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Final thanks to De Lònga – Andrew and Pierre-Alexandre – whose album À
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Abstract

The present dissertation develops, applies and evaluates a novel method for the

representation and retrieval of patterns in musical data. The method supports the

typical polyphonic patterns that one finds in music theory textbooks. Most cur-

rent computational methods to musical patterns are restricted to monophony (one

melody at a time). The Structured Polyphonic Patterns method (SPP) applies to

the general case of polyphonic music, where many melodies may unfold concurrently.

Pattern components are conjunctions of features which encode properties of musi-

cal events, or relations that they form with other events. Relations between events

that overlap in time but are not simultaneous are supported, enabling patterns to

express key temporal relations of polyphonic music. Patterns are formed by joining

and layering pattern components into sequences (horizontal structures) and layers

(vertical structures). A layer specifies voicing in an abstract way, and the explo-

ration of different voice permutations is handled automatically. The SPP method

also provides a mechanism for defining new features. We evaluate SPP by devel-

oping a small catalog of musicologically relevant queries and analyzing the results

on four corpora: 185 chorale harmonizations by J.S. Bach, Mozart Symphony no.

40, a small set of piano pieces by Chopin, and a collection of folk songs containing

more than 8000 pieces – in addition to its size, demonstrating the scalability of the

method, that latter corpus is interesting as it shows that SPP is also usable for

monophony. Examining several corpora allows us to establish that some polyphonic

patterns constitute salient properties of a corpus: they are over-represented in one

corpus by comparison to the others. In addition, the queries we develop demon-

strate that the SPP method possesses sufficient expressiveness to capture impor-

tant music-theoretic notions. At the same time, we show how the method is more

restrictive than some existing polyphonic pattern representations, hence providing

a better approximation of the expressive power required for polyphonic patterns. It

is a better candidate representation for music data mining, a difficult problem that

has received significant attention for the monophonic case, but limited attention for
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the more general polyphonic case.
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Chapter 1

Introduction

This dissertation presents research concerned with the representation and

retrieval of patterns in music. The notion of pattern (motif, regularity)

is very common in science – including computer science – and various

other human activities, including music. This chapter establishes the

larger context of the current research, states its aim and objectives and

offers an overview of the dissertation.

Patterns The world we live in is filled with regularities, whether manufactured

by living agents – like us – or emerging from the interaction of inanimate matter.

Describing those regularities requires a capacity for abstraction, a process by which

the central characteristics of an object are highlighted and the details forgotten.

Applying this process typically unifies different objects under the same description.

This description, whether free-floating or explicitly written down in some notation,

is what the current dissertation considers as a pattern. The inverse of abstraction

consists of identifying objects that embody a particular pattern. We call this process

instantiation; and objects identified as a result are said to be instances of the pattern.

One can easily recognize these processes of abstraction and instantiation in a

variety of human affairs, perhaps most strikingly in science and the arts. As Alfred

North Whitehead formulates it: “Art is the imposing of a pattern on experience, and

our aesthetic enjoyment is recognition of the pattern” (Price, 1954). The importance

of patterns is even more evident in science, with different goals and constraints.

Scientific literature is filled with examples of simple, yet powerful descriptions of the

world that are deemed important: for example, the double-helix pattern of DNA

molecules, cold and warm fronts in meteorology, regularities of human languages
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(e.g. consonants and vowels are thought to occur in all spoken languages), and

cognitive biases such as the “primacy effect” (the tendency to recall more easily the

initial elements of a sequence).

These patterns are often constituents of more complex laws or principles. In

themselves, they do not explain a phenomenon, but can act as building blocks to-

wards the concise formulation of an explanation (and possibly render the discovery

of the explanation more likely). That is, the patterns concern the surface of things

– what is directly observable – but constitute a first constructive step towards a

deeper understanding.

Of course, it is a question of interpretation whether some fact truly lies on the

surface or perhaps only appears as a consequence of some prior abstractions or indi-

rect observations (vowels, for example, seem reasonably close to “direct experience”,

where the double-helix structure of DNA relies on quite a few prior abstractions –

about atoms and how they interact for example – and indirect observations involv-

ing sophisticated instruments). When thinking about patterns, it is important to

be clear from the start about the “level of abstraction” at which we are working.

The basic representation of the world one starts with before applying the process

of abstraction, we call the source. Instances of a pattern are part of that source.

The case of music is no exception and one has to carefully establish what one means

by “the musical surface” (or musical source) in order to discuss the idea of musical

pattern.

Musical structure There is a tradition in music theory to describe music in terms

of “surface” and “background structures”. The surface consists of the notes actually

played by a musician and heard by the audience. The background structures include

a rich array of additional information that both musician and audience (more or

less consciously) are constantly creating, updating and – to some extent – keeping

in synchronization (sometimes by external means, e.g. through the gestures of a

conductor). For example, these include tempo (the speed at which a piece of music

is played), meter (the overall rhythmic feeling of a piece, e.g. a waltz versus a

polka), orchestration (which instruments are used and with which “proportion”),

melodic skeleton (which notes are considered essential to the melody and which are

“facultative” ornamentations) and harmonic structure (roughly, how moments of

tension and relaxation are distributed through the piece). While that information

is not “in the music” per se, it is very often considered a legitimate starting point

for the study of music.
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Figure 1.1: Written music

Written music The research presented here, however, is concerned with the sur-

face of music. We obtain a clear definition of what that surface is by building on

the long tradition of written music: the transcription of a musical piece using a

specialized graphical notation. Figure 1.1 shows a musical melody written as note

symbols, with time flowing from left to right. The reader can listen to the melody

by playing the first track of the accompanying CD. Written music depends on quite

a few prior abstractions, namely those behind the idea of the musical note, which is

based on a discretization of the elementary dimensions of the musical sound: pitch

(how “high” or “low” the sound is), loudness, duration and timbre (the “texture”

of the sound; what makes a trombone sound different than a guitar).

In addition, an estimation of the background structures is often notated in writ-

ten music: for example, time signature, key signature, orchestration, and chords.

Whether or not the estimation is accurate (i.e. whether or not it corresponds to

what musicians and listeners “have in mind” while the music is played) is sometimes

unclear. However, as the information is available in written music, it is considered

in this dissertation as part of the musical source.

Patterns in music Contrary to other art forms (e.g. literature, painting), music

usually does not refer to concepts that are meaningful on their own (see Nattiez,

1990, for a in-depth discussion). Perhaps as a consequence of this, a common theme

in music theory is that a piece of music acquires meaning through the recurrence

of similar passages. In the words of Meredith (2006), “a number of influential mu-

sic analysts and music psychologists have stressed that discovering the important

repetitions in a passage of music is an essential step towards achieving a rich under-

standing of it”.

Before attempting to analyze the deeper structures of a piece of music, a scholar

typically gains familiarity with the piece by making observations about the musical

surface. Cook (1987) suggests various ways to approach this familiarization process,

of which “very often the analysis proper will emerge”. One such ways is to look for

patterns, sequences or groups of notes that appear frequently in the piece.
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In this viewpoint, the notion of pattern is based on musical expertise. The

occurrences of a pattern can be presented in written music, and the relation between

the occurrences discussed, but an exact definition of the pattern is not required. It

is assumed to exist in the mind of a competent reader or listener.

For example, Schubert (2007) isolates various patterns in the written transcrip-

tion of pieces by the sixteenth century Italian composer Palestrina. The patterns

are classified according to how they are formed and Schubert discusses how they

influence the larger structure of the pieces. Intuitively, the instances of the various

patterns are clearly related, and it is hence not necessary to formally account for

the variations exhibited from one instance to the other (e.g. a different melody, or

some added notes).

Another example of this viewpoint on musical patterns is the work of Gjerdingen

(2007) on the pedagogical tradition of Partimento. Gjerdingen discusses patterns

that were used as templates. The student would learn how to create elaborations

of the basic patterns, and how to combine them in interesting ways. Gjerdingen

retraces examples of such patterns, and how they were used in real musical pieces.

Again, the instances of the patterns are clearly related, even if they exhibit significant

variations and elaborations.

Both Schubert (2007) and Gjerdingen (2007) discuss patterns that they have

patiently isolated by hand. In the future, one can imagine that computer tools

will help to make this task less cumbersome. These tools would however need to

approximate the musical expertise that musicologists exhibit and this is a goal that

computer music research has yet to reach (although some progress has been made

towards it).

In the current dissertation, we focus instead on musical patterns that are easily

amenable to a formal, computational representations. Such patterns could still be

useful for traditional musicology as discussed and exemplified in Section 7.7. How-

ever, their main use lies is in computational musicology, where the analysis of large

amount of data is crucial, and automated techniques necessary.

1.1 Computational musicology

One could define computational musicology as the study of the musical phenomenon

with the use of computers: for data representation and for various form of specialized
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processing. With respect to musical patterns, two applications are predominant:

pattern matching and pattern discovery (data mining).

Computing and music Because of the versatility of computers, computational

techniques are applied to problems in many different fields. In return, computing

has grown wider and wider, developing many new techniques. Music is no exception

to that trend and provides many challenges for computer scientists. Applications of

computers to music abound: for example, sound synthesis, computational composi-

tion and analysis, visualization, and music pedagogy. The idea of musical patterns

is often at the heart of such music processing tools.

A large portion of computational approaches to musical patterns focus on the

retrieval of musical sources (Downie, 2003). In this view, the representation of the

source and its regularities does not have to be intelligible. There does not need to

be a clear representation of the pattern since the product is a search engine meant

to interact with the user at a very high level. This point of view is discussed and

reviewed further in Chapter 3 when looking at existing computational approaches

to patterns in music.

Representation The current research is mainly concerned with the representa-

tion of the temporal aspect of music and we draw inspiration and insight from Alan

Marsden’s seminal book on this topic (Marsden, 2000). Focusing on the temporal

aspect has one main advantage: our work is not necessarily limited to music. Al-

though we do not pursue this path here, we could in principle use our approach for

any problem that has a similar temporal structure to polyphonic music: concurrent

streams of events where events have some duration and where events that overlap in

time are particularly important. For example, the schedule of a projet, the execu-

tion trace of parallel programs, or the arrival of multiple requests to a server. The

current dissertation focuses on music, however, as this is the application for which

the approach is tailored. For the representation of the other aspects of music, we

use basic notions of music theory. These mainly revolve around the representation

of pitch. Although this is also a very active area of research – in particular the no-

tions of pitch space and pitch distance (see e.g. Tymoczko, 2009, for a recent critical

review) – we consider it to be outside the scope of the current dissertation.

Processing Significant attention has been invested into the reconstruction of hid-

den structures from the surface of music (see e.g. Temperley, 2001). These are
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generally tailored for very specific tasks: for example, extracting the melodies (or

voices) when they are not clear from notation (Cambouropoulos, 2006), segment-

ing melodies into phrases (M. T. Pearce and Wiggins, 2008), exploring the possible

hierarchical organization of a given melodic phrase (Marsden, 2005), extracting the

underlying chord sequence of a piece (Khadkevich and Omologo, 2009), performing

some analysis on that chord sequence (Pachet, 2000), and finding the key of the

piece (Hu and Saul, 2009).

Humdrum There are also some general “fact gathering” approaches. This cor-

responds to the idea of pattern matching: the expert user writes down what he or

she considers as a key pattern and the computer searches for that exact pattern

in a musical source, returning every instance. Typically, the user then analyzes

the results in order to gain some deeper understanding of the musical source under

examination. This is the point of view taken in the current dissertation. It was

pioneered by musicologist David Huron, who developed Humdrum (Huron, 1999),

the only general approach to polyphonic patterns to enjoy some lasting success.

Humdrum was developed in the late 1980s and has been used in many compu-

tational musicology projects. For example, pattern matching in Humdrum can be

used to test hypotheses about music or musical styles. Jan (2004) establishes a link

between the styles of Mozart and Hayden by showing that particular patterns can be

found in selected works of both composers. Huron (2001a) analyzes the data gath-

ered by matching several manually crafted patterns to support an argument about

the perceptual independence of concurrent melodies. Huron (2001b) uses a similar

empirical point of view to refine and criticize Alan Forte’s analysis of Brahms’s opus

51, No.1. Huron formally encodes patterns discussed by Forte and then proceeds to

search for these patterns in other compositions by Brahms. The result is a measure

of the salience of the patterns that Alan Forte identified, i.e. how representative

they are of Brahms’ opus 51, No.1.

Modern approaches Humdrum is a typical application of its time: it uses a text-

based file format with a somewhat loose syntax; it is based on Unix-like command-

line tools for processing; and patterns are defined using regular expressions that

are matched directly on the concrete syntax. As such, it lacks the efficiency and

ease-of-use of modern computer tools. Approaches to musical patterns designed

after Humdrum often focus on some “modernization” effort: give a clearer seman-

tics to the idea of patterns, more efficient pattern matching, or automated pattern
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manipulation. The latter is related to the idea of music data mining (see Rolland

and Ganascia, 2002, for an overview). Rather than specifying a few patterns by

hand, and gathering facts from the inspection of the results, the idea is to explore

and compare large quantities of patterns and gather facts from the results of these

comparisons.

Most of the modern approaches to musical patterns focus on the simpler, re-

stricted case of monophonic music. Figure 1.1 is typical of monophonic music: it

contains a single melody, easily represented as a sequence of notes. This simplifies

temporal relations and, in general, the definition of patterns.

Some approaches consider the full polyphonic case, but without the generality of

Humdrum (these are reviewed in Chapter 3). In the polyphonic case – reasonably

the general case for western music – many melodies unfold at the same time. There

cannot be a single structure – such as a sequence – to capture every piece of music.

In addition, the temporal relations are more complex. Section 1.2 introduces some

challenges that polyphonic music and polyphonic patterns entail.

Of all the recent work on musical patterns, we are particularly inspired by the

the work of Darrell Conklin and his viewpoint method. A viewpoint is a user-

defined function that abstracts from the musical surface by recording only some of

the available information, in some musically relevant way. In addition, viewpoints

can be combined in an elegant modular way to capture progressively more complex

musical notions. Over the years, the method has enabled the formal expression of

many musical concepts and has been applied to many computational musicology

projects (Conklin and Witten, 1995; Conklin and Anagnostopoulou, 2001; Conklin,

2002, 2010, 2008).

For example, Conklin (2008) revisits the analysis of Huron (2001b). Rather than

specifying the patterns by hand, Conklin develops a method where patterns are

discovered automatically and compared for salience. The result is twofold: i) the

salience of Forte’s patterns is empirically validated, but more importantly ii) the

work shows that Forte’s patterns can be discovered without prior knowledge and

with only a few reasonable assumptions about what constitutes a musical pattern.

Conklin (2008) combines the versatility of viewpoints with the notion of sub-

sumption: that a pattern can be described as more general or more specific than

another pattern. This concept has been explored extensively in general data mining

approaches such as Inductive Logic Programming (Nienhuys-Cheng and de Wolf,

1997), but very little in the case of music data mining. One recent application is the
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discovery of patterns that are distinctive (Conklin, 2010): very general, yet over-

represented in one corpus with respect to some comparison corpora. This is done

through the notion of feature set (Conklin and Bergeron, 2008): a representation of

music where a musical event is described by a set of viewpoint/value pairs – called

features by Conklin and Bergeron (2008). The representation supports subsumption

in a straightforward way: a pattern component is more general if it is subset of more

specific pattern components.

Although the current dissertation is focused on pattern matching, our approach

is designed to eventually support subsumption and pattern manipulation (this is

discussed in Chapter 7). Our motivation is to build on the work of Conklin, in

particular by extending it to the general case of polyphonic music, as it has been

mainly applied to the restricted case of monophonic music. We achieve this by

extending to polyphony the idea of viewpoint – called user-defined features here –

and the notion of feature set. We focus on giving this extension a clear syntax and

semantics. The result is something that was yet to be achieved: a method that is as

general as Humdrum for polyphonic pattern matching but also conducive to music

data mining. Section 1.3 details the objectives that we set out to achieve in this

modernization effort of Humdrum and extension of Conklin’s work to polyphony.

1.2 Motivating examples

We examine two examples in order to better explain the challenges that polyphonic

patterns can entail. Figure 1.2 shows a chorale melody harmonized by J.S. Bach,

in common music notation. Two well-known polyphonic patterns are highlighted: a

parallel fifth and a suspension. The reader can listen to this musical piece by playing

the second track of the accompanying CD. The detailed explanation of common

music notation is deferred until Chapter 2, which contains an overview of what a

musical source contains and of the common abstractions over such a source. It

suffices to say here that, as in the case of monophony, the spatial orientation of

note symbols (e.g. ♩) indicates timing. In addition to notes that follow one another

spatially and temporally, notes that are aligned vertically occur at the same time,

concurrently (with the exception that every note in the top portion of the figure

occurs before the notes of the bottom portion).

The first pattern is a parallel fifth. Using Prolog, Fitsioris and Conklin (2008)

explored the occurrences of parallel fifths in Bach chorales. This is relevant as this

8
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Figure 1.2: Bach chorale harmonization BWV 323. Two polyphonic patterns are
highlighted: a parallel fifth in the eighth bar and a suspension in the final bar

pattern is often considered as prohibited. By using a pattern matching approach,

Fitsioris and Conklin (2008) showed that the parallel fifth occurs more than one

would expect. This fact – and other similar facts that can be gathered using poly-

phonic patterns – can help validate or invalidate (or at least mitigate) particular

statements about musical style. Though understood clearly by every first year mu-

sic student, the parallel fifth is remarkably difficult to express formally. One must

express, for example, the fact that the first two notes of the pattern have to overlap

in time (but not necessarily start at the same time as is the case in Figure 1.2).

The next two notes must also overlap (and this time necessarily start at the same

time). The pitch distance between the notes must correspond to the interval of a

perfect fifth, or alternatively the interval of an octave plus a perfect fifth. There

must be some melodic motion between two successive notes and, finally, both pairs

of notes must involve the same voices (all of these concepts are explained in Chap-

ter 2). The pattern can be captured using Humdrum, but it is difficult to do so with

precision and confidence in the pattern matching results (see Bergeron and Conklin,

2008, or Chapter 3). Precision is important in a computational musicology setting.

One needs to be certain of the pattern matching results in order to offer a credible

commentary of statements of music theory. The approach of Fitsioris and Conklin

(2008) achieves this goal. It is an ad hoc approach designed specifically to return
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every instance of the parallel fifth pattern with a high degree of confidence in the

results. In addition, the approach is easy to generalize and – for lack of existing com-

petitors to Humdrum – we consider it to be a complete pattern matching approach

in this dissertation.

The second pattern is a suspension. Contrary to the parallel fifth pattern, this

pattern is common in western tonal music. It is part of a large collection of pre-

scribed patterns called polyphonic embellishments . Using the Humdrum toolkit,

Huron (2007) analyzed their occurrences in Bach chorales. Embellishments were

marked up manually, allowing for maximum flexibility of interpretation. It is also

possible to develop a polyphonic pattern that captures suspensions, as shown by

Bergeron and Conklin (2008). This is a rigid definition, but it has the advantage of

precision: results are definite facts about the source being queried.

As pointed out by Bergeron and Conklin (2008), the suspension pattern is in-

teresting to consider as it further illustrates the level of sophistication required to

capture polyphonic patterns, especially regarding temporal relations. The second

note of a suspension must occur as the first note already sounds (in Figure 1.2, that

first note is displayed with two note symbols linked by a tie; indicating that the note

sounds continuously over the transition from one symbol to the other). Similarly, the

third note of the pattern must occur while the second note is sounding. This tem-

poral relation of “starting while” is generally not supported by existing approaches

to polyphonic patterns. In addition, the suspension pattern requires us to measure

pitch distance in an abstract way, by classifying distances in two categories: conso-

nances and dissonances (again, these notions are explained in Chapter 2). Although

it is quite common in music theory to use the dissonance and consonance concepts

rather than “concrete” intervals, most existing approaches to polyphonic patterns

do not support this level of abstraction.

1.3 Aim and objectives

The general aim of the current research is to create a modern pattern matching

method for polyphonic music, in particular one that satisfies the following objectives:

1. Full support for written polyphonic music

2. Expressive and precise

3. Clear syntax and semantics
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4. Flexible

5. Easy to use and efficient

6. Conducive to music data mining

1.4 Summary

To summarize, the current dissertation circumscribes the idea of pattern by defining

the following four concepts:

1. Source: the data in which patterns are to be identified. This dissertation

considers written polyphonic music

2. Abstractions: the kinds of simplifications that enable the identification of reg-

ularities in the source. This dissertation focuses on temporal relations, while

supporting important musical relations

3. Pattern language: a way to write down those abstractions, for example as a

set of constraints. This dissertation develops such a language and gives it a

clear syntax and semantics.

4. Pattern matching: a mechanism to quickly and efficiently identify the instances

of a particular pattern in a given source. This dissertation provides an efficient

matching algorithm for the pattern language it develops.

We consider polyphonic patterns that have the level of sophistication of the

parallel fifth and suspension. We consider and compare three main approaches

to polyphonic patterns: i) a relational pattern language inspired by Fitsioris and

Conklin (2008), ii) Humdrum, and iii) the current approach, Structured Polyphonic

Patterns (Bergeron and Conklin, 2008).

1.5 Outline

This chapter introduced the idea of pattern as revolving around the concepts of

source, abstractions, language, and matching. The next chapter, Chapter 2, intro-

duces the particularities of the source examined in this research: polyphonic music.

11



CHAPTER 1. INTRODUCTION

It also introduces the common abstractions found in music theory and sketches a

set of requirements for a polyphonic pattern language. Those requirements can be

seen as a refinement of the objectives stated in Section 1.3. We see that polyphony

is a difficult case in music and a challenge for computational musicology.

In Chapter 3, we present a review of existing computational approaches to pat-

terns in polyphonic music. We see that only two approaches are comparable to the

current research in terms of the requirements stated in Chapter 2: Humdrum and

relational patterns. These are compared to the current approach in terms of ex-

pressiveness in Chapter 6 and in term of efficiency in Chapter 7. Other approaches

generally lack expressiveness and cannot represent important musical abstractions

with precision. In particular, they could not return every instance of the parallel

fifth and suspension patterns discussed here and throughout the dissertation.

Chapter 4 gives the formal presentation of the approach we develop: Structured

Polyphonic Patterns (SPP). It also defines a pattern matching algorithm. Chap-

ter 5 applies the approach to a corpus of chorale harmonizations by J.S. Bach. The

chapter can be read as a tutorial to SPP. We show how to use the method for musi-

cological queries ranging from very simple to complex encodings of music-theoretical

notions of style. To add some perspective to the results, we compare our main cor-

pus with three corpora: a Mozart symphony, a collection of piano pieces by Chopin,

and a collection of folk songs containing more than 8000 pieces – in addition to its

size, demonstrating scalability of the method, that latter corpus is interesting as it

shows that SPP is also usable for monophony. Examining several corpora allows us

to establish that some polyphonic patterns constitute salient properties of a corpus:

they are over-represented in one corpus by comparison to the others.

In Chapter 7, we motivate the semantics of SPP by discussing alternative se-

mantics. We discuss the efficiency of SPP matching and compare it to Humdrum

thoroughly. We see that SPP is a constructive step towards an approach to music

data mining for the polyphonic case. The conclusion of this dissertation summarizes

the contributions of the current research. In particular, Chapter 8 argues that the

SPP matching method satisfies the high-level objectives stated in this introduction

and the requirements elaborated in Chapter 2.

Finally, the current dissertation contains some Appendices that can prove helpful

as reading companions. Appendix A presents a glossary of important musical terms

and concepts. Appendix B offers a summary of how these musical concepts are for-

malized in order to appear in SPP patterns. Appendix C enumerates and explains

12
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the notation we use in the following. Appendix D details the pattern matching al-

gorithm that this dissertation develops. Appendix F presents additional results and

figures. Finally, Appendix G enumerates the content of the accompanying CD: the

reader can listen to every musical excerpt presented in the dissertation. Note also

the presence of an index starting on page 222.
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Chapter 2

Polyphonic music

This chapter motivates and describes the notions of musical source and

musical patterns that are central to this dissertation. As explained in

Chapter 1, we adopt a notion of musical source that directly follows west-

ern musical notation. We explain how the notation supports multiple tex-

tures of growing complexity: monophony, homophony, and polyphony.

We review how this is reflected in some of the existing computational rep-

resentations of music. The notion of pattern we adopt is constructed by

surveying common abstractions over that musical source: from textbooks

of music theory, from studies of music perception, and from existing lit-

erature in computational musicology. In addition, these abstractions are

validated by revisiting the motivating examples of Chapter 1: the par-

allel fifth pattern and the suspension pattern. Finally, with the notions

of source and pattern precisely defined, we can expand and refine the

objectives stated in Chapter 1. This yields a set of requirements for a

polyphonic pattern language against which existing computational ap-

proaches are evaluated in Chapter 3.
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Figure 2.1: First five bars of the tenor voice of BWV 323

2.1 Music notation

As stated in Chapter 1, the current dissertation considers written music as the source

from which musical patterns are extracted. In particular, we consider the common

music notation developed in the western musical tradition. For western music, this

constitutes a sound abstraction of what the musical phenomenon is. As Marsden

puts it: “common music notation has evolved over centuries of use by performers and

composers, and so can be regarded has having proved its fitness in use” (Marsden,

2000, p.119).

In the common music notation, a piece of music is written down by drawing

note symbols (e.g. ♩) over a staff (five horizontal lines). Figure 2.1 illustrates this

process along with other basic features of music notation: the clef (at the far left

of the staff), the key signature (the three sharp symbols ♯ next to the clef), the

time signature (the symbol C next to the key signature), and bar lines (vertical lines

subdividing the staff into bars).

The placement of note symbols in Figure 2.1 reflects two important dimensions of

music: the pitch of the notes and their unfolding in time. The vertical placement of a

note indicates its pitch, with only a discrete number of pitches expressed: notes have

to be drawn either on a staff line or between staff lines (with additional staff lines

being added when necessary; for example to “support” the third note of Figure 2.1).

The notated pitch of a note prescribes whether it shall sound high (like a female

voice) or low (like a male voice). The horizontal placement of a note indicates when

it shall be played, with time flowing from left to right.

However, the placement of notes in the common notation only imperfectly reflects

those key dimensions. For a precise depiction, it can be useful to use an alternate

notation called the piano-roll notation, which is more akin to a precise plot of the

musical content. Figure 2.2 presents the material of Figure 2.1 in piano-roll nota-

tion. Notice how, for example, the pitch distance between adjacent notes varies in

Figure 2.2, while it seems to be always the same in Figure 2.1. The information is

the same, but visualized differently. The clef and key signature are also related to
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A3

B3
C4

♯

♯♯

Figure 2.2: First five bars of the tenor voice of BWV 323 in piano-roll notation

the pitch dimension. These are discussed in Appendix A.

Similarly, the duration of notes in common music notation is slightly indirect, as

it is represented by the shape of the note symbols: for example,  for two beats, and

♩ for one beat. A beat corresponds to the time elapsed between two taps of the foot

when following the tempo of a piece of music. Table A.3 in Appendix A presents

some of the most common note shapes and their durations.

In the musical example of figures 2.1 and 2.2, the notes appear one after the

other in sequence. This is the typical alignment for a musical part or voice: the

notes that are played by the same instrument. When only one such part appears,

the music is said to have a monophonic texture (literally, a one-voice texture).

The common music notation also accommodates pieces of music having multiple

parts. Consider, for example, the musical excerpts of Figure 2.3. Two staves are used

to help differentiate the parts. In addition, each staff holds respectively two parts,

one with notes pointing upwards and the other with notes pointing downwards. In

the piano-roll notation, we use different colors to distinguish the parts.

Figure 2.3 is an example of another well-known musical texture called homophony .

It is characterized by the presence of multiple parts that all unfold in lockstep. As

is clear from the piano-roll notation, there are, at any given time, four notes that

start at the same time and have the same duration.

Homophonic music evokes a fundamental duality in how music for multiple parts

is perceived and represented. Looking again at Figure 2.3, one can clearly imagine

two ways to structure the music: either as four sequences of notes that unfold in

lockstep or as one sequence in which every element contains four notes that sound at

the same time. In the latter view, we say the four notes form a layer of notes. The

whole excerpt is then imagined as a sequence of layers. This is the view one would

take, for example, when thinking of block chords played on the piano or strummed
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Figure 2.3: First two bars of BWV 323
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︷ ︸︸ ︷

Sequence of layers

time

layer 1 layer 2 layer 3 layer 4 layer 5

Figure 2.4: Illustration of the concept of sequence of layers

on a guitar. Every block chord would be considered as a layer where many musical

events unfold at the same time. In the remainder of this dissertation, we use the

phrase “sequence of layers” to refer to such cases where many layers appear one after

the other sequentially in time. Figure 2.4 illustrates the meaning of the phrase.

Most music for multiple parts is not purely of homophonic texture (but some frag-

ments or inner parts frequently are). When the parts are not unfolding in lockstep,

the resulting texture is called polyphony . Consider for example Figure 2.3. Again,

the common musical notation exhibits two staves, each respectively two parts. The

parts sometimes unfold in lockstep (as in the last bar), but mostly do not.

In this dissertation, we only consider the notion of part and not voices. We

sometimes refer to our point of view as n-part polyphony. This point of view has

drawbacks; in particular it might not capture the most general case of western

written music, where parts sometimes split up in many voices, or many melodies

(think for example of the piano part). However, while parts are almost always

clear from the notation, voices are not necessarily clearly identified or apparent in

the score. Working with voices would require quite a bit of effort to automatically

identify the voices, which is out of the scope of the current approach. Nonetheless,

we briefly discuss how to extend the approach to accommodate voices in Section 7.2.

In the remainder of this thesis, we use the words part and voice indiscriminately to

refer to the concept of part. In the “worst” case, if parts and voices are not known, a

piece of music can still be represented using a single part that contains all the notes

of the piece. For example, this is how piano music is represented in Chapter 5.
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Figure 2.5: Bars three to five of BWV 323

19



CHAPTER 2. POLYPHONIC MUSIC

2.2 Computer representations

The representation of written music has attracted significant interest over the years.

Many file formats exists to store musical data on a computer: e.g. ESAC, DARMS,

and MIDI (Selfridge-Field, 1997). As these have different motivations, they can

often differ widely. The well-known MIDI format, for example, is a binary file

format designed to transfer information from controllers (such as keyboards and

touchpads) to synthesizers. It is not designed for manual edition or to transcribe

a piece in common notation (although it is often used for this purpose). Some

formats are designed to imitate notation, such as MusicXML (Good, 2001) and

Humdrum (Huron, 1999) and aim at supporting as many features of common music

notation as possible. Other formats are designed to quickly transcribe melodies and

are restricted to monophonic music, e.g. ESAC.

The representations also differ significantly in how they represent pitch and du-

ration or, in general, how they accommodate the concepts of music theory discussed

in Section A.1. Most representations, however, have some notion of structure. In

MIDI, MusicXML and Humdrum, parts can be specified. In Humdrum, one can

even specify how parts appear and disappear as the piece unfolds.

