrent transactions. We have chosen to model Snapshot Isolation
(SI) [12] - although not a standardized transaction isolation level, it is offered by many
database servers (Oracle, MSSQL, PostgreSQL, etc.) as it improves performance by
eliminating conflicts between concurrent readers and writers of the same data items.
Modeling the isolation level is also an important characteristic of our approach.

Under SI, the detection and resolution of write-write conflicts – where two or more
concurrent transactions attempt to write to the same database item (stored at a logical
location) – is of primary importance. Write-write conflicts arise naturally, and at random,
in multi-client applications. Consider that, for modelling these conflicts, an explicit no-
tion of “database logical location” is absolutely necessary, but an explicit notion of data
at these locations is not! And, even these database locations are only relevant for conflict
detection as long as there are concurrent transactions attempting to write to that location.
This is very convenient: it allowed us to use a level of abstraction for our model which
consisted of choosing (in accordance with TPC-C) a database location to accompany
each simulated write statement, and recording this location (for conflict detection on
each server) when executing such statements.

In many situations, a priori, one may know neither where the next conflict will arise
in the database, nor precisely when it will arise. “Where” depends on the transaction

profile. For a given database location, if each client independently chooses to execute a
transaction that attempts to write to that location, then the probability of a conflict at that
location is the product of the probabilities describing each client’s concurrent choice.
“When” depends on the order in which the server executes the statements.

3.3 Measures of Interest

Performance measurements are dictated by the specific context. A number of perfor-
mance benchmark standards exist for databases (e.g., www.tpc.org). These standards
commonly recommend steady-state measures, such as number of transactions per time
unit or average transaction duration. TPC-C mandates using the number of New-Order
transactions (one of the 5 transaction types defined by the benchmark) per minute. This
metric implicitly takes into account all transaction types in the mix, as their individual
throughput is controlled by the minimum percentages defined by the standard. Such
measures are not constants – they vary over time even for steady-state mode of operation.
This variation can be captured by establishing the distribution of the measure. We note
here that a TPC-C requirement is to report the 90th percentile of frequency distribution
of response times for each transaction type. In our approach, we analysed the distribu-
tions of transaction durations.

4 DivRep Replication Protocol and SAN-based Implementation

We demonstrate our approach for stochastic modeling of database replication protocols
using DivRep replication protocol [8, 13] as an example.

4.1 The Chosen Database Replication Protocol - DivRep

DivRep is an eager, multi-master replication protocol, implemented as a middleware on
top of diverse database servers. It assumes the database servers are configured with SI.
Full data replication is performed. Replication is performed at SQL statement level.
While replicas execute SQL statements asynchronously inside a transaction, detection
of incorrect results failures proceeds in parallel by comparing the results of SQL state-
ments produced by diverse database servers. Replica consistency is achieved by execut-
ing transaction edge operations “atomically” – the same order of commits and begins is
guaranteed on both replicas. This atomicity is achieved using a variant of 2-Phase Com-
mit (2PC). DivRep operates with two diverse database replicas configured in a Fault-
tolerant node (FT-node).

 An integral part of DivRep is the use of the NOWAIT feature of a DBMS, which
raises an exception as soon as the DBMS detects that two concurrent transactions attempt
to modify the same data item (e.g. to modify the same row of a database table). This
feature is typically implemented as part of a locking protocol: the transaction, which
finds the exclusive lock on a data item being taken by another concurrent transaction
will be interrupted by a NOWAIT exception, and the modifications of the particular data
item by the interrupted transaction will be discarded by the DBMS. Many off-the-shelf
products (e.g. Oracle, MSSQL, PostgreSQL, etc.) offer NOWAIT functionality. An im-
portant feature of DivRep is that only one replica has NOWAIT enabled. This asymmet-
ric configuration is important: write-write conflicts are typically reported by a single

http://www.tpc.org/

replica – the one on which the NOWAIT is enabled – while, on the other replica, trans-
action blocking will take place in case of write-write conflicts.