Representations developed as part of research projects very often put the em-

phasis on structure. For example, Bel (1990) focuses on the concept of sequence and

proposes a representation that supports the realization of a sequence is many differ-

ent ways (by mapping its components to different onsets). In such a scheme, layers

are formed in two ways: i) when sequences are synchronized, and ii) when events

in the same sequence overlap as they are being mapped to neighboring onsets. One

could say that layers are implicit for Bel (1990). Other representation method typi-

cally use explicit layers and revolve around the duality between sequences and layers

discussed in the previous section. For Balaban (1996), explicit music structures are

formed in two basic ways: by concatenating sub-structures (forming sequences) and

by specifying that sub-structures are simultaneous (forming layers). An important

feature of the latter scheme is that musical structures are hierarchical. In this kind

of representation, a sequence or a layer is itself a musical object that can be inserted

wherever a note can occur. In the visual composition language Open Music (Agon

et al., 1999), for example, the chord object (essentially a layer) can be reused any-

where a note is expected. In general, these can be embedded at will, as is clear from

the algebraic data structures developed by Hudak et al. (1996) or Conklin (2002).

For example, expressing sequences with square brackets [/] and layering with hor-
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Layered sequences

[C♯, E, C♯, C♯, C♯, C♯]
[F♯, E, E, E♯, F♯, G♯]
[A, B, C♯, B, A, G♯]
[F♯, G♯, A, G♯, F♯, E♯]

Sequence of layers





C♯

F♯

A

F♯

,

E

E

B

G♯

,

C♯

E

C♯

A

,
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A
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Structures





C♯

F♯

A

F♯

,

E

E

B

G♯

,

[C♯, C♯, C♯, C♯]
[E, E♯, F♯, G♯]
[C♯, B, A, G♯]
[A, G♯, F♯, E♯]





Figure 2.6: The first two bars of BWV 323 as different mixtures of sequences and
layers

izontal lines, the homophonic excerpt discussed in the previous section could be

expressed in many different ways. Figure 2.6 presents three such ways: i) as lay-

ered sequences, where the individual parts are encoded as sequences and the four

sequences are put in a layer; ii) as a sequence of layers, where the chords that the

parts form by unfolding in lockstep are encoded as layers and put in a sequence

and iii) as a mixture of both approaches, where the first bar is encoded as layered

sequences and the second bar as a sequence of layers. The latter scheme shows how

layers and sequences can be embedded freely. When such a free mixture of sequences

and layers is used, we simply refer to this organization as structured .

The basic interpretation of such structures is in accordance with the homophonic

texture : sequences hold notes or objects that are contiguous, one directly following

the other; layers hold objects that start together and unfold at the same time.

Some scheme offer more control over the interpretation. For example, the musical

structures of Balaban (1996) can also contain markers to override the default onset

of a structure. In addition, high-level operators are available to specify the repetition

or stretching of a structure. The structural representation developed by Marsden

(2000) provides elaborate control over how sequences and layers are formed. In this

representation, musical objects are positioned against a metrical grid, their duration

measured in beats. Every object has an upbeat portion (unfolding before the first

beat of the object) and an after-beat portion (unfolding after the last beat of the

object). The representation provides many ways to join objects in sequences: regular
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(by allowing the overlap between the after-beat of the first object and the upbeat

of the second, if any); no overlap (by adding space between the objects to avoid

overlap, if any); elide (by clipping the after-beat and upbeats to avoid overlap); and

overlap (forcing the overlap of after-beat and upbeat). Similarly, many possibilities

are provided for the joining of two objects as a layer: regular (where the first beat

of the first object is simply aligned with the first beat of the second object, without

altering durations); and multiple ways to stretch the second object so that both

objects have the same durations, e.g. by holding the last note, by padding with

rests, by stretching the durations, by cycling or clipping the musical content.

In this dissertation, we focus on a simple interpretation of structures. In par-

ticular only four temporal relations are considered. The idea of using structures to

express temporal relations has some history (see Marsden, 2000, chap.3, p.85-87).

This is the central idea behind the SPP method developed in this dissertation. It

allows us to bring the well-known sequence/layer paradigm into the realm of musical

patterns, by allowing layers and sequences to encode abstractions over the musical

source. Note that Marsden (2000, chap.4) also discusses how structures can repre-

sent durations, an idea that is not pursued here.

2.3 Abstractions

The notion of polyphonic pattern developed in this disseration is based on abstrac-

tions over the musical source. We consider two types of abstractions: temporal

relations and musical relations. The temporal relations are inspired by the musical

textures and existing music representations. Musical relations stem from music the-

ory and are closely related to notions of music notation such as the representation

of pitch.

2.3.1 Temporal relations

There are many ways to define temporal relations in music. These typically depend

on the ontology of musical time one chooses. Marsden (2000, chap.2) cites several

properties of time to consider when choosing an ontology: its “shape” (whether

linear, branching or circular), its “extent” (whether finite, unbounded or infinite),

its “texture” (whether discrete, dense or continuous), and finally the individuals it

is composed of: points , periods or events . Like most computer representations of
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music, this dissertation adopts an ontology where time is linear, unbounded, and

dense.

Linear time Linear time implies that there is a single past and single future. In

contrast, branching time allows more than one past or more than one future (or

both). Circular time removes the notion of past and future as every time point

keeps occurring again and again. The notion has been applied in music to describe

rhythm (Toussaint, 2010) and chord sequences (Pachet, 2000).

Unbounded time Unbounded time implies that there is no definite end of time.

This does not mean that time extends infinitely, but simply that one cannot know

in advance the extent of time. This is necessary to represent music as the length of

musical pieces varies and cannot be bounded by some constant. In contrast, finite

time possesses a clear beginning and end. It can be sufficient, for example, when

representing rhythmic patterns of a known length.

Dense time In a dense time texture, any amount of time can be subdivided into

a smaller amount. By contrast, a discrete time texture supports subdivisions only

to a point, i.e. there is some smallest amount of time which cannot be subdivided.

This does not mean that a dense texture can accommodate arbitrary subdivisions,

however. A texture that supports arbitrary subdivisions is described as continuous.

The difference is reminiscent of rational numbers and real numbers: rational numbers

allow for infinite subdivision of the number 1, for example, but some subdivisions

are not representable as ratios, e.g. the golden section.

Individuals Marsden (2000, p.33) cites three kinds of individuals that can con-

stitute time: points, periods and events. Points are instantaneous moments in time,

while periods have some extent: they last some amount of time. When using events,

one switches the point of view somewhat and describes only the moments where

something of importance occurs. The events can be described in terms of a period

ontology – where an event is defined as unfolding during some period; or a time

point ontology – where the event possess a starting point and ending point. The

latter is the point of view taken in this dissertation: a musical piece contains events

and a musical event, note or rest, has an onset (start time) and offset (end time).

We do not refer to time outside the unfolding of events.
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Temporal relations With events that extend in time, one can adopt the full

range of temporal relations that are commonly defined to relate periods of time

(Allen, 1983; Marsden, 2000, chap.3). We use a slightly different strategy here and

focus on four temporal relations that we propose as particularly relevant for musical

events. These are inspired by the musical texture discussed earlier. In the case of

monophony, the events are aligned in a sequence. Every event directly follows its

predecessor. This is the “meet” relation: an event a meets with b, written m(a, b),

if the offset of a coincides with the onset of b.

In homophony, the m temporal relation appears as well. In addition, events

overlap in time and, in particular, start at the same time. This is the “start together”

relation: two events a and b start together, written st(a, b), if they share the same

onset.

In polyphony, the m and st relations can still occur. In addition, there are

cases where events overlap in time without starting together. To capture such cases,

we introduce two temporal relations: an “overlap” relation that simply states that

two events unfold together at some point in time and the “starts while” relation

that specifies which of the overlapping events starts first and which starts second

(assuming that they do not start together). More precisely, i) two events a and

b overlap, written ov(a, b), if there is some point in time where both events are

unfolding and ii) an event a starts while b is unfolding, written sw(a, b), if the onset

of a occurs after the onset of b but before its offset. Notice that the sw is “strict”:

it implies that events do not start together. This is mainly justified by the need to

precisely represent the suspension pattern which is characterized by the fact that

the notes forming the pattern do not start at the same time (see Section 2.4 below).

Using a “dot” notation to refer to the onset and offset of events, the four temporal

relations we consider can be defined as follows:

Temporal relation Holds when

m(a, b) a.offset = b.onset

st(a, b) a.onset = b.onset

sw(a, b) a.onset > b.onset and a.onset ≤ b.offset

ov(a, b) there is a time t such that:

a.onset ≤ t ≤ a.offset and b.onset ≤ t ≤ b.offset

The relations can also be compared to the full catalog of period relations defined

by Allen (1983) – as a general temporal knowledge representation scheme – and
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re-investigated later for music by Marsden (2000, chap.3). They can be expressed

in terms of the general period relations as follows:

m(a, b) is a m b a b
a “meets” b

st(a, b) covers






a s b

b

a a “starts” b

b s a a

b

b “starts” a

a = b a

b

a “equals” b

sw(a, b) covers






b o a

b

a b “overlaps with” a

a d b a

b

a “during” b

a f b a

b

a “f inishes” b

ov(a, b) covers all the cases above (and their inverse), except a m b

Using the shorthand notation of Allen (1983), their expression is as follows (the

suffix i expresses the inverse relation):

Temporal relation Disjunction of period relations

st(a, b) a [s si =] b

sw(a, b) a [oi d f ] b

o(a, b) a [s si = o oi d di f fi] b

Notice that the temporal relations that we define are not specific about the end

of the events.

2.3.2 Musical relations

Many aspects of music representation depend on concepts of music theory. The

reader is referred to Appendix A or (Dowling and Harwood, 1986, chap.1) for an

introduction to these notions. They mainly revolve around the organization of pitch

and support different abstractions over musical data that play an important role in

the definition of musical patterns.
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Monophony For monophonic music, the notion of musical pattern has been ex-

plored in depth in recent years (see Cambouropoulos et al., 1999, for an overview).

A strong consensus emerged that an approach to monophonic patterns must at least

capture the notion of transposition. A melodic sequence is transposed if it starts on

a different pitch than the orginial but preserves the distance between any two subse-

quent notes. Consider, for example, the monophonic excerpts of Figure 2.7. Melody

d) is the transposition downward of melody c) by the interval of a perfect fifth (P5

or seven units in the piano-roll notation). The distance between subsequent notes

stays the same, e.g. in both cases the first and second notes are separated by the

interval of a major second (M2 or two units in the piano-roll notation). Appendix A

explains the music-theoretic notion of interval and the values it can take.

Transposed melodies are usually considered to be equivalent to the original and

listeners will remember and recognize a transposed melody as easily (Dowling and

Harwood, 1986, chap.4). There is also evidence that a listener will easily recognized

melodies that preserve the same contour but not necessarily the same exact intervals.

Furthermore, listeners cannot easily distinguish between the transposed instances

and the contour-preserving instances (Dowling and Harwood, 1986, chap.4, p.134).

Figure 2.7 b) and e) present such a transformed melody. For pitch, the contour

simply refers to how a note is higher, lower or equal to its predecessor. For duration,

the contour refers to how a note is shorter, longer or equal to its predecessor.

The importance of contour calls for a slightly more subtle view of musical re-

lations, even for the simple monophonic case. Rather than considering only trans-

position, many different relations of a note with its predecessor may be considered.

The viewpoint method introduced by Conklin and Witten (1995) is perhaps the

most developed around that theme. It would assign each note with a value – called

feature value by Conklin and Bergeron (2008) – for different viewpoints – called

features by Conklin and Bergeron (2008). This is illustrated by Figure 2.7 e). Every

musical excerpt that is assigned the same sequence of feature values is considered as

an instance of the same pattern.

In such a scheme, every note of a pattern is described according to the same

features, here pitch contour and duration contour. It has been argued recently that

a pattern language should support cases where different notes form different relations

(Lartillot, 2004; Cambouropoulos et al., 2005; Conklin and Bergeron, 2008). This is

accommodated by Conklin and Bergeron (2008) with a representation where notes

are represented by feature sets, where notes of a pattern can be described by different

mixtures of relations.
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Figure 2.7: Examples of monophonic transposition and transformation. a) and c):
first five bars of the tenor voice of BWV 323; a) and d): transposed by a fifth down;
b) and e): transformed while conserving pitch and duration contours
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Homophony and polyphony For homophonic and polyphonic music, the need

for flexibility is understandingly greater than for monophonic music. Even if many

approaches to polyphonic patterns still consider transposition alone (see Chapter 3),

it is perhaps even more apparent for polyphony that patterns are very diverse and

require great care in their representation. Consider the musical excerpts of Fig-

ure 2.8. Excerpt d) is the transposition downwards of excerpt c) by the interval of

a perfect fifth (P5).

Figure 2.8 b) and e) depicts a transformation of the original excerpt that is likely

to be considered as very similar, both perceptually and in terms of music-theoretic

notions. Intervals between notes that sound together – harmonic intervals – are

slightly more subtle than melodic intervals. Harmonic intervals obey the principle

of octave equivalence (one of the three musical universals according to Dowling and

Harwood, 1986, p.4): pitches separated by more than one octave are still considered

to form intervals ranging from the unison (no interval) to the seventh. In particular,

the interval of an octave is assimilated with the unison. Such octave-equivalent

intervals are called compound intervals. Compound intervals are used to define the

parallel fifth pattern introduced in Chapter 1. A parallel fifth pattern cannot be

captured by transposition as it needs to encompass both the instances where fifths

are repeated and where twelfths (an octave plus a fifth) are repeated.

The compound interval is the default interval in this dissertation. However, it

is sometimes useful to include octaves in the notion of intervals. We call these

non-compound intervals. To name non-compound intervals, one simply continues to

count units after seven: an octave is an eighth, an octave plus a second is a ninth,

and so on.

Consonance Harmonic intervals are typically classified into two categories: con-

sonant and dissonant. The latter incite motion where the former are more restful

(Piston, 1941). The suspension pattern introduced in Chapter 1 relies on this no-

tion. Again, it cannot be captured by transposition, as intervals can vary from one

suspension to another.

2.4 Motivating patterns

Using the temporal and musical relations introduced above, we can give a precise

definition of the parallel fifth and suspension patterns introduced in Chapter 1. At
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Figure 2.8: Examples of homophonic transposition and transformation. a) and
c): first two bars of BWV 323; a) and d) transposed by a fifth down; b) and e):
transformed so that chords are preserved and that the soprano voice forms the same
harmonic intervals (albeit not necessarily with the same voice)
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the same time, this illustrates the need for such precise relations and how challenging

it can be to capture a polyphonic pattern.

Parallel fifth Consider the parallel fifth of Figure 2.9. We can think of a parallel

fifth as a sequence of two layers. The first layer contains two notes, which form the

diatonic interval of a perfect fifth. The second layer also contains two notes, which

also form the diatonic interval of a perfect fifth. From the instance of Figure 2.9, a

parallel fifth pattern can be developed by applying the following abstractions. First,

we must capture cases where the fifth is compound, e.g. where two diatonic intervals

of a twelfth are repeated.

Then, in the instance, the first and second layers both contain notes in the

soprano and alto voices. In the pattern, these can be any two voices. The fact that

the voices stay the same from the first layer to the second must however be enforced.

Finally, both layers exhibit an st (start together) temporal relation in the in-

stance of Figure 2.9. This is not the general case for a parallel fifth, however.

Following Fitsioris and Conklin (2008), we consider that the cases where the first

layer exhibits an ov (overlap) temporal relation are also valid instances. Conse-

quently, the pattern must express both the ov and st temporal relations. Figure 2.9

illustrates a case requiring the ov with dashed notes in the piano-roll notation.

Suspension The suspension pattern requires the same amount of sophistication.

Consider, for example, the suspension of Figure 2.10. The pattern can be seen as

layered sequences. In the instance, the top sequence hold two notes while the bottom

sequence holds a singleton (the F♯ at the bottom of Figure 2.10). Again, the pattern

must abstract the fact that the instance occurs between the tenor and bass voice

and express that a suspension can occur between any two voices. At the heart of the

suspension is the idea that the singleton note introduces a dissonance and that the

final note of the pattern resolves that dissonance to a consonance. In the instance,

the dissonance is the diatonic interval of a perfect fourth (between the F♯ in the bass

voice and the B in the tenor voice) and the consonance is the diatonic interval of a

major third (between the F♯ in the bass voice and the A♯ in the tenor voice). The

pattern must abstract away from a particular pair of intervals and simply specify

that a dissonance is followed by a consonance.

The next abstraction step is to specify the temporal relations involved. In the

instance, the singleton note starts while the first note of the pattern is already
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Figure 2.9: Eighth bar of BWV 323. The parallel fifth pattern is highlighted. Every
dashed note added to the piano-roll would also form a parallel fifth

31



CHAPTER 2. POLYPHONIC MUSIC

G2

A2

B2

C3

D3

E3

F3

G3

A3

B3

C4

D4

E4

F4

♯

♯

♯

♯

♯

♯

♯

♯

♯

♯

 

�
�

���
� ��� �

� ��� � � �
�
��

��
�
� �

��
�
��

Figure 2.10: Final bar of BWV 323. The suspension pattern is highlighted. Every
dashed note added to the piano-roll would also form a suspension
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sounding. Similarly, the last note of the pattern starts while the singleton note

is already sounding. This is characteristic of a suspension pattern. Figure 2.10

shows multiple cases with dashed notes that would also form a suspension. To

express the suspension in every case, a pattern language must support the sw (start

while) temporal relation. As we will see in Chapter 3, many existing approaches

to polyphonic patterns were not designed to support this relation and hence cannot

represent the suspension pattern.

2.5 Requirements for a polyphonic pattern lan-

guage

Equipped with the musical concepts introduced in this chapter, we can refine the

six objectives stated in Chapter 1. The result is precise enough to form a set of

requirements for a polyphonic pattern language.

Requirement 1: Fully support n-part polyphony This is mainly a require-

ment about how musical data is encoded. In particular, the following must be

satisfied:

• Encode musical events in an unrestricted way, i.e. the source should not be

restricted to a monophonic or homophonic texture

• The source encoding should support an unlimited number of parts. Each

musical event must belong to a part

Requirement 2: Expressive and precise The expressiveness requirement can

be refined as follows:

• The pattern language should express at least the four temporal relations in-

troduced in this chapter: m, st, sw, and ov

• The pattern language should express musical relations between contiguous

notes. This includes, at least, notes that belong to the same part and meet;

and notes that belong to different parts and overlap in time.

The precision requirement can be defined as follows:
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• For every expressible pattern, the approach should return every instance of

that pattern that exists in the source

• Every instance should precisely match the temporal and musical relations that

the pattern expressed

The expressiveness and precision requirements can be reformulated using our

motivating examples: the approach should be able to express and retrieve every

parallel fifth and suspension in a corpus of polyphonic music.

Requirement 3: Clear syntax and semantics This requirement is two fold:

• Temporal and musical relations can be written down in a simple and unam-

biguous way

• The meaning of a pattern can be easily inferred from the syntax

Requirement 4: Flexible A flexible approach supports many different queries:

• The approach should include a mechanism to define musical relations

• The approach should support the definition of queries in a modular way: it

should be possible to refine a query by adding a relation or slightly expanding

its structure

Requirement 5: Easy to use and efficient This requirement is mainly qualita-

tive. We argue, for example, that ease-of-use is increased by a clear syntax, especially

if it reflects the temporal relations enforced by the pattern. Regarding efficiency, we

argue that the pattern matching algorithm should have a linear or log-linear time

complexity with respect to the number of musical events. This is discussed in detail

in Chapter 7.

Requirement 6: Conducive to music data mining This refers to how the

temporal and musical relations are expressed. In a sense, one can view polyphonic

patterns as carefully crafted combinations of relations. If the space of combinations

can be explored automatically, we say the language is conducive to music data min-

ing. Ideally, the language should restrict the space of patterns as much as possible,
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while still satisfying all previously stated requirements. This increases the possibil-

ities for tractable pattern discovery algorithms. Although it is outside the scope of

this dissertation to develop a music data mining method, we argue in Chapter 7 that

the pattern matching language we propose is a good candidate language for such an

application.

2.6 Summary

This chapter presented the notions of musical source and musical pattern in detail.

Polyphonic patterns are a challenging application for computer science as they re-

quire us to precisely express different kinds of relations. We refined the objectives of

our research into a set of requirements. In the next chapter, we review the existing

approaches to the problem of querying polyphonic music data.
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Chapter 3

Related work

This chapter discusses the existing computational approaches to the gen-

eral task of querying polyphonic music data. With respect to the require-

ments for a polyphonic pattern language elaborated in Chapter 2, three

approaches deserve more attention: i) relational patterns, ii) Humdrum

and iii) Structured Polyphonic Patterns. In particular, these approaches

are both expressive enough to represent the parallel fifth and suspension

patterns discussed so far and precise enough to retrieve the exact list of

all the instances of such patterns. Other approaches are either too re-

strictive as for example they cannot express the sw temporal relation, or

are not precise enough as for example they use some kind of approximate

pattern matching algorithm that is not guaranteed to retrieve all the in-

stances of a pattern. We provide a classification of these approaches

according to their underlying principles. For example, a number of ap-

proaches stem from the concept of vertical layers discussed in Chapter 2.

3.1 Expressive and precise approaches

In the following sections, we discuss in detail three approaches to polyphonic pat-

terns: i) relational patterns inspired by (Fitsioris and Conklin, 2008), ii) Humdrum

(Huron, 1999), and iii) Structured Polyphonic Patterns (Bergeron and Conklin,

2008). The three approaches possess the expressiveness required to represent the

parallel fifth and suspension patterns. In particular, the temporal relations and

musical relations introduced in Chapter 2 can be expressed unambiguously. This

is not the case for most approaches to polyphonic pattern retrieval, either because
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no mechanism is provided to abstractly specify the temporal aspect of a pattern

or because some temporal relation is not supported. For example, in the case of

approaches based on layers (or similar vertical structures), the st (start together)

temporal relation is expressed but not the sw (start while) temporal relation, which

is essential in expressing the suspension pattern. This is circumvented in some

approaches (Huron, 1999; Dubnov et al., 2003) by using a continuation marker, a

special symbol that indicates that some note in a layer does not start as the layer

starts but is rather the continuation of some previously sounding note. In SPP,

the concept of layer is extended in a different way, by using an onset modification

operator. Rather than expressing the continuation of a musical note, it simply states

that some note starts before the beginning of the layer. The issue of expressiveness

with respect to temporal relations is formally analyzed in Chapter 6.

The other key property that relational patterns, Humdrum and SPP all possess

is a precise matching algorithm that returns exactly all the instances of a pattern.

This is very important for the kinds of applications that this dissertation considers,

for example the testing of a musicological hypothesis or the gathering of facts about

music. An approximate matching algorithm has other advantages however, and is

suitable for other motivations reviewed in Section 3.2.

3.1.1 Relational patterns

Using the logic programming language Prolog, Fitsioris and Conklin (2008) search

for every instance of the parallel fifth pattern in Bach chorale harmonizations. A

representation for polyphonic music is developed encompassing both basic informa-

tion about musical events and a series of relations that the events form. For example,

Figure 3.1 shows the basic information of four notes: a, b, c, d. The statements

concerning note a are simply read as follows: the onset of a is 0, the offset of a is 2,

the pitch of a is B4, and a belongs to the soprano voice. Note that for readability,

we adapted the representation of Fitsioris and Conklin (2008) and made it more

consistent with the nomenclature of the current dissertation.

The relations that Fitsioris and Conklin (2008) propose are similar to the tem-

poral relations and musical relations discussed in Chapter 2. These can either be

represented as statements or given definition in the Prolog programming language.

Figure 3.2 shows the latter case, where each temporal relation is defined as a rule.

On the left-hand side of the rule is the target relation. On the right-hand side is a

list of literals that must be satisfied for the rule to hold. For example, the m (meet)
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onset(a,0). onset(c,2).
offset(a,2). offset(c,3).
pitch(a,’B4’). pitch(c,’F4#’).
voice(a,soprano). voice(c,soprano).

onset(b,0). onset(d,2).
offset(b,2). offset(d,4).
pitch(b,’E4’). pitch(d,’B3’).
voice(b,tenor). voice(d,tenor).

Figure 3.1: Prolog encoding of four notes forming a parallel fifth pattern

temporal relation holds between event A and B when the offset of A is X and the onset

of B is also X. The ov (overlap) temporal relation is specified through four cases, by

reusing the definition of the st and sw temporal relations.

m(A,B) :-

offset(A,X),

onset(B,X).

st(A,B) :-

onset(A,X),

onset(B,X).

sw(A,B) :-

onset(A,X),

onset(B,Y),
offset(B,Z),
X > Y,
X <= Z.

ov(A,B) :- st(A,B).

ov(A,B) :- st(B,A).

ov(A,B) :- sw(A,B).

ov(A,B) :- sw(B,A).

Figure 3.2: Prolog definition of the four temporal relations considered in this disser-
tation

Once temporal relations and musical relations are given a definition, the parallel

fifth pattern is expressed by the rule shown in Figure 3.3. Again, the query is adapted

from Fitsioris and Conklin (2008) to make it more consistent with the notation used

in this dissertation. It can be read as follows: the notes A, B, C, D form a parallel fifth

if the following temporal relations are satisfied: A and B overlap; A meets C and B

meets D; and C and D start together. These are the same temporal relations discussed

in Section 2.4. In addition, the following musical relations must be satisfied: the

interval between C and D is a perfect fifth (interval(C,D,’P5’)); there is some

melodic motion involved (not(motion(A,B,’=’))); the interval between A, B and C,
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par5th(A,B,C,D) :-

ov(A,B), higher(C,D)

m(A,C), interval(C,D,’P5’),

m(B,D), not(motion(A,B,’=’)),

st(C,D), interval_nc(A,B,I),

voice(A,X), interval_nc(C,D,I),

voice(C,X),

voice(B,Y),

voice(D,Y),

not(X=Y).

Figure 3.3: The parallel fifth pattern in Prolog. Reproduced and adapted from
Fitsioris and Conklin (2008)

D is the same, even in the non-compound representation where octaves are explicitly

taken into account (interval_nc(A,B,I) and interval_nc(C,D,I)). Finally, there

are some constraints that are included to make the query completely precise: the

fact that the pitch of C is higher than that of D (higher(C,D)) ensures that a parallel

fifth is matched only once and constraints about voicing such as voice(A,X) ensure

that the fifth is repeated by the same two voices.

Although Fitsioris and Conklin (2008) develop a single query, we can easily see

how the approach could support many other queries. Logic programming languages

such as Prolog are often used as generic query languages (De Raedt, 2002). The

advantage of such an approach is its expressiveness. As Prolog is a general pro-

gramming language, any discrete dataset can be represented and any computational

query executed. In practice, however, an approach based on a logic programming

language will focus on data that has a certain structure and on queries that are

expressed using a limited set of relations. This is why we prefer to refer to this

approach as relational patterns.

Executing a query in Prolog is like executing a program. The time complexity

depends on the way the query is written and, in principle, the query could even

be impossible to execute (i.e. the program could enter some kind of infinite loop).

For these reasons, using Prolog or any constraint language may be easier with a

intermediary language that restricts the kinds of queries that a user can define.

With respect to temporal relations, such a restriction is proposed in Chapter 6.

Although it is in principle possible to design a music data mining method around

relational queries, it is in practice difficult to do so. The problem lies in the fact that
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the search space to explore is very big. Using SPP as a “tighter” approximation

of the relevant search space to explore seems a promising avenue of research. This

issue is further discussed in Section 7.6.

3.1.2 Humdrum

Humdrum (Huron, 1999) is centered around the representation of musical pieces as

formatted text files. A Humdrum file contains multiple columns, called spines, one

for each part of the piece it encodes. Consider for example Figure 3.4 showing the

final bar of Bach chorale BWV 323 as a Humdrum file.

**kern **kern **kern **kern

*I:[soprano] *I:[alto] *I:[tenor] *I:[bass]

*k[f#c#g#] *k[f#c#g#] *k[f#c#g#] *k[f#c#g#]

*M4/4 *M4/4 *M4/4 *M4/4

[1f# 2c# 2A# 4FF#

. . . 4E

. [2d [2B 4D

. . . 4BB

= = = =

1f#] 2d] 2B] 1FF#

. 2c# 2A# .

Figure 3.4: Final bar of BWV 323 in Humdrum/kern encoding

Time flows from top to bottom in a Humdrum file: each line can be considered

as a layer. Any two tokens appearing on the same line are considered to start

together. For example, the fifth line of Figure 3.4 encodes a layer where the soprano

voice sounds a F#, the alto voice a C# and the tenor and bass voice respectively

a A# and F#. The following line shows how a continuation token “.” is used in

Humdrum to represent the polyphonic texture: the bass voice now sounds an E

while all other voices are still sounding the same pitch. The particular encoding

of pitches and durations can vary in Humdrum. The encoding of absolute pitches

as letters and durations as numbers is called the kern encoding. Other symbols of

Figure 3.4 include comments regarding the encoding used, voice names, key and

time signatures (lines one to four), bar lines (line nine) and the opening and closing

of ties [/] (e.g. line seven and ten).

The pattern matching method of Humdrum is centered around a set of command-

line tools for processing and transforming Humdrum files. Most of the temporal and
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musical relations presented in Chapter 2 can be expressed through careful prepro-

cessing of the source. For example, to express an sw temporal relation in a Humdrum

pattern, the command-line tool ditto has to be executed. Its effect is to replace ev-

ery continuation token “.” with the token being continued in surrounding brackets.

Figure 3.5 shows the results of applying ditto and other processing to the Humdrum

file of Figure 3.4. The third line, for example, shows that the A# is the continuation

of a previously sounding note. Another way to read this is that the E in the first

column starts while the A# is unfolding.

bass tenor cons

FF# A# T
E (A#) F
D B T
BB (B) T
FF# (B) F
(FF#) A# T

Figure 3.5: Final bar of BWV 323 in Humdrum/kern encoding after the preprocess-
ing required for the execution of a suspension query

Figure 3.5 also displays other transformations: the bass and tenor voices were

extracted; durations, ties and bar lines were removed; an additional column with a

consonance/dissonance feature was added. To do this in a general way, in particular

to extract every possible two-voice combination, one can use a shell script as shown

by Figure 3.6.

The last line of Figure 3.6 executes the pattern matching command. A pattern

in Humdrum consists of a text file where every line contains a regular expression.

This series of regular expressions matches a series of contiguous lines in a Humdrum

file, where every regular expression matches a line. Again, the concept of layer is

present, with each regular expression matching one layer in a sequence of layers.

The content of the file susp in Figure 3.6 is as follows:

[a-g A-G]+ [- # n]* [^)]* [(] [a-g A-G]+ [- # n]* .* F$

[a-g A-G]+ [- # n]* [)] [^(]* [a-g A-G]+ [- # n]* .* T$

The first line matches the layer where a note starts in the first column while some

note is already sounding. The expression [a-g A-G]+ [- # n]* at the beginning

of the line matches any pitch followed by any accidentals (or none). The two key

expressions of the line are [^)]* and [(]. The first one ensures that the first note
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for i in soprano alto tenor bass do
extract -i *I:[$i] in.krn > $i.krn

extract -i **kern $i.krn > $i.krn

for i,j in soprano alto tenor bass do
if i!=j then

assemble $i.krn $j.krn > tmp.krn

clean tmp.krn > tmp.krn

ditto -p tmp.krn > tmp.krn

hint tmp.krn > hint.txt

recode -f cons hint.txt > cons.txt

assemble tmp.krn cons.txt > query.krn

pattern -f susp query.krn >> instances.txt

Figure 3.6: Execution of a Humdrum suspension query

of the layer is not a continuation, i.e. that the pitch is not enclosed in brackets as

a result of executing the ditto command (the caret is the negation symbol in the

regular expression notation used in Humdrum). The second expression expresses

the converse: that the second note of the layer is a continuation, i.e. it was enclosed

in brackets after the execution of a ditto command. The second line of the pattern

matches the inverse situation, where the first note of the layer is being continued

and the second note starts. This expresses the temporal relations of the suspension.

To match the consonance and dissonance involved in the suspension pattern, the

regular expressions in the pattern respectively end with the expressions .*F$ and

.*T$. This matches the additional column of Figure 3.5 that was specifically added

to represent consonances and dissonances. The consonance feature could not be

expressed through a regular expression. The same is true for most musical relations

one could want to express in a query. This shows how much the pattern matching

mechanism of Humdrum depends on an adequate preprocessing of the source.

Consequently, the semantics of a Humdrum query can be somewhat opaque and

it can be hard to be confident in the precise meaning of a pattern. Also, to develop a

query one needs to be familiar with command line and scripting tools. In the words

of Jan (2004): “It is worth noting that effective use of the toolkit in its ’raw’ state

requires a degree of facility with UNIX that many musicologists without technical

backgrounds are unable or unwilling to devote time to acquiring”.
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3.1.3 Structured Polyphonic Patterns

The SPP pattern language (Bergeron and Conklin, 2008) is based on two ideas: the

structuring of music into sequences and layers discussed in Chapter 2 and the concept

of feature set introduced recently for music data mining (Conklin and Bergeron,

2008). A feature set is a representation of a musical event as a collection of attributes.

Structured Polyphonic Patterns extend the concept in two ways: i) a feature is now

labelled with a voice name, i.e. it belongs to a voice and ii) a feature can optionally

refer to some other voice, hence encoding a relation between the current voice and

that other voice. Figure 3.7 shows how to encode as SPP events the four notes

encoded in Prolog in Figure 3.1.

{onset : 0, offset : 2, pitch : B4}soprano

{onset : 2, offset : 3, pitch : F4♯, parallel(tenor) : T}soprano

{onset : 0, offset : 2, pitch : E4}tenor

{onset : 2, offset : 4, pitch : B3, parallel(soprano) : T}tenor

Figure 3.7: SPP encoding of four notes forming a parallel fifth pattern

The onset, offset and pitch appear as features within the set. The voice statement

appears as an index, or voice label, appended to each set. In addition, the feature

parallel captures a relation with another voice. The second event of the soprano

voice, for example, exhibits parallel motion with the tenor voice.

The biggest difference between the relational representation of Figure 3.1 and

SPP is that relations in SPP are encoded as features, or propositions. This point

of view, called positionalization by Kramer (2000), is the main abstraction behind

the concept of feature set. The abstraction enables faster pattern matching as the

instantiation of pattern components is self-contained, while relations require the

exploration of many events to determine the instances of a relation. Also, as argued

by Conklin and Bergeron (2008), this facilitates the manipulation of patterns and

restricts the pattern space in a way that renders data mining possible.

Finally, note how the source is not encoded with sequences and layers. In SPP,

these concepts are used to define a pattern. For example, Figure 3.8 shows the

parallel fifth pattern in SPP.

The two pattern components on the left form one layer and the two components

on the right form a second layer. Layers are expressed via a layering operator

“==”. In addition, the layers are placed in a sequence through the “;” operator. By
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−{et interval(y) : P5}x

−{}y
;
{st interval(y) : P5, parallel(y) : T}x

{}y

Figure 3.8: Parallel fifth pattern in SPP

default, a layer expresses the st temporal relation. In Figure 3.8, this is the case of

the second layer. To specify other temporal relations, SPP extends the concept of

layer through the introduction of an onset modification operator “−”. Conceptually,

a component prefixed with that operator starts before the beginning of the layer.

To specify the ov temporal relation between two components, it suffices to prefix

both components with “−”. Conceptually, both components extend back in time

past the beginning of the layer. Hence, is it unknown whether they start together

or, if not, which starts first. All that is specified is that they overlap in time as they

are both unfolding when the layer starts.

To specify the sw temporal relation, it suffices to prefix one of the components

with the “−” operator and leave the other untouched. Conceptually, the former

extends back past the beginning of the layer while the latter starts as the layer

starts. This is the case of the second layer of the suspension pattern, shown in

Figure 3.9.

−{}x

−{}y
;

{sw cons(y) : T, m size : S, m dir : −}x

−{sw cons(x) : F, accented : T}y

Figure 3.9: Suspension pattern in SPP

Notice how the voice names present in the source encoding are replaced by voice

variables in the patterns, here x and y. This is one of the key characteristics of

SPP. By using variables, the voice combinations are accounted for in a declarative

sense, in contrast to Humdrum in which they must be explicitly enumerated.

In Figure 3.9, for example, the voice variables x and y could be assigned to any

combination of voice names, as long as x and y are assigned to different voices. In

particular, the voice variable x appearing at the top of the layers could be assigned

to a “low” voice such as the bass voice. The top-to-bottom ordering of a layer does

not indicate how the pattern matches the different parts of a source. Also, when

both the top and bottom components of a layer are labelled with the same voice

variable, the whole layer will match events that are within the same part. This

allows SPP to express, for example, block chord patterns over a source that has a
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single part (e.g. an unvoiced piano piece).

Finally, notice how the SPP suspension pattern presented in Figure 3.9 is more

precise than the Humdrum suspension pattern presented in Section 3.1.2. It uses

more features, for example specifying that the final consonance is approached by

a melodic interval of a step (feature m size : S), with a downward direction (fea-

ture m dir : −). In Humdrum, this would require adding more columns to the pre-

processed source used for pattern matching. Every new column requires to extend

the preprocessing script, which can be time-consuming. In SPP by contrast, the

meaning of features is precisely expressed through feature definition rules. Fig-

ure 3.10 presents such a rule.

The rule applies everywhere the where clause matches and adds the feature

defined by the add clause. These rules are applied to a source until it is saturated

with features, i.e. until new features cannot be added using the rules. Alternatively,

it is also possible to compute the rules in an on-the-fly manner, where the features

are added to a source while the pattern is being matched.

Conceptually, the information involved in the suspension and parallel fifth pat-

tern is presented by Figure 3.11.

where
{et interval nc(y) : I1}x ; {st interval nc(y) : I2, m size : S}∗x

add
parallel(y) : if I1 = I2 ∧ S 6= U : T

else : F

Figure 3.10: Example of an SPP feature definition rule

3.2 Restricted or approximate approaches

Reviewing the scientific literature more broadly reveals several computational ap-

proaches to the notion of musical patterns. Traditionally, the approaches were re-

stricted to the monophonic case. Rolland and Ganascia (2002), for example, offer a

good overview. A strong interest for the more general polyphonic case has emerged

recently. There are around twenty distinct approaches to the problem of querying

polyphonic music data and – except Humdrum – they were all developed in the last

decade. Table 3.1 presents an overview of the approaches.
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Suspension Parallel fifth

Metrical level

direction consonancesize

melodic interval harmonic interval

Pitch

Figure 3.11: Overview of the information involved in the SPP suspension and par-
allel fifth patterns. Patterns are shown in capitals. Features that are already
present in the source are shown in bold. Features that are added to the source
using SPP feature definition rules are shown in italics

The approaches can be classified according to their underlying principle: ver-

tical structures (i.e. layers), graph representations, geometric representations and

sequential approaches. Humdrum can be classified as a vertical approach. In gen-

eral, the vertical approaches lack the expressiveness to represent the sw temporal

relation and hence lack the expressiveness to represent the suspension pattern. Re-

lational patterns can be classified as a graph approach where nodes correspond to

events and edges correspond to relations. Existing graph approaches, however, use

an approximate matching algorithm lacking the precision to return every instance

of either a suspension or parallel fifth pattern. In general, geometric approaches are

not designed to express temporal relations. Both source and patterns are encoded

as sets of points in a geometric space where the dimensions are, for example, pitch

and onset time. Finally, sequential approaches are designed to search for melodies

within a polyphonic texture and hence cannot express polyphonic patterns.

Note that a restricted expressive power or an approximate matching mechanism

are not necessarily drawbacks. It is usually a design choice, as for example restriction

on the expressive power can yield faster matching algorithms. Also, approximate

pattern matching is often required by the task at hand. For example, if we want to

return sources or regions of a source that are approximately similar to some musical

excerpt, precise matching is not wanted. The remainder of this section presents a

more detailed analysis of the motivations and characteristics of existing approaches.
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(Huron, 1999) vertical musicology • • Poly. • • • • Exact

(Fitsioris and Conklin, 2008) graph musicology • Poly. • • • • Exact

(Bergeron and Conklin, 2008) structured musicology • Poly. • • • • Exact

(Conklin, 2002) vertical musicology • • Homo. • • • • Exact •

(Meudic and Staint-James, 2003) vertical musicology • Homo. Approx. •

(Rohrmeier and Cross, 2008) vertical musicology • Homo. Approx. •

(Dubnov et al., 2003) vertical generation • Poly. • Exact •

(Hanna and Ferraro, 2007) vertical MIR Homo. • Approx.

(Pickens and Crawford, 2002) vertical MIR • Homo. Approx.

(Doraisamy and Rüger, 2003) vertical MIR • Homo. Approx.

(Szeto and Wong, 2006) graph musicology • Poly. • • Exact

(Madsen and Widmer, 2005) graph musicology • Poly. • • • Approx. •

(Meredith, 2006) geometric N/A Poly. Exact •

(Romming and Selfridge-Field, 2007) geometric MIR Poly. Approx.

(Lubiw and Tanur, 2004) geometric MIR Poly. Approx.

(Ukkonen et al., 2003) geometric MIR Poly. Approx.

(Typke et al., 2004) geometric MIR Poly. Approx.

(Dovey, 2001) geometric MIR Poly. • Exact

(Clausen et al., 2000) geometric MIR Poly. • Exact

(Utgoff and Kirlin, 2006) sequential N/A Mono. Approx. •

(Pardo and Sanghi, 2005) sequential MIR Mono. Approx.

(Lemström and Tarhio, 2000) sequential MIR • Mono. Exact

Table 3.1: Overview of existing polyphonic pattern approaches
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Underlying principles

There are four main principles found in the literature to support different definitions

of polyphonic patterns.

Vertical approaches A good number of approaches (Huron, 1999; Conklin, 2002;

Meudic and Staint-James, 2003; Dubnov et al., 2003; Hanna and Ferraro, 2007; Pick-

ens and Crawford, 2002; Doraisamy and Rüger, 2003) revolve around the idea that

polyphonic patterns can be represented as a sequence of layers. Some components

of the layers may be continuation markers that indicate that a previously occurring

event unfolds across a layer boundary. This allows the representation of the sw

temporal relation (Huron, 1999; Dubnov et al., 2003).

Graph approaches Some approaches (Szeto and Wong, 2006; Madsen and Wid-

mer, 2005) define a polyphonic pattern as a graph. Nodes represent musical events

and edges represent temporal relations between events. Similarly, the source is en-

coded as a graph. The expressiveness of such a pattern language can be tailored by

adding new kinds of edges. Instances are simply subgraphs of the source. Szeto and

Wong (2006) use a restricted form of graphs and Madsen and Widmer (2005) use a

heuristics notion of graph similarity.

Geometric approaches Another popular principle is to define a polyphonic pat-

tern as a set of points in a multidimensional space (Meredith, 2006; Romming and

Selfridge-Field, 2007; Ukkonen et al., 2003; Typke et al., 2004; Dovey, 2001; Clausen

et al., 2000). Typically, the dimensions used are onset and pitch and the source

is also encoded as a set of points. A pattern instance is found when a translation

exists that projects every point of the pattern to (or close to) a point of the source.

This captures the musical concept of transposition. It fails to capture, however, the

general concept of musical relation, which occurs locally, between two events of a

pattern instance.

Sequential approaches Finally, some approaches (Utgoff and Kirlin, 2006; Pardo

and Sanghi, 2005; Lemström and Tarhio, 2000) restrict the notion of pattern to a

monophonic sequence of components to be matched against a polyphonic source.

These approaches have the advantage of efficiency, but are limited in terms of ap-

plications.
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Motivations

Significant differences between polyphonic pattern approaches arise from their re-

spective motivations. This affects the kinds of features that the pattern language

can capture. It also dictates important requirements such as efficiency, intelligibility

(i.e. explicitly presenting patterns in some language) and flexibility (e.g. supporting

user-defined features). We isolate three motivations: music information retrieval

(MIR), automated composition and computational musicology. In addition, some

approaches do not state any particular motivation.

Music information retrieval MIR approaches aim at quickly answering musical

queries made by ordinary listeners. In one popular scenario, called query by humming

(Pardo and Sanghi, 2005), the listener sings the melody of the piece of music he or

she is searching for. The MIR system extracts melodic information from the user

input, creates a melodic pattern and matches that pattern against a database of

musical pieces. To be useful, such a system must tolerate errors in the query, as

the user is not expected to sing the whole melody correctly. Also, it must execute

quickly and return a list of possible answers the user can choose from. As execution

time is crucial, errors in answering the query are also tolerated. The quality of

the retrieval phase is evaluated by discussing its recall (the proportion of matches

that were returned) and precision (the proportion of returned results that are true

matches). Finally, there is no need in MIR to use an intelligible pattern language

as the user is typically not interested in (and potentially not trained for) manually

inspecting and crafting patterns.

Computational musicology Musical patterns are of interest both in general

musicology (studying the music phenomena) and in the more specific discipline of

music analysis (studying a particular piece or corpus). In the former, one can use

patterns to formulate and verify hypotheses about music (Huron, 1999, 2001b). In

the latter, one can use patterns to discover facts about a piece of music which

can support the analysis of the piece (Conklin, 2002). Contrary to MIR, the user is

presumably a music scholar whom is typically interested in defining detailed queries.

A flexible and extensible approach is also required, as it is nearly impossible to

anticipate every musical feature a scholar might want to use in a query. Also, as

patterns are used to verify or discover facts, it is important for the pattern matching

mechanism to be clearly and intelligibly defined. Consequently, musicological queries
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are typically more demanding in terms of computational resources.

Automated composition Some approaches to automated composition directly

use musical patterns (Cope, 1991). The idea is to extract patterns from existing

musical material and compose new music by recombining and instantiating the pat-

terns. A major difference with other approaches is that only a few patterns need

to be extracted, rather than enumerating a list of results. While Cope (1991) uses

monophonic patterns, the approach of Dubnov et al. (2003) applies to polyphony.

It is based on a statistical model of musical style. Patterns are never used as such,

but are rather implicit in the model being induced from examples. The approach

differs from MIR or computational musicology as it does not only capture existing

patterns, but also creates new patterns.

Source encoding

Pre-processing Different approaches use different representations of the source

on which patterns are matched. Some approaches perform transformations on the

source in order to facilitate pattern matching. These transformations, however,

usually come at the price of losing some information about the musical surface. One

popular idea is to represent polyphonic music as a sequence of layers. To do that,

one must segment the musical surface according to some principle.

For example, Conklin (2002) and Rohrmeier and Cross (2008) create a sequence

of layers by sampling the source at every beat. Meudic and Staint-James (2003) use

a similar technique, but the onsets of beats are determined dynamically according to

the material at hand. In polyphonic music, however, some notes may sound across

a layer boundary. One way to deal with this problem is to segment long notes into a

sequences of short notes. This is the approach taken, for example, by Huron (1999),

Conklin (2002) and Rohrmeier and Cross (2008).

Voicing Some approaches consider that the musical material to be searched is

voiced, i.e. that concurrent parts are identified (Huron, 1999; Conklin, 2002; Szeto

and Wong, 2006; Madsen and Widmer, 2005). Other approaches consider the mate-

rial to be unvoiced. Not representing voices affects significantly the kinds of patterns

that one can search for and discover. For example, both the parallel fifth and sus-

pension patterns discussed so far are expressed over explicitly identified voices.
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Expressiveness and precision

Syntax Some approaches present the patterns in some abstract pattern language

(Huron, 1999; Conklin, 2002; Dubnov et al., 2003; Hanna and Ferraro, 2007; Szeto

and Wong, 2006; Madsen and Widmer, 2005). Other approaches (e.g. Meredith,

2006; Doraisamy and Rüger, 2003) define a pattern directly as the set of its instances,

provided that the instances are similar to one another according to some similarity

measure.

Contiguity A musical pattern is usually defined as a set of events that are con-

tiguous in time. The exact definition of contiguity differs from one approach to

another. Approaches like (Huron, 1999; Conklin, 2002; Madsen and Widmer, 2005)

use a strict contiguity and events must meet (i.e. satisfy the m temporal relation).

The approach of Utgoff and Kirlin (2006) uses a loose contiguity, where events can

approximatively meet (with respect to some user-defined threshold). Finally, the

approach of Meredith (2006) does not require events to be contiguous. Contiguous

patterns are however considered more relevant.

Features All approaches consider musical relations in one form or another (with

the sole exception of Dubnov et al., 2003). For approaches with an explicit pattern

language, those features are usually named and values are taken from some dis-

crete domain (Huron, 1999; Conklin, 2002; Madsen and Widmer, 2005; Fitsioris and

Conklin, 2008). For approaches with no pattern language, the features are implicit

and appear in how the similarity of pattern instances is computed. In both cases,

the approach might or might not offer the user with the opportunity to define new

features (or new components of the similarity measure).

Vertical relations Surprisingly, only three existing approaches support vertical

relations (Huron, 1999; Conklin, 2002; Fitsioris and Conklin, 2008): musical re-

lations formed by events that overlap in time. By contrast, a popular idea is to

compare two polyphonic passages by first extracting a set of monophonic passages

and comparing them using monophonic features (e.g. Madsen and Widmer, 2005;

Meudic and Staint-James, 2003; Doraisamy and Rüger, 2003). The absence of ver-

tical relations, however, decreases greatly the ability of an approach to represent

meaningful polyphonic patterns like the suspension and parallel fifth.
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Expressiveness An important characteristic of a musical pattern approach is its

expressiveness. Some approaches will not support the definition of some kind of pat-

terns, while others will only support the expression of a restricted form of the pattern.

For example, the approach of Lemström and Tarhio (2000) only supports patterns

that take the form of a sequence. Consequently, it is impossible to express a pattern

of homophonic texture. In the approach of Conklin (2002), one can only express an

approximation of the suspension pattern. As a result of prior transformation of the

musical data, the approach cannot differentiate between homophonic texture and

polyphonic texture, which is needed to fully express the suspension pattern. Note

that this is not an intrinsic flaw of vertical approaches, however, as the combination

of layers and continuation markers provides a polyphonic expressiveness.

In general, we say an approach has a monophonic expressiveness if it does not

support a precise definition of homophonic patterns. Similarly, we say an approach

has an homophonic expressiveness if it does not support a precise definition of poly-

phonic patterns.

Precision

Exact matching The pattern matching strategy differs from one approach to

another. Some approaches use exact matching (e.g. Lemström and Tarhio, 2000;

Dovey, 2001): each pattern component is matched to an event in a precise way.

Approximate matching In contrast, some approaches use some kind of fuzzy

matching, where pattern component are matched to an event if some measure of

similarity is higher than a predetermined threshold (e.g. Utgoff and Kirlin, 2006;

Typke et al., 2004). In general, exact matching is used when the representation

accommodates varying levels of abstraction, using abstract features. Fuzzy matching

is interesting when patterns use a small number of fairly concrete features (e.g. pitch

and duration).

Data mining

Only six approaches support the discovery of polyphonic patterns (Conklin, 2002;

Meudic and Staint-James, 2003; Dubnov et al., 2003; Madsen and Widmer, 2005;

Meredith, 2006). The work of Conklin (2002) is applicable to the discovery of pat-

terns in a corpus of musical pieces. Other approaches are designed to analyze a single
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piece. Two approaches perform an exhaustive exploration of the pattern space ac-

cording to some well-defined criteria (Conklin, 2002; Meredith, 2006). For example,

the search could focus on frequent patterns, long patterns, patterns with a limited

set of features. Other approaches will perform a heuristics search, not exploring the

whole pattern space but rather aiming at quickly discovering some reasonably inter-

esting pattern according to some criteria such as statistical significance or models of

music perception or cognition.

3.2.1 Vertical approaches

Most vertical approaches (Meudic and Staint-James, 2003; Dubnov et al., 2003;

Hanna and Ferraro, 2007; Pickens and Crawford, 2002; Doraisamy and Rüger, 2003;

Rohrmeier and Cross, 2008) define a pattern as a musical passage encoded at the

same abstraction level as the source. One exception is Rohrmeier and Cross (2008)

who propose some abstraction by considering sets of pitch classes (ignoring the

octave of the notes). The other exception is the work of Conklin (2002), in which

a pattern is a sequence of layered components described by any combination of

abstract features (as long as each component uses the same combination). Each

feature is defined through a function, called viewpoint , which takes the preceding

musical context as argument and outputs a value. In addition, a viewpoint can be

elegantly defined as a composition of multiple viewpoints through a set of viewpoint

constructors. By contrast, one defines features in Humdrum (Huron, 1999) either by

manually embedding the definition of the feature in the pattern (assuming it can be

defined using regular expressions) or by using one of the many command-line tools

provided in the toolkit. There is, however, no way to combine feature definitions.

Vertical features are supported by Fitsioris and Conklin (2008), Conklin (2002),

and Huron (1999), but absent from other approaches. There is no way, however, for

a feature to refer to a voice in Humdrum. As a consequence, if one wants to search,

for example, for a parallel fifth pattern, one first needs to extract every possible

two-voice combination in which the pattern might be present. Also, if one wants to

search for a pattern where voices can be permuted, one first needs to extract the

voices from the data and then compute the possible permutations. Although this

does not influence the approach precision, it does make it less intelligible. A similar

problem occurs in the approach of Conklin (2002), where voice permutations need

to be encoded as a set of patterns, each encoding a particular permutation.

Only three vertical approaches (Conklin, 2002; Meudic and Staint-James, 2003;
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Rohrmeier and Cross, 2008) support data mining for polyphonic music. Rohrmeier

and Cross (2008) develop a pattern discovery framework specialized for the extrac-

tion of chord sequences. In the work of Meudic and Staint-James (2003), the sim-

ilarity of two sequences is computed according to melodic intervals and durations.

Pattern discovery is done as follows. First, small sequences are extracted from the

piece. The small sequences are put in a matrix where cells represent the similarity

between two sequences. Both axes of the matrix are ordered chronologically. The

pattern space is explored by joining contiguous cells that are similar, hence creating

longer patterns. One problem with this approach, however, is that the content of

the small sequences used to create the matrix are not revisited. Consequently, the

discovered pattern could exhibit very different musical relations across the bound-

ary where two small sequences are joined. Furthermore, as the length of the small

sequences is fixed, only patterns of certain lengths are visited. By contrast, Conklin

(2002) uses a suffix tree data structure to enumerate all recurrent sequences. A sta-

tistical measure of significance is used to rank the patterns. A pattern is significant

if it occurs more often than expected in a random corpus. The approach of Dubnov

et al. (2003) uses a similar technique. However, discovered patterns are never explic-

itly extracted from the suffix tree. Rather, the tree is used as a statistical modeling

of the source and then sampled to generate new musical compositions.

3.2.2 Graph approaches

Two approaches use graph-based representations of source and patterns (Madsen and

Widmer, 2005; Szeto and Wong, 2006). Both are designed with musical analysis in

mind, one focusing on pattern discovery (Madsen and Widmer, 2005) and the other

on pattern matching (Szeto and Wong, 2006).

In Madsen and Widmer (2005), the source and pattern instances have the same

representation. Nodes represent notes and edges represent the st and m temporal

relations. The sw temporal relation is not used but could be added to the approach

by adding a new kind of edge. Voicing is indicated by removing the m edges that

do not occur within a voice. In the work of Szeto and Wong (2006), the nodes

represent the pitch class of notes (ignoring octave). Edges represent the m and ov

temporal relations. A pattern is defined as a restricted form of graph, where m

edges must form “monophonic” voices and ov edges occur only between events in

separate voices. An efficient pattern matching algorithm is given for that restriction.

Madsen and Widmer (2005) also define a pattern as a graph, which must be included
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in the set of instances. The instances must be similar to one another, according to

a comparison of the sequences of notes found in the graph. The comparison is

made with respect to user defined features directly inspired by the work of Conklin

(2002). The comparison of Madsen and Widmer (2005) does not support, however,

the definition of vertical relations. Patterns are discovered using a genetic search

algorithm that maintains a set of candidate patterns and grows them by, for example,

adding nodes or joining existing patterns.

3.2.3 Geometric approaches

The work of Meredith (2006) is an example of a geometric approach. The source is

represented as a set of points in a multidimensional space. Dimensions correspond to

concrete musical features such as onset, pitch and duration. Romming and Selfridge-

Field (2007); Typke et al. (2004); Dovey (2001); Clausen et al. (2000) use a similar

representation. Lubiw and Tanur (2004); Ukkonen et al. (2003) use an equivalent

representation: duration is not considered, but events are represented as lines instead

of points.

In the approach of Meredith (2006), a pattern is represented implicitly as the set

of instances. Every instance is a subset of the points of the source. Other geometric

approaches also use one instance to represent the pattern. In the approach of Rom-

ming and Selfridge-Field (2007), for example, a pattern is simply a set of points.

Geometric approaches use the notion of translation to relate pattern instances. A

translation along the onset dimension represents the fact that a repetition occurs

after the first occurrence of the repeated material. A translation along the pitch di-

mension represents the fact that a repetition may be transposed with respect to the

original occurrence. Using a logarithmic scale for durations, Romming and Selfridge-

Field (2007) use translation to make sure pattern instances preserve duration ratios

between consecutive events. Translation, however, cannot capture every relevant

vertical relations, e.g. important relations such as consonance and dissonance are

not captured. In addition to translation, some approaches use approximate match-

ing. This is done with a Hausdorff distance by Romming and Selfridge-Field (2007)

and using a weighted measure of distance by Lubiw and Tanur (2004) and Typke

et al. (2004). Finally, the work of Dovey (2001) supports user-defined relations when

computing the similarity of two points.

One characteristic of geometric approaches is that unvoiced polyphonic data can

be searched. Voices, if present, can simply be represented as a dimension. Another
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interesting characteristic is that it does not restrict patterns to a set of contiguous

events. As argued by Meredith (2006), this can capture some forms of melodic

elaboration. Not all forms are captured, however, as instances need to match in the

onset dimension. The simple variation of modifying durations, for example, will not

be captured.

3.2.4 Sequential approaches

Sequential approaches are centered around the matching and discovery of mono-

phonic patterns in a polyphonic texture. Lemström and Tarhio (2000), for example,

develop a series of string matching algorithms tailored for quickly retrieving melodies

in a source of homophonic texture. The pattern is a sequence of pitches and the

source material is a sequence of sets of pitches. The authors apply the technique to

polyphonic material by sampling concurrent pitches of a piece at every new onset.

Instances of a pattern all share the same sequence of melodic intervals, what Lem-

ström and Tarhio (2000) call transposition invariance. The approach, however, does

not support voices. Both Utgoff and Kirlin (2006) and Pardo and Sanghi (2005) use

the same definition of pattern. The source, however, is not sampled to create layers.

Rather, the m temporal relations of the pattern must match existing m relations in

the source. Utgoff and Kirlin (2006) use an approximate definition of this relation.

If one searches for a melody, a sequential approach would return every instance

of that melody, including those that move across voice boundaries. Moreover, by

sampling the source at every onset, Lemström and Tarhio (2000) create notes that

do not exist in the source. Consequently, the technique might report some melodic

matches that simply do not exist in the source. The main advantage of the approach

of Lemström and Tarhio (2000) is its efficiency. The algorithm is an adaptation of

bit-parallel algorithms for string matching and runs in linear time with respect to

the size of the music material to be searched.

Of the three sequential approaches, only Utgoff and Kirlin (2006) support pattern

discovery. Patterns are represented directly as a set of instances. The pattern space

is explored by clustering existing instances and removing the least relevant clusters

before growing the instances of each cluster. The similarity measure used to form

the cluster is a heuristic referring to melodic intervals and durations. Finally, the

resulting patterns are ranked according to a heuristic interest measure that penalizes

local jumps in the pitch and duration dimensions.
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3.3 Summary

This chapter reviewed existing computational approaches to the representation and

retrieval of polyphonic patterns in polyphonic music. The notions of source and

pattern introduced in Chapter 2 can vary depending on the motivations and un-

derlying principles of an approach. Three approaches correspond well to the aims

and requirements established in the previous chapter: relational patterns, Humdrum

and Structured Polyphonic Patterns. The latter is formally defined in the following

chapter and some practical applications are illustrated in Chapter 5. The three ap-

proaches are further compared in Chapter 6, where their expressiveness in terms of

temporal relations is examined.
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Structured Polyphonic Patterns

This chapter formally introduces the SPP pattern matching method. It

explains how musical sources are encoded in the method, gives a formal

definition of the SPP language and explains how queries are executed.

Patterns are built by joining basic components either vertically as layers,

horizontally as sequences, or as an unrestricted mixture of both. In addi-

tion, an onset modification operator enables the representation of layers

containing asynchronous components. In SPP, a component generalizes

over musical events by representing many possible “concrete” events.

The structure of a pattern provides further abstraction by representing

temporal relations between events. This chapter gives a formal definition

of what it means for an SPP pattern to be instantiated by a collection of

events. We explain how user-defined features are integrated in the query

mechanism. Finally, we introduce an efficient matching algorithm.

4.1 Source

An SPP source is an encoding of a piece of music. It simply contains all the musical

events of the piece.

Definition 1 A source s is a set of events e:

s ::= {e1, e2, . . .}
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An SPP event encodes a single musical event, for example a note or a rest. The

event must belong to a voice. In addition, an event contains features that represent

its properties, such as its onset and offset.

Definition 2 A event e is a set of event features f , labelled with a voice name n:

e ::= {f1, f2, . . .}n

There are two kinds of event features. The first kind encodes a property of the

event itself or a musical relation with an event in the same voice. The second kind

encodes a musical relation that the event forms with some event in another voice.

Definition 3 An event feature f is defined according to the following syntax,

where τ is a feature name, v is a feature value and n is an optional voice name:

f ::= τ : v

| τ(n) : v

Consider the following example of an SPP event:

(E1) {pitch : F♯4, interval(bass) : M3}soprano

It encodes a musical note that belongs to the soprano voice. The note has a pitch

of F♯4 and forms a major third with some note in the bass voice.

Musical properties such as interval are typically the most relevant features

when defining a query. However, an SPP source does not necessarily possess such

features. For an SPP source to be well-formed , two features are required to be

present in every event: the onset of an event (the time point at which it starts) and

its offset (the time point at which it stops).

Figure 4.1 shows a well-formed encoding of bar 21 of Bach chorale BWV 304.
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B2

C3

D3

E3

F3

G3

A3

B3

C4

D4

E4

F4

G4

A4

B4

e8
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e3

e1♯

e4

e9

e7

e5

e2♯

s1 = {e1, e2, e3, e4, e5, e6, e7, e8, e9}

with

e1 = {onset : 0, offset : 2}soprano

e2 = {onset : 2, offset : 3}soprano

e3 = {onset : 0, offset : 1}alto

e4 = {onset : 1, offset : 2}alto

e5 = {onset : 2, offset : 3}alto

e6 = {onset : 0, offset : 2}tenor

e7 = {onset : 2, offset : 3}tenor

e8 = {onset : 0, offset : 2}bass

e9 = {onset : 2, offset : 3}bass
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Figure 4.1: SPP encoding of BWV 304, bar 21
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4.2 Components

As a basic abstraction mechanism, the SPP language provides a way to describe

many different events through a syntactic construct called component .