4.2 SAN-based Model of Client, Servers and DivRep

Our performance evaluation is carried out via Monte-Carlo simulation. In creating an
application capable of running our simulation campaigns, faithful representations of a
TPC-C client, diverse servers configured with SI, and the DivRep protocol, were all
realized as atomic SAN models in a Mobius project (Fig. 1.); for further details see
http://openaccess.city.ac.uk/4744/.

Fig. 1. Composed model of Client, Server and DivRep, in Mobius modelling environment.

The client SAN interacts with any of the server SANs (referred to as Transaction-
SANs in Fig. 1.), either directly or through the DivRep SAN. The client generates trans-
actions (statements and database location data) according to the TPC-C specification;
this is the only source of uncertainty in the client. The DivRep SAN operates determin-
istically, coordinating the receipt and forwarding of statements and the results of state-
ment executions between the client and a pair of replicas. It does this while ensuring the
same order of transaction edges across the replicas and synchronizing the concurrency
control actions across the replicas. And, the server SANs themselves are capable of ex-
ecuting and coordinating concurrent transaction statements, using NOWAIT and trans-
action blocking. The primary sources of uncertainty for these server models are the SQL
statement durations.

Each server model takes as inputs empirical distributions of statement durations; ob-
tained from real system experiments involving a client and the server, and representing
the duration distribution for each TPC-C statement type (34 in total). Together with du-
ration distributions for the transaction edges (begin, commit, abort) and the fact that there
are two servers, the number of input distributions to the model is 74. While this is a large
number of distributions the intention here is that the same distributions will be used for
different scenarios – we may vary the number of clients or change the protocol alto-
gether. In this sense, the work of collecting the data to parameterize the model is done
only once.

This SAN-based model is meant to be reusable; e.g. evaluating the performance of a
protocol under a new transaction profile could require simply changing input parameters;
evaluating a different protocol involves simply replacing the DivRep atomic model with
an adequate atomic model of the chosen protocol, etc.

http://openaccess.city.ac.uk/4744/

5 Statistical Analysis and Validation of Modeling Assumptions

5.1 Test Harness for Real System Experimentation

We built a test harness to evaluate the performance of DivRep and inform our model-
based approach. It was deployed in a virtualized environment: 3 physical servers (HP
ProLiant DL165 G5p) run VMware ESXi v4 hypervisor. Each physical machine de-
ploys a set of virtual machines (VMs), which ran either Windows 2008 Server (64 bit),
or Linux Fedora Core 11 (64 bit). The client application is our own Java implementation
of the TPC-C benchmark. We performed the evaluation using FT-node consisting of 2
open source servers: Firebird (FB), v2.1 and PostgreSQL (PG), v8.4. Each server and
the client application run in a separate VM, deployed on a separate physical machine.
The servers and the client application run on the Windows OS. Our implementation of
DivRep has been executed on a separate VM, which runs FC 11.

We collected detailed logs: transaction durations, SQL statement durations, abort
counts etc. The precision for transaction and statement durations is nanoseconds (nsec).
We ran several types of experiments. Firstly, we conducted single server experiments
without DivRep. The SQL statements’ durations obtained from these experiments were
used as input to the model (Sect. 3.1); the distributions of transaction durations were
used for model validation (Sect.5.4). They are as follows:

 Single FB, 1 TPC-C Client, 100k transactions. We executed 5 repetitions using the
same random number generator seed, and ran further repetitions changing the seed
value. There are about 2.8 million SQL statements instances in a repetition.

 Single PG, 1 TPC-C Client, 100k transactions – analogous ones as for 1FB above.

We also ran two types of DivRep experiments, configured with an FT node (1FB,
1PG): i) 1 Client, 100k transactions, and ii) 5 Clients, each executing 20k transactions
(100k in total). There were 5 repetitions of each type. The same seeds as for the single
server experiments were used. The resulting transaction duration distributions were
used for model validation.