Definition 4 A component κ is a set of component features f̂ , labelled with either

a voice name n or a voice variable γ:

κ ::= {f̂1, f̂2, . . .}n

| {f̂1, f̂2, . . .}γ

If labelled with a voice variable, a component can describe events that belong to

different voices. Similarly, a component feature act as a descriptor for many different

event features.

Definition 5 A component feature f̂ is defined according to the following syntax,

where τ is a feature name, v is a feature value, α is a value variable, n is a voice

name and γ is a voice variable:

f̂ ::= τ : v

| τ : α

| τ(n) : v

| τ(γ) : v

| τ(n) : α

| τ(γ) : α

Again, using variables instead of values or voice names provides a way to repre-

sent many different events. For example, consider the following component:

(E2) {pitch : P, interval(y) : I}x

It describes the case of E1, where an event forms a major third with some event

in the bass voice. Similarly, it can describe nearly all events of Figure 4.1, assuming

they were first augmented with the pitch and interval features. Rest events are

exceptions, as these do not possess a pitch or form any interval. When a particular
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event is described by a component, we say that the component matches that event,

or equivalently that the event instantiates the component.

4.3 The SPP language

The second abstraction mechanism that the SPP language provides is the ability

to specify temporal relations. The four temporal relations presented in Chapter 2

are supported:

• m(a, b): a meets b (a ends as b starts)

• st(a, b): a and b start together

• sw(a, b): a starts while b is unfolding

• ov(a, b): a and b overlap (at some point in time, both a and b are unfolding)

In SPP, these temporal relations are specified structurally, via two basic oper-

ators: the sequencing operator “;” and the layering operator “==”. In addition, an

onset modification operator “−” can be applied directly to a component, altering

the interpretation of the corresponding layer.

Definition 6 An SPP pattern φ is defined according to the following syntax:

φ ::= κ

| −κ

| φ ; φ

|
φ

φ

The “;” operator is used to build sequences of components, thus enforcing the

m temporal relation. The “==” operator is used to build layers of simultaneous

events, thus enforcing the st relation. In addition, the “−” operator can be used in

conjunction with the “==” operator to represent events that overlap in time without

being simultaneous, thus enforcing the sw and ov temporal relations. Consider, for

example, the SPP pattern below.
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(E3)
{duration : 1}x

−{onset : 0}y ; {pitch : X}y
;

{duration : 1}x

By virtue of belonging to a sequence, components {onset : 0}y and {pitch : X}y

at the bottom of the layer are interpreted as following one another, hence specifying

an m temporal relation. By virtue of being layered, components {duration : 1}x and

{onset : 0}y on the left of the pattern would normally be interpreted as specifying

an st temporal relation. However, as the “−” operator is used, the onset of the

modified component is conceptually extended backward in time, resulting in the

specification of an sw temporal relation: the component at the bottom of the layer

is interpreted as starting earlier and hence is already unfolding when the component

at the top of the layer starts.

Notice how example E3 above contains two identical components of the form

{duration : 1}x. When isolated, these would match the same events. In the context

of a pattern, however, they are meant to match different events: both with the same

duration, but one following the other temporally. To make this distinction effective,

we need to make sure that every component in an SPP pattern can be uniquely

identified. This is done through an indexing. The indexing is not part of SPP

syntax per se, but is necessary to describe and manipulate SPP patterns in an

unambiguous way.

Definition 7 Given an SPP pattern φ, we assume an indexing that assigns a

unique index ǫ to every component κ in φ. We write ǫ to refer to the component

indexed by ǫ.

For example, the pattern of E3 can be represented with indices as follows:

(E4)
a

−b ; c
;

d

We have a = d = {duration : 1}x, b = {onset : 0}y, and c = {pitch : X}y.

Henceforth, we freely refer to SPP patterns as having either indices or components,

depending on context.

The indexing is useful when discussing the structure of SPP patterns. Consider

for example the patterns of Table 4.1. The interpretation refers to how the structure
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Type of pattern Example φ Interpretation of φ
Sequence of components a ; b ; c a starts φ

c ends φ

Layer of components a

b

c

a,b and c start φ
a,b and c end φ

Sequence of layers a

b
;
c

d

a, b start φ
c, d end φ

a and c are aligned
b and d are aligned

Layered sequences a ; b

c ; d

e ; f ; g

a, c, e start φ
b, d, g end φ

Structures a

b
;
c ; d

e
;

f

g

a, b start φ
d, f , g end φ
a and c are aligned
b and e are aligned
e and f are aligned

Table 4.1: Different types of SPP patterns and their basic interpretations

of a pattern indicates the temporal relations to be enforced. When components start

a pattern, or a subpattern, they are conceptually simultaneous (via the st temporal

relation) or overlapping (via the sw or ov temporal relations). Two components are

aligned if one ends a subpattern on the left of a “;” operator and the other starts a

subpattern on the right of the same operator. In addition, aligned components have

a similar location in their respective layers (a component at the top of one layer is

aligned with a component at the top of the other layer). Aligned components are

interpreted as being directly one after the other in sequence (via the m temporal

relation).

Notice that Table 4.1 contains several pattern where the binary operators “;”

and “==” are seemingly used to relate more than two terms. This relies on an im-

plicit bracketing of the terms of a pattern. The interpretation of the SPP patterns

presented in this dissertation is always clear from the vertical and horizontal place-
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ment of the terms. To improve readability, we hence present the patterns without

brackets. For completeness, the definition below indicates the implicit position of

brackets in a SPP pattern.

Definition 8 When interpreting SPP patterns, the following assumptions are

made:

1. The layering operator “==” has precedence over the sequencing operator “;”

2. The layering operator “==” is top-associative

3. The sequencing operator “;” is left-associative

The first rule of Definition 8 simply states that when sequences and layers are

mixed, the brackets are implicitly forming around the layers:

(E5)
a

b
;

c

d
is implicitly bracketed as

( a

b

)
;

( c

d

)

The second rule of Definition 8 states that the terms at the top of a layer are

grouped first:

(E6)

a

b

c

is implicitly bracketed as

( a

b

)

c

Similarly, the last rule of Definition 8 states that the terms at the beginning of

sequence are grouped first:

(E7) a ; b ; c is implicitly bracketed as (a ; b) ; c

It is also important to notice how the interpretation of a pattern allows for some

commutativity. For example, the following two patterns have the same interpreta-

tion:

a

b
;

c

d ; e
is equivalent to

b

a
;

d ; e

c
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It is not relevant, for example, that components a and c appear on top of the

layers in the first pattern and on the bottom in the second pattern. In both cases,

the component a is aligned with the component c. It is not true however that

the layering operator “==” is always commutative. For example, if the first layer

above was to be permuted and not the second, the interpretation of the pattern

would change by virtue of the component a now being aligned with d in the second

pattern:

a

b
;

c

d ; e
is not equivalent to

b

a
;

c

d ; e

Finally, note that the interpretation of a pattern does not indicate voicing. In

particular, a component appearing at the top of a layer can match any voice and

does not necessarily match a voice that would be considered “higher” than the voice

matched by a component appearing at the bottom of the layer.

To illustrate this, imagine a layer with two components and a source with four

parts (ordered from highest to lowest): soprano, alto, tenor and bass. When the

components have the same voice label, they will match events in the same part:

a

b

soprano

alto

tenor

bass

a

b

soprano

alto

tenor

bass

a

b

soprano

alto

tenor

bass

a

b

soprano

alto

tenor

bass

When the components have different voice labels, they will match events in any

two distinct parts:

a

b

soprano

alto

tenor

bass

a

b

soprano

alto

tenor

bass

a

b

soprano

alto

tenor

bass

. . .

By abstracting away from the ordering of the components of a layer, the SPP

method automates the exploration of voice combinations.

The following section builds on the intuitive interpretation of SPP patterns

discussed so far and gives a formal definition of how an SPP pattern is instantiated

by a collection of events.
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4.4 Interpreting SPP patterns

Conceptually, an instance of an SPP pattern φ is determined by a mapping of the

components of φ to the events of a source, along with a mapping of the variables of φ

to appropriate values. The former shows “where” in the source the instance occurs

and the latter shows “how” a particular component relates to the event it matches.

As explained in Section 4.3, the former can only be defined if the components are

indexed. An instance hence consists of a set of pairs I that relate indices and events,

along with a variable assignment. For example, the following is an instance of the

pattern E3 in the source of Figure 4.1:

(E8)

I = {(a, e4), (b, e6), (c, e7), (d, e5)}

θ = {(X,A3), (x, alto)(y, tenor)}

Formally, a variable assignment is defined as follows.

Definition 9 A variable assignment θ for φ is a set of pairs acting as a mapping

of value variables and voice variables to feature values and voice names, such that:

• Every variable of φ appears exactly once in θ

• No other variables appear in θ

• θ always maps a value variable to a value

• θ always maps a voice variable to a voice name

• The mapping of voice variables to voice names is injective: no two voice vari-

ables are mapped to the same voice name. This enforces the intuition that

when two components are labelled with distinct voice variables, they belong

to distinct voices.

An instance is defined as follows.

Definition 10 Given a variable assignment θ for φ, a θ-instance I of φ is a set of

pairs acting as a mapping of component indices to events:
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• Every component index ǫ of φ appears exactly once in I

• No other component index appears in I

• The mapping of indices to events is injective: no two indices are mapped to

the same event. This enforces the intuition that a pattern with n components

will match n events.

In addition, the following conditions must hold:

• If φ is of the form ǫ or −ǫ, then:

I = {(ǫ, e)}

e is a θ-instance of ǫ (Definition 11)

• If φ is of the form φ1 ; φ2, then:

I = I1 ∪ I2

I1 is a valid θ-instance of φ1

I2 is a valid θ-instance of φ2

and:

For every component ǫ1 ending φ1 (Definition 12)

And every component ǫ2 starting φ2 (Definition 13)

If ǫ1 and ǫ2 are aligned (Definition 14)

then I enforces m(ǫ1, ǫ2) (Definition 15)

• If φ is of the form
φ1

φ2

, then:

I = I1 ∪ I2

I1 is a valid θ-instance of φ1

I2 is a valid θ-instance of φ2

and:

For all components ǫ1, ǫ2 starting φ1, φ2 (Definition 13)

For pairs of the form ǫ1, ǫ2, I enforces st(ǫ1, ǫ2) (Definition 15)

For pairs of the form ǫ1, −ǫ2, I enforces sw(ǫ1, ǫ2) (Definition 15)

For pairs of the form −ǫ1, ǫ2, I enforces sw(ǫ2, ǫ1) (Definition 15)

For pairs of the form −ǫ1, −ǫ2, I enforces ov(ǫ1, ǫ2) (Definition 15)

Consider the pattern E3 and the instance of example E8. Components a and b

start the layer on the left-hand side of the “;” operator. As a “−” operator is used,
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the instance must enforce sw(a, b). According to the instance, a is mapped to e4

and b is mapped with e6. We can verify on Figure 4.1 that when e4 starts, the event

e6 is already unfolding. Similarly, we can verify that the semantics is respected for

components a and d on both side of the “;” operator. As a ends the left-hand side

of the operator and b starts the right-hand side (and they are aligned), the instance

must enforce the m temporal relation. Component d is mapped to event e5. Again,

we can verify on Figure 4.1 that event e4 ends as event e5 starts. The remainder of

the semantics can also be easily verified. Note that the fact that events e4 and e5

belong to the same voice is enforced by the variable assignment, not by the structure

of the pattern.

The remainder of this section contains formal definitions that are referenced by

Definition 10. First, we define what it means for an event to instantiate a component.

Definition 11 Given a θ-instance I, a component ǫ and an event e, we say that

e θ-instantiates ǫ if:

• The voice label of ǫ and e match, that is:

If the voice label of ǫ is n, then the voice label of e is n

If the voice label of ǫ is γ, then the voice label of e is n, and θ(γ) = n

• For every component feature f̂ ∈ ǫ, there exists an event feature f ∈ e such

that:

If f̂ is τ : v, then f is τ : v

If f̂ is τ : α, then f is τ : v, and θ(α) = v

If f̂ is τ(n) : v, then f is τ(n) : v

If f̂ is τ(γ) : v, then f is τ(n) : v, and θ(γ) = n

If f̂ is τ(n) : α, then f is τ(n) : v, and θ(α) = v

If f̂ is τ(γ) : α, then f is τ(n) : v, and θ(α) = v, θ(γ) = n

The following three definitions concern the conceptual interpretation of SPP

patterns that was discussed at the end of Section 4.3.

Definition 12 Given an SPP pattern φ, we say the index ǫ ends φ exactly in

the following cases:
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• φ is of the form ǫ or −ǫ

• φ is of the form φ1 ; φ2 and ǫ ends φ2

• φ is of the form
φ1

φ2

and ǫ ends φ1 or ǫ ends φ2

Definition 13 Given an SPP pattern φ, we say the index ǫ starts φ exactly in

the following cases:

• φ is of the form ǫ or −ǫ

• φ is of the form φ1 ; φ2 and ǫ starts φ1

• φ is of the form
φ1

φ2

and ǫ starts φ1 or ǫ starts φ2

Definition 14 Given an SPP pattern φ1 ; φ2, a index ǫ1 ending φ1 and a index

ǫ2 starting φ2, we say that ǫ1, ǫ2 are aligned exactly in the following cases:

• φ1 is of the form ǫ1 or −ǫ1, and:

◦ φ2 is of the form ǫ1 or −ǫ1

◦ φ2 is of the form φ′

2 ; φ′′

2 and ǫ1,ǫ2 are aligned in ǫ1 ; φ′

2

◦ φ2 is of the form
φ′

2

φ′′

2

and ǫ1,ǫ2 are aligned in in ǫ1 ; φ′

2

• φ1 is of the form φ′

1 ; φ′′

1, and ǫ1,ǫ2 are aligned in φ′′

1 ; φ2

• φ1 is of the form
φ′

1

φ′′

2

, and:

◦ φ2 is of the form ǫ2 or −ǫ2 and ǫ1,ǫ2 are aligned in φ′

1 ; ǫ2

◦ φ2 is of the form φ′

2 ; φ′′

2 and ǫ1,ǫ2 are aligned in φ′

1 ; φ′

2

◦ φ2 is of the form
φ′

2

φ′′

2

and ǫ1,ǫ2 are aligned in φ′

1 ; φ′

2 or φ′′

1 ; φ′′

2

Finally, the precise definition of the four temporal relations that an SPP pattern

can enforce is as follows. We use a “dot” notation to refer to the value of event

features. For example, we write e.onset to refer to the onset of some event e.
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Definition 15 Given an instance I containing the pairs (ǫ1,e1) and (ǫ2,e2), we

say that:

• I enforces m(ǫ1, ǫ2) if:

◦ e1.offset = e2.onset

• I enforces st(ǫ1, ǫ2) if:

◦ e1.onset = e2.onset

• I enforces sw(ǫ1, ǫ2) if:

◦ e1.onset > e2.onset, and

◦ e1.onset ≤ e2.offset

• I enforces ov(ǫ1, ǫ2) if there exists a point in time t such that:

◦ e1.onset ≤ t ≤ e1.offset, and

◦ e2.onset ≤ t ≤ e2.offset

4.5 Feature definition rules

As explained in Section 4.4, the SPP language offers two abstraction mechanisms:

the description of collections of events through components and the specification

of temporal relations between events through syntactic constructions. A pattern

φ, however, can only refer to the information that is already present in a source.

Typically, the basic information of a musical source, such as pitch and duration, will

not suffice to express meaningful queries.

To deal with this issue, the SPP method provides a systematic way to expand

the information of a source, in particular by adding features that encode musical

concepts such as scale degrees and relations between notes such as melodic and

harmonic intervals.

Definition 16 A feature definition rule consists of two clauses, the where clause

and the add clause:

where add

φ[ǫ∗] f̂ [Ω]
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• The where clause contains an SPP pattern φ in which exactly one component

ǫ∗ is distinguished.

• The add clause contains a component feature f̂ in which the value is replaced

by a function Ω defined over the variables of φ and returning a value when

evaluated in the context of a variable assignment θ.

A feature definition rule applies to every θ-instance I of its where clause φ.

For every such instance, an event feature is built from the add clause as follows.

First, its voice variable (if any) is replaced by the appropriate voice name, according

to θ. Then, the value of the feature is replaced by the result of evaluating the

function Ω in the context of θ. The resulting event feature is added to the event e

that I associates with the distinguished component ǫ∗. For example, the following

definition rule would add the interval feature appearing in example E1.

(E9)

where add

{pitch : P1}∗x

{pitch : P2}y
interval(y) : diatonic interval(P1, P2)

The pattern of the where clause will match every case where two notes start

together. For every such case, the pitches of the notes are recorded in the value

variables P1 and P2 and their respective voices are recorded in the voice variables

x and y. This information is used to transform the add clause into a valid event

feature by assigning y to a voice name and evaluating diatonic interval. The

feature is then added to the note that corresponds to the distinguished component

{pitch : P1}∗x.

4.6 Querying musical sources

Using the SPP method to build a musicological query typically implies the following

steps:

1. Encode the musical pieces to query as well-formed SPP sources

2. Write down feature definition rules to capture musical concepts on which the

query depends
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3. Apply every rule to the sources, hence saturating it with the relevant features

(alternatively, it is also possible to compute the rules in an on-the-fly manner,

where the features are added to a source while the pattern is being matched)

4. Write down an SPP pattern that captures the query. The pattern typically

refers to the features defined above

5. Compute the instances of the pattern in the saturated sources

6. Inspect the resulting instances

7. Optionally, the user can perform some quantitative analysis of the instances

Notice that Step 1 assumes that more than one source is of interest as, typically,

a query is applied to a corpus: a collection of musical pieces. Applying a query to a

corpus is simply done by applying the query separately to every piece in the corpus.

This is done by steps 3 and 5, which can be performed efficiently using the same

algorithm, described in Section 4.7 and Appendix D. Chapter 5 illustrates how to

build and apply musicological queries in SPP, including some examples of simple

quantitative analysis of the results.

4.7 Matching algorithm

A naive implementation of SPP would yield an algorithm operating in quadratic

time: joining two subpatterns into a sequence or layer would require the exploration

of the Cartesian product of their instances. This section introduces the SPP-join

algorithm, operating in log-linear time. It takes as input a well-formed SPP source

s and an SPP pattern φ and returns as output the collection of all θ-instances of φ

in s. Following Definition 10, the collection of instances can be built by recursively

analyzing φ. To compute the instances of a pattern φ with subpatterns φ1 and φ2,

the algorithm proceeds as follows. First the instances of φ1 and φ2 are computed.

Then, pairs of instances of φ1 and φ2 are iterated. Every pair is joined to form a

candidate instance of φ (this simply consists of the union of φ1 and φ2 respective

instances). The candidate instance is tested against Definition 10 to determine

if it is a valid instance of φ. A naive implementation would iterate all pairs of

instances, for example by iterating every instance of φ1 and for every such instance,

iterating all instances of φ2. This would clearly yield a quadratic time complexity

in terms of the number of instances. The efficient SPP-join algorithm developed
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in Appendix D is based on the simple observation that all valid instances of an

SPP pattern are contiguous in the time dimension. When joining two collections of

instances, the SPP-join algorithm directly selects a subset of instance pairs. The

subset corresponds to those instances of φ1 and φ2 that may yield a valid instance

of φ with respect to the temporal relations it enforces. This is achieved by storing

instances according to their start time and accessing only the candidate instances

that have a relevant start time. Using a balanced tree, this can be done in log-linear

time.

4.8 Summary

This chapter presented the SPP method in detail. The method satisfies the re-

quirements for polyphonic pattern language stated in Chapter 2. It differs from the

existing approaches reviewed in Chapter 3 in many ways. Contrary to Humdrum, for

example, it has clear and precise semantics and, contrary to a relational language, it

is specialized for music with a syntax that illustrates the structure of the query. In

terms of formal expressiveness, the differences between these three approaches are

explored further in Chapter 6. The following chapter illustrates the utility of SPP

as a polyphonic pattern language by developing musicological queries and analyzing

the results on four different musical corpora.
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Musicological queries in SPP

This chapters demonstrates the practical applicability of SPP. We show

how to develop musicologically meaningful queries and analyze the re-

sults obtained when applying the queries to real musical sources. The

queries we develop show a wide range of patterns, from basic queries

that could be used for information gathering to complex queries that

can capture precepts of musical styles, such as patterns of second species

counterpoint. The queries are typical of n-part polyphony. For quali-

tative evaluation of the queries, for example when examining particular

instances of a pattern, we focus on a corpus of chorale harmonizations

by J.S. Bach. These pieces are largely homophonic, but contain enough

examples of polyphonic material for our purposes. For quantitative anal-

ysis, we consider three additional corpora: folk songs, Mozart Symphony

no.40 and Chopin piano music. Examining several corpora enables us to

establish the salience of some patterns: over-represented in one corpus

by comparison to the others.

5.1 Overview

In this chapter, we encode four corpora as well-formed SPP sources, using such

additional musical features as pitch, key, duration and meter. From these basic

features, we derive more meaningful features using the feature definition mechanism

introduced in Chapter 4. Figure 5.1 shows this transformation as arrows from basic

features (in bold) to user-defined features (in italics). The latter include, for exam-

ple, the scale degree of notes and different types of melodic and harmonic intervals.
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Compensated leap Suspension Counterpoint Parallel fifth Block chord

DurationMetrical level

direction consonancesize

melodic interval harmonic interval scale degree

Pitch Key

Figure 5.1: Overview of the queries developed in this chapter. Queries are shown
in capitals. Features that are already present in the source are shown in bold.
Features that are added to the source using SPP feature definition rules are shown
in italics

By using such features in basic queries and analyzing the result, we obtain a simple

way to compare the different corpora. This is described in Section 5.3.

Figure 5.1 also shows how features are used in queries (in capitals). Arrows

show how different queries depend on different features. These queries were selected

as they illustrate different kinds of SPP patterns: sequences, layers, sequence of

layers (with different ways to combine the onset modification operator “−”), and

free mixtures of sequences and layers.

For each query, we compare two simple quantities: how many positions in the

source are consistent with the frame of the query and how many of those positions

are actual instances of the query. The frame of a query typically captures the same

structure, e.g. in terms of temporal relations, but without musical relations. It gives

us an approximation of how probable a particular pattern is in a specific corpus,

e.g. how probable it is to encounter an actual suspension when notes that exhibit

the structure of a suspension are encountered. We call this the frame-conditioned

probability of a pattern. It gives us a way to normalize the number of occurrences of

a pattern in a corpus, in order to render the comparison with other corpora relevant.

For example, the frame-conditioned probability of the suspension pattern in Bach

chorale harmonizations is 18.88% . This means that nearly one fifth of all positions

that exhibit the temporal relations of a suspension also exhibit the consonance and

dissonance pattern of a suspension. By comparison, this is only 3.03% in Mozart
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Symphony no.40 and 2.28% in Chopin piano music. The comparison tells us that the

suspension pattern is salient in Bach chorales. Salience can refer to how perceptually

prominent a pattern is or how frequent it is (Huron, 2001b); or alternatively salience

can refer to a measure of relative probability (Conklin, 2008, 2010). This dissertation

adopts a simple definition of salience, inspired by (Conklin, 2010) : a pattern is

salient in a corpus, with respect to a comparison corpus, when it has a relatively

high probability in that corpus and relatively low probability in the comparison

corpus.

In Section 5.4, we analyze the frame-conditioned probabilities and salience of

the queries of Figure 5.1. In addition, musical examples from Bach chorale harmo-

nizations are examined and variations and extensions of the queries are proposed.

The additional queries illustrate how to reuse existing features and patterns when

building new queries in a modular way.

To improve readability, some results are deferred to Appendix F, which contains

additional figures, in particular renderings of musical excerpts in piano-roll notation.

5.2 Sources

The results presented in this chapter concern four corpora: i) a collection of 185

chorale harmonizations by Johann Sebastian Bach (henceforth called Bach chorales),

ii) the four movements of Symphony No.40 in G minor, KV. 550, by Wolfgang

Amadeus Mozart (henceforth called Symphony no.40 or no.40 ), iii) a collection of 83

pieces for piano by Fryderyk Chopin (henceforth called Chopin) and iv) a collection

of folk songs largely composed of the Essen Folksong Collection (Schaffrath, 1995).

Table 5.1 presents an overview of the corpora in terms of number of sources, events

and parts.

All corpora were retrieve in Humdrum format. For each piece, its key was esti-

mated using the Humdrum key command, which is based on a key finding algorithm

by Krumhansl and Kessler (1982). The estimation includes modulations (regions of

a piece were the key temporarily changes).

These corpora were selected to illustrate the applicability of SPP to different

types of sources: monophonic (Folk songs), 4-part polyphony (Bach chorales), or-

chestral (Symphony no.40), and piano music (Chopin).
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Corpus Sources Events % Rests Parts
Chorales 185 44465 2.73% 4
Symphony no.40 4 31363 28.09% 10
Chopin 83 90497 7.02% 1
Folk songs 8413 456827 5.51% 1

Table 5.1: Overview of the four corpora considered in this dissertation

Temporal relations The number of parts in Table 5.1 indicates that the corpora

might differ in texture, for example in how many simultaneous notes a single part

can contain. We can get a better idea by executing two simple queries:

(P1)
{}x

{}y

(P2)
{}x

−{}y

The queries P1 and P2 will respectively return every instance of the st (start

together) and sw (start while) temporal relations. This reveals that Symphony no.40

and Chopin exhibit simultaneous notes within parts. For example, a note can form

up to sixteen st relations and thirteen sw relations in Symphony no.40, even if there

are only ten parts in the source. This is probably due to the fact that, at given times,

many parts are playing block chords (through double stops in the violin parts, for

example). For Chopin, pieces were encoded as having a single part (i.e. every note

of the piano is in the same part). It is therefore expected to find simultaneous notes

within that part: up to eight st relations and six sw can be formed by a note in

that corpus. This is different for Bach chorales, where notes are never simultaneous

within the same part. To compare the proportion of st and sw in each corpus, we

use the following frame query:

(P3)
−{}x

−{}y

The query P3 will return every instance of the ov temporal relation. This gives us
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the frame-conditioned probability of the st and sw relations, as shown by Table 5.2.

The st temporal relation is more frequent that the sw temporal relation in all three

polyphonic corpora we consider.

Chorales no.40 Chopin
st 65.83% 60.60% 66.39%
sw 34.17% 39.40% 33.61%

Table 5.2: Frame-conditioned probabilities of the st and sw temporal relations

Note that some care is required when working with queries such as P1, P2 and

P3. Queries P1 and P3, for example, will match every st/ov relation twice, once as

the top component matches the first event involved in the relation and once again as

the same component matches the second event. Another issue is how both queries

return only instances of relations formed between different parts. This is so because

two voice variables are used: x and y. In order to get the instances that occur within

a part, we must use a similar query that uses only one voice variable. These issues

and similar issues were properly addressed when producing and analyzing the results

of this chapter and are not discussed in the remainder.

Musical features In addition to exhibiting similar proportions of st/sw temporal

relations, the corpora are very similar in terms of the musical information available.

All corpora were originally encoded in the Humdrum format, and retrieved from the

site www.kern.humdrum.org (Sapp, 2005). Each piece (or movement) was translated

as a collection of events. Each event contains the basic features required for a well-

formed SPP source: onset and offset. In addition, the four musical features of

Figure 5.3 were extracted from the Humdrum encoding. Figure 5.2 illustrates the

encoding scheme on the excerpt of Figure 4.1 (page 60).

Feature name Description Examples
pitch Spelled pitch F4, G♯3, E♭3
key Tonic and mode Cmaj, Amin

duration Duration of an event 2, 1, 1

2

meter Metrical position of an event 0 (strong), 3 (weak).

Table 5.3: Basic features of source encodings

To compare the corpora further, we can formulate queries based on the features

of Table 5.3. For example, the following query will record every metrical level found

in a corpus:
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e8
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e3

e1♯

e4

e9

e7

e5

e2♯

e1 = {pitch : F♯4, duration : 2, meter : 0}soprano

e2 = {pitch : F♯4, duration : 1, meter : 1}soprano

e3 = {pitch : E4, duration : 1, meter : 0}alto

e4 = {pitch : D4, duration : 1, meter : 1}alto

e5 = {duration : 1, meter : 1}alto

e6 = {pitch : A3, duration : 2, meter : 0}tenor

e7 = {pitch : A3, duration : 1, meter : 1}tenor

e8 = {pitch : D3, duration : 2, meter : 0}bass

e9 = {duration : 1, meter : 1}bass
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Figure 5.2: SPP encoding of BWV 304, bar 21. The features of Table 5.3 are
shown, except key : Dmaj, which should appear in every event but was omitted for
readability. The basic features onset and offset shown in Figure 4.1 (page 60) are
also omitted
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Figure 5.3: Frame-conditioned probabilities of metrical levels in Bach chorales, Sym-
phony no.40, Chopin and folk songs

(P4) {meter : X}x

Applying the query to the four corpora and analyzing the results yields Fig-

ure 5.3. The frame query is simply the empty component, i.e. we normalize the

occurences of a particular metrical level by dividing it by the total number of events.

We clearly see, for example, that metrical level 1 (the second strongest level) is used

significatively more in Chopin than in the other corpora. It is salient in Chopin

by comparison to Bach chorales, Symphony no.40 and folk songs. The following

section, Section 5.3, develops similar queries for user-defined features.

5.3 User-defined features

Queries presented in the remainder of this chapter all depend on one or more user-

defined features. These features capture music-theoretical concepts that are reused
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Feature name Description Examples
degree Scale degree 1, 2, 3, . . .

st interval(x) Interval over the st temporal relation m3, P5, A4

sw cons(x) Consonance over the sw temporal relation T, F

m interval Interval over the m temporal relation m3,P5, . . .
m dir Direction of melodic motion =, +, −
m size Size of melodic motion U, S (step), L (leap)

Table 5.4: Examples of user-defined features

in many different queries. Table 5.4 presents the most important features. They are

all defined using feature definition rules. For example, the scale degree feature is

defined directly from the pitch and key of a note:

(R1)
where add

{pitch : P, key : K}∗x degree : scale degree(P, K)

We can easily query the sources for the values of a user-defined feature. For

example, pattern P5 below returns every value of the degree feature. Again, the

frame query is the empty component. Results are shown in Figure F.1 on page 170.

(P5) {degree : X}x

The feature definition rule R1 combines the information from two basic features

to create a new feature degree. Another typical usage of definition rules is to

combine the information from two adjacent events to create a new feature. When a

specific temporal relation is involved, we include it in the name of the feature:

(R2)
where add

{pitch : P1}x ; {pitch : P2}∗x m interval : diatonic interval(P1, P2)

This m interval feature uses compound intervals: for intervals that are bigger

than an octave, the octave is ignored and only the remainder is considered. For

example, the interval of a tenth (an octave plus a third) is classified as a third. Unless

specified otherwise, other interval features in this chapter work the same way. Again,
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e1 = {degree : 3}soprano

e2 = {degree : 3, m dir : =}soprano

e3 = {degree : 2}alto

e4 = {degree : 1, sw cons(soprano) : T,
sw cons(tenor) : T,
sw cons(bass) : T,

m dir : −}alto

e5 = {}alto

e6 = {degree : 5}tenor

e7 = {degree : 5, m dir : =}tenor

e8 = {degree : 1}bass

e9 = {}bass
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Figure 5.4: SPP encoding of BWV 304, bar 21. Only some of the user-defined
features of Table 5.4 are shown. Features shown in figures 4.1 (page 60) and 5.2 are
omitted
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Figure 5.5: Frame-conditioned probabilities of melodic intervals in Bach chorales,
Symphony no.40, Chopin and folk songs. Only intervals occurring over at least 1%
of m temporal relations are considered

we can examine the values of the newly defined feature m interval. This time, the

frame query is a sequence of empty components, i.e. occurrences of melodic intervals

are normalized against the number of m (meet) relations in a corpus. The results

are shown in Figure 5.5. Interestingly, Bach chorales and folk songs contain more

of the small intervals. These intervals are salient properties of these two corpora

when compared with Symphony no.40 and Chopin. This could be explained by

the fact that these corpora are meant to be sung, and these intervals are easier to

sing. Conversely, the piano can easily realize large leaps and it is consequently not

surprising that Chopin contains more of the large melodic intervals.

Computing the interval over the st temporal relation is similar to R2, except

that the where clause contains a layer:

(R3)

where add

{pitch : P1}∗x

{pitch : P1}y
st interval(y) : diatonic interval(P1, P2)
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Pattern Chorales no.40 Chopin Folk songs
Compensated leap 3.99% 3.50% 4.13% 4.26%
I/i chord 21.44% 2.59% 5.60% N/A
Parallel fifth 0.12% 3.07% 10.15% N/A
Suspension 18.88% 3.03% 2.28% N/A
Counterpoint 65.74% 10.23% 2.33% N/A

Table 5.5: Frame-conditioned probabilities of the main polyphonic patterns analyzed
in this chapter

Other temporal relations are accommodated in the same fashion. Figure 5.4

illustrates how the source of Figure 5.2 is extended with new features after applying

feature definition rules.

Again, we can examine the values of the newly defined feature st interval.

The frame query is P1, a layer of empty components, i.e. occurences of harmonic

intervals over st are normalized against the total number of st relations in a corpus.

The results are shown in Figure F.2 on page 171.

5.4 Queries

Once the appropriate musical concepts are captured with user-defined features, a

musicological query is expressed as an SPP pattern. The central queries of this

chapter are shown in Table 5.6 on page 87. Their frame-conditioned probabilities

are shown in Table 5.5.

The first pattern of Table 5.1 captures a melodic sequence consisting of a com-

pensated leap: the melodic motion of a leap up followed by a step down. The pattern

illustrates how the sequencing operator of SPP is used to query the melodic content

of a musical source. It occurs with roughly the same probability in every corpus we

consider, i.e. it is not a salient property of any of the corpus under examination.

The pattern is further motivated and analyzed in Section 5.4.1.

The second pattern of Table 5.6 illustrates the use of layers in queries. By using

scale degree, it captures the idea of a I/i block chord : notes that sound the scale

degrees 1,3 and 5 simultaneously (the pattern is a special case where the first scale

degree appears in two voices). The chord plays a central role in harmony, where it is

considered to be the most stable and restful (an explanation of why pieces frequently
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end on that chord). The frame-conditioned probability of the I/i chord is computed

by comparing its occurrences with the total number of four-note layers. The second

line of Table 5.5 shows that this central chord is salient in Bach Chorales when

compared to Symphony no.40 and Chopin. This could be explained by the fact that

Symphony no.40 and Chopin use significantly more combinations of scale degrees in

block chords, which lowers the probabilities of any specific combination such as the

1,3,5 combination of the I/i chord. This pattern is further elaborated and analyzed

in Section 5.4.2.
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Compensated leap {}x ; {m size : L, m dir : +}x ; {m size : S, m dir : −}x

I/i chord

{degree : 5}z

{degree : 3}y

{degree : 1}x

{degree : 1}w

Parallel fifth
−{et interval(y) : P5}x

−{}y
;
{st interval(y) : P5, parallel(y) : T}x

{}y

Suspension
−{}x

−{}y
;

{sw cons(y) : T, m size : S, m dir : −}x

−{sw cons(x) : F, accented : T}y

Counterpoint {strong(y) : T}x ; {weak(y) : T}x

{}y
;
{strong(y) : T}x ; {weak(y) : T}x

{}y

Table 5.6: The polyphonic patterns of this chapter expressed in SPP
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The third and fourth patterns of Table 5.6 illustrate sequences of layers. The

parallel fifth pattern is an illustration of how combining two onset modification

operators “−” in the same layer expresses the ov (overlap) temporal relation. The

suspension pattern illustrates how to represent an sw temporal relation by using

only one “−” in a layer. These patterns are discussed in detail in sections 5.4.3 and

5.4.4. As Table 5.5 illustrates, the suspension pattern is salient in Bach chorales by

comparison to Symphony no.40 and Chopin. Conversely, the parallel fifth pattern

is more probable in Symphony no.40 and Chopin by comparison to Bach chorales.

This could be explained by the fact that Bach chorales are representative of a style

where parts consist of independent melodies. The parallel fifth pattern is considered

to impair part independence and has a low frame-conditioned probability in Bach

chorales. The suspension pattern, on the other hand, is considered to improve

part independence and has a high frame-conditioned probability in the chorales.

In the other corpora, a higher probability of parallel fifths and a lower probability

of suspensions is indicative of a texture where there are fewer melodies and more

accompaniment material.

Finally, the last pattern of Table 5.5 illustrates a free mixture of the sequencing

and layering operators. It captures some of the rules of second species counter-

point (Fux, 1965, orig. 1725), where two melodies overlap in a two notes against one

fashion: two notes unfold in one melody while a single note is unfolding in the other

melody. Again, the pattern is salient in Bach chorales when compared to Symphony

no.40 and Chopin, as shown in Table 5.5. This could also be indicative that Bach

chorales exhibit a texture in which parts contain independent melodies. The pattern

is further discussed in Section 5.4.5.

5.4.1 Compensated leap

In SPP, a melodic pattern such as the compensated leap pattern consists of a

sequence of components. In principle, a sequence of components matches any se-

quence of musical events that satisfy a chain of m temporal relations. Certainly, not

every sequence would be considered a musically satisfactory melody. Music theory

textbooks such as Piston (1949) do not attempt to define strict rules for the iden-

tification or composition of melodies. They do however discuss common properties

of melodies. We consider two such properties here, both captured as SPP features:

i) m dir: the direction of melodic motion (whether a note has a higher pitch than

its predecessor) and ii) m size: the size of melodic motion (whether there is a large
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pitch difference between successive notes). The first one is captured by the following

feature definition rule:

(R4)

where add

{pitch : P1}x ; {pitch : P2}∗x m dir : if P2 > P1 : +

else if P2 < P1 : −

else : =

The operator < is given a meaning on spelled pitches by mapping the pitches to

natural numbers. For example, C4 is mapped to 60, C♯4 and D♭4 are mapped to 61,

D4 is mapped to 62, etc.

The second feature, m size is defined by reusing another user-defined feature:

m interval nc, the interval between successive notes.

(R5)

where add

{m interval nc : I}∗x m size : if I < m2 : U

else if I < m3 : S

else : L

The m interval nc feature is the non-compound version of m interval: intervals

bigger than the octave are not represented in their compound form, e.g. a perfect

eleventh (the interval obtained by adding an octave and a fourth) is represented as

P11 and not as P4. It is necessary to use m interval nc rather than m interval in

order to not confuse intervals bigger than the octave with a step. We say that there

is no melodic motion if the interval is strictly smaller than a minor second (e.g. the

diminished second or the unison). This is the first case above, where the value is U

(for unison). We say that the melodic motion is a step if the interval is smaller than

a minor third (e.g. a minor or major second). This is the second case above, where

the value if S. Finally, intervals bigger than a second are classified as a leap or L.

Again, the operator > is given a meaning on diatonic intervals by mapping

the intervals to natural numbers. For example, the unison P1 is mapped to 0, a

major second M2 is mapped to 2, a major third M3 is mapped to 4, and so on

(these values correspond to semitone distances, see Appendix A). The value of

minor and diminished intervals are computed by subtracting 1 or 2 to the value of

the corresponding major interval. Finally, if an interval has a negative value (e.g.
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(S1, D1) (S2, D2) Chorales no.40 Chopin Folk songs
(S,−) (S,−) 17.07% 5.43% 1.34% 11.55%
(S,+) (S,+) 13.07% 3.05% 1.08% 6.19%
(S,−) (S,+) 8.04% 3.66% 1.06% 5.13%
(L,+) (S,−) 4.00% 3.44% 3.42% 4.26%

Table 5.7: The three most frequent melodic sequences in Bach chorales and their
respective frame-conditioned probabilities. The frame-conditioned probability of the
compensated leap pattern is also presented

d1 = −1), we use the absolute value.

The frame query for the compensated leap pattern is as follows:

(P6) {}x ; {m size : S1, m dir : D1}x ; {m size : S2, m dir : D2}x

The frame query simply replaces every feature value with a value variable. This

ensures a basic resemblance with the original pattern, hence returning positions in

the corpus where the pattern might have occurred. In this case, it ensures that

the frame query returns instances where there is melodic motion. Using empty

components would also return sequences containing rests, which are clearly positions

where the compensated leap pattern cannot occur. In the remainder of this chapter,

frame queries are all constructed in the same fashion, by replacing feature values by

feature variables.

Typically, melodies are expected to employ more steps than leaps. Using the

frame query P6, we can test this idea. By looking at three note sequences where the

last two notes both contain an m dir feature and an m size feature, we get a list of

all pairs of melodic motion. Table 5.7 shows the three most frequent pairs in Bach

chorales, along with their frame-conditioned probabilities in Symphony no.40 and

Chopin. Indeed, we see that pairs where only steps are used are more frequent. When

a leap occurs, it is most frequently upwards and followed by a step downwards. This

is exactly what the compensated leap pattern captures. Figure 5.6 shows examples

of compensated leap in Bach chorales.

Using the same query, we can also show that compensated leaps are not sig-

nificantly more frequent than other kinds of leaps. This is shown in Table F.1 on

page 171.
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Figure 5.6: Examples of compensated leaps: a) BWV 273 bar 5 in the soprano voice;
b) BWV 349 bar 13 in the alto voice; c) BWV 297 bar 3 in the tenor voice; and d)
BWV 277 bar 1 in the bass voice. The excerpts are shown in piano-roll notation in
figures a) F.3 on page 173; b) F.4 on page 174; c) F.5 on page 175; and d) F.6 on
page 176

5.4.2 Block chord

In SPP, a block chord pattern consists of a layer of components. It matches events

that overlap in time and satisfy the st temporal relation. There are many ways

to describe and classify chords. This usually forms the introductory material of

harmony textbooks such as Piston (1941). One way to proceed is to look at the

scale degrees that form the chord. In SPP, this can be achieved through the frame

query of the I/i block chord pattern, which is as follows:

(P7)

{degree : Z}z

{degree : Y}y

{degree : X}x

{degree : W}w

The pattern P7 simply matches all cases when four distinct parts exhibit simul-

taneous notes. This includes cases where a scale degree is repeated, for example a

chord where the third scale degree appears in two voices. Table 5.8 shows the result

of running such a query on the three polyphonic corpora we consider. The results are

post-processed in two ways: i) only the scale degrees are recorded (the exact variable
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Scale degrees Chorales no.40 Chopin
1 3 5 21.44% 2.59% 5.60%
3 5 7 7.73% 0.71% 0.71%
2 5 7 7.66% 0.32% 1.57%
1 2 4 6 1.76% 0.16% 0.11%
1 2 3 5 1.11% 0.49% 0.08%

Table 5.8: The three most frequent four-part chords that use three scale degrees, as
found in Bach chorales, and their frame-conditioned probabilities. Also, the two most
frequent four-part chords that use four scale degrees and their frame-conditioned
probabilities

assignments are ignored); and ii) the repetitions of scale degrees are ignored (e.g.

the chord 1,1,3,5 is mapped to 1,3,5). The difference in frame-conditioned prob-

ability can be explained in part by the number of chords that each corpora uses.

Bach chorales use 286 different block chords, while Symphony no.40 and Chopin

use respectively 1460 and 1299 distinct chords. Finally, note that four-part chords

that use only two scale degrees are also present in the results (data not shown in

Table 5.8), e.g. a chord where only the first and third scale degree appear has a

frame-conditioned probability of 0.65% in the Chorales, 2.70% in Symphony no.40

and 0.70% in Chopin.

The I/i block chord pattern introduced earlier is a special case of P7 as it only

matches cases where the first scale degree is repeated. Examples of I/i block chords

in the chorales are shown in Figure 5.7. Notice how the scale degrees do not always

appear in the same order. For example, in excerpt a) the scale degree 1 appears in

the bass and tenor voices while it appears in the bass and alto voices in excerpt b).

This illustrates how a layer in SPP can match different permutations of a source

voices. Different permutations create different intervals between the notes of the

block chord and this is a second way to describe different chords.

The alternative description of chords is invariant over transposition: the chord

may be translated up and down in the pitch dimension, and the intervals between

the constituent notes stay the same. By using the st interval feature rather than

a scale degree feature, we can query the sources for this alternative description of

chords:
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Figure 5.7: Examples of blocked I/i chords: a) BWV 292 bar 1; b) BWV 335 bar 4;
c) BWV 415 bar 1; and d) BWV 438 bar 8. The excerpts are shown in piano-roll
notation in figures a) F.7 on page 177; b) F.8 on page 178; c) F.9 on page 179; and
d) F.10 on page 180

(P8)

{st interval(y) : Y}z

{st interval(x) : X}y

{st interval(w) : W}x

{}w

This records the interval between the different parts appearing in the chord. We

can also look at the intervals from a single part to all other parts using the same

features and a single component:

(P9) {st interval(x) : X, st interval(y) : Y, st interval(z) : Z}w

Assuming part w of P9 is the lowest note of the chord, the two most frequent

chords in Bach chorales are formed by the intervals (P1, M3, P5) and (P1, m3, P5).

These respectively correspond to the major chord and minor chord in a specific

configuration where the root of the chord appears twice: once as the lowest note

and once through the interval P1 (with the lowest note). In this configuration, the

major chord forms 5.18% of all four-part block chords in the chorales as shown

by Table 5.9. The table also shows the most frequent permutations of this chord.
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Chord Chorales no.40 Chopin
Major 5.19% 0.25% 0.18%
P5,P4,M3 25.51% 18.48% 16.56%
M3,m3,P4 20.92% 13.86% 15.00%
P1,M3,m3 19.23% 27.60% 28.40%

Table 5.9: Major chord with the root as the lowest note and its frame-conditioned
probability with respect to all block chords. The following lines show the three
most frequent permutations and their frame-conditioned probabilities with respect
to other possible permutations

These are obtained by executing query P8 and looking at intervals between parts.

For example, the most frequent permutation has the fifth occurring first (between w

and x), then the octave (between w and y, which is equivalent to fourth between y

and x as shown in the table) and finally the major third (between w and z).

Using queries P8 and P9, a similar analysis can easily be performed for other

types of chords. For example, Table F.2 on page 172 shows the result for the minor

chord with its root as the lowest note.

Note that our analysis of queries P8 and P9 is based on post-processing of SPP

pattern matching results. In particular, the possible permutations of the major chord

shown in Table 5.9 are not isolated directly in SPP but rather with a specialized

post-processing script. We employed a similar strategy to isolate the lowest note of

a block chord. However, it would be possible to use a SPP feature for this purpose,

for example a feature that is true only when the note belongs to a four-part layer

and has a smaller pitch than the pitches of the other three notes of the layer.

5.4.3 Parallel fifth

In SPP, a pattern describing how melodies interact with each other can be specified

as a sequence of layers. The onset modification operator “−” can be used to specify

the temporal relations between the notes of the melodies. Features are used, for

example, to specify how the notes relate in terms of pitch. Music textbooks contain

comments on how two melodies should and should not interact. This section de-

scribes the parallel fifth pattern, a polyphonic interaction that is considered as best

avoided when melodies are meant to be independent.

A parallel fifth occurs when two melodies are separated by a perfect fifth and

exhibit the same melodic motion. In the parallel fifth pattern shown in Table 5.6,
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the interval of a fifth is captured respectively by an et interval feature and an

st interval feature. The first feature encodes intervals between notes that end

together, a temporal relation that SPP feature definition rules can also accommo-

date. By having such an et temporal relation directly followed by an st temporal

relation, we make sure there is no intervening intervals between the two fifths. To

capture parallel motion, we define the following feature:

(R6)

where

{et interval nc(y) : I1}x ; {st interval nc(y) : I2, m size : S}∗x

add

parallel(y) : if I1 = I2 ∧ S 6= U : T

else : F

The definition above enforces the fact the there is melodic motion and that the

same interval is repeated. We use the features et interval nc and st interval nc

to avoid considering the repetition of a large and a small interval as parallel motion.

If the features et interval and st interval were to be used here, the sequence

where a fifth follows a twelfth (an octave plus a fifth) would wrongly be classified as

parallel motion.

Note that a duplicate parallel motion feature is used for Chopin. The issue is

that the Chopin corpus exhibits a single part. By virtue of having two voice variables

(matching two distinct parts), the parallel motion feature above cannot be applied

to pieces of the Chopin corpus. As discussed in Section 5.2, the generic solution to

that problem is to use a duplicate SPP pattern that exhibits a single voice variable.

Regarding parallel motion, there is a loss of precision however, as the melodic interval

of a step enforced by the second component of R6 can now refer to any preceding

note and not necessarily the note that forms the first harmonic interval. The result

is feature that over-estimates the occurrences of parallel motion: the feature still

records parallel harmonic intervals, but it is now unclear if these occur over melodic

motion. A similar strategy is used for the suspension and counterpoint patterns

discussed in the following sections, with a similar precision issue. Retaining precision

in the Chopin corpus would require the identification of dynamically changing voices

within a single part as discussed in Section 7.2.

Figure 5.8 shows the only five parallel fifths found in Bach chorales. These results

95



CHAPTER 5. MUSICOLOGICAL QUERIES IN SPP

a)

 

� � �

� � �
�
���

�
�

��
��
�

�
�
�
�
�

�

�

� �
�


b)

 

� � �

� � �
���

�
�
��
�
�
��

��
��

�
�
��

c)

 

�����
�����
��
�� �

��
��

d)

 

�
�

��
�
�

� ��� �
� ��� �

�
�
����

�� ��
�
���

��
�
�

e)

 �
�

�
��

� �� �
� �� �

�
�
����

�� ��
��
�
�

��

�

Figure 5.8: Examples of parallel fifths: a) BWV 263 bar 6; b) BWV 301 bar 3; c)
BWV 323 bar 8; d) BWV 355 bar 15; and e) BWV 361 bar 12. The excerpts are
shown in piano-roll notation in figures a) F.11 on page 181; b) F.12 on page 182;
c) F.13 on page 183; d) F.14 on page 184; and e) F.15 on page 185

are consistent with the results of Fitsioris and Conklin (2008).

We can generalize the parallel fifth query and look for any parallel interval:

(P10)

−a

−b
;
c

d

a = {et interval(y) : I}x

b = {}y

c = {st interval(y) : I, parallel(y) : T}x

d = {}y

The results are as follows: parallel fifths and octaves (unisons) are very rare in

Bach chorales, while parallel minor thirds and major sixths are the most frequent.

This is shown in Table 5.10. The constrast with Symphony no.40 and Chopin is also

interesting. As one might expect, parallel fifths and octaves are not avoided in these
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Interval Chorales no.40 Chopin
m3 42.24% 6.33% 14.70%
M6 20.81% 5.27% 12.67%
P4 14.89% 3.83% 11.06%
P5 0.12% 3.07% 10.15%
P1 0.12% 35.35% 20.56%
d5 0.02% 0.78% 2.45%

Table 5.10: Most and least frequent parallel intervals and their frame-conditioned
probabilities

corpora and, on the contrary, are salient by comparison to Bach chorales. This is

probably due to a strong presence of accompaniment material in these corpora, e.g.

sequences of chords.

5.4.4 Suspension

The suspension pattern is similar in structure to the parallel fifth pattern of Sec-

tion 5.4.3. It concerns two melodies and how they interact. As such it is expressed in

SPP as a sequence of layers. Contrary to the parallel fifth pattern, the suspension

is commonly used to make two melodies more independent. Another difference with

the parallel fifth pattern is that it does not refer to a particular interval. Instead,

two classes of intervals are used: consonant intervals and dissonant intervals. The

former are considered stable (or restful) and the latter unstable. In SPP, this is

defined as follows:

(R7)

where add

{sw interval(y) : I}x sw cons(y) :

if I ∈ {P1,m3,M3,P5,m6,M6}

then T

else F

The rule is a simple transformation that classifies some intervals as consonances:

unison, minor and major thirds, perfect fifths and minor and major sixths. Other

intervals are classified as dissonant. When a dissonance appears, it is often said to

be approached in a particular way. When a dissonance is replaced by a consonance,

it is said to be resolved. The suspension pattern is one of many ways to approach

and resolve a dissonance in a polyphonic texture. The key for a suspension is that
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Figure 5.9: Examples of suspensions: a) BWV 259 bar 8; b) BWV 390 bar 12; c)
BWV 393 bar 7; and d) BWV 285 bar 1. The excerpts are shown in piano-roll
notation in figures a) F.16 on page 186; b) F.17 on page 187; c) F.18 on page 188;
and d) F.19 on page 189

Intervals Chorales no.40 Chopin
M2 m3 29.05% 10.00% 1.99%
P4 M3 15.32% 13.33% 7.07%
P4 P5 11.62% 3.33% 6.19%

Table 5.11: Most frequent suspensions in Bach chorales and their frame-conditioned
probabilities

the dissonance is both introduced and resolved through an sw temporal relation.

Figure 5.9 shows examples of suspension in Bach chorales.

Pattern P11 below generalizes the suspension pattern and look for the exact

intervals that form the dissonance and its resolution to a consonance. Results are

shown in Table 5.4.4.

(P11)

−a

−b
;

c

−d

a = {}x

b = {}y

c = {sw interval(y) : I2, m size : S, m dir : −}x

d = {sw interval(x) : I1, accented : T}y
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Most other ways of approaching and resolving a dissonance do not exhibit the sw

temporal relation as the suspension does. Rather, they can be described with the

st temporal relation and the et (end together) temporal relation. We can represent

these additional ways as an SPP sequence:

(P12)

a ; b ; c

a = {}x

b = {et cons(y) : F, m size : S1, m dir : D1, accented : A}x

c = {st cons(y) : T, m size : S2, m dir : D2}x

Explicitly, the sequence encodes a single melody. We use features to encode the

temporal relations that are formed with the second melody. The voice variable y

above refers to that second melody.

By setting different values for the variable representing melodic motion and size

in the pattern P12 above, we can query the sources for many types of polyphonic

embellishments (Huron, 2007): for example, passing tone, neighbor tone, and ap-

pogiatura. The feature accented simply refers to the metrical level of b (the note

that introduces the dissonance): if it is stronger than the metrical level of c (the

note that resolves the dissonance), we say the embellishment is accented. Figure 5.10

shows examples of accented and unaccented passing tones in Bach chorales.

For completeness, Table F.3 on page 172 gives a list of all other embellishments

we analyzed using query P12.

5.4.5 Counterpoint

The patterns of sections 5.4.3 and 5.4.4 concern the case where melodies interact

in a note against note fashion. Other cases can be captured in SPP as well, by

using a free mixture of the sequencing and layering operators. The last pattern

of Table 5.6 (page 87) illustrates the case where melodies interact in a two notes

against one fashion: two notes unfold in the first melody while only one note is

unfolding in the second melody. The first note is said to be in the strong position.

It forms an st temporal relation and, according to the rules of counterpoint, it has

to form a consonance. The second note is said to be in the weak position. It forms

an sw temporal relation and it can form a dissonance only if it acts as a passing tone

between two strong notes. Otherwise, it has to form a consonance. By following

counterpoint treatises such as Fux (1965, orig. 1725), one can formulate many rules
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Figure 5.10: Examples of passing tones: a) BWV 253 bar 4; b) BWV 395 bar 9;
c) BWV 262 bar 2; and d) BWV 436 bar 1. The excerpts are shown in piano-roll
notation in figures a) F.20 on page 190; b) F.21 on page 191; c) F.22 on page 192;
and d) F.23 on page 193

to describe what should and should not occur in the strong and weak positions. For

example, the strong position should not form a parallel fifth or a parallel octave

with the second melody. To capture this, we can reuse the generalized parallel fifth

pattern P10 of Section 5.4.3. We transform the pattern into a feature definition rule

as follows:

(R8)

where

{et interval(y) : I}x ; {st interval(y) : I, parallel(y) : P}∗x

add

par1 5(y) : if (I = P1 ∨ I = P5) ∧ P = T : T

else : F

Using the par1 5 feature, we can define a strong feature to capture acceptable

strong positions:
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(R9)

where add

{st cons(y) : C, par1 5(y) : P}∗x strong(y) : if C = T ∧ P = F : T

else : F

Weak positions can act as passing tones. To encode such a rule, we reuse the

polyphonic embellishment pattern P12 of Section 5.4.4. Again, it is transformed

into a feature:

(R10)

where

a ; b∗ ; c

a = {}x

b = {et cons(y) : C1, m size : S1, m dir : D1}x

c = {st cons(y) : C2, m size : S2, m dir : D2}x

add

passing(y) : if C1 = F ∧ C2 = T ∧ S1 = S

∧ S2 = S ∧ D1 = D2 : T

else : F

Using this passing feature, we can define a feature weak to capture the accept-

able weak positions.

(R11)

where add

{st cons(y) : C, passing(y) : P}∗x weak(y) : if C = T ∨ P = T : T

else : F

Equipped with the features strong and weak and the structure shown in Table 5.6

(page 87), we capture some basic rules of counterpoint. Figure 5.11 shows some

examples from Bach chorales.

More rules could be added following Fux (1965, orig. 1725), simply by defining

more features. Another interesting query consists of adding a third part. This is

easy to achieve in SPP by keeping the same features and extending structure:
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Figure 5.11: Examples of two-voice counterpoint patterns: a) BWV 277 bar 3; b)
BWV 285 bar 9; c) BWV 380 bar 3; and d) BWV 418 bar 7. The excerpts are shown
in piano-roll notation in figures a) F.24 on page 194; b) F.25 on page 195; c) F.26
on page 196; and d) F.27 on page 197

(P13)

a ; b

a′ ; b′

c

;
d ; e

d′ ; e′

f

a, d = {strong(y) : T}x a′, d′ = {strong(y) : T}w

b, e = {weak(y) : T}x b′, e′ = {weak(y) : T}w

c, f = {}y

Figure 5.12 shows examples of the three-voice case from Bach chorales.
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Figure 5.12: Examples of three-voice counterpoint patterns: a) BWV 374 bar 7; and
b) BWV 398 bar 11. The excerpts are shown in piano-roll notation in figures a) F.28
on page 198; and b) F.29 on page 199
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5.5 Summary

This chapter explored many different applications of the SPP method. We showed

that it is well-suited to capture musical knowledge and patterns, especially those

which are associated with n-part polyphony. The queries developed in this chapter

were also applied to musical sources of other genres and textures, demonstrating

the versatility of the method. The chapter shows how different SPP structures

correspond well to different musical concepts. Also, we showed how queries can be

built in a modular way, by expanding on previously defined features and patterns.

It is also easy to expend a query by adding a feature or new components. The

next chapter focuses on the expressiveness of SPP in terms of temporal relations

and provides a thorough comparison with relational patterns and Humdrum. Then,

Chapter 7 discusses further properties of the method such as efficiency and suitability

for data mining.
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Chapter 6

The expressiveness of polyphonic

patterns

This chapter compares the expressiveness of three polyphonic pattern

languages: relational patterns, Humdrum, and SPP. The comparison

is restricted to the temporal aspect of patterns. The result is a hierar-

chy of languages, with relational patterns strictly subsuming Humdrum

and SPP. In addition, we define a fourth language that characterizes

the intersection of Humdrum and SPP. This language, SPPseq, is a

restriction of SPP where a sequence is never embedded in a layer (a

pattern is always structured as a sequence of layers). Both the parallel

fifth and suspension patterns are expressible in this restricted SPPseq.

This suggests that it is a good candidate pattern language to use for

polyphonic music data mining.

6.1 A hierarchy of polyphonic pattern languages

This chapter establishes the hierarchy shown in Figure 6.1. Four pattern languages

are compared: R, H, SPP, and SPPseq. The languages R and H respectively

correspond to interpretations of relational patterns and Humdrum that focus on the

temporal aspect only. Similarly, this chapter considers only the temporal aspect of

SPP and its restriction SPPseq. We focus on these temporal patterns (Bergeron

and Conklin, 2009) as they show how the approaches differ. In terms of musical

relations, the approaches are nearly equivalent, with the exception that SPP encodes
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Suspension
Parallel fifth

Embellished

tritone resolution

Layered

passing tones

Dislocated chord

SPPseq

SPPH

R

Figure 6.1: A hierarchy of polyphonic pattern languages

musical relations as features (this is discussed further in Chapter 7).

The methodology used to obtain the hierarchy of Figure 6.1 is threefold. First,

we developed a baseline notation for the representation of temporal patterns. Then,

all languages are interpreted with respect to that baseline notation. Finally, we

provide example patterns that distinguish the many languages, e.g. the layered

passing tones pattern is expressible in SPP but not in H. This enables us to assert

the various statements expressed by the hierarchy: i) that R subsumes both H and

SPP (Section 6.5.1), ii) that H does not subsume SPP (Section 6.5.2), iii) that

SPP does not subsume H (Section 6.5.3), iv) and finally that both H and SPP

subsume SPPseq (Section 6.5.4).

The baseline notation depends on the four temporal relations introduced in this

dissertation: m (meet), st (start together), sw (start while), and ov (overlap). A

temporal pattern can be written as a network of these temporal relations or temporal

network . Nodes in the network are component indices a, b, c, . . . and have the same

meaning as in Chapter 4: unique identifiers for the components of a pattern. A

pattern component matches a musical event, either a note or a rest.

Figure 6.2 presents the temporal networks corresponding to the examples of

Figure 6.1. Consider for example the parallel fifth pattern (Figure 6.2b). It uses

four component indices and hence matches four events. The network stipulates that

events a and c must overlap in time while events b and d must start together. In

addition, events a, b and c, d must respectively meet. Nothing else is specified by the

pattern, in particular no musical relations are specified. Throughout this chapter,

we nonetheless discuss temporal patterns as having musical meaning, and provide

musical illustrations.

Even with the simple patterns of Figure 6.2, we can establish that the four pattern
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Figure 6.2: Temporal networks for the following patterns: a) dislocated chord, b)
parallel fifth, c) suspension, d) layered passing tones, and e) tritone resolution. The
network d) can be expressed in SPP but not in H. The network e) can be expressed
in H but not in SPP

languages analyzed in this chapter do not possess the same expressiveness. This is

mainly done by showing that one language can express some pattern that another

cannot. In addition, the examples are useful to understand how the languages differ.