5.2 Model Assumptions Validation

As indicated in Sect. 3.1, the time a server takes to execute a given SQL statement is
modeled as being sampled from a distribution of statement times derived from measure-
ments on a real system testbed with the respective server. As is standard practice, we
estimated and excluded an initial transient period from the measurements. Out of 100k
recorded transactions, the length of the transient period for each server was established
to be about the first 30k transactions for FB, and about the first 25k transactions for PG.
To determine these lengths, we divided the duration of the experiment into 5 min. peri-
ods. For each of these “bins”, we identified the response times of those transactions that
complete at times which fall in the same bin, from which we computed the mean trans-
action response time for each bin (Fig. 2). We observed consistent transients across rep-
etitions of the same experiment; the graphs shown here are based on only one of 5 repe-
titions of each experiment type (Sect. 5.1).We also produced exponential moving aver-
ages. By considering a range of lags over which to perform the moving averages, a lag
of 10k observations manifested the transient trend component most accurately. The
“moving averages” results were consistent with the “binned averages” results.

http://www.firebirdsql.org/

Fig. 2. “Binned averages” graphs for determining Transients period for the experiments: “1FB,

1 Client, 100k transactions” (top) and “1PG, 1 Client, 100k transactions” (bottom)

Additional verification of the truncated data representing a steady-state process can be

seen from the Autocorrelation function (ACF) graphs of the transaction duration time-

series. The maximum lag is roughly half of all the transaction instances observed in our

proposed steady state. Fig. 3 shows the ACF graphs of transaction durations for the

1FB and 1PG experiments. The graphs are clearly consistent with that of a purely sta-

tionary random process. And, while not strictly applicable, we also ran Augmented

Dickey-Fuller (ADF) [14] statistical tests to check if the transaction durations form a

stationary process. For both servers, at the 1% significance-level, there was statistically

significant evidence to reject the null-hypothesis that the observed processes are non-

stationary. The ADF is from a family of so-called unit-root tests; it assumes a certain

functional form (a shifted integrated autoregressive process) as a suitable model for

the time-series under the null hypothesis. We do not have any reason to believe such a

functional form might be applicable here.

Fig. 3. Autocorrelation function (ACF) of the steady-state transaction durations, for the experi-

ments: “1FB, 1 Client, 100k transactions” (left) and “1PG, 1 Client, 100k transactions” (right).

After discarding the transactions in the transient periods, we used the remaining SQL
statement logs to construct populations of times representing the durations for each state-
ment of a particular statement type. Recall, from Sect. 3.1, that each of the 5 transaction
types consists of a series of statements. For instance, the number of statements in New-
Order transactions ranges from 26 to 66 (there is a loop and a “conditional” in the im-
plementation). For each of these statement types and each server – such as New-Order
1 (NO1) on FB – we constructed a population of all instances of the statement type seen

within those transactions belonging to the steady state. This defines the duration distri-
bution, for the statement type on a given server, to be used during simulation.

 For most statement types during simulation, a statement’s duration on a given server
is sampled, independently, according to the statement’s duration distribution. Conse-
quently, for the given statement type, the time-series of observed durations for the state-
ment is trivially weakly stationary. To attempt to refute this, we sought statistical evi-
dence of non-stationarity in the time-series of statement durations from the real-system
experiments. However, for our chosen configurations of the servers, the ACF graphs for
the time-series showed either no, or negligible, evidence of non-stationary behavior (Fig.
4).

Fig. 4. ACF of Payment 9 statement steady-state durations, “1PG, 1Client, 100k transactions”.