The first example, Figure 6.2a, is called a dislocated chord pattern. It could

capture notes that overlap with the root of a chord without necessarily overlapping

with one another. Figure 6.3 shows two instances of this pattern. In both cases, the

note in the bass voice corresponds to a. The temporal network does not differentiate

the order in which the other notes sound: in the first case they mostly form a layer,

but in the second case none of the notes start at the same time. This pattern cannot

be represented in H or SPP. In both cases, the only way to specify that events

overlap is to place all the events in a layer. But then, every event overlaps with every

event in the layer. This would not capture either case of Figure 6.3, for example in

the second case the C in the tenor voice (note b) does not overlap with the F♯ in the

alto voice (note d).

The two following temporal networks, Figure 6.2b and Figure 6.2c, correspond

to the parallel fifth and suspension patterns. As discussed in Chapter 5, these are

expressed as a sequence of two layers. The first layer expresses the ov temporal

relation between a and c. The second layer expresses the st/sw temporal relation

between b and d. The sequencing of these layers expresses the m temporal relations

between a,b and c, d. These networks are hence expressible in SPPseq, the restric-

tion of SPP where a layer never contains a sequence. The temporal relation sw(d, a)

is shown with a dash line as it is implicit in the network: it can be inferred from
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Figure 6.3: Examples of dislocated V7 chords: a) BWV 285 bar 15; and b) BWV 318
bar 13. The excerpts are shown in piano-roll notation in figures a) F.30 on page 200;
and b) F.31 on page 201

the other temporal relations of the network. We say that the network without the

implicit relation is equivalent to the network that possesses it.

The fourth temporal network, Figure 6.2d, represents a layered passing tones

pattern. It consists of two sequences: a,b,f and c,d,e. With the appropriate mu-

sical relations, each sequence could capture a passing tone pattern as described in

Chapter 5. Figure 6.4 shows instances of the pattern. According to the temporal

network, the first notes of the sequence a,c start together, as do the last notes f ,e.

However, the intermediary notes b,d do not form a temporal relation. They start

together in the first instance of Figure 6.4, but this is not the case in the second in-

stance. This can be captured in SPP using layered sequences, where the beginning

of the sequences have to start together but the remainder of the sequence unfold

independently. In H, however, this is impossible to represent. A pattern with over-

lapping sequences has to express temporal relations between the components of the

sequence.
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Figure 6.4: Examples of layered passing tones: a) BWV 255 bar 2; and b) BWV 320
bar 19. The excerpts are shown in piano-roll notation in figures a) F.32 on page 202;
and b) F.33 on page 203

The fifth temporal network illustrates how in Humdrum one can use regular

expressions to indifferently match either the start of an event or the continuation of
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Figure 6.5: Examples of embellished tritone resolutions: a) BWV 257 bar 2; and b)
BWV 315 bar 13. The excerpts are shown in piano-roll notation in figures a) F.34
on page 204; and b) F.35 on page 205

an event. In the temporal restriction H, this is captured by a special “don’t care”

symbol ⋆. Using such a symbol, one can specify a “gaped” sequence, where the

relation between some component in the sequence and its successor is not specified.

Figure 6.2 e) can be read as layered sequences. The m temporal relation appears in

the upper sequence, but is absent from the lower sequence. The result is that an

intervening note could appear between c and d in the lower sequence and the pattern

would still match. With the appropriate musical relations, this could represent an

embellished tritone resolution pattern, when the interval of a tritone resolves to the

interval of a third, with a facultative embellishment. The instances of Figure 6.5

show how the pattern matches with and without this embellishment.

This cannot be expressed in SPP. There is a mechanism to express gaped

sequences in SPP, using a sequence of layers where the size of layers varies. As a

result, some of the components do not align with preceding or following components,

and this creates gaps. This is however less flexible than H “don’t care” symbol and

does not apply in cases where the layers are of the same size. In that case, every

component of the layer is aligned with a predecessor. This is the case of Figure 6.2e.

The m relation between c and d would have to be specified in SPP.

The remainder of this chapter develops the arguments presented here more for-

mally.

6.2 Relational patterns R

When restricted to express only temporal relations, the relational pattern language

presented in Chapter 3 can be defined as follows.

108



CHAPTER 6. THE EXPRESSIVENESS OF POLYPHONIC PATTERNS

Definition 17 A relational pattern r ∈ R is defined as a set of temporal relations

ω expressed over component indices ǫ:

r ::= ω, . . . , ω with ω ::= m(ǫ, ǫ)

| ov(ǫ, ǫ)

| st(ǫ, ǫ)

| sw(ǫ, ǫ)

This is equivalent to the baseline representation of temporal networks. This

explains that R subsumes all other languages discussed in Figure 6.1.

6.3 From Humdrum to H

As described in Chapter 3, a Humdrum pattern is a list of regular expressions.

Typically, such regular expressions are designed to match multiple columns. The

initial columns match event tokens and the remaining columns match properties of

these events, for example encodings of the musical relations they form. An event

token is either the beginning of an event or the continuation of an event. In addition,

the regular expression can formulate a special “don’t care” option that matches any

token. When ignoring the musical relations, a Humdrum pattern can be construed

as a matrix, where lines are layers containing events and continuations of events,

and columns are sequences.

Definition 18 A pattern h ∈ H is defined as a matrix where every position hij

is a token of the form:

hij ::= ǫ

| (ǫ)

| ⋆

A token of the form ǫ matches the beginning of an event. A token of the form (ǫ)

matches the continuation of an event. The token ⋆ is the special “don’t care” symbol

that matches in any circumstance. For example, the suspension pattern presented in

Chapter 3 can be expressed as the following matrix, where only the temporal aspect

is considered:
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(E10)

[
d (a)

(d) b

]

Notice how only three events are present. This is slightly different from the SPP

suspension pattern that uses four notes.

6.3.1 Well-formedness

Not every pattern in H is consistent with the Humdrum patterns as described above.

To make sure that every matrix can be interpreted as a Humdrum pattern, we impose

the following well-formedness constraints.

Definition 19 A pattern h ∈ H is well-formed if it satisfies the following con-

straints:

• Except for the first line, a continuation (ǫ) may only occur if it follows the

start of event ǫ, either directly or after a sequence of continuations (ǫ).

• A component index ǫ may only occur more than once if it is part of a sequence

of continuations.

• Except for the first line, there is no line that contains only continuation sym-

bols.

The first constraint simply enforces that continuation symbols are used in con-

text, with the event being continued clearly identified. We make an exception for

the first line: if the pattern starts with the continuation of an event, the beginning

cannot be identified. The second constraint ensures that a component index always

denotes a single component. The third constraint forbids lines that do not add any

information to the pattern. As continuation symbols are used in context, a line that

contains only continuations does not add more information than the preceding lines.

Again, we make an exception for the first line, as the context is not available. For

example, the patterns below are not well-formed:
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(E11)




a b

c (d)

(c) (d)








a b

(a) c

d b





In the first example above, the continuation token (d) is not preceded by the

beginning of d. Also, there is a line containing only continuation tokens. That

line implies that c and d overlap. Clearly, this does not make the pattern anymore

precise, as the preceding line already implies that c starts while d is unfolding. The

second case of example E11 is not well-formed as the token b appears twice. This

suggests that the event b starts twice, at different times, which cannot be given a

reasonable interpretation.

6.3.2 Interpretation

The interpretation of a pattern in H is relatively simple. It consists of looking

at pairs of tokens and how they form temporal relations. Tokens that follow one

another express the m temporal relation. Tokens that are on the same line specify

either st, sw or ov depending on the combination of continuation markers.

Definition 20 A pattern h ∈ H is interpreted as follows with respect to the

temporal relations it enforces:

• For any two tokens hij , hik on the same line, the interpretation is as follows:

ǫ1 ǫ2 form the relation st(ǫ1, ǫ2)

ǫ1 (ǫ2) form the relation sw(ǫ1, ǫ2)

(ǫ1) ǫ2 form the relation sw(ǫ2, ǫ1)

(ǫ1) (ǫ2) form the relation ov(ǫ1, ǫ2)

• For any two tokens hij , hi+1j in the same column and successive lines, the

interpretation is as follows:

ǫ1

ǫ2
form the relation m(ǫ1, ǫ2)

(ǫ1)

ǫ2
form the relation m(ǫ1, ǫ2)
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• Any other pair does not form a relation. In particular, the “don’t care” token

⋆ never forms a relation.

For example, the suspension pattern is interpreted as follows:

(E12)

[
d (a)

(d) b

]
; sw(d, a), sw(b, d),

m(a, b)

6.4 SPP and SPPseq

The interpretation of SPP in terms of temporal networks is straightforward. It suf-

fices to apply the definitions of Chapter 4, while considering only the statements that

concern temporal relations. In addition, we define the language SPPseq, a restric-

tion of SPP where a layer never contains a sequence. The restriction intentionally

excludes patterns that are not expressible in H. This yields a way to characterize

the intersection between SPP and H. The restriction is defined syntactically:

Definition 21

An SPPseq pattern ϕ is defined according to the following syntax:

ϕ ::= ψ

| ϕ ; ψ

with ψ ::= ǫ

| −ǫ

|
ψ

ψ

In addition, the pattern must satisfy the following constraint: except for the first

layer, a layer contains at most one component of the form −ǫ. This well-formedness

constraint is deliberately formulated to ensure that every SPPseq pattern has an

equivalent in H. The rationale is simple: when a layer expresses the ov temporal

relation in SPP, the relation does not need to be refined into an st or sw relation.

This is different in H, as the continuation markers that express ov are necessarily

preceded by the start of their respective event, the relation has to be refined into

either st or sw. The first line of an H is an exception and, correspondingly, we make

an exception for the first layer of an SPPseq pattern.

112



CHAPTER 6. THE EXPRESSIVENESS OF POLYPHONIC PATTERNS

The interpretation of an SPPseq pattern is the same as that of an SPP pattern.

As every SPPseq pattern is also an SPP pattern, it follows trivially that SPP

subsumes SPPseq.

SPPseq can express most patterns presented in Chapter 5, including the parallel

fifth and suspension. Only the counterpoint pattern is not expressible as a sequence

of layers.

6.5 Comparing languages

We compare languages by comparing which temporal networks they support. We

say that a pattern can be expressed in another language if there exists a pattern in

that language that enforces the same temporal network, or a network that we can

prove to be equivalent. The equivalence of two temporal networks can be obtained

by showing that some temporal relation is implicit in the network.

6.5.1 R subsumes H and SPP

The result concerning R is straightforward to obtain.

Claim 1. R subsumes both H and SPP: for any pattern in H or SPP, the

temporal network resulting from the interpretation of the pattern is

expressible by some pattern in R.

The pattern language R is equivalent to the baseline representation of temporal

networks. As any pattern in H and SPP can be expressed as a temporal network,

it is also expressible in R. �

6.5.2 H does not subsume SPP

This result is obtained by examining the layered passing tones example discussed

above.

113



CHAPTER 6. THE EXPRESSIVENESS OF POLYPHONIC PATTERNS

Claim 2. H does not subsume SPP: there exists at least one pattern in SPP

that has no equivalent in H.

In SPP, the layered passing tones pattern is expressed as follows:

(P14)
a ; b

c ; d
;

f

e

; st(a, c), m(a, b), m(c, d)

st(f, e), m(b, f), m(d, e)

Consider the temporal network of the layered passing tones pattern. To capture

the st(a, c), m(a, b) and m(c, d) temporal relations, the following three H patterns

are possible:

[
a c

b d

] 


a c

(a) d

b ⋆








a c

b (c)

⋆ d





All of the above patterns enforce an additional temporal relation that is not

enforced by the SPP pattern, respectively st(b, d), sw(d, a) and sw(b, c). �

6.5.3 SPP does not subsume H

This result is obtained by analyzing the embellished tritone resolution pattern.

Claim 3. SPP does not subsume H: there exists at least one pattern in H that

has no equivalent in SPP.

In H, the embellished tritone resolution is expressed by the following pattern:

(P15)




a c

(a) ⋆

b d





; st(a, c), st(b, d),

m(a, b)

The pattern enforces both st(a, c) and st(b, d). The only way to do that in SPP

is to layer a,c and b,d with the “==” operator. As pattern P15 also enforces m(a, b),

these two must be joined by the “;” operator:
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a

c
;
b

d

But then, the SPP pattern will also enforce the temporal relation m(c, d) which

is clearly not enforced by pattern P15. �

6.5.4 H and SPP subsume SPPseq

This result is obtained by showing that every pattern in SPPseq is also expressible

in H and SPP.

Claim 4. Both H and SPP subsume SPPseq: for every SPPseq pattern, there

exists a pattern in SPP with the same network and a pattern in H

with an equivalent network.

The first part of the proof is trivial: any pattern in SPPseq is also a pattern in

SPP and has the same temporal network.

The second part of the proof proceeds by structural induction of an SPPseq

pattern ϕ along the “;” operator. We show that as the sequence of layers grows,

there is always a pattern in H that has an equivalent temporal network.

Base case: ψ In the base case, the sequence of layers contains only one layer. We

show that any layer has an equivalent in H by induction along the “==” operator.

The base case is a single component, possibly prefixed by a “−” operator: ǫ or

−ǫ. Both cases are respectively covered by the following H patterns:

[
ǫ

] [
(ǫ)

]

For the induction step, consider two layers ψ1 and ψ2 covered by two equivalent

H patterns h, j.

[
h1 h2 . . . hn

] [
j1 j2 . . . jm

]

By the induction hypothesis, both patterns capture the same temporal networks

as the layers ψ1 and ψ2. In particular, pairs of components of the following forms

are covered by appropriate tokens, capturing the appropriate relations:
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SPPseq H Temporal relations

ǫ1, ǫ2 ǫ1, ǫ2 st(ǫ1, ǫ2)

−ǫ1, ǫ2 (ǫ1), ǫ2 sw(ǫ2, ǫ1)

ǫ1, −ǫ2 ǫ1, (ǫ2) sw(ǫ1, ǫ2)

−ǫ1, −ǫ2 (ǫ1), (ǫ2) ov(ǫ1, ǫ2)

Then, joining ψ1 and ψ2 with “==” is covered by the H pattern formed by

concatenating h and j:

ψ1

ψ2

[
h1 h2 . . . hn j1 j2 . . . jm

]

The pairs of components from ψ1 and ψ2 are necessarily covered the same way

as above. Note that the resulting H pattern is well-formed as it consists of a single

layer, which can take any form. Also, the pair −ǫ1, −ǫ2 can appear as it is the first

layer of the sequence. In the following layers of a well-formed SPPseq pattern, at

most one component can be of the form −ǫ, hence that case will not be considered.

Induction step: joining ϕ and ψ The induction step over the “;” operator

consists of joining a sequence of layers ϕ and a layer ψ. By hypothesis, there exists

a pattern h in H that covers ϕ and a pattern j that covers ψ.

[ ...

h1 h2 . . . hn

] [
j1 j2 . . . jn

]

For simplicity, we assume the patterns above have the same width. If one is

bigger, the smaller one is simply padded with columns filled with ⋆ symbols. The

H pattern covering the joined ϕ ; ψ is built as follows. First, h and j are reordered

so that pairs of components that are aligned in ϕ ; ψ appear in the same column in

h and j. For example, if ǫ1 at the end of ϕ and ǫ2 in ψ are aligned, then these will

appear in the corresponding column.

[ ...

⋆ h1 ǫ1 . . . hn

]

[
j1 ⋆ ǫ2 . . . jn

]
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This ensures that the m temporal relations that the SPPseq pattern expresses

are covered by the H pattern. In addition, components that are not aligned are

placed in columns where a ⋆ symbol appears, as shown above. This ensures that no

m relation is formed by these components, as is the case in SPP when components

are not aligned with a predecessor/successor.

Then, an additional line is added between h and j. This line contains the start

of any continued event in j, and the continuation of all other columns from h. This

ensures that the resulting H pattern is well-formed. For example, supposing that ǫ2

is affixed with the “−” operator in ψ, we would add the following line:

[ ...

⋆ h1 ǫ1 . . . hn

]

[
⋆ (h1) ǫ2 . . . (hn)

]

[
j1 ⋆ (ǫ2) . . . jn

]

However, the added line forms temporal relations that are not expressed by the

SPPseq pattern:

. . . ;

...

ǫ1

hn

;

...

−ǫ2

jn

In the SPPseq pattern above, the sw temporal relations are formed only by

components of the same layer, but not between components of different layers. In

the H pattern, however, the relation sw(ǫ2, hn) appears. This relation can be shown

to be implicit in the temporal network that the SPPseq pattern does express.

Clearly, the temporal network of the SPPseq pattern will express the following

relations: m(hn, jn), m(ǫ1, ǫ2), and sw(jn, ǫ2). In addition, depending on the last layer

of ϕ, the SPPseq pattern expresses one of the following: st(hn, ǫ1), sw(ǫ1, hn),

sw(hn, ǫ1), or ov(hn, ǫ1). Without lost of generality, we can assume that ov(hn, ǫ1)

is expressed as it subsumes the other relations. This corresponds to the temporal

network below.

hn

ǫ2

jn

ǫ1

m

m

sw sw
ov
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The fact that the sw(ǫ2, hn) relation is implicit relies on the following observa-

tions. Firstly, as jn starts while ǫ2 is unfolding, it follows that ǫ2 starts before jn. As

hn meets with jn, we have that ǫ2 starts before the end of hn. Secondly, as the direct

predecessor of ǫ2 overlaps with hn it follows that ǫ2 starts after the beginning of hn.

Thus, we have that ǫ2 starts before the beginning of jn but after the beginning of

hn, and this implies that it must start while hn is unfolding. This implicit sw(κ2, hn)

relation is shown by a dashed line in the network above.

Similarly, all temporal relations specified by the H pattern as a result of the “ad-

ditional” line can be shown to be implicit in the temporal network of the SPPseq

pattern. Hence the networks are equivalent for ϕ ; ψ and the H pattern we con-

structed. By induction, this demonstrates that there is an equivalent H pattern for

any sequence of layers in SPPseq. �

We illustrate the argument above for the two voice case. The proof proceeds

by structural induction over the “;” operator (i.e. the claim holds as the sequence

grows). The base cases are:

a

c

−a

c

a

−c

−a

−c

These are clearly covered by the following H patterns:

[
a c

] [
(a) c

] [
a (c)

] [
(a) (c)

]

Now, suppose there exists a pattern h ∈ H that covers the SPPseq pattern ϕ.

The induction cases are as follows (the case with two modified events −ǫ does not

appear; by definition of SPPseq, this is only allowed in the first layer):

ϕ ;
a

c
ϕ ;

−a

c
ϕ ;

a

−c

Suppose h has n lines. The induction cases are covered by:

h

·[
a c

]

[ ...

hn1 hn2

]

·[
a (hn2)

(a) c

]

[ ...

hn1 hn2

]

·[
(hn1) c

a (c)

]
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The last two cases enforce an extra temporal relation (respectively sw(a, hn2)

and sw(c, hn1)) that the SPPseq pattern does not enforce. However, that relation

can be inferred by the temporal relations that the SPPseq pattern does enforce.

That is, whenever the relations m(a, b), m(d, e), sw(b, e) and ov(a, d) are present, then

sw(e, a) can be inferred.

6.6 Summary

This chapter formally compared the three approaches to polyphonic patterns dis-

cussed in detail in Chapter 3: relational patterns, Humdrum, and SPP. In terms

of the temporal network they can express, relational patterns were shown to be the

most expressive. Humdrum and SPP can be considered as subsets of relational

patterns, with a non-trivial intersection that this chapter characterized as SPPseq:

a restriction of SPP to sequences of layers. Having a restricted expressiveness is

advantageous in terms of data mining, as the space of patterns to explore is reduced.

Furthermore, SPPseq is expressive enough to capture the parallel fifth and suspen-

sion patterns discussed throughout this dissertation. The possibility of using SPP

or SPPseq for music data mining is discussed in the next chapter. In addition,

Humdrum and SPP are compared in terms of ease of use and efficiency.
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Discussion

This chapter revisits the requirements for a polyphonic pattern language

elaborated in Chapter 2. We further establish how SPP fully satisfies the

requirements and, in particular, how it possesses some advantages over

relational patterns and Humdrum: clearer syntax and semantics, more

efficient, more amenable to a user-friendly tool, and more conducive to

music data mining. Some limitations and caveats are also discussed.

7.1 From requirements to SPP

This dissertation developed the Structured Polyphonic Patterns approach around

a set of requirements. These can be seen as design principles that motivate the

particular way in which SPP is formulated and presented.

Requirement 1: Fully support n-part polyphony The main objective of

SPP was to support polyphonic music. In particular, this meant representing the

kinds of complex polyphonic patterns that textbooks discuss, e.g. the parallel fifth

and suspension patterns. These patterns typically involve well-defined parts. Hence,

support for polyphonic patterns requires the precise representation of multiple parts.

As these patterns also involve precise temporal relations, the multiple parts of a

polyphonic piece must also be represented in a general way, without assuming a

particular structure, as is the case of approaches restricted to homophony. The SPP

method accomplishes this by representing the source as an unstructured collection

of musical events. At the same time, events are required to contain the attributes
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that make it possible to define meaningful polyphonic patterns: onset, offset, and

voice label. Similarly, SPP patterns can refer to voices. However, these voices are

not dynamic: they cannot capture the case where voices appear and disappear as

the piece unfolds. This limitation is discussed further in Section 7.2

Requirement 2: Expressive and precise This requirement relates to the ex-

pression of temporal and musical relations. SPP directly supports four temporal

relations: m (meet), st (start together), sw (start while), and ov (overlap). The

relation m is expressed through the sequencing operator of SPP, and by aligning

components in the adjacent layers of a sequence of layers. The three vertical re-

lations st, sw and ov are expressed through the concept of layer, with different

combinations of the special onset modification operator “−”. Musical relations are

accommodated through a feature definition mechanism. A feature can refer to a

voice, which enables the expression of precise relations. The same musical relations

can be defined in relational patterns, Humdrum, and SPP. For relational patterns,

the relations need to be implemented directly in the underlying programming lan-

guage, e.g. Prolog. Humdrum has dedicated tools, but these do not necessarily

cover every possible relation. For other relations, the user must program his or her

own specialized command-line tools.

Relational patterns and Humdrum can, however, represent musical relations with

greater precision. In SPP, relations are encoded as features that forget with which

event the relation is formed, a strategy referred to as positionalization (Kramer,

2000). Only the voice of that event is recorded. In contrast, Humdrum can keep

a precise record of the two events that form the relation: the events always ap-

pear on the same line as the encoding of the relation. In relational patterns, the

events are explicitly recorded through variables. In practice, this does not seem to

be a significant limitation of SPP. By distinguishing features formed over different

temporal relations as is done in Chapter 5, the necessary precision is obtained. In

addition, the positionalization of relations reduces the space of patterns and makes

SPP more conducive to data mining. One possible drawback is that positionaliza-

tion can reduce the readability of patterns, as the reader sometimes needs to infer

the precise meaning of a feature from its name and the context in which it appears.

For example, consider the following simplification of the SPP suspension pattern

developed in Chapter 5:
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−{}∗x

−{}y
;

{}x

−{sw cons(x) : F}y

The sw cons feature encodes a relation between the bottom right component

(which contains the feature) and the top left component (distinguished by a ∗ symbol

above). This has to be inferred from the name of the feature, which explicitely states

that a musical relation over an sw temporal relation is encoded, and the context in

which the feature appears: in this case, the bottom right component extends past the

start time of its layer and, consequently, must start before the end of the preceeding

layer, hence starting while the distinguished top left component unfolds.

Requirement 3: Clear syntax and semantics The syntax and semantics of

SPP is defined in Chapter 4 and illustrated in Chapter 5. The syntax revolves

around a few simple constructs: sets of features denote musical events and sequenc-

ing and layering operators are used to build patterns. It has the advantage that

it embodies the structure of a pattern: sequences are displayed as horizontal lines

and layers as vertically aligned components. The syntax of Humdrum is similar,

but with time flowing from top to bottom: sequences are displayed vertically and

layers horizontally. By comparison, a relational pattern is always a list of literals.

Even with simple patterns, it can be difficult to understand the structure of such a

pattern: whether it consists of sequences, layers, or a mix of the two.

The semantics of SPP patterns is also based on the idea of sequence and layer,

and directly follows from the structure of a pattern. To denote events that start

before the beginning of a layer, the “−” evokes the extension of an event backward

in time. Section 7.3 discusses some choices that were made when formulating the

semantics of SPP. The semantics of relational patterns is also clear, with every

instance satisfying every literal of the pattern. By contrast, the semantics of Hum-

drum patterns can be difficult to grasp, as it depends on prior transformations of

the source.

Requirement 4: Flexible The flexibility of SPP comes from the feature defini-

tion rules developed in Chapter 4 and illustrated in Chapter 5. These ensure that

new queries can be accommodated easily.

In addition, as Chapter 5 demonstrates, it is easy to develop an SPP query in

a modular way. First, by reusing the same user-defined features in many queries.

Also, variations on a query are easily achieved, by using variables instead of values
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or by adding features in order to obtain more details on the context in which in-

stances occur. The structure of a pattern can also be changed easily, by adding new

components, or possibly reordering the components. It is much more difficult to do

this using relational patterns or Humdrum. Finally, it is also easy to create a new

pattern by joining two existing patterns via the “;” or “==” operators; the semantics

is modular: the meaning of subpatterns does not change as they are joined.

The flexibility that SPP offers over Humdrum could prove particularly useful

for musicological research. For example, if a set of related patterns needs to be

constructed, it would be less time-consuming to do it in SPP. Section 7.7 discusses

a case where that would be relevant to musicological research.

Requirement 5: Easy to use and efficient With a clear syntax and semantics,

it is easy to develop queries in SPP. To make this more concrete, we develop a

mock graphical interface for SPP in Section 7.5. Regarding efficiency, the SPP

matching algorithm is more efficient than Humdrum. We have developed multiple

implementations of the algorithm, using the Ocaml (Leroy et al., 2003) and Prolog

programming languages. The Prolog implementation is more efficient for matching

only, but it is more efficient to use the Ocaml implementation to apply feature

definition rules. This is discussed in detail in Section 7.4.

Requirement 6: Conducive to music data mining SPP is inspired by the

feature set representation of pattern components, which in turned was inspired by the

viewpoint method of Conklin (2002). The feature set representation was introduced

specifically for music data mining (Conklin and Bergeron, 2008). Moreover, the fact

that SPP patterns are structured around syntactic constructs provides a convenient

way to explore the pattern space. This is discussed further in Section 7.6.

7.2 Beyond n-part polyphony

The queries presented in this dissertation are mainly relevant for pieces of music

where a fixed number of static voices is used. It is possible to extend SPP to

dynamically voiced music. This requires giving some structure to the domain of voice

names. For example, such a structure could be a graph where nodes represent voices

and edges represent how voices are divided into sub-voices, and possibly merged back

to high-level voices. Consequently, the definition of how components are matched
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Figure 7.1: Suspension pattern in Chopin Waltz Op.64 Nr.2, bars 9 and 10

would need to be extended. Rather than requiring that identical voice labels are

mapped to the same voice name, it would be required that they are mapped to voice

names that are linked by a path in the graph of voices.

For example, consider an instance of the suspension pattern displayed in Fig-

ure 7.1. The piano-roll has been annotated with voice names and arrows indicating

one possible underlying graph of voices. Notice how the voice treble2 is merged with

the voice treble3. As the suspension pattern occurs over that merge – the first note

is in voice treble2 and the second in treble3 – the suspension instance would not be

captured with the current semantics of SPP.

An extension to the semantics would require us to extend the matching algorithm

as well. When joining two instances, the condition for joining two voice variable

assignments would be modified. Instead of requiring that any two assignments of

the same voice variable are equal, it would be required that they are consistent

with the graph of voices. For example, one assignment could be treble2 and the

other treble3. As these are consistent, the resulting assignment would be set to the

higher-level voice treble3.

7.3 Motivating SPP semantics

When developing SPP, many issues regarding the syntax and semantics were ex-

plored. This section summarizes the most important choices. The “design” princi-
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ples behind those choices were as follows:

• Keep expressiveness well adjusted for polyphonic music (i.e. avoid unnecessary

expressive power, as this renders the language less suitable for data mining)

• Keep syntax and semantics as clear as possible

• Use as few operators as possible: keep the language simple

Contiguous patterns There is no mechanism in SPP to express relations be-

tween events that i) do not meet, ii) are not overlapping or iii) are not related by a

chain of events that meet or overlap. One such mechanism, for example, would be

to include a Kleene star operator (similar to regular expressions), e.g. ǫ1 ; ǫ∗2 ; ǫ3

would match an event e1 instantiating ǫ1, then a sequence of events – all instances of

ǫ2 – then an event instantiating ǫ3. One polyphonic pattern that might require such

non-local relations is the pedal point . A pedal point is a note that unfolds while an

undetermined number of notes is unfolding in another voice. It can be approximated

in SPP by matching only for the pedal point, and implicitly matching the other

notes through features.

Conjunctive components Currently, all the features of a component need to be

instantiated, i.e. a component is a conjunction of features. One can easily imagine

a more complex definition of components inspired by propositional logic. In such a

scheme, a component could also express implication and disjunction. The following

component, for example, would match a note with a pitch of either C or G and that

has a duration of 2 when it occurs on a strong beat and any duration otherwise:

{(pitch : C ∨ pitch : G) ∧ (ml : 0 ⇒ duration : 2)}

Again, it is unclear if such expressive power is necessary and supporting it would

make the language and its semantics more complex. One possible application of

propositional logic could be the precise definition of consonance in a four voice

texture (Piston, 1941, chap. 2). It requires us to classify the interval of a perfect

fourth as a consonance only if the interval of a fifth or an octave occurs below it.

Such a constraint could be precisely defined with feature implication. Instead, this

dissertation uses a somewhat simplified definition of consonance where the interval

of a perfect fourth is always classified as a dissonance.
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Onset modification One can imagine two alternative interpretations of the onset

modification operator “−”. Consider the pattern below.

a

{}
;
−b

{}

In SPP, the meaning of “−” is to modify the onset of the event matched by b,

namely by shifting it back in time. One could also imagine the “−” operator acting

as a tie of a and b. In that case, a and b would match only one event. That would

be similar to the continuation mechanism of Humdrum. Consequently, it would

have a similar expressiveness to that of Humdrum in terms of temporal relations.

As Chapter 6 demonstrates, this is not superior to the expressiveness of SPP. In

addition, it would make the semantics and algorithm more intricate and less directly

tied to the concept of layer, hence possibly less intuitive.

7.4 Pattern matching efficiency

The implementations of Humdrum and SPP differ in ways that have an impact on

efficiency. The central difference is how the source is scanned and how instances

are recorded. In Humdrum, the source is scanned in a linear fashion, from start to

finish. Instances are simply printed on screen as the pattern is being matched. In

SPP, the algorithm proceeds in two phases. In a first phase, the source is scanned

in a linear fashion and the instances of the components of a pattern are computed

and stored. In a second phase, the instances of the whole pattern are computed by

joining the instance lists of its subpatterns. This can be done efficiently by ordering

instances by their onset times as explained in Section 4.7.

Another difference is how voice combinations are handled. In Humdrum, there is

no abstract representation of how a pattern can match many different combinations

of voices. Consider for example a two-voice pattern and a four-part source. To

match such a pattern, one must first extract every two-part combinations from the

source and create artificial two-part sources (including permutations, e.g. where the

lowest part appears first, and then where the lowest part appears second). Then,

the Humdrum pattern matching command can be used on every artificial source.

It follows that every possible voice combinations are explored, regardless of the

presence of instances.

126



CHAPTER 7. DISCUSSION

In SPP, the voice combinations are explored as the instance lists are being

joined. For example, when two components are joined by a layer operator “==”, the

possible assignations of their voice variables are merged and tested for consistency.

This is done only for instances that have already been tested for their temporal

validity (e.g. having the same onset if the layer enforces the st temporal relation).

The advantage of this approach is that voice combinations are explored only when

necessary. For example, if a particular voice combination does not contain instances,

it will not be explored.

The principal motivation for using instance lists in SPP is to support pattern

discovery. In such a scheme, new patterns are being created by joining two previously

processed patterns. When a new pattern is being created, its instances need to be

computed. With the Humdrum approach, one would need to re-scan the source for

every new pattern. With the SPP algorithm, one can reuse the instance lists of the

previously processed patterns and quickly obtain the instances of the new pattern.

In practice, for typical patterns and sources, the differences discussed here should

not have a significant impact. To evaluate this claim, we compare SPP and Hum-

drum in two ways. First, we look at various ways the source can grow: increasing

number of events, increasing number of voices, and increasing number of instances.

Then, we look at various ways the pattern can grow: number of features, sequence

length, and layer size.

Growing sources We consider two scenarios: i) feature definition rules need to

be applied before executing pattern matching and ii) only pattern matching need to

be executed. The first scenario occurs whenever the user has defined some features

that are not in the source. This is the most likely scenario for musicological queries,

where the query is being developed from scratch. The second scenario would occur,

for example, if a source or corpus is already saturated with musical features and

published as such. In that scenario, the query is executed without applying any

feature definition rule.

In the first scenario, we compare Humdrum to three different implementations

of SPP: i) an Ocaml implementation of the algorithm presented in Chapter 4, a

Prolog implementation of the semantics presented in Chapter 4 and iii) a hybrid

implementation where feature definition rules are applied in Ocaml and pattern

matching is done in Prolog.

The comparisons are based on experiments executed with the suspension pattern
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Figure 7.2: Comparing Humdrum and SPP against sources with an increasing
number of events. Results are averaged over 1000 sources with 10 voices and an
instance density of 0.1
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Figure 7.3: Comparing Humdrum and SPP against sources with an increasing
number of voices. Results are averaged over 500 sources with 10000 events and 1000
instances

on artificial sources. The sources were created by recombining excerpts selected

from Bach chorale harmonizations. Figure 7.2 shows the results for sources with an

increasing number of events. The number of voices is kept constant to 10 voices.

Also, the density of instances (the number of instances divided by the number of

events) is kept constant to 0.1 . In the first scenario, the Ocaml implementation

is the most efficient. In the second scenario, the hybrid implementation is more

efficient.

Figure 7.3 shows that Humdrum is far less robust with increasing voices. Fig-

ure 7.4 shows that all approaches are not significantly affected by an increase in the

number of instances, with the exception of the SPP-Prolog implementation, where

both the computation of feature definition rules and the pattern matching is done

in Prolog.
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Figure 7.4: Comparing Humdrum and SPP against sources with an increasing
instance density. Results are averaged over 500 sources with 10 voices and 10000
events
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Figure 7.5: Comparing Humdrum and SPP preprocessing and matching times for
a counterpoint query with varying number of features. Results are averaged over 10
sources with 4 voices and 10000 events

Growing patterns Here, we assume the first scenario and look at both prepro-

cessing time and matching time. Experiments concern a counterpoint pattern similar

to the one developed in Chapter 5. We compare the efficiency of Humdrum and the

hybrid Ocaml/Prolog implementation of SPP against patterns with varying prop-

erties: growing number of features, growing sequence length, and growing layer size.

Figure 7.5 shows the results for a growing number of features. Notice how SPP

matching time can decrease as features are added. This is because each new feature

adds a constraint and decreases the number of instances. The joining of instance

lists used in the SPP algorithm hence becomes quicker.

Figure 7.6 shows the result for patterns of increasing sequence length. This

does not affect preprocessing time. Also, Humdrum matching time is not affected

significantly, while there is a slight decrease in SPP matching time. Again, this is
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Figure 7.6: Comparing Humdrum and SPP preprocessing and matching times for a
counterpoint query of varying sequence length. Results are averaged over 10 sources
with 4 voices and 10000 events

due to the fact that SPP matching uses instance lists. The difference is however

negligible.

Figure 7.7 shows the results for patterns with layers of increasing size. Both

approaches suffer from combinatorial explosion (note that time is shown according

to a logarithmic scale). SPP is slightly more robust, allowing for up to seven com-

ponents per layer with reasonable matching time, while Humdrum pattern matching

becomes impractical for patterns with more than four components per layer. Also,

Humdrum becomes inefficient for preprocessing and matching, while SPP prepro-

cessing remains efficient. In SPP, preprocessing depends only on the properties of

the feature definition rules. It is independent of the pattern to match. By contrast,

voice exploration in Humdrum has to be done for preprocessing also, whenever the

pattern refers to more than one voice. In addition, as discussed earlier, Humdrum

always displays “the worst case” with respect to voice exploration, but SPP can

alleviate some of the combinatorial explosion: when instances are found quickly,

the collections of instances that the algorithm joins get pruned early on and fewer

instance joins have to be explored. Still, the only way to guarantee efficient pattern

matching in Humdrum and SPP is to keep the layers small. In practice, this is not

a significant limitation as musical patterns tend to refer to a small number of parts,

often two or four as shown in Chapter 5.

A note on Prolog implementations It is important to note that the Prolog

implementation is efficient because SPP patterns were interpreted in Prolog in a

way that ensured a good ordering of the literals. When using Prolog for arbitrary

relational patterns, it is only possible to obtain efficient matching if such a good
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counterpoint query of varying layer size. Results are averaged over 10 sources with
8 voices and 5000 events

 0

 50

 100

 150

 200

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

T
im

e 
(s

)

Number of events

Ill-ordered literals

Well-ordered
One ordering error

Two ordering errors

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

T
im

e 
(s

)

Number of events

Ill-ordered literals (logarithmic scale)

Well-ordered
One ordering error

Two ordering errors

Figure 7.8: The effect of ill-ordered literals in a Prolog query. Results are averaged
over 1000 sources with 10 voices and an instance density of 0.1

ordering exists. In particular, when writing the query directly in Prolog, one must

be very careful not to begin a query with literals that refer to distinct event variables.

Such an ordering will cause the source to be scanned in a quadratic fashion, while

three ill-ordered literals will cause a cubic execution time, and so forth. Figure 7.8

shows how inefficient this can be in practice.

Interpretation SPP is more robust than Humdrum with respect to most ex-

perimental conditions explored here. The algorithm we presented in Chapter 4 is

comparable in speed to the slightly more efficient Prolog implementation. The choice

of an implementation depends on the needs at hand. The biggest advantage of the

algorithm of Chapter 4 is that it can be reused for pattern discovery, and this is a

further contribution of the current work.

The SPP language could also be construed as a useful intermediary pattern
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Figure 7.9: The suspension pattern in a mock SPP GUI

representation. The direct use of Prolog for music pattern matching can prove

cumbersome and requires some care when designing the query to avoid a bad ordering

of literals that can cause serious efficiency problems. The Prolog implementation of

SPP is an automatic translator of SPP patterns into Prolog and can help mitigate

those problems. Appendix E presents this translation.

7.5 Mock SPP GUI

Developing a query in SPP is facilitated by a clear syntax and semantics and by

the fact that it can be done in multiple steps. With a good graphical interface, this

can be made intuitive. Figure 7.9 shows an example of such an interface for the

suspension pattern. The structure of the pattern is expressed graphically, while the

features are written down as separate fields.
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With a clear syntax, the manipulation of SPP patterns is made easy. Figure 7.10

on page 139 shows one possible sequence of simple operations that will yield the

structure of the suspension pattern. Figure 7.11 on page 140 shows a sequence of

operations aimed at transforming the suspension pattern into a block chord pattern.

7.6 Suitability of SPP for data mining

A crucial idea in data mining is the efficient enumeration of the pattern space. One

solution is to define a pattern language such that the space is small and can be enu-

merated exhaustively. However, as discussed in Chapter 3, this can prove too strong

a restriction on expressiveness to satisfy the requirements for polyphonic patterns

that this dissertation set out to fulfil. Another approach is to use a more expressive

language and to restrict the enumeration to a subset of patterns, typically those with

a high level of interest (according to some measure), or high frequency. As discussed

in Chapter 3, Humdrum (Huron, 1999) is expressive enough for polyphonic queries.

However, it does not provide a mechanism to enumerate the space of patterns. The

formal syntax and semantics of SPP enable the definition of such a mechanism.

Component subsumption The first step is to define how to compare patterns

directly from their syntax. In particular, we want to quickly determine if a com-

ponent is more general than another. This enables the enumeration of the pattern

space in general-to-specific manner. When interested in patterns that occur fre-

quently, as is typically the case, this allows to cut whole regions of the search space

as specializations of a component cannot be more frequent then some previously ex-

plored component. The property of a component being more general than another,

or subsumption, is easy to define on SPP components. For example, the following

subsumption holds under renaming of x to y and assignment of X to 60:

(E13) {pitch : X}x subsumes {pitch : 60, duration : 24}y

Enumerating frequent components Once component subsumption is defined,

efficient enumeration of frequent components is possible. As variables are involved,

this would constitute an extension of the technique developed by Conklin and Berg-

eron (2008).
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Enumerating frequent patterns The enumeration of frequent components is

a required first step for an efficient exploration of the pattern space. Once this is

done, the space of frequent patterns can be explored by joining components with the

“;” and “==” operators. Initially, the component would be layered with the “−”

operator, as this is more general.

(E14)

−a

−b
subsumes

−a

b

−a

−b
subsumes

a

b

Bigger patterns can be explored by joining smaller patterns that were discovered

to be frequent. Every time two patterns would be joined, their instances would

be joined in the same efficient way that was developed for pattern matching in

Section 4.7.

As this section sketches, the research proposed in this dissertation is clearly

a constructive first step towards data mining of polyphonic music. In addition,

Chapter 6 introduces SPPseq, a restriction of SPP to sequences of layers that is

expressive enough to capture most of the patterns presented in this dissertation.

Such as restriction makes the approach even more conducive to data mining as the

pattern space of the restricted language is smaller to explore. This is a significant

contribution as polyphonic pattern discovery is a topic that has yet to be explored

for languages satisfying the requirements of Chapter 2.

There have been some attempts, however, to use inductive logic programming

(ILP) engines to discover musical rules from existing musical material (Ramirez,

2003; Pompe et al., 1996). This differs from the pattern discovery approach, as

the target patterns are given to the learning engine, which searches for a succinct

description of the contexts in which these patterns occur.

There are also some ILP tools that are tailored for pattern discovery. One

successful application of ILP to music data mining concerns the discovery of chord

sequence patterns (Anglade and Dixon, 2008). By using the chord sequence abstrac-

tion, musically significant patterns can be discovered in large polyphonic corpora.

The abstraction significantly reduces the pattern space as i) only sequences of com-

ponents are allowed and ii) the components contain very few features, essentially
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chord names. There are a few issues with such an approach, however, as the corpus

needs to be segmented and labelled with chord names prior to pattern discovery. It

is still an open problem to reliably find such a segmentation and labelling (Anglade

and Dixon, 2008, use two corpora where this has been done manually).

In the context of detailed polyphonic patterns, we have experimented with the

ILP tool Warmr (King et al., 2001), and concluded that it is currently impractical

to apply this tool for polyphonic pattern discovery. The problems stem from the

fact that logic programming clauses are too expressive for the task at hand. To

circumvent the issue, one must define a search bias. For example, features are

defined by requiring that at least one note of a relation corresponds to a note that

was already introduced in previous exploration of the pattern space (this limits

the search to contiguous patterns, a reasonable restriction). There are, however,

limitations to the kind of bias one can define with tools like Warmr.

In addition, there are efficiency problems that are very difficult to avoid when

using the bias language of Warmr. For example, there is no obvious way to instruct

Warmr to join previously discovered patterns rather than grow them by adding

literals to their corresponding clauses. This creates a search space that is too fine-

grained for our needs. In a homophonic texture, for example, a pattern representing

two successive layers will be built in an exponential number of ways (first specifying

the two upper notes satisfy m, then specializing so the upper and the middle note

satisfy m and so on in every possible way). Similarly, there is no obvious way to

first search for frequent components and then search for frequent structures (e.g.

sequence of components). This means that the search space of components (which

consists of every possible combination of features) is interleaved with the search

space of structures (which consists of every possible combination of components).

These problems could be avoided in SPP, for example, by first discovering frequent

components, then joining them in sequences and layers and then joining these to

form sequences of layers or other mixtures of sequences and layers.

7.7 Suitability of SPP for musicology

As discussed in Chapter 1, the notion of musical pattern is usually simpler and

more formal in computational musicology than traditional musicology. In the latter,

patterns are illustrated by examples, and the musical expertise of the reader is called

upon to understand how the examples are related. Although intuitively related, the
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examples can be significatively different: added notes, different melodies, etc. The

works of Gjerdingen (2007) and Schubert (2007) are good examples of this viewpoint

on musical patterns.

Even if SPP was designed with computational musicology in mind, it could be

useful for that type of research. For example, Gjerdingen (2007) presents a rising

fourths canon pattern where two voices alternate the melodic motion of a rising

fourth. Numerous variations and elaborations of the pattern are explored. SPP

could be used to isolate places in a large corpus where such variations might occur,

for example by using a set of very general patterns. The following pattern is one

possible member of such a set:

(P16)

a

b
;
c

d
;
e

f

a = {st interval(y) : I1}x

b = {}y

c = {st interval(y) : I2, m interval : P4, m dir : +}x

d = {}y

e = {st interval(y) : I3, m interval : D, m dir : −}x

f = {}y

The top sequence captures the rising melodic interval of a fourth, followed by

any falling melodic interval. The variable D captures the falling interval, which

can be either a major or minor third: M3 or m3. Similarly, variables are used to

capture different sequences of harmonic intervals (and again, the third can be major

or minor). This is useful as Gjerdingen (2007) describes two version of the pattern,

one with that starts with the intervals P1, M3 (m3), P1 and one that starts with the

intervals M3 (m3), P5, M3 (m3). The second voice is left blank in the pattern above,

but it follows from the harmonic intervals that it must also display the melodic

motion of a rising fourth. Figure 7.12 on page 141 shows instances of both versions

of the pattern in Bach chorale harmonizations. The instances correspond to the case

where there is no intervening notes in any of the two voices. Gjerdingen (2007) also

presents elaborations where, for example, one voice exhibits denser melodic material.

As SPP is not designed to search for elaborations or variations on a theme,

one would need to write patterns specifically to capture every type of expected

elaborations. This might prove labor-intensive and has limitations as it is difficult

136



CHAPTER 7. DISCUSSION

to anticipate every possible type of elaboration. However, such an approach can still

prove very useful when very large databases are to be searched. In addition, one

can imagine an extension of SPP that handles approximate matching and ranking

of the results by relevance. The result would be a list of potential instances of the

rising fourths canon pattern for the musicologist to inspect and classify. Such a semi-

automated approach to pattern matching can provide a way for the musicologist to

explore more patterns and also a much bigger number of musical pieces.

It is less obvious how pattern matching could have contributed to the work of

Schubert (2007), as one of the crucial aspects of this work is that patterns are very

specific to a single piece and the contribution lies in the discovery of the patterns.

For example, Schubert discusses the following pattern, partially capture in SPP

here, as reoccurring frequently in a particular piece, and hence influencing its struc-

ture:

(P17)
{}x

−{}y
;

{m dir : −}x

−{m dir : +}y
;
{m dir : −}x

{m dir : +}y

It is a simple counterpoint pattern where two voices interact in a precise manner:

voice x exhibits falling melodic motion while voice y exhibits rising melodic motion.

In addition, the voices exhibit very specific temporal relations, as the first two notes

of voice y start while the corresponding notes in voice x are unfolding.

Figure 7.13 on page 141 shows instances of the pattern in Bach chorales harmo-

nizations. The pattern only appears six times in the corpus and never twice in the

same piece. This in itself an interesting result as it confirms that the Chorale corpus

does not contain a piece that uses the pattern discovered by Schubert (2007) as a

structuring element. In addition, pattern matching could prove useful in revealing

the presence of such a piece in another corpus, hence establishing strong structural

similarity between two pieces. Perhaps that an SPP encoding of the patterns pre-

sented in Schubert (2007) would prove fruitful in that respect. To fully support his

approach, however, SPP would need to support discovery of new counterpoint pat-

terns. This topic is still under investigation, but early results are promising (Conklin

and Bergeron, 2010).

137



CHAPTER 7. DISCUSSION

7.8 Summary

This chapter discussed in detail the requirements stated in the introduction and

elaborated in Chapter 2. The limits of SPP were also discussed. The next chapter

concludes this dissertation by summarizing the contributions it has made. Prospects

for future research are also discussed.
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Figure 7.10: Developing the suspension pattern in a mock SPP GUI
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Figure 7.11: Transforming the suspension pattern into a block chord pattern in a
mock SPP GUI
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Figure 7.12: Examples of the rising fourths canon pattern: a) BWV 278 bar 8
between tenor and alto; b) BWV 328 bar 43 between bass and tenor; The excerpts
are shown in piano-roll notation in figures a) F.36 on page 207; and b) F.37 on
page 208
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Figure 7.13: Examples of a two-voice module: a) BWV 328 bar 33 between bass
and alto; b) BWV 382 bar 9, also between bass and alto; The excerpts are shown in
piano-roll notation in figures a) F.38 on page 209; and b) F.39 on page 210
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Chapter 8

Conclusion

8.1 Summary and contributions

The research presented in this dissertation is a contribution to the field of compu-

tational musicology. Our approach is inspired by the work of David Huron (Huron,

2001a,b) and Darrell Conklin (Conklin, 2002; Fitsioris and Conklin, 2008). As stated

in Chapter 1, the general aim of the research was to create a modern pattern match-

ing method for polyphonic music. By studying existing computer representations of

polyphonic music and examples of polyphonic patterns from music theory textbooks,

Chapter 2 developed a series of requirements for a polyphonic pattern language. In

particular, the chapter included a proposition for a restricted set of temporal re-

lations, one that is specialized for music: m (meet), st (start together), sw (start

while), and ov (overlap). The requirements and temporal relations are contribu-

tions of this dissertation: an attempt to clearly circumscribe the idea of patterns in

polyphonic music.

Using these requirements, Chapter 3 compared existing approaches to polyphonic

patterns. We reviewed three approaches that are expressive and precise enough to

capture the polyphonic patterns of parallel fifth and suspension: i) relational pat-

terns, ii) Humdrum and iii) Structured Polyphonic Patterns. The latter approach,

SPP, is a novel approach that this dissertation contributed.

In Chapter 4, we gave a formal definition of SPP. The novel approach combines

advantages of relational patterns and Humdrum:

• Like Humdrum, the syntax is specialized for music. This is not the case for a

relational language implemented for example in Prolog. The user has to create
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his or her own syntax by specifying appropriate relations. Also, the syntax of

a relational pattern does not illustrate the structure of the pattern

• Like relational patterns, the semantics of SPP is clear. This is not the case

for Humdrum, as the meaning of a pattern depends on prior transformations

of the source

• Voicing is handled in an abstract way. This is similar to relational patterns,

where voices are represented with variables. By contrast, Humdrum uses

columns to represent voices and the source has to be manipulated to account

for combinations of voices. In SPP, the combinations of voices are explored

automatically

SPP also adds several advantages that none of the existing approaches exhibit:

• A clear feature definition mechanism

• A clear demarcation between semantics and implementation. By contrast, the

efficiency of a Prolog query is subject to large variations depending on exactly

how it is written (see for example the discussion of Section 7.4)

• A dedicated matching algorithm. As shown in Chapter 7, it out-performs

Humdrum in most cases. Also, the algorithm can be reused for data mining

• A “compositional” semantics. The language can be extended by adding new

operators

• A syntax and semantics that is conducive to music data mining

In addition to this informal comparison, Chapter 6 presented a formal comparison

of the approaches in terms of temporal patterns. The methodology developed to

compare the languages is a further contribution of this dissertation. From this com-

parison emerged a new language: SPPseq. Again, this is a further contribution of

our work. The new language is less expressive, but might be conducive to a bet-

ter, more efficient pattern matching algorithm; and to a more efficient data mining

method for polyphonic music.

Finally, Chapter 5 showed how to use SPP for simple and complex queries on

diverse musical corpora. We showed how some polyphonic patterns are salient in

Bach chorales, i.e. more probable in Bach chorales than in the other corpora. As well
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as illustrating the usefulness of SPP, the chapter contributed to some degree to the

empirical study of music by validating well-known claims about musical style, such as

the relatively low probability of the parallel fifth pattern in chorale harmonizations,

while the pattern is significantly more probable in orchestral and piano music.

8.2 Anticipated developments

The main future development is a method for the discovery of new polyphonic pat-

terns. Pattern discovery is an important part of computational musicology research.

As Chapter 3 shows, there have been very few attempts at pattern discovery for

polyphonic music. The SPP language developed in this thesis can be applied to

such a difficult problem, as discussed in Section 7.6.

Further developments may include extensions to the language, for example to

accommodate dynamically voiced music, where keeping track of how melodies appear

and disappear is required. Another avenue is to apply the language to other domains

than music. Any source that can be represented as concurrent streams of events

could be construed as n-part polyphony. Recall that SPP does not require the

events to be musical. However, abstractions over such a non-musical source would

need to be defined in terms of the temporal relations that SPP expresses.

Finally, extending the work of Chapter 7 on a mock SPP GUI, a complete

pattern matching tool can be developed. It could also support the other pattern

languages developed in Chapter 6: R (relational patterns) and H (based on Hum-

drum).
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Appendix A

Musical concepts

A.1 Overview

Most music-theoretic concepts revolve around the notion of pitch. In this disser-

tation, we use the scientific notation (Young, 1939): a pitch is encoded as a name

(a letter), an optional accident symbol (either a sharp ♯ or a flat ♭) and an octave

number, e.g. D♭4. In terms of auditory perception, pitch is usually conceived as an

abstract description of the frequency of a sound wave. The octave number refers to

a particular frequency bandwidth, with each octave encompassing frequencies that

are twice as big as those of the preceding octave. For example, Table A.1 shows

how some pitches in scientific notation are related to frequencies. Notice how, for

example, the C♯ in octave number 4 (C♯4) has twice the frequency of the C♯ in octave

number 3 (C♯3).

Octave The concept of octave plays an important role in music theory. With

respect to notation, it can be defined as the labelling of pitches with double or

half the frequency with the same name. But the notion is also a basic fact of

music perception: pitches that are an octave apart are heard as very similar, even

equivalent. This notion of octave equivalence is described by Dowling and Harwood

(1986, p.4) as one of three musical concepts that are valid across cultural boundaries.

The second one is how the octave is perceptually divided in a discrete number of

pitches. This is consistent with the fact that music notation does not accommodate

arbitrary pitches. Finally, a piece of music is typically organized around a small

number of focal pitches: between four and seven per octave.
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Pitch Frequency by octave (Hz)
3 4 5

C 130.81 261.63 523.25
C♯/D♭ 138.59 277.18 554.37
D 146.83 293.66 587.33
D♯/E♭ 155.56 311.13 622.25
E 164.81 329.63 659.26
F 174.61 349.23 698.46
F♯/G♭ 185.00 369.99 739.99
G 196.00 392.00 783.99
G♯/A♭ 207.65 415.30 830.61
A 220.00 440.00 880.00
A♯/B♭ 233.08 466.16 932.33
B 246.94 493.88 987.77

Table A.1: Interpretation of absolute pitches in scientific notation in terms of fre-
quency

Clef and key signature In common music notation, these focal pitches are indi-

cated by the clef and the key signature. The clef simply specifies that some staff line

is a reference point that corresponds to a given pitch. For example, the bass clef (a

stylized cursive F) indicates that the second topmost line of the staff corresponds to

an F. Lines and spaces of the staff can then be assigned pitches by moving step by

step on the staff while moving step by step in the opposite direction in Table A.1;

jumping over lines that display a sharp symbol ♯ or a flat symbol ♭; and wrapping

around the table if necessary. The key signature indicates that some of the staff

lines correspond to pitches that are either raised by a sharp symbol ♯ or lowered by

a flat symbol ♭.

Scale In addition, the focal pitches denoted by the clef and key signature corre-

spond to the notion of scale. Starting from any particular focal pitch, a scale is

a process by which six other focal pitches are identified in a particular order. For

example, starting from G, the major scale identifies the following pitches: A, B, C,

D,E, and F♯. The pitch G is then called the first degree of the scale, the pitch A its

second degree, and so forth. The first degree is also called the tonic. It is considered

as the most important pitch of the scale and melodies in a particular scale very often

start or end on that note.

The logic behind the major scale is expressed in terms of semitone. A semitone

is the pitch distance between any two contiguous lines in Table A.1, e.g. from C to
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C♯, or from E to F. Starting from any pitch in Table A.1, the major scale names

pitches distanced by respectively 2,4,5,7,9, and 11 semitones; in that order, moving

downwards in the list of pitch names and wrapping around the table if necessary

(as is the case for the G major scale above). The minor scale is a similar process,

using the semitone distances 2,3,5,7,8, and 10 (or 11 in some variations). When a

piece of music is mostly organized around the major scale, it is said to be in major

mode. Conversely, if it uses the minor scale, it is said to be in minor mode. These

two modes are largely predominant in western concert music.

There are many competing explanations for the historical predominance of these

two modes, how to build the scales and how this affects the exact frequencies that

a pitch should represent. The frequencies of Table A.1 are only one possibility and,

for example, it is usually considered that pitch names appearing on the same line in

Table A.1 should in fact be differentiated in term of frequency. These confounded

names, e.g. C♯/D♭ are called enharmonics. When the differentiation is available in

the data, i.e. when we can be confident that the ♯ and ♭ symbols reflect the intention

of the composer or editor of the piece, we say the pitches are spelled. When spelled

pitches are available, one typically prefers not to use semitones as a measure of

pitch distance. The notion of distance based on the major scale and called diatonic

interval is far more common in the music-theoretic literature.

Diatonic intervals A diatonic interval, simply called interval in this dissertation,

is formed between any two spelled pitches and labelled according to the distance be-

tween the pitch names, expressed in how many degrees of the major scale separate

the names. For example, as D is the fifth degree in the G major scale, the interval

G-D♭ is labelled as a fifth. In addition, when the interval is shortened or lengthened

by the presence of accidentals that were not part of the scale, the interval is affixed

with a quality. The intervals of the unison, fourth and fifth are called perfect inter-

vals. When shortened, they become diminished and when lengthened, they become

augmented. The interval G-D♭ above is hence a diminished fifth. The intervals of the

second, third, sixth and seventh are the major intervals. When shortened, they be-

come minor intervals; if shortened twice, they become diminished intervals. When

lengthened, they become augmented intervals.

The notion of interval differentiates between enharmonic pitches: the distance

between G-D♭ and G-C♯ is three six semitones in both cases, but in the first case it

consists of a diminished fifth, while in the latter case it consists of an augmented

fourth.
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In addition, the intervals have the property of obeying the principle of octave

equivalence. Pitches separated by more than one octave are still considered to form

intervals ranging from the unison to the seventh. In particular, the interval of an

octave is assimilated with the unison. Such octave-equivalent intervals are called

compound intervals. This is the most common form of interval. However, it is

sometimes useful to include octaves in the notion of intervals. In this dissertation,

we call these non-compound intervals (abbreviated nc in Chapter 5). To name non-

compound intervals, one simply continues to count scale degrees higher than seven:

an octave is a eighth, an octave plus a second is a ninth, and so on.

Consonance In music theory, the intervals are classified as consonant or disso-

nance. A consonance is considered to be a stable sonority, one on which a piece

can plausibly end. A dissonance is considered to be an unstable sonority, one that

invites motion. The motion from a dissonance to a consonance, called a resolution,

is a recurrent theme in music theory. Following Piston (1941, chap. 2), the in-

tervals considered as consonant in this dissertation are the unison, the minor and

major third, the perfect fifth, and the minor and major sixth. All other intervals

are considered to be dissonant.