5.3 Correlation of SQL Statements Durations

Are the SQL statement durations correlated across the servers; for instance, does a
statement with a long duration on FB imply that the statement will also have a long
duration on PG? The same RNG seed value was used when executing either of the
single server (1FB or 1PG) experiments under the “1 Client, 100k transactions” load.
Since these are single client experiments, the same sequence of database transactions
and SQL statements was executed in both. For each of the 34 TPC-C statement types
and the transaction edge operations, we calculated the Pearson Correlation Coefficient
(CC) between the two servers. The calculation, based on steady-state data, showed no
significant correlation: the CC values for SQL statements types were in the range [-
0.01, 0.05], while the values for the transaction edges in the range [-0.001, 0.041]; in-
deed, a surprising result. Although not a proof of statistical independence, it provides
evidence against linearly correlated statement/edges durations, and is consistent with
our choice of modelling the statement /transaction edges durations as statistically inde-
pendent across two servers (see Sect. 3.1).

5.4 Client-Server System Model Validation

The validation of our model proceeds by simulating the single-client/single-server ex-
periments (Sect. 5.1) and comparing the results thereof with experimental observations
from the real system. But first, we studied the variability in the real system experiments
to determine the extent to which these observations are reproducible.

 The necessary step here was to test if the samples of transactions durations obtained
from different repetitions of the same real system experiment come from the same dis-
tribution. If true, we could then compare transaction duration distributions from our Mo-
bius-based model with any of the respective distributions obtained from real system ex-
periments, using an appropriate statistical test to determine if the distributions are suita-
bly similar. So, with this goal in mind, we constructed the Empirical Cumulative Distri-
bution Functions (ECDFs) of transaction durations from two 1FB experiment repetitions
(Fig. 5). Visual inspection of these ECDFs revealed no significant difference.

We, however, performed a two-sample, two-sided Kolmogorov-Smirnov (KS) test
(see the text box in Fig. 5 for its results) – one of the most general non-parametric tests
for checking if two samples are drawn from the same continuous distribution. It is sen-
sitive to differences in both location and shape of the ECDFs of the two samples. The
test indicated that, at a 1% significance-level, there is statistically significant evidence
to reject the hypothesis that the two samples of transaction durations come from the same
distribution. Similar surprising results were obtained for other pairs of the 1FB experi-
ment with the same or different seed values; this is true for 1PG experiment too. The
point to note here is that our sample sizes are atypically large, ranging between 65-70K
transaction durations in each experiment – this is a veritable “embarrassment of riches”.
With so much sample data comes a lot of “tiny deviations between the distributions”
evidence, amounting to significant evidence as far as the discriminatory power of the KS
test is concerned [15]. To illustrate the unhelpful level of sensitivity at play here, con-
sider that the maximum vertical distance between the ECDFs being tested – the D value
from the KS test – is 2%; a very small distance indeed. And, the distributions “fared no
better” when other statistical tests were applied (e.g. Chi-Square test).

Fig. 5. ECDFs of transaction durations for “1FB, 1C, 100k transactions” experiment. The dark

line represents the repetition with the seed 4153; the light-colored line the seed 3061978.

What, therefore, would be the basis of a useful comparison between simulation results
and experimental observation, if even repetitions of the same experiment are not guar-
anteed to pass a KS test? We chose to compare the distributions using: 1) ECDFs plots,
2) QQ-plots, 3) average transaction durations and 4) the sample standard deviations, all
of which give acceptable agreement across experiment repetitions.

 In our simulation campaigns, each simulated run simulates 1 min 40 sec of (steady
state) server operation, with a total of 1000 runs per campaign. Our criteria for a suitable
number of runs was that the number of statement requests made by a client and the num-
ber of statements executed by each server were required to converge with a relative
standard error of less than 10%. We simulated a single client interacting with a single
FB server, from which we obtained a distribution of transaction durations. This distribu-
tion and the corresponding distribution from experiment are plotted in Fig. 6 (left hand
side). The close agreement between the distributions, manifested in the plot, is further
evidenced by the corresponding QQ-plot (Fig. 6, right hand side); the only noteworthy

Two-sample Kolmogorov-Smirnov test

data: s1TxnDurs[, "Duration"] and s2TxnDurs[, "Duration"]

D = 0.0202, p-value = 9.038e-13

alternative hypothesis: two-sided

deviations between the distributions occur in the upper 2.5% of the distributions. Fur-
thermore, the average transaction durations from simulation and experiment are 163
msec and 166 msec, respectively, with related standard deviations of 1.65 sec and 1.75
sec. A similar exercise was carried out for the PG server. Again, the simulation and
experiment were in close agreement: the average transaction durations are 46 msec and
44 msec for the simulation and experiments, respectively, with the standard deviations
of 1.34 sec and 0.99 sec.