Metrical levels Finally, common music notation supports an indication of tem-

poral organization called meter . Indicated by the time signature, the meter groups

beats into bars, which divide a piece of music into segments. Typically, notes at

the beginning of a bar are considered to be metrically accented and are meant to

be highlighted by the performer in one way or another. The exact meaning of time

signatures vary, but they all correspond to some labelling of the notes with metrical

accents of varying intensity, e.g. 0 for the strongest, 1 for intermediary and 2 for

the lowest. We call this the metrical level of a note, a notion that appears in some

music-theoretic patterns.
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A.2 Glossary

Concept Definition
Note Unit of sound; symbol with which the unit is written

down
Beat Time unit; corresponds to the time elapsed between two

taps when following the tempo of a piece of music
Onset Start time of a note; measured in number of beats since

start time of the piece
Offset End time of a note; measured in number of beats since

start time of the piece
Duration Time elapsed between the onset and offset of a note;

measured in beats
Pitch Auditory property of a note that make it sound higher

(like a female voice) or lower (like a male voice); pitch is
measured in frequency and referred to with pitch names

Octave Pitches that have twice or half the frequency; when sep-
arated by an octave, pitches are considered very similar

Sharp Symbol that raises the pitch of a note
Flat Symbol that lowers the pitch of a note
Staff Five horizontal lines on which notes are drawn

Staff line Each line corresponds to a specific pitch; spaces between
the lines also correspond to specific pitches

Clef Identifies one of the staff lines as a reference pitch
Key signature Identifies the prescribed pitch of other staff lines, e.g.

by assigning them implicit sharp symbols
Time signature Identifies how beats are counted, e.g. by groups of three

Bar Group of beats; useful to segment the piece into small
units (typically two to four beats)

Bar line Visual depiction of the bars
Metrical level Position of a note within a bar; typically notes in specific

positions are accented

Table A.2: Basic musical concepts
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Symbol Duration Dotted Duration Tied Duration
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Table A.3: Examples of durations in common music notation

Concept Definition
Part The notes that one instrument or section plays, e.g. the

piano part or the soprano section of a choir
Voice When a part can be mentally divided in subparts, each

is said to be a voice; in this dissertation however, the
notions of part and voice are used without distinction

Melody A sequence of notes that is perceived as salient in a
piece; often the melody is what a listener remembers
and recognizes later on

Transposition Translation of a melody upwards or downwards in the
pitch dimension. Transposed melodies are perceptually
very similar

Independence When multiple melodies can be mentally segregated
Sequence A list of notes, occurring directly one after the other

Layer A collection of notes, all starting at the same time; in
this dissertation we extend the idea to notes that overlap
without necessarily starting at the same time

Chord A layer with specific pitches that are identified as having
an important role

Monophony Musical texture that consists solely of sequences of notes
Homophony Musical texture that consists of sequences of layers
Polyphony Musical texture that consists of overlapping melodies or,

in general, of any structural organization of the notes

Table A.4: Musical concepts about texture
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Concept Definition
Scale Identifies seven pitches that are predominant in a piece

Degree Labelling of the notes with their position in the scale
Tonic First degree of a scale; typically, it plays an important

role in how the piece is structured and described
Key Indication of the mode and tonic

Mode Major or minor; this corresponds to two different scales
Semitone Smallest pitch distance

Enharmonics Pitches that sound very similar or even the same on
some instruments, e.g. the piano

Pitch spelling Differentiating enharmonics by using different pitch
names

Diatonic interval Measure of pitch distance
Quality Diminished, minor, major, perfect or augmented; quali-

fies the diatonic intervals
Perfect The unison (no interval), fourth, fifth and octave
Major The second, third, sixth and seventh
Minor When a major interval is shortened

Augmented When a major or perfect interval is lengthened
Diminished When a minor or perfect interval is shortened
Compound Intervals that forget octaves; intervals bigger than an

octave are considered as equivalent to their remainder
after an octave, e.g. the interval of an octave plus a
fifth is equated with a fifth; this is the default case in
this dissertation

Non-compound (nc) Intervals that take the octave into account, e.g. the
interval of an octave and a fifth is encoded as a twelfth

Table A.5: Musical concepts about pitch relations

Concept Definition
Consonance Intervals that are considered as stable, i.e. a piece is

likely to end on such intervals: the unison, the perfect
fifth, the major and minor third and sixth

Dissonance Intervals that are considered as unstable, i.e. a piece
is likely to continue after sounding those intervals; all
intervals except the ones mentioned above

Preparation Introducing a dissonance
Resolution Moving from a dissonance to a consonance

Table A.6: Musical concepts about style
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User-defined features

Feature Values Description

onset 0, 1, . . . Start time of an event

offset 0, 1, . . . End time of an event

duration 0, 1, . . . Elapsed time between onset and offset

pitch C4,C♯4, . . . Spelled pitch of a note

key Cmaj,Cmin, . . . Tonic and mode

meter 0, 1, . . . Metrical level (0 for strongest)

degree 1, 2, 3, . . . Scale degree

Table B.1: Features that encode properties of a single event
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Feature Values Description

m interval P1,m2,M2, . . . Melodic interval: diatonic interval over the m
temporal relation

m interval nc P1,m2,M2, . . . Non-compound melodic interval: the octave
is recorded

m size U, S, L Classifying melodic intervals with respect
to small intervals (steps) and big intervals
(leaps)

m dir =,+,− Direction of melodic motion

accented T, F True if the current note has a stronger met-
rical level than its predecessor

Table B.2: Features that encode melodic properties: relations of the current event
with its direct predecessor

Where Add

{pitch : P1}x ; {pitch : P2}∗x m interval : diatonic interval(P1, P2)

{pitch : P1}x ; {pitch : P2}∗x m interval nc : diatonic interval nc(P1, P2)

{m interval nc : I}∗x

m size :
if I < m2 then U

if I < m3 then S

else L

{pitch : P1}x ; {pitch : P2}∗x

m dir :
if P2 < P1 then −
if P2 > P1 then +
else =

{ml : M1}x ; {ml : M2}∗x

accented :
if M2 < M1 then T

else F

Table B.3: Definition rules for features that encode melodic properties (Table B.2)
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Feature Values Description

st interval(x) P1,m2,M2, . . . Harmonic interval for notes that start to-
gether: diatonic interval over the st tempo-
ral relation

sw interval(x) P1,m2,M2, . . . Harmonic interval when the current note
starts while some note in voice x is unfold-
ing: diatonic interval over the sw temporal
relation

et interval(x) P1,m2,M2, . . . Harmonic interval for notes that end to-
gether: diatonic interval over the et tempo-
ral relation

st interval nc(x) P1,m2,M2, . . . Non-compound harmonic interval over st:
octaves are recorded

et interval nc(x) P1,m2,M2, . . . Non-compound harmonic interval over et:
octaves are recorded

st cons(x) T, F Consonance or dissonance over the st tempo-
ral relation; the unison (octave), the perfect
fifth, the major and minor third and sixth
are considered as consonance; other intervals
are considered as dissonant

sw cons(x) T, F Consonance or dissonance over the sw tem-
poral relation

et cons(x) T, F Consonance or dissonance over the et tem-
poral relation

Table B.4: Features that encode harmonic properties: relations of the current event
with an overlapping event in some other voice x
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Where Add

{pitch : P1}∗x

{pitch : P2}y
st interval(y) : diatonic interval(P1, P2)

{pitch : P1}∗x

−{pitch : P2}y
sw interval(y) : diatonic interval(P1, P2)

−{pitch : P1}∗x

−{pitch : P2}y
;
{}x

{}y

et interval(y) : diatonic interval(P1, P2)

{pitch : P1}∗x

{pitch : P2}y
st interval nc(y) : diatonic interval nc(P1, P2)

{pitch : P1}∗x

−{pitch : P2}y
sw interval nc(y) : diatonic interval nc(P1, P2)

−{pitch : P1}∗x

−{pitch : P2}y
;
{}x

{}y

et interval nc(y) : diatonic interval nc(P1, P2)

{st interval(y) : I}x

st cons(y) :
if I ∈ {P1,m3,M3,P5,m6,M6} then T

else F

{sw interval(y) : I}x

sw cons(y) :
if I ∈ {P1,m3,M3,P5,m6,M6} then T

else F

{et interval(y) : I}x

et cons(y) :
if I ∈ {P1,m3,M3,P5,m6,M6} then T

else F

Table B.5: Definition rules for features that encode harmonic properties (Table B.4)

155



APPENDIX B. USER-DEFINED FEATURES

Feature Values Description

parallel(x) T, F When two voices move in the same direction
and repeat the same harmonic interval

par1 5(x) T, F When two voices exhibit parallel motion for
the intervals of a unison or perfect fifth

passing(x) T, F True if the current note is a passing tone with
respect to voice x

strong(x) T, F Counterpoint property: true if the current
note is a valid strong note with respect to
voice x; it must be a consonance and cannot
exhibit a parallel fifth or octave

weak(x) T, F Counterpoint property: true if the current
note is a valid weak note with respect to voice
x; it must either be a consonance or be a
passing tone

Table B.6: Features that encode complex properties: relations between more than
two events
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Where Add

{et interval nc(y) : I1}x
; {st interval nc(y) : I2, m size : S}∗x

parallel(y) :
if I1 = I2

∧ S 6= U

then T

else F

{et interval(y) : I}x
; {st interval(y) : I, parallel(y) : P}∗x

par1 5(y) :
if (I = P1 ∨ I = P5)
∧ P = T

then T

else F

a ; b∗ ; c

a={}x

b={et cons(y) : C1, m size : S1,

m dir : D1}x

c={st cons(y) : C2, m size : S2,

m dir : D2}x

passing(y) :
if C1 = F ∧ C2 = T

∧ S1 = S ∧ S2 = S

∧ D1 = D2

then T

else F

{st cons(y) : C, par1 5(y) : P}∗x

strong(y) :
if C = T

∧ P = F

then T

else F

{st cons(y) : C, passing(y) : P}∗x

weak(y) :
if C = T

∨ P = T

then T

else F

Table B.7: Definition rules for features that encode complex properties (Table B.6)
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Notation

Concept Examples Definition

Source s s1, s2 A collection of musical events

Event e e1, e2 A set of event features; the set is
labelled with a voice name

Event feature f pitch : G♯,
parallel(bass) : T

A feature name and its value; the
feature possibly encodes a rela-
tion with an event in some other
voice

Feature name τ pitch, interval

Voice name n bass, alto

Feature value v G♯, T

Component κ κ1, κ2 Abstraction of events; values and
voice names can be replaced with
variables

Component feature f̂ pitch : P,
parallel(x) : X

P and X are value variables; x is a
voice variable

Voice variable γ x, y

Value variable α P, X

Table C.1: Syntax and meaning of SPP sources and components
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Concept Example Definition

Component index ǫ a, b Unique identifiers for components

Meet m(a, b) a meets b (a ends as b starts)

Start together st(a, b) a and b start together

Starts while sw(a, b) a starts while b is unfolding

Overlap ov(a, b) a and b overlap; at some point in time,
both a and b are unfolding

SPP pattern φ a ; b

a

b

Sequence of components, layer of com-
ponents, or a mixture of both struc-
tures

Sequence operator “;” a ; b b directly follows a; the relation m(a, b)
holds

Layer operator “==” a

b

a and b start at the same time; the re-
lation st(a, b) holds

Onset operator “−” a

−b

Conceptually, b is extended backward
in time: the relation sw(a, b) holds

−a

−b

When both a and b are extended back-
ward in time, the relation ov(a, b) holds

Assignment θ Assigns values to variables

Instance I Maps components to events

Table C.2: Syntax and meaning of SPP patterns
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Concept Example Definition

where φ[ǫ∗] {pitch : P1} ; {pitch : P2}∗ The where clause specifies the lo-
cations in the source where the
rule applies

ǫ∗ {pitch : P2}∗ One component in φ is distin-
guished by a ∗ symbol. The event
matching this component will be
added a feature

add f̂ [Ω] m interval : interval(P1, P2) The add clause specifies the fea-
ture to add

Ω interval(P1, P2) The function Ω takes the value of
the variables P1 and P2 and re-
turns the value of the feature to
add

Table C.3: Syntax and meaning of SPP feature definition rules

Concept Example Definition

R pattern r m(a, b), sw(d, a),
sw(b, d)

A pattern in R is a set of temporal re-
lations

H pattern h




d (a)

(d) b



 A pattern in H is a matrix of tokens

Event ǫ d and b The start of an event in an H pattern

Continuation (ǫ) (a) and (d) The continuation of an event in an H
pattern

Don’t care ⋆ The special “don’t care” symbol in an
H pattern

Table C.4: Syntax of R and H
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Matching algorithm

Following Definition 10 (Chapter 4, page 68), the collection of instances can be built

by recursively analyzing φ.

Definition 22 Given a pattern φ, the SPP-join algorithm returns a collection

of instances by executing the following computation:

SPP-join(φ) =

If φ is of the form ǫ, then:

instancesǫ := iterate events(ǫ) (Definition 24)

return instancesǫ

If φ is of the form φ1 ; φ2, then:

instancesφ1
:= SPP-join(φ1)

instancesφ2
:= SPP-join(φ2)

instancesφ := iterate seq(φ, φ1, φ2) (Definition 25)

return instancesφ

If φ is of the form
φ1

φ2

, then:

instancesφ1
:= SPP-join(φ1)

instancesφ2
:= SPP-join(φ2)

instancesφ := iterate layer(φ, φ1, φ2) (Definition 29)

return instancesφ

To compute the instances of a pattern φ with subpatterns φ1 and φ2, the algo-
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rithm proceeds as follows. First the instances of φ1 and φ2 are computed. Then,

pairs of instances of φ1 and φ2 are iterated (this is done respectively by iterate seq

and iterate layer). Every pair is joined to form a candidate instance of φ (this

simply consists of the union of φ1 and φ2 respective instances). The candidate in-

stance is tested against Definition 10 to determine if it is a valid instance of φ. The

efficient iteration of candidate instances is done using two specialized data struc-

tures. The first is used to store instances in such a way that an instance can be

accessed directly via the point in time at which it starts.

Definition 23 For every pattern or subpattern φ, SPP-join builds a mapping

from time points t to the set of instances that start at that point:

• instancesφ(t) = {(I1, θ1), . . . , (In, θn)}

• All such mappings can be efficiently implemented as balanced trees, using the

usual ≤ operator for comparisons.

• Notice that a θ-instance I is represented explicitly as a pair containing the set

I and the variable assignment θ.

For the first case in Definition 22, iterate events, the mapping is simply built

as the source is scanned.

Definition 24 Given an SPP source s (Definition 1, Chapter 4, page 58), the

function iterate events is defined as follows:

iterate events(ǫ) =

instancesǫ := {}

for all e ∈ s do

t := e.onset

for all θ such that e is a θ-instance of ǫ do

I := {(ǫ, e)}

instancesǫ(t) := instancesǫ(t) ∪ {(I, θ)}

return instancesǫ

The second case in Definition 22, iterate seq, takes advantage of the mapping

to improve efficiency. We know that according to Definition 10, a valid instance of
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φ1 ; φ2 has to enforce the m temporal relation between components that end φ1 and

those that start φ2. Consequently, for every instance of φ1, we can compute the

point in time where the instance ends and directly access the relevant instances of

φ2. Every resulting instance of φ is then stored in the appropriate mapping using

the starting point of φ1 (if φ is of the form φ1 ; φ2, it necessarily starts when φ1

starts).

Definition 25

iterate seq(φ, φ1, φ2) =

instancesφ := {}

for all (I1, θ1) ∈ instancesφ1
do

t := the time at which I1 starts (Definition 26)

t′ := the time at which I1 ends (Definition 27)

for all (I2, θ2) ∈ instancesφ2
(t′) do

I12 := I1 ∪ I2

θ12 := θ1 ∪ θ2

if I12 is a valid θ12-instance of φ then (Definition 10)

instancesφ(t) := instancesφ(t) ∪ {(I12, θ12)}

return instancesφ

Formally, we define what it means for an instance to start or end as follows.

Definition 26 Given an instance I of φ, we say that I starts at t if:

• There is a component ǫ in φ such that:

◦ ǫ starts φ

◦ ǫ would be aligned with ǫ′ in ǫ′ ; φ

• The instance I maps the component ǫ to the event e

• The time point t is the onset of e, i.e. t = e.onset
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Definition 27 Given and instance I of φ, we say that I ends at t if:

• There is a component ǫ in φ such that:

◦ ǫ ends φ

◦ ǫ would be aligned with ǫ′ in φ ; ǫ′

• The instance I maps the component ǫ to the event e

• The time point t is the offset of e, i.e. t = e.offset

The third case of Definition 22, iterate layer is slightly more subtle. Again,

we want to iterate the instances of φ1 and directly access the instances of φ2. In

some cases, the instance of φ1 will start at the same time as the instance of φ2. This

is the case where the st temporal relation is enforced. The mapping of Definition 23

suffices for such cases. For other cases, however, when the sw or ov temporal relations

are enforced, we need to explore the set of instances that overlap with the current

instance. This can be done efficiently provided the following mapping is already

initialized:

Definition 28 The SPP-join algorithm assumes a mapping of all time points t

to the set of time points where some event might overlap with an event found at t:

• overlaps(t) = {t1, . . . , tn}

• Again, the mapping can be efficiently implemented as a balanced tree, using

the usual ≤ operator for comparisons.

Assuming the overlaps mapping, iterate layer is defined as follows.

Definition 29

iterate layer(φ, φ1, φ2) =

instanceφ := {}

for all (I1, θ1) ∈ instancesφ1
do

t := the time at which I1 starts (Definition 26)

for all t′ ∈ overlaps(t) do

for all (I2, θ2) ∈ instancesφ2
(t′) do
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I12 := I1 ∪ I2

θ12 := θ1 ∪ θ2

if I12 is a valid θ12-instance of φ then (Definition 10)

instancesφ(t) := instancesφ(t) ∪ {(I12, θ12)}

return instancesφ

For completeness, the definition below shows how to initialize the overlaps

mapping.

Definition 30

overlaps := {}

current spans := {}

Sort source s is ascending order of onset and, for identical onsets,

in descending order of offset

for all e ∈ s do

if there is a f such that (e.onset, f) ∈ current spans then

do nothing

else

current spans := current spans ∪ {(e.onset, e.offset)}

for all (o, f) ∈ current spans such that o ≤ e.onset ≤ f do

overlaps(o) := overlaps(o) ∪ {e.onset}

for all (o, f) ∈ current spans such that f > e.onset do

current spans := current spans \ (o, f)
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Prolog implementation

The Prolog implementation of SPP query consists of three elements: i) a translation

of a well-formed SPP source to a set of Prolog facts (Definition 31), ii) a translation

of an SPP pattern to a Prolog rule (Definition 33), which in turn relies on iii) an

implementation as a set of Prolog rules of the four temporal relations supported

by SPP: m, st, sw, ov (Definition 36). Given these three elements, the query is

executed using a simple Prolog query that directly refers to the rule corresponding

to the SPP pattern.

The first translation relies on attributing a unique index to every event in a SPP

source.

Definition 31 Assuming an indexing function index(·) that assigns a unique

Prolog atom to every event of a SPP source s, the Prolog facts of that source are

as follows:

source facts(s) = {event facts(e, e) | e ∈ s ∧ e = index(e)}

The translation of an SPP event is a straightforward rewriting of the features

of the event into Prolog syntax. For simplicity, we assume that every feature name

τ and every voice name n is consistent with the syntax of Prolog atoms.

Definition 32 Given an SPP event e and its Prolog index e, the translation of

event e into Prolog facts is given as follows:
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event facts(e, e) =

{

If f is τ : v, then feature(e, τ, v)

If f is τ(n) : v, then feature voice(e, τ, n, v)

| f ∈ e }

To translate an SPP pattern φ to a Prolog rule, we assume a mapping of the

components of φ to Prolog variables of the form CompX (where X is an integer). Every

such variable will appear in the head of the rule. In the body of the rule, the same

variable will appear in clauses specifying constraints about the relevant component:

the features it contains and the temporal relation it forms. Similarly, we assume

a mapping of the value variables of φ to Prolog variables of the form ValX and a

mapping of the voice variables of φ to Prolog variables of the form VoiceX.

Definition 33 Given an SPP pattern φ with i components, j value variables and

k voice variables, the Prolog rule that captures φ is as follows:

pattern(Comp1, . . . , CompI, Val1, . . . , ValJ, Voice1, . . . , VoiceK) : −

pattern clauses(φ)

The exact clauses corresponding to a SPP pattern are obtained by recursively

analyzing the pattern.

Definition 34 Assuming a mapping comp var from component indices to Prolog

variables of the form CompX, a mapping value var from value variables to Prolog

variables of the form ValX and a mapping voice var from voice variables to Prolog

variables of the form VoiceX, the clauses C of pattern φ are as follows:
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pattern clauses(φ) = C where C is as follows:

• If φ is of the form ǫ or −ǫ, then:

C = component clauses(ǫ, CompX) (Definition 11)

with CompX = comp var(ǫ)

• If φ is of the form φ1 ; φ2, then:

C = C1 ∪ C2

C1 = pattern clauses(φ1)

C2 = pattern clauses(φ2)

and:

For every component ǫ1 ending φ1 (Definition 12)

And every component ǫ2 starting φ2 (Definition 13)

If ǫ1 and ǫ2 are aligned (Definition 14)

then C = C ∪ {m(CompX, CompY)}

with CompX = comp var(ǫ1)

and CompY = comp var(ǫ2)

• If φ is of the form
φ1

φ2

, then:

C = C1 ∪ C2

C1 = pattern clauses(φ1)

C2 = pattern clauses(φ2)

and:

For all components ǫ1, ǫ2 starting φ1, φ2 (Definition 13)

For pairs of the form ǫ1, ǫ2, C = C ∪ {st(CompX, CompY)}

For pairs of the form ǫ1, −ǫ2, C = C ∪ {sw(CompX, CompY)}

For pairs of the form −ǫ1, ǫ2, C = C ∪ {sw(CompY, CompX)}

For pairs of the form −ǫ1, −ǫ2, C = C ∪ {ov(CompX, CompY)}

with CompX = comp var(ǫ1)

and CompY = comp var(ǫ2)

The clauses of a pattern component are computed as defined below.

Definition 35 Assuming a mapping value var from value variables to Prolog

variables of the form ValX and a mapping voice var from voice variables to Prolog
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variables of the form VoiceX, we obtain the clauses of component κ associated with

Prolog variable CompX as follows:

component clauses(κ, CompX) =

{

If f̂ is τ : v, then feature(CompX, τ, v)

If f̂ is τ : α, then feature(CompX, τ, ValY)

If f̂ is τ(n) : v, then feature voice(CompX, τ, n, v)

If f̂ is τ(γ) : v, then feature voice(CompX, τ, VoiceZ, v)

If f̂ is τ(n) : α, then feature voice(CompX, τ, n, ValY)

If f̂ is τ(γ) : α, then feature voice(CompX, τ, VoiceZ, ValY)

with ValY = value var(α)

and VoiceZ = voice var(γ)

| f̂ ∈ κ }

Finally, the temporal relations supported by SPP are defined below.

Definition 36

m(CompX,CompY) :-

feature(CompX,offset,A),

feature(CompY,onset,A).

st(CompX,CompY) :-

feature(CompX,onset,A),

feature(CompY,onset,A).

sw(CompX,CompY) :-

feature(CompX,onset,A),

feature(CompY,onset,B),

feature(CompY,offset,C),

A > B,

A <= C.

ov(CompX,CompY) :- st(CompX,CompY).

ov(CompX,CompY) :- st(CompY,CompX).

ov(CompX,CompY) :- sw(CompX,CompY).

ov(CompX,CompY) :- sw(CompY,CompX).
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Additional tables and figures

F.1 Features
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Figure F.1: Frame-conditioned probabilities of scale degrees in Bach chorales, Sym-
phony no.40, Chopin and folk songs
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Figure F.2: Frame-conditioned probabilities of harmonic intervals in Bach chorales,
Mozart Symphony no.40 and Chopin piano pieces. Only intervals occurring over at
least 1% of st temporal relations are considered

F.2 Queries

(S1, D1) (S2, D2) Chorales no.40 Chopin Folk songs
(L,+) (S,−) 19.48% 7.67% 5.31% 12.65%
(L,−) (L,+) 18.92% 13.18% 17.10% 16.16%
(L,−) (S,+) 16.88% 6.97% 4.65% 7.64%

Table F.1: The three most frequent melodic sequences that begin with a step and
their frame-conditioned probabilities
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Chord Chorales no.40 Chopin
Minor 2.32% 0.17% 0.14%
P5,P4,m3 32.66% 18.53% 17.37
m3,M3,P4 23.80% 11.53% 15.62%
P1,P5,m6 15.96% 23.63% 16.48%

Table F.2: Minor chord with the root as the lowest note and its frame-conditioned
probability with respect to all block chords. The following lines show the three
most frequent permutations and their frame-conditioned probabilities with respect
to other possible permutations

Embellishment Approach Resolution Chorales no.40 Chopin
S1 D1 A S2 D2

Upper neighbor S + F S − 3.00% 1.80% 0.53%
Lower neighbor S − F S + 5.53% 1.39% 0.58%
Acc. upper neighbor S + T S − 2.16% 0.88% 0.21%
Acc. lower neighbor S − T S + 1.52% 0.96% 0.27%
Passing S (= D2) F S (= D1) 30.75% 3.06% 1.11%
Acc. passing S (= D2) T S (= D1) 3.99% 1.49% 0.49%
Anticipation F = 10.63% 11.47% 9.54%
Retardation T S + 1.84% 1.78% 1.56%
Escape S F L 4.75% 3.91% 3.85%
Appogiatura L F S 0.79% 1.45% 1.21%
Repetition = F 4.24% 11.74% 11.76%
Arpeggio L F 7.54% 18.97% 18.38%
Unclassified 23.27% 41.08% 50.51%

Table F.3: Polyphonic embellishments and their frame-conditioned probabilities
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F.3 Musical excerpts for Chapter 5
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Figure F.3: BWV 273 (bar 5) with a highlighted compensated leap pattern

173



APPENDIX F. ADDITIONAL TABLES AND FIGURES

E3
F3

G3

A3

B3
C4

D4

E4
F4

G4

A4

B4
C5

♭

 

4
3

� �
4
3

���
��

��
��

��
�����

Figure F.4: BWV 349 (bar 13) with a highlighted compensated leap pattern
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Figure F.5: BWV 297 (bar 3) with a highlighted compensated leap pattern
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Figure F.6: BWV 277 (bar 1) with a highlighted compensated leap pattern
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Figure F.7: BWV 292 (bar 1) with a highlighted I/i block chord pattern
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Figure F.8: BWV 335 (bar 4) with a highlighted I/i block chord pattern
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Figure F.9: BWV 415 (bar 1) with a highlighted I/i block chord pattern
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Figure F.10: BWV 438 (bar 8) with a highlighted I/i block chord pattern
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Figure F.11: BWV 263 (bar 6) with a highlighted parallel fifth pattern
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Figure F.12: BWV 301 (bar 3) with a highlighted parallel fifth pattern
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Figure F.13: BWV 323 (bar 8) with a highlighted parallel fifth pattern
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Figure F.14: BWV 355 (bar 15) with a highlighted parallel fifth pattern
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Figure F.15: BWV 361 (bar 12) with a highlighted parallel fifth pattern
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Figure F.16: BWV 259 (bar 8) with a highlighted suspension pattern
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Figure F.17: BWV 390 (bar 12) with a highlighted suspension pattern
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Figure F.18: BWV 393 (bar 7) with a highlighted suspension pattern
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Figure F.19: BWV 285 (bar 1) with a highlighted suspension pattern
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Figure F.20: BWV 253 (bar 4) with a highlighted passing tone pattern
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Figure F.21: BWV 395 (bar 9) with a highlighted passing tone pattern
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Figure F.22: BWV 262 (bar 2) with a highlighted passing tone pattern
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Figure F.23: BWV 436 (bar 1) with a highlighted passing tone pattern

193



APPENDIX F. ADDITIONAL TABLES AND FIGURES

A2

B2

C3

D3

E3

F3

G3

A3

B3

C4

D4

E4

F4

G4

A4

♭

♯

♯

 

�
��

� �

�
� 


� � �
� � �

�
�

����
�� ��

��
��
�� �

�

Figure F.24: BWV 277 (bar 3) with a highlighted two-voice counterpoint pattern
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Figure F.25: BWV 285 (bar 9) with a highlighted two-voice counterpoint pattern
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Figure F.26: BWV 380 (bar 3) with a highlighted two-voice counterpoint pattern

196



APPENDIX F. ADDITIONAL TABLES AND FIGURES

C3

D3

E3

F3

G3

A3

B3

C4

D4

E4

F4

G4

A4

B4

♯

♯

♯

♯

 

�
�

�
�

��
��

� �
� � �

��
�� �

��
��

��
��� �

Figure F.27: BWV 418 (bar 7) with a highlighted two-voice counterpoint pattern
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Figure F.28: BWV 374 (bar 7) with a highlighted two-voice counterpoint pattern
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Figure F.29: BWV 398 (bar 11) with a highlighted two-voice counterpoint pattern
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Figure F.30: BWV 284 (bar 15) with a highlighted dislocated chord pattern
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Figure F.31: BWV 318 (bar 13) with a highlighted dislocated chord pattern
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Figure F.32: BWV 255 (bar 2) with a highlighted layered passing tones pattern
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Figure F.33: BWV 320 (bar 19) with a highlighted layered passing tones pattern
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Figure F.34: BWV 257 (bar 2) with a highlighted tritone resolution pattern
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Figure F.35: BWV 315 (bar 13) with a highlighted tritone resolution pattern
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F.5 Musical excerpts for Chapter 7
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Figure F.36: BWV 278 (bar 8) with a highlighted rising fourths canon pattern
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Figure F.37: BWV 328 (bar 43) with a highlighted rising fourths canon pattern
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Figure F.38: BWV 328 (bar 33) with a highlighted two-voice module
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Figure F.39: BWV 382 (bar 9) with a highlighted two-voice module
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Appendix G

Accompanying CD

Track Piece Excerpt Pattern Figure Page

1 BWV 323 bars 1-5, tenor 1.1 3

2.1 15

2.2 16

2.7 a)c) 27

2 BWV 323 1.2 9

3 BWV 323 bars 1-2 2.3 17

4 BWV 323 bars 3-5 2.5 19

5 BWV 323 bars 1-5 Transposed 2.7a)d) 27

6 BWV 323 bars 1-5 Transformed 2.7b)e) 27

7 BWV 323 bar 1 2.8a)c) 29

8 BWV 323 bar 1 Transposed 2.8a)d) 29

9 BWV 323 bar 1 Transformed 2.8b)e) 29

10 BWV 323 bar 8 Parallel fifth 2.9 31

11 BWV 323 bar 10 Suspension 2.10 32

12 BWV 304 bar 21 4.1 60

5.2 80

5.4 83

Table G.1: Accompanying CD, tracks 1-12
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Track Piece Excerpt Pattern Figure Page

13 BWV 273 bar 5 Compensated leap 5.6a) 91

F.3 173

14 BWV 349 bar 12 Compensated leap 5.6b) 91

F.4 174

15 BWV 297 bar 3 Compensated leap 5.6c) 91

F.5 175

16 BWV 277 bar 1 Compensated leap 5.6d) 91

F.6 176

17 BWV 292 bar 1 Block chord 5.7a) 93

F.7 177

18 BWV 335 bar 4 Block chord 5.7b) 93

F.8 178

19 BWV 415 bar 1 Block chord 5.7c) 93

F.9 179

20 BWV 438 bar 8 Block chord 5.7d) 93

F.10 180

21 BWV 263 bar 6 Parallel fifth 5.8a) 96

F.11 181

22 BWV 301 bar 3 Parallel fifth 5.8b) 96

F.12 182

23 BWV 323 bar 8 Parallel fifth 5.8c) 96

F.13 183

24 BWV 355 bar 15 Parallel fifth 5.8d) 96

F.14 184

25 BWV 361 bar 12 Parallel fifth 5.8e) 96

F.15 185

Table G.2: Accompanying CD, tracks 13-25
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Track Piece Excerpt Pattern Figure Page

26 BWV 259 bar 8 Suspension 5.9a) 98

F.16 186

27 BWV 390 bar 12 Suspension 5.9b) 98

F.17 187

28 BWV 393 bar 7 Suspension 5.9c) 98

F.18 188

29 BWV 285 bar 1 Suspension 5.9d) 98

F.19 189

30 BWV 253 bar 4 Passing tone 5.10a) 100

F.20 190

31 BWV 395 bar 9 Passing tone 5.10b) 100

F.21 191

32 BWV 262 bar 2 Passing tone 5.10c) 100

F.22 192

33 BWV 426 bar 1 Passing tone 5.10d) 100

F.23 193

34 BWV 277 bar 3 Counterpoint 5.11a) 102

F.24 194

35 BWV 285 bar 9 Counterpoint 5.11b) 102

F.25 195

36 BWV 380 bar 3 Counterpoint 5.11c) 102

F.26 196

37 BWV 418 bar 7 Counterpoint 5.11d) 102

F.27 197

Table G.3: Accompanying CD, tracks 26-37
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Track Piece Excerpt Pattern Figure Page

38 BWV 374 bar 7 Three-voice counterpoint 5.12a) 102

F.28 198

39 BWV 398 bar 11 Three-voice counterpoint 5.12b) 102

F.29 199

40 BWV 285 bar 15 Dislocated chord 6.3a) 107

F.30 200

41 BWV 318 bar 13 Dislocated chord 6.3b) 107

F.31 201

42 BWV 255 bar 2 Layered passing tones 6.4a) 107

F.32 202

43 BWV 320 bar 19 Layered passing tones 6.4b) 107

F.33 203

44 BWV 257 bar 2 Tritone resolution 6.5a) 108

F.34 204

45 BWV 315 bar 12 Tritone resolution 6.5b) 108

F.35 205

46 Waltz Op.64 Nr.2 bars 9-10 Suspension 7.1 124

47 BWV 278 bar 8 Rising fourths cannon 7.12a) 141

F.36 207

48 BWV 328 bar 43 Rising fourths cannon 7.12b) 141

F.37 208

49 BWV 328 bar 33 Two-voice module 7.13a) 141

F.38 209

50 BWV 382 bar 9 Two-voice module 7.13b) 141

F.39 210

Table G.4: Accompanying CD, tracks 38-50
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