Fig. 6. Comparison of transaction-duration ECDFs (left), and QQ-plot for transaction durations

(right), from simulation and a real system experiment of type “1FB, 1C, 100k Transactions”.

Similar graphs were obtained for the “1PG, 1C, 100k Transactions” experiment.

6 Results

Having gained sufficient confidence in the model, we simulated a single client interact-
ing with 1 FB and 1 PG server via DivRep. The distributions deviated significantly in
this case, with the simulated transaction duration distribution having faster durations
than its experimental counterpart. The shapes of the distributions, however, were quite
similar. This suggested that there might exist a systematic overhead in our experiment.
To illustrate the extent of this overhead, we introduced a log-normally distributed over-
head in our simulations1, resulting in much better agreement between the simulated and
experimental distributions (Fig. 7). The average transaction durations from simulation
and experiment are 225 msec and 236 msec, respectively, with related standard devia-
tions of 1.21 sec and 1.10 sec.

 The conjecture about the overhead is, indeed, plausible: the middleware implement-
ing the replication protocol relies on Java RMI (Remote Method Invocation) technology,
which is known to introduce significant transport latencies.

 Using this lognormal overhead, we proceeded with a final comparison: simulating 5
clients interacting with the servers via DivRep. The ECDF and QQ-plots illustrate how
the deviations in the shapes of the distributions have become more noticeable (Fig. 8).
Despite these deviations, the average transaction durations from simulation and experi-
ment are 380 msec and 338 msec, respectively, with related standard deviations of 0.836

1 The use of the lognormal distribution is purely illustrative, and not based on this distribution family being
optimal, in some sense, for modelling overheads.

sec and 0.880 sec. Given the size of the standard deviation (more than twice the mean),
this indicates that the two averages are remarkably close.

Fig. 7. Comparison of transaction-duration ECDFs (left), and QQ-plot for transaction durations

(right), from simulation and a real system experiment of type “DivRep, 1C, 100k Transactions”

Fig. 8. Comparison of transaction-duration ECDFs from simulation and a real system experiment

of type “DivRep, 5C, 20k Transaction each”.

7 Discussion

Arguably, model-based performance evaluation of replication protocols is a rather am-
bitious premise; there are many reasons to doubt whether it is practical or, indeed, even
possible to evaluate a protocol’s performance without actually building and deploying
it. For one thing, what would such a performance measure actually mean for a real
system? And, certainly, in the process of building an accurate model, one should not be
surprised by: i) having to make choices about the level of abstraction (model fidelity)
at which to operate; ii) model parameterization of, possibly unknowable, parameters.
Even when performance evaluation is conducted on real systems, there are many con-
siderations to take into account, such as the accuracy of the measuring methods em-
ployed or the generality of the results obtained2. And, yet, it is precisely for all of these

2 We changed the precision of the measurements from msec to nsec, because a significant proportion of the
statement durations were in the sub msec range, preventing us from simulating these durations accurately.

reasons that the results of our studies are not only promising – they suggest that model-
based evaluation is feasible – but surprisingly so.

For instance, consider the question of model fidelity. In building our models we ab-
stracted away many seemingly important details. Our clients and servers have no ex-
plicit notion of detailed data that is manipulated, stored to and retrieved from a data-
base; only time-sensitive, sufficiently detailed database locations are generated for the
purposes of conflict occurrence and detection. The servers do not have explicit notions
of executing the SQL statements. Despite these simplifications the model achieved the
correspondence with experiment reported in Sect. 6. These modelling simplifications
were made by, first, identifying those sources of uncertainty that are crucial for system
performance – such as statement durations, conflict occurrence and the transaction pro-
file – and then including only those aspects of the real world that we deemed necessary
to adequately represent these uncertainties in our model.

Model parameterization was not daunting. As a first pass, the use of empirical CDFs
as direct model inputs meant that we did not have to identify suitable theoretical distri-
butions (and their attendant parameters) to approximate these ECDFs. At 74 distribu-
tions, this would have been a tedious exercise at best.

A possible advantage of simulation is the speed with which results are obtained. The
1 Client/1 FB experiment took 4hrs 28mins to complete and about 10mins to simulate.
The biggest difference was for the 1 Client/DivSQL experiment, which saw the experi-
ment complete in 6hrs 35mins, whereas the simulation took about 10mins.

While there is a good agreement between the simulation and experimental results
(especially in terms of the averages and standard deviations), the disagreements are also
worth noting. For, our current model represents a stylized system in which there are no
overheads resulting from, say, the protocol itself or the network between the clients and
servers. This means that our validated model gives a distribution which is an estimate of
the best performance an implementer of the protocol can hope to achieve, no matter how
skilled the implementer is. The usefulness of this bound is in pointing out that any sig-
nificant discrepancy between the bound and the performance of a specific protocol im-
plementation indicates that the implementation is sub-optimal.

8 Conclusions

We presented a stochastic model for performance evaluation of database replication pro-
tocols. An implementation of the model, using a combination of the Mobius modeling
environment, its SAN formalism and our own codebase, is presented. The model is cre-
ated to be reusable in a variety of scenarios. The model assumptions, and its accuracy
with respect to the chosen database replication protocol’s performance, are rigorously
validated. The measurements obtained from experiments conducted on a real systems
testbed were used to validate the model. For this validation, we used the TPC-C bench-
mark – executed in both the model and the real systems testbed.

The model enables performance evaluation of database replication protocol(s), and
therefore their comparison. Model-based evaluation allows for eliminating the impact,
on a replication protocol’s performance, of overhead due to the protocol’s specific im-

plementation. If the ordering between several replication protocols is driven by imple-
mentation overheads, model-based evaluation gives a ranking of the replication proto-
cols based on their optimal performance.

We also demonstrated that savings in the model-based evaluation time may be very
significant in comparison with the measurements using real systems.

There are a number of ways in which the work can be furthered and the model can
be improved. Currently, the model requires a more sophisticated mechanism to account
for the effects of a significant increase in client load on server performance. Under a
light load, the current server model is one of “infinite resource” [3]. However, under
heavy client loads, a realistic mechanism of server resource is essential for modelling
the chosen protocol accurately. We have begun experimenting with models of resource,
and the validation of their accuracy – to be completed – follows the approach described
above for validating the other modelling assumptions. This will include further investi-
gation of how the increased load will affect the surprising result that SQL statement
durations are uncorrelated across the servers.

We intend to evaluate other replication protocols, e.g. [11,16, 17], to see how well
the model behaves.

In Sect. 3.1, we highlighted the fact that the parameter 𝜌 was a “blunt” approach for
modeling the more nuanced relationships we observed between transactions and their
statements. We expect that implementing algorithms which better approximate these re-
lationships will result in even better agreement with experiment.

We also plan to explore the possibility of using the systematic discrepancies between
simulated and observed distributions illustrated in the QQ-plots. We are aware that sim-
ilar systematic differences between models and respective observations have been used
in the past for model re-calibration to improve model accuracy [18].

The model has explanatory power which we would like to improve upon. When sig-
nificant overheads are detected by comparing simulation results with experimental ones,
a better explanatory distribution for the overheads might be a gamma distribution with
parameters dependent on transaction length and transaction statement types.

The research presented in this paper considers a failure free environment. A natural
extension would include evaluation of dependability attributes. For example, faults can
be injected by an appropriate data corrupting daemon in the experimental testbed, or
modeled in the model-based approach. Different likelihoods of crash, non-crash and
Byzantine failures can be simulated to perform a number of “what-if” analyses and ob-
serve the effects they have on dependability, and performance, of the chosen system.

Acknowledgement

This work was supported in part by the UK’s Engineering and Physical Sciences Re-

search Council (EPSRC) through the DIDERO-PC project (EP/J022128/1). We would

like to thank the anonymous reviewers and Bev Littlewood for useful comments about

an earlier version of the paper.

References

1. Sousa, A., et al. Testing the dependability and performance of group communication based database

replication protocols. in Proc. of the Int. Conference on Dependable Systems and Networks (DSN 2005).

2005.

2. Pedone, F., R. Guerraoui, and A. Schiper, The Database State Machine Approach. Distributed and

Parallel Databases, 2003. 14(1): p. 71-98.

3. Agrawal, R., M.J. Carey, and M. Livny, Concurrency control performance modeling: alternatives and

implications. ACM Trans. Database Syst., 1987. 12(4): p. 609-654.

4. Nicola, M. and M. Jarke, Performance Modeling of Distributed and Replicated Databases. IEEE

Transactions on Knowledge and Data Engineering, 2000. 12(4): p. 645-672

5. Osman, R. and W.J. Knottenbelt, Database system performance evaluation models: A survey.

Performance Evaluation, 2012. 69(10): p. 471-493.

6. Graham, C., et al. The Möbius Modeling Tool. in Ninth International Workshop on Petri Nets and

Performance Models (PNPM '01). 2001. Aachen, Germany.

7. Sanders, W.H. and J.F. Meyer, Stochastic activity networks: formal definitions and concepts, in Lectures

on formal methods and performance analysis. 2002, Springer-Verlag. p. 315-343.

8. Popov, P. and V. Stankovic, Improvements Relating to Database Replication, EPO, Editor. 2013, City

University London: EU. p. 60.

9. Cecchet, E., J. Marguerite, and W. Zwaenepoel. C-JDBC: Flexible database clustering middleware. in

USENIX Annual Technical Conference, Freenix. 2004.

10. Gashi, I., P. Popov, and L. Strigini, Fault tolerance via diversity for off-the-shelf products: a study with

SQL database servers. IEEE Transactions on Dependable and Secure Computing, 2007. 4(4): p. 280-

294

11. Vandiver, B., et al., Tolerating byzantine faults in transaction processing systems using commit barrier

scheduling, in Proceedings of 21st ACM SIGOPS Symposium on Operating Systems Principles. 2007,

ACM: Stevenson, Washington, USA. p. 59-72.

12. Berenson, H., et al. A Critique of ANSI SQL Isolation Levels. in SIGMOD International Conference on

Management of Data. 1995. San Jose, California, United States: ACM Press New York, NY, USA.

13. Stankovic, V., Performance Implications of Using Diverse Redundancy for Database Replication, in

Centre for Software Reliability. 2008, City University London: London. p. 169.

14. Fuller, W.A., Introduction to Statistical Time Series. 1996: Wiley.

15. Osborne, J.W., Best practices in data cleaning: A Complete Guide to Everything You Need to Do Before

and After Collecting Your Data. 2012: Sage Publishing: Thousand Oaks, CA.

16. Garcia, R., R. Rodrigues, and N. Preguica, Efficient middleware for byzantine fault tolerant database

replication, in Proceedings of the sixth conference on Computer systems (EuroSys '11). 2011, ACM:

Salzburg, Austria. p. 107-122.

17. Vandiver, B., Detecting and Tolerating Byzantine Faults in Database Systems, in Programming

Methodology Group. 2008, Massachusetts Institute of Technology: Boston. p. 176.

18. Brocklehurst, S., et al., Recalibrating Software Reliability Models. IEEE Trans. Softw. Eng., 1990. 16(4):

p. 458-470.